Merge tag 'for-5.7-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-microblaze.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "util/evsel_fprintf.h"
29 #include "header.h"
30 #include "memswap.h"
31 #include "trace-event.h"
32 #include "session.h"
33 #include "symbol.h"
34 #include "debug.h"
35 #include "cpumap.h"
36 #include "pmu.h"
37 #include "vdso.h"
38 #include "strbuf.h"
39 #include "build-id.h"
40 #include "data.h"
41 #include <api/fs/fs.h>
42 #include "asm/bug.h"
43 #include "tool.h"
44 #include "time-utils.h"
45 #include "units.h"
46 #include "util/util.h" // perf_exe()
47 #include "cputopo.h"
48 #include "bpf-event.h"
49
50 #include <linux/ctype.h>
51 #include <internal/lib.h>
52
53 /*
54  * magic2 = "PERFILE2"
55  * must be a numerical value to let the endianness
56  * determine the memory layout. That way we are able
57  * to detect endianness when reading the perf.data file
58  * back.
59  *
60  * we check for legacy (PERFFILE) format.
61  */
62 static const char *__perf_magic1 = "PERFFILE";
63 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
64 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65
66 #define PERF_MAGIC      __perf_magic2
67
68 const char perf_version_string[] = PERF_VERSION;
69
70 struct perf_file_attr {
71         struct perf_event_attr  attr;
72         struct perf_file_section        ids;
73 };
74
75 void perf_header__set_feat(struct perf_header *header, int feat)
76 {
77         set_bit(feat, header->adds_features);
78 }
79
80 void perf_header__clear_feat(struct perf_header *header, int feat)
81 {
82         clear_bit(feat, header->adds_features);
83 }
84
85 bool perf_header__has_feat(const struct perf_header *header, int feat)
86 {
87         return test_bit(feat, header->adds_features);
88 }
89
90 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91 {
92         ssize_t ret = writen(ff->fd, buf, size);
93
94         if (ret != (ssize_t)size)
95                 return ret < 0 ? (int)ret : -1;
96         return 0;
97 }
98
99 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
100 {
101         /* struct perf_event_header::size is u16 */
102         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
103         size_t new_size = ff->size;
104         void *addr;
105
106         if (size + ff->offset > max_size)
107                 return -E2BIG;
108
109         while (size > (new_size - ff->offset))
110                 new_size <<= 1;
111         new_size = min(max_size, new_size);
112
113         if (ff->size < new_size) {
114                 addr = realloc(ff->buf, new_size);
115                 if (!addr)
116                         return -ENOMEM;
117                 ff->buf = addr;
118                 ff->size = new_size;
119         }
120
121         memcpy(ff->buf + ff->offset, buf, size);
122         ff->offset += size;
123
124         return 0;
125 }
126
127 /* Return: 0 if succeded, -ERR if failed. */
128 int do_write(struct feat_fd *ff, const void *buf, size_t size)
129 {
130         if (!ff->buf)
131                 return __do_write_fd(ff, buf, size);
132         return __do_write_buf(ff, buf, size);
133 }
134
135 /* Return: 0 if succeded, -ERR if failed. */
136 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
137 {
138         u64 *p = (u64 *) set;
139         int i, ret;
140
141         ret = do_write(ff, &size, sizeof(size));
142         if (ret < 0)
143                 return ret;
144
145         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
146                 ret = do_write(ff, p + i, sizeof(*p));
147                 if (ret < 0)
148                         return ret;
149         }
150
151         return 0;
152 }
153
154 /* Return: 0 if succeded, -ERR if failed. */
155 int write_padded(struct feat_fd *ff, const void *bf,
156                  size_t count, size_t count_aligned)
157 {
158         static const char zero_buf[NAME_ALIGN];
159         int err = do_write(ff, bf, count);
160
161         if (!err)
162                 err = do_write(ff, zero_buf, count_aligned - count);
163
164         return err;
165 }
166
167 #define string_size(str)                                                \
168         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
169
170 /* Return: 0 if succeded, -ERR if failed. */
171 static int do_write_string(struct feat_fd *ff, const char *str)
172 {
173         u32 len, olen;
174         int ret;
175
176         olen = strlen(str) + 1;
177         len = PERF_ALIGN(olen, NAME_ALIGN);
178
179         /* write len, incl. \0 */
180         ret = do_write(ff, &len, sizeof(len));
181         if (ret < 0)
182                 return ret;
183
184         return write_padded(ff, str, olen, len);
185 }
186
187 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188 {
189         ssize_t ret = readn(ff->fd, addr, size);
190
191         if (ret != size)
192                 return ret < 0 ? (int)ret : -1;
193         return 0;
194 }
195
196 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
197 {
198         if (size > (ssize_t)ff->size - ff->offset)
199                 return -1;
200
201         memcpy(addr, ff->buf + ff->offset, size);
202         ff->offset += size;
203
204         return 0;
205
206 }
207
208 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
209 {
210         if (!ff->buf)
211                 return __do_read_fd(ff, addr, size);
212         return __do_read_buf(ff, addr, size);
213 }
214
215 static int do_read_u32(struct feat_fd *ff, u32 *addr)
216 {
217         int ret;
218
219         ret = __do_read(ff, addr, sizeof(*addr));
220         if (ret)
221                 return ret;
222
223         if (ff->ph->needs_swap)
224                 *addr = bswap_32(*addr);
225         return 0;
226 }
227
228 static int do_read_u64(struct feat_fd *ff, u64 *addr)
229 {
230         int ret;
231
232         ret = __do_read(ff, addr, sizeof(*addr));
233         if (ret)
234                 return ret;
235
236         if (ff->ph->needs_swap)
237                 *addr = bswap_64(*addr);
238         return 0;
239 }
240
241 static char *do_read_string(struct feat_fd *ff)
242 {
243         u32 len;
244         char *buf;
245
246         if (do_read_u32(ff, &len))
247                 return NULL;
248
249         buf = malloc(len);
250         if (!buf)
251                 return NULL;
252
253         if (!__do_read(ff, buf, len)) {
254                 /*
255                  * strings are padded by zeroes
256                  * thus the actual strlen of buf
257                  * may be less than len
258                  */
259                 return buf;
260         }
261
262         free(buf);
263         return NULL;
264 }
265
266 /* Return: 0 if succeded, -ERR if failed. */
267 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
268 {
269         unsigned long *set;
270         u64 size, *p;
271         int i, ret;
272
273         ret = do_read_u64(ff, &size);
274         if (ret)
275                 return ret;
276
277         set = bitmap_alloc(size);
278         if (!set)
279                 return -ENOMEM;
280
281         p = (u64 *) set;
282
283         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
284                 ret = do_read_u64(ff, p + i);
285                 if (ret < 0) {
286                         free(set);
287                         return ret;
288                 }
289         }
290
291         *pset  = set;
292         *psize = size;
293         return 0;
294 }
295
296 static int write_tracing_data(struct feat_fd *ff,
297                               struct evlist *evlist)
298 {
299         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
300                 return -1;
301
302         return read_tracing_data(ff->fd, &evlist->core.entries);
303 }
304
305 static int write_build_id(struct feat_fd *ff,
306                           struct evlist *evlist __maybe_unused)
307 {
308         struct perf_session *session;
309         int err;
310
311         session = container_of(ff->ph, struct perf_session, header);
312
313         if (!perf_session__read_build_ids(session, true))
314                 return -1;
315
316         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
317                 return -1;
318
319         err = perf_session__write_buildid_table(session, ff);
320         if (err < 0) {
321                 pr_debug("failed to write buildid table\n");
322                 return err;
323         }
324         perf_session__cache_build_ids(session);
325
326         return 0;
327 }
328
329 static int write_hostname(struct feat_fd *ff,
330                           struct evlist *evlist __maybe_unused)
331 {
332         struct utsname uts;
333         int ret;
334
335         ret = uname(&uts);
336         if (ret < 0)
337                 return -1;
338
339         return do_write_string(ff, uts.nodename);
340 }
341
342 static int write_osrelease(struct feat_fd *ff,
343                            struct evlist *evlist __maybe_unused)
344 {
345         struct utsname uts;
346         int ret;
347
348         ret = uname(&uts);
349         if (ret < 0)
350                 return -1;
351
352         return do_write_string(ff, uts.release);
353 }
354
355 static int write_arch(struct feat_fd *ff,
356                       struct evlist *evlist __maybe_unused)
357 {
358         struct utsname uts;
359         int ret;
360
361         ret = uname(&uts);
362         if (ret < 0)
363                 return -1;
364
365         return do_write_string(ff, uts.machine);
366 }
367
368 static int write_version(struct feat_fd *ff,
369                          struct evlist *evlist __maybe_unused)
370 {
371         return do_write_string(ff, perf_version_string);
372 }
373
374 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375 {
376         FILE *file;
377         char *buf = NULL;
378         char *s, *p;
379         const char *search = cpuinfo_proc;
380         size_t len = 0;
381         int ret = -1;
382
383         if (!search)
384                 return -1;
385
386         file = fopen("/proc/cpuinfo", "r");
387         if (!file)
388                 return -1;
389
390         while (getline(&buf, &len, file) > 0) {
391                 ret = strncmp(buf, search, strlen(search));
392                 if (!ret)
393                         break;
394         }
395
396         if (ret) {
397                 ret = -1;
398                 goto done;
399         }
400
401         s = buf;
402
403         p = strchr(buf, ':');
404         if (p && *(p+1) == ' ' && *(p+2))
405                 s = p + 2;
406         p = strchr(s, '\n');
407         if (p)
408                 *p = '\0';
409
410         /* squash extra space characters (branding string) */
411         p = s;
412         while (*p) {
413                 if (isspace(*p)) {
414                         char *r = p + 1;
415                         char *q = skip_spaces(r);
416                         *p = ' ';
417                         if (q != (p+1))
418                                 while ((*r++ = *q++));
419                 }
420                 p++;
421         }
422         ret = do_write_string(ff, s);
423 done:
424         free(buf);
425         fclose(file);
426         return ret;
427 }
428
429 static int write_cpudesc(struct feat_fd *ff,
430                        struct evlist *evlist __maybe_unused)
431 {
432 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
433 #define CPUINFO_PROC    { "cpu", }
434 #elif defined(__s390__)
435 #define CPUINFO_PROC    { "vendor_id", }
436 #elif defined(__sh__)
437 #define CPUINFO_PROC    { "cpu type", }
438 #elif defined(__alpha__) || defined(__mips__)
439 #define CPUINFO_PROC    { "cpu model", }
440 #elif defined(__arm__)
441 #define CPUINFO_PROC    { "model name", "Processor", }
442 #elif defined(__arc__)
443 #define CPUINFO_PROC    { "Processor", }
444 #elif defined(__xtensa__)
445 #define CPUINFO_PROC    { "core ID", }
446 #else
447 #define CPUINFO_PROC    { "model name", }
448 #endif
449         const char *cpuinfo_procs[] = CPUINFO_PROC;
450 #undef CPUINFO_PROC
451         unsigned int i;
452
453         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
454                 int ret;
455                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456                 if (ret >= 0)
457                         return ret;
458         }
459         return -1;
460 }
461
462
463 static int write_nrcpus(struct feat_fd *ff,
464                         struct evlist *evlist __maybe_unused)
465 {
466         long nr;
467         u32 nrc, nra;
468         int ret;
469
470         nrc = cpu__max_present_cpu();
471
472         nr = sysconf(_SC_NPROCESSORS_ONLN);
473         if (nr < 0)
474                 return -1;
475
476         nra = (u32)(nr & UINT_MAX);
477
478         ret = do_write(ff, &nrc, sizeof(nrc));
479         if (ret < 0)
480                 return ret;
481
482         return do_write(ff, &nra, sizeof(nra));
483 }
484
485 static int write_event_desc(struct feat_fd *ff,
486                             struct evlist *evlist)
487 {
488         struct evsel *evsel;
489         u32 nre, nri, sz;
490         int ret;
491
492         nre = evlist->core.nr_entries;
493
494         /*
495          * write number of events
496          */
497         ret = do_write(ff, &nre, sizeof(nre));
498         if (ret < 0)
499                 return ret;
500
501         /*
502          * size of perf_event_attr struct
503          */
504         sz = (u32)sizeof(evsel->core.attr);
505         ret = do_write(ff, &sz, sizeof(sz));
506         if (ret < 0)
507                 return ret;
508
509         evlist__for_each_entry(evlist, evsel) {
510                 ret = do_write(ff, &evsel->core.attr, sz);
511                 if (ret < 0)
512                         return ret;
513                 /*
