Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[linux-2.6-microblaze.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "util/evsel_fprintf.h"
29 #include "header.h"
30 #include "memswap.h"
31 #include "trace-event.h"
32 #include "session.h"
33 #include "symbol.h"
34 #include "debug.h"
35 #include "cpumap.h"
36 #include "pmu.h"
37 #include "vdso.h"
38 #include "strbuf.h"
39 #include "build-id.h"
40 #include "data.h"
41 #include <api/fs/fs.h>
42 #include "asm/bug.h"
43 #include "tool.h"
44 #include "time-utils.h"
45 #include "units.h"
46 #include "util/util.h" // perf_exe()
47 #include "cputopo.h"
48 #include "bpf-event.h"
49 #include "clockid.h"
50
51 #include <linux/ctype.h>
52 #include <internal/lib.h>
53
54 /*
55  * magic2 = "PERFILE2"
56  * must be a numerical value to let the endianness
57  * determine the memory layout. That way we are able
58  * to detect endianness when reading the perf.data file
59  * back.
60  *
61  * we check for legacy (PERFFILE) format.
62  */
63 static const char *__perf_magic1 = "PERFFILE";
64 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
65 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
66
67 #define PERF_MAGIC      __perf_magic2
68
69 const char perf_version_string[] = PERF_VERSION;
70
71 struct perf_file_attr {
72         struct perf_event_attr  attr;
73         struct perf_file_section        ids;
74 };
75
76 void perf_header__set_feat(struct perf_header *header, int feat)
77 {
78         set_bit(feat, header->adds_features);
79 }
80
81 void perf_header__clear_feat(struct perf_header *header, int feat)
82 {
83         clear_bit(feat, header->adds_features);
84 }
85
86 bool perf_header__has_feat(const struct perf_header *header, int feat)
87 {
88         return test_bit(feat, header->adds_features);
89 }
90
91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92 {
93         ssize_t ret = writen(ff->fd, buf, size);
94
95         if (ret != (ssize_t)size)
96                 return ret < 0 ? (int)ret : -1;
97         return 0;
98 }
99
100 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
101 {
102         /* struct perf_event_header::size is u16 */
103         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104         size_t new_size = ff->size;
105         void *addr;
106
107         if (size + ff->offset > max_size)
108                 return -E2BIG;
109
110         while (size > (new_size - ff->offset))
111                 new_size <<= 1;
112         new_size = min(max_size, new_size);
113
114         if (ff->size < new_size) {
115                 addr = realloc(ff->buf, new_size);
116                 if (!addr)
117                         return -ENOMEM;
118                 ff->buf = addr;
119                 ff->size = new_size;
120         }
121
122         memcpy(ff->buf + ff->offset, buf, size);
123         ff->offset += size;
124
125         return 0;
126 }
127
128 /* Return: 0 if succeded, -ERR if failed. */
129 int do_write(struct feat_fd *ff, const void *buf, size_t size)
130 {
131         if (!ff->buf)
132                 return __do_write_fd(ff, buf, size);
133         return __do_write_buf(ff, buf, size);
134 }
135
136 /* Return: 0 if succeded, -ERR if failed. */
137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138 {
139         u64 *p = (u64 *) set;
140         int i, ret;
141
142         ret = do_write(ff, &size, sizeof(size));
143         if (ret < 0)
144                 return ret;
145
146         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147                 ret = do_write(ff, p + i, sizeof(*p));
148                 if (ret < 0)
149                         return ret;
150         }
151
152         return 0;
153 }
154
155 /* Return: 0 if succeded, -ERR if failed. */
156 int write_padded(struct feat_fd *ff, const void *bf,
157                  size_t count, size_t count_aligned)
158 {
159         static const char zero_buf[NAME_ALIGN];
160         int err = do_write(ff, bf, count);
161
162         if (!err)
163                 err = do_write(ff, zero_buf, count_aligned - count);
164
165         return err;
166 }
167
168 #define string_size(str)                                                \
169         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170
171 /* Return: 0 if succeded, -ERR if failed. */
172 static int do_write_string(struct feat_fd *ff, const char *str)
173 {
174         u32 len, olen;
175         int ret;
176
177         olen = strlen(str) + 1;
178         len = PERF_ALIGN(olen, NAME_ALIGN);
179
180         /* write len, incl. \0 */
181         ret = do_write(ff, &len, sizeof(len));
182         if (ret < 0)
183                 return ret;
184
185         return write_padded(ff, str, olen, len);
186 }
187
188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189 {
190         ssize_t ret = readn(ff->fd, addr, size);
191
192         if (ret != size)
193                 return ret < 0 ? (int)ret : -1;
194         return 0;
195 }
196
197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198 {
199         if (size > (ssize_t)ff->size - ff->offset)
200                 return -1;
201
202         memcpy(addr, ff->buf + ff->offset, size);
203         ff->offset += size;
204
205         return 0;
206
207 }
208
209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210 {
211         if (!ff->buf)
212                 return __do_read_fd(ff, addr, size);
213         return __do_read_buf(ff, addr, size);
214 }
215
216 static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 {
218         int ret;
219
220         ret = __do_read(ff, addr, sizeof(*addr));
221         if (ret)
222                 return ret;
223
224         if (ff->ph->needs_swap)
225                 *addr = bswap_32(*addr);
226         return 0;
227 }
228
229 static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 {
231         int ret;
232
233         ret = __do_read(ff, addr, sizeof(*addr));
234         if (ret)
235                 return ret;
236
237         if (ff->ph->needs_swap)
238                 *addr = bswap_64(*addr);
239         return 0;
240 }
241
242 static char *do_read_string(struct feat_fd *ff)
243 {
244         u32 len;
245         char *buf;
246
247         if (do_read_u32(ff, &len))
248                 return NULL;
249
250         buf = malloc(len);
251         if (!buf)
252                 return NULL;
253
254         if (!__do_read(ff, buf, len)) {
255                 /*
256                  * strings are padded by zeroes
257                  * thus the actual strlen of buf
258                  * may be less than len
259                  */
260                 return buf;
261         }
262
263         free(buf);
264         return NULL;
265 }
266
267 /* Return: 0 if succeded, -ERR if failed. */
268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269 {
270         unsigned long *set;
271         u64 size, *p;
272         int i, ret;
273
274         ret = do_read_u64(ff, &size);
275         if (ret)
276                 return ret;
277
278         set = bitmap_alloc(size);
279         if (!set)
280                 return -ENOMEM;
281
282         p = (u64 *) set;
283
284         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
285                 ret = do_read_u64(ff, p + i);
286                 if (ret < 0) {
287                         free(set);
288                         return ret;
289                 }
290         }
291
292         *pset  = set;
293         *psize = size;
294         return 0;
295 }
296
297 static int write_tracing_data(struct feat_fd *ff,
298                               struct evlist *evlist)
299 {
300         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
301                 return -1;
302
303         return read_tracing_data(ff->fd, &evlist->core.entries);
304 }
305
306 static int write_build_id(struct feat_fd *ff,
307                           struct evlist *evlist __maybe_unused)
308 {
309         struct perf_session *session;
310         int err;
311
312         session = container_of(ff->ph, struct perf_session, header);
313
314         if (!perf_session__read_build_ids(session, true))
315                 return -1;
316
317         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
318                 return -1;
319
320         err = perf_session__write_buildid_table(session, ff);
321         if (err < 0) {
322                 pr_debug("failed to write buildid table\n");
323                 return err;
324         }
325         perf_session__cache_build_ids(session);
326
327         return 0;
328 }
329
330 static int write_hostname(struct feat_fd *ff,
331                           struct evlist *evlist __maybe_unused)
332 {
333         struct utsname uts;
334         int ret;
335
336         ret = uname(&uts);
337         if (ret < 0)
338                 return -1;
339
340         return do_write_string(ff, uts.nodename);
341 }
342
343 static int write_osrelease(struct feat_fd *ff,
344                            struct evlist *evlist __maybe_unused)
345 {
346         struct utsname uts;
347         int ret;
348
349         ret = uname(&uts);
350         if (ret < 0)
351                 return -1;
352
353         return do_write_string(ff, uts.release);
354 }
355
356 static int write_arch(struct feat_fd *ff,
357                       struct evlist *evlist __maybe_unused)
358 {
359         struct utsname uts;
360         int ret;
361
362         ret = uname(&uts);
363         if (ret < 0)
364                 return -1;
365
366         return do_write_string(ff, uts.machine);
367 }
368
369 static int write_version(struct feat_fd *ff,
370                          struct evlist *evlist __maybe_unused)
371 {
372         return do_write_string(ff, perf_version_string);
373 }
374
375 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376 {
377         FILE *file;
378         char *buf = NULL;
379         char *s, *p;
380         const char *search = cpuinfo_proc;
381         size_t len = 0;
382         int ret = -1;
383
384         if (!search)
385                 return -1;
386
387         file = fopen("/proc/cpuinfo", "r");
388         if (!file)
389                 return -1;
390
391         while (getline(&buf, &len, file) > 0) {
392                 ret = strncmp(buf, search, strlen(search));
393                 if (!ret)
394                         break;
395         }
396
397         if (ret) {
398                 ret = -1;
399                 goto done;
400         }
401
402         s = buf;
403
404         p = strchr(buf, ':');
405         if (p && *(p+1) == ' ' && *(p+2))
406                 s = p + 2;
407         p = strchr(s, '\n');
408         if (p)
409                 *p = '\0';
410
411         /* squash extra space characters (branding string) */
412         p = s;
413         while (*p) {
414                 if (isspace(*p)) {
415                         char *r = p + 1;
416                         char *q = skip_spaces(r);
417                         *p = ' ';
418                         if (q != (p+1))
419                                 while ((*r++ = *q++));
420                 }
421                 p++;
422         }
423         ret = do_write_string(ff, s);
424 done:
425         free(buf);
426         fclose(file);
427         return ret;
428 }
429
430 static int write_cpudesc(struct feat_fd *ff,
431                        struct evlist *evlist __maybe_unused)
432 {
433 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
434 #define CPUINFO_PROC    { "cpu", }
435 #elif defined(__s390__)
436 #define CPUINFO_PROC    { "vendor_id", }
437 #elif defined(__sh__)
438 #define CPUINFO_PROC    { "cpu type", }
439 #elif defined(__alpha__) || defined(__mips__)
440 #define CPUINFO_PROC    { "cpu model", }
441 #elif defined(__arm__)
442 #define CPUINFO_PROC    { "model name", "Processor", }
443 #elif defined(__arc__)
444 #define CPUINFO_PROC    { "Processor", }
445 #elif defined(__xtensa__)
446 #define CPUINFO_PROC    { "core ID", }
447 #else
448 #define CPUINFO_PROC    { "model name", }
449 #endif
450         const char *cpuinfo_procs[] = CPUINFO_PROC;
451 #undef CPUINFO_PROC
452         unsigned int i;
453
454         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
455                 int ret;
456                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
457                 if (ret >= 0)
458                         return ret;
459         }
460         return -1;
461 }
462
463
464 static int write_nrcpus(struct feat_fd *ff,
465                         struct evlist *evlist __maybe_unused)
466 {
467         long nr;
468         u32 nrc, nra;
469         int ret;
470
471         nrc = cpu__max_present_cpu();
472
473         nr = sysconf(_SC_NPROCESSORS_ONLN);
474         if (nr < 0)
475                 return -1;
476
477         nra = (u32)(nr & UINT_MAX);
478
479         ret = do_write(ff, &nrc, sizeof(nrc));
480         if (ret < 0)
481                 return ret;
482
483         return do_write(ff, &nra, sizeof(nra));
484 }
485
486 static int write_event_desc(struct feat_fd *ff,
487                             struct evlist *evlist)
488 {
489         struct evsel *evsel;
490         u32 nre, nri, sz;
491         int ret;
492
493         nre = evlist->core.nr_entries;
494
495         /*
496          * write number of events
497          */
498         ret = do_write(ff, &nre, sizeof(nre));
499         if (ret < 0)
500                 return ret;
501
502         /*
503          * size of perf_event_attr struct
504          */
505         sz = (u32)sizeof(evsel->core.attr);
506         ret = do_write(ff, &sz, sizeof(sz));
507         if (ret < 0)
508                 return ret;
509
510         evlist__for_each_entry(evlist, evsel) {
511                 ret = do_write(ff, &evsel->core.attr, sz);
512                 if (ret < 0)
513                         return ret;
514                 /*
515                  * write number of unique id per event
516                  * there is one id per instance of an event
517                  *
518                  * copy into an nri to be independent of the
519                  * type of ids,
520                  */
521                 nri = evsel->core.ids;
522                 ret = do_write(ff, &nri, sizeof(nri));
523                 if (ret < 0)
524                         return ret;
525
526                 /*
527                  * write event string as passed on cmdline
528                  */
529                 ret = do_write_string(ff, evsel__name(evsel));
530                 if (ret < 0)
531                         return ret;
532                 /*
533                  * write unique ids for this event
534                  */
535                 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
536                 if (ret < 0)
537                         return ret;
538         }
539         return 0;
540 }
541
542 static int write_cmdline(struct feat_fd *ff,
543                          struct evlist *evlist __maybe_unused)
544 {
545         char pbuf[MAXPATHLEN], *buf;
546         int i, ret, n;
547
548         /* actual path to perf binary */
549         buf = perf_exe(pbuf, MAXPATHLEN);
550
551         /* account for binary path */
552         n = perf_env.nr_cmdline + 1;
553
554         ret = do_write(ff, &n, sizeof(n));
555         if (ret < 0)
556                 return ret;
557
558         ret = do_write_string(ff, buf);
559         if (ret < 0)
560                 return ret;
561
562         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
563                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
564                 if (ret < 0)
565                         return ret;
566         }
567         return 0;
568 }
569
570
571 static int write_cpu_topology(struct feat_fd *ff,
572                               struct evlist *evlist __maybe_unused)
573 {
574         struct cpu_topology *tp;
575         u32 i;
576         int ret, j;
577
578         tp = cpu_topology__new();
579         if (!tp)
580                 return -1;
581
582         ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
583         if (ret < 0)
584                 goto done;
585
586         for (i = 0; i < tp->core_sib; i++) {
587                 ret = do_write_string(ff, tp->core_siblings[i]);
588                 if (ret < 0)
589                         goto done;
590         }
591         ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
592         if (ret < 0)
593                 goto done;
594
595         for (i = 0; i < tp->thread_sib; i++) {
596                 ret = do_write_string(ff, tp->thread_siblings[i]);
597                 if (ret < 0)
598                         break;
599         }
600
601         ret = perf_env__read_cpu_topology_map(&perf_env);
602         if (ret < 0)
603                 goto done;
604
605         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
606                 ret = do_write(ff, &perf_env.cpu[j].core_id,
607                                sizeof(perf_env.cpu[j].core_id));
608                 if (ret < 0)
609                         return ret;
610                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
611                                sizeof(perf_env.cpu[j].socket_id));
612                 if (ret < 0)
613                         return ret;
614         }
615
616         if (!tp->die_sib)
617                 goto done;
618
619         ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
620         if (ret < 0)
621                 goto done;
622
623         for (i = 0; i < tp->die_sib; i++) {
624                 ret = do_write_string(ff, tp->die_siblings[i]);
625                 if (ret < 0)
626                         goto done;
627         }
628
629         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
630                 ret = do_write(ff, &perf_env.cpu[j].die_id,
631                                sizeof(perf_env.cpu[j].die_id));
632                 if (ret < 0)
633                         return ret;
634         }
635
636 done:
637         cpu_topology__delete(tp);
638         return ret;
639 }
640
641
642
643 static int write_total_mem(struct feat_fd *ff,
644                            struct evlist *evlist __maybe_unused)
645 {
646         char *buf = NULL;
647         FILE *fp;
648         size_t len = 0;
649         int ret = -1, n;
650         uint64_t mem;
651
652         fp = fopen("/proc/meminfo", "r");
653         if (!fp)
654                 return -1;
655
656         while (getline(&buf, &len, fp) > 0) {
657                 ret = strncmp(buf, "MemTotal:", 9);
658                 if (!ret)
659                         break;
660         }
661         if (!ret) {
662                 n = sscanf(buf, "%*s %"PRIu64, &mem);
663                 if (n == 1)
664                         ret = do_write(ff, &mem, sizeof(mem));
665         } else
666                 ret = -1;
667         free(buf);
668         fclose(fp);
669         return ret;
670 }
671
672 static int write_numa_topology(struct feat_fd *ff,
673                                struct evlist *evlist __maybe_unused)
674 {
675         struct numa_topology *tp;
676         int ret = -1;
677         u32 i;
678
679         tp = numa_topology__new();
680         if (!tp)
681                 return -ENOMEM;
682
683         ret = do_write(ff, &tp->nr, sizeof(u32));
684         if (ret < 0)
685                 goto err;
686
687         for (i = 0; i < tp->nr; i++) {
688                 struct numa_topology_node *n = &tp->nodes[i];
689
690                 ret = do_write(ff, &n->node, sizeof(u32));
691                 if (ret < 0)
692                         goto err;
693
694                 ret = do_write(ff, &n->mem_total, sizeof(u64));
695                 if (ret)
696                         goto err;
697
698                 ret = do_write(ff, &n->mem_free, sizeof(u64));
699                 if (ret)
700                         goto err;
701
702                 ret = do_write_string(ff, n->cpus);
703                 if (ret < 0)
704                         goto err;
705         }
706
707         ret = 0;
708
709 err:
710         numa_topology__delete(tp);
711         return ret;
712 }
713
714 /*
715  * File format:
716  *
717  * struct pmu_mappings {
718  *      u32     pmu_num;
719  *      struct pmu_map {
720  *              u32     type;
721  *              char    name[];
722  *      }[pmu_num];
723  * };
724  */
725
726 static int write_pmu_mappings(struct feat_fd *ff,
727                               struct evlist *evlist __maybe_unused)
728 {
729         struct perf_pmu *pmu = NULL;
730         u32 pmu_num = 0;
731         int ret;
732
733         /*
734          * Do a first pass to count number of pmu to avoid lseek so this
735          * works in pipe mode as well.
