Linux 6.0-rc1
[linux-2.6-microblaze.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #ifdef HAVE_LIBBPF_SUPPORT
23 #include <bpf/libbpf.h>
24 #endif
25 #include <perf/cpumap.h>
26
27 #include "dso.h"
28 #include "evlist.h"
29 #include "evsel.h"
30 #include "util/evsel_fprintf.h"
31 #include "header.h"
32 #include "memswap.h"
33 #include "trace-event.h"
34 #include "session.h"
35 #include "symbol.h"
36 #include "debug.h"
37 #include "cpumap.h"
38 #include "pmu.h"
39 #include "vdso.h"
40 #include "strbuf.h"
41 #include "build-id.h"
42 #include "data.h"
43 #include <api/fs/fs.h>
44 #include "asm/bug.h"
45 #include "tool.h"
46 #include "time-utils.h"
47 #include "units.h"
48 #include "util/util.h" // perf_exe()
49 #include "cputopo.h"
50 #include "bpf-event.h"
51 #include "bpf-utils.h"
52 #include "clockid.h"
53 #include "pmu-hybrid.h"
54
55 #include <linux/ctype.h>
56 #include <internal/lib.h>
57
58 /*
59  * magic2 = "PERFILE2"
60  * must be a numerical value to let the endianness
61  * determine the memory layout. That way we are able
62  * to detect endianness when reading the perf.data file
63  * back.
64  *
65  * we check for legacy (PERFFILE) format.
66  */
67 static const char *__perf_magic1 = "PERFFILE";
68 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
69 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
70
71 #define PERF_MAGIC      __perf_magic2
72
73 const char perf_version_string[] = PERF_VERSION;
74
75 struct perf_file_attr {
76         struct perf_event_attr  attr;
77         struct perf_file_section        ids;
78 };
79
80 void perf_header__set_feat(struct perf_header *header, int feat)
81 {
82         set_bit(feat, header->adds_features);
83 }
84
85 void perf_header__clear_feat(struct perf_header *header, int feat)
86 {
87         clear_bit(feat, header->adds_features);
88 }
89
90 bool perf_header__has_feat(const struct perf_header *header, int feat)
91 {
92         return test_bit(feat, header->adds_features);
93 }
94
95 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
96 {
97         ssize_t ret = writen(ff->fd, buf, size);
98
99         if (ret != (ssize_t)size)
100                 return ret < 0 ? (int)ret : -1;
101         return 0;
102 }
103
104 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
105 {
106         /* struct perf_event_header::size is u16 */
107         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
108         size_t new_size = ff->size;
109         void *addr;
110
111         if (size + ff->offset > max_size)
112                 return -E2BIG;
113
114         while (size > (new_size - ff->offset))
115                 new_size <<= 1;
116         new_size = min(max_size, new_size);
117
118         if (ff->size < new_size) {
119                 addr = realloc(ff->buf, new_size);
120                 if (!addr)
121                         return -ENOMEM;
122                 ff->buf = addr;
123                 ff->size = new_size;
124         }
125
126         memcpy(ff->buf + ff->offset, buf, size);
127         ff->offset += size;
128
129         return 0;
130 }
131
132 /* Return: 0 if succeeded, -ERR if failed. */
133 int do_write(struct feat_fd *ff, const void *buf, size_t size)
134 {
135         if (!ff->buf)
136                 return __do_write_fd(ff, buf, size);
137         return __do_write_buf(ff, buf, size);
138 }
139
140 /* Return: 0 if succeeded, -ERR if failed. */
141 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
142 {
143         u64 *p = (u64 *) set;
144         int i, ret;
145
146         ret = do_write(ff, &size, sizeof(size));
147         if (ret < 0)
148                 return ret;
149
150         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
151                 ret = do_write(ff, p + i, sizeof(*p));
152                 if (ret < 0)
153                         return ret;
154         }
155
156         return 0;
157 }
158
159 /* Return: 0 if succeeded, -ERR if failed. */
160 int write_padded(struct feat_fd *ff, const void *bf,
161                  size_t count, size_t count_aligned)
162 {
163         static const char zero_buf[NAME_ALIGN];
164         int err = do_write(ff, bf, count);
165
166         if (!err)
167                 err = do_write(ff, zero_buf, count_aligned - count);
168
169         return err;
170 }
171
172 #define string_size(str)                                                \
173         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
174
175 /* Return: 0 if succeeded, -ERR if failed. */
176 static int do_write_string(struct feat_fd *ff, const char *str)
177 {
178         u32 len, olen;
179         int ret;
180
181         olen = strlen(str) + 1;
182         len = PERF_ALIGN(olen, NAME_ALIGN);
183
184         /* write len, incl. \0 */
185         ret = do_write(ff, &len, sizeof(len));
186         if (ret < 0)
187                 return ret;
188
189         return write_padded(ff, str, olen, len);
190 }
191
192 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
193 {
194         ssize_t ret = readn(ff->fd, addr, size);
195
196         if (ret != size)
197                 return ret < 0 ? (int)ret : -1;
198         return 0;
199 }
200
201 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
202 {
203         if (size > (ssize_t)ff->size - ff->offset)
204                 return -1;
205
206         memcpy(addr, ff->buf + ff->offset, size);
207         ff->offset += size;
208
209         return 0;
210
211 }
212
213 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
214 {
215         if (!ff->buf)
216                 return __do_read_fd(ff, addr, size);
217         return __do_read_buf(ff, addr, size);
218 }
219
220 static int do_read_u32(struct feat_fd *ff, u32 *addr)
221 {
222         int ret;
223
224         ret = __do_read(ff, addr, sizeof(*addr));
225         if (ret)
226                 return ret;
227
228         if (ff->ph->needs_swap)
229                 *addr = bswap_32(*addr);
230         return 0;
231 }
232
233 static int do_read_u64(struct feat_fd *ff, u64 *addr)
234 {
235         int ret;
236
237         ret = __do_read(ff, addr, sizeof(*addr));
238         if (ret)
239                 return ret;
240
241         if (ff->ph->needs_swap)
242                 *addr = bswap_64(*addr);
243         return 0;
244 }
245
246 static char *do_read_string(struct feat_fd *ff)
247 {
248         u32 len;
249         char *buf;
250
251         if (do_read_u32(ff, &len))
252                 return NULL;
253
254         buf = malloc(len);
255         if (!buf)
256                 return NULL;
257
258         if (!__do_read(ff, buf, len)) {
259                 /*
260                  * strings are padded by zeroes
261                  * thus the actual strlen of buf
262                  * may be less than len
263                  */
264                 return buf;
265         }
266
267         free(buf);
268         return NULL;
269 }
270
271 /* Return: 0 if succeeded, -ERR if failed. */
272 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
273 {
274         unsigned long *set;
275         u64 size, *p;
276         int i, ret;
277
278         ret = do_read_u64(ff, &size);
279         if (ret)
280                 return ret;
281
282         set = bitmap_zalloc(size);
283         if (!set)
284                 return -ENOMEM;
285
286         p = (u64 *) set;
287
288         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
289                 ret = do_read_u64(ff, p + i);
290                 if (ret < 0) {
291                         free(set);
292                         return ret;
293                 }
294         }
295
296         *pset  = set;
297         *psize = size;
298         return 0;
299 }
300
301 static int write_tracing_data(struct feat_fd *ff,
302                               struct evlist *evlist)
303 {
304         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
305                 return -1;
306
307         return read_tracing_data(ff->fd, &evlist->core.entries);
308 }
309
310 static int write_build_id(struct feat_fd *ff,
311                           struct evlist *evlist __maybe_unused)
312 {
313         struct perf_session *session;
314         int err;
315
316         session = container_of(ff->ph, struct perf_session, header);
317
318         if (!perf_session__read_build_ids(session, true))
319                 return -1;
320
321         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
322                 return -1;
323
324         err = perf_session__write_buildid_table(session, ff);
325         if (err < 0) {
326                 pr_debug("failed to write buildid table\n");
327                 return err;
328         }
329         perf_session__cache_build_ids(session);
330
331         return 0;
332 }
333
334 static int write_hostname(struct feat_fd *ff,
335                           struct evlist *evlist __maybe_unused)
336 {
337         struct utsname uts;
338         int ret;
339
340         ret = uname(&uts);
341         if (ret < 0)
342                 return -1;
343
344         return do_write_string(ff, uts.nodename);
345 }
346
347 static int write_osrelease(struct feat_fd *ff,
348                            struct evlist *evlist __maybe_unused)
349 {
350         struct utsname uts;
351         int ret;
352
353         ret = uname(&uts);
354         if (ret < 0)
355                 return -1;
356
357         return do_write_string(ff, uts.release);
358 }
359
360 static int write_arch(struct feat_fd *ff,
361                       struct evlist *evlist __maybe_unused)
362 {
363         struct utsname uts;
364         int ret;
365
366         ret = uname(&uts);
367         if (ret < 0)
368                 return -1;
369
370         return do_write_string(ff, uts.machine);
371 }
372
373 static int write_version(struct feat_fd *ff,
374                          struct evlist *evlist __maybe_unused)
375 {
376         return do_write_string(ff, perf_version_string);
377 }
378
379 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
380 {
381         FILE *file;
382         char *buf = NULL;
383         char *s, *p;
384         const char *search = cpuinfo_proc;
385         size_t len = 0;
386         int ret = -1;
387
388         if (!search)
389                 return -1;
390
391         file = fopen("/proc/cpuinfo", "r");
392         if (!file)
393                 return -1;
394
395         while (getline(&buf, &len, file) > 0) {
396                 ret = strncmp(buf, search, strlen(search));
397                 if (!ret)
398                         break;
399         }
400
401         if (ret) {
402                 ret = -1;
403                 goto done;
404         }
405
406         s = buf;
407
408         p = strchr(buf, ':');
409         if (p && *(p+1) == ' ' && *(p+2))
410                 s = p + 2;
411         p = strchr(s, '\n');
412         if (p)
413                 *p = '\0';
414
415         /* squash extra space characters (branding string) */
416         p = s;
417         while (*p) {
418                 if (isspace(*p)) {
419                         char *r = p + 1;
420                         char *q = skip_spaces(r);
421                         *p = ' ';
422                         if (q != (p+1))
423                                 while ((*r++ = *q++));
424                 }
425                 p++;
426         }
427         ret = do_write_string(ff, s);
428 done:
429         free(buf);
430         fclose(file);
431         return ret;
432 }
433
434 static int write_cpudesc(struct feat_fd *ff,
435                        struct evlist *evlist __maybe_unused)
436 {
437 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
438 #define CPUINFO_PROC    { "cpu", }
439 #elif defined(__s390__)
440 #define CPUINFO_PROC    { "vendor_id", }
441 #elif defined(__sh__)
442 #define CPUINFO_PROC    { "cpu type", }
443 #elif defined(__alpha__) || defined(__mips__)
444 #define CPUINFO_PROC    { "cpu model", }
445 #elif defined(__arm__)
446 #define CPUINFO_PROC    { "model name", "Processor", }
447 #elif defined(__arc__)
448 #define CPUINFO_PROC    { "Processor", }
449 #elif defined(__xtensa__)
450 #define CPUINFO_PROC    { "core ID", }
451 #else
452 #define CPUINFO_PROC    { "model name", }
453 #endif
454         const char *cpuinfo_procs[] = CPUINFO_PROC;
455 #undef CPUINFO_PROC
456         unsigned int i;
457
458         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
459                 int ret;
460                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
461                 if (ret >= 0)
462                         return ret;
463         }
464         return -1;
465 }
466
467
468 static int write_nrcpus(struct feat_fd *ff,
469                         struct evlist *evlist __maybe_unused)
470 {
471         long nr;
472         u32 nrc, nra;
473         int ret;
474
475         nrc = cpu__max_present_cpu().cpu;
476
477         nr = sysconf(_SC_NPROCESSORS_ONLN);
478         if (nr < 0)
479                 return -1;
480
481         nra = (u32)(nr & UINT_MAX);
482
483         ret = do_write(ff, &nrc, sizeof(nrc));
484         if (ret < 0)
485                 return ret;
486
487         return do_write(ff, &nra, sizeof(nra));
488 }
489
490 static int write_event_desc(struct feat_fd *ff,
491                             struct evlist *evlist)
492 {
493         struct evsel *evsel;
494         u32 nre, nri, sz;
495         int ret;
496
497         nre = evlist->core.nr_entries;
498
499         /*
500          * write number of events
501          */
502         ret = do_write(ff, &nre, sizeof(nre));
503         if (ret < 0)
504                 return ret;
505
506         /*
507          * size of perf_event_attr struct
508          */
509         sz = (u32)sizeof(evsel->core.attr);
510         ret = do_write(ff, &sz, sizeof(sz));
511         if (ret < 0)
512                 return ret;
513
514         evlist__for_each_entry(evlist, evsel) {
515                 ret = do_write(ff, &evsel->core.attr, sz);
516                 if (ret < 0)
517                         return ret;
518                 /*
519                  * write number of unique id per event
520                  * there is one id per instance of an event
521                  *
522                  * copy into an nri to be independent of the
523                  * type of ids,
524                  */
525                 nri = evsel->core.ids;
526                 ret = do_write(ff, &nri, sizeof(nri));
527                 if (ret < 0)
528                         return ret;
529
530                 /*
531                  * write event string as passed on cmdline
532                  */
533                 ret = do_write_string(ff, evsel__name(evsel));
534                 if (ret < 0)
535                         return ret;
536                 /*
537                  * write unique ids for this event
538                  */
539                 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
540                 if (ret < 0)
541                         return ret;
542         }
543         return 0;
544 }
545
546 static int write_cmdline(struct feat_fd *ff,
547                          struct evlist *evlist __maybe_unused)
548 {
549         char pbuf[MAXPATHLEN], *buf;
550         int i, ret, n;
551
552         /* actual path to perf binary */
553         buf = perf_exe(pbuf, MAXPATHLEN);
554
555         /* account for binary path */
556         n = perf_env.nr_cmdline + 1;
557
558         ret = do_write(ff, &n, sizeof(n));
559         if (ret < 0)
560                 return ret;
561
562         ret = do_write_string(ff, buf);
563         if (ret < 0)
564                 return ret;
565
566         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
567                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
568                 if (ret < 0)
569                         return ret;
570         }
571         return 0;
572 }
573
574
575 static int write_cpu_topology(struct feat_fd *ff,
576                               struct evlist *evlist __maybe_unused)
577 {
578         struct cpu_topology *tp;
579         u32 i;
580         int ret, j;
581
582         tp = cpu_topology__new();
583         if (!tp)
584                 return -1;
585
586         ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
587         if (ret < 0)
588                 goto done;
589
590         for (i = 0; i < tp->package_cpus_lists; i++) {
591                 ret = do_write_string(ff, tp->package_cpus_list[i]);
592                 if (ret < 0)
593                         goto done;
594         }
595         ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
596         if (ret < 0)
597                 goto done;
598
599         for (i = 0; i < tp->core_cpus_lists; i++) {
600                 ret = do_write_string(ff, tp->core_cpus_list[i]);
601                 if (ret < 0)
602                         break;
603         }
604
605         ret = perf_env__read_cpu_topology_map(&perf_env);
606         if (ret < 0)
607                 goto done;
608
609         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
610                 ret = do_write(ff, &perf_env.cpu[j].core_id,
611                                sizeof(perf_env.cpu[j].core_id));
612                 if (ret < 0)
613                         return ret;
614                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
615                                sizeof(perf_env.cpu[j].socket_id));
616                 if (ret < 0)
617                         return ret;
618         }
619
620         if (!tp->die_cpus_lists)
621                 goto done;
622
623         ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
624         if (ret < 0)
625                 goto done;
626
627         for (i = 0; i < tp->die_cpus_lists; i++) {
628                 ret = do_write_string(ff, tp->die_cpus_list[i]);
629                 if (ret < 0)
630                         goto done;
631         }
632
633         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
634                 ret = do_write(ff, &perf_env.cpu[j].die_id,
635                                sizeof(perf_env.cpu[j].die_id));
636                 if (ret < 0)
637                         return ret;
638         }
639
640 done:
641         cpu_topology__delete(tp);
642         return ret;
643 }
644
645
646
647 static int write_total_mem(struct feat_fd *ff,
648                            struct evlist *evlist __maybe_unused)
649 {
650         char *buf = NULL;
651         FILE *fp;
652         size_t len = 0;
653         int ret = -1, n;
654         uint64_t mem;
655
656         fp = fopen("/proc/meminfo", "r");
657         if (!fp)
658                 return -1;
659
660         while (getline(&buf, &len, fp) > 0) {
661                 ret = strncmp(buf, "MemTotal:", 9);
662                 if (!ret)
663                         break;
664         }
665         if (!ret) {
666                 n = sscanf(buf, "%*s %"PRIu64, &mem);
667                 if (n == 1)
668                         ret = do_write(ff, &mem, sizeof(mem));
669         } else
670                 ret = -1;
671         free(buf);
672         fclose(fp);
673         return ret;
674 }
675
676 static int write_numa_topology(struct feat_fd *ff,
677                                struct evlist *evlist __maybe_unused)
678 {
679         struct numa_topology *tp;
680         int ret = -1;
681         u32 i;
682
683         tp = numa_topology__new();
684         if (!tp)
685                 return -ENOMEM;
686
687         ret = do_write(ff, &tp->nr, sizeof(u32));
688         if (ret < 0)
689                 goto err;
690
691         for (i = 0; i < tp->nr; i++) {
692                 struct numa_topology_node *n = &tp->nodes[i];
693
694                 ret = do_write(ff, &n->node, sizeof(u32));
695                 if (ret < 0)
696                         goto err;
697
698                 ret = do_write(ff, &n->mem_total, sizeof(u64));
699                 if (ret)
700                         goto err;
701
702                 ret = do_write(ff, &n->mem_free, sizeof(u64));
703                 if (ret)
704                         goto err;
705
706                 ret = do_write_string(ff, n->cpus);
707                 if (ret < 0)
708                         goto err;
709         }
710
711         ret = 0;
712
713 err:
714         numa_topology__delete(tp);
715         return ret;
716 }
717
718 /*
719  * File format:
720  *
721  * struct pmu_mappings {
722  *      u32     pmu_num;
723  *      struct pmu_map {
724  *              u32     type;
725  *              char    name[];
726  *      }[pmu_num];
727  * };
728  */
729
730 static int write_pmu_mappings(struct feat_fd *ff,
731                               struct evlist *evlist __maybe_unused)
732 {
733         struct perf_pmu *pmu = NULL;
734         u32 pmu_num = 0;
735         int ret;
736
737         /*
738          * Do a first pass to count number of pmu to avoid lseek so this
739          * works in pipe mode as well.