514                  * write number of unique id per event
515                  * there is one id per instance of an event
516                  *
517                  * copy into an nri to be independent of the
518                  * type of ids,
519                  */
520                 nri = evsel->core.ids;
521                 ret = do_write(ff, &nri, sizeof(nri));
522                 if (ret < 0)
523                         return ret;
524
525                 /*
526                  * write event string as passed on cmdline
527                  */
528                 ret = do_write_string(ff, perf_evsel__name(evsel));
529                 if (ret < 0)
530                         return ret;
531                 /*
532                  * write unique ids for this event
533                  */
534                 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535                 if (ret < 0)
536                         return ret;
537         }
538         return 0;
539 }
540
541 static int write_cmdline(struct feat_fd *ff,
542                          struct evlist *evlist __maybe_unused)
543 {
544         char pbuf[MAXPATHLEN], *buf;
545         int i, ret, n;
546
547         /* actual path to perf binary */
548         buf = perf_exe(pbuf, MAXPATHLEN);
549
550         /* account for binary path */
551         n = perf_env.nr_cmdline + 1;
552
553         ret = do_write(ff, &n, sizeof(n));
554         if (ret < 0)
555                 return ret;
556
557         ret = do_write_string(ff, buf);
558         if (ret < 0)
559                 return ret;
560
561         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563                 if (ret < 0)
564                         return ret;
565         }
566         return 0;
567 }
568
569
570 static int write_cpu_topology(struct feat_fd *ff,
571                               struct evlist *evlist __maybe_unused)
572 {
573         struct cpu_topology *tp;
574         u32 i;
575         int ret, j;
576
577         tp = cpu_topology__new();
578         if (!tp)
579                 return -1;
580
581         ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582         if (ret < 0)
583                 goto done;
584
585         for (i = 0; i < tp->core_sib; i++) {
586                 ret = do_write_string(ff, tp->core_siblings[i]);
587                 if (ret < 0)
588                         goto done;
589         }
590         ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591         if (ret < 0)
592                 goto done;
593
594         for (i = 0; i < tp->thread_sib; i++) {
595                 ret = do_write_string(ff, tp->thread_siblings[i]);
596                 if (ret < 0)
597                         break;
598         }
599
600         ret = perf_env__read_cpu_topology_map(&perf_env);
601         if (ret < 0)
602                 goto done;
603
604         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605                 ret = do_write(ff, &perf_env.cpu[j].core_id,
606                                sizeof(perf_env.cpu[j].core_id));
607                 if (ret < 0)
608                         return ret;
609                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
610                                sizeof(perf_env.cpu[j].socket_id));
611                 if (ret < 0)
612                         return ret;
613         }
614
615         if (!tp->die_sib)
616                 goto done;
617
618         ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
619         if (ret < 0)
620                 goto done;
621
622         for (i = 0; i < tp->die_sib; i++) {
623                 ret = do_write_string(ff, tp->die_siblings[i]);
624                 if (ret < 0)
625                         goto done;
626         }
627
628         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
629                 ret = do_write(ff, &perf_env.cpu[j].die_id,
630                                sizeof(perf_env.cpu[j].die_id));
631                 if (ret < 0)
632                         return ret;
633         }
634
635 done:
636         cpu_topology__delete(tp);
637         return ret;
638 }
639
640
641
642 static int write_total_mem(struct feat_fd *ff,
643                            struct evlist *evlist __maybe_unused)
644 {
645         char *buf = NULL;
646         FILE *fp;
647         size_t len = 0;
648         int ret = -1, n;
649         uint64_t mem;
650
651         fp = fopen("/proc/meminfo", "r");
652         if (!fp)
653                 return -1;
654
655         while (getline(&buf, &len, fp) > 0) {
656                 ret = strncmp(buf, "MemTotal:", 9);
657                 if (!ret)
658                         break;
659         }
660         if (!ret) {
661                 n = sscanf(buf, "%*s %"PRIu64, &mem);
662                 if (n == 1)
663                         ret = do_write(ff, &mem, sizeof(mem));
664         } else
665                 ret = -1;
666         free(buf);
667         fclose(fp);
668         return ret;
669 }
670
671 static int write_numa_topology(struct feat_fd *ff,
672                                struct evlist *evlist __maybe_unused)
673 {
674         struct numa_topology *tp;
675         int ret = -1;
676         u32 i;
677
678         tp = numa_topology__new();
679         if (!tp)
680                 return -ENOMEM;
681
682         ret = do_write(ff, &tp->nr, sizeof(u32));
683         if (ret < 0)
684                 goto err;
685
686         for (i = 0; i < tp->nr; i++) {
687                 struct numa_topology_node *n = &tp->nodes[i];
688
689                 ret = do_write(ff, &n->node, sizeof(u32));
690                 if (ret < 0)
691                         goto err;
692
693                 ret = do_write(ff, &n->mem_total, sizeof(u64));
694                 if (ret)
695                         goto err;
696
697                 ret = do_write(ff, &n->mem_free, sizeof(u64));
698                 if (ret)
699                         goto err;
700
701                 ret = do_write_string(ff, n->cpus);
702                 if (ret < 0)
703                         goto err;
704         }
705
706         ret = 0;
707
708 err:
709         numa_topology__delete(tp);
710         return ret;
711 }
712
713 /*
714  * File format:
715  *
716  * struct pmu_mappings {
717  *      u32     pmu_num;
718  *      struct pmu_map {
719  *              u32     type;
720  *              char    name[];
721  *      }[pmu_num];
722  * };
723  */
724
725 static int write_pmu_mappings(struct feat_fd *ff,
726                               struct evlist *evlist __maybe_unused)
727 {
728         struct perf_pmu *pmu = NULL;
729         u32 pmu_num = 0;
730         int ret;
731
732         /*
733          * Do a first pass to count number of pmu to avoid lseek so this
734          * works in pipe mode as well.
735          */
736         while ((pmu = perf_pmu__scan(pmu))) {
737                 if (!pmu->name)
738                         continue;
739                 pmu_num++;
740         }
741
742         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743         if (ret < 0)
744                 return ret;
745
746         while ((pmu = perf_pmu__scan(pmu))) {
747                 if (!pmu->name)
748                         continue;
749
750                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751                 if (ret < 0)
752                         return ret;
753
754                 ret = do_write_string(ff, pmu->name);
755                 if (ret < 0)
756                         return ret;
757         }
758
759         return 0;
760 }
761
762 /*
763  * File format:
764  *
765  * struct group_descs {
766  *      u32     nr_groups;
767  *      struct group_desc {
768  *              char    name[];
769  *              u32     leader_idx;
770  *              u32     nr_members;
771  *      }[nr_groups];
772  * };
773  */
774 static int write_group_desc(struct feat_fd *ff,
775                             struct evlist *evlist)
776 {
777         u32 nr_groups = evlist->nr_groups;
778         struct evsel *evsel;
779         int ret;
780
781         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782         if (ret < 0)
783                 return ret;
784
785         evlist__for_each_entry(evlist, evsel) {
786                 if (perf_evsel__is_group_leader(evsel) &&
787                     evsel->core.nr_members > 1) {
788                         const char *name = evsel->group_name ?: "{anon_group}";
789                         u32 leader_idx = evsel->idx;
790                         u32 nr_members = evsel->core.nr_members;
791
792                         ret = do_write_string(ff, name);
793                         if (ret < 0)
794                                 return ret;
795
796                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797                         if (ret < 0)
798                                 return ret;
799
800                         ret = do_write(ff, &nr_members, sizeof(nr_members));
801                         if (ret < 0)
802                                 return ret;
803                 }
804         }
805         return 0;
806 }
807
808 /*
809  * Return the CPU id as a raw string.
810  *
811  * Each architecture should provide a more precise id string that
812  * can be use to match the architecture's "mapfile".
813  */
814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815 {
816         return NULL;
817 }
818
819 /* Return zero when the cpuid from the mapfile.csv matches the
820  * cpuid string generated on this platform.
821  * Otherwise return non-zero.
822  */
823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824 {
825         regex_t re;
826         regmatch_t pmatch[1];
827         int match;
828
829         if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830                 /* Warn unable to generate match particular string. */
831                 pr_info("Invalid regular expression %s\n", mapcpuid);
832                 return 1;
833         }
834
835         match = !regexec(&re, cpuid, 1, pmatch, 0);
836         regfree(&re);
837         if (match) {
838                 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839
840                 /* Verify the entire string matched. */
841                 if (match_len == strlen(cpuid))
842                         return 0;
843         }
844         return 1;
845 }
846
847 /*
848  * default get_cpuid(): nothing gets recorded
849  * actual implementation must be in arch/$(SRCARCH)/util/header.c
850  */
851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852 {
853         return ENOSYS; /* Not implemented */
854 }
855
856 static int write_cpuid(struct feat_fd *ff,
857                        struct evlist *evlist __maybe_unused)
858 {
859         char buffer[64];
860         int ret;
861
862         ret = get_cpuid(buffer, sizeof(buffer));
863         if (ret)
864                 return -1;
865
866         return do_write_string(ff, buffer);
867 }
868
869 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870                               struct evlist *evlist __maybe_unused)
871 {
872         return 0;
873 }
874
875 static int write_auxtrace(struct feat_fd *ff,
876                           struct evlist *evlist __maybe_unused)
877 {
878         struct perf_session *session;
879         int err;
880
881         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882                 return -1;
883
884         session = container_of(ff->ph, struct perf_session, header);
885
886         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887         if (err < 0)
888                 pr_err("Failed to write auxtrace index\n");
889         return err;
890 }
891
892 static int write_clockid(struct feat_fd *ff,
893                          struct evlist *evlist __maybe_unused)
894 {
895         return do_write(ff, &ff->ph->env.clockid_res_ns,
896                         sizeof(ff->ph->env.clockid_res_ns));
897 }
898
899 static int write_dir_format(struct feat_fd *ff,
900                             struct evlist *evlist __maybe_unused)
901 {
902         struct perf_session *session;
903         struct perf_data *data;
904
905         session = container_of(ff->ph, struct perf_session, header);
906         data = session->data;
907
908         if (WARN_ON(!perf_data__is_dir(data)))
909                 return -1;
910
911         return do_write(ff, &data->dir.version, sizeof(data->dir.version));
912 }
913
914 #ifdef HAVE_LIBBPF_SUPPORT
915 static int write_bpf_prog_info(struct feat_fd *ff,
916                                struct evlist *evlist __maybe_unused)
917 {
918         struct perf_env *env = &ff->ph->env;
919         struct rb_root *root;
920         struct rb_node *next;
921         int ret;
922
923         down_read(&env->bpf_progs.lock);
924
925         ret = do_write(ff, &env->bpf_progs.infos_cnt,
926                        sizeof(env->bpf_progs.infos_cnt));
927         if (ret < 0)
928                 goto out;
929
930         root = &env->bpf_progs.infos;
931         next = rb_first(root);
932         while (next) {
933                 struct bpf_prog_info_node *node;
934                 size_t len;
935
936                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
937                 next = rb_next(&node->rb_node);
938                 len = sizeof(struct bpf_prog_info_linear) +
939                         node->info_linear->data_len;
940
941                 /* before writing to file, translate address to offset */
942                 bpf_program__bpil_addr_to_offs(node->info_linear);
943                 ret = do_write(ff, node->info_linear, len);
944                 /*
945                  * translate back to address even when do_write() fails,
946                  * so that this function never changes the data.