736          */
737         while ((pmu = perf_pmu__scan(pmu))) {
738                 if (!pmu->name)
739                         continue;
740                 pmu_num++;
741         }
742
743         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
744         if (ret < 0)
745                 return ret;
746
747         while ((pmu = perf_pmu__scan(pmu))) {
748                 if (!pmu->name)
749                         continue;
750
751                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
752                 if (ret < 0)
753                         return ret;
754
755                 ret = do_write_string(ff, pmu->name);
756                 if (ret < 0)
757                         return ret;
758         }
759
760         return 0;
761 }
762
763 /*
764  * File format:
765  *
766  * struct group_descs {
767  *      u32     nr_groups;
768  *      struct group_desc {
769  *              char    name[];
770  *              u32     leader_idx;
771  *              u32     nr_members;
772  *      }[nr_groups];
773  * };
774  */
775 static int write_group_desc(struct feat_fd *ff,
776                             struct evlist *evlist)
777 {
778         u32 nr_groups = evlist->nr_groups;
779         struct evsel *evsel;
780         int ret;
781
782         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
783         if (ret < 0)
784                 return ret;
785
786         evlist__for_each_entry(evlist, evsel) {
787                 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
788                         const char *name = evsel->group_name ?: "{anon_group}";
789                         u32 leader_idx = evsel->idx;
790                         u32 nr_members = evsel->core.nr_members;
791
792                         ret = do_write_string(ff, name);
793                         if (ret < 0)
794                                 return ret;
795
796                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797                         if (ret < 0)
798                                 return ret;
799
800                         ret = do_write(ff, &nr_members, sizeof(nr_members));
801                         if (ret < 0)
802                                 return ret;
803                 }
804         }
805         return 0;
806 }
807
808 /*
809  * Return the CPU id as a raw string.
810  *
811  * Each architecture should provide a more precise id string that
812  * can be use to match the architecture's "mapfile".
813  */
814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815 {
816         return NULL;
817 }
818
819 /* Return zero when the cpuid from the mapfile.csv matches the
820  * cpuid string generated on this platform.
821  * Otherwise return non-zero.
822  */
823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824 {
825         regex_t re;
826         regmatch_t pmatch[1];
827         int match;
828
829         if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830                 /* Warn unable to generate match particular string. */
831                 pr_info("Invalid regular expression %s\n", mapcpuid);
832                 return 1;
833         }
834
835         match = !regexec(&re, cpuid, 1, pmatch, 0);
836         regfree(&re);
837         if (match) {
838                 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839
840                 /* Verify the entire string matched. */
841                 if (match_len == strlen(cpuid))
842                         return 0;
843         }
844         return 1;
845 }
846
847 /*
848  * default get_cpuid(): nothing gets recorded
849  * actual implementation must be in arch/$(SRCARCH)/util/header.c
850  */
851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852 {
853         return ENOSYS; /* Not implemented */
854 }
855
856 static int write_cpuid(struct feat_fd *ff,
857                        struct evlist *evlist __maybe_unused)
858 {
859         char buffer[64];
860         int ret;
861
862         ret = get_cpuid(buffer, sizeof(buffer));
863         if (ret)
864                 return -1;
865
866         return do_write_string(ff, buffer);
867 }
868
869 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870                               struct evlist *evlist __maybe_unused)
871 {
872         return 0;
873 }
874
875 static int write_auxtrace(struct feat_fd *ff,
876                           struct evlist *evlist __maybe_unused)
877 {
878         struct perf_session *session;
879         int err;
880
881         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882                 return -1;
883
884         session = container_of(ff->ph, struct perf_session, header);
885
886         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887         if (err < 0)
888                 pr_err("Failed to write auxtrace index\n");
889         return err;
890 }
891
892 static int write_clockid(struct feat_fd *ff,
893                          struct evlist *evlist __maybe_unused)
894 {
895         return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
896                         sizeof(ff->ph->env.clock.clockid_res_ns));
897 }
898
899 static int write_clock_data(struct feat_fd *ff,
900                             struct evlist *evlist __maybe_unused)
901 {
902         u64 *data64;
903         u32 data32;
904         int ret;
905
906         /* version */
907         data32 = 1;
908
909         ret = do_write(ff, &data32, sizeof(data32));
910         if (ret < 0)
911                 return ret;
912
913         /* clockid */
914         data32 = ff->ph->env.clock.clockid;
915
916         ret = do_write(ff, &data32, sizeof(data32));
917         if (ret < 0)
918                 return ret;
919
920         /* TOD ref time */
921         data64 = &ff->ph->env.clock.tod_ns;
922
923         ret = do_write(ff, data64, sizeof(*data64));
924         if (ret < 0)
925                 return ret;
926
927         /* clockid ref time */
928         data64 = &ff->ph->env.clock.clockid_ns;
929
930         return do_write(ff, data64, sizeof(*data64));
931 }
932
933 static int write_dir_format(struct feat_fd *ff,
934                             struct evlist *evlist __maybe_unused)
935 {
936         struct perf_session *session;
937         struct perf_data *data;
938
939         session = container_of(ff->ph, struct perf_session, header);
940         data = session->data;
941
942         if (WARN_ON(!perf_data__is_dir(data)))
943                 return -1;
944
945         return do_write(ff, &data->dir.version, sizeof(data->dir.version));
946 }
947
948 #ifdef HAVE_LIBBPF_SUPPORT
949 static int write_bpf_prog_info(struct feat_fd *ff,
950                                struct evlist *evlist __maybe_unused)
951 {
952         struct perf_env *env = &ff->ph->env;
953         struct rb_root *root;
954         struct rb_node *next;
955         int ret;
956
957         down_read(&env->bpf_progs.lock);
958
959         ret = do_write(ff, &env->bpf_progs.infos_cnt,
960                        sizeof(env->bpf_progs.infos_cnt));
961         if (ret < 0)
962                 goto out;
963
964         root = &env->bpf_progs.infos;
965         next = rb_first(root);
966         while (next) {
967                 struct bpf_prog_info_node *node;
968                 size_t len;
969
970                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
971                 next = rb_next(&node->rb_node);
972                 len = sizeof(struct bpf_prog_info_linear) +
973                         node->info_linear->data_len;
974
975                 /* before writing to file, translate address to offset */
976                 bpf_program__bpil_addr_to_offs(node->info_linear);
977                 ret = do_write(ff, node->info_linear, len);
978                 /*
979                  * translate back to address even when do_write() fails,
980                  * so that this function never changes the data.
