Merge tag 'dlm-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/linux-dlm
[linux-2.6-microblaze.git] / net / ceph / messenger.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef  CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif  /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78
79 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
84
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99                                        * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107         switch (con_flag) {
108         case CON_FLAG_LOSSYTX:
109         case CON_FLAG_KEEPALIVE_PENDING:
110         case CON_FLAG_WRITE_PENDING:
111         case CON_FLAG_SOCK_CLOSED:
112         case CON_FLAG_BACKOFF:
113                 return true;
114         default:
115                 return false;
116         }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121         BUG_ON(!con_flag_valid(con_flag));
122
123         clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128         BUG_ON(!con_flag_valid(con_flag));
129
130         set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135         BUG_ON(!con_flag_valid(con_flag));
136
137         return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141                                         unsigned long con_flag)
142 {
143         BUG_ON(!con_flag_valid(con_flag));
144
145         return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149                                         unsigned long con_flag)
150 {
151         BUG_ON(!con_flag_valid(con_flag));
152
153         return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache        *ceph_msg_cache;
159
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169
170 static void queue_con(struct ceph_connection *con);
171 static void cancel_con(struct ceph_connection *con);
172 static void ceph_con_workfn(struct work_struct *);
173 static void con_fault(struct ceph_connection *con);
174
175 /*
176  * Nicely render a sockaddr as a string.  An array of formatted
177  * strings is used, to approximate reentrancy.
178  */
179 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
180 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
181 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
182 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
183
184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
185 static atomic_t addr_str_seq = ATOMIC_INIT(0);
186
187 static struct page *zero_page;          /* used in certain error cases */
188
189 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
190 {
191         int i;
192         char *s;
193         struct sockaddr_storage ss = addr->in_addr; /* align */
194         struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
195         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
196
197         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
198         s = addr_str[i];
199
200         switch (ss.ss_family) {
201         case AF_INET:
202                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
203                          ntohs(in4->sin_port));
204                 break;
205
206         case AF_INET6:
207                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
208                          ntohs(in6->sin6_port));
209                 break;
210
211         default:
212                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
213                          ss.ss_family);
214         }
215
216         return s;
217 }
218 EXPORT_SYMBOL(ceph_pr_addr);
219
220 static void encode_my_addr(struct ceph_messenger *msgr)
221 {
222         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
223         ceph_encode_addr(&msgr->my_enc_addr);
224 }
225
226 /*
227  * work queue for all reading and writing to/from the socket.
228  */
229 static struct workqueue_struct *ceph_msgr_wq;
230
231 static int ceph_msgr_slab_init(void)
232 {
233         BUG_ON(ceph_msg_cache);
234         ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
235         if (!ceph_msg_cache)
236                 return -ENOMEM;
237
238         return 0;
239 }
240
241 static void ceph_msgr_slab_exit(void)
242 {
243         BUG_ON(!ceph_msg_cache);
244         kmem_cache_destroy(ceph_msg_cache);
245         ceph_msg_cache = NULL;
246 }
247
248 static void _ceph_msgr_exit(void)
249 {
250         if (ceph_msgr_wq) {
251                 destroy_workqueue(ceph_msgr_wq);
252                 ceph_msgr_wq = NULL;
253         }
254
255         BUG_ON(zero_page == NULL);
256         put_page(zero_page);
257         zero_page = NULL;
258
259         ceph_msgr_slab_exit();
260 }
261
262 int __init ceph_msgr_init(void)
263 {
264         if (ceph_msgr_slab_init())
265                 return -ENOMEM;
266
267         BUG_ON(zero_page != NULL);
268         zero_page = ZERO_PAGE(0);
269         get_page(zero_page);
270
271         /*
272          * The number of active work items is limited by the number of
273          * connections, so leave @max_active at default.