947                  */
948                 bpf_program__bpil_offs_to_addr(node->info_linear);
949                 if (ret < 0)
950                         goto out;
951         }
952 out:
953         up_read(&env->bpf_progs.lock);
954         return ret;
955 }
956 #else // HAVE_LIBBPF_SUPPORT
957 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
958                                struct evlist *evlist __maybe_unused)
959 {
960         return 0;
961 }
962 #endif // HAVE_LIBBPF_SUPPORT
963
964 static int write_bpf_btf(struct feat_fd *ff,
965                          struct evlist *evlist __maybe_unused)
966 {
967         struct perf_env *env = &ff->ph->env;
968         struct rb_root *root;
969         struct rb_node *next;
970         int ret;
971
972         down_read(&env->bpf_progs.lock);
973
974         ret = do_write(ff, &env->bpf_progs.btfs_cnt,
975                        sizeof(env->bpf_progs.btfs_cnt));
976
977         if (ret < 0)
978                 goto out;
979
980         root = &env->bpf_progs.btfs;
981         next = rb_first(root);
982         while (next) {
983                 struct btf_node *node;
984
985                 node = rb_entry(next, struct btf_node, rb_node);
986                 next = rb_next(&node->rb_node);
987                 ret = do_write(ff, &node->id,
988                                sizeof(u32) * 2 + node->data_size);
989                 if (ret < 0)
990                         goto out;
991         }
992 out:
993         up_read(&env->bpf_progs.lock);
994         return ret;
995 }
996
997 static int cpu_cache_level__sort(const void *a, const void *b)
998 {
999         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001
1002         return cache_a->level - cache_b->level;
1003 }
1004
1005 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006 {
1007         if (a->level != b->level)
1008                 return false;
1009
1010         if (a->line_size != b->line_size)
1011                 return false;
1012
1013         if (a->sets != b->sets)
1014                 return false;
1015
1016         if (a->ways != b->ways)
1017                 return false;
1018
1019         if (strcmp(a->type, b->type))
1020                 return false;
1021
1022         if (strcmp(a->size, b->size))
1023                 return false;
1024
1025         if (strcmp(a->map, b->map))
1026                 return false;
1027
1028         return true;
1029 }
1030
1031 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032 {
1033         char path[PATH_MAX], file[PATH_MAX];
1034         struct stat st;
1035         size_t len;
1036
1037         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039
1040         if (stat(file, &st))
1041                 return 1;
1042
1043         scnprintf(file, PATH_MAX, "%s/level", path);
1044         if (sysfs__read_int(file, (int *) &cache->level))
1045                 return -1;
1046
1047         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048         if (sysfs__read_int(file, (int *) &cache->line_size))
1049                 return -1;
1050
1051         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052         if (sysfs__read_int(file, (int *) &cache->sets))
1053                 return -1;
1054
1055         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056         if (sysfs__read_int(file, (int *) &cache->ways))
1057                 return -1;
1058
1059         scnprintf(file, PATH_MAX, "%s/type", path);
1060         if (sysfs__read_str(file, &cache->type, &len))
1061                 return -1;
1062
1063         cache->type[len] = 0;
1064         cache->type = strim(cache->type);
1065
1066         scnprintf(file, PATH_MAX, "%s/size", path);
1067         if (sysfs__read_str(file, &cache->size, &len)) {
1068                 zfree(&cache->type);
1069                 return -1;
1070         }
1071
1072         cache->size[len] = 0;
1073         cache->size = strim(cache->size);
1074
1075         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076         if (sysfs__read_str(file, &cache->map, &len)) {
1077                 zfree(&cache->size);
1078                 zfree(&cache->type);
1079                 return -1;
1080         }
1081
1082         cache->map[len] = 0;
1083         cache->map = strim(cache->map);
1084         return 0;
1085 }
1086
1087 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088 {
1089         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090 }
1091
1092 #define MAX_CACHE_LVL 4
1093
1094 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1095 {
1096         u32 i, cnt = 0;
1097         u32 nr, cpu;
1098         u16 level;
1099
1100         nr = cpu__max_cpu();
1101
1102         for (cpu = 0; cpu < nr; cpu++) {
1103                 for (level = 0; level < MAX_CACHE_LVL; level++) {
1104                         struct cpu_cache_level c;
1105                         int err;
1106
1107                         err = cpu_cache_level__read(&c, cpu, level);
1108                         if (err < 0)
1109                                 return err;
1110
1111                         if (err == 1)
1112                                 break;
1113
1114                         for (i = 0; i < cnt; i++) {
1115                                 if (cpu_cache_level__cmp(&c, &caches[i]))
1116                                         break;
1117                         }
1118
1119                         if (i == cnt)
1120                                 caches[cnt++] = c;
1121                         else
1122                                 cpu_cache_level__free(&c);
1123                 }
1124         }
1125         *cntp = cnt;
1126         return 0;
1127 }
1128
1129 static int write_cache(struct feat_fd *ff,
1130                        struct evlist *evlist __maybe_unused)
1131 {
1132         u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1133         struct cpu_cache_level caches[max_caches];
1134         u32 cnt = 0, i, version = 1;
1135         int ret;
1136
1137         ret = build_caches(caches, &cnt);
1138         if (ret)
1139                 goto out;
1140
1141         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1142
1143         ret = do_write(ff, &version, sizeof(u32));
1144         if (ret < 0)
1145                 goto out;
1146
1147         ret = do_write(ff, &cnt, sizeof(u32));
1148         if (ret < 0)
1149                 goto out;
1150
1151         for (i = 0; i < cnt; i++) {
1152                 struct cpu_cache_level *c = &caches[i];
1153
1154                 #define _W(v)                                   \
1155                         ret = do_write(ff, &c->v, sizeof(u32)); \
1156                         if (ret < 0)                            \
1157                                 goto out;
1158
1159                 _W(level)
1160                 _W(line_size)
1161                 _W(sets)
1162                 _W(ways)
1163                 #undef _W
1164
1165                 #define _W(v)                                           \
1166                         ret = do_write_string(ff, (const char *) c->v); \
1167                         if (ret < 0)                                    \
1168                                 goto out;
1169
1170                 _W(type)
1171                 _W(size)
1172                 _W(map)
1173                 #undef _W
1174         }
1175
1176 out:
1177         for (i = 0; i < cnt; i++)
1178                 cpu_cache_level__free(&caches[i]);
1179         return ret;
1180 }
1181
1182 static int write_stat(struct feat_fd *ff __maybe_unused,
1183                       struct evlist *evlist __maybe_unused)
1184 {
1185         return 0;
1186 }
1187
1188 static int write_sample_time(struct feat_fd *ff,
1189                              struct evlist *evlist)
1190 {
1191         int ret;
1192
1193         ret = do_write(ff, &evlist->first_sample_time,
1194                        sizeof(evlist->first_sample_time));
1195         if (ret < 0)
1196                 return ret;
1197
1198         return do_write(ff, &evlist->last_sample_time,
1199                         sizeof(evlist->last_sample_time));
1200 }
1201
1202
1203 static int memory_node__read(struct memory_node *n, unsigned long idx)
1204 {
1205         unsigned int phys, size = 0;
1206         char path[PATH_MAX];
1207         struct dirent *ent;
1208         DIR *dir;
1209
1210 #define for_each_memory(mem, dir)                                       \
1211         while ((ent = readdir(dir)))                                    \
1212                 if (strcmp(ent->d_name, ".") &&                         \
1213                     strcmp(ent->d_name, "..") &&                        \
1214                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1215
1216         scnprintf(path, PATH_MAX,
1217                   "%s/devices/system/node/node%lu",
1218                   sysfs__mountpoint(), idx);
1219
1220         dir = opendir(path);
1221         if (!dir) {
1222                 pr_warning("failed: cant' open memory sysfs data\n");
1223                 return -1;
1224         }
1225
1226         for_each_memory(phys, dir) {
1227                 size = max(phys, size);
1228         }
1229
1230         size++;
1231
1232         n->set = bitmap_alloc(size);
1233         if (!n->set) {
1234                 closedir(dir);
1235                 return -ENOMEM;
1236         }
1237
1238         n->node = idx;
1239         n->size = size;
1240
1241         rewinddir(dir);
1242
1243         for_each_memory(phys, dir) {
1244                 set_bit(phys, n->set);
1245         }
1246
1247         closedir(dir);
1248         return 0;
1249 }
1250
1251 static int memory_node__sort(const void *a, const void *b)
1252 {
1253         const struct memory_node *na = a;
1254         const struct memory_node *nb = b;
1255
1256         return na->node - nb->node;
1257 }
1258
1259 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1260 {
1261         char path[PATH_MAX];
1262         struct dirent *ent;
1263         DIR *dir;
1264         u64 cnt = 0;
1265         int ret = 0;
1266
1267         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1268                   sysfs__mountpoint());
1269
1270         dir = opendir(path);
1271         if (!dir) {
1272                 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1273                           __func__, path);
1274                 return -1;
1275         }
1276
1277         while (!ret && (ent = readdir(dir))) {
1278                 unsigned int idx;
1279                 int r;
1280
1281                 if (!strcmp(ent->d_name, ".") ||
1282                     !strcmp(ent->d_name, ".."))
1283                         continue;
1284
1285                 r = sscanf(ent->d_name, "node%u", &idx);
1286                 if (r != 1)
1287                         continue;
1288
1289                 if (WARN_ONCE(cnt >= size,
1290                         "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1291                         closedir(dir);
1292                         return -1;
1293                 }
1294
1295                 ret = memory_node__read(&nodes[cnt++], idx);
1296         }
1297
1298         *cntp = cnt;
1299         closedir(dir);
1300
1301         if (!ret)
1302                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1303
1304         return ret;
1305 }
1306
1307 #define MAX_MEMORY_NODES 2000
1308
1309 /*
1310  * The MEM_TOPOLOGY holds physical memory map for every
1311  * node in system. The format of data is as follows:
1312  *
1313  *  0 - version          | for future changes
1314  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1315  * 16 - count            | number of nodes
1316  *
1317  * For each node we store map of physical indexes for
1318  * each node:
1319  *
1320  * 32 - node id          | node index
1321  * 40 - size             | size of bitmap
1322  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1323  */
1324 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1325                               struct evlist *evlist __maybe_unused)
1326 {
1327         static struct memory_node nodes[MAX_MEMORY_NODES];
1328         u64 bsize, version = 1, i, nr;
1329         int ret;
1330
1331         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1332                               (unsigned long long *) &bsize);
1333         if (ret)
1334                 return ret;
1335
1336         ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1337         if (ret)
1338                 return ret;
1339
1340         ret = do_write(ff, &version, sizeof(version));
1341         if (ret < 0)
1342                 goto out;
1343
1344         ret = do_write(ff, &bsize, sizeof(bsize));
1345         if (ret < 0)
1346                 goto out;
1347
1348         ret = do_write(ff, &nr, sizeof(nr));
1349         if (ret < 0)
1350                 goto out;
1351
1352         for (i = 0; i < nr; i++) {
1353                 struct memory_node *n = &nodes[i];
1354
1355                 #define _W(v)                                           \
1356                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1357                         if (ret < 0)                                    \
1358                                 goto out;
1359
1360                 _W(node)
1361                 _W(size)
1362
1363                 #undef _W
1364
1365                 ret = do_write_bitmap(ff, n->set, n->size);
1366                 if (ret < 0)
1367                         goto out;
1368         }
1369
1370 out:
1371         return ret;
1372 }
1373
1374 static int write_compressed(struct feat_fd *ff __maybe_unused,
1375                             struct evlist *evlist __maybe_unused)
1376 {
1377         int ret;
1378
1379         ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1380         if (ret)
1381                 return ret;
1382
1383         ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1384         if (ret)
1385                 return ret;
1386
1387         ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1388         if (ret)
1389                 return ret;
1390
1391         ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1392         if (ret)
1393                 return ret;
1394
1395         return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1396 }
1397
1398 static void print_hostname(struct feat_fd *ff, FILE *fp)
1399 {
1400         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1401 }
1402
1403 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1404 {
1405         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1406 }
1407
1408 static void print_arch(struct feat_fd *ff, FILE *fp)
1409 {
1410         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1411 }
1412
1413 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1414 {
1415         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1416 }
1417
1418 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1419 {
1420         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1421         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1422 }
1423
1424 static void print_version(struct feat_fd *ff, FILE *fp)
1425 {
1426         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1427 }
1428
1429 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1430 {
1431         int nr, i;
1432
1433         nr = ff->ph->env.nr_cmdline;
1434
1435         fprintf(fp, "# cmdline : ");
1436
1437         for (i = 0; i < nr; i++) {
1438                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1439                 if (!argv_i) {
1440                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1441                 } else {
1442                         char *mem = argv_i;
1443                         do {
1444                                 char *quote = strchr(argv_i, '\'');
1445                                 if (!quote)
1446                                         break;
1447                                 *quote++ = '\0';
1448                                 fprintf(fp, "%s\\\'", argv_i);
1449                                 argv_i = quote;
1450                         } while (1);
1451                         fprintf(fp, "%s ", argv_i);
1452                         free(mem);
1453                 }
1454         }
1455         fputc('\n', fp);
1456 }
1457
1458 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1459 {
1460         struct perf_header *ph = ff->ph;
1461         int cpu_nr = ph->env.nr_cpus_avail;
1462         int nr, i;
1463         char *str;
1464
1465         nr = ph->env.nr_sibling_cores;
1466         str = ph->env.sibling_cores;
1467
1468         for (i = 0; i < nr; i++) {
1469                 fprintf(fp, "# sibling sockets : %s\n", str);
1470                 str += strlen(str) + 1;
1471         }
1472
1473         if (ph->env.nr_sibling_dies) {
1474                 nr = ph->env.nr_sibling_dies;
1475                 str = ph->env.sibling_dies;
1476
1477                 for (i = 0; i < nr; i++) {
1478                         fprintf(fp, "# sibling dies    : %s\n", str);
1479                         str += strlen(str) + 1;
1480                 }
1481         }
1482
1483         nr = ph->env.nr_sibling_threads;
1484         str = ph->env.sibling_threads;
1485
1486         for (i = 0; i < nr; i++) {
1487                 fprintf(fp, "# sibling threads : %s\n", str);
1488                 str += strlen(str) + 1;
1489         }
1490
1491         if (ph->env.nr_sibling_dies) {
1492                 if (ph->env.cpu != NULL) {
1493                         for (i = 0; i < cpu_nr; i++)
1494                                 fprintf(fp, "# CPU %d: Core ID %d, "
1495                                             "Die ID %d, Socket ID %d\n",
1496                                             i, ph->env.cpu[i].core_id,
1497                                             ph->env.cpu[i].die_id,
1498                                             ph->env.cpu[i].socket_id);
1499                 } else
1500                         fprintf(fp, "# Core ID, Die ID and Socket ID "
1501                                     "information is not available\n");
1502         } else {
1503                 if (ph->env.cpu != NULL) {
1504                         for (i = 0; i < cpu_nr; i++)
1505                                 fprintf(fp, "# CPU %d: Core ID %d, "
1506                                             "Socket ID %d\n",
1507                                             i, ph->env.cpu[i].core_id,
1508                                             ph->env.cpu[i].socket_id);
1509                 } else
1510                         fprintf(fp, "# Core ID and Socket ID "
1511                                     "information is not available\n");
1512         }
1513 }
1514
1515 static void print_clockid(struct feat_fd *ff, FILE *fp)
1516 {
1517         fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1518                 ff->ph->env.clockid_res_ns * 1000);
1519 }
1520
1521 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1522 {
1523         struct perf_session *session;
1524         struct perf_data *data;
1525
1526         session = container_of(ff->ph, struct perf_session, header);
1527         data = session->data;
1528
1529         fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1530 }
1531
1532 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1533 {
1534         struct perf_env *env = &ff->ph->env;
1535         struct rb_root *root;
1536         struct rb_node *next;
1537
1538         down_read(&env->bpf_progs.lock);
1539
1540         root = &env->bpf_progs.infos;
1541         next = rb_first(root);
1542
1543         while (next) {
1544                 struct bpf_prog_info_node *node;
1545
1546                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1547                 next = rb_next(&node->rb_node);
1548
1549                 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1550                                                env, fp);
1551         }
1552
1553         up_read(&env->bpf_progs.lock);
1554 }
1555
1556 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1557 {
1558         struct perf_env *env = &ff->ph->env;
1559         struct rb_root *root;
1560         struct rb_node *next;
1561
1562         down_read(&env->bpf_progs.lock);
1563
1564         root = &env->bpf_progs.btfs;
1565         next = rb_first(root);
1566
1567         while (next) {
1568                 struct btf_node *node;
1569
1570                 node = rb_entry(next, struct btf_node, rb_node);
1571                 next = rb_next(&node->rb_node);
1572                 fprintf(fp, "# btf info of id %u\n", node->id);
1573         }
1574
1575         up_read(&env->bpf_progs.lock);
1576 }
1577
1578 static void free_event_desc(struct evsel *events)
1579 {
1580         struct evsel *evsel;
1581
1582         if (!events)
1583                 return;
1584
1585         for (evsel = events; evsel->core.attr.size; evsel++) {
1586                 zfree(&evsel->name);
1587                 zfree(&evsel->core.id);
1588         }
1589
1590         free(events);
1591 }
1592
1593 static bool perf_attr_check(struct perf_event_attr *attr)
1594 {
1595         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1596                 pr_warning("Reserved bits are set unexpectedly. "
1597                            "Please update perf tool.\n");
1598                 return false;
1599         }
1600
1601         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1602                 pr_warning("Unknown sample type (0x%llx) is detected. "
1603                            "Please update perf tool.\n",
1604                            attr->sample_type);
1605                 return false;
1606         }
1607
1608         if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1609                 pr_warning("Unknown read format (0x%llx) is detected. "
1610                            "Please update perf tool.\n",
1611                            attr->read_format);
1612                 return false;
1613         }
1614
1615         if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1616             (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1617                 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1618                            "Please update perf tool.\n",
1619                            attr->branch_sample_type);
1620
1621                 return false;
1622         }
1623
1624         return true;
1625 }
1626
1627 static struct evsel *read_event_desc(struct feat_fd *ff)
1628 {
1629         struct evsel *evsel, *events = NULL;
1630         u64 *id;
1631         void *buf = NULL;
1632         u32 nre, sz, nr, i, j;
1633         size_t msz;
1634
1635         /* number of events */
1636         if (do_read_u32(ff, &nre))
1637                 goto error;
1638
1639         if (do_read_u32(ff, &sz))
1640                 goto error;
1641
1642         /* buffer to hold on file attr struct */
1643         buf = malloc(sz);
1644         if (!buf)
1645                 goto error;
1646
1647         /* the last event terminates with evsel->core.attr.size == 0: */
1648         events = calloc(nre + 1, sizeof(*events));
1649         if (!events)
1650                 goto error;
1651
1652         msz = sizeof(evsel->core.attr);
1653         if (sz < msz)
1654                 msz = sz;
1655
1656         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1657                 evsel->idx = i;
1658
1659                 /*
1660                  * must read entire on-file attr struct to
1661                  * sync up with layout.