981                  */
982                 bpf_program__bpil_offs_to_addr(node->info_linear);
983                 if (ret < 0)
984                         goto out;
985         }
986 out:
987         up_read(&env->bpf_progs.lock);
988         return ret;
989 }
990 #else // HAVE_LIBBPF_SUPPORT
991 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
992                                struct evlist *evlist __maybe_unused)
993 {
994         return 0;
995 }
996 #endif // HAVE_LIBBPF_SUPPORT
997
998 static int write_bpf_btf(struct feat_fd *ff,
999                          struct evlist *evlist __maybe_unused)
1000 {
1001         struct perf_env *env = &ff->ph->env;
1002         struct rb_root *root;
1003         struct rb_node *next;
1004         int ret;
1005
1006         down_read(&env->bpf_progs.lock);
1007
1008         ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1009                        sizeof(env->bpf_progs.btfs_cnt));
1010
1011         if (ret < 0)
1012                 goto out;
1013
1014         root = &env->bpf_progs.btfs;
1015         next = rb_first(root);
1016         while (next) {
1017                 struct btf_node *node;
1018
1019                 node = rb_entry(next, struct btf_node, rb_node);
1020                 next = rb_next(&node->rb_node);
1021                 ret = do_write(ff, &node->id,
1022                                sizeof(u32) * 2 + node->data_size);
1023                 if (ret < 0)
1024                         goto out;
1025         }
1026 out:
1027         up_read(&env->bpf_progs.lock);
1028         return ret;
1029 }
1030
1031 static int cpu_cache_level__sort(const void *a, const void *b)
1032 {
1033         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1034         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1035
1036         return cache_a->level - cache_b->level;
1037 }
1038
1039 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1040 {
1041         if (a->level != b->level)
1042                 return false;
1043
1044         if (a->line_size != b->line_size)
1045                 return false;
1046
1047         if (a->sets != b->sets)
1048                 return false;
1049
1050         if (a->ways != b->ways)
1051                 return false;
1052
1053         if (strcmp(a->type, b->type))
1054                 return false;
1055
1056         if (strcmp(a->size, b->size))
1057                 return false;
1058
1059         if (strcmp(a->map, b->map))
1060                 return false;
1061
1062         return true;
1063 }
1064
1065 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1066 {
1067         char path[PATH_MAX], file[PATH_MAX];
1068         struct stat st;
1069         size_t len;
1070
1071         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1072         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1073
1074         if (stat(file, &st))
1075                 return 1;
1076
1077         scnprintf(file, PATH_MAX, "%s/level", path);
1078         if (sysfs__read_int(file, (int *) &cache->level))
1079                 return -1;
1080
1081         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1082         if (sysfs__read_int(file, (int *) &cache->line_size))
1083                 return -1;
1084
1085         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1086         if (sysfs__read_int(file, (int *) &cache->sets))
1087                 return -1;
1088
1089         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1090         if (sysfs__read_int(file, (int *) &cache->ways))
1091                 return -1;
1092
1093         scnprintf(file, PATH_MAX, "%s/type", path);
1094         if (sysfs__read_str(file, &cache->type, &len))
1095                 return -1;
1096
1097         cache->type[len] = 0;
1098         cache->type = strim(cache->type);
1099
1100         scnprintf(file, PATH_MAX, "%s/size", path);
1101         if (sysfs__read_str(file, &cache->size, &len)) {
1102                 zfree(&cache->type);
1103                 return -1;
1104         }
1105
1106         cache->size[len] = 0;
1107         cache->size = strim(cache->size);
1108
1109         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1110         if (sysfs__read_str(file, &cache->map, &len)) {
1111                 zfree(&cache->size);
1112                 zfree(&cache->type);
1113                 return -1;
1114         }
1115
1116         cache->map[len] = 0;
1117         cache->map = strim(cache->map);
1118         return 0;
1119 }
1120
1121 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1122 {
1123         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1124 }
1125
1126 #define MAX_CACHE_LVL 4
1127
1128 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1129 {
1130         u32 i, cnt = 0;
1131         u32 nr, cpu;
1132         u16 level;
1133
1134         nr = cpu__max_cpu();
1135
1136         for (cpu = 0; cpu < nr; cpu++) {
1137                 for (level = 0; level < MAX_CACHE_LVL; level++) {
1138                         struct cpu_cache_level c;
1139                         int err;
1140
1141                         err = cpu_cache_level__read(&c, cpu, level);
1142                         if (err < 0)
1143                                 return err;
1144
1145                         if (err == 1)
1146                                 break;
1147
1148                         for (i = 0; i < cnt; i++) {
1149                                 if (cpu_cache_level__cmp(&c, &caches[i]))
1150                                         break;
1151                         }
1152
1153                         if (i == cnt)
1154                                 caches[cnt++] = c;
1155                         else
1156                                 cpu_cache_level__free(&c);
1157                 }
1158         }
1159         *cntp = cnt;
1160         return 0;
1161 }
1162
1163 static int write_cache(struct feat_fd *ff,
1164                        struct evlist *evlist __maybe_unused)
1165 {
1166         u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1167         struct cpu_cache_level caches[max_caches];
1168         u32 cnt = 0, i, version = 1;
1169         int ret;
1170
1171         ret = build_caches(caches, &cnt);
1172         if (ret)
1173                 goto out;
1174
1175         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1176
1177         ret = do_write(ff, &version, sizeof(u32));
1178         if (ret < 0)
1179                 goto out;
1180
1181         ret = do_write(ff, &cnt, sizeof(u32));
1182         if (ret < 0)
1183                 goto out;
1184
1185         for (i = 0; i < cnt; i++) {
1186                 struct cpu_cache_level *c = &caches[i];
1187
1188                 #define _W(v)                                   \
1189                         ret = do_write(ff, &c->v, sizeof(u32)); \
1190                         if (ret < 0)                            \
1191                                 goto out;
1192
1193                 _W(level)
1194                 _W(line_size)
1195                 _W(sets)
1196                 _W(ways)
1197                 #undef _W
1198
1199                 #define _W(v)                                           \
1200                         ret = do_write_string(ff, (const char *) c->v); \
1201                         if (ret < 0)                                    \
1202                                 goto out;
1203
1204                 _W(type)
1205                 _W(size)
1206                 _W(map)
1207                 #undef _W
1208         }
1209
1210 out:
1211         for (i = 0; i < cnt; i++)
1212                 cpu_cache_level__free(&caches[i]);
1213         return ret;
1214 }
1215
1216 static int write_stat(struct feat_fd *ff __maybe_unused,
1217                       struct evlist *evlist __maybe_unused)
1218 {
1219         return 0;
1220 }
1221
1222 static int write_sample_time(struct feat_fd *ff,
1223                              struct evlist *evlist)
1224 {
1225         int ret;
1226
1227         ret = do_write(ff, &evlist->first_sample_time,
1228                        sizeof(evlist->first_sample_time));
1229         if (ret < 0)
1230                 return ret;
1231
1232         return do_write(ff, &evlist->last_sample_time,
1233                         sizeof(evlist->last_sample_time));
1234 }
1235
1236
1237 static int memory_node__read(struct memory_node *n, unsigned long idx)
1238 {
1239         unsigned int phys, size = 0;
1240         char path[PATH_MAX];
1241         struct dirent *ent;
1242         DIR *dir;
1243
1244 #define for_each_memory(mem, dir)                                       \
1245         while ((ent = readdir(dir)))                                    \
1246                 if (strcmp(ent->d_name, ".") &&                         \
1247                     strcmp(ent->d_name, "..") &&                        \
1248                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1249
1250         scnprintf(path, PATH_MAX,
1251                   "%s/devices/system/node/node%lu",
1252                   sysfs__mountpoint(), idx);
1253
1254         dir = opendir(path);
1255         if (!dir) {
1256                 pr_warning("failed: cant' open memory sysfs data\n");
1257                 return -1;
1258         }
1259
1260         for_each_memory(phys, dir) {
1261                 size = max(phys, size);
1262         }
1263
1264         size++;
1265
1266         n->set = bitmap_alloc(size);
1267         if (!n->set) {
1268                 closedir(dir);
1269                 return -ENOMEM;
1270         }
1271
1272         n->node = idx;
1273         n->size = size;
1274
1275         rewinddir(dir);
1276
1277         for_each_memory(phys, dir) {
1278                 set_bit(phys, n->set);
1279         }
1280
1281         closedir(dir);
1282         return 0;
1283 }
1284
1285 static int memory_node__sort(const void *a, const void *b)
1286 {
1287         const struct memory_node *na = a;
1288         const struct memory_node *nb = b;
1289
1290         return na->node - nb->node;
1291 }
1292
1293 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1294 {
1295         char path[PATH_MAX];
1296         struct dirent *ent;
1297         DIR *dir;
1298         u64 cnt = 0;
1299         int ret = 0;
1300
1301         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1302                   sysfs__mountpoint());
1303
1304         dir = opendir(path);
1305         if (!dir) {
1306                 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1307                           __func__, path);
1308                 return -1;
1309         }
1310
1311         while (!ret && (ent = readdir(dir))) {
1312                 unsigned int idx;
1313                 int r;
1314
1315                 if (!strcmp(ent->d_name, ".") ||
1316                     !strcmp(ent->d_name, ".."))
1317                         continue;
1318
1319                 r = sscanf(ent->d_name, "node%u", &idx);
1320                 if (r != 1)
1321                         continue;
1322
1323                 if (WARN_ONCE(cnt >= size,
1324                         "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1325                         closedir(dir);
1326                         return -1;
1327                 }
1328
1329                 ret = memory_node__read(&nodes[cnt++], idx);
1330         }
1331
1332         *cntp = cnt;
1333         closedir(dir);
1334
1335         if (!ret)
1336                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1337
1338         return ret;
1339 }
1340
1341 #define MAX_MEMORY_NODES 2000
1342
1343 /*
1344  * The MEM_TOPOLOGY holds physical memory map for every
1345  * node in system. The format of data is as follows:
1346  *
1347  *  0 - version          | for future changes
1348  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1349  * 16 - count            | number of nodes
1350  *
1351  * For each node we store map of physical indexes for
1352  * each node:
1353  *
1354  * 32 - node id          | node index
1355  * 40 - size             | size of bitmap
1356  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1357  */
1358 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1359                               struct evlist *evlist __maybe_unused)
1360 {
1361         static struct memory_node nodes[MAX_MEMORY_NODES];
1362         u64 bsize, version = 1, i, nr;
1363         int ret;
1364
1365         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1366                               (unsigned long long *) &bsize);
1367         if (ret)
1368                 return ret;
1369
1370         ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1371         if (ret)
1372                 return ret;
1373
1374         ret = do_write(ff, &version, sizeof(version));
1375         if (ret < 0)
1376                 goto out;
1377
1378         ret = do_write(ff, &bsize, sizeof(bsize));
1379         if (ret < 0)
1380                 goto out;
1381
1382         ret = do_write(ff, &nr, sizeof(nr));
1383         if (ret < 0)
1384                 goto out;
1385
1386         for (i = 0; i < nr; i++) {
1387                 struct memory_node *n = &nodes[i];
1388
1389                 #define _W(v)                                           \
1390                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1391                         if (ret < 0)                                    \
1392                                 goto out;
1393
1394                 _W(node)
1395                 _W(size)
1396
1397                 #undef _W
1398
1399                 ret = do_write_bitmap(ff, n->set, n->size);
1400                 if (ret < 0)
1401                         goto out;
1402         }
1403
1404 out:
1405         return ret;
1406 }
1407
1408 static int write_compressed(struct feat_fd *ff __maybe_unused,
1409                             struct evlist *evlist __maybe_unused)
1410 {
1411         int ret;
1412
1413         ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1414         if (ret)
1415                 return ret;
1416
1417         ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1418         if (ret)
1419                 return ret;
1420
1421         ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1422         if (ret)
1423                 return ret;
1424
1425         ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1426         if (ret)
1427                 return ret;
1428
1429         return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1430 }
1431
1432 static int write_cpu_pmu_caps(struct feat_fd *ff,
1433                               struct evlist *evlist __maybe_unused)
1434 {
1435         struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1436         struct perf_pmu_caps *caps = NULL;
1437         int nr_caps;
1438         int ret;
1439
1440         if (!cpu_pmu)
1441                 return -ENOENT;
1442
1443         nr_caps = perf_pmu__caps_parse(cpu_pmu);
1444         if (nr_caps < 0)
1445                 return nr_caps;
1446
1447         ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1448         if (ret < 0)
1449                 return ret;
1450
1451         list_for_each_entry(caps, &cpu_pmu->caps, list) {
1452                 ret = do_write_string(ff, caps->name);
1453                 if (ret < 0)
1454                         return ret;
1455
1456                 ret = do_write_string(ff, caps->value);
1457                 if (ret < 0)
1458                         return ret;
1459         }
1460
1461         return ret;
1462 }
1463
1464 static void print_hostname(struct feat_fd *ff, FILE *fp)
1465 {
1466         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1467 }
1468
1469 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1470 {
1471         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1472 }
1473
1474 static void print_arch(struct feat_fd *ff, FILE *fp)
1475 {
1476         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1477 }
1478
1479 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1480 {
1481         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1482 }
1483
1484 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1485 {
1486         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1487         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1488 }
1489
1490 static void print_version(struct feat_fd *ff, FILE *fp)
1491 {
1492         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1493 }
1494
1495 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1496 {
1497         int nr, i;
1498
1499         nr = ff->ph->env.nr_cmdline;
1500
1501         fprintf(fp, "# cmdline : ");
1502
1503         for (i = 0; i < nr; i++) {
1504                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1505                 if (!argv_i) {
1506                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1507                 } else {
1508                         char *mem = argv_i;
1509                         do {
1510                                 char *quote = strchr(argv_i, '\'');
1511                                 if (!quote)
1512                                         break;
1513                                 *quote++ = '\0';
1514                                 fprintf(fp, "%s\\\'", argv_i);
1515                                 argv_i = quote;
1516                         } while (1);
1517                         fprintf(fp, "%s ", argv_i);
1518                         free(mem);
1519                 }
1520         }
1521         fputc('\n', fp);
1522 }
1523
1524 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1525 {
1526         struct perf_header *ph = ff->ph;
1527         int cpu_nr = ph->env.nr_cpus_avail;
1528         int nr, i;
1529         char *str;
1530
1531         nr = ph->env.nr_sibling_cores;
1532         str = ph->env.sibling_cores;
1533
1534         for (i = 0; i < nr; i++) {
1535                 fprintf(fp, "# sibling sockets : %s\n", str);
1536                 str += strlen(str) + 1;
1537         }
1538
1539         if (ph->env.nr_sibling_dies) {
1540                 nr = ph->env.nr_sibling_dies;
1541                 str = ph->env.sibling_dies;
1542
1543                 for (i = 0; i < nr; i++) {
1544                         fprintf(fp, "# sibling dies    : %s\n", str);
1545                         str += strlen(str) + 1;
1546                 }
1547         }
1548
1549         nr = ph->env.nr_sibling_threads;
1550         str = ph->env.sibling_threads;
1551
1552         for (i = 0; i < nr; i++) {
1553                 fprintf(fp, "# sibling threads : %s\n", str);
1554                 str += strlen(str) + 1;
1555         }
1556
1557         if (ph->env.nr_sibling_dies) {
1558                 if (ph->env.cpu != NULL) {
1559                         for (i = 0; i < cpu_nr; i++)
1560                                 fprintf(fp, "# CPU %d: Core ID %d, "
1561                                             "Die ID %d, Socket ID %d\n",
1562                                             i, ph->env.cpu[i].core_id,
1563                                             ph->env.cpu[i].die_id,
1564                                             ph->env.cpu[i].socket_id);
1565                 } else
1566                         fprintf(fp, "# Core ID, Die ID and Socket ID "
1567                                     "information is not available\n");
1568         } else {
1569                 if (ph->env.cpu != NULL) {
1570                         for (i = 0; i < cpu_nr; i++)
1571                                 fprintf(fp, "# CPU %d: Core ID %d, "
1572                                             "Socket ID %d\n",
1573                                             i, ph->env.cpu[i].core_id,
1574                                             ph->env.cpu[i].socket_id);
1575                 } else
1576                         fprintf(fp, "# Core ID and Socket ID "
1577                                     "information is not available\n");
1578         }
1579 }
1580
1581 static void print_clockid(struct feat_fd *ff, FILE *fp)
1582 {
1583         fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1584                 ff->ph->env.clock.clockid_res_ns * 1000);
1585 }
1586
1587 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1588 {
1589         struct timespec clockid_ns;
1590         char tstr[64], date[64];
1591         struct timeval tod_ns;
1592         clockid_t clockid;
1593         struct tm ltime;
1594         u64 ref;
1595
1596         if (!ff->ph->env.clock.enabled) {
1597                 fprintf(fp, "# reference time disabled\n");
1598                 return;
1599         }
1600
1601         /* Compute TOD time. */
1602         ref = ff->ph->env.clock.tod_ns;
1603         tod_ns.tv_sec = ref / NSEC_PER_SEC;
1604         ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1605         tod_ns.tv_usec = ref / NSEC_PER_USEC;
1606
1607         /* Compute clockid time. */
1608         ref = ff->ph->env.clock.clockid_ns;
1609         clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1610         ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1611         clockid_ns.tv_nsec = ref;
1612
1613         clockid = ff->ph->env.clock.clockid;
1614
1615         if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1616                 snprintf(tstr, sizeof(tstr), "<error>");
1617         else {
1618                 strftime(date, sizeof(date), "%F %T", &ltime);
1619                 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1620                           date, (int) tod_ns.tv_usec);
1621         }
1622
1623         fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1624         fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1625                     tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
1626                     clockid_ns.tv_sec, clockid_ns.tv_nsec,
1627                     clockid_name(clockid));
1628 }
1629
1630 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1631 {
1632         struct perf_session *session;
1633         struct perf_data *data;
1634
1635         session = container_of(ff->ph, struct perf_session, header);
1636         data = session->data;
1637
1638         fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1639 }
1640
1641 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1642 {
1643         struct perf_env *env = &ff->ph->env;
1644         struct rb_root *root;
1645         struct rb_node *next;
1646
1647         down_read(&env->bpf_progs.lock);
1648
1649         root = &env->bpf_progs.infos;
1650         next = rb_first(root);
1651
1652         while (next) {
1653                 struct bpf_prog_info_node *node;
1654
1655                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1656                 next = rb_next(&node->rb_node);
1657
1658                 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1659                                                env, fp);
1660         }
1661
1662         up_read(&env->bpf_progs.lock);
1663 }
1664
1665 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1666 {
1667         struct perf_env *env = &ff->ph->env;
1668         struct rb_root *root;
1669         struct rb_node *next;
1670
1671         down_read(&env->bpf_progs.lock);
1672
1673         root = &env->bpf_progs.btfs;
1674         next = rb_first(root);
1675
1676         while (next) {
1677                 struct btf_node *node;
1678
1679                 node = rb_entry(next, struct btf_node, rb_node);
1680                 next = rb_next(&node->rb_node);
1681                 fprintf(fp, "# btf info of id %u\n", node->id);
1682         }
1683
1684         up_read(&env->bpf_progs.lock);
1685 }
1686
1687 static void free_event_desc(struct evsel *events)
1688 {
1689         struct evsel *evsel;
1690
1691         if (!events)
1692                 return;
1693
1694         for (evsel = events; evsel->core.attr.size; evsel++) {
1695                 zfree(&evsel->name);
1696                 zfree(&evsel->core.id);
1697         }
1698
1699         free(events);
1700 }
1701
1702 static bool perf_attr_check(struct perf_event_attr *attr)
1703 {
1704         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1705                 pr_warning("Reserved bits are set unexpectedly. "
1706                            "Please update perf tool.\n");
1707                 return false;
1708         }
1709
1710         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1711                 pr_warning("Unknown sample type (0x%llx) is detected. "
1712                            "Please update perf tool.\n",
1713                            attr->sample_type);
1714                 return false;
1715         }
1716
1717         if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1718                 pr_warning("Unknown read format (0x%llx) is detected. "
1719                            "Please update perf tool.\n",
1720                            attr->read_format);
1721                 return false;
1722         }
1723
1724         if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1725             (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1726                 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1727                            "Please update perf tool.\n",
1728                            attr->branch_sample_type);
1729
1730                 return false;
1731         }
1732
1733         return true;
1734 }
1735
1736 static struct evsel *read_event_desc(struct feat_fd *ff)
1737 {
1738         struct evsel *evsel, *events = NULL;
1739         u64 *id;
1740         void *buf = NULL;
1741         u32 nre, sz, nr, i, j;
1742         size_t msz;
1743
1744         /* number of events */
1745         if (do_read_u32(ff, &nre))
1746                 goto error;
1747
1748         if (do_read_u32(ff, &sz))
1749                 goto error;
1750
1751         /* buffer to hold on file attr struct */
1752         buf = malloc(sz);
1753         if (!buf)
1754                 goto error;
1755
1756         /* the last event terminates with evsel->core.attr.size == 0: */
1757         events = calloc(nre + 1, sizeof(*events));
1758         if (!events)
1759                 goto error;
1760
1761         msz = sizeof(evsel->core.attr);
1762         if (sz < msz)
1763                 msz = sz;
1764
1765         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1766                 evsel->idx = i;
1767
1768                 /*
1769                  * must read entire on-file attr struct to
1770                  * sync up with layout.