740          */
741         while ((pmu = perf_pmu__scan(pmu))) {
742                 if (!pmu->name)
743                         continue;
744                 pmu_num++;
745         }
746
747         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
748         if (ret < 0)
749                 return ret;
750
751         while ((pmu = perf_pmu__scan(pmu))) {
752                 if (!pmu->name)
753                         continue;
754
755                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
756                 if (ret < 0)
757                         return ret;
758
759                 ret = do_write_string(ff, pmu->name);
760                 if (ret < 0)
761                         return ret;
762         }
763
764         return 0;
765 }
766
767 /*
768  * File format:
769  *
770  * struct group_descs {
771  *      u32     nr_groups;
772  *      struct group_desc {
773  *              char    name[];
774  *              u32     leader_idx;
775  *              u32     nr_members;
776  *      }[nr_groups];
777  * };
778  */
779 static int write_group_desc(struct feat_fd *ff,
780                             struct evlist *evlist)
781 {
782         u32 nr_groups = evlist->core.nr_groups;
783         struct evsel *evsel;
784         int ret;
785
786         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
787         if (ret < 0)
788                 return ret;
789
790         evlist__for_each_entry(evlist, evsel) {
791                 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
792                         const char *name = evsel->group_name ?: "{anon_group}";
793                         u32 leader_idx = evsel->core.idx;
794                         u32 nr_members = evsel->core.nr_members;
795
796                         ret = do_write_string(ff, name);
797                         if (ret < 0)
798                                 return ret;
799
800                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
801                         if (ret < 0)
802                                 return ret;
803
804                         ret = do_write(ff, &nr_members, sizeof(nr_members));
805                         if (ret < 0)
806                                 return ret;
807                 }
808         }
809         return 0;
810 }
811
812 /*
813  * Return the CPU id as a raw string.
814  *
815  * Each architecture should provide a more precise id string that
816  * can be use to match the architecture's "mapfile".
817  */
818 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
819 {
820         return NULL;
821 }
822
823 /* Return zero when the cpuid from the mapfile.csv matches the
824  * cpuid string generated on this platform.
825  * Otherwise return non-zero.
826  */
827 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
828 {
829         regex_t re;
830         regmatch_t pmatch[1];
831         int match;
832
833         if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
834                 /* Warn unable to generate match particular string. */
835                 pr_info("Invalid regular expression %s\n", mapcpuid);
836                 return 1;
837         }
838
839         match = !regexec(&re, cpuid, 1, pmatch, 0);
840         regfree(&re);
841         if (match) {
842                 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
843
844                 /* Verify the entire string matched. */
845                 if (match_len == strlen(cpuid))
846                         return 0;
847         }
848         return 1;
849 }
850
851 /*
852  * default get_cpuid(): nothing gets recorded
853  * actual implementation must be in arch/$(SRCARCH)/util/header.c
854  */
855 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
856 {
857         return ENOSYS; /* Not implemented */
858 }
859
860 static int write_cpuid(struct feat_fd *ff,
861                        struct evlist *evlist __maybe_unused)
862 {
863         char buffer[64];
864         int ret;
865
866         ret = get_cpuid(buffer, sizeof(buffer));
867         if (ret)
868                 return -1;
869
870         return do_write_string(ff, buffer);
871 }
872
873 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
874                               struct evlist *evlist __maybe_unused)
875 {
876         return 0;
877 }
878
879 static int write_auxtrace(struct feat_fd *ff,
880                           struct evlist *evlist __maybe_unused)
881 {
882         struct perf_session *session;
883         int err;
884
885         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
886                 return -1;
887
888         session = container_of(ff->ph, struct perf_session, header);
889
890         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
891         if (err < 0)
892                 pr_err("Failed to write auxtrace index\n");
893         return err;
894 }
895
896 static int write_clockid(struct feat_fd *ff,
897                          struct evlist *evlist __maybe_unused)
898 {
899         return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
900                         sizeof(ff->ph->env.clock.clockid_res_ns));
901 }
902
903 static int write_clock_data(struct feat_fd *ff,
904                             struct evlist *evlist __maybe_unused)
905 {
906         u64 *data64;
907         u32 data32;
908         int ret;
909
910         /* version */
911         data32 = 1;
912
913         ret = do_write(ff, &data32, sizeof(data32));
914         if (ret < 0)
915                 return ret;
916
917         /* clockid */
918         data32 = ff->ph->env.clock.clockid;
919
920         ret = do_write(ff, &data32, sizeof(data32));
921         if (ret < 0)
922                 return ret;
923
924         /* TOD ref time */
925         data64 = &ff->ph->env.clock.tod_ns;
926
927         ret = do_write(ff, data64, sizeof(*data64));
928         if (ret < 0)
929                 return ret;
930
931         /* clockid ref time */
932         data64 = &ff->ph->env.clock.clockid_ns;
933
934         return do_write(ff, data64, sizeof(*data64));
935 }
936
937 static int write_hybrid_topology(struct feat_fd *ff,
938                                  struct evlist *evlist __maybe_unused)
939 {
940         struct hybrid_topology *tp;
941         int ret;
942         u32 i;
943
944         tp = hybrid_topology__new();
945         if (!tp)
946                 return -ENOENT;
947
948         ret = do_write(ff, &tp->nr, sizeof(u32));
949         if (ret < 0)
950                 goto err;
951
952         for (i = 0; i < tp->nr; i++) {
953                 struct hybrid_topology_node *n = &tp->nodes[i];
954
955                 ret = do_write_string(ff, n->pmu_name);
956                 if (ret < 0)
957                         goto err;
958
959                 ret = do_write_string(ff, n->cpus);
960                 if (ret < 0)
961                         goto err;
962         }
963
964         ret = 0;
965
966 err:
967         hybrid_topology__delete(tp);
968         return ret;
969 }
970
971 static int write_dir_format(struct feat_fd *ff,
972                             struct evlist *evlist __maybe_unused)
973 {
974         struct perf_session *session;
975         struct perf_data *data;
976
977         session = container_of(ff->ph, struct perf_session, header);
978         data = session->data;
979
980         if (WARN_ON(!perf_data__is_dir(data)))
981                 return -1;
982
983         return do_write(ff, &data->dir.version, sizeof(data->dir.version));
984 }
985
986 /*
987  * Check whether a CPU is online
988  *
989  * Returns:
990  *     1 -> if CPU is online
991  *     0 -> if CPU is offline
992  *    -1 -> error case
993  */
994 int is_cpu_online(unsigned int cpu)
995 {
996         char *str;
997         size_t strlen;
998         char buf[256];
999         int status = -1;
1000         struct stat statbuf;
1001
1002         snprintf(buf, sizeof(buf),
1003                 "/sys/devices/system/cpu/cpu%d", cpu);
1004         if (stat(buf, &statbuf) != 0)
1005                 return 0;
1006
1007         /*
1008          * Check if /sys/devices/system/cpu/cpux/online file
1009          * exists. Some cases cpu0 won't have online file since
1010          * it is not expected to be turned off generally.
1011          * In kernels without CONFIG_HOTPLUG_CPU, this
1012          * file won't exist
1013          */
1014         snprintf(buf, sizeof(buf),
1015                 "/sys/devices/system/cpu/cpu%d/online", cpu);
1016         if (stat(buf, &statbuf) != 0)
1017                 return 1;
1018
1019         /*
1020          * Read online file using sysfs__read_str.
1021          * If read or open fails, return -1.
1022          * If read succeeds, return value from file
1023          * which gets stored in "str"
1024          */
1025         snprintf(buf, sizeof(buf),
1026                 "devices/system/cpu/cpu%d/online", cpu);
1027
1028         if (sysfs__read_str(buf, &str, &strlen) < 0)
1029                 return status;
1030
1031         status = atoi(str);
1032
1033         free(str);
1034         return status;
1035 }
1036
1037 #ifdef HAVE_LIBBPF_SUPPORT
1038 static int write_bpf_prog_info(struct feat_fd *ff,
1039                                struct evlist *evlist __maybe_unused)
1040 {
1041         struct perf_env *env = &ff->ph->env;
1042         struct rb_root *root;
1043         struct rb_node *next;
1044         int ret;
1045
1046         down_read(&env->bpf_progs.lock);
1047
1048         ret = do_write(ff, &env->bpf_progs.infos_cnt,
1049                        sizeof(env->bpf_progs.infos_cnt));
1050         if (ret < 0)
1051                 goto out;
1052
1053         root = &env->bpf_progs.infos;
1054         next = rb_first(root);
1055         while (next) {
1056                 struct bpf_prog_info_node *node;
1057                 size_t len;
1058
1059                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1060                 next = rb_next(&node->rb_node);
1061                 len = sizeof(struct perf_bpil) +
1062                         node->info_linear->data_len;
1063
1064                 /* before writing to file, translate address to offset */
1065                 bpil_addr_to_offs(node->info_linear);
1066                 ret = do_write(ff, node->info_linear, len);
1067                 /*
1068                  * translate back to address even when do_write() fails,
1069                  * so that this function never changes the data.