1662                  */
1663                 if (__do_read(ff, buf, sz))
1664                         goto error;
1665
1666                 if (ff->ph->needs_swap)
1667                         perf_event__attr_swap(buf);
1668
1669                 memcpy(&evsel->core.attr, buf, msz);
1670
1671                 if (!perf_attr_check(&evsel->core.attr))
1672                         goto error;
1673
1674                 if (do_read_u32(ff, &nr))
1675                         goto error;
1676
1677                 if (ff->ph->needs_swap)
1678                         evsel->needs_swap = true;
1679
1680                 evsel->name = do_read_string(ff);
1681                 if (!evsel->name)
1682                         goto error;
1683
1684                 if (!nr)
1685                         continue;
1686
1687                 id = calloc(nr, sizeof(*id));
1688                 if (!id)
1689                         goto error;
1690                 evsel->core.ids = nr;
1691                 evsel->core.id = id;
1692
1693                 for (j = 0 ; j < nr; j++) {
1694                         if (do_read_u64(ff, id))
1695                                 goto error;
1696                         id++;
1697                 }
1698         }
1699 out:
1700         free(buf);
1701         return events;
1702 error:
1703         free_event_desc(events);
1704         events = NULL;
1705         goto out;
1706 }
1707
1708 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1709                                 void *priv __maybe_unused)
1710 {
1711         return fprintf(fp, ", %s = %s", name, val);
1712 }
1713
1714 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1715 {
1716         struct evsel *evsel, *events;
1717         u32 j;
1718         u64 *id;
1719
1720         if (ff->events)
1721                 events = ff->events;
1722         else
1723                 events = read_event_desc(ff);
1724
1725         if (!events) {
1726                 fprintf(fp, "# event desc: not available or unable to read\n");
1727                 return;
1728         }
1729
1730         for (evsel = events; evsel->core.attr.size; evsel++) {
1731                 fprintf(fp, "# event : name = %s, ", evsel->name);
1732
1733                 if (evsel->core.ids) {
1734                         fprintf(fp, ", id = {");
1735                         for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1736                                 if (j)
1737                                         fputc(',', fp);
1738                                 fprintf(fp, " %"PRIu64, *id);
1739                         }
1740                         fprintf(fp, " }");
1741                 }
1742
1743                 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1744
1745                 fputc('\n', fp);
1746         }
1747
1748         free_event_desc(events);
1749         ff->events = NULL;
1750 }
1751
1752 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1753 {
1754         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1755 }
1756
1757 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1758 {
1759         int i;
1760         struct numa_node *n;
1761
1762         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1763                 n = &ff->ph->env.numa_nodes[i];
1764
1765                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1766                             " free = %"PRIu64" kB\n",
1767                         n->node, n->mem_total, n->mem_free);
1768
1769                 fprintf(fp, "# node%u cpu list : ", n->node);
1770                 cpu_map__fprintf(n->map, fp);
1771         }
1772 }
1773
1774 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1775 {
1776         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1777 }
1778
1779 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1780 {
1781         fprintf(fp, "# contains samples with branch stack\n");
1782 }
1783
1784 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1785 {
1786         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1787 }
1788
1789 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1790 {
1791         fprintf(fp, "# contains stat data\n");
1792 }
1793
1794 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1795 {
1796         int i;
1797
1798         fprintf(fp, "# CPU cache info:\n");
1799         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1800                 fprintf(fp, "#  ");
1801                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1802         }
1803 }
1804
1805 static void print_compressed(struct feat_fd *ff, FILE *fp)
1806 {
1807         fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1808                 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1809                 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1810 }
1811
1812 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1813 {
1814         const char *delimiter = "# pmu mappings: ";
1815         char *str, *tmp;
1816         u32 pmu_num;
1817         u32 type;
1818
1819         pmu_num = ff->ph->env.nr_pmu_mappings;
1820         if (!pmu_num) {
1821                 fprintf(fp, "# pmu mappings: not available\n");
1822                 return;
1823         }
1824
1825         str = ff->ph->env.pmu_mappings;
1826
1827         while (pmu_num) {
1828                 type = strtoul(str, &tmp, 0);
1829                 if (*tmp != ':')
1830                         goto error;
1831
1832                 str = tmp + 1;
1833                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1834
1835                 delimiter = ", ";
1836                 str += strlen(str) + 1;
1837                 pmu_num--;
1838         }
1839
1840         fprintf(fp, "\n");
1841
1842         if (!pmu_num)
1843                 return;
1844 error:
1845         fprintf(fp, "# pmu mappings: unable to read\n");
1846 }
1847
1848 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1849 {
1850         struct perf_session *session;
1851         struct evsel *evsel;
1852         u32 nr = 0;
1853
1854         session = container_of(ff->ph, struct perf_session, header);
1855
1856         evlist__for_each_entry(session->evlist, evsel) {
1857                 if (perf_evsel__is_group_leader(evsel) &&
1858                     evsel->core.nr_members > 1) {
1859                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1860                                 perf_evsel__name(evsel));
1861
1862                         nr = evsel->core.nr_members - 1;
1863                 } else if (nr) {
1864                         fprintf(fp, ",%s", perf_evsel__name(evsel));
1865
1866                         if (--nr == 0)
1867                                 fprintf(fp, "}\n");
1868                 }
1869         }
1870 }
1871
1872 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1873 {
1874         struct perf_session *session;
1875         char time_buf[32];
1876         double d;
1877
1878         session = container_of(ff->ph, struct perf_session, header);
1879
1880         timestamp__scnprintf_usec(session->evlist->first_sample_time,
1881                                   time_buf, sizeof(time_buf));
1882         fprintf(fp, "# time of first sample : %s\n", time_buf);
1883
1884         timestamp__scnprintf_usec(session->evlist->last_sample_time,
1885                                   time_buf, sizeof(time_buf));
1886         fprintf(fp, "# time of last sample : %s\n", time_buf);
1887
1888         d = (double)(session->evlist->last_sample_time -
1889                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1890
1891         fprintf(fp, "# sample duration : %10.3f ms\n", d);
1892 }
1893
1894 static void memory_node__fprintf(struct memory_node *n,
1895                                  unsigned long long bsize, FILE *fp)
1896 {
1897         char buf_map[100], buf_size[50];
1898         unsigned long long size;
1899
1900         size = bsize * bitmap_weight(n->set, n->size);
1901         unit_number__scnprintf(buf_size, 50, size);
1902
1903         bitmap_scnprintf(n->set, n->size, buf_map, 100);
1904         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1905 }
1906
1907 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1908 {
1909         struct memory_node *nodes;
1910         int i, nr;
1911
1912         nodes = ff->ph->env.memory_nodes;
1913         nr    = ff->ph->env.nr_memory_nodes;
1914
1915         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1916                 nr, ff->ph->env.memory_bsize);
1917
1918         for (i = 0; i < nr; i++) {
1919                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1920         }
1921 }
1922
1923 static int __event_process_build_id(struct perf_record_header_build_id *bev,
1924                                     char *filename,
1925                                     struct perf_session *session)
1926 {
1927         int err = -1;
1928         struct machine *machine;
1929         u16 cpumode;
1930         struct dso *dso;
1931         enum dso_kernel_type dso_type;
1932
1933         machine = perf_session__findnew_machine(session, bev->pid);
1934         if (!machine)
1935                 goto out;
1936
1937         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1938
1939         switch (cpumode) {
1940         case PERF_RECORD_MISC_KERNEL:
1941                 dso_type = DSO_TYPE_KERNEL;
1942                 break;
1943         case PERF_RECORD_MISC_GUEST_KERNEL:
1944                 dso_type = DSO_TYPE_GUEST_KERNEL;
1945                 break;
1946         case PERF_RECORD_MISC_USER:
1947         case PERF_RECORD_MISC_GUEST_USER:
1948                 dso_type = DSO_TYPE_USER;
1949                 break;
1950         default:
1951                 goto out;
1952         }
1953
1954         dso = machine__findnew_dso(machine, filename);
1955         if (dso != NULL) {
1956                 char sbuild_id[SBUILD_ID_SIZE];
1957
1958                 dso__set_build_id(dso, &bev->build_id);
1959
1960                 if (dso_type != DSO_TYPE_USER) {
1961                         struct kmod_path m = { .name = NULL, };
1962
1963                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
1964                                 dso__set_module_info(dso, &m, machine);
1965                         else
1966                                 dso->kernel = dso_type;
1967
1968                         free(m.name);
1969                 }
1970
1971                 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1972                                   sbuild_id);
1973                 pr_debug("build id event received for %s: %s\n",
1974                          dso->long_name, sbuild_id);
1975                 dso__put(dso);
1976         }
1977
1978         err = 0;
1979 out:
1980         return err;
1981 }
1982
1983 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1984                                                  int input, u64 offset, u64 size)
1985 {
1986         struct perf_session *session = container_of(header, struct perf_session, header);
1987         struct {
1988                 struct perf_event_header   header;
1989                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1990                 char                       filename[0];
1991         } old_bev;
1992         struct perf_record_header_build_id bev;
1993         char filename[PATH_MAX];
1994         u64 limit = offset + size;
1995
1996         while (offset < limit) {
1997                 ssize_t len;
1998
1999                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2000                         return -1;
2001
2002                 if (header->needs_swap)
2003                         perf_event_header__bswap(&old_bev.header);
2004
2005                 len = old_bev.header.size - sizeof(old_bev);
2006                 if (readn(input, filename, len) != len)
2007                         return -1;
2008
2009                 bev.header = old_bev.header;
2010
2011                 /*
2012                  * As the pid is the missing value, we need to fill
2013                  * it properly. The header.misc value give us nice hint.
2014                  */
2015                 bev.pid = HOST_KERNEL_ID;
2016                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2017                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2018                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
2019
2020                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2021                 __event_process_build_id(&bev, filename, session);
2022
2023                 offset += bev.header.size;
2024         }
2025
2026         return 0;
2027 }
2028
2029 static int perf_header__read_build_ids(struct perf_header *header,
2030                                        int input, u64 offset, u64 size)
2031 {
2032         struct perf_session *session = container_of(header, struct perf_session, header);
2033         struct perf_record_header_build_id bev;
2034         char filename[PATH_MAX];
2035         u64 limit = offset + size, orig_offset = offset;
2036         int err = -1;
2037
2038         while (offset < limit) {
2039                 ssize_t len;
2040
2041                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2042                         goto out;
2043
2044                 if (header->needs_swap)
2045                         perf_event_header__bswap(&bev.header);
2046
2047                 len = bev.header.size - sizeof(bev);
2048                 if (readn(input, filename, len) != len)
2049                         goto out;
2050                 /*
2051                  * The a1645ce1 changeset:
2052                  *
2053                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
2054                  *
2055                  * Added a field to struct perf_record_header_build_id that broke the file
2056                  * format.