1771                  */
1772                 if (__do_read(ff, buf, sz))
1773                         goto error;
1774
1775                 if (ff->ph->needs_swap)
1776                         perf_event__attr_swap(buf);
1777
1778                 memcpy(&evsel->core.attr, buf, msz);
1779
1780                 if (!perf_attr_check(&evsel->core.attr))
1781                         goto error;
1782
1783                 if (do_read_u32(ff, &nr))
1784                         goto error;
1785
1786                 if (ff->ph->needs_swap)
1787                         evsel->needs_swap = true;
1788
1789                 evsel->name = do_read_string(ff);
1790                 if (!evsel->name)
1791                         goto error;
1792
1793                 if (!nr)
1794                         continue;
1795
1796                 id = calloc(nr, sizeof(*id));
1797                 if (!id)
1798                         goto error;
1799                 evsel->core.ids = nr;
1800                 evsel->core.id = id;
1801
1802                 for (j = 0 ; j < nr; j++) {
1803                         if (do_read_u64(ff, id))
1804                                 goto error;
1805                         id++;
1806                 }
1807         }
1808 out:
1809         free(buf);
1810         return events;
1811 error:
1812         free_event_desc(events);
1813         events = NULL;
1814         goto out;
1815 }
1816
1817 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1818                                 void *priv __maybe_unused)
1819 {
1820         return fprintf(fp, ", %s = %s", name, val);
1821 }
1822
1823 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1824 {
1825         struct evsel *evsel, *events;
1826         u32 j;
1827         u64 *id;
1828
1829         if (ff->events)
1830                 events = ff->events;
1831         else
1832                 events = read_event_desc(ff);
1833
1834         if (!events) {
1835                 fprintf(fp, "# event desc: not available or unable to read\n");
1836                 return;
1837         }
1838
1839         for (evsel = events; evsel->core.attr.size; evsel++) {
1840                 fprintf(fp, "# event : name = %s, ", evsel->name);
1841
1842                 if (evsel->core.ids) {
1843                         fprintf(fp, ", id = {");
1844                         for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1845                                 if (j)
1846                                         fputc(',', fp);
1847                                 fprintf(fp, " %"PRIu64, *id);
1848                         }
1849                         fprintf(fp, " }");
1850                 }
1851
1852                 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1853
1854                 fputc('\n', fp);
1855         }
1856
1857         free_event_desc(events);
1858         ff->events = NULL;
1859 }
1860
1861 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1862 {
1863         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1864 }
1865
1866 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1867 {
1868         int i;
1869         struct numa_node *n;
1870
1871         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1872                 n = &ff->ph->env.numa_nodes[i];
1873
1874                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1875                             " free = %"PRIu64" kB\n",
1876                         n->node, n->mem_total, n->mem_free);
1877
1878                 fprintf(fp, "# node%u cpu list : ", n->node);
1879                 cpu_map__fprintf(n->map, fp);
1880         }
1881 }
1882
1883 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1884 {
1885         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1886 }
1887
1888 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1889 {
1890         fprintf(fp, "# contains samples with branch stack\n");
1891 }
1892
1893 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1894 {
1895         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1896 }
1897
1898 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1899 {
1900         fprintf(fp, "# contains stat data\n");
1901 }
1902
1903 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1904 {
1905         int i;
1906
1907         fprintf(fp, "# CPU cache info:\n");
1908         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1909                 fprintf(fp, "#  ");
1910                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1911         }
1912 }
1913
1914 static void print_compressed(struct feat_fd *ff, FILE *fp)
1915 {
1916         fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1917                 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1918                 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1919 }
1920
1921 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
1922 {
1923         const char *delimiter = "# cpu pmu capabilities: ";
1924         u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
1925         char *str;
1926
1927         if (!nr_caps) {
1928                 fprintf(fp, "# cpu pmu capabilities: not available\n");
1929                 return;
1930         }
1931
1932         str = ff->ph->env.cpu_pmu_caps;
1933         while (nr_caps--) {
1934                 fprintf(fp, "%s%s", delimiter, str);
1935                 delimiter = ", ";
1936                 str += strlen(str) + 1;
1937         }
1938
1939         fprintf(fp, "\n");
1940 }
1941
1942 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1943 {
1944         const char *delimiter = "# pmu mappings: ";
1945         char *str, *tmp;
1946         u32 pmu_num;
1947         u32 type;
1948
1949         pmu_num = ff->ph->env.nr_pmu_mappings;
1950         if (!pmu_num) {
1951                 fprintf(fp, "# pmu mappings: not available\n");
1952                 return;
1953         }
1954
1955         str = ff->ph->env.pmu_mappings;
1956
1957         while (pmu_num) {
1958                 type = strtoul(str, &tmp, 0);
1959                 if (*tmp != ':')
1960                         goto error;
1961
1962                 str = tmp + 1;
1963                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1964
1965                 delimiter = ", ";
1966                 str += strlen(str) + 1;
1967                 pmu_num--;
1968         }
1969
1970         fprintf(fp, "\n");
1971
1972         if (!pmu_num)
1973                 return;
1974 error:
1975         fprintf(fp, "# pmu mappings: unable to read\n");
1976 }
1977
1978 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1979 {
1980         struct perf_session *session;
1981         struct evsel *evsel;
1982         u32 nr = 0;
1983
1984         session = container_of(ff->ph, struct perf_session, header);
1985
1986         evlist__for_each_entry(session->evlist, evsel) {
1987                 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1988                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1989
1990                         nr = evsel->core.nr_members - 1;
1991                 } else if (nr) {
1992                         fprintf(fp, ",%s", evsel__name(evsel));
1993
1994                         if (--nr == 0)
1995                                 fprintf(fp, "}\n");
1996                 }
1997         }
1998 }
1999
2000 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2001 {
2002         struct perf_session *session;
2003         char time_buf[32];
2004         double d;
2005
2006         session = container_of(ff->ph, struct perf_session, header);
2007
2008         timestamp__scnprintf_usec(session->evlist->first_sample_time,
2009                                   time_buf, sizeof(time_buf));
2010         fprintf(fp, "# time of first sample : %s\n", time_buf);
2011
2012         timestamp__scnprintf_usec(session->evlist->last_sample_time,
2013                                   time_buf, sizeof(time_buf));
2014         fprintf(fp, "# time of last sample : %s\n", time_buf);
2015
2016         d = (double)(session->evlist->last_sample_time -
2017                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2018
2019         fprintf(fp, "# sample duration : %10.3f ms\n", d);
2020 }
2021
2022 static void memory_node__fprintf(struct memory_node *n,
2023                                  unsigned long long bsize, FILE *fp)
2024 {
2025         char buf_map[100], buf_size[50];
2026         unsigned long long size;
2027
2028         size = bsize * bitmap_weight(n->set, n->size);
2029         unit_number__scnprintf(buf_size, 50, size);
2030
2031         bitmap_scnprintf(n->set, n->size, buf_map, 100);
2032         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2033 }
2034
2035 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2036 {
2037         struct memory_node *nodes;
2038         int i, nr;
2039
2040         nodes = ff->ph->env.memory_nodes;
2041         nr    = ff->ph->env.nr_memory_nodes;
2042
2043         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2044                 nr, ff->ph->env.memory_bsize);
2045
2046         for (i = 0; i < nr; i++) {
2047                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2048         }
2049 }
2050
2051 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2052                                     char *filename,
2053                                     struct perf_session *session)
2054 {
2055         int err = -1;
2056         struct machine *machine;
2057         u16 cpumode;
2058         struct dso *dso;
2059         enum dso_space_type dso_space;
2060
2061         machine = perf_session__findnew_machine(session, bev->pid);
2062         if (!machine)
2063                 goto out;
2064
2065         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2066
2067         switch (cpumode) {
2068         case PERF_RECORD_MISC_KERNEL:
2069                 dso_space = DSO_SPACE__KERNEL;
2070                 break;
2071         case PERF_RECORD_MISC_GUEST_KERNEL:
2072                 dso_space = DSO_SPACE__KERNEL_GUEST;
2073                 break;
2074         case PERF_RECORD_MISC_USER:
2075         case PERF_RECORD_MISC_GUEST_USER:
2076                 dso_space = DSO_SPACE__USER;
2077                 break;
2078         default:
2079                 goto out;
2080         }
2081
2082         dso = machine__findnew_dso(machine, filename);
2083         if (dso != NULL) {
2084                 char sbuild_id[SBUILD_ID_SIZE];
2085
2086                 dso__set_build_id(dso, &bev->build_id);
2087
2088                 if (dso_space != DSO_SPACE__USER) {
2089                         struct kmod_path m = { .name = NULL, };
2090
2091                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
2092                                 dso__set_module_info(dso, &m, machine);
2093
2094                         dso->kernel = dso_space;
2095                         free(m.name);
2096                 }
2097
2098                 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
2099                                   sbuild_id);
2100                 pr_debug("build id event received for %s: %s\n",
2101                          dso->long_name, sbuild_id);
2102                 dso__put(dso);
2103         }
2104
2105         err = 0;
2106 out:
2107         return err;
2108 }
2109
2110 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2111                                                  int input, u64 offset, u64 size)
2112 {
2113         struct perf_session *session = container_of(header, struct perf_session, header);
2114         struct {
2115                 struct perf_event_header   header;
2116                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2117                 char                       filename[0];
2118         } old_bev;
2119         struct perf_record_header_build_id bev;
2120         char filename[PATH_MAX];
2121         u64 limit = offset + size;
2122
2123         while (offset < limit) {
2124                 ssize_t len;
2125
2126                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2127                         return -1;
2128
2129                 if (header->needs_swap)
2130                         perf_event_header__bswap(&old_bev.header);
2131
2132                 len = old_bev.header.size - sizeof(old_bev);
2133                 if (readn(input, filename, len) != len)
2134                         return -1;
2135
2136                 bev.header = old_bev.header;
2137
2138                 /*
2139                  * As the pid is the missing value, we need to fill
2140                  * it properly. The header.misc value give us nice hint.
2141                  */
2142                 bev.pid = HOST_KERNEL_ID;
2143                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2144                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2145                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
2146
2147                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2148                 __event_process_build_id(&bev, filename, session);
2149
2150                 offset += bev.header.size;
2151         }
2152
2153         return 0;
2154 }
2155
2156 static int perf_header__read_build_ids(struct perf_header *header,
2157                                        int input, u64 offset, u64 size)
2158 {
2159         struct perf_session *session = container_of(header, struct perf_session, header);
2160         struct perf_record_header_build_id bev;
2161         char filename[PATH_MAX];
2162         u64 limit = offset + size, orig_offset = offset;
2163         int err = -1;
2164
2165         while (offset < limit) {
2166                 ssize_t len;
2167
2168                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2169                         goto out;
2170
2171                 if (header->needs_swap)
2172                         perf_event_header__bswap(&bev.header);
2173
2174                 len = bev.header.size - sizeof(bev);
2175                 if (readn(input, filename, len) != len)
2176                         goto out;
2177                 /*
2178                  * The a1645ce1 changeset:
2179                  *
2180                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
2181                  *
2182                  * Added a field to struct perf_record_header_build_id that broke the file
2183                  * format.