1070                  */
1071                 bpil_offs_to_addr(node->info_linear);
1072                 if (ret < 0)
1073                         goto out;
1074         }
1075 out:
1076         up_read(&env->bpf_progs.lock);
1077         return ret;
1078 }
1079
1080 static int write_bpf_btf(struct feat_fd *ff,
1081                          struct evlist *evlist __maybe_unused)
1082 {
1083         struct perf_env *env = &ff->ph->env;
1084         struct rb_root *root;
1085         struct rb_node *next;
1086         int ret;
1087
1088         down_read(&env->bpf_progs.lock);
1089
1090         ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1091                        sizeof(env->bpf_progs.btfs_cnt));
1092
1093         if (ret < 0)
1094                 goto out;
1095
1096         root = &env->bpf_progs.btfs;
1097         next = rb_first(root);
1098         while (next) {
1099                 struct btf_node *node;
1100
1101                 node = rb_entry(next, struct btf_node, rb_node);
1102                 next = rb_next(&node->rb_node);
1103                 ret = do_write(ff, &node->id,
1104                                sizeof(u32) * 2 + node->data_size);
1105                 if (ret < 0)
1106                         goto out;
1107         }
1108 out:
1109         up_read(&env->bpf_progs.lock);
1110         return ret;
1111 }
1112 #endif // HAVE_LIBBPF_SUPPORT
1113
1114 static int cpu_cache_level__sort(const void *a, const void *b)
1115 {
1116         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1117         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1118
1119         return cache_a->level - cache_b->level;
1120 }
1121
1122 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1123 {
1124         if (a->level != b->level)
1125                 return false;
1126
1127         if (a->line_size != b->line_size)
1128                 return false;
1129
1130         if (a->sets != b->sets)
1131                 return false;
1132
1133         if (a->ways != b->ways)
1134                 return false;
1135
1136         if (strcmp(a->type, b->type))
1137                 return false;
1138
1139         if (strcmp(a->size, b->size))
1140                 return false;
1141
1142         if (strcmp(a->map, b->map))
1143                 return false;
1144
1145         return true;
1146 }
1147
1148 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1149 {
1150         char path[PATH_MAX], file[PATH_MAX];
1151         struct stat st;
1152         size_t len;
1153
1154         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1155         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1156
1157         if (stat(file, &st))
1158                 return 1;
1159
1160         scnprintf(file, PATH_MAX, "%s/level", path);
1161         if (sysfs__read_int(file, (int *) &cache->level))
1162                 return -1;
1163
1164         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1165         if (sysfs__read_int(file, (int *) &cache->line_size))
1166                 return -1;
1167
1168         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1169         if (sysfs__read_int(file, (int *) &cache->sets))
1170                 return -1;
1171
1172         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1173         if (sysfs__read_int(file, (int *) &cache->ways))
1174                 return -1;
1175
1176         scnprintf(file, PATH_MAX, "%s/type", path);
1177         if (sysfs__read_str(file, &cache->type, &len))
1178                 return -1;
1179
1180         cache->type[len] = 0;
1181         cache->type = strim(cache->type);
1182
1183         scnprintf(file, PATH_MAX, "%s/size", path);
1184         if (sysfs__read_str(file, &cache->size, &len)) {
1185                 zfree(&cache->type);
1186                 return -1;
1187         }
1188
1189         cache->size[len] = 0;
1190         cache->size = strim(cache->size);
1191
1192         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1193         if (sysfs__read_str(file, &cache->map, &len)) {
1194                 zfree(&cache->size);
1195                 zfree(&cache->type);
1196                 return -1;
1197         }
1198
1199         cache->map[len] = 0;
1200         cache->map = strim(cache->map);
1201         return 0;
1202 }
1203
1204 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1205 {
1206         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1207 }
1208
1209 #define MAX_CACHE_LVL 4
1210
1211 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1212 {
1213         u32 i, cnt = 0;
1214         u32 nr, cpu;
1215         u16 level;
1216
1217         nr = cpu__max_cpu().cpu;
1218
1219         for (cpu = 0; cpu < nr; cpu++) {
1220                 for (level = 0; level < MAX_CACHE_LVL; level++) {
1221                         struct cpu_cache_level c;
1222                         int err;
1223
1224                         err = cpu_cache_level__read(&c, cpu, level);
1225                         if (err < 0)
1226                                 return err;
1227
1228                         if (err == 1)
1229                                 break;
1230
1231                         for (i = 0; i < cnt; i++) {
1232                                 if (cpu_cache_level__cmp(&c, &caches[i]))
1233                                         break;
1234                         }
1235
1236                         if (i == cnt)
1237                                 caches[cnt++] = c;
1238                         else
1239                                 cpu_cache_level__free(&c);
1240                 }
1241         }
1242         *cntp = cnt;
1243         return 0;
1244 }
1245
1246 static int write_cache(struct feat_fd *ff,
1247                        struct evlist *evlist __maybe_unused)
1248 {
1249         u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1250         struct cpu_cache_level caches[max_caches];
1251         u32 cnt = 0, i, version = 1;
1252         int ret;
1253
1254         ret = build_caches(caches, &cnt);
1255         if (ret)
1256                 goto out;
1257
1258         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1259
1260         ret = do_write(ff, &version, sizeof(u32));
1261         if (ret < 0)
1262                 goto out;
1263
1264         ret = do_write(ff, &cnt, sizeof(u32));
1265         if (ret < 0)
1266                 goto out;
1267
1268         for (i = 0; i < cnt; i++) {
1269                 struct cpu_cache_level *c = &caches[i];
1270
1271                 #define _W(v)                                   \
1272                         ret = do_write(ff, &c->v, sizeof(u32)); \
1273                         if (ret < 0)                            \
1274                                 goto out;
1275
1276                 _W(level)
1277                 _W(line_size)
1278                 _W(sets)
1279                 _W(ways)
1280                 #undef _W
1281
1282                 #define _W(v)                                           \
1283                         ret = do_write_string(ff, (const char *) c->v); \
1284                         if (ret < 0)                                    \
1285                                 goto out;
1286
1287                 _W(type)
1288                 _W(size)
1289                 _W(map)
1290                 #undef _W
1291         }
1292
1293 out:
1294         for (i = 0; i < cnt; i++)
1295                 cpu_cache_level__free(&caches[i]);
1296         return ret;
1297 }
1298
1299 static int write_stat(struct feat_fd *ff __maybe_unused,
1300                       struct evlist *evlist __maybe_unused)
1301 {
1302         return 0;
1303 }
1304
1305 static int write_sample_time(struct feat_fd *ff,
1306                              struct evlist *evlist)
1307 {
1308         int ret;
1309
1310         ret = do_write(ff, &evlist->first_sample_time,
1311                        sizeof(evlist->first_sample_time));
1312         if (ret < 0)
1313                 return ret;
1314
1315         return do_write(ff, &evlist->last_sample_time,
1316                         sizeof(evlist->last_sample_time));
1317 }
1318
1319
1320 static int memory_node__read(struct memory_node *n, unsigned long idx)
1321 {
1322         unsigned int phys, size = 0;
1323         char path[PATH_MAX];
1324         struct dirent *ent;
1325         DIR *dir;
1326
1327 #define for_each_memory(mem, dir)                                       \
1328         while ((ent = readdir(dir)))                                    \
1329                 if (strcmp(ent->d_name, ".") &&                         \
1330                     strcmp(ent->d_name, "..") &&                        \
1331                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1332
1333         scnprintf(path, PATH_MAX,
1334                   "%s/devices/system/node/node%lu",
1335                   sysfs__mountpoint(), idx);
1336
1337         dir = opendir(path);
1338         if (!dir) {
1339                 pr_warning("failed: can't open memory sysfs data\n");
1340                 return -1;
1341         }
1342
1343         for_each_memory(phys, dir) {
1344                 size = max(phys, size);
1345         }
1346
1347         size++;
1348
1349         n->set = bitmap_zalloc(size);
1350         if (!n->set) {
1351                 closedir(dir);
1352                 return -ENOMEM;
1353         }
1354
1355         n->node = idx;
1356         n->size = size;
1357
1358         rewinddir(dir);
1359
1360         for_each_memory(phys, dir) {
1361                 set_bit(phys, n->set);
1362         }
1363
1364         closedir(dir);
1365         return 0;
1366 }
1367
1368 static int memory_node__sort(const void *a, const void *b)
1369 {
1370         const struct memory_node *na = a;
1371         const struct memory_node *nb = b;
1372
1373         return na->node - nb->node;
1374 }
1375
1376 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1377 {
1378         char path[PATH_MAX];
1379         struct dirent *ent;
1380         DIR *dir;
1381         u64 cnt = 0;
1382         int ret = 0;
1383
1384         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1385                   sysfs__mountpoint());
1386
1387         dir = opendir(path);
1388         if (!dir) {
1389                 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1390                           __func__, path);
1391                 return -1;
1392         }
1393
1394         while (!ret && (ent = readdir(dir))) {
1395                 unsigned int idx;
1396                 int r;
1397
1398                 if (!strcmp(ent->d_name, ".") ||
1399                     !strcmp(ent->d_name, ".."))
1400                         continue;
1401
1402                 r = sscanf(ent->d_name, "node%u", &idx);
1403                 if (r != 1)
1404                         continue;
1405
1406                 if (WARN_ONCE(cnt >= size,
1407                         "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1408                         closedir(dir);
1409                         return -1;
1410                 }
1411
1412                 ret = memory_node__read(&nodes[cnt++], idx);
1413         }
1414
1415         *cntp = cnt;
1416         closedir(dir);
1417
1418         if (!ret)
1419                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1420
1421         return ret;
1422 }
1423
1424 #define MAX_MEMORY_NODES 2000
1425
1426 /*
1427  * The MEM_TOPOLOGY holds physical memory map for every
1428  * node in system. The format of data is as follows:
1429  *
1430  *  0 - version          | for future changes
1431  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1432  * 16 - count            | number of nodes
1433  *
1434  * For each node we store map of physical indexes for
1435  * each node:
1436  *
1437  * 32 - node id          | node index
1438  * 40 - size             | size of bitmap
1439  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1440  */
1441 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1442                               struct evlist *evlist __maybe_unused)
1443 {
1444         static struct memory_node nodes[MAX_MEMORY_NODES];
1445         u64 bsize, version = 1, i, nr;
1446         int ret;
1447
1448         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1449                               (unsigned long long *) &bsize);
1450         if (ret)
1451                 return ret;
1452
1453         ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1454         if (ret)
1455                 return ret;
1456
1457         ret = do_write(ff, &version, sizeof(version));
1458         if (ret < 0)
1459                 goto out;
1460
1461         ret = do_write(ff, &bsize, sizeof(bsize));
1462         if (ret < 0)
1463                 goto out;
1464
1465         ret = do_write(ff, &nr, sizeof(nr));
1466         if (ret < 0)
1467                 goto out;
1468
1469         for (i = 0; i < nr; i++) {
1470                 struct memory_node *n = &nodes[i];
1471
1472                 #define _W(v)                                           \
1473                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1474                         if (ret < 0)                                    \
1475                                 goto out;
1476
1477                 _W(node)
1478                 _W(size)
1479
1480                 #undef _W
1481
1482                 ret = do_write_bitmap(ff, n->set, n->size);
1483                 if (ret < 0)
1484                         goto out;
1485         }
1486
1487 out:
1488         return ret;
1489 }
1490
1491 static int write_compressed(struct feat_fd *ff __maybe_unused,
1492                             struct evlist *evlist __maybe_unused)
1493 {
1494         int ret;
1495
1496         ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1497         if (ret)
1498                 return ret;
1499
1500         ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1501         if (ret)
1502                 return ret;
1503
1504         ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1505         if (ret)
1506                 return ret;
1507
1508         ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1509         if (ret)
1510                 return ret;
1511
1512         return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1513 }
1514
1515 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1516                             bool write_pmu)
1517 {
1518         struct perf_pmu_caps *caps = NULL;
1519         int ret;
1520
1521         ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1522         if (ret < 0)
1523                 return ret;
1524
1525         list_for_each_entry(caps, &pmu->caps, list) {
1526                 ret = do_write_string(ff, caps->name);
1527                 if (ret < 0)
1528                         return ret;
1529
1530                 ret = do_write_string(ff, caps->value);
1531                 if (ret < 0)
1532                         return ret;
1533         }
1534
1535         if (write_pmu) {
1536                 ret = do_write_string(ff, pmu->name);
1537                 if (ret < 0)
1538                         return ret;
1539         }
1540
1541         return ret;
1542 }
1543
1544 static int write_cpu_pmu_caps(struct feat_fd *ff,
1545                               struct evlist *evlist __maybe_unused)
1546 {
1547         struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1548         int ret;
1549
1550         if (!cpu_pmu)
1551                 return -ENOENT;
1552
1553         ret = perf_pmu__caps_parse(cpu_pmu);
1554         if (ret < 0)
1555                 return ret;
1556
1557         return __write_pmu_caps(ff, cpu_pmu, false);
1558 }
1559
1560 static int write_pmu_caps(struct feat_fd *ff,
1561                           struct evlist *evlist __maybe_unused)
1562 {
1563         struct perf_pmu *pmu = NULL;
1564         int nr_pmu = 0;
1565         int ret;
1566
1567         while ((pmu = perf_pmu__scan(pmu))) {
1568                 if (!pmu->name || !strcmp(pmu->name, "cpu") ||
1569                     perf_pmu__caps_parse(pmu) <= 0)
1570                         continue;
1571                 nr_pmu++;
1572         }
1573
1574         ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1575         if (ret < 0)
1576                 return ret;
1577
1578         if (!nr_pmu)
1579                 return 0;
1580
1581         /*
1582          * Write hybrid pmu caps first to maintain compatibility with
1583          * older perf tool.
1584          */
1585         pmu = NULL;
1586         perf_pmu__for_each_hybrid_pmu(pmu) {
1587                 ret = __write_pmu_caps(ff, pmu, true);
1588                 if (ret < 0)
1589                         return ret;
1590         }
1591
1592         pmu = NULL;
1593         while ((pmu = perf_pmu__scan(pmu))) {
1594                 if (!pmu->name || !strcmp(pmu->name, "cpu") ||
1595                     !pmu->nr_caps || perf_pmu__is_hybrid(pmu->name))
1596                         continue;
1597
1598                 ret = __write_pmu_caps(ff, pmu, true);
1599                 if (ret < 0)
1600                         return ret;
1601         }
1602         return 0;
1603 }
1604
1605 static void print_hostname(struct feat_fd *ff, FILE *fp)
1606 {
1607         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1608 }
1609
1610 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1611 {
1612         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1613 }
1614
1615 static void print_arch(struct feat_fd *ff, FILE *fp)
1616 {
1617         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1618 }
1619
1620 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1621 {
1622         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1623 }
1624
1625 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1626 {
1627         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1628         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1629 }
1630
1631 static void print_version(struct feat_fd *ff, FILE *fp)
1632 {
1633         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1634 }
1635
1636 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1637 {
1638         int nr, i;
1639
1640         nr = ff->ph->env.nr_cmdline;
1641
1642         fprintf(fp, "# cmdline : ");
1643
1644         for (i = 0; i < nr; i++) {
1645                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1646                 if (!argv_i) {
1647                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1648                 } else {
1649                         char *mem = argv_i;
1650                         do {
1651                                 char *quote = strchr(argv_i, '\'');
1652                                 if (!quote)
1653                                         break;
1654                                 *quote++ = '\0';
1655                                 fprintf(fp, "%s\\\'", argv_i);
1656                                 argv_i = quote;
1657                         } while (1);
1658                         fprintf(fp, "%s ", argv_i);
1659                         free(mem);
1660                 }
1661         }
1662         fputc('\n', fp);
1663 }
1664
1665 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1666 {
1667         struct perf_header *ph = ff->ph;
1668         int cpu_nr = ph->env.nr_cpus_avail;
1669         int nr, i;
1670         char *str;
1671
1672         nr = ph->env.nr_sibling_cores;
1673         str = ph->env.sibling_cores;
1674
1675         for (i = 0; i < nr; i++) {
1676                 fprintf(fp, "# sibling sockets : %s\n", str);
1677                 str += strlen(str) + 1;
1678         }
1679
1680         if (ph->env.nr_sibling_dies) {
1681                 nr = ph->env.nr_sibling_dies;
1682                 str = ph->env.sibling_dies;
1683
1684                 for (i = 0; i < nr; i++) {
1685                         fprintf(fp, "# sibling dies    : %s\n", str);
1686                         str += strlen(str) + 1;
1687                 }
1688         }
1689
1690         nr = ph->env.nr_sibling_threads;
1691         str = ph->env.sibling_threads;
1692
1693         for (i = 0; i < nr; i++) {
1694                 fprintf(fp, "# sibling threads : %s\n", str);
1695                 str += strlen(str) + 1;
1696         }
1697
1698         if (ph->env.nr_sibling_dies) {
1699                 if (ph->env.cpu != NULL) {
1700                         for (i = 0; i < cpu_nr; i++)
1701                                 fprintf(fp, "# CPU %d: Core ID %d, "
1702                                             "Die ID %d, Socket ID %d\n",
1703                                             i, ph->env.cpu[i].core_id,
1704                                             ph->env.cpu[i].die_id,
1705                                             ph->env.cpu[i].socket_id);
1706                 } else
1707                         fprintf(fp, "# Core ID, Die ID and Socket ID "
1708                                     "information is not available\n");
1709         } else {
1710                 if (ph->env.cpu != NULL) {
1711                         for (i = 0; i < cpu_nr; i++)
1712                                 fprintf(fp, "# CPU %d: Core ID %d, "
1713                                             "Socket ID %d\n",
1714                                             i, ph->env.cpu[i].core_id,
1715                                             ph->env.cpu[i].socket_id);
1716                 } else
1717                         fprintf(fp, "# Core ID and Socket ID "
1718                                     "information is not available\n");
1719         }
1720 }
1721
1722 static void print_clockid(struct feat_fd *ff, FILE *fp)
1723 {
1724         fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1725                 ff->ph->env.clock.clockid_res_ns * 1000);
1726 }
1727
1728 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1729 {
1730         struct timespec clockid_ns;
1731         char tstr[64], date[64];
1732         struct timeval tod_ns;
1733         clockid_t clockid;
1734         struct tm ltime;
1735         u64 ref;
1736
1737         if (!ff->ph->env.clock.enabled) {
1738                 fprintf(fp, "# reference time disabled\n");
1739                 return;
1740         }
1741
1742         /* Compute TOD time. */
1743         ref = ff->ph->env.clock.tod_ns;
1744         tod_ns.tv_sec = ref / NSEC_PER_SEC;
1745         ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1746         tod_ns.tv_usec = ref / NSEC_PER_USEC;
1747
1748         /* Compute clockid time. */
1749         ref = ff->ph->env.clock.clockid_ns;
1750         clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1751         ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1752         clockid_ns.tv_nsec = ref;
1753
1754         clockid = ff->ph->env.clock.clockid;
1755
1756         if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1757                 snprintf(tstr, sizeof(tstr), "<error>");
1758         else {
1759                 strftime(date, sizeof(date), "%F %T", &ltime);
1760                 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1761                           date, (int) tod_ns.tv_usec);
1762         }
1763
1764         fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1765         fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1766                     tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1767                     (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1768                     clockid_name(clockid));
1769 }
1770
1771 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1772 {
1773         int i;
1774         struct hybrid_node *n;
1775
1776         fprintf(fp, "# hybrid cpu system:\n");
1777         for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1778                 n = &ff->ph->env.hybrid_nodes[i];
1779                 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1780         }
1781 }
1782
1783 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1784 {
1785         struct perf_session *session;
1786         struct perf_data *data;
1787
1788         session = container_of(ff->ph, struct perf_session, header);
1789         data = session->data;
1790
1791         fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1792 }
1793
1794 #ifdef HAVE_LIBBPF_SUPPORT
1795 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1796 {
1797         struct perf_env *env = &ff->ph->env;
1798         struct rb_root *root;
1799         struct rb_node *next;
1800
1801         down_read(&env->bpf_progs.lock);
1802
1803         root = &env->bpf_progs.infos;
1804         next = rb_first(root);
1805
1806         while (next) {
1807                 struct bpf_prog_info_node *node;
1808
1809                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1810                 next = rb_next(&node->rb_node);
1811
1812                 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1813                                                env, fp);
1814         }
1815
1816         up_read(&env->bpf_progs.lock);
1817 }
1818
1819 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1820 {
1821         struct perf_env *env = &ff->ph->env;
1822         struct rb_root *root;
1823         struct rb_node *next;
1824
1825         down_read(&env->bpf_progs.lock);
1826
1827         root = &env->bpf_progs.btfs;
1828         next = rb_first(root);
1829
1830         while (next) {
1831                 struct btf_node *node;
1832
1833                 node = rb_entry(next, struct btf_node, rb_node);
1834                 next = rb_next(&node->rb_node);
1835                 fprintf(fp, "# btf info of id %u\n", node->id);
1836         }
1837
1838         up_read(&env->bpf_progs.lock);
1839 }
1840 #endif // HAVE_LIBBPF_SUPPORT
1841
1842 static void free_event_desc(struct evsel *events)
1843 {
1844         struct evsel *evsel;
1845
1846         if (!events)
1847                 return;
1848
1849         for (evsel = events; evsel->core.attr.size; evsel++) {
1850                 zfree(&evsel->name);
1851                 zfree(&evsel->core.id);
1852         }
1853
1854         free(events);
1855 }
1856
1857 static bool perf_attr_check(struct perf_event_attr *attr)
1858 {
1859         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1860                 pr_warning("Reserved bits are set unexpectedly. "
1861                            "Please update perf tool.\n");
1862                 return false;
1863         }
1864
1865         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1866                 pr_warning("Unknown sample type (0x%llx) is detected. "
1867                            "Please update perf tool.\n",
1868                            attr->sample_type);
1869                 return false;
1870         }
1871
1872         if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1873                 pr_warning("Unknown read format (0x%llx) is detected. "
1874                            "Please update perf tool.\n",
1875                            attr->read_format);
1876                 return false;
1877         }
1878
1879         if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1880             (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1881                 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1882                            "Please update perf tool.\n",
1883                            attr->branch_sample_type);
1884
1885                 return false;
1886         }
1887
1888         return true;
1889 }
1890
1891 static struct evsel *read_event_desc(struct feat_fd *ff)
1892 {
1893         struct evsel *evsel, *events = NULL;
1894         u64 *id;
1895         void *buf = NULL;
1896         u32 nre, sz, nr, i, j;
1897         size_t msz;
1898
1899         /* number of events */
1900         if (do_read_u32(ff, &nre))
1901                 goto error;
1902
1903         if (do_read_u32(ff, &sz))
1904                 goto error;
1905
1906         /* buffer to hold on file attr struct */
1907         buf = malloc(sz);
1908         if (!buf)
1909                 goto error;
1910
1911         /* the last event terminates with evsel->core.attr.size == 0: */
1912         events = calloc(nre + 1, sizeof(*events));
1913         if (!events)
1914                 goto error;
1915
1916         msz = sizeof(evsel->core.attr);
1917         if (sz < msz)
1918                 msz = sz;
1919
1920         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1921                 evsel->core.idx = i;
1922
1923                 /*
1924                  * must read entire on-file attr struct to
1925                  * sync up with layout.