2057                  *
2058                  * Since the kernel build-id is the first entry, process the
2059                  * table using the old format if the well known
2060                  * '[kernel.kallsyms]' string for the kernel build-id has the
2061                  * first 4 characters chopped off (where the pid_t sits).
2062                  */
2063                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2064                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2065                                 return -1;
2066                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2067                 }
2068
2069                 __event_process_build_id(&bev, filename, session);
2070
2071                 offset += bev.header.size;
2072         }
2073         err = 0;
2074 out:
2075         return err;
2076 }
2077
2078 /* Macro for features that simply need to read and store a string. */
2079 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2080 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2081 {\
2082         ff->ph->env.__feat_env = do_read_string(ff); \
2083         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2084 }
2085
2086 FEAT_PROCESS_STR_FUN(hostname, hostname);
2087 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2088 FEAT_PROCESS_STR_FUN(version, version);
2089 FEAT_PROCESS_STR_FUN(arch, arch);
2090 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2091 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2092
2093 static int process_tracing_data(struct feat_fd *ff, void *data)
2094 {
2095         ssize_t ret = trace_report(ff->fd, data, false);
2096
2097         return ret < 0 ? -1 : 0;
2098 }
2099
2100 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2101 {
2102         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2103                 pr_debug("Failed to read buildids, continuing...\n");
2104         return 0;
2105 }
2106
2107 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2108 {
2109         int ret;
2110         u32 nr_cpus_avail, nr_cpus_online;
2111
2112         ret = do_read_u32(ff, &nr_cpus_avail);
2113         if (ret)
2114                 return ret;
2115
2116         ret = do_read_u32(ff, &nr_cpus_online);
2117         if (ret)
2118                 return ret;
2119         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2120         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2121         return 0;
2122 }
2123
2124 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2125 {
2126         u64 total_mem;
2127         int ret;
2128
2129         ret = do_read_u64(ff, &total_mem);
2130         if (ret)
2131                 return -1;
2132         ff->ph->env.total_mem = (unsigned long long)total_mem;
2133         return 0;
2134 }
2135
2136 static struct evsel *
2137 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2138 {
2139         struct evsel *evsel;
2140
2141         evlist__for_each_entry(evlist, evsel) {
2142                 if (evsel->idx == idx)
2143                         return evsel;
2144         }
2145
2146         return NULL;
2147 }
2148
2149 static void
2150 perf_evlist__set_event_name(struct evlist *evlist,
2151                             struct evsel *event)
2152 {
2153         struct evsel *evsel;
2154
2155         if (!event->name)
2156                 return;
2157
2158         evsel = perf_evlist__find_by_index(evlist, event->idx);
2159         if (!evsel)
2160                 return;
2161
2162         if (evsel->name)
2163                 return;
2164
2165         evsel->name = strdup(event->name);
2166 }
2167
2168 static int
2169 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2170 {
2171         struct perf_session *session;
2172         struct evsel *evsel, *events = read_event_desc(ff);
2173
2174         if (!events)
2175                 return 0;
2176
2177         session = container_of(ff->ph, struct perf_session, header);
2178
2179         if (session->data->is_pipe) {
2180                 /* Save events for reading later by print_event_desc,
2181                  * since they can't be read again in pipe mode. */
2182                 ff->events = events;
2183         }
2184
2185         for (evsel = events; evsel->core.attr.size; evsel++)
2186                 perf_evlist__set_event_name(session->evlist, evsel);
2187
2188         if (!session->data->is_pipe)
2189                 free_event_desc(events);
2190
2191         return 0;
2192 }
2193
2194 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2195 {
2196         char *str, *cmdline = NULL, **argv = NULL;
2197         u32 nr, i, len = 0;
2198
2199         if (do_read_u32(ff, &nr))
2200                 return -1;
2201
2202         ff->ph->env.nr_cmdline = nr;
2203
2204         cmdline = zalloc(ff->size + nr + 1);
2205         if (!cmdline)
2206                 return -1;
2207
2208         argv = zalloc(sizeof(char *) * (nr + 1));
2209         if (!argv)
2210                 goto error;
2211
2212         for (i = 0; i < nr; i++) {
2213                 str = do_read_string(ff);
2214                 if (!str)
2215                         goto error;
2216
2217                 argv[i] = cmdline + len;
2218                 memcpy(argv[i], str, strlen(str) + 1);
2219                 len += strlen(str) + 1;
2220                 free(str);
2221         }
2222         ff->ph->env.cmdline = cmdline;
2223         ff->ph->env.cmdline_argv = (const char **) argv;
2224         return 0;
2225
2226 error:
2227         free(argv);
2228         free(cmdline);
2229         return -1;
2230 }
2231
2232 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2233 {
2234         u32 nr, i;
2235         char *str;
2236         struct strbuf sb;
2237         int cpu_nr = ff->ph->env.nr_cpus_avail;
2238         u64 size = 0;
2239         struct perf_header *ph = ff->ph;
2240         bool do_core_id_test = true;
2241
2242         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2243         if (!ph->env.cpu)
2244                 return -1;
2245
2246         if (do_read_u32(ff, &nr))
2247                 goto free_cpu;
2248
2249         ph->env.nr_sibling_cores = nr;
2250         size += sizeof(u32);
2251         if (strbuf_init(&sb, 128) < 0)
2252                 goto free_cpu;
2253
2254         for (i = 0; i < nr; i++) {
2255                 str = do_read_string(ff);
2256                 if (!str)
2257                         goto error;
2258
2259                 /* include a NULL character at the end */
2260                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2261                         goto error;
2262                 size += string_size(str);
2263                 free(str);
2264         }
2265         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2266
2267         if (do_read_u32(ff, &nr))
2268                 return -1;
2269
2270         ph->env.nr_sibling_threads = nr;
2271         size += sizeof(u32);
2272
2273         for (i = 0; i < nr; i++) {
2274                 str = do_read_string(ff);
2275                 if (!str)
2276                         goto error;
2277
2278                 /* include a NULL character at the end */
2279                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2280                         goto error;
2281                 size += string_size(str);
2282                 free(str);
2283         }
2284         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2285
2286         /*
2287          * The header may be from old perf,
2288          * which doesn't include core id and socket id information.
2289          */
2290         if (ff->size <= size) {
2291                 zfree(&ph->env.cpu);
2292                 return 0;
2293         }
2294
2295         /* On s390 the socket_id number is not related to the numbers of cpus.
2296          * The socket_id number might be higher than the numbers of cpus.
2297          * This depends on the configuration.
2298          * AArch64 is the same.
2299          */
2300         if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2301                           || !strncmp(ph->env.arch, "aarch64", 7)))
2302                 do_core_id_test = false;
2303
2304         for (i = 0; i < (u32)cpu_nr; i++) {
2305                 if (do_read_u32(ff, &nr))
2306                         goto free_cpu;
2307
2308                 ph->env.cpu[i].core_id = nr;
2309                 size += sizeof(u32);
2310
2311                 if (do_read_u32(ff, &nr))
2312                         goto free_cpu;
2313
2314                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2315                         pr_debug("socket_id number is too big."
2316                                  "You may need to upgrade the perf tool.\n");
2317                         goto free_cpu;
2318                 }
2319
2320                 ph->env.cpu[i].socket_id = nr;
2321                 size += sizeof(u32);
2322         }
2323
2324         /*
2325          * The header may be from old perf,
2326          * which doesn't include die information.
2327          */
2328         if (ff->size <= size)
2329                 return 0;
2330
2331         if (do_read_u32(ff, &nr))
2332                 return -1;
2333
2334         ph->env.nr_sibling_dies = nr;
2335         size += sizeof(u32);
2336
2337         for (i = 0; i < nr; i++) {
2338                 str = do_read_string(ff);
2339                 if (!str)
2340                         goto error;
2341
2342                 /* include a NULL character at the end */
2343                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2344                         goto error;
2345                 size += string_size(str);
2346                 free(str);
2347         }
2348         ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2349
2350         for (i = 0; i < (u32)cpu_nr; i++) {
2351                 if (do_read_u32(ff, &nr))
2352                         goto free_cpu;
2353
2354                 ph->env.cpu[i].die_id = nr;
2355         }
2356
2357         return 0;
2358
2359 error:
2360         strbuf_release(&sb);
2361 free_cpu:
2362         zfree(&ph->env.cpu);
2363         return -1;
2364 }
2365
2366 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2367 {
2368         struct numa_node *nodes, *n;
2369         u32 nr, i;
2370         char *str;
2371
2372         /* nr nodes */
2373         if (do_read_u32(ff, &nr))
2374                 return -1;
2375
2376         nodes = zalloc(sizeof(*nodes) * nr);
2377         if (!nodes)
2378                 return -ENOMEM;
2379
2380         for (i = 0; i < nr; i++) {
2381                 n = &nodes[i];
2382
2383                 /* node number */
2384                 if (do_read_u32(ff, &n->node))
2385                         goto error;
2386
2387                 if (do_read_u64(ff, &n->mem_total))
2388                         goto error;
2389
2390                 if (do_read_u64(ff, &n->mem_free))
2391                         goto error;
2392
2393                 str = do_read_string(ff);
2394                 if (!str)
2395                         goto error;
2396
2397                 n->map = perf_cpu_map__new(str);
2398                 if (!n->map)
2399                         goto error;
2400
2401                 free(str);
2402         }
2403         ff->ph->env.nr_numa_nodes = nr;
2404         ff->ph->env.numa_nodes = nodes;
2405         return 0;
2406
2407 error:
2408         free(nodes);
2409         return -1;
2410 }
2411
2412 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2413 {
2414         char *name;
2415         u32 pmu_num;
2416         u32 type;
2417         struct strbuf sb;
2418
2419         if (do_read_u32(ff, &pmu_num))
2420                 return -1;
2421
2422         if (!pmu_num) {
2423                 pr_debug("pmu mappings not available\n");
2424                 return 0;
2425         }
2426
2427         ff->ph->env.nr_pmu_mappings = pmu_num;
2428         if (strbuf_init(&sb, 128) < 0)
2429                 return -1;
2430
2431         while (pmu_num) {
2432                 if (do_read_u32(ff, &type))
2433                         goto error;
2434
2435                 name = do_read_string(ff);
2436                 if (!name)
2437                         goto error;
2438
2439                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2440                         goto error;
2441                 /* include a NULL character at the end */
2442                 if (strbuf_add(&sb, "", 1) < 0)
2443                         goto error;
2444
2445                 if (!strcmp(name, "msr"))
2446                         ff->ph->env.msr_pmu_type = type;
2447
2448                 free(name);
2449                 pmu_num--;
2450         }
2451         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2452         return 0;
2453
2454 error:
2455         strbuf_release(&sb);
2456         return -1;
2457 }
2458
2459 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2460 {
2461         size_t ret = -1;
2462         u32 i, nr, nr_groups;
2463         struct perf_session *session;
2464         struct evsel *evsel, *leader = NULL;
2465         struct group_desc {
2466                 char *name;
2467                 u32 leader_idx;
2468                 u32 nr_members;
2469         } *desc;
2470
2471         if (do_read_u32(ff, &nr_groups))
2472                 return -1;
2473
2474         ff->ph->env.nr_groups = nr_groups;
2475         if (!nr_groups) {
2476                 pr_debug("group desc not available\n");
2477                 return 0;
2478         }
2479
2480         desc = calloc(nr_groups, sizeof(*desc));
2481         if (!desc)
2482                 return -1;
2483
2484         for (i = 0; i < nr_groups; i++) {
2485                 desc[i].name = do_read_string(ff);
2486                 if (!desc[i].name)
2487                         goto out_free;
2488
2489                 if (do_read_u32(ff, &desc[i].leader_idx))
2490                         goto out_free;
2491
2492                 if (do_read_u32(ff, &desc[i].nr_members))
2493                         goto out_free;
2494         }
2495
2496         /*
2497          * Rebuild group relationship based on the group_desc
2498          */
2499         session = container_of(ff->ph, struct perf_session, header);
2500         session->evlist->nr_groups = nr_groups;
2501
2502         i = nr = 0;
2503         evlist__for_each_entry(session->evlist, evsel) {
2504                 if (evsel->idx == (int) desc[i].leader_idx) {
2505                         evsel->leader = evsel;
2506                         /* {anon_group} is a dummy name */
2507                         if (strcmp(desc[i].name, "{anon_group}")) {
2508                                 evsel->group_name = desc[i].name;
2509                                 desc[i].name = NULL;
2510                         }
2511                         evsel->core.nr_members = desc[i].nr_members;
2512
2513                         if (i >= nr_groups || nr > 0) {
2514                                 pr_debug("invalid group desc\n");
2515                                 goto out_free;
2516                         }
2517
2518                         leader = evsel;
2519                         nr = evsel->core.nr_members - 1;
2520                         i++;
2521                 } else if (nr) {
2522                         /* This is a group member */