274          */
275         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
276         if (ceph_msgr_wq)
277                 return 0;
278
279         pr_err("msgr_init failed to create workqueue\n");
280         _ceph_msgr_exit();
281
282         return -ENOMEM;
283 }
284
285 void ceph_msgr_exit(void)
286 {
287         BUG_ON(ceph_msgr_wq == NULL);
288
289         _ceph_msgr_exit();
290 }
291
292 void ceph_msgr_flush(void)
293 {
294         flush_workqueue(ceph_msgr_wq);
295 }
296 EXPORT_SYMBOL(ceph_msgr_flush);
297
298 /* Connection socket state transition functions */
299
300 static void con_sock_state_init(struct ceph_connection *con)
301 {
302         int old_state;
303
304         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
305         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
306                 printk("%s: unexpected old state %d\n", __func__, old_state);
307         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
308              CON_SOCK_STATE_CLOSED);
309 }
310
311 static void con_sock_state_connecting(struct ceph_connection *con)
312 {
313         int old_state;
314
315         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
316         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
317                 printk("%s: unexpected old state %d\n", __func__, old_state);
318         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
319              CON_SOCK_STATE_CONNECTING);
320 }
321
322 static void con_sock_state_connected(struct ceph_connection *con)
323 {
324         int old_state;
325
326         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
327         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
328                 printk("%s: unexpected old state %d\n", __func__, old_state);
329         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
330              CON_SOCK_STATE_CONNECTED);
331 }
332
333 static void con_sock_state_closing(struct ceph_connection *con)
334 {
335         int old_state;
336
337         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
338         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
339                         old_state != CON_SOCK_STATE_CONNECTED &&
340                         old_state != CON_SOCK_STATE_CLOSING))
341                 printk("%s: unexpected old state %d\n", __func__, old_state);
342         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
343              CON_SOCK_STATE_CLOSING);
344 }
345
346 static void con_sock_state_closed(struct ceph_connection *con)
347 {
348         int old_state;
349
350         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
351         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
352                     old_state != CON_SOCK_STATE_CLOSING &&
353                     old_state != CON_SOCK_STATE_CONNECTING &&
354                     old_state != CON_SOCK_STATE_CLOSED))
355                 printk("%s: unexpected old state %d\n", __func__, old_state);
356         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
357              CON_SOCK_STATE_CLOSED);
358 }
359
360 /*
361  * socket callback functions
362  */
363
364 /* data available on socket, or listen socket received a connect */
365 static void ceph_sock_data_ready(struct sock *sk)
366 {
367         struct ceph_connection *con = sk->sk_user_data;
368         if (atomic_read(&con->msgr->stopping)) {
369                 return;
370         }
371
372         if (sk->sk_state != TCP_CLOSE_WAIT) {
373                 dout("%s on %p state = %lu, queueing work\n", __func__,
374                      con, con->state);
375                 queue_con(con);
376         }
377 }
378
379 /* socket has buffer space for writing */
380 static void ceph_sock_write_space(struct sock *sk)
381 {
382         struct ceph_connection *con = sk->sk_user_data;
383
384         /* only queue to workqueue if there is data we want to write,
385          * and there is sufficient space in the socket buffer to accept
386          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
387          * doesn't get called again until try_write() fills the socket
388          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
389          * and net/core/stream.c:sk_stream_write_space().
390          */
391         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
392                 if (sk_stream_is_writeable(sk)) {
393                         dout("%s %p queueing write work\n", __func__, con);
394                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
395                         queue_con(con);
396                 }
397         } else {
398                 dout("%s %p nothing to write\n", __func__, con);
399         }
400 }
401
402 /* socket's state has changed */
403 static void ceph_sock_state_change(struct sock *sk)
404 {
405         struct ceph_connection *con = sk->sk_user_data;
406
407         dout("%s %p state = %lu sk_state = %u\n", __func__,
408              con, con->state, sk->sk_state);
409
410         switch (sk->sk_state) {
411         case TCP_CLOSE:
412                 dout("%s TCP_CLOSE\n", __func__);
413                 /* fall through */
414         case TCP_CLOSE_WAIT:
415                 dout("%s TCP_CLOSE_WAIT\n", __func__);
416                 con_sock_state_closing(con);
417                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
418                 queue_con(con);
419                 break;
420         case TCP_ESTABLISHED:
421                 dout("%s TCP_ESTABLISHED\n", __func__);
422                 con_sock_state_connected(con);
423                 queue_con(con);
424                 break;
425         default:        /* Everything else is uninteresting */
426                 break;
427         }
428 }
429
430 /*
431  * set up socket callbacks
432  */
433 static void set_sock_callbacks(struct socket *sock,
434                                struct ceph_connection *con)
435 {
436         struct sock *sk = sock->sk;
437         sk->sk_user_data = con;
438         sk->sk_data_ready = ceph_sock_data_ready;
439         sk->sk_write_space = ceph_sock_write_space;
440         sk->sk_state_change = ceph_sock_state_change;
441 }
442
443
444 /*
445  * socket helpers
446  */
447
448 /*
449  * initiate connection to a remote socket.