1926                  */
1927                 if (__do_read(ff, buf, sz))
1928                         goto error;
1929
1930                 if (ff->ph->needs_swap)
1931                         perf_event__attr_swap(buf);
1932
1933                 memcpy(&evsel->core.attr, buf, msz);
1934
1935                 if (!perf_attr_check(&evsel->core.attr))
1936                         goto error;
1937
1938                 if (do_read_u32(ff, &nr))
1939                         goto error;
1940
1941                 if (ff->ph->needs_swap)
1942                         evsel->needs_swap = true;
1943
1944                 evsel->name = do_read_string(ff);
1945                 if (!evsel->name)
1946                         goto error;
1947
1948                 if (!nr)
1949                         continue;
1950
1951                 id = calloc(nr, sizeof(*id));
1952                 if (!id)
1953                         goto error;
1954                 evsel->core.ids = nr;
1955                 evsel->core.id = id;
1956
1957                 for (j = 0 ; j < nr; j++) {
1958                         if (do_read_u64(ff, id))
1959                                 goto error;
1960                         id++;
1961                 }
1962         }
1963 out:
1964         free(buf);
1965         return events;
1966 error:
1967         free_event_desc(events);
1968         events = NULL;
1969         goto out;
1970 }
1971
1972 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1973                                 void *priv __maybe_unused)
1974 {
1975         return fprintf(fp, ", %s = %s", name, val);
1976 }
1977
1978 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1979 {
1980         struct evsel *evsel, *events;
1981         u32 j;
1982         u64 *id;
1983
1984         if (ff->events)
1985                 events = ff->events;
1986         else
1987                 events = read_event_desc(ff);
1988
1989         if (!events) {
1990                 fprintf(fp, "# event desc: not available or unable to read\n");
1991                 return;
1992         }
1993
1994         for (evsel = events; evsel->core.attr.size; evsel++) {
1995                 fprintf(fp, "# event : name = %s, ", evsel->name);
1996
1997                 if (evsel->core.ids) {
1998                         fprintf(fp, ", id = {");
1999                         for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2000                                 if (j)
2001                                         fputc(',', fp);
2002                                 fprintf(fp, " %"PRIu64, *id);
2003                         }
2004                         fprintf(fp, " }");
2005                 }
2006
2007                 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2008
2009                 fputc('\n', fp);
2010         }
2011
2012         free_event_desc(events);
2013         ff->events = NULL;
2014 }
2015
2016 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2017 {
2018         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2019 }
2020
2021 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2022 {
2023         int i;
2024         struct numa_node *n;
2025
2026         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2027                 n = &ff->ph->env.numa_nodes[i];
2028
2029                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2030                             " free = %"PRIu64" kB\n",
2031                         n->node, n->mem_total, n->mem_free);
2032
2033                 fprintf(fp, "# node%u cpu list : ", n->node);
2034                 cpu_map__fprintf(n->map, fp);
2035         }
2036 }
2037
2038 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2039 {
2040         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2041 }
2042
2043 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2044 {
2045         fprintf(fp, "# contains samples with branch stack\n");
2046 }
2047
2048 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2049 {
2050         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2051 }
2052
2053 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2054 {
2055         fprintf(fp, "# contains stat data\n");
2056 }
2057
2058 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2059 {
2060         int i;
2061
2062         fprintf(fp, "# CPU cache info:\n");
2063         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2064                 fprintf(fp, "#  ");
2065                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2066         }
2067 }
2068
2069 static void print_compressed(struct feat_fd *ff, FILE *fp)
2070 {
2071         fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2072                 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2073                 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2074 }
2075
2076 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2077 {
2078         const char *delimiter = "";
2079         int i;
2080
2081         if (!nr_caps) {
2082                 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2083                 return;
2084         }
2085
2086         fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2087         for (i = 0; i < nr_caps; i++) {
2088                 fprintf(fp, "%s%s", delimiter, caps[i]);
2089                 delimiter = ", ";
2090         }
2091
2092         fprintf(fp, "\n");
2093 }
2094
2095 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2096 {
2097         __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2098                          ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2099 }
2100
2101 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2102 {
2103         struct pmu_caps *pmu_caps;
2104
2105         for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2106                 pmu_caps = &ff->ph->env.pmu_caps[i];
2107                 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2108                                  pmu_caps->pmu_name);
2109         }
2110 }
2111
2112 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2113 {
2114         const char *delimiter = "# pmu mappings: ";
2115         char *str, *tmp;
2116         u32 pmu_num;
2117         u32 type;
2118
2119         pmu_num = ff->ph->env.nr_pmu_mappings;
2120         if (!pmu_num) {
2121                 fprintf(fp, "# pmu mappings: not available\n");
2122                 return;
2123         }
2124
2125         str = ff->ph->env.pmu_mappings;
2126
2127         while (pmu_num) {
2128                 type = strtoul(str, &tmp, 0);
2129                 if (*tmp != ':')
2130                         goto error;
2131
2132                 str = tmp + 1;
2133                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2134
2135                 delimiter = ", ";
2136                 str += strlen(str) + 1;
2137                 pmu_num--;
2138         }
2139
2140         fprintf(fp, "\n");
2141
2142         if (!pmu_num)
2143                 return;
2144 error:
2145         fprintf(fp, "# pmu mappings: unable to read\n");
2146 }
2147
2148 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2149 {
2150         struct perf_session *session;
2151         struct evsel *evsel;
2152         u32 nr = 0;
2153
2154         session = container_of(ff->ph, struct perf_session, header);
2155
2156         evlist__for_each_entry(session->evlist, evsel) {
2157                 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2158                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2159
2160                         nr = evsel->core.nr_members - 1;
2161                 } else if (nr) {
2162                         fprintf(fp, ",%s", evsel__name(evsel));
2163
2164                         if (--nr == 0)
2165                                 fprintf(fp, "}\n");
2166                 }
2167         }
2168 }
2169
2170 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2171 {
2172         struct perf_session *session;
2173         char time_buf[32];
2174         double d;
2175
2176         session = container_of(ff->ph, struct perf_session, header);
2177
2178         timestamp__scnprintf_usec(session->evlist->first_sample_time,
2179                                   time_buf, sizeof(time_buf));
2180         fprintf(fp, "# time of first sample : %s\n", time_buf);
2181
2182         timestamp__scnprintf_usec(session->evlist->last_sample_time,
2183                                   time_buf, sizeof(time_buf));
2184         fprintf(fp, "# time of last sample : %s\n", time_buf);
2185
2186         d = (double)(session->evlist->last_sample_time -
2187                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2188
2189         fprintf(fp, "# sample duration : %10.3f ms\n", d);
2190 }
2191
2192 static void memory_node__fprintf(struct memory_node *n,
2193                                  unsigned long long bsize, FILE *fp)
2194 {
2195         char buf_map[100], buf_size[50];
2196         unsigned long long size;
2197
2198         size = bsize * bitmap_weight(n->set, n->size);
2199         unit_number__scnprintf(buf_size, 50, size);
2200
2201         bitmap_scnprintf(n->set, n->size, buf_map, 100);
2202         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2203 }
2204
2205 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2206 {
2207         struct memory_node *nodes;
2208         int i, nr;
2209
2210         nodes = ff->ph->env.memory_nodes;
2211         nr    = ff->ph->env.nr_memory_nodes;
2212
2213         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2214                 nr, ff->ph->env.memory_bsize);
2215
2216         for (i = 0; i < nr; i++) {
2217                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2218         }
2219 }
2220
2221 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2222                                     char *filename,
2223                                     struct perf_session *session)
2224 {
2225         int err = -1;
2226         struct machine *machine;
2227         u16 cpumode;
2228         struct dso *dso;
2229         enum dso_space_type dso_space;
2230
2231         machine = perf_session__findnew_machine(session, bev->pid);
2232         if (!machine)
2233                 goto out;
2234
2235         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2236
2237         switch (cpumode) {
2238         case PERF_RECORD_MISC_KERNEL:
2239                 dso_space = DSO_SPACE__KERNEL;
2240                 break;
2241         case PERF_RECORD_MISC_GUEST_KERNEL:
2242                 dso_space = DSO_SPACE__KERNEL_GUEST;
2243                 break;
2244         case PERF_RECORD_MISC_USER:
2245         case PERF_RECORD_MISC_GUEST_USER:
2246                 dso_space = DSO_SPACE__USER;
2247                 break;
2248         default:
2249                 goto out;
2250         }
2251
2252         dso = machine__findnew_dso(machine, filename);
2253         if (dso != NULL) {
2254                 char sbuild_id[SBUILD_ID_SIZE];
2255                 struct build_id bid;
2256                 size_t size = BUILD_ID_SIZE;
2257
2258                 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2259                         size = bev->size;
2260
2261                 build_id__init(&bid, bev->data, size);
2262                 dso__set_build_id(dso, &bid);
2263                 dso->header_build_id = 1;
2264
2265                 if (dso_space != DSO_SPACE__USER) {
2266                         struct kmod_path m = { .name = NULL, };
2267
2268                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
2269                                 dso__set_module_info(dso, &m, machine);
2270
2271                         dso->kernel = dso_space;
2272                         free(m.name);
2273                 }
2274
2275                 build_id__sprintf(&dso->bid, sbuild_id);
2276                 pr_debug("build id event received for %s: %s [%zu]\n",
2277                          dso->long_name, sbuild_id, size);
2278                 dso__put(dso);
2279         }
2280
2281         err = 0;
2282 out:
2283         return err;
2284 }
2285
2286 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2287                                                  int input, u64 offset, u64 size)
2288 {
2289         struct perf_session *session = container_of(header, struct perf_session, header);
2290         struct {
2291                 struct perf_event_header   header;
2292                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2293                 char                       filename[0];
2294         } old_bev;
2295         struct perf_record_header_build_id bev;
2296         char filename[PATH_MAX];
2297         u64 limit = offset + size;
2298
2299         while (offset < limit) {
2300                 ssize_t len;
2301
2302                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2303                         return -1;
2304
2305                 if (header->needs_swap)
2306                         perf_event_header__bswap(&old_bev.header);
2307
2308                 len = old_bev.header.size - sizeof(old_bev);
2309                 if (readn(input, filename, len) != len)
2310                         return -1;
2311
2312                 bev.header = old_bev.header;
2313
2314                 /*
2315                  * As the pid is the missing value, we need to fill
2316                  * it properly. The header.misc value give us nice hint.
2317                  */
2318                 bev.pid = HOST_KERNEL_ID;
2319                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2320                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2321                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
2322
2323                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2324                 __event_process_build_id(&bev, filename, session);
2325
2326                 offset += bev.header.size;
2327         }
2328
2329         return 0;
2330 }
2331
2332 static int perf_header__read_build_ids(struct perf_header *header,
2333                                        int input, u64 offset, u64 size)
2334 {
2335         struct perf_session *session = container_of(header, struct perf_session, header);
2336         struct perf_record_header_build_id bev;
2337         char filename[PATH_MAX];
2338         u64 limit = offset + size, orig_offset = offset;
2339         int err = -1;
2340
2341         while (offset < limit) {
2342                 ssize_t len;
2343
2344                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2345                         goto out;
2346
2347                 if (header->needs_swap)
2348                         perf_event_header__bswap(&bev.header);
2349
2350                 len = bev.header.size - sizeof(bev);
2351                 if (readn(input, filename, len) != len)
2352                         goto out;
2353                 /*
2354                  * The a1645ce1 changeset:
2355                  *
2356                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
2357                  *
2358                  * Added a field to struct perf_record_header_build_id that broke the file
2359                  * format.