2523                         evsel->leader = leader;
2524
2525                         nr--;
2526                 }
2527         }
2528
2529         if (i != nr_groups || nr != 0) {
2530                 pr_debug("invalid group desc\n");
2531                 goto out_free;
2532         }
2533
2534         ret = 0;
2535 out_free:
2536         for (i = 0; i < nr_groups; i++)
2537                 zfree(&desc[i].name);
2538         free(desc);
2539
2540         return ret;
2541 }
2542
2543 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2544 {
2545         struct perf_session *session;
2546         int err;
2547
2548         session = container_of(ff->ph, struct perf_session, header);
2549
2550         err = auxtrace_index__process(ff->fd, ff->size, session,
2551                                       ff->ph->needs_swap);
2552         if (err < 0)
2553                 pr_err("Failed to process auxtrace index\n");
2554         return err;
2555 }
2556
2557 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2558 {
2559         struct cpu_cache_level *caches;
2560         u32 cnt, i, version;
2561
2562         if (do_read_u32(ff, &version))
2563                 return -1;
2564
2565         if (version != 1)
2566                 return -1;
2567
2568         if (do_read_u32(ff, &cnt))
2569                 return -1;
2570
2571         caches = zalloc(sizeof(*caches) * cnt);
2572         if (!caches)
2573                 return -1;
2574
2575         for (i = 0; i < cnt; i++) {
2576                 struct cpu_cache_level c;
2577
2578                 #define _R(v)                                           \
2579                         if (do_read_u32(ff, &c.v))\
2580                                 goto out_free_caches;                   \
2581
2582                 _R(level)
2583                 _R(line_size)
2584                 _R(sets)
2585                 _R(ways)
2586                 #undef _R
2587
2588                 #define _R(v)                                   \
2589                         c.v = do_read_string(ff);               \
2590                         if (!c.v)                               \
2591                                 goto out_free_caches;
2592
2593                 _R(type)
2594                 _R(size)
2595                 _R(map)
2596                 #undef _R
2597
2598                 caches[i] = c;
2599         }
2600
2601         ff->ph->env.caches = caches;
2602         ff->ph->env.caches_cnt = cnt;
2603         return 0;
2604 out_free_caches:
2605         free(caches);
2606         return -1;
2607 }
2608
2609 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2610 {
2611         struct perf_session *session;
2612         u64 first_sample_time, last_sample_time;
2613         int ret;
2614
2615         session = container_of(ff->ph, struct perf_session, header);
2616
2617         ret = do_read_u64(ff, &first_sample_time);
2618         if (ret)
2619                 return -1;
2620
2621         ret = do_read_u64(ff, &last_sample_time);
2622         if (ret)
2623                 return -1;
2624
2625         session->evlist->first_sample_time = first_sample_time;
2626         session->evlist->last_sample_time = last_sample_time;
2627         return 0;
2628 }
2629
2630 static int process_mem_topology(struct feat_fd *ff,
2631                                 void *data __maybe_unused)
2632 {
2633         struct memory_node *nodes;
2634         u64 version, i, nr, bsize;
2635         int ret = -1;
2636
2637         if (do_read_u64(ff, &version))
2638                 return -1;
2639
2640         if (version != 1)
2641                 return -1;
2642
2643         if (do_read_u64(ff, &bsize))
2644                 return -1;
2645
2646         if (do_read_u64(ff, &nr))
2647                 return -1;
2648
2649         nodes = zalloc(sizeof(*nodes) * nr);
2650         if (!nodes)
2651                 return -1;
2652
2653         for (i = 0; i < nr; i++) {
2654                 struct memory_node n;
2655
2656                 #define _R(v)                           \
2657                         if (do_read_u64(ff, &n.v))      \
2658                                 goto out;               \
2659
2660                 _R(node)
2661                 _R(size)
2662
2663                 #undef _R
2664
2665                 if (do_read_bitmap(ff, &n.set, &n.size))
2666                         goto out;
2667
2668                 nodes[i] = n;
2669         }
2670
2671         ff->ph->env.memory_bsize    = bsize;
2672         ff->ph->env.memory_nodes    = nodes;
2673         ff->ph->env.nr_memory_nodes = nr;
2674         ret = 0;
2675
2676 out:
2677         if (ret)
2678                 free(nodes);
2679         return ret;
2680 }
2681
2682 static int process_clockid(struct feat_fd *ff,
2683                            void *data __maybe_unused)
2684 {
2685         if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2686                 return -1;
2687
2688         return 0;
2689 }
2690
2691 static int process_dir_format(struct feat_fd *ff,
2692                               void *_data __maybe_unused)
2693 {
2694         struct perf_session *session;
2695         struct perf_data *data;
2696
2697         session = container_of(ff->ph, struct perf_session, header);
2698         data = session->data;
2699
2700         if (WARN_ON(!perf_data__is_dir(data)))
2701                 return -1;
2702
2703         return do_read_u64(ff, &data->dir.version);
2704 }
2705
2706 #ifdef HAVE_LIBBPF_SUPPORT
2707 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2708 {
2709         struct bpf_prog_info_linear *info_linear;
2710         struct bpf_prog_info_node *info_node;
2711         struct perf_env *env = &ff->ph->env;
2712         u32 count, i;
2713         int err = -1;
2714
2715         if (ff->ph->needs_swap) {
2716                 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2717                 return 0;
2718         }
2719
2720         if (do_read_u32(ff, &count))
2721                 return -1;
2722
2723         down_write(&env->bpf_progs.lock);
2724
2725         for (i = 0; i < count; ++i) {
2726                 u32 info_len, data_len;
2727
2728                 info_linear = NULL;
2729                 info_node = NULL;
2730                 if (do_read_u32(ff, &info_len))
2731                         goto out;
2732                 if (do_read_u32(ff, &data_len))
2733                         goto out;
2734
2735                 if (info_len > sizeof(struct bpf_prog_info)) {
2736                         pr_warning("detected invalid bpf_prog_info\n");
2737                         goto out;
2738                 }
2739
2740                 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2741                                      data_len);
2742                 if (!info_linear)
2743                         goto out;
2744                 info_linear->info_len = sizeof(struct bpf_prog_info);
2745                 info_linear->data_len = data_len;
2746                 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2747                         goto out;
2748                 if (__do_read(ff, &info_linear->info, info_len))
2749                         goto out;
2750                 if (info_len < sizeof(struct bpf_prog_info))
2751                         memset(((void *)(&info_linear->info)) + info_len, 0,
2752                                sizeof(struct bpf_prog_info) - info_len);
2753
2754                 if (__do_read(ff, info_linear->data, data_len))
2755                         goto out;
2756
2757                 info_node = malloc(sizeof(struct bpf_prog_info_node));
2758                 if (!info_node)
2759                         goto out;
2760
2761                 /* after reading from file, translate offset to address */
2762                 bpf_program__bpil_offs_to_addr(info_linear);
2763                 info_node->info_linear = info_linear;
2764                 perf_env__insert_bpf_prog_info(env, info_node);
2765         }
2766
2767         up_write(&env->bpf_progs.lock);
2768         return 0;
2769 out:
2770         free(info_linear);
2771         free(info_node);
2772         up_write(&env->bpf_progs.lock);
2773         return err;
2774 }
2775 #else // HAVE_LIBBPF_SUPPORT
2776 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2777 {
2778         return 0;
2779 }
2780 #endif // HAVE_LIBBPF_SUPPORT
2781
2782 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2783 {
2784         struct perf_env *env = &ff->ph->env;
2785         struct btf_node *node = NULL;
2786         u32 count, i;
2787         int err = -1;
2788
2789         if (ff->ph->needs_swap) {
2790                 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2791                 return 0;
2792         }
2793
2794         if (do_read_u32(ff, &count))
2795                 return -1;
2796
2797         down_write(&env->bpf_progs.lock);
2798
2799         for (i = 0; i < count; ++i) {
2800                 u32 id, data_size;
2801
2802                 if (do_read_u32(ff, &id))
2803                         goto out;
2804                 if (do_read_u32(ff, &data_size))
2805                         goto out;
2806
2807                 node = malloc(sizeof(struct btf_node) + data_size);
2808                 if (!node)
2809                         goto out;
2810
2811                 node->id = id;
2812                 node->data_size = data_size;
2813
2814                 if (__do_read(ff, node->data, data_size))
2815                         goto out;
2816
2817                 perf_env__insert_btf(env, node);
2818                 node = NULL;
2819         }
2820
2821         err = 0;
2822 out:
2823         up_write(&env->bpf_progs.lock);
2824         free(node);
2825         return err;
2826 }
2827
2828 static int process_compressed(struct feat_fd *ff,
2829                               void *data __maybe_unused)
2830 {
2831         if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2832                 return -1;
2833
2834         if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2835                 return -1;
2836
2837         if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2838                 return -1;
2839
2840         if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2841                 return -1;
2842
2843         if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2844                 return -1;
2845
2846         return 0;
2847 }
2848
2849 #define FEAT_OPR(n, func, __full_only) \
2850         [HEADER_##n] = {                                        \
2851                 .name       = __stringify(n),                   \
2852                 .write      = write_##func,                     \
2853                 .print      = print_##func,                     \
2854                 .full_only  = __full_only,                      \
2855                 .process    = process_##func,                   \
2856                 .synthesize = true                              \
2857         }
2858
2859 #define FEAT_OPN(n, func, __full_only) \
2860         [HEADER_##n] = {                                        \
2861                 .name       = __stringify(n),                   \
2862                 .write      = write_##func,                     \
2863                 .print      = print_##func,                     \
2864                 .full_only  = __full_only,                      \
2865                 .process    = process_##func                    \
2866         }
2867
2868 /* feature_ops not implemented: */
2869 #define print_tracing_data      NULL
2870 #define print_build_id          NULL
2871
2872 #define process_branch_stack    NULL
2873 #define process_stat            NULL
2874
2875 // Only used in util/synthetic-events.c
2876 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2877
2878 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2879         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
2880         FEAT_OPN(BUILD_ID,      build_id,       false),
2881         FEAT_OPR(HOSTNAME,      hostname,       false),
2882         FEAT_OPR(OSRELEASE,     osrelease,      false),
2883         FEAT_OPR(VERSION,       version,        false),
2884         FEAT_OPR(ARCH,          arch,           false),
2885         FEAT_OPR(NRCPUS,        nrcpus,         false),
2886         FEAT_OPR(CPUDESC,       cpudesc,        false),
2887         FEAT_OPR(CPUID,         cpuid,          false),
2888         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
2889         FEAT_OPR(EVENT_DESC,    event_desc,     false),
2890         FEAT_OPR(CMDLINE,       cmdline,        false),
2891         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
2892         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
2893         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
2894         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
2895         FEAT_OPR(GROUP_DESC,    group_desc,     false),
2896         FEAT_OPN(AUXTRACE,      auxtrace,       false),
2897         FEAT_OPN(STAT,          stat,           false),
2898         FEAT_OPN(CACHE,         cache,          true),
2899         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
2900         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
2901         FEAT_OPR(CLOCKID,       clockid,        false),
2902         FEAT_OPN(DIR_FORMAT,    dir_format,     false),
2903         FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2904         FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2905         FEAT_OPR(COMPRESSED,    compressed,     false),
2906 };
2907
2908 struct header_print_data {
2909         FILE *fp;
2910         bool full; /* extended list of headers */
2911 };
2912
2913 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2914                                            struct perf_header *ph,
2915                                            int feat, int fd, void *data)
2916 {
2917         struct header_print_data *hd = data;
2918         struct feat_fd ff;
2919
2920         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2921                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2922                                 "%d, continuing...\n", section->offset, feat);
2923                 return 0;
2924         }
2925         if (feat >= HEADER_LAST_FEATURE) {
2926                 pr_warning("unknown feature %d\n", feat);
2927                 return 0;
2928         }
2929         if (!feat_ops[feat].print)
2930                 return 0;
2931
2932         ff = (struct  feat_fd) {
2933                 .fd = fd,
2934                 .ph = ph,
2935         };
2936
2937         if (!feat_ops[feat].full_only || hd->full)
2938                 feat_ops[feat].print(&ff, hd->fp);
2939         else
2940                 fprintf(hd->fp, "# %s info available, use -I to display\n",
2941                         feat_ops[feat].name);
2942
2943         return 0;
2944 }
2945
2946 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2947 {
2948         struct header_print_data hd;
2949         struct perf_header *header = &session->header;
2950         int fd = perf_data__fd(session->data);
2951         struct stat st;
2952         time_t stctime;
2953         int ret, bit;
2954
2955         hd.fp = fp;
2956         hd.full = full;
2957
2958         ret = fstat(fd, &st);
2959         if (ret == -1)
2960                 return -1;
2961
2962         stctime = st.st_mtime;