2184                  *
2185                  * Since the kernel build-id is the first entry, process the
2186                  * table using the old format if the well known
2187                  * '[kernel.kallsyms]' string for the kernel build-id has the
2188                  * first 4 characters chopped off (where the pid_t sits).
2189                  */
2190                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2191                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2192                                 return -1;
2193                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2194                 }
2195
2196                 __event_process_build_id(&bev, filename, session);
2197
2198                 offset += bev.header.size;
2199         }
2200         err = 0;
2201 out:
2202         return err;
2203 }
2204
2205 /* Macro for features that simply need to read and store a string. */
2206 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2207 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2208 {\
2209         ff->ph->env.__feat_env = do_read_string(ff); \
2210         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2211 }
2212
2213 FEAT_PROCESS_STR_FUN(hostname, hostname);
2214 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2215 FEAT_PROCESS_STR_FUN(version, version);
2216 FEAT_PROCESS_STR_FUN(arch, arch);
2217 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2218 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2219
2220 static int process_tracing_data(struct feat_fd *ff, void *data)
2221 {
2222         ssize_t ret = trace_report(ff->fd, data, false);
2223
2224         return ret < 0 ? -1 : 0;
2225 }
2226
2227 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2228 {
2229         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2230                 pr_debug("Failed to read buildids, continuing...\n");
2231         return 0;
2232 }
2233
2234 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2235 {
2236         int ret;
2237         u32 nr_cpus_avail, nr_cpus_online;
2238
2239         ret = do_read_u32(ff, &nr_cpus_avail);
2240         if (ret)
2241                 return ret;
2242
2243         ret = do_read_u32(ff, &nr_cpus_online);
2244         if (ret)
2245                 return ret;
2246         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2247         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2248         return 0;
2249 }
2250
2251 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2252 {
2253         u64 total_mem;
2254         int ret;
2255
2256         ret = do_read_u64(ff, &total_mem);
2257         if (ret)
2258                 return -1;
2259         ff->ph->env.total_mem = (unsigned long long)total_mem;
2260         return 0;
2261 }
2262
2263 static struct evsel *
2264 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2265 {
2266         struct evsel *evsel;
2267
2268         evlist__for_each_entry(evlist, evsel) {
2269                 if (evsel->idx == idx)
2270                         return evsel;
2271         }
2272
2273         return NULL;
2274 }
2275
2276 static void
2277 perf_evlist__set_event_name(struct evlist *evlist,
2278                             struct evsel *event)
2279 {
2280         struct evsel *evsel;
2281
2282         if (!event->name)
2283                 return;
2284
2285         evsel = perf_evlist__find_by_index(evlist, event->idx);
2286         if (!evsel)
2287                 return;
2288
2289         if (evsel->name)
2290                 return;
2291
2292         evsel->name = strdup(event->name);
2293 }
2294
2295 static int
2296 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2297 {
2298         struct perf_session *session;
2299         struct evsel *evsel, *events = read_event_desc(ff);
2300
2301         if (!events)
2302                 return 0;
2303
2304         session = container_of(ff->ph, struct perf_session, header);
2305
2306         if (session->data->is_pipe) {
2307                 /* Save events for reading later by print_event_desc,
2308                  * since they can't be read again in pipe mode. */
2309                 ff->events = events;
2310         }
2311
2312         for (evsel = events; evsel->core.attr.size; evsel++)
2313                 perf_evlist__set_event_name(session->evlist, evsel);
2314
2315         if (!session->data->is_pipe)
2316                 free_event_desc(events);
2317
2318         return 0;
2319 }
2320
2321 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2322 {
2323         char *str, *cmdline = NULL, **argv = NULL;
2324         u32 nr, i, len = 0;
2325
2326         if (do_read_u32(ff, &nr))
2327                 return -1;
2328
2329         ff->ph->env.nr_cmdline = nr;
2330
2331         cmdline = zalloc(ff->size + nr + 1);
2332         if (!cmdline)
2333                 return -1;
2334
2335         argv = zalloc(sizeof(char *) * (nr + 1));
2336         if (!argv)
2337                 goto error;
2338
2339         for (i = 0; i < nr; i++) {
2340                 str = do_read_string(ff);
2341                 if (!str)
2342                         goto error;
2343
2344                 argv[i] = cmdline + len;
2345                 memcpy(argv[i], str, strlen(str) + 1);
2346                 len += strlen(str) + 1;
2347                 free(str);
2348         }
2349         ff->ph->env.cmdline = cmdline;
2350         ff->ph->env.cmdline_argv = (const char **) argv;
2351         return 0;
2352
2353 error:
2354         free(argv);
2355         free(cmdline);
2356         return -1;
2357 }
2358
2359 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2360 {
2361         u32 nr, i;
2362         char *str;
2363         struct strbuf sb;
2364         int cpu_nr = ff->ph->env.nr_cpus_avail;
2365         u64 size = 0;
2366         struct perf_header *ph = ff->ph;
2367         bool do_core_id_test = true;
2368
2369         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2370         if (!ph->env.cpu)
2371                 return -1;
2372
2373         if (do_read_u32(ff, &nr))
2374                 goto free_cpu;
2375
2376         ph->env.nr_sibling_cores = nr;
2377         size += sizeof(u32);
2378         if (strbuf_init(&sb, 128) < 0)
2379                 goto free_cpu;
2380
2381         for (i = 0; i < nr; i++) {
2382                 str = do_read_string(ff);
2383                 if (!str)
2384                         goto error;
2385
2386                 /* include a NULL character at the end */
2387                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2388                         goto error;
2389                 size += string_size(str);
2390                 free(str);
2391         }
2392         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2393
2394         if (do_read_u32(ff, &nr))
2395                 return -1;
2396
2397         ph->env.nr_sibling_threads = nr;
2398         size += sizeof(u32);
2399
2400         for (i = 0; i < nr; i++) {
2401                 str = do_read_string(ff);
2402                 if (!str)
2403                         goto error;
2404
2405                 /* include a NULL character at the end */
2406                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2407                         goto error;
2408                 size += string_size(str);
2409                 free(str);
2410         }
2411         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2412
2413         /*
2414          * The header may be from old perf,
2415          * which doesn't include core id and socket id information.
2416          */
2417         if (ff->size <= size) {
2418                 zfree(&ph->env.cpu);
2419                 return 0;
2420         }
2421
2422         /* On s390 the socket_id number is not related to the numbers of cpus.
2423          * The socket_id number might be higher than the numbers of cpus.
2424          * This depends on the configuration.
2425          * AArch64 is the same.
2426          */
2427         if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2428                           || !strncmp(ph->env.arch, "aarch64", 7)))
2429                 do_core_id_test = false;
2430
2431         for (i = 0; i < (u32)cpu_nr; i++) {
2432                 if (do_read_u32(ff, &nr))
2433                         goto free_cpu;
2434
2435                 ph->env.cpu[i].core_id = nr;
2436                 size += sizeof(u32);
2437
2438                 if (do_read_u32(ff, &nr))
2439                         goto free_cpu;
2440
2441                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2442                         pr_debug("socket_id number is too big."
2443                                  "You may need to upgrade the perf tool.\n");
2444                         goto free_cpu;
2445                 }
2446
2447                 ph->env.cpu[i].socket_id = nr;
2448                 size += sizeof(u32);
2449         }
2450
2451         /*
2452          * The header may be from old perf,
2453          * which doesn't include die information.
2454          */
2455         if (ff->size <= size)
2456                 return 0;
2457
2458         if (do_read_u32(ff, &nr))
2459                 return -1;
2460
2461         ph->env.nr_sibling_dies = nr;
2462         size += sizeof(u32);
2463
2464         for (i = 0; i < nr; i++) {
2465                 str = do_read_string(ff);
2466                 if (!str)
2467                         goto error;
2468
2469                 /* include a NULL character at the end */
2470                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2471                         goto error;
2472                 size += string_size(str);
2473                 free(str);
2474         }
2475         ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2476
2477         for (i = 0; i < (u32)cpu_nr; i++) {
2478                 if (do_read_u32(ff, &nr))
2479                         goto free_cpu;
2480
2481                 ph->env.cpu[i].die_id = nr;
2482         }
2483
2484         return 0;
2485
2486 error:
2487         strbuf_release(&sb);
2488 free_cpu:
2489         zfree(&ph->env.cpu);
2490         return -1;
2491 }
2492
2493 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2494 {
2495         struct numa_node *nodes, *n;
2496         u32 nr, i;
2497         char *str;
2498
2499         /* nr nodes */
2500         if (do_read_u32(ff, &nr))
2501                 return -1;
2502
2503         nodes = zalloc(sizeof(*nodes) * nr);
2504         if (!nodes)
2505                 return -ENOMEM;
2506
2507         for (i = 0; i < nr; i++) {
2508                 n = &nodes[i];
2509
2510                 /* node number */
2511                 if (do_read_u32(ff, &n->node))
2512                         goto error;
2513
2514                 if (do_read_u64(ff, &n->mem_total))
2515                         goto error;
2516
2517                 if (do_read_u64(ff, &n->mem_free))
2518                         goto error;
2519
2520                 str = do_read_string(ff);
2521                 if (!str)
2522                         goto error;
2523
2524                 n->map = perf_cpu_map__new(str);
2525                 if (!n->map)
2526                         goto error;
2527
2528                 free(str);
2529         }
2530         ff->ph->env.nr_numa_nodes = nr;
2531         ff->ph->env.numa_nodes = nodes;
2532         return 0;
2533
2534 error:
2535         free(nodes);
2536         return -1;
2537 }
2538
2539 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2540 {
2541         char *name;
2542         u32 pmu_num;
2543         u32 type;
2544         struct strbuf sb;
2545
2546         if (do_read_u32(ff, &pmu_num))
2547                 return -1;
2548
2549         if (!pmu_num) {
2550                 pr_debug("pmu mappings not available\n");
2551                 return 0;
2552         }
2553
2554         ff->ph->env.nr_pmu_mappings = pmu_num;
2555         if (strbuf_init(&sb, 128) < 0)
2556                 return -1;
2557
2558         while (pmu_num) {
2559                 if (do_read_u32(ff, &type))
2560                         goto error;
2561
2562                 name = do_read_string(ff);
2563                 if (!name)
2564                         goto error;
2565
2566                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2567                         goto error;
2568                 /* include a NULL character at the end */
2569                 if (strbuf_add(&sb, "", 1) < 0)
2570                         goto error;
2571
2572                 if (!strcmp(name, "msr"))
2573                         ff->ph->env.msr_pmu_type = type;
2574
2575                 free(name);
2576                 pmu_num--;
2577         }
2578         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2579         return 0;
2580
2581 error:
2582         strbuf_release(&sb);
2583         return -1;
2584 }
2585
2586 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2587 {
2588         size_t ret = -1;
2589         u32 i, nr, nr_groups;
2590         struct perf_session *session;
2591         struct evsel *evsel, *leader = NULL;
2592         struct group_desc {
2593                 char *name;
2594                 u32 leader_idx;
2595                 u32 nr_members;
2596         } *desc;
2597
2598         if (do_read_u32(ff, &nr_groups))
2599                 return -1;
2600
2601         ff->ph->env.nr_groups = nr_groups;
2602         if (!nr_groups) {
2603                 pr_debug("group desc not available\n");
2604                 return 0;
2605         }
2606
2607         desc = calloc(nr_groups, sizeof(*desc));
2608         if (!desc)
2609                 return -1;
2610
2611         for (i = 0; i < nr_groups; i++) {
2612                 desc[i].name = do_read_string(ff);
2613                 if (!desc[i].name)
2614                         goto out_free;
2615
2616                 if (do_read_u32(ff, &desc[i].leader_idx))
2617                         goto out_free;
2618
2619                 if (do_read_u32(ff, &desc[i].nr_members))
2620                         goto out_free;
2621         }
2622
2623         /*
2624          * Rebuild group relationship based on the group_desc
2625          */
2626         session = container_of(ff->ph, struct perf_session, header);
2627         session->evlist->nr_groups = nr_groups;
2628
2629         i = nr = 0;
2630         evlist__for_each_entry(session->evlist, evsel) {
2631                 if (evsel->idx == (int) desc[i].leader_idx) {
2632                         evsel->leader = evsel;
2633                         /* {anon_group} is a dummy name */
2634                         if (strcmp(desc[i].name, "{anon_group}")) {
2635                                 evsel->group_name = desc[i].name;
2636                                 desc[i].name = NULL;
2637                         }
2638                         evsel->core.nr_members = desc[i].nr_members;
2639
2640                         if (i >= nr_groups || nr > 0) {
2641                                 pr_debug("invalid group desc\n");
2642                                 goto out_free;
2643                         }
2644
2645                         leader = evsel;
2646                         nr = evsel->core.nr_members - 1;
2647                         i++;
2648                 } else if (nr) {
2649                         /* This is a group member */
2650                         evsel->leader = leader;
2651
2652                         nr--;
2653                 }
2654         }
2655
2656         if (i != nr_groups || nr != 0) {
2657                 pr_debug("invalid group desc\n");
2658                 goto out_free;
2659         }
2660
2661         ret = 0;
2662 out_free:
2663         for (i = 0; i < nr_groups; i++)
2664                 zfree(&desc[i].name);
2665         free(desc);
2666
2667         return ret;
2668 }
2669
2670 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2671 {
2672         struct perf_session *session;
2673         int err;
2674
2675         session = container_of(ff->ph, struct perf_session, header);
2676
2677         err = auxtrace_index__process(ff->fd, ff->size, session,
2678                                       ff->ph->needs_swap);
2679         if (err < 0)
2680                 pr_err("Failed to process auxtrace index\n");