2360                  *
2361                  * Since the kernel build-id is the first entry, process the
2362                  * table using the old format if the well known
2363                  * '[kernel.kallsyms]' string for the kernel build-id has the
2364                  * first 4 characters chopped off (where the pid_t sits).
2365                  */
2366                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2367                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2368                                 return -1;
2369                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2370                 }
2371
2372                 __event_process_build_id(&bev, filename, session);
2373
2374                 offset += bev.header.size;
2375         }
2376         err = 0;
2377 out:
2378         return err;
2379 }
2380
2381 /* Macro for features that simply need to read and store a string. */
2382 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2383 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2384 {\
2385         free(ff->ph->env.__feat_env);                \
2386         ff->ph->env.__feat_env = do_read_string(ff); \
2387         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2388 }
2389
2390 FEAT_PROCESS_STR_FUN(hostname, hostname);
2391 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2392 FEAT_PROCESS_STR_FUN(version, version);
2393 FEAT_PROCESS_STR_FUN(arch, arch);
2394 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2395 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2396
2397 static int process_tracing_data(struct feat_fd *ff, void *data)
2398 {
2399         ssize_t ret = trace_report(ff->fd, data, false);
2400
2401         return ret < 0 ? -1 : 0;
2402 }
2403
2404 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2405 {
2406         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2407                 pr_debug("Failed to read buildids, continuing...\n");
2408         return 0;
2409 }
2410
2411 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2412 {
2413         int ret;
2414         u32 nr_cpus_avail, nr_cpus_online;
2415
2416         ret = do_read_u32(ff, &nr_cpus_avail);
2417         if (ret)
2418                 return ret;
2419
2420         ret = do_read_u32(ff, &nr_cpus_online);
2421         if (ret)
2422                 return ret;
2423         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2424         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2425         return 0;
2426 }
2427
2428 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2429 {
2430         u64 total_mem;
2431         int ret;
2432
2433         ret = do_read_u64(ff, &total_mem);
2434         if (ret)
2435                 return -1;
2436         ff->ph->env.total_mem = (unsigned long long)total_mem;
2437         return 0;
2438 }
2439
2440 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2441 {
2442         struct evsel *evsel;
2443
2444         evlist__for_each_entry(evlist, evsel) {
2445                 if (evsel->core.idx == idx)
2446                         return evsel;
2447         }
2448
2449         return NULL;
2450 }
2451
2452 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2453 {
2454         struct evsel *evsel;
2455
2456         if (!event->name)
2457                 return;
2458
2459         evsel = evlist__find_by_index(evlist, event->core.idx);
2460         if (!evsel)
2461                 return;
2462
2463         if (evsel->name)
2464                 return;
2465
2466         evsel->name = strdup(event->name);
2467 }
2468
2469 static int
2470 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2471 {
2472         struct perf_session *session;
2473         struct evsel *evsel, *events = read_event_desc(ff);
2474
2475         if (!events)
2476                 return 0;
2477
2478         session = container_of(ff->ph, struct perf_session, header);
2479
2480         if (session->data->is_pipe) {
2481                 /* Save events for reading later by print_event_desc,
2482                  * since they can't be read again in pipe mode. */
2483                 ff->events = events;
2484         }
2485
2486         for (evsel = events; evsel->core.attr.size; evsel++)
2487                 evlist__set_event_name(session->evlist, evsel);
2488
2489         if (!session->data->is_pipe)
2490                 free_event_desc(events);
2491
2492         return 0;
2493 }
2494
2495 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2496 {
2497         char *str, *cmdline = NULL, **argv = NULL;
2498         u32 nr, i, len = 0;
2499
2500         if (do_read_u32(ff, &nr))
2501                 return -1;
2502
2503         ff->ph->env.nr_cmdline = nr;
2504
2505         cmdline = zalloc(ff->size + nr + 1);
2506         if (!cmdline)
2507                 return -1;
2508
2509         argv = zalloc(sizeof(char *) * (nr + 1));
2510         if (!argv)
2511                 goto error;
2512
2513         for (i = 0; i < nr; i++) {
2514                 str = do_read_string(ff);
2515                 if (!str)
2516                         goto error;
2517
2518                 argv[i] = cmdline + len;
2519                 memcpy(argv[i], str, strlen(str) + 1);
2520                 len += strlen(str) + 1;
2521                 free(str);
2522         }
2523         ff->ph->env.cmdline = cmdline;
2524         ff->ph->env.cmdline_argv = (const char **) argv;
2525         return 0;
2526
2527 error:
2528         free(argv);
2529         free(cmdline);
2530         return -1;
2531 }
2532
2533 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2534 {
2535         u32 nr, i;
2536         char *str;
2537         struct strbuf sb;
2538         int cpu_nr = ff->ph->env.nr_cpus_avail;
2539         u64 size = 0;
2540         struct perf_header *ph = ff->ph;
2541         bool do_core_id_test = true;
2542
2543         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2544         if (!ph->env.cpu)
2545                 return -1;
2546
2547         if (do_read_u32(ff, &nr))
2548                 goto free_cpu;
2549
2550         ph->env.nr_sibling_cores = nr;
2551         size += sizeof(u32);
2552         if (strbuf_init(&sb, 128) < 0)
2553                 goto free_cpu;
2554
2555         for (i = 0; i < nr; i++) {
2556                 str = do_read_string(ff);
2557                 if (!str)
2558                         goto error;
2559
2560                 /* include a NULL character at the end */
2561                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2562                         goto error;
2563                 size += string_size(str);
2564                 free(str);
2565         }
2566         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2567
2568         if (do_read_u32(ff, &nr))
2569                 return -1;
2570
2571         ph->env.nr_sibling_threads = nr;
2572         size += sizeof(u32);
2573
2574         for (i = 0; i < nr; i++) {
2575                 str = do_read_string(ff);
2576                 if (!str)
2577                         goto error;
2578
2579                 /* include a NULL character at the end */
2580                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2581                         goto error;
2582                 size += string_size(str);
2583                 free(str);
2584         }
2585         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2586
2587         /*
2588          * The header may be from old perf,
2589          * which doesn't include core id and socket id information.
2590          */
2591         if (ff->size <= size) {
2592                 zfree(&ph->env.cpu);
2593                 return 0;
2594         }
2595
2596         /* On s390 the socket_id number is not related to the numbers of cpus.
2597          * The socket_id number might be higher than the numbers of cpus.
2598          * This depends on the configuration.
2599          * AArch64 is the same.
2600          */
2601         if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2602                           || !strncmp(ph->env.arch, "aarch64", 7)))
2603                 do_core_id_test = false;
2604
2605         for (i = 0; i < (u32)cpu_nr; i++) {
2606                 if (do_read_u32(ff, &nr))
2607                         goto free_cpu;
2608
2609                 ph->env.cpu[i].core_id = nr;
2610                 size += sizeof(u32);
2611
2612                 if (do_read_u32(ff, &nr))
2613                         goto free_cpu;
2614
2615                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2616                         pr_debug("socket_id number is too big."
2617                                  "You may need to upgrade the perf tool.\n");
2618                         goto free_cpu;
2619                 }
2620
2621                 ph->env.cpu[i].socket_id = nr;
2622                 size += sizeof(u32);
2623         }
2624
2625         /*
2626          * The header may be from old perf,
2627          * which doesn't include die information.
2628          */
2629         if (ff->size <= size)
2630                 return 0;
2631
2632         if (do_read_u32(ff, &nr))
2633                 return -1;
2634
2635         ph->env.nr_sibling_dies = nr;
2636         size += sizeof(u32);
2637
2638         for (i = 0; i < nr; i++) {
2639                 str = do_read_string(ff);
2640                 if (!str)
2641                         goto error;
2642
2643                 /* include a NULL character at the end */
2644                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2645                         goto error;
2646                 size += string_size(str);
2647                 free(str);
2648         }
2649         ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2650
2651         for (i = 0; i < (u32)cpu_nr; i++) {
2652                 if (do_read_u32(ff, &nr))
2653                         goto free_cpu;
2654
2655                 ph->env.cpu[i].die_id = nr;
2656         }
2657
2658         return 0;
2659
2660 error:
2661         strbuf_release(&sb);
2662 free_cpu:
2663         zfree(&ph->env.cpu);
2664         return -1;
2665 }
2666
2667 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2668 {
2669         struct numa_node *nodes, *n;
2670         u32 nr, i;
2671         char *str;
2672
2673         /* nr nodes */
2674         if (do_read_u32(ff, &nr))
2675                 return -1;
2676
2677         nodes = zalloc(sizeof(*nodes) * nr);
2678         if (!nodes)
2679                 return -ENOMEM;
2680
2681         for (i = 0; i < nr; i++) {
2682                 n = &nodes[i];
2683
2684                 /* node number */
2685                 if (do_read_u32(ff, &n->node))
2686                         goto error;
2687
2688                 if (do_read_u64(ff, &n->mem_total))
2689                         goto error;
2690
2691                 if (do_read_u64(ff, &n->mem_free))
2692                         goto error;
2693
2694                 str = do_read_string(ff);
2695                 if (!str)
2696                         goto error;
2697
2698                 n->map = perf_cpu_map__new(str);
2699                 if (!n->map)
2700                         goto error;
2701
2702                 free(str);
2703         }
2704         ff->ph->env.nr_numa_nodes = nr;
2705         ff->ph->env.numa_nodes = nodes;
2706         return 0;
2707
2708 error:
2709         free(nodes);
2710         return -1;
2711 }
2712
2713 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2714 {
2715         char *name;
2716         u32 pmu_num;
2717         u32 type;
2718         struct strbuf sb;
2719
2720         if (do_read_u32(ff, &pmu_num))
2721                 return -1;
2722
2723         if (!pmu_num) {
2724                 pr_debug("pmu mappings not available\n");
2725                 return 0;
2726         }
2727
2728         ff->ph->env.nr_pmu_mappings = pmu_num;
2729         if (strbuf_init(&sb, 128) < 0)
2730                 return -1;
2731
2732         while (pmu_num) {
2733                 if (do_read_u32(ff, &type))
2734                         goto error;
2735
2736                 name = do_read_string(ff);
2737                 if (!name)
2738                         goto error;
2739
2740                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2741                         goto error;
2742                 /* include a NULL character at the end */
2743                 if (strbuf_add(&sb, "", 1) < 0)
2744                         goto error;
2745
2746                 if (!strcmp(name, "msr"))
2747                         ff->ph->env.msr_pmu_type = type;
2748
2749                 free(name);
2750                 pmu_num--;
2751         }
2752         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2753         return 0;
2754
2755 error:
2756         strbuf_release(&sb);
2757         return -1;
2758 }
2759
2760 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2761 {
2762         size_t ret = -1;
2763         u32 i, nr, nr_groups;
2764         struct perf_session *session;
2765         struct evsel *evsel, *leader = NULL;
2766         struct group_desc {
2767                 char *name;
2768                 u32 leader_idx;
2769                 u32 nr_members;
2770         } *desc;
2771
2772         if (do_read_u32(ff, &nr_groups))
2773                 return -1;
2774
2775         ff->ph->env.nr_groups = nr_groups;
2776         if (!nr_groups) {
2777                 pr_debug("group desc not available\n");
2778                 return 0;
2779         }
2780
2781         desc = calloc(nr_groups, sizeof(*desc));
2782         if (!desc)
2783                 return -1;
2784
2785         for (i = 0; i < nr_groups; i++) {
2786                 desc[i].name = do_read_string(ff);
2787                 if (!desc[i].name)
2788                         goto out_free;
2789
2790                 if (do_read_u32(ff, &desc[i].leader_idx))
2791                         goto out_free;
2792
2793                 if (do_read_u32(ff, &desc[i].nr_members))
2794                         goto out_free;
2795         }
2796
2797         /*
2798          * Rebuild group relationship based on the group_desc
2799          */
2800         session = container_of(ff->ph, struct perf_session, header);
2801         session->evlist->core.nr_groups = nr_groups;
2802
2803         i = nr = 0;
2804         evlist__for_each_entry(session->evlist, evsel) {
2805                 if (evsel->core.idx == (int) desc[i].leader_idx) {
2806                         evsel__set_leader(evsel, evsel);
2807                         /* {anon_group} is a dummy name */
2808                         if (strcmp(desc[i].name, "{anon_group}")) {
2809                                 evsel->group_name = desc[i].name;
2810                                 desc[i].name = NULL;
2811                         }
2812                         evsel->core.nr_members = desc[i].nr_members;
2813
2814                         if (i >= nr_groups || nr > 0) {
2815                                 pr_debug("invalid group desc\n");
2816                                 goto out_free;
2817                         }
2818
2819                         leader = evsel;
2820                         nr = evsel->core.nr_members - 1;
2821                         i++;
2822                 } else if (nr) {
2823                         /* This is a group member */
2824                         evsel__set_leader(evsel, leader);
2825
2826                         nr--;
2827                 }
2828         }
2829
2830         if (i != nr_groups || nr != 0) {
2831                 pr_debug("invalid group desc\n");
2832                 goto out_free;
2833         }
2834
2835         ret = 0;
2836 out_free:
2837         for (i = 0; i < nr_groups; i++)
2838                 zfree(&desc[i].name);
2839         free(desc);
2840
2841         return ret;
2842 }
2843
2844 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2845 {
2846         struct perf_session *session;
2847         int err;
2848
2849         session = container_of(ff->ph, struct perf_session, header);
2850
2851         err = auxtrace_index__process(ff->fd, ff->size, session,
2852                                       ff->ph->needs_swap);
2853         if (err < 0)
2854                 pr_err("Failed to process auxtrace index\n");
2855         return err;
2856 }
2857
2858 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2859 {
2860         struct cpu_cache_level *caches;
2861         u32 cnt, i, version;
2862
2863         if (do_read_u32(ff, &version))
2864                 return -1;
2865
2866         if (version != 1)
2867                 return -1;
2868
2869         if (do_read_u32(ff, &cnt))
2870                 return -1;
2871
2872         caches = zalloc(sizeof(*caches) * cnt);
2873         if (!caches)
2874                 return -1;
2875
2876         for (i = 0; i < cnt; i++) {
2877                 struct cpu_cache_level c;
2878
2879                 #define _R(v)                                           \
2880                         if (do_read_u32(ff, &c.v))\
2881                                 goto out_free_caches;                   \
2882
2883                 _R(level)
2884                 _R(line_size)
2885                 _R(sets)
2886                 _R(ways)
2887                 #undef _R
2888
2889                 #define _R(v)                                   \
2890                         c.v = do_read_string(ff);               \
2891                         if (!c.v)                               \
2892                                 goto out_free_caches;
2893
2894                 _R(type)
2895                 _R(size)
2896                 _R(map)
2897                 #undef _R
2898
2899                 caches[i] = c;
2900         }
2901
2902         ff->ph->env.caches = caches;
2903         ff->ph->env.caches_cnt = cnt;
2904         return 0;
2905 out_free_caches:
2906         free(caches);
2907         return -1;
2908 }
2909
2910 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2911 {
2912         struct perf_session *session;
2913         u64 first_sample_time, last_sample_time;
2914         int ret;
2915
2916         session = container_of(ff->ph, struct perf_session, header);
2917
2918         ret = do_read_u64(ff, &first_sample_time);
2919         if (ret)
2920                 return -1;
2921
2922         ret = do_read_u64(ff, &last_sample_time);
2923         if (ret)
2924                 return -1;
2925
2926         session->evlist->first_sample_time = first_sample_time;
2927         session->evlist->last_sample_time = last_sample_time;
2928         return 0;
2929 }
2930
2931 static int process_mem_topology(struct feat_fd *ff,
2932                                 void *data __maybe_unused)
2933 {
2934         struct memory_node *nodes;
2935         u64 version, i, nr, bsize;
2936         int ret = -1;
2937
2938         if (do_read_u64(ff, &version))
2939                 return -1;
2940
2941         if (version != 1)
2942                 return -1;
2943
2944         if (do_read_u64(ff, &bsize))
2945                 return -1;
2946
2947         if (do_read_u64(ff, &nr))
2948                 return -1;
2949
2950         nodes = zalloc(sizeof(*nodes) * nr);
2951         if (!nodes)
2952                 return -1;
2953
2954         for (i = 0; i < nr; i++) {
2955                 struct memory_node n;
2956
2957                 #define _R(v)                           \