2963         fprintf(fp, "# captured on    : %s", ctime(&stctime));
2964
2965         fprintf(fp, "# header version : %u\n", header->version);
2966         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2967         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2968         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2969
2970         perf_header__process_sections(header, fd, &hd,
2971                                       perf_file_section__fprintf_info);
2972
2973         if (session->data->is_pipe)
2974                 return 0;
2975
2976         fprintf(fp, "# missing features: ");
2977         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2978                 if (bit)
2979                         fprintf(fp, "%s ", feat_ops[bit].name);
2980         }
2981
2982         fprintf(fp, "\n");
2983         return 0;
2984 }
2985
2986 static int do_write_feat(struct feat_fd *ff, int type,
2987                          struct perf_file_section **p,
2988                          struct evlist *evlist)
2989 {
2990         int err;
2991         int ret = 0;
2992
2993         if (perf_header__has_feat(ff->ph, type)) {
2994                 if (!feat_ops[type].write)
2995                         return -1;
2996
2997                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2998                         return -1;
2999
3000                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3001
3002                 err = feat_ops[type].write(ff, evlist);
3003                 if (err < 0) {
3004                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
3005
3006                         /* undo anything written */
3007                         lseek(ff->fd, (*p)->offset, SEEK_SET);
3008
3009                         return -1;
3010                 }
3011                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3012                 (*p)++;
3013         }
3014         return ret;
3015 }
3016
3017 static int perf_header__adds_write(struct perf_header *header,
3018                                    struct evlist *evlist, int fd)
3019 {
3020         int nr_sections;
3021         struct feat_fd ff;
3022         struct perf_file_section *feat_sec, *p;
3023         int sec_size;
3024         u64 sec_start;
3025         int feat;
3026         int err;
3027
3028         ff = (struct feat_fd){
3029                 .fd  = fd,
3030                 .ph = header,
3031         };
3032
3033         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3034         if (!nr_sections)
3035                 return 0;
3036
3037         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3038         if (feat_sec == NULL)
3039                 return -ENOMEM;
3040
3041         sec_size = sizeof(*feat_sec) * nr_sections;
3042
3043         sec_start = header->feat_offset;
3044         lseek(fd, sec_start + sec_size, SEEK_SET);
3045
3046         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3047                 if (do_write_feat(&ff, feat, &p, evlist))
3048                         perf_header__clear_feat(header, feat);
3049         }
3050
3051         lseek(fd, sec_start, SEEK_SET);
3052         /*
3053          * may write more than needed due to dropped feature, but
3054          * this is okay, reader will skip the missing entries
3055          */
3056         err = do_write(&ff, feat_sec, sec_size);
3057         if (err < 0)
3058                 pr_debug("failed to write feature section\n");
3059         free(feat_sec);
3060         return err;
3061 }
3062
3063 int perf_header__write_pipe(int fd)
3064 {
3065         struct perf_pipe_file_header f_header;
3066         struct feat_fd ff;
3067         int err;
3068
3069         ff = (struct feat_fd){ .fd = fd };
3070
3071         f_header = (struct perf_pipe_file_header){
3072                 .magic     = PERF_MAGIC,
3073                 .size      = sizeof(f_header),
3074         };
3075
3076         err = do_write(&ff, &f_header, sizeof(f_header));
3077         if (err < 0) {
3078                 pr_debug("failed to write perf pipe header\n");
3079                 return err;
3080         }
3081
3082         return 0;
3083 }
3084
3085 int perf_session__write_header(struct perf_session *session,
3086                                struct evlist *evlist,
3087                                int fd, bool at_exit)
3088 {
3089         struct perf_file_header f_header;
3090         struct perf_file_attr   f_attr;
3091         struct perf_header *header = &session->header;
3092         struct evsel *evsel;
3093         struct feat_fd ff;
3094         u64 attr_offset;
3095         int err;
3096
3097         ff = (struct feat_fd){ .fd = fd};
3098         lseek(fd, sizeof(f_header), SEEK_SET);
3099
3100         evlist__for_each_entry(session->evlist, evsel) {
3101                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3102                 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3103                 if (err < 0) {
3104                         pr_debug("failed to write perf header\n");
3105                         return err;
3106                 }
3107         }
3108
3109         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3110
3111         evlist__for_each_entry(evlist, evsel) {
3112                 f_attr = (struct perf_file_attr){
3113                         .attr = evsel->core.attr,
3114                         .ids  = {
3115                                 .offset = evsel->id_offset,
3116                                 .size   = evsel->core.ids * sizeof(u64),
3117                         }
3118                 };
3119                 err = do_write(&ff, &f_attr, sizeof(f_attr));
3120                 if (err < 0) {
3121                         pr_debug("failed to write perf header attribute\n");
3122                         return err;
3123                 }
3124         }
3125
3126         if (!header->data_offset)
3127                 header->data_offset = lseek(fd, 0, SEEK_CUR);
3128         header->feat_offset = header->data_offset + header->data_size;
3129
3130         if (at_exit) {
3131                 err = perf_header__adds_write(header, evlist, fd);
3132                 if (err < 0)
3133                         return err;
3134         }
3135
3136         f_header = (struct perf_file_header){
3137                 .magic     = PERF_MAGIC,
3138                 .size      = sizeof(f_header),
3139                 .attr_size = sizeof(f_attr),
3140                 .attrs = {
3141                         .offset = attr_offset,
3142                         .size   = evlist->core.nr_entries * sizeof(f_attr),
3143                 },
3144                 .data = {
3145                         .offset = header->data_offset,
3146                         .size   = header->data_size,
3147                 },
3148                 /* event_types is ignored, store zeros */
3149         };
3150
3151         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3152
3153         lseek(fd, 0, SEEK_SET);
3154         err = do_write(&ff, &f_header, sizeof(f_header));
3155         if (err < 0) {
3156                 pr_debug("failed to write perf header\n");
3157                 return err;
3158         }
3159         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3160
3161         return 0;
3162 }
3163
3164 static int perf_header__getbuffer64(struct perf_header *header,
3165                                     int fd, void *buf, size_t size)
3166 {
3167         if (readn(fd, buf, size) <= 0)
3168                 return -1;
3169
3170         if (header->needs_swap)
3171                 mem_bswap_64(buf, size);
3172
3173         return 0;
3174 }
3175
3176 int perf_header__process_sections(struct perf_header *header, int fd,
3177                                   void *data,
3178                                   int (*process)(struct perf_file_section *section,
3179                                                  struct perf_header *ph,
3180                                                  int feat, int fd, void *data))
3181 {
3182         struct perf_file_section *feat_sec, *sec;
3183         int nr_sections;
3184         int sec_size;
3185         int feat;
3186         int err;
3187
3188         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3189         if (!nr_sections)
3190                 return 0;
3191
3192         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3193         if (!feat_sec)
3194                 return -1;
3195
3196         sec_size = sizeof(*feat_sec) * nr_sections;
3197
3198         lseek(fd, header->feat_offset, SEEK_SET);
3199
3200         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3201         if (err < 0)
3202                 goto out_free;
3203
3204         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3205                 err = process(sec++, header, feat, fd, data);
3206                 if (err < 0)
3207                         goto out_free;
3208         }
3209         err = 0;
3210 out_free:
3211         free(feat_sec);
3212         return err;
3213 }
3214
3215 static const int attr_file_abi_sizes[] = {
3216         [0] = PERF_ATTR_SIZE_VER0,
3217         [1] = PERF_ATTR_SIZE_VER1,
3218         [2] = PERF_ATTR_SIZE_VER2,
3219         [3] = PERF_ATTR_SIZE_VER3,
3220         [4] = PERF_ATTR_SIZE_VER4,
3221         0,
3222 };
3223
3224 /*
3225  * In the legacy file format, the magic number is not used to encode endianness.
3226  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3227  * on ABI revisions, we need to try all combinations for all endianness to
3228  * detect the endianness.
3229  */
3230 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3231 {
3232         uint64_t ref_size, attr_size;
3233         int i;
3234
3235         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3236                 ref_size = attr_file_abi_sizes[i]
3237                          + sizeof(struct perf_file_section);
3238                 if (hdr_sz != ref_size) {
3239                         attr_size = bswap_64(hdr_sz);
3240                         if (attr_size != ref_size)
3241                                 continue;
3242
3243                         ph->needs_swap = true;
3244                 }
3245                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3246                          i,
3247                          ph->needs_swap);
3248                 return 0;
3249         }
3250         /* could not determine endianness */
3251         return -1;
3252 }
3253
3254 #define PERF_PIPE_HDR_VER0      16
3255
3256 static const size_t attr_pipe_abi_sizes[] = {
3257         [0] = PERF_PIPE_HDR_VER0,
3258         0,
3259 };
3260
3261 /*
3262  * In the legacy pipe format, there is an implicit assumption that endiannesss
3263  * between host recording the samples, and host parsing the samples is the
3264  * same. This is not always the case given that the pipe output may always be
3265  * redirected into a file and analyzed on a different machine with possibly a
3266  * different endianness and perf_event ABI revsions in the perf tool itself.
3267  */
3268 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3269 {
3270         u64 attr_size;
3271         int i;
3272
3273         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3274                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3275                         attr_size = bswap_64(hdr_sz);
3276                         if (attr_size != hdr_sz)
3277                                 continue;
3278
3279                         ph->needs_swap = true;
3280                 }
3281                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3282                 return 0;
3283         }
3284         return -1;
3285 }
3286
3287 bool is_perf_magic(u64 magic)
3288 {
3289         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3290                 || magic == __perf_magic2
3291                 || magic == __perf_magic2_sw)
3292                 return true;
3293
3294         return false;
3295 }
3296
3297 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3298                               bool is_pipe, struct perf_header *ph)
3299 {
3300         int ret;
3301
3302         /* check for legacy format */
3303         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3304         if (ret == 0) {
3305                 ph->version = PERF_HEADER_VERSION_1;
3306                 pr_debug("legacy perf.data format\n");
3307                 if (is_pipe)
3308                         return try_all_pipe_abis(hdr_sz, ph);
3309
3310                 return try_all_file_abis(hdr_sz, ph);
3311         }
3312         /*
3313          * the new magic number serves two purposes:
3314          * - unique number to identify actual perf.data files
3315          * - encode endianness of file
3316          */
3317         ph->version = PERF_HEADER_VERSION_2;
3318
3319         /* check magic number with one endianness */
3320         if (magic == __perf_magic2)
3321                 return 0;
3322
3323         /* check magic number with opposite endianness */
3324         if (magic != __perf_magic2_sw)
3325                 return -1;
3326
3327         ph->needs_swap = true;
3328
3329         return 0;
3330 }
3331
3332 int perf_file_header__read(struct perf_file_header *header,
3333                            struct perf_header *ph, int fd)
3334 {
3335         ssize_t ret;
3336
3337         lseek(fd, 0, SEEK_SET);
3338
3339         ret = readn(fd, header, sizeof(*header));
3340         if (ret <= 0)
3341                 return -1;
3342
3343         if (check_magic_endian(header->magic,
3344                                header->attr_size, false, ph) < 0) {
3345                 pr_debug("magic/endian check failed\n");
3346                 return -1;
3347         }
3348
3349         if (ph->needs_swap) {
3350                 mem_bswap_64(header, offsetof(struct perf_file_header,
3351                              adds_features));
3352         }
3353
3354         if (header->size != sizeof(*header)) {
3355                 /* Support the previous format */
3356                 if (header->size == offsetof(typeof(*header), adds_features))
3357                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3358                 else
3359                         return -1;
3360         } else if (ph->needs_swap) {
3361                 /*
3362                  * feature bitmap is declared as an array of unsigned longs --
3363                  * not good since its size can differ between the host that
3364                  * generated the data file and the host analyzing the file.
3365                  *
3366                  * We need to handle endianness, but we don't know the size of
3367                  * the unsigned long where the file was generated. Take a best
3368                  * guess at determining it: try 64-bit swap first (ie., file
3369                  * created on a 64-bit host), and check if the hostname feature
3370                  * bit is set (this feature bit is forced on as of fbe96f2).
3371                  * If the bit is not, undo the 64-bit swap and try a 32-bit
3372                  * swap. If the hostname bit is still not set (e.g., older data
3373                  * file), punt and fallback to the original behavior --
3374                  * clearing all feature bits and setting buildid.