450  */
451 static int ceph_tcp_connect(struct ceph_connection *con)
452 {
453         struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
454         struct socket *sock;
455         unsigned int noio_flag;
456         int ret;
457
458         BUG_ON(con->sock);
459
460         /* sock_create_kern() allocates with GFP_KERNEL */
461         noio_flag = memalloc_noio_save();
462         ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
463                                SOCK_STREAM, IPPROTO_TCP, &sock);
464         memalloc_noio_restore(noio_flag);
465         if (ret)
466                 return ret;
467         sock->sk->sk_allocation = GFP_NOFS;
468
469 #ifdef CONFIG_LOCKDEP
470         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
471 #endif
472
473         set_sock_callbacks(sock, con);
474
475         dout("connect %s\n", ceph_pr_addr(&con->peer_addr));
476
477         con_sock_state_connecting(con);
478         ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
479                                  O_NONBLOCK);
480         if (ret == -EINPROGRESS) {
481                 dout("connect %s EINPROGRESS sk_state = %u\n",
482                      ceph_pr_addr(&con->peer_addr),
483                      sock->sk->sk_state);
484         } else if (ret < 0) {
485                 pr_err("connect %s error %d\n",
486                        ceph_pr_addr(&con->peer_addr), ret);
487                 sock_release(sock);
488                 return ret;
489         }
490
491         if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
492                 int optval = 1;
493
494                 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
495                                         (char *)&optval, sizeof(optval));
496                 if (ret)
497                         pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
498                                ret);
499         }
500
501         con->sock = sock;
502         return 0;
503 }
504
505 /*
506  * If @buf is NULL, discard up to @len bytes.
507  */
508 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
509 {
510         struct kvec iov = {buf, len};
511         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
512         int r;
513
514         if (!buf)
515                 msg.msg_flags |= MSG_TRUNC;
516
517         iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len);
518         r = sock_recvmsg(sock, &msg, msg.msg_flags);
519         if (r == -EAGAIN)
520                 r = 0;
521         return r;
522 }
523
524 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
525                      int page_offset, size_t length)
526 {
527         struct bio_vec bvec = {
528                 .bv_page = page,
529                 .bv_offset = page_offset,
530                 .bv_len = length
531         };
532         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
533         int r;
534
535         BUG_ON(page_offset + length > PAGE_SIZE);
536         iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length);
537         r = sock_recvmsg(sock, &msg, msg.msg_flags);
538         if (r == -EAGAIN)
539                 r = 0;
540         return r;
541 }
542
543 /*
544  * write something.  @more is true if caller will be sending more data
545  * shortly.
546  */
547 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
548                             size_t kvlen, size_t len, bool more)
549 {
550         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
551         int r;
552
553         if (more)
554                 msg.msg_flags |= MSG_MORE;
555         else
556                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
557
558         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
559         if (r == -EAGAIN)
560                 r = 0;
561         return r;
562 }
563
564 /*
565  * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST
566  */
567 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
568                              int offset, size_t size, int more)
569 {
570         ssize_t (*sendpage)(struct socket *sock, struct page *page,
571                             int offset, size_t size, int flags);
572         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more;
573         int ret;
574
575         /*
576          * sendpage cannot properly handle pages with page_count == 0,
577          * we need to fall back to sendmsg if that's the case.