2958                         if (do_read_u64(ff, &n.v))      \
2959                                 goto out;               \
2960
2961                 _R(node)
2962                 _R(size)
2963
2964                 #undef _R
2965
2966                 if (do_read_bitmap(ff, &n.set, &n.size))
2967                         goto out;
2968
2969                 nodes[i] = n;
2970         }
2971
2972         ff->ph->env.memory_bsize    = bsize;
2973         ff->ph->env.memory_nodes    = nodes;
2974         ff->ph->env.nr_memory_nodes = nr;
2975         ret = 0;
2976
2977 out:
2978         if (ret)
2979                 free(nodes);
2980         return ret;
2981 }
2982
2983 static int process_clockid(struct feat_fd *ff,
2984                            void *data __maybe_unused)
2985 {
2986         if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2987                 return -1;
2988
2989         return 0;
2990 }
2991
2992 static int process_clock_data(struct feat_fd *ff,
2993                               void *_data __maybe_unused)
2994 {
2995         u32 data32;
2996         u64 data64;
2997
2998         /* version */
2999         if (do_read_u32(ff, &data32))
3000                 return -1;
3001
3002         if (data32 != 1)
3003                 return -1;
3004
3005         /* clockid */
3006         if (do_read_u32(ff, &data32))
3007                 return -1;
3008
3009         ff->ph->env.clock.clockid = data32;
3010
3011         /* TOD ref time */
3012         if (do_read_u64(ff, &data64))
3013                 return -1;
3014
3015         ff->ph->env.clock.tod_ns = data64;
3016
3017         /* clockid ref time */
3018         if (do_read_u64(ff, &data64))
3019                 return -1;
3020
3021         ff->ph->env.clock.clockid_ns = data64;
3022         ff->ph->env.clock.enabled = true;
3023         return 0;
3024 }
3025
3026 static int process_hybrid_topology(struct feat_fd *ff,
3027                                    void *data __maybe_unused)
3028 {
3029         struct hybrid_node *nodes, *n;
3030         u32 nr, i;
3031
3032         /* nr nodes */
3033         if (do_read_u32(ff, &nr))
3034                 return -1;
3035
3036         nodes = zalloc(sizeof(*nodes) * nr);
3037         if (!nodes)
3038                 return -ENOMEM;
3039
3040         for (i = 0; i < nr; i++) {
3041                 n = &nodes[i];
3042
3043                 n->pmu_name = do_read_string(ff);
3044                 if (!n->pmu_name)
3045                         goto error;
3046
3047                 n->cpus = do_read_string(ff);
3048                 if (!n->cpus)
3049                         goto error;
3050         }
3051
3052         ff->ph->env.nr_hybrid_nodes = nr;
3053         ff->ph->env.hybrid_nodes = nodes;
3054         return 0;
3055
3056 error:
3057         for (i = 0; i < nr; i++) {
3058                 free(nodes[i].pmu_name);
3059                 free(nodes[i].cpus);
3060         }
3061
3062         free(nodes);
3063         return -1;
3064 }
3065
3066 static int process_dir_format(struct feat_fd *ff,
3067                               void *_data __maybe_unused)
3068 {
3069         struct perf_session *session;
3070         struct perf_data *data;
3071
3072         session = container_of(ff->ph, struct perf_session, header);
3073         data = session->data;
3074
3075         if (WARN_ON(!perf_data__is_dir(data)))
3076                 return -1;
3077
3078         return do_read_u64(ff, &data->dir.version);
3079 }
3080
3081 #ifdef HAVE_LIBBPF_SUPPORT
3082 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3083 {
3084         struct bpf_prog_info_node *info_node;
3085         struct perf_env *env = &ff->ph->env;
3086         struct perf_bpil *info_linear;
3087         u32 count, i;
3088         int err = -1;
3089
3090         if (ff->ph->needs_swap) {
3091                 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3092                 return 0;
3093         }
3094
3095         if (do_read_u32(ff, &count))
3096                 return -1;
3097
3098         down_write(&env->bpf_progs.lock);
3099
3100         for (i = 0; i < count; ++i) {
3101                 u32 info_len, data_len;
3102
3103                 info_linear = NULL;
3104                 info_node = NULL;
3105                 if (do_read_u32(ff, &info_len))
3106                         goto out;
3107                 if (do_read_u32(ff, &data_len))
3108                         goto out;
3109
3110                 if (info_len > sizeof(struct bpf_prog_info)) {
3111                         pr_warning("detected invalid bpf_prog_info\n");
3112                         goto out;
3113                 }
3114
3115                 info_linear = malloc(sizeof(struct perf_bpil) +
3116                                      data_len);
3117                 if (!info_linear)
3118                         goto out;
3119                 info_linear->info_len = sizeof(struct bpf_prog_info);
3120                 info_linear->data_len = data_len;
3121                 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3122                         goto out;
3123                 if (__do_read(ff, &info_linear->info, info_len))
3124                         goto out;
3125                 if (info_len < sizeof(struct bpf_prog_info))
3126                         memset(((void *)(&info_linear->info)) + info_len, 0,
3127                                sizeof(struct bpf_prog_info) - info_len);
3128
3129                 if (__do_read(ff, info_linear->data, data_len))
3130                         goto out;
3131
3132                 info_node = malloc(sizeof(struct bpf_prog_info_node));
3133                 if (!info_node)
3134                         goto out;
3135
3136                 /* after reading from file, translate offset to address */
3137                 bpil_offs_to_addr(info_linear);
3138                 info_node->info_linear = info_linear;
3139                 perf_env__insert_bpf_prog_info(env, info_node);
3140         }
3141
3142         up_write(&env->bpf_progs.lock);
3143         return 0;
3144 out:
3145         free(info_linear);
3146         free(info_node);
3147         up_write(&env->bpf_progs.lock);
3148         return err;
3149 }
3150
3151 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3152 {
3153         struct perf_env *env = &ff->ph->env;
3154         struct btf_node *node = NULL;
3155         u32 count, i;
3156         int err = -1;
3157
3158         if (ff->ph->needs_swap) {
3159                 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3160                 return 0;
3161         }
3162
3163         if (do_read_u32(ff, &count))
3164                 return -1;
3165
3166         down_write(&env->bpf_progs.lock);
3167
3168         for (i = 0; i < count; ++i) {
3169                 u32 id, data_size;
3170
3171                 if (do_read_u32(ff, &id))
3172                         goto out;
3173                 if (do_read_u32(ff, &data_size))
3174                         goto out;
3175
3176                 node = malloc(sizeof(struct btf_node) + data_size);
3177                 if (!node)
3178                         goto out;
3179
3180                 node->id = id;
3181                 node->data_size = data_size;
3182
3183                 if (__do_read(ff, node->data, data_size))
3184                         goto out;
3185
3186                 perf_env__insert_btf(env, node);
3187                 node = NULL;
3188         }
3189
3190         err = 0;
3191 out:
3192         up_write(&env->bpf_progs.lock);
3193         free(node);
3194         return err;
3195 }
3196 #endif // HAVE_LIBBPF_SUPPORT
3197
3198 static int process_compressed(struct feat_fd *ff,
3199                               void *data __maybe_unused)
3200 {
3201         if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3202                 return -1;
3203
3204         if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3205                 return -1;
3206
3207         if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3208                 return -1;
3209
3210         if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3211                 return -1;
3212
3213         if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3214                 return -1;
3215
3216         return 0;
3217 }
3218
3219 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3220                               char ***caps, unsigned int *max_branches)
3221 {
3222         char *name, *value, *ptr;
3223         u32 nr_pmu_caps, i;
3224
3225         *nr_caps = 0;
3226         *caps = NULL;
3227
3228         if (do_read_u32(ff, &nr_pmu_caps))
3229                 return -1;
3230
3231         if (!nr_pmu_caps)
3232                 return 0;
3233
3234         *caps = zalloc(sizeof(char *) * nr_pmu_caps);
3235         if (!*caps)
3236                 return -1;
3237
3238         for (i = 0; i < nr_pmu_caps; i++) {
3239                 name = do_read_string(ff);
3240                 if (!name)
3241                         goto error;
3242
3243                 value = do_read_string(ff);
3244                 if (!value)
3245                         goto free_name;
3246
3247                 if (asprintf(&ptr, "%s=%s", name, value) < 0)
3248                         goto free_value;
3249
3250                 (*caps)[i] = ptr;
3251
3252                 if (!strcmp(name, "branches"))
3253                         *max_branches = atoi(value);
3254
3255                 free(value);
3256                 free(name);
3257         }
3258         *nr_caps = nr_pmu_caps;
3259         return 0;
3260
3261 free_value:
3262         free(value);
3263 free_name:
3264         free(name);
3265 error:
3266         for (; i > 0; i--)
3267                 free((*caps)[i - 1]);
3268         free(*caps);
3269         *caps = NULL;
3270         *nr_caps = 0;
3271         return -1;
3272 }
3273
3274 static int process_cpu_pmu_caps(struct feat_fd *ff,
3275                                 void *data __maybe_unused)
3276 {
3277         int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3278                                      &ff->ph->env.cpu_pmu_caps,
3279                                      &ff->ph->env.max_branches);
3280
3281         if (!ret && !ff->ph->env.cpu_pmu_caps)
3282                 pr_debug("cpu pmu capabilities not available\n");
3283         return ret;
3284 }
3285
3286 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3287 {
3288         struct pmu_caps *pmu_caps;
3289         u32 nr_pmu, i;
3290         int ret;
3291         int j;
3292
3293         if (do_read_u32(ff, &nr_pmu))
3294                 return -1;
3295
3296         if (!nr_pmu) {
3297                 pr_debug("pmu capabilities not available\n");
3298                 return 0;
3299         }
3300
3301         pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3302         if (!pmu_caps)
3303                 return -ENOMEM;
3304
3305         for (i = 0; i < nr_pmu; i++) {
3306                 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3307                                          &pmu_caps[i].caps,
3308                                          &pmu_caps[i].max_branches);
3309                 if (ret)
3310                         goto err;
3311
3312                 pmu_caps[i].pmu_name = do_read_string(ff);
3313                 if (!pmu_caps[i].pmu_name) {
3314                         ret = -1;
3315                         goto err;
3316                 }
3317                 if (!pmu_caps[i].nr_caps) {
3318                         pr_debug("%s pmu capabilities not available\n",
3319                                  pmu_caps[i].pmu_name);
3320                 }
3321         }
3322
3323         ff->ph->env.nr_pmus_with_caps = nr_pmu;
3324         ff->ph->env.pmu_caps = pmu_caps;
3325         return 0;
3326
3327 err:
3328         for (i = 0; i < nr_pmu; i++) {
3329                 for (j = 0; j < pmu_caps[i].nr_caps; j++)
3330                         free(pmu_caps[i].caps[j]);
3331                 free(pmu_caps[i].caps);
3332                 free(pmu_caps[i].pmu_name);
3333         }
3334
3335         free(pmu_caps);
3336         return ret;
3337 }
3338
3339 #define FEAT_OPR(n, func, __full_only) \
3340         [HEADER_##n] = {                                        \
3341                 .name       = __stringify(n),                   \
3342                 .write      = write_##func,                     \
3343                 .print      = print_##func,                     \
3344                 .full_only  = __full_only,                      \
3345                 .process    = process_##func,                   \
3346                 .synthesize = true                              \
3347         }
3348
3349 #define FEAT_OPN(n, func, __full_only) \
3350         [HEADER_##n] = {                                        \
3351                 .name       = __stringify(n),                   \
3352                 .write      = write_##func,                     \
3353                 .print      = print_##func,                     \
3354                 .full_only  = __full_only,                      \
3355                 .process    = process_##func                    \
3356         }
3357
3358 /* feature_ops not implemented: */
3359 #define print_tracing_data      NULL
3360 #define print_build_id          NULL
3361
3362 #define process_branch_stack    NULL
3363 #define process_stat            NULL
3364
3365 // Only used in util/synthetic-events.c
3366 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3367
3368 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3369         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
3370         FEAT_OPN(BUILD_ID,      build_id,       false),
3371         FEAT_OPR(HOSTNAME,      hostname,       false),
3372         FEAT_OPR(OSRELEASE,     osrelease,      false),
3373         FEAT_OPR(VERSION,       version,        false),
3374         FEAT_OPR(ARCH,          arch,           false),
3375         FEAT_OPR(NRCPUS,        nrcpus,         false),
3376         FEAT_OPR(CPUDESC,       cpudesc,        false),
3377         FEAT_OPR(CPUID,         cpuid,          false),
3378         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
3379         FEAT_OPR(EVENT_DESC,    event_desc,     false),
3380         FEAT_OPR(CMDLINE,       cmdline,        false),
3381         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
3382         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
3383         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
3384         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
3385         FEAT_OPR(GROUP_DESC,    group_desc,     false),
3386         FEAT_OPN(AUXTRACE,      auxtrace,       false),
3387         FEAT_OPN(STAT,          stat,           false),
3388         FEAT_OPN(CACHE,         cache,          true),
3389         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
3390         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
3391         FEAT_OPR(CLOCKID,       clockid,        false),
3392         FEAT_OPN(DIR_FORMAT,    dir_format,     false),
3393 #ifdef HAVE_LIBBPF_SUPPORT
3394         FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3395         FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3396 #endif
3397         FEAT_OPR(COMPRESSED,    compressed,     false),
3398         FEAT_OPR(CPU_PMU_CAPS,  cpu_pmu_caps,   false),
3399         FEAT_OPR(CLOCK_DATA,    clock_data,     false),
3400         FEAT_OPN(HYBRID_TOPOLOGY,       hybrid_topology,        true),
3401         FEAT_OPR(PMU_CAPS,      pmu_caps,       false),
3402 };
3403
3404 struct header_print_data {
3405         FILE *fp;
3406         bool full; /* extended list of headers */
3407 };
3408
3409 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3410                                            struct perf_header *ph,
3411                                            int feat, int fd, void *data)
3412 {
3413         struct header_print_data *hd = data;
3414         struct feat_fd ff;
3415
3416         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3417                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3418                                 "%d, continuing...\n", section->offset, feat);
3419                 return 0;
3420         }
3421         if (feat >= HEADER_LAST_FEATURE) {
3422                 pr_warning("unknown feature %d\n", feat);
3423                 return 0;
3424         }
3425         if (!feat_ops[feat].print)
3426                 return 0;
3427
3428         ff = (struct  feat_fd) {
3429                 .fd = fd,
3430                 .ph = ph,
3431         };
3432
3433         if (!feat_ops[feat].full_only || hd->full)
3434                 feat_ops[feat].print(&ff, hd->fp);
3435         else
3436                 fprintf(hd->fp, "# %s info available, use -I to display\n",
3437                         feat_ops[feat].name);
3438
3439         return 0;
3440 }
3441
3442 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3443 {
3444         struct header_print_data hd;
3445         struct perf_header *header = &session->header;
3446         int fd = perf_data__fd(session->data);
3447         struct stat st;
3448         time_t stctime;
3449         int ret, bit;
3450
3451         hd.fp = fp;
3452         hd.full = full;
3453
3454         ret = fstat(fd, &st);
3455         if (ret == -1)
3456                 return -1;
3457
3458         stctime = st.st_mtime;
3459         fprintf(fp, "# captured on    : %s", ctime(&stctime));
3460
3461         fprintf(fp, "# header version : %u\n", header->version);
3462         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3463         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3464         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3465
3466         perf_header__process_sections(header, fd, &hd,
3467                                       perf_file_section__fprintf_info);
3468
3469         if (session->data->is_pipe)
3470                 return 0;
3471
3472         fprintf(fp, "# missing features: ");
3473         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3474                 if (bit)
3475                         fprintf(fp, "%s ", feat_ops[bit].name);
3476         }
3477
3478         fprintf(fp, "\n");
3479         return 0;
3480 }
3481
3482 struct header_fw {
3483         struct feat_writer      fw;
3484         struct feat_fd          *ff;
3485 };
3486
3487 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3488 {
3489         struct header_fw *h = container_of(fw, struct header_fw, fw);
3490
3491         return do_write(h->ff, buf, sz);
3492 }
3493
3494 static int do_write_feat(struct feat_fd *ff, int type,
3495                          struct perf_file_section **p,
3496                          struct evlist *evlist,
3497                          struct feat_copier *fc)
3498 {
3499         int err;
3500         int ret = 0;
3501
3502         if (perf_header__has_feat(ff->ph, type)) {
3503                 if (!feat_ops[type].write)
3504                         return -1;
3505
3506                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3507                         return -1;
3508
3509                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3510
3511                 /*
3512                  * Hook to let perf inject copy features sections from the input
3513                  * file.