3375                  */
3376                 mem_bswap_64(&header->adds_features,
3377                             BITS_TO_U64(HEADER_FEAT_BITS));
3378
3379                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3380                         /* unswap as u64 */
3381                         mem_bswap_64(&header->adds_features,
3382                                     BITS_TO_U64(HEADER_FEAT_BITS));
3383
3384                         /* unswap as u32 */
3385                         mem_bswap_32(&header->adds_features,
3386                                     BITS_TO_U32(HEADER_FEAT_BITS));
3387                 }
3388
3389                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3390                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3391                         set_bit(HEADER_BUILD_ID, header->adds_features);
3392                 }
3393         }
3394
3395         memcpy(&ph->adds_features, &header->adds_features,
3396                sizeof(ph->adds_features));
3397
3398         ph->data_offset  = header->data.offset;
3399         ph->data_size    = header->data.size;
3400         ph->feat_offset  = header->data.offset + header->data.size;
3401         return 0;
3402 }
3403
3404 static int perf_file_section__process(struct perf_file_section *section,
3405                                       struct perf_header *ph,
3406                                       int feat, int fd, void *data)
3407 {
3408         struct feat_fd fdd = {
3409                 .fd     = fd,
3410                 .ph     = ph,
3411                 .size   = section->size,
3412                 .offset = section->offset,
3413         };
3414
3415         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3416                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3417                           "%d, continuing...\n", section->offset, feat);
3418                 return 0;
3419         }
3420
3421         if (feat >= HEADER_LAST_FEATURE) {
3422                 pr_debug("unknown feature %d, continuing...\n", feat);
3423                 return 0;
3424         }
3425
3426         if (!feat_ops[feat].process)
3427                 return 0;
3428
3429         return feat_ops[feat].process(&fdd, data);
3430 }
3431
3432 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3433                                        struct perf_header *ph, int fd,
3434                                        bool repipe)
3435 {
3436         struct feat_fd ff = {
3437                 .fd = STDOUT_FILENO,
3438                 .ph = ph,
3439         };
3440         ssize_t ret;
3441
3442         ret = readn(fd, header, sizeof(*header));
3443         if (ret <= 0)
3444                 return -1;
3445
3446         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3447                 pr_debug("endian/magic failed\n");
3448                 return -1;
3449         }
3450
3451         if (ph->needs_swap)
3452                 header->size = bswap_64(header->size);
3453
3454         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3455                 return -1;
3456
3457         return 0;
3458 }
3459
3460 static int perf_header__read_pipe(struct perf_session *session)
3461 {
3462         struct perf_header *header = &session->header;
3463         struct perf_pipe_file_header f_header;
3464
3465         if (perf_file_header__read_pipe(&f_header, header,
3466                                         perf_data__fd(session->data),
3467                                         session->repipe) < 0) {
3468                 pr_debug("incompatible file format\n");
3469                 return -EINVAL;
3470         }
3471
3472         return 0;
3473 }
3474
3475 static int read_attr(int fd, struct perf_header *ph,
3476                      struct perf_file_attr *f_attr)
3477 {
3478         struct perf_event_attr *attr = &f_attr->attr;
3479         size_t sz, left;
3480         size_t our_sz = sizeof(f_attr->attr);
3481         ssize_t ret;
3482
3483         memset(f_attr, 0, sizeof(*f_attr));
3484
3485         /* read minimal guaranteed structure */
3486         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3487         if (ret <= 0) {
3488                 pr_debug("cannot read %d bytes of header attr\n",
3489                          PERF_ATTR_SIZE_VER0);
3490                 return -1;
3491         }
3492
3493         /* on file perf_event_attr size */
3494         sz = attr->size;
3495
3496         if (ph->needs_swap)
3497                 sz = bswap_32(sz);
3498
3499         if (sz == 0) {
3500                 /* assume ABI0 */
3501                 sz =  PERF_ATTR_SIZE_VER0;
3502         } else if (sz > our_sz) {
3503                 pr_debug("file uses a more recent and unsupported ABI"
3504                          " (%zu bytes extra)\n", sz - our_sz);
3505                 return -1;
3506         }
3507         /* what we have not yet read and that we know about */
3508         left = sz - PERF_ATTR_SIZE_VER0;
3509         if (left) {
3510                 void *ptr = attr;
3511                 ptr += PERF_ATTR_SIZE_VER0;
3512
3513                 ret = readn(fd, ptr, left);
3514         }
3515         /* read perf_file_section, ids are read in caller */
3516         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3517
3518         return ret <= 0 ? -1 : 0;
3519 }
3520
3521 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3522                                                 struct tep_handle *pevent)
3523 {
3524         struct tep_event *event;
3525         char bf[128];
3526
3527         /* already prepared */
3528         if (evsel->tp_format)
3529                 return 0;
3530
3531         if (pevent == NULL) {
3532                 pr_debug("broken or missing trace data\n");
3533                 return -1;
3534         }
3535
3536         event = tep_find_event(pevent, evsel->core.attr.config);
3537         if (event == NULL) {
3538                 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3539                 return -1;
3540         }
3541
3542         if (!evsel->name) {
3543                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3544                 evsel->name = strdup(bf);
3545                 if (evsel->name == NULL)
3546                         return -1;
3547         }
3548
3549         evsel->tp_format = event;
3550         return 0;
3551 }
3552
3553 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3554                                                   struct tep_handle *pevent)
3555 {
3556         struct evsel *pos;
3557
3558         evlist__for_each_entry(evlist, pos) {
3559                 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3560                     perf_evsel__prepare_tracepoint_event(pos, pevent))
3561                         return -1;
3562         }
3563
3564         return 0;
3565 }
3566
3567 int perf_session__read_header(struct perf_session *session)
3568 {
3569         struct perf_data *data = session->data;
3570         struct perf_header *header = &session->header;
3571         struct perf_file_header f_header;
3572         struct perf_file_attr   f_attr;
3573         u64                     f_id;
3574         int nr_attrs, nr_ids, i, j;
3575         int fd = perf_data__fd(data);
3576
3577         session->evlist = evlist__new();
3578         if (session->evlist == NULL)
3579                 return -ENOMEM;
3580
3581         session->evlist->env = &header->env;
3582         session->machines.host.env = &header->env;
3583         if (perf_data__is_pipe(data))
3584                 return perf_header__read_pipe(session);
3585
3586         if (perf_file_header__read(&f_header, header, fd) < 0)
3587                 return -EINVAL;
3588
3589         /*
3590          * Sanity check that perf.data was written cleanly; data size is
3591          * initialized to 0 and updated only if the on_exit function is run.
3592          * If data size is still 0 then the file contains only partial
3593          * information.  Just warn user and process it as much as it can.
3594          */
3595         if (f_header.data.size == 0) {
3596                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3597                            "Was the 'perf record' command properly terminated?\n",
3598                            data->file.path);
3599         }
3600
3601         if (f_header.attr_size == 0) {
3602                 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3603                        "Was the 'perf record' command properly terminated?\n",
3604                        data->file.path);
3605                 return -EINVAL;
3606         }
3607
3608         nr_attrs = f_header.attrs.size / f_header.attr_size;
3609         lseek(fd, f_header.attrs.offset, SEEK_SET);
3610
3611         for (i = 0; i < nr_attrs; i++) {
3612                 struct evsel *evsel;
3613                 off_t tmp;
3614
3615                 if (read_attr(fd, header, &f_attr) < 0)
3616                         goto out_errno;
3617
3618                 if (header->needs_swap) {
3619                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
3620                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3621                         perf_event__attr_swap(&f_attr.attr);
3622                 }
3623
3624                 tmp = lseek(fd, 0, SEEK_CUR);
3625                 evsel = evsel__new(&f_attr.attr);
3626
3627                 if (evsel == NULL)
3628                         goto out_delete_evlist;
3629
3630                 evsel->needs_swap = header->needs_swap;
3631                 /*
3632                  * Do it before so that if perf_evsel__alloc_id fails, this
3633                  * entry gets purged too at evlist__delete().
3634                  */
3635                 evlist__add(session->evlist, evsel);
3636
3637                 nr_ids = f_attr.ids.size / sizeof(u64);
3638                 /*
3639                  * We don't have the cpu and thread maps on the header, so
3640                  * for allocating the perf_sample_id table we fake 1 cpu and
3641                  * hattr->ids threads.
3642                  */
3643                 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3644                         goto out_delete_evlist;
3645
3646                 lseek(fd, f_attr.ids.offset, SEEK_SET);
3647
3648                 for (j = 0; j < nr_ids; j++) {
3649                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3650                                 goto out_errno;
3651
3652                         perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3653                 }
3654
3655                 lseek(fd, tmp, SEEK_SET);
3656         }
3657
3658         perf_header__process_sections(header, fd, &session->tevent,
3659                                       perf_file_section__process);
3660
3661         if (perf_evlist__prepare_tracepoint_events(session->evlist,
3662                                                    session->tevent.pevent))
3663                 goto out_delete_evlist;
3664
3665         return 0;
3666 out_errno:
3667         return -errno;
3668
3669 out_delete_evlist:
3670         evlist__delete(session->evlist);
3671         session->evlist = NULL;
3672         return -ENOMEM;
3673 }
3674
3675 int perf_event__process_feature(struct perf_session *session,
3676                                 union perf_event *event)
3677 {
3678         struct perf_tool *tool = session->tool;
3679         struct feat_fd ff = { .fd = 0 };
3680         struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3681         int type = fe->header.type;
3682         u64 feat = fe->feat_id;
3683
3684         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3685                 pr_warning("invalid record type %d in pipe-mode\n", type);
3686                 return 0;
3687         }
3688         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3689                 pr_warning("invalid record type %d in pipe-mode\n", type);
3690                 return -1;
3691         }
3692
3693         if (!feat_ops[feat].process)
3694                 return 0;
3695
3696         ff.buf  = (void *)fe->data;
3697         ff.size = event->header.size - sizeof(*fe);
3698         ff.ph = &session->header;
3699
3700         if (feat_ops[feat].process(&ff, NULL))
3701                 return -1;
3702
3703         if (!feat_ops[feat].print || !tool->show_feat_hdr)
3704                 return 0;
3705
3706         if (!feat_ops[feat].full_only ||
3707             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3708                 feat_ops[feat].print(&ff, stdout);
3709         } else {
3710                 fprintf(stdout, "# %s info available, use -I to display\n",
3711                         feat_ops[feat].name);
3712         }
3713
3714         return 0;
3715 }
3716
3717 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3718 {
3719         struct perf_record_event_update *ev = &event->event_update;
3720         struct perf_record_event_update_scale *ev_scale;
3721         struct perf_record_event_update_cpus *ev_cpus;
3722         struct perf_cpu_map *map;
3723         size_t ret;
3724
3725         ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3726
3727         switch (ev->type) {
3728         case PERF_EVENT_UPDATE__SCALE:
3729                 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3730                 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3731                 break;
3732         case PERF_EVENT_UPDATE__UNIT:
3733                 ret += fprintf(fp, "... unit:  %s\n", ev->data);
3734                 break;
3735         case PERF_EVENT_UPDATE__NAME:
3736                 ret += fprintf(fp, "... name:  %s\n", ev->data);
3737                 break;
3738         case PERF_EVENT_UPDATE__CPUS:
3739                 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3740                 ret += fprintf(fp, "... ");
3741
3742                 map = cpu_map__new_data(&ev_cpus->cpus);
3743                 if (map)
3744                         ret += cpu_map__fprintf(map, fp);
3745                 else
3746                         ret += fprintf(fp, "failed to get cpus\n");
3747                 break;
3748         default:
3749                 ret += fprintf(fp, "... unknown type\n");
3750                 break;
3751         }
3752
3753         return ret;
3754 }
3755
3756 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3757                              union perf_event *event,
3758                              struct evlist **pevlist)
3759 {
3760         u32 i, ids, n_ids;
3761         struct evsel *evsel;
3762         struct evlist *evlist = *pevlist;
3763
3764         if (evlist == NULL) {
3765                 *pevlist = evlist = evlist__new();
3766                 if (evlist == NULL)
3767                         return -ENOMEM;
3768         }
3769
3770         evsel = evsel__new(&event->attr.attr);
3771         if (evsel == NULL)
3772                 return -ENOMEM;
3773
3774         evlist__add(evlist, evsel);
3775
3776         ids = event->header.size;
3777         ids -= (void *)&event->attr.id - (void *)event;
3778         n_ids = ids / sizeof(u64);
3779         /*
3780          * We don't have the cpu and thread maps on the header, so
3781          * for allocating the perf_sample_id table we fake 1 cpu and
3782          * hattr->ids threads.
3783          */
3784         if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3785                 return -ENOMEM;
3786
3787         for (i = 0; i < n_ids; i++) {
3788                 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3789         }
3790
3791         return 0;
3792 }
3793
3794 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3795                                      union perf_event *event,
3796                                      struct evlist **pevlist)
3797 {
3798         struct perf_record_event_update *ev = &event->event_update;
3799         struct perf_record_event_update_scale *ev_scale;
3800         struct perf_record_event_update_cpus *ev_cpus;
3801         struct evlist *evlist;
3802         struct evsel *evsel;
3803         struct perf_cpu_map *map;
3804
3805         if (!pevlist || *pevlist == NULL)
3806                 return -EINVAL;
3807
3808         evlist = *pevlist;
3809
3810         evsel = perf_evlist__id2evsel(evlist, ev->id);
3811         if (evsel == NULL)
3812                 return -EINVAL;
3813
3814         switch (ev->type) {
3815         case PERF_EVENT_UPDATE__UNIT:
3816                 evsel->unit = strdup(ev->data);
3817                 break;
3818         case PERF_EVENT_UPDATE__NAME:
3819                 evsel->name = strdup(ev->data);
3820                 break;
3821         case PERF_EVENT_UPDATE__SCALE:
3822                 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3823                 evsel->scale = ev_scale->scale;
3824                 break;
3825         case PERF_EVENT_UPDATE__CPUS:
3826                 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3827
3828                 map = cpu_map__new_data(&ev_cpus->cpus);
3829                 if (map)
3830                         evsel->core.own_cpus = map;
3831                 else
3832                         pr_err("failed to get event_update cpus\n");
3833         default:
3834                 break;
3835         }
3836
3837         return 0;
3838 }
3839
3840 int perf_event__process_tracing_data(struct perf_session *session,
3841                                      union perf_event *event)
3842 {
3843         ssize_t size_read, padding, size = event->tracing_data.size;
3844         int fd = perf_data__fd(session->data);
3845         off_t offset = lseek(fd, 0, SEEK_CUR);
3846         char buf[BUFSIZ];
3847
3848         /* setup for reading amidst mmap */
3849         lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3850               SEEK_SET);
3851
3852         size_read = trace_report(fd, &session->tevent,
3853                                  session->repipe);
3854         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3855
3856         if (readn(fd, buf, padding) < 0) {
3857                 pr_err("%s: reading input file", __func__);
3858                 return -1;
3859         }
3860         if (session->repipe) {
3861                 int retw = write(STDOUT_FILENO, buf, padding);
3862                 if (retw <= 0 || retw != padding) {
3863                         pr_err("%s: repiping tracing data padding", __func__);
3864                         return -1;
3865                 }
3866         }
3867
3868         if (size_read + padding != size) {
3869                 pr_err("%s: tracing data size mismatch", __func__);
3870                 return -1;
3871         }
3872
3873         perf_evlist__prepare_tracepoint_events(session->evlist,
3874                                                session->tevent.pevent);
3875
3876         return size_read + padding;
3877 }
3878
3879 int perf_event__process_build_id(struct perf_session *session,
3880                                  union perf_event *event)
3881 {
3882         __event_process_build_id(&event->build_id,
3883                                  event->build_id.filename,
3884                                  session);
3885         return 0;
3886 }