2681         return err;
2682 }
2683
2684 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2685 {
2686         struct cpu_cache_level *caches;
2687         u32 cnt, i, version;
2688
2689         if (do_read_u32(ff, &version))
2690                 return -1;
2691
2692         if (version != 1)
2693                 return -1;
2694
2695         if (do_read_u32(ff, &cnt))
2696                 return -1;
2697
2698         caches = zalloc(sizeof(*caches) * cnt);
2699         if (!caches)
2700                 return -1;
2701
2702         for (i = 0; i < cnt; i++) {
2703                 struct cpu_cache_level c;
2704
2705                 #define _R(v)                                           \
2706                         if (do_read_u32(ff, &c.v))\
2707                                 goto out_free_caches;                   \
2708
2709                 _R(level)
2710                 _R(line_size)
2711                 _R(sets)
2712                 _R(ways)
2713                 #undef _R
2714
2715                 #define _R(v)                                   \
2716                         c.v = do_read_string(ff);               \
2717                         if (!c.v)                               \
2718                                 goto out_free_caches;
2719
2720                 _R(type)
2721                 _R(size)
2722                 _R(map)
2723                 #undef _R
2724
2725                 caches[i] = c;
2726         }
2727
2728         ff->ph->env.caches = caches;
2729         ff->ph->env.caches_cnt = cnt;
2730         return 0;
2731 out_free_caches:
2732         free(caches);
2733         return -1;
2734 }
2735
2736 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2737 {
2738         struct perf_session *session;
2739         u64 first_sample_time, last_sample_time;
2740         int ret;
2741
2742         session = container_of(ff->ph, struct perf_session, header);
2743
2744         ret = do_read_u64(ff, &first_sample_time);
2745         if (ret)
2746                 return -1;
2747
2748         ret = do_read_u64(ff, &last_sample_time);
2749         if (ret)
2750                 return -1;
2751
2752         session->evlist->first_sample_time = first_sample_time;
2753         session->evlist->last_sample_time = last_sample_time;
2754         return 0;
2755 }
2756
2757 static int process_mem_topology(struct feat_fd *ff,
2758                                 void *data __maybe_unused)
2759 {
2760         struct memory_node *nodes;
2761         u64 version, i, nr, bsize;
2762         int ret = -1;
2763
2764         if (do_read_u64(ff, &version))
2765                 return -1;
2766
2767         if (version != 1)
2768                 return -1;
2769
2770         if (do_read_u64(ff, &bsize))
2771                 return -1;
2772
2773         if (do_read_u64(ff, &nr))
2774                 return -1;
2775
2776         nodes = zalloc(sizeof(*nodes) * nr);
2777         if (!nodes)
2778                 return -1;
2779
2780         for (i = 0; i < nr; i++) {
2781                 struct memory_node n;
2782
2783                 #define _R(v)                           \
2784                         if (do_read_u64(ff, &n.v))      \
2785                                 goto out;               \
2786
2787                 _R(node)
2788                 _R(size)
2789
2790                 #undef _R
2791
2792                 if (do_read_bitmap(ff, &n.set, &n.size))
2793                         goto out;
2794
2795                 nodes[i] = n;
2796         }
2797
2798         ff->ph->env.memory_bsize    = bsize;
2799         ff->ph->env.memory_nodes    = nodes;
2800         ff->ph->env.nr_memory_nodes = nr;
2801         ret = 0;
2802
2803 out:
2804         if (ret)
2805                 free(nodes);
2806         return ret;
2807 }
2808
2809 static int process_clockid(struct feat_fd *ff,
2810                            void *data __maybe_unused)
2811 {
2812         if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2813                 return -1;
2814
2815         return 0;
2816 }
2817
2818 static int process_clock_data(struct feat_fd *ff,
2819                               void *_data __maybe_unused)
2820 {
2821         u32 data32;
2822         u64 data64;
2823
2824         /* version */
2825         if (do_read_u32(ff, &data32))
2826                 return -1;
2827
2828         if (data32 != 1)
2829                 return -1;
2830
2831         /* clockid */
2832         if (do_read_u32(ff, &data32))
2833                 return -1;
2834
2835         ff->ph->env.clock.clockid = data32;
2836
2837         /* TOD ref time */
2838         if (do_read_u64(ff, &data64))
2839                 return -1;
2840
2841         ff->ph->env.clock.tod_ns = data64;
2842
2843         /* clockid ref time */
2844         if (do_read_u64(ff, &data64))
2845                 return -1;
2846
2847         ff->ph->env.clock.clockid_ns = data64;
2848         ff->ph->env.clock.enabled = true;
2849         return 0;
2850 }
2851
2852 static int process_dir_format(struct feat_fd *ff,
2853                               void *_data __maybe_unused)
2854 {
2855         struct perf_session *session;
2856         struct perf_data *data;
2857
2858         session = container_of(ff->ph, struct perf_session, header);
2859         data = session->data;
2860
2861         if (WARN_ON(!perf_data__is_dir(data)))
2862                 return -1;
2863
2864         return do_read_u64(ff, &data->dir.version);
2865 }
2866
2867 #ifdef HAVE_LIBBPF_SUPPORT
2868 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2869 {
2870         struct bpf_prog_info_linear *info_linear;
2871         struct bpf_prog_info_node *info_node;
2872         struct perf_env *env = &ff->ph->env;
2873         u32 count, i;
2874         int err = -1;
2875
2876         if (ff->ph->needs_swap) {
2877                 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2878                 return 0;
2879         }
2880
2881         if (do_read_u32(ff, &count))
2882                 return -1;
2883
2884         down_write(&env->bpf_progs.lock);
2885
2886         for (i = 0; i < count; ++i) {
2887                 u32 info_len, data_len;
2888
2889                 info_linear = NULL;
2890                 info_node = NULL;
2891                 if (do_read_u32(ff, &info_len))
2892                         goto out;
2893                 if (do_read_u32(ff, &data_len))
2894                         goto out;
2895
2896                 if (info_len > sizeof(struct bpf_prog_info)) {
2897                         pr_warning("detected invalid bpf_prog_info\n");
2898                         goto out;
2899                 }
2900
2901                 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2902                                      data_len);
2903                 if (!info_linear)
2904                         goto out;
2905                 info_linear->info_len = sizeof(struct bpf_prog_info);
2906                 info_linear->data_len = data_len;
2907                 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2908                         goto out;
2909                 if (__do_read(ff, &info_linear->info, info_len))
2910                         goto out;
2911                 if (info_len < sizeof(struct bpf_prog_info))
2912                         memset(((void *)(&info_linear->info)) + info_len, 0,
2913                                sizeof(struct bpf_prog_info) - info_len);
2914
2915                 if (__do_read(ff, info_linear->data, data_len))
2916                         goto out;
2917
2918                 info_node = malloc(sizeof(struct bpf_prog_info_node));
2919                 if (!info_node)
2920                         goto out;
2921
2922                 /* after reading from file, translate offset to address */
2923                 bpf_program__bpil_offs_to_addr(info_linear);
2924                 info_node->info_linear = info_linear;
2925                 perf_env__insert_bpf_prog_info(env, info_node);
2926         }
2927
2928         up_write(&env->bpf_progs.lock);
2929         return 0;
2930 out:
2931         free(info_linear);
2932         free(info_node);
2933         up_write(&env->bpf_progs.lock);
2934         return err;
2935 }
2936 #else // HAVE_LIBBPF_SUPPORT
2937 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2938 {
2939         return 0;
2940 }
2941 #endif // HAVE_LIBBPF_SUPPORT
2942
2943 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2944 {
2945         struct perf_env *env = &ff->ph->env;
2946         struct btf_node *node = NULL;
2947         u32 count, i;
2948         int err = -1;
2949
2950         if (ff->ph->needs_swap) {
2951                 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2952                 return 0;
2953         }
2954
2955         if (do_read_u32(ff, &count))
2956                 return -1;
2957
2958         down_write(&env->bpf_progs.lock);
2959
2960         for (i = 0; i < count; ++i) {
2961                 u32 id, data_size;
2962
2963                 if (do_read_u32(ff, &id))
2964                         goto out;
2965                 if (do_read_u32(ff, &data_size))
2966                         goto out;
2967
2968                 node = malloc(sizeof(struct btf_node) + data_size);
2969                 if (!node)
2970                         goto out;
2971
2972                 node->id = id;
2973                 node->data_size = data_size;
2974
2975                 if (__do_read(ff, node->data, data_size))
2976                         goto out;
2977
2978                 perf_env__insert_btf(env, node);
2979                 node = NULL;
2980         }
2981
2982         err = 0;
2983 out:
2984         up_write(&env->bpf_progs.lock);
2985         free(node);
2986         return err;
2987 }
2988
2989 static int process_compressed(struct feat_fd *ff,
2990                               void *data __maybe_unused)
2991 {
2992         if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2993                 return -1;
2994
2995         if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2996                 return -1;
2997
2998         if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2999                 return -1;
3000
3001         if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3002                 return -1;
3003
3004         if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3005                 return -1;
3006
3007         return 0;
3008 }
3009
3010 static int process_cpu_pmu_caps(struct feat_fd *ff,
3011                                 void *data __maybe_unused)
3012 {
3013         char *name, *value;
3014         struct strbuf sb;
3015         u32 nr_caps;
3016
3017         if (do_read_u32(ff, &nr_caps))
3018                 return -1;
3019
3020         if (!nr_caps) {
3021                 pr_debug("cpu pmu capabilities not available\n");
3022                 return 0;
3023         }
3024
3025         ff->ph->env.nr_cpu_pmu_caps = nr_caps;
3026
3027         if (strbuf_init(&sb, 128) < 0)
3028                 return -1;
3029
3030         while (nr_caps--) {
3031                 name = do_read_string(ff);
3032                 if (!name)
3033                         goto error;
3034
3035                 value = do_read_string(ff);
3036                 if (!value)
3037                         goto free_name;
3038
3039                 if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3040                         goto free_value;
3041
3042                 /* include a NULL character at the end */
3043                 if (strbuf_add(&sb, "", 1) < 0)
3044                         goto free_value;
3045
3046                 if (!strcmp(name, "branches"))
3047                         ff->ph->env.max_branches = atoi(value);
3048
3049                 free(value);
3050                 free(name);
3051         }
3052         ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
3053         return 0;
3054
3055 free_value:
3056         free(value);
3057 free_name:
3058         free(name);
3059 error:
3060         strbuf_release(&sb);
3061         return -1;
3062 }
3063
3064 #define FEAT_OPR(n, func, __full_only) \
3065         [HEADER_##n] = {                                        \
3066                 .name       = __stringify(n),                   \
3067                 .write      = write_##func,                     \
3068                 .print      = print_##func,                     \
3069                 .full_only  = __full_only,                      \
3070                 .process    = process_##func,                   \
3071                 .synthesize = true                              \
3072         }
3073
3074 #define FEAT_OPN(n, func, __full_only) \
3075         [HEADER_##n] = {                                        \
3076                 .name       = __stringify(n),                   \
3077                 .write      = write_##func,                     \
3078                 .print      = print_##func,                     \
3079                 .full_only  = __full_only,                      \
3080                 .process    = process_##func                    \
3081         }
3082
3083 /* feature_ops not implemented: */
3084 #define print_tracing_data      NULL
3085 #define print_build_id          NULL
3086
3087 #define process_branch_stack    NULL
3088 #define process_stat            NULL
3089
3090 // Only used in util/synthetic-events.c
3091 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3092
3093 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3094         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
3095         FEAT_OPN(BUILD_ID,      build_id,       false),
3096         FEAT_OPR(HOSTNAME,      hostname,       false),
3097         FEAT_OPR(OSRELEASE,     osrelease,      false),
3098         FEAT_OPR(VERSION,       version,        false),
3099         FEAT_OPR(ARCH,          arch,           false),
3100         FEAT_OPR(NRCPUS,        nrcpus,         false),
3101         FEAT_OPR(CPUDESC,       cpudesc,        false),
3102         FEAT_OPR(CPUID,         cpuid,          false),
3103         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
3104         FEAT_OPR(EVENT_DESC,    event_desc,     false),
3105         FEAT_OPR(CMDLINE,       cmdline,        false),
3106         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
3107         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
3108         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
3109         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
3110         FEAT_OPR(GROUP_DESC,    group_desc,     false),
3111         FEAT_OPN(AUXTRACE,      auxtrace,       false),
3112         FEAT_OPN(STAT,          stat,           false),
3113         FEAT_OPN(CACHE,         cache,          true),
3114         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
3115         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
3116         FEAT_OPR(CLOCKID,       clockid,        false),
3117         FEAT_OPN(DIR_FORMAT,    dir_format,     false),
3118         FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3119         FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3120         FEAT_OPR(COMPRESSED,    compressed,     false),
3121         FEAT_OPR(CPU_PMU_CAPS,  cpu_pmu_caps,   false),
3122         FEAT_OPR(CLOCK_DATA,    clock_data,     false),
3123 };
3124
3125 struct header_print_data {
3126         FILE *fp;
3127         bool full; /* extended list of headers */
3128 };
3129
3130 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3131                                            struct perf_header *ph,
3132                                            int feat, int fd, void *data)
3133 {
3134         struct header_print_data *hd = data;
3135         struct feat_fd ff;
3136
3137         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3138                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3139                                 "%d, continuing...\n", section->offset, feat);
3140                 return 0;
3141         }
3142         if (feat >= HEADER_LAST_FEATURE) {
3143                 pr_warning("unknown feature %d\n", feat);
3144                 return 0;
3145         }
3146         if (!feat_ops[feat].print)
3147                 return 0;
3148