3514                  */
3515                 if (fc && fc->copy) {
3516                         struct header_fw h = {
3517                                 .fw.write = feat_writer_cb,
3518                                 .ff = ff,
3519                         };
3520
3521                         /* ->copy() returns 0 if the feature was not copied */
3522                         err = fc->copy(fc, type, &h.fw);
3523                 } else {
3524                         err = 0;
3525                 }
3526                 if (!err)
3527                         err = feat_ops[type].write(ff, evlist);
3528                 if (err < 0) {
3529                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
3530
3531                         /* undo anything written */
3532                         lseek(ff->fd, (*p)->offset, SEEK_SET);
3533
3534                         return -1;
3535                 }
3536                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3537                 (*p)++;
3538         }
3539         return ret;
3540 }
3541
3542 static int perf_header__adds_write(struct perf_header *header,
3543                                    struct evlist *evlist, int fd,
3544                                    struct feat_copier *fc)
3545 {
3546         int nr_sections;
3547         struct feat_fd ff;
3548         struct perf_file_section *feat_sec, *p;
3549         int sec_size;
3550         u64 sec_start;
3551         int feat;
3552         int err;
3553
3554         ff = (struct feat_fd){
3555                 .fd  = fd,
3556                 .ph = header,
3557         };
3558
3559         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3560         if (!nr_sections)
3561                 return 0;
3562
3563         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3564         if (feat_sec == NULL)
3565                 return -ENOMEM;
3566
3567         sec_size = sizeof(*feat_sec) * nr_sections;
3568
3569         sec_start = header->feat_offset;
3570         lseek(fd, sec_start + sec_size, SEEK_SET);
3571
3572         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3573                 if (do_write_feat(&ff, feat, &p, evlist, fc))
3574                         perf_header__clear_feat(header, feat);
3575         }
3576
3577         lseek(fd, sec_start, SEEK_SET);
3578         /*
3579          * may write more than needed due to dropped feature, but
3580          * this is okay, reader will skip the missing entries
3581          */
3582         err = do_write(&ff, feat_sec, sec_size);
3583         if (err < 0)
3584                 pr_debug("failed to write feature section\n");
3585         free(feat_sec);
3586         return err;
3587 }
3588
3589 int perf_header__write_pipe(int fd)
3590 {
3591         struct perf_pipe_file_header f_header;
3592         struct feat_fd ff;
3593         int err;
3594
3595         ff = (struct feat_fd){ .fd = fd };
3596
3597         f_header = (struct perf_pipe_file_header){
3598                 .magic     = PERF_MAGIC,
3599                 .size      = sizeof(f_header),
3600         };
3601
3602         err = do_write(&ff, &f_header, sizeof(f_header));
3603         if (err < 0) {
3604                 pr_debug("failed to write perf pipe header\n");
3605                 return err;
3606         }
3607
3608         return 0;
3609 }
3610
3611 static int perf_session__do_write_header(struct perf_session *session,
3612                                          struct evlist *evlist,
3613                                          int fd, bool at_exit,
3614                                          struct feat_copier *fc)
3615 {
3616         struct perf_file_header f_header;
3617         struct perf_file_attr   f_attr;
3618         struct perf_header *header = &session->header;
3619         struct evsel *evsel;
3620         struct feat_fd ff;
3621         u64 attr_offset;
3622         int err;
3623
3624         ff = (struct feat_fd){ .fd = fd};
3625         lseek(fd, sizeof(f_header), SEEK_SET);
3626
3627         evlist__for_each_entry(session->evlist, evsel) {
3628                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3629                 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3630                 if (err < 0) {
3631                         pr_debug("failed to write perf header\n");
3632                         return err;
3633                 }
3634         }
3635
3636         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3637
3638         evlist__for_each_entry(evlist, evsel) {
3639                 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3640                         /*
3641                          * We are likely in "perf inject" and have read
3642                          * from an older file. Update attr size so that
3643                          * reader gets the right offset to the ids.
3644                          */
3645                         evsel->core.attr.size = sizeof(evsel->core.attr);
3646                 }
3647                 f_attr = (struct perf_file_attr){
3648                         .attr = evsel->core.attr,
3649                         .ids  = {
3650                                 .offset = evsel->id_offset,
3651                                 .size   = evsel->core.ids * sizeof(u64),
3652                         }
3653                 };
3654                 err = do_write(&ff, &f_attr, sizeof(f_attr));
3655                 if (err < 0) {
3656                         pr_debug("failed to write perf header attribute\n");
3657                         return err;
3658                 }
3659         }
3660
3661         if (!header->data_offset)
3662                 header->data_offset = lseek(fd, 0, SEEK_CUR);
3663         header->feat_offset = header->data_offset + header->data_size;
3664
3665         if (at_exit) {
3666                 err = perf_header__adds_write(header, evlist, fd, fc);
3667                 if (err < 0)
3668                         return err;
3669         }
3670
3671         f_header = (struct perf_file_header){
3672                 .magic     = PERF_MAGIC,
3673                 .size      = sizeof(f_header),
3674                 .attr_size = sizeof(f_attr),
3675                 .attrs = {
3676                         .offset = attr_offset,
3677                         .size   = evlist->core.nr_entries * sizeof(f_attr),
3678                 },
3679                 .data = {
3680                         .offset = header->data_offset,
3681                         .size   = header->data_size,
3682                 },
3683                 /* event_types is ignored, store zeros */
3684         };
3685
3686         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3687
3688         lseek(fd, 0, SEEK_SET);
3689         err = do_write(&ff, &f_header, sizeof(f_header));
3690         if (err < 0) {
3691                 pr_debug("failed to write perf header\n");
3692                 return err;
3693         }
3694         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3695
3696         return 0;
3697 }
3698
3699 int perf_session__write_header(struct perf_session *session,
3700                                struct evlist *evlist,
3701                                int fd, bool at_exit)
3702 {
3703         return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3704 }
3705
3706 size_t perf_session__data_offset(const struct evlist *evlist)
3707 {
3708         struct evsel *evsel;
3709         size_t data_offset;
3710
3711         data_offset = sizeof(struct perf_file_header);
3712         evlist__for_each_entry(evlist, evsel) {
3713                 data_offset += evsel->core.ids * sizeof(u64);
3714         }
3715         data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3716
3717         return data_offset;
3718 }
3719
3720 int perf_session__inject_header(struct perf_session *session,
3721                                 struct evlist *evlist,
3722                                 int fd,
3723                                 struct feat_copier *fc)
3724 {
3725         return perf_session__do_write_header(session, evlist, fd, true, fc);
3726 }
3727
3728 static int perf_header__getbuffer64(struct perf_header *header,
3729                                     int fd, void *buf, size_t size)
3730 {
3731         if (readn(fd, buf, size) <= 0)
3732                 return -1;
3733
3734         if (header->needs_swap)
3735                 mem_bswap_64(buf, size);
3736
3737         return 0;
3738 }
3739
3740 int perf_header__process_sections(struct perf_header *header, int fd,
3741                                   void *data,
3742                                   int (*process)(struct perf_file_section *section,
3743                                                  struct perf_header *ph,
3744                                                  int feat, int fd, void *data))
3745 {
3746         struct perf_file_section *feat_sec, *sec;
3747         int nr_sections;
3748         int sec_size;
3749         int feat;
3750         int err;
3751
3752         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3753         if (!nr_sections)
3754                 return 0;
3755
3756         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3757         if (!feat_sec)
3758                 return -1;
3759
3760         sec_size = sizeof(*feat_sec) * nr_sections;
3761
3762         lseek(fd, header->feat_offset, SEEK_SET);
3763
3764         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3765         if (err < 0)
3766                 goto out_free;
3767
3768         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3769                 err = process(sec++, header, feat, fd, data);
3770                 if (err < 0)
3771                         goto out_free;
3772         }
3773         err = 0;
3774 out_free:
3775         free(feat_sec);
3776         return err;
3777 }
3778
3779 static const int attr_file_abi_sizes[] = {
3780         [0] = PERF_ATTR_SIZE_VER0,
3781         [1] = PERF_ATTR_SIZE_VER1,
3782         [2] = PERF_ATTR_SIZE_VER2,
3783         [3] = PERF_ATTR_SIZE_VER3,
3784         [4] = PERF_ATTR_SIZE_VER4,
3785         0,
3786 };
3787
3788 /*
3789  * In the legacy file format, the magic number is not used to encode endianness.
3790  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3791  * on ABI revisions, we need to try all combinations for all endianness to
3792  * detect the endianness.
3793  */
3794 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3795 {
3796         uint64_t ref_size, attr_size;
3797         int i;
3798
3799         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3800                 ref_size = attr_file_abi_sizes[i]
3801                          + sizeof(struct perf_file_section);
3802                 if (hdr_sz != ref_size) {
3803                         attr_size = bswap_64(hdr_sz);
3804                         if (attr_size != ref_size)
3805                                 continue;
3806
3807                         ph->needs_swap = true;
3808                 }
3809                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3810                          i,
3811                          ph->needs_swap);
3812                 return 0;
3813         }
3814         /* could not determine endianness */
3815         return -1;
3816 }
3817
3818 #define PERF_PIPE_HDR_VER0      16
3819
3820 static const size_t attr_pipe_abi_sizes[] = {
3821         [0] = PERF_PIPE_HDR_VER0,
3822         0,
3823 };
3824
3825 /*
3826  * In the legacy pipe format, there is an implicit assumption that endianness
3827  * between host recording the samples, and host parsing the samples is the
3828  * same. This is not always the case given that the pipe output may always be
3829  * redirected into a file and analyzed on a different machine with possibly a
3830  * different endianness and perf_event ABI revisions in the perf tool itself.
3831  */
3832 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3833 {
3834         u64 attr_size;
3835         int i;
3836
3837         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3838                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3839                         attr_size = bswap_64(hdr_sz);
3840                         if (attr_size != hdr_sz)
3841                                 continue;
3842
3843                         ph->needs_swap = true;
3844                 }
3845                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3846                 return 0;
3847         }
3848         return -1;
3849 }
3850
3851 bool is_perf_magic(u64 magic)
3852 {
3853         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3854                 || magic == __perf_magic2
3855                 || magic == __perf_magic2_sw)
3856                 return true;
3857
3858         return false;
3859 }
3860
3861 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3862                               bool is_pipe, struct perf_header *ph)
3863 {
3864         int ret;
3865
3866         /* check for legacy format */
3867         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3868         if (ret == 0) {
3869                 ph->version = PERF_HEADER_VERSION_1;
3870                 pr_debug("legacy perf.data format\n");
3871                 if (is_pipe)
3872                         return try_all_pipe_abis(hdr_sz, ph);
3873
3874                 return try_all_file_abis(hdr_sz, ph);
3875         }
3876         /*
3877          * the new magic number serves two purposes:
3878          * - unique number to identify actual perf.data files
3879          * - encode endianness of file
3880          */
3881         ph->version = PERF_HEADER_VERSION_2;
3882
3883         /* check magic number with one endianness */
3884         if (magic == __perf_magic2)
3885                 return 0;
3886
3887         /* check magic number with opposite endianness */
3888         if (magic != __perf_magic2_sw)
3889                 return -1;
3890
3891         ph->needs_swap = true;
3892
3893         return 0;
3894 }
3895
3896 int perf_file_header__read(struct perf_file_header *header,
3897                            struct perf_header *ph, int fd)
3898 {
3899         ssize_t ret;
3900
3901         lseek(fd, 0, SEEK_SET);
3902
3903         ret = readn(fd, header, sizeof(*header));
3904         if (ret <= 0)
3905                 return -1;
3906
3907         if (check_magic_endian(header->magic,
3908                                header->attr_size, false, ph) < 0) {
3909                 pr_debug("magic/endian check failed\n");
3910                 return -1;
3911         }
3912
3913         if (ph->needs_swap) {
3914                 mem_bswap_64(header, offsetof(struct perf_file_header,
3915                              adds_features));
3916         }
3917
3918         if (header->size != sizeof(*header)) {
3919                 /* Support the previous format */
3920                 if (header->size == offsetof(typeof(*header), adds_features))
3921                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3922                 else
3923                         return -1;
3924         } else if (ph->needs_swap) {
3925                 /*
3926                  * feature bitmap is declared as an array of unsigned longs --
3927                  * not good since its size can differ between the host that
3928                  * generated the data file and the host analyzing the file.
3929                  *
3930                  * We need to handle endianness, but we don't know the size of
3931                  * the unsigned long where the file was generated. Take a best
3932                  * guess at determining it: try 64-bit swap first (ie., file
3933                  * created on a 64-bit host), and check if the hostname feature
3934                  * bit is set (this feature bit is forced on as of fbe96f2).
3935                  * If the bit is not, undo the 64-bit swap and try a 32-bit
3936                  * swap. If the hostname bit is still not set (e.g., older data
3937                  * file), punt and fallback to the original behavior --
3938                  * clearing all feature bits and setting buildid.
3939                  */
3940                 mem_bswap_64(&header->adds_features,
3941                             BITS_TO_U64(HEADER_FEAT_BITS));
3942
3943                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3944                         /* unswap as u64 */
3945                         mem_bswap_64(&header->adds_features,
3946                                     BITS_TO_U64(HEADER_FEAT_BITS));
3947
3948                         /* unswap as u32 */
3949                         mem_bswap_32(&header->adds_features,
3950                                     BITS_TO_U32(HEADER_FEAT_BITS));
3951                 }
3952
3953                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3954                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3955                         set_bit(HEADER_BUILD_ID, header->adds_features);
3956                 }
3957         }
3958
3959         memcpy(&ph->adds_features, &header->adds_features,
3960                sizeof(ph->adds_features));
3961
3962         ph->data_offset  = header->data.offset;
3963         ph->data_size    = header->data.size;
3964         ph->feat_offset  = header->data.offset + header->data.size;
3965         return 0;
3966 }
3967
3968 static int perf_file_section__process(struct perf_file_section *section,
3969                                       struct perf_header *ph,
3970                                       int feat, int fd, void *data)
3971 {
3972         struct feat_fd fdd = {
3973                 .fd     = fd,
3974                 .ph     = ph,
3975                 .size   = section->size,
3976                 .offset = section->offset,
3977         };
3978
3979         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3980                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3981                           "%d, continuing...\n", section->offset, feat);
3982                 return 0;
3983         }
3984
3985         if (feat >= HEADER_LAST_FEATURE) {
3986                 pr_debug("unknown feature %d, continuing...\n", feat);
3987                 return 0;
3988         }
3989
3990         if (!feat_ops[feat].process)
3991                 return 0;
3992
3993         return feat_ops[feat].process(&fdd, data);
3994 }
3995
3996 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3997                                        struct perf_header *ph,
3998                                        struct perf_data* data,
3999                                        bool repipe, int repipe_fd)
4000 {
4001         struct feat_fd ff = {
4002                 .fd = repipe_fd,
4003                 .ph = ph,
4004         };
4005         ssize_t ret;
4006
4007         ret = perf_data__read(data, header, sizeof(*header));
4008         if (ret <= 0)
4009                 return -1;
4010
4011         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4012                 pr_debug("endian/magic failed\n");
4013                 return -1;
4014         }
4015
4016         if (ph->needs_swap)
4017                 header->size = bswap_64(header->size);
4018
4019         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4020                 return -1;
4021
4022         return 0;
4023 }
4024
4025 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4026 {
4027         struct perf_header *header = &session->header;
4028         struct perf_pipe_file_header f_header;
4029
4030         if (perf_file_header__read_pipe(&f_header, header, session->data,
4031                                         session->repipe, repipe_fd) < 0) {
4032                 pr_debug("incompatible file format\n");
4033                 return -EINVAL;
4034         }
4035
4036         return f_header.size == sizeof(f_header) ? 0 : -1;
4037 }
4038
4039 static int read_attr(int fd, struct perf_header *ph,
4040                      struct perf_file_attr *f_attr)
4041 {
4042         struct perf_event_attr *attr = &f_attr->attr;
4043         size_t sz, left;
4044         size_t our_sz = sizeof(f_attr->attr);
4045         ssize_t ret;
4046
4047         memset(f_attr, 0, sizeof(*f_attr));
4048
4049         /* read minimal guaranteed structure */
4050         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4051         if (ret <= 0) {
4052                 pr_debug("cannot read %d bytes of header attr\n",
4053                          PERF_ATTR_SIZE_VER0);
4054                 return -1;
4055         }
4056
4057         /* on file perf_event_attr size */
4058         sz = attr->size;
4059
4060         if (ph->needs_swap)
4061                 sz = bswap_32(sz);
4062
4063         if (sz == 0) {
4064                 /* assume ABI0 */
4065                 sz =  PERF_ATTR_SIZE_VER0;
4066         } else if (sz > our_sz) {
4067                 pr_debug("file uses a more recent and unsupported ABI"
4068                          " (%zu bytes extra)\n", sz - our_sz);
4069                 return -1;
4070         }
4071         /* what we have not yet read and that we know about */
4072         left = sz - PERF_ATTR_SIZE_VER0;
4073         if (left) {
4074                 void *ptr = attr;
4075                 ptr += PERF_ATTR_SIZE_VER0;
4076
4077                 ret = readn(fd, ptr, left);
4078         }
4079         /* read perf_file_section, ids are read in caller */
4080         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4081
4082         return ret <= 0 ? -1 : 0;
4083 }
4084
4085 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4086 {
4087         struct tep_event *event;
4088         char bf[128];
4089
4090         /* already prepared */
4091         if (evsel->tp_format)
4092                 return 0;
4093
4094         if (pevent == NULL) {
4095                 pr_debug("broken or missing trace data\n");
4096                 return -1;
4097         }
4098
4099         event = tep_find_event(pevent, evsel->core.attr.config);
4100         if (event == NULL) {
4101                 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4102                 return -1;
4103         }
4104
4105         if (!evsel->name) {
4106                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4107                 evsel->name = strdup(bf);
4108                 if (evsel->name == NULL)
4109                         return -1;
4110         }
4111
4112         evsel->tp_format = event;
4113         return 0;
4114 }
4115
4116 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4117 {
4118         struct evsel *pos;
4119
4120         evlist__for_each_entry(evlist, pos) {
4121                 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4122                     evsel__prepare_tracepoint_event(pos, pevent))
4123                         return -1;
4124         }
4125
4126         return 0;
4127 }
4128
4129 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4130 {
4131         struct perf_data *data = session->data;
4132         struct perf_header *header = &session->header;
4133         struct perf_file_header f_header;
4134         struct perf_file_attr   f_attr;
4135         u64                     f_id;
4136         int nr_attrs, nr_ids, i, j, err;
4137         int fd = perf_data__fd(data);
4138
4139         session->evlist = evlist__new();
4140         if (session->evlist == NULL)
4141                 return -ENOMEM;
4142
4143         session->evlist->env = &header->env;
4144         session->machines.host.env = &header->env;
4145
4146         /*
4147          * We can read 'pipe' data event from regular file,
4148          * check for the pipe header regardless of source.
4149          */
4150         err = perf_header__read_pipe(session, repipe_fd);
4151         if (!err || perf_data__is_pipe(data)) {
4152                 data->is_pipe = true;
4153                 return err;
4154         }
4155
4156         if (perf_file_header__read(&f_header, header, fd) < 0)
4157                 return -EINVAL;
4158
4159         if (header->needs_swap && data->in_place_update) {
4160                 pr_err("In-place update not supported when byte-swapping is required\n");
4161                 return -EINVAL;
4162         }
4163
4164         /*
4165          * Sanity check that perf.data was written cleanly; data size is
4166          * initialized to 0 and updated only if the on_exit function is run.
4167          * If data size is still 0 then the file contains only partial
4168          * information.  Just warn user and process it as much as it can.
4169          */
4170         if (f_header.data.size == 0) {
4171                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4172                            "Was the 'perf record' command properly terminated?\n",
4173                            data->file.path);
4174         }
4175
4176         if (f_header.attr_size == 0) {
4177                 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4178                        "Was the 'perf record' command properly terminated?\n",
4179                        data->file.path);
4180                 return -EINVAL;
4181         }
4182
4183         nr_attrs = f_header.attrs.size / f_header.attr_size;
4184         lseek(fd, f_header.attrs.offset, SEEK_SET);
4185
4186         for (i = 0; i < nr_attrs; i++) {
4187                 struct evsel *evsel;
4188                 off_t tmp;
4189
4190                 if (read_attr(fd, header, &f_attr) < 0)
4191                         goto out_errno;
4192
4193                 if (header->needs_swap) {
4194                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
4195                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4196                         perf_event__attr_swap(&f_attr.attr);
4197                 }
4198
4199                 tmp = lseek(fd, 0, SEEK_CUR);
4200                 evsel = evsel__new(&f_attr.attr);
4201
4202                 if (evsel == NULL)
4203                         goto out_delete_evlist;
4204
4205                 evsel->needs_swap = header->needs_swap;
4206                 /*
4207                  * Do it before so that if perf_evsel__alloc_id fails, this
4208                  * entry gets purged too at evlist__delete().
4209                  */
4210                 evlist__add(session->evlist, evsel);
4211
4212                 nr_ids = f_attr.ids.size / sizeof(u64);
4213                 /*
4214                  * We don't have the cpu and thread maps on the header, so
4215                  * for allocating the perf_sample_id table we fake 1 cpu and
4216                  * hattr->ids threads.
4217                  */
4218                 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4219                         goto out_delete_evlist;
4220
4221                 lseek(fd, f_attr.ids.offset, SEEK_SET);
4222
4223                 for (j = 0; j < nr_ids; j++) {
4224                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4225                                 goto out_errno;
4226
4227                         perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4228                 }
4229
4230                 lseek(fd, tmp, SEEK_SET);
4231         }
4232
4233         perf_header__process_sections(header, fd, &session->tevent,
4234                                       perf_file_section__process);
4235
4236         if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4237                 goto out_delete_evlist;
4238
4239         return 0;
4240 out_errno:
4241         return -errno;
4242
4243 out_delete_evlist:
4244         evlist__delete(session->evlist);
4245         session->evlist = NULL;
4246         return -ENOMEM;
4247 }
4248
4249 int perf_event__process_feature(struct perf_session *session,
4250                                 union perf_event *event)
4251 {
4252         struct perf_tool *tool = session->tool;
4253         struct feat_fd ff = { .fd = 0 };
4254         struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4255         int type = fe->header.type;
4256         u64 feat = fe->feat_id;
4257         int ret = 0;
4258
4259         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4260                 pr_warning("invalid record type %d in pipe-mode\n", type);
4261                 return 0;
4262         }
4263         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4264                 pr_warning("invalid record type %d in pipe-mode\n", type);
4265                 return -1;
4266         }
4267
4268         if (!feat_ops[feat].process)
4269                 return 0;
4270
4271         ff.buf  = (void *)fe->data;
4272         ff.size = event->header.size - sizeof(*fe);
4273         ff.ph = &session->header;
4274
4275         if (feat_ops[feat].process(&ff, NULL)) {
4276                 ret = -1;
4277                 goto out;
4278         }
4279
4280         if (!feat_ops[feat].print || !tool->show_feat_hdr)
4281                 goto out;
4282
4283         if (!feat_ops[feat].full_only ||
4284             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4285                 feat_ops[feat].print(&ff, stdout);
4286         } else {
4287                 fprintf(stdout, "# %s info available, use -I to display\n",
4288                         feat_ops[feat].name);
4289         }
4290 out:
4291         free_event_desc(ff.events);
4292         return ret;
4293 }
4294
4295 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4296 {
4297         struct perf_record_event_update *ev = &event->event_update;
4298         struct perf_record_event_update_scale *ev_scale;
4299         struct perf_record_event_update_cpus *ev_cpus;
4300         struct perf_cpu_map *map;
4301         size_t ret;
4302
4303         ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4304
4305         switch (ev->type) {
4306         case PERF_EVENT_UPDATE__SCALE:
4307                 ev_scale = (struct perf_record_event_update_scale *)ev->data;
4308                 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
4309                 break;
4310         case PERF_EVENT_UPDATE__UNIT:
4311                 ret += fprintf(fp, "... unit:  %s\n", ev->data);
4312                 break;
4313         case PERF_EVENT_UPDATE__NAME:
4314                 ret += fprintf(fp, "... name:  %s\n", ev->data);
4315                 break;
4316         case PERF_EVENT_UPDATE__CPUS:
4317                 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4318                 ret += fprintf(fp, "... ");
4319
4320                 map = cpu_map__new_data(&ev_cpus->cpus);
4321                 if (map)
4322                         ret += cpu_map__fprintf(map, fp);
4323                 else
4324                         ret += fprintf(fp, "failed to get cpus\n");
4325                 break;
4326         default:
4327                 ret += fprintf(fp, "... unknown type\n");
4328                 break;
4329         }
4330
4331         return ret;
4332 }
4333
4334 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4335                              union perf_event *event,
4336                              struct evlist **pevlist)
4337 {
4338         u32 i, ids, n_ids;
4339         struct evsel *evsel;
4340         struct evlist *evlist = *pevlist;
4341
4342         if (evlist == NULL) {
4343                 *pevlist = evlist = evlist__new();
4344                 if (evlist == NULL)
4345                         return -ENOMEM;
4346         }
4347
4348         evsel = evsel__new(&event->attr.attr);
4349         if (evsel == NULL)
4350                 return -ENOMEM;
4351
4352         evlist__add(evlist, evsel);
4353
4354         ids = event->header.size;
4355         ids -= (void *)&event->attr.id - (void *)event;
4356         n_ids = ids / sizeof(u64);
4357         /*
4358          * We don't have the cpu and thread maps on the header, so
4359          * for allocating the perf_sample_id table we fake 1 cpu and
4360          * hattr->ids threads.
4361          */
4362         if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4363                 return -ENOMEM;
4364
4365         for (i = 0; i < n_ids; i++) {
4366                 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4367         }
4368
4369         return 0;
4370 }
4371
4372 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4373                                      union perf_event *event,
4374                                      struct evlist **pevlist)
4375 {
4376         struct perf_record_event_update *ev = &event->event_update;
4377         struct perf_record_event_update_scale *ev_scale;
4378         struct perf_record_event_update_cpus *ev_cpus;
4379         struct evlist *evlist;
4380         struct evsel *evsel;
4381         struct perf_cpu_map *map;
4382
4383         if (dump_trace)
4384                 perf_event__fprintf_event_update(event, stdout);
4385
4386         if (!pevlist || *pevlist == NULL)
4387                 return -EINVAL;
4388
4389         evlist = *pevlist;
4390
4391         evsel = evlist__id2evsel(evlist, ev->id);
4392         if (evsel == NULL)
4393                 return -EINVAL;
4394
4395         switch (ev->type) {
4396         case PERF_EVENT_UPDATE__UNIT:
4397                 free((char *)evsel->unit);
4398                 evsel->unit = strdup(ev->data);
4399                 break;
4400         case PERF_EVENT_UPDATE__NAME:
4401                 free(evsel->name);
4402                 evsel->name = strdup(ev->data);
4403                 break;
4404         case PERF_EVENT_UPDATE__SCALE:
4405                 ev_scale = (struct perf_record_event_update_scale *)ev->data;
4406                 evsel->scale = ev_scale->scale;
4407                 break;
4408         case PERF_EVENT_UPDATE__CPUS:
4409                 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4410                 map = cpu_map__new_data(&ev_cpus->cpus);
4411                 if (map) {
4412                         perf_cpu_map__put(evsel->core.own_cpus);
4413                         evsel->core.own_cpus = map;
4414                 } else
4415                         pr_err("failed to get event_update cpus\n");
4416         default:
4417                 break;
4418         }
4419
4420         return 0;
4421 }
4422
4423 int perf_event__process_tracing_data(struct perf_session *session,
4424                                      union perf_event *event)
4425 {
4426         ssize_t size_read, padding, size = event->tracing_data.size;
4427         int fd = perf_data__fd(session->data);
4428         char buf[BUFSIZ];
4429
4430         /*
4431          * The pipe fd is already in proper place and in any case
4432          * we can't move it, and we'd screw the case where we read
4433          * 'pipe' data from regular file. The trace_report reads
4434          * data from 'fd' so we need to set it directly behind the
4435          * event, where the tracing data starts.
4436          */
4437         if (!perf_data__is_pipe(session->data)) {
4438                 off_t offset = lseek(fd, 0, SEEK_CUR);
4439
4440                 /* setup for reading amidst mmap */
4441                 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4442                       SEEK_SET);
4443         }
4444
4445         size_read = trace_report(fd, &session->tevent,
4446                                  session->repipe);
4447         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4448
4449         if (readn(fd, buf, padding) < 0) {
4450                 pr_err("%s: reading input file", __func__);
4451                 return -1;
4452         }
4453         if (session->repipe) {
4454                 int retw = write(STDOUT_FILENO, buf, padding);
4455                 if (retw <= 0 || retw != padding) {
4456                         pr_err("%s: repiping tracing data padding", __func__);
4457                         return -1;
4458                 }
4459         }
4460
4461         if (size_read + padding != size) {
4462                 pr_err("%s: tracing data size mismatch", __func__);
4463                 return -1;
4464         }
4465
4466         evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4467
4468         return size_read + padding;
4469 }
4470
4471 int perf_event__process_build_id(struct perf_session *session,
4472                                  union perf_event *event)
4473 {
4474         __event_process_build_id(&event->build_id,
4475                                  event->build_id.filename,
4476                                  session);
4477         return 0;
4478 }