3149         ff = (struct  feat_fd) {
3150                 .fd = fd,
3151                 .ph = ph,
3152         };
3153
3154         if (!feat_ops[feat].full_only || hd->full)
3155                 feat_ops[feat].print(&ff, hd->fp);
3156         else
3157                 fprintf(hd->fp, "# %s info available, use -I to display\n",
3158                         feat_ops[feat].name);
3159
3160         return 0;
3161 }
3162
3163 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3164 {
3165         struct header_print_data hd;
3166         struct perf_header *header = &session->header;
3167         int fd = perf_data__fd(session->data);
3168         struct stat st;
3169         time_t stctime;
3170         int ret, bit;
3171
3172         hd.fp = fp;
3173         hd.full = full;
3174
3175         ret = fstat(fd, &st);
3176         if (ret == -1)
3177                 return -1;
3178
3179         stctime = st.st_mtime;
3180         fprintf(fp, "# captured on    : %s", ctime(&stctime));
3181
3182         fprintf(fp, "# header version : %u\n", header->version);
3183         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3184         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3185         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3186
3187         perf_header__process_sections(header, fd, &hd,
3188                                       perf_file_section__fprintf_info);
3189
3190         if (session->data->is_pipe)
3191                 return 0;
3192
3193         fprintf(fp, "# missing features: ");
3194         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3195                 if (bit)
3196                         fprintf(fp, "%s ", feat_ops[bit].name);
3197         }
3198
3199         fprintf(fp, "\n");
3200         return 0;
3201 }
3202
3203 static int do_write_feat(struct feat_fd *ff, int type,
3204                          struct perf_file_section **p,
3205                          struct evlist *evlist)
3206 {
3207         int err;
3208         int ret = 0;
3209
3210         if (perf_header__has_feat(ff->ph, type)) {
3211                 if (!feat_ops[type].write)
3212                         return -1;
3213
3214                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3215                         return -1;
3216
3217                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3218
3219                 err = feat_ops[type].write(ff, evlist);
3220                 if (err < 0) {
3221                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
3222
3223                         /* undo anything written */
3224                         lseek(ff->fd, (*p)->offset, SEEK_SET);
3225
3226                         return -1;
3227                 }
3228                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3229                 (*p)++;
3230         }
3231         return ret;
3232 }
3233
3234 static int perf_header__adds_write(struct perf_header *header,
3235                                    struct evlist *evlist, int fd)
3236 {
3237         int nr_sections;
3238         struct feat_fd ff;
3239         struct perf_file_section *feat_sec, *p;
3240         int sec_size;
3241         u64 sec_start;
3242         int feat;
3243         int err;
3244
3245         ff = (struct feat_fd){
3246                 .fd  = fd,
3247                 .ph = header,
3248         };
3249
3250         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3251         if (!nr_sections)
3252                 return 0;
3253
3254         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3255         if (feat_sec == NULL)
3256                 return -ENOMEM;
3257
3258         sec_size = sizeof(*feat_sec) * nr_sections;
3259
3260         sec_start = header->feat_offset;
3261         lseek(fd, sec_start + sec_size, SEEK_SET);
3262
3263         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3264                 if (do_write_feat(&ff, feat, &p, evlist))
3265                         perf_header__clear_feat(header, feat);
3266         }
3267
3268         lseek(fd, sec_start, SEEK_SET);
3269         /*
3270          * may write more than needed due to dropped feature, but
3271          * this is okay, reader will skip the missing entries
3272          */
3273         err = do_write(&ff, feat_sec, sec_size);
3274         if (err < 0)
3275                 pr_debug("failed to write feature section\n");
3276         free(feat_sec);
3277         return err;
3278 }
3279
3280 int perf_header__write_pipe(int fd)
3281 {
3282         struct perf_pipe_file_header f_header;
3283         struct feat_fd ff;
3284         int err;
3285
3286         ff = (struct feat_fd){ .fd = fd };
3287
3288         f_header = (struct perf_pipe_file_header){
3289                 .magic     = PERF_MAGIC,
3290                 .size      = sizeof(f_header),
3291         };
3292
3293         err = do_write(&ff, &f_header, sizeof(f_header));
3294         if (err < 0) {
3295                 pr_debug("failed to write perf pipe header\n");
3296                 return err;
3297         }
3298
3299         return 0;
3300 }
3301
3302 int perf_session__write_header(struct perf_session *session,
3303                                struct evlist *evlist,
3304                                int fd, bool at_exit)
3305 {
3306         struct perf_file_header f_header;
3307         struct perf_file_attr   f_attr;
3308         struct perf_header *header = &session->header;
3309         struct evsel *evsel;
3310         struct feat_fd ff;
3311         u64 attr_offset;
3312         int err;
3313
3314         ff = (struct feat_fd){ .fd = fd};
3315         lseek(fd, sizeof(f_header), SEEK_SET);
3316
3317         evlist__for_each_entry(session->evlist, evsel) {
3318                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3319                 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3320                 if (err < 0) {
3321                         pr_debug("failed to write perf header\n");
3322                         return err;
3323                 }
3324         }
3325
3326         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3327
3328         evlist__for_each_entry(evlist, evsel) {
3329                 f_attr = (struct perf_file_attr){
3330                         .attr = evsel->core.attr,
3331                         .ids  = {
3332                                 .offset = evsel->id_offset,
3333                                 .size   = evsel->core.ids * sizeof(u64),
3334                         }
3335                 };
3336                 err = do_write(&ff, &f_attr, sizeof(f_attr));
3337                 if (err < 0) {
3338                         pr_debug("failed to write perf header attribute\n");
3339                         return err;
3340                 }
3341         }
3342
3343         if (!header->data_offset)
3344                 header->data_offset = lseek(fd, 0, SEEK_CUR);
3345         header->feat_offset = header->data_offset + header->data_size;
3346
3347         if (at_exit) {
3348                 err = perf_header__adds_write(header, evlist, fd);
3349                 if (err < 0)
3350                         return err;
3351         }
3352
3353         f_header = (struct perf_file_header){
3354                 .magic     = PERF_MAGIC,
3355                 .size      = sizeof(f_header),
3356                 .attr_size = sizeof(f_attr),
3357                 .attrs = {
3358                         .offset = attr_offset,
3359                         .size   = evlist->core.nr_entries * sizeof(f_attr),
3360                 },
3361                 .data = {
3362                         .offset = header->data_offset,
3363                         .size   = header->data_size,
3364                 },
3365                 /* event_types is ignored, store zeros */
3366         };
3367
3368         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3369
3370         lseek(fd, 0, SEEK_SET);
3371         err = do_write(&ff, &f_header, sizeof(f_header));
3372         if (err < 0) {
3373                 pr_debug("failed to write perf header\n");
3374                 return err;
3375         }
3376         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3377
3378         return 0;
3379 }
3380
3381 static int perf_header__getbuffer64(struct perf_header *header,
3382                                     int fd, void *buf, size_t size)
3383 {
3384         if (readn(fd, buf, size) <= 0)
3385                 return -1;
3386
3387         if (header->needs_swap)
3388                 mem_bswap_64(buf, size);
3389
3390         return 0;
3391 }
3392
3393 int perf_header__process_sections(struct perf_header *header, int fd,
3394                                   void *data,
3395                                   int (*process)(struct perf_file_section *section,
3396                                                  struct perf_header *ph,
3397                                                  int feat, int fd, void *data))
3398 {
3399         struct perf_file_section *feat_sec, *sec;
3400         int nr_sections;
3401         int sec_size;
3402         int feat;
3403         int err;
3404
3405         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3406         if (!nr_sections)
3407                 return 0;
3408
3409         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3410         if (!feat_sec)
3411                 return -1;
3412
3413         sec_size = sizeof(*feat_sec) * nr_sections;
3414
3415         lseek(fd, header->feat_offset, SEEK_SET);
3416
3417         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3418         if (err < 0)
3419                 goto out_free;
3420
3421         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3422                 err = process(sec++, header, feat, fd, data);
3423                 if (err < 0)
3424                         goto out_free;
3425         }
3426         err = 0;
3427 out_free:
3428         free(feat_sec);
3429         return err;
3430 }
3431
3432 static const int attr_file_abi_sizes[] = {
3433         [0] = PERF_ATTR_SIZE_VER0,
3434         [1] = PERF_ATTR_SIZE_VER1,
3435         [2] = PERF_ATTR_SIZE_VER2,
3436         [3] = PERF_ATTR_SIZE_VER3,
3437         [4] = PERF_ATTR_SIZE_VER4,
3438         0,
3439 };
3440
3441 /*
3442  * In the legacy file format, the magic number is not used to encode endianness.
3443  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3444  * on ABI revisions, we need to try all combinations for all endianness to
3445  * detect the endianness.
3446  */
3447 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3448 {
3449         uint64_t ref_size, attr_size;
3450         int i;
3451
3452         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3453                 ref_size = attr_file_abi_sizes[i]
3454                          + sizeof(struct perf_file_section);
3455                 if (hdr_sz != ref_size) {
3456                         attr_size = bswap_64(hdr_sz);
3457                         if (attr_size != ref_size)
3458                                 continue;
3459
3460                         ph->needs_swap = true;
3461                 }
3462                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3463                          i,
3464                          ph->needs_swap);
3465                 return 0;
3466         }
3467         /* could not determine endianness */
3468         return -1;
3469 }
3470
3471 #define PERF_PIPE_HDR_VER0      16
3472
3473 static const size_t attr_pipe_abi_sizes[] = {
3474         [0] = PERF_PIPE_HDR_VER0,
3475         0,
3476 };
3477
3478 /*
3479  * In the legacy pipe format, there is an implicit assumption that endiannesss
3480  * between host recording the samples, and host parsing the samples is the
3481  * same. This is not always the case given that the pipe output may always be
3482  * redirected into a file and analyzed on a different machine with possibly a
3483  * different endianness and perf_event ABI revsions in the perf tool itself.
3484  */
3485 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3486 {
3487         u64 attr_size;
3488         int i;
3489
3490         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3491                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3492                         attr_size = bswap_64(hdr_sz);
3493                         if (attr_size != hdr_sz)
3494                                 continue;
3495
3496                         ph->needs_swap = true;
3497                 }
3498                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3499                 return 0;
3500         }
3501         return -1;
3502 }
3503
3504 bool is_perf_magic(u64 magic)
3505 {
3506         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3507                 || magic == __perf_magic2
3508                 || magic == __perf_magic2_sw)
3509                 return true;
3510
3511         return false;
3512 }
3513
3514 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3515                               bool is_pipe, struct perf_header *ph)
3516 {
3517         int ret;
3518
3519         /* check for legacy format */
3520         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3521         if (ret == 0) {
3522                 ph->version = PERF_HEADER_VERSION_1;
3523                 pr_debug("legacy perf.data format\n");
3524                 if (is_pipe)
3525                         return try_all_pipe_abis(hdr_sz, ph);
3526
3527                 return try_all_file_abis(hdr_sz, ph);
3528         }
3529         /*
3530          * the new magic number serves two purposes:
3531          * - unique number to identify actual perf.data files
3532          * - encode endianness of file
3533          */
3534         ph->version = PERF_HEADER_VERSION_2;
3535
3536         /* check magic number with one endianness */
3537         if (magic == __perf_magic2)
3538                 return 0;
3539
3540         /* check magic number with opposite endianness */
3541         if (magic != __perf_magic2_sw)
3542                 return -1;
3543
3544         ph->needs_swap = true;
3545
3546         return 0;
3547 }
3548
3549 int perf_file_header__read(struct perf_file_header *header,
3550                            struct perf_header *ph, int fd)
3551 {
3552         ssize_t ret;
3553
3554         lseek(fd, 0, SEEK_SET);
3555
3556         ret = readn(fd, header, sizeof(*header));
3557         if (ret <= 0)
3558                 return -1;
3559
3560         if (check_magic_endian(header->magic,
3561                                header->attr_size, false, ph) < 0) {
3562                 pr_debug("magic/endian check failed\n");
3563                 return -1;
3564         }
3565
3566         if (ph->needs_swap) {
3567                 mem_bswap_64(header, offsetof(struct perf_file_header,
3568                              adds_features));
3569         }
3570
3571         if (header->size != sizeof(*header)) {
3572                 /* Support the previous format */
3573                 if (header->size == offsetof(typeof(*header), adds_features))
3574                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3575                 else
3576                         return -1;
3577         } else if (ph->needs_swap) {
3578                 /*
3579                  * feature bitmap is declared as an array of unsigned longs --
3580                  * not good since its size can differ between the host that
3581                  * generated the data file and the host analyzing the file.
3582                  *
3583                  * We need to handle endianness, but we don't know the size of
3584                  * the unsigned long where the file was generated. Take a best
3585                  * guess at determining it: try 64-bit swap first (ie., file
3586                  * created on a 64-bit host), and check if the hostname feature
3587                  * bit is set (this feature bit is forced on as of fbe96f2).
3588                  * If the bit is not, undo the 64-bit swap and try a 32-bit
3589                  * swap. If the hostname bit is still not set (e.g., older data
3590                  * file), punt and fallback to the original behavior --
3591                  * clearing all feature bits and setting buildid.
3592                  */
3593                 mem_bswap_64(&header->adds_features,
3594                             BITS_TO_U64(HEADER_FEAT_BITS));
3595
3596                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3597                         /* unswap as u64 */
3598                         mem_bswap_64(&header->adds_features,
3599                                     BITS_TO_U64(HEADER_FEAT_BITS));
3600
3601                         /* unswap as u32 */
3602                         mem_bswap_32(&header->adds_features,
3603                                     BITS_TO_U32(HEADER_FEAT_BITS));
3604                 }
3605
3606                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3607                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3608                         set_bit(HEADER_BUILD_ID, header->adds_features);
3609                 }
3610         }
3611
3612         memcpy(&ph->adds_features, &header->adds_features,
3613                sizeof(ph->adds_features));
3614
3615         ph->data_offset  = header->data.offset;
3616         ph->data_size    = header->data.size;
3617         ph->feat_offset  = header->data.offset + header->data.size;
3618         return 0;
3619 }
3620
3621 static int perf_file_section__process(struct perf_file_section *section,
3622                                       struct perf_header *ph,
3623                                       int feat, int fd, void *data)
3624 {
3625         struct feat_fd fdd = {
3626                 .fd     = fd,
3627                 .ph     = ph,
3628                 .size   = section->size,
3629                 .offset = section->offset,
3630         };
3631
3632         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3633                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3634                           "%d, continuing...\n", section->offset, feat);
3635                 return 0;
3636         }
3637
3638         if (feat >= HEADER_LAST_FEATURE) {
3639                 pr_debug("unknown feature %d, continuing...\n", feat);
3640                 return 0;
3641         }
3642
3643         if (!feat_ops[feat].process)
3644                 return 0;
3645
3646         return feat_ops[feat].process(&fdd, data);
3647 }
3648
3649 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3650                                        struct perf_header *ph, int fd,
3651                                        bool repipe)
3652 {
3653         struct feat_fd ff = {
3654                 .fd = STDOUT_FILENO,
3655                 .ph = ph,
3656         };
3657         ssize_t ret;
3658
3659         ret = readn(fd, header, sizeof(*header));
3660         if (ret <= 0)
3661                 return -1;
3662
3663         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3664                 pr_debug("endian/magic failed\n");
3665                 return -1;
3666         }
3667
3668         if (ph->needs_swap)
3669                 header->size = bswap_64(header->size);
3670
3671         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3672                 return -1;
3673
3674         return 0;
3675 }
3676
3677 static int perf_header__read_pipe(struct perf_session *session)
3678 {
3679         struct perf_header *header = &session->header;
3680         struct perf_pipe_file_header f_header;
3681
3682         if (perf_file_header__read_pipe(&f_header, header,
3683                                         perf_data__fd(session->data),
3684                                         session->repipe) < 0) {
3685                 pr_debug("incompatible file format\n");
3686                 return -EINVAL;
3687         }
3688
3689         return f_header.size == sizeof(f_header) ? 0 : -1;
3690 }
3691
3692 static int read_attr(int fd, struct perf_header *ph,
3693                      struct perf_file_attr *f_attr)
3694 {
3695         struct perf_event_attr *attr = &f_attr->attr;
3696         size_t sz, left;
3697         size_t our_sz = sizeof(f_attr->attr);
3698         ssize_t ret;
3699
3700         memset(f_attr, 0, sizeof(*f_attr));
3701
3702         /* read minimal guaranteed structure */
3703         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3704         if (ret <= 0) {
3705                 pr_debug("cannot read %d bytes of header attr\n",
3706                          PERF_ATTR_SIZE_VER0);
3707                 return -1;
3708         }
3709
3710         /* on file perf_event_attr size */
3711         sz = attr->size;
3712
3713         if (ph->needs_swap)
3714                 sz = bswap_32(sz);
3715
3716         if (sz == 0) {
3717                 /* assume ABI0 */
3718                 sz =  PERF_ATTR_SIZE_VER0;
3719         } else if (sz > our_sz) {
3720                 pr_debug("file uses a more recent and unsupported ABI"
3721                          " (%zu bytes extra)\n", sz - our_sz);
3722                 return -1;
3723         }
3724         /* what we have not yet read and that we know about */
3725         left = sz - PERF_ATTR_SIZE_VER0;
3726         if (left) {
3727                 void *ptr = attr;
3728                 ptr += PERF_ATTR_SIZE_VER0;
3729
3730                 ret = readn(fd, ptr, left);
3731         }
3732         /* read perf_file_section, ids are read in caller */
3733         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3734
3735         return ret <= 0 ? -1 : 0;
3736 }
3737
3738 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3739                                                 struct tep_handle *pevent)
3740 {
3741         struct tep_event *event;
3742         char bf[128];
3743
3744         /* already prepared */
3745         if (evsel->tp_format)
3746                 return 0;
3747
3748         if (pevent == NULL) {
3749                 pr_debug("broken or missing trace data\n");
3750                 return -1;
3751         }
3752
3753         event = tep_find_event(pevent, evsel->core.attr.config);
3754         if (event == NULL) {
3755                 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3756                 return -1;
3757         }
3758
3759         if (!evsel->name) {
3760                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3761                 evsel->name = strdup(bf);
3762                 if (evsel->name == NULL)
3763                         return -1;
3764         }
3765
3766         evsel->tp_format = event;
3767         return 0;
3768 }
3769
3770 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3771                                                   struct tep_handle *pevent)
3772 {
3773         struct evsel *pos;
3774
3775         evlist__for_each_entry(evlist, pos) {
3776                 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3777                     perf_evsel__prepare_tracepoint_event(pos, pevent))
3778                         return -1;
3779         }
3780
3781         return 0;
3782 }
3783
3784 int perf_session__read_header(struct perf_session *session)
3785 {
3786         struct perf_data *data = session->data;
3787         struct perf_header *header = &session->header;
3788         struct perf_file_header f_header;
3789         struct perf_file_attr   f_attr;
3790         u64                     f_id;
3791         int nr_attrs, nr_ids, i, j, err;
3792         int fd = perf_data__fd(data);
3793
3794         session->evlist = evlist__new();
3795         if (session->evlist == NULL)
3796                 return -ENOMEM;
3797
3798         session->evlist->env = &header->env;
3799         session->machines.host.env = &header->env;
3800
3801         /*
3802          * We can read 'pipe' data event from regular file,
3803          * check for the pipe header regardless of source.
3804          */
3805         err = perf_header__read_pipe(session);
3806         if (!err || (err && perf_data__is_pipe(data))) {
3807                 data->is_pipe = true;
3808                 return err;
3809         }
3810
3811         if (perf_file_header__read(&f_header, header, fd) < 0)
3812                 return -EINVAL;
3813
3814         /*
3815          * Sanity check that perf.data was written cleanly; data size is
3816          * initialized to 0 and updated only if the on_exit function is run.
3817          * If data size is still 0 then the file contains only partial
3818          * information.  Just warn user and process it as much as it can.
3819          */
3820         if (f_header.data.size == 0) {
3821                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3822                            "Was the 'perf record' command properly terminated?\n",
3823                            data->file.path);
3824         }
3825
3826         if (f_header.attr_size == 0) {
3827                 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3828                        "Was the 'perf record' command properly terminated?\n",
3829                        data->file.path);
3830                 return -EINVAL;
3831         }
3832
3833         nr_attrs = f_header.attrs.size / f_header.attr_size;
3834         lseek(fd, f_header.attrs.offset, SEEK_SET);
3835
3836         for (i = 0; i < nr_attrs; i++) {
3837                 struct evsel *evsel;
3838                 off_t tmp;
3839
3840                 if (read_attr(fd, header, &f_attr) < 0)
3841                         goto out_errno;
3842
3843                 if (header->needs_swap) {
3844                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
3845                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3846                         perf_event__attr_swap(&f_attr.attr);
3847                 }
3848
3849                 tmp = lseek(fd, 0, SEEK_CUR);
3850                 evsel = evsel__new(&f_attr.attr);
3851
3852                 if (evsel == NULL)
3853                         goto out_delete_evlist;
3854
3855                 evsel->needs_swap = header->needs_swap;
3856                 /*
3857                  * Do it before so that if perf_evsel__alloc_id fails, this
3858                  * entry gets purged too at evlist__delete().
3859                  */
3860                 evlist__add(session->evlist, evsel);
3861
3862                 nr_ids = f_attr.ids.size / sizeof(u64);
3863                 /*
3864                  * We don't have the cpu and thread maps on the header, so
3865                  * for allocating the perf_sample_id table we fake 1 cpu and
3866                  * hattr->ids threads.
3867                  */
3868                 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3869                         goto out_delete_evlist;
3870
3871                 lseek(fd, f_attr.ids.offset, SEEK_SET);
3872
3873                 for (j = 0; j < nr_ids; j++) {
3874                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3875                                 goto out_errno;
3876
3877                         perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3878                 }
3879
3880                 lseek(fd, tmp, SEEK_SET);
3881         }
3882
3883         perf_header__process_sections(header, fd, &session->tevent,
3884                                       perf_file_section__process);
3885
3886         if (perf_evlist__prepare_tracepoint_events(session->evlist,
3887                                                    session->tevent.pevent))
3888                 goto out_delete_evlist;
3889
3890         return 0;
3891 out_errno:
3892         return -errno;
3893
3894 out_delete_evlist:
3895         evlist__delete(session->evlist);
3896         session->evlist = NULL;
3897         return -ENOMEM;
3898 }
3899
3900 int perf_event__process_feature(struct perf_session *session,
3901                                 union perf_event *event)
3902 {
3903         struct perf_tool *tool = session->tool;
3904         struct feat_fd ff = { .fd = 0 };
3905         struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3906         int type = fe->header.type;
3907         u64 feat = fe->feat_id;
3908
3909         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3910                 pr_warning("invalid record type %d in pipe-mode\n", type);
3911                 return 0;
3912         }
3913         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3914                 pr_warning("invalid record type %d in pipe-mode\n", type);
3915                 return -1;
3916         }
3917
3918         if (!feat_ops[feat].process)
3919                 return 0;
3920
3921         ff.buf  = (void *)fe->data;
3922         ff.size = event->header.size - sizeof(*fe);
3923         ff.ph = &session->header;
3924
3925         if (feat_ops[feat].process(&ff, NULL))
3926                 return -1;
3927
3928         if (!feat_ops[feat].print || !tool->show_feat_hdr)
3929                 return 0;
3930
3931         if (!feat_ops[feat].full_only ||
3932             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3933                 feat_ops[feat].print(&ff, stdout);
3934         } else {
3935                 fprintf(stdout, "# %s info available, use -I to display\n",
3936                         feat_ops[feat].name);
3937         }
3938
3939         return 0;
3940 }
3941
3942 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3943 {
3944         struct perf_record_event_update *ev = &event->event_update;
3945         struct perf_record_event_update_scale *ev_scale;
3946         struct perf_record_event_update_cpus *ev_cpus;
3947         struct perf_cpu_map *map;
3948         size_t ret;
3949
3950         ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3951
3952         switch (ev->type) {
3953         case PERF_EVENT_UPDATE__SCALE:
3954                 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3955                 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3956                 break;
3957         case PERF_EVENT_UPDATE__UNIT:
3958                 ret += fprintf(fp, "... unit:  %s\n", ev->data);
3959                 break;
3960         case PERF_EVENT_UPDATE__NAME:
3961                 ret += fprintf(fp, "... name:  %s\n", ev->data);
3962                 break;
3963         case PERF_EVENT_UPDATE__CPUS:
3964                 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3965                 ret += fprintf(fp, "... ");
3966
3967                 map = cpu_map__new_data(&ev_cpus->cpus);
3968                 if (map)
3969                         ret += cpu_map__fprintf(map, fp);
3970                 else
3971                         ret += fprintf(fp, "failed to get cpus\n");
3972                 break;
3973         default:
3974                 ret += fprintf(fp, "... unknown type\n");
3975                 break;
3976         }
3977
3978         return ret;
3979 }
3980
3981 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3982                              union perf_event *event,
3983                              struct evlist **pevlist)
3984 {
3985         u32 i, ids, n_ids;
3986         struct evsel *evsel;
3987         struct evlist *evlist = *pevlist;
3988
3989         if (evlist == NULL) {
3990                 *pevlist = evlist = evlist__new();
3991                 if (evlist == NULL)
3992                         return -ENOMEM;
3993         }
3994
3995         evsel = evsel__new(&event->attr.attr);
3996         if (evsel == NULL)
3997                 return -ENOMEM;
3998
3999         evlist__add(evlist, evsel);
4000
4001         ids = event->header.size;
4002         ids -= (void *)&event->attr.id - (void *)event;
4003         n_ids = ids / sizeof(u64);
4004         /*
4005          * We don't have the cpu and thread maps on the header, so
4006          * for allocating the perf_sample_id table we fake 1 cpu and
4007          * hattr->ids threads.
4008          */
4009         if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4010                 return -ENOMEM;
4011
4012         for (i = 0; i < n_ids; i++) {
4013                 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4014         }
4015
4016         return 0;
4017 }
4018
4019 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4020                                      union perf_event *event,
4021                                      struct evlist **pevlist)
4022 {
4023         struct perf_record_event_update *ev = &event->event_update;
4024         struct perf_record_event_update_scale *ev_scale;
4025         struct perf_record_event_update_cpus *ev_cpus;
4026         struct evlist *evlist;
4027         struct evsel *evsel;
4028         struct perf_cpu_map *map;
4029
4030         if (!pevlist || *pevlist == NULL)
4031                 return -EINVAL;
4032
4033         evlist = *pevlist;
4034
4035         evsel = perf_evlist__id2evsel(evlist, ev->id);
4036         if (evsel == NULL)
4037                 return -EINVAL;
4038
4039         switch (ev->type) {
4040         case PERF_EVENT_UPDATE__UNIT:
4041                 evsel->unit = strdup(ev->data);
4042                 break;
4043         case PERF_EVENT_UPDATE__NAME:
4044                 evsel->name = strdup(ev->data);
4045                 break;
4046         case PERF_EVENT_UPDATE__SCALE:
4047                 ev_scale = (struct perf_record_event_update_scale *)ev->data;
4048                 evsel->scale = ev_scale->scale;
4049                 break;
4050         case PERF_EVENT_UPDATE__CPUS:
4051                 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4052
4053                 map = cpu_map__new_data(&ev_cpus->cpus);
4054                 if (map)
4055                         evsel->core.own_cpus = map;
4056                 else
4057                         pr_err("failed to get event_update cpus\n");
4058         default:
4059                 break;
4060         }
4061
4062         return 0;
4063 }
4064
4065 int perf_event__process_tracing_data(struct perf_session *session,
4066                                      union perf_event *event)
4067 {
4068         ssize_t size_read, padding, size = event->tracing_data.size;
4069         int fd = perf_data__fd(session->data);
4070         char buf[BUFSIZ];
4071
4072         /*
4073          * The pipe fd is already in proper place and in any case
4074          * we can't move it, and we'd screw the case where we read
4075          * 'pipe' data from regular file. The trace_report reads
4076          * data from 'fd' so we need to set it directly behind the
4077          * event, where the tracing data starts.
4078          */
4079         if (!perf_data__is_pipe(session->data)) {
4080                 off_t offset = lseek(fd, 0, SEEK_CUR);
4081
4082                 /* setup for reading amidst mmap */
4083                 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4084                       SEEK_SET);
4085         }
4086
4087         size_read = trace_report(fd, &session->tevent,
4088                                  session->repipe);
4089         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4090
4091         if (readn(fd, buf, padding) < 0) {
4092                 pr_err("%s: reading input file", __func__);
4093                 return -1;
4094         }
4095         if (session->repipe) {
4096                 int retw = write(STDOUT_FILENO, buf, padding);
4097                 if (retw <= 0 || retw != padding) {
4098                         pr_err("%s: repiping tracing data padding", __func__);
4099                         return -1;
4100                 }
4101         }
4102
4103         if (size_read + padding != size) {
4104                 pr_err("%s: tracing data size mismatch", __func__);
4105                 return -1;
4106         }
4107
4108         perf_evlist__prepare_tracepoint_events(session->evlist,
4109                                                session->tevent.pevent);
4110
4111         return size_read + padding;
4112 }
4113
4114 int perf_event__process_build_id(struct perf_session *session,
4115                                  union perf_event *event)
4116 {
4117         __event_process_build_id(&event->build_id,
4118                                  event->build_id.filename,
4119                                  session);
4120         return 0;
4121 }