578          *
579          * Same goes for slab pages: skb_can_coalesce() allows
580          * coalescing neighboring slab objects into a single frag which
581          * triggers one of hardened usercopy checks.
582          */
583         if (page_count(page) >= 1 && !PageSlab(page))
584                 sendpage = sock->ops->sendpage;
585         else
586                 sendpage = sock_no_sendpage;
587
588         ret = sendpage(sock, page, offset, size, flags);
589         if (ret == -EAGAIN)
590                 ret = 0;
591
592         return ret;
593 }
594
595 /*
596  * Shutdown/close the socket for the given connection.
597  */
598 static int con_close_socket(struct ceph_connection *con)
599 {
600         int rc = 0;
601
602         dout("con_close_socket on %p sock %p\n", con, con->sock);
603         if (con->sock) {
604                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
605                 sock_release(con->sock);
606                 con->sock = NULL;
607         }
608
609         /*
610          * Forcibly clear the SOCK_CLOSED flag.  It gets set
611          * independent of the connection mutex, and we could have
612          * received a socket close event before we had the chance to
613          * shut the socket down.
614          */
615         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
616
617         con_sock_state_closed(con);
618         return rc;
619 }
620
621 /*
622  * Reset a connection.  Discard all incoming and outgoing messages
623  * and clear *_seq state.
624  */
625 static void ceph_msg_remove(struct ceph_msg *msg)
626 {
627         list_del_init(&msg->list_head);
628
629         ceph_msg_put(msg);
630 }
631 static void ceph_msg_remove_list(struct list_head *head)
632 {
633         while (!list_empty(head)) {
634                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
635                                                         list_head);
636                 ceph_msg_remove(msg);
637         }
638 }
639
640 static void reset_connection(struct ceph_connection *con)
641 {
642         /* reset connection, out_queue, msg_ and connect_seq */
643         /* discard existing out_queue and msg_seq */
644         dout("reset_connection %p\n", con);
645         ceph_msg_remove_list(&con->out_queue);
646         ceph_msg_remove_list(&con->out_sent);
647
648         if (con->in_msg) {
649                 BUG_ON(con->in_msg->con != con);
650                 ceph_msg_put(con->in_msg);
651                 con->in_msg = NULL;
652         }
653
654         con->connect_seq = 0;
655         con->out_seq = 0;
656         if (con->out_msg) {
657                 BUG_ON(con->out_msg->con != con);
658                 ceph_msg_put(con->out_msg);
659                 con->out_msg = NULL;
660         }
661         con->in_seq = 0;
662         con->in_seq_acked = 0;
663
664         con->out_skip = 0;
665 }
666
667 /*
668  * mark a peer down.  drop any open connections.
669  */
670 void ceph_con_close(struct ceph_connection *con)
671 {
672         mutex_lock(&con->mutex);
673         dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
674         con->state = CON_STATE_CLOSED;
675
676         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
677         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
678         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
679         con_flag_clear(con, CON_FLAG_BACKOFF);
680
681         reset_connection(con);
682         con->peer_global_seq = 0;
683         cancel_con(con);
684         con_close_socket(con);
685         mutex_unlock(&con->mutex);
686 }
687 EXPORT_SYMBOL(ceph_con_close);
688
689 /*
690  * Reopen a closed connection, with a new peer address.
691  */
692 void ceph_con_open(struct ceph_connection *con,
693                    __u8 entity_type, __u64 entity_num,
694                    struct ceph_entity_addr *addr)
695 {
696         mutex_lock(&con->mutex);
697         dout("con_open %p %s\n", con, ceph_pr_addr(addr));
698
699         WARN_ON(con->state != CON_STATE_CLOSED);
700         con->state = CON_STATE_PREOPEN;
701
702         con->peer_name.type = (__u8) entity_type;
703         con->peer_name.num = cpu_to_le64(entity_num);
704
705         memcpy(&con->peer_addr, addr, sizeof(*addr));
706         con->delay = 0;      /* reset backoff memory */
707         mutex_unlock(&con->mutex);
708         queue_con(con);
709 }
710 EXPORT_SYMBOL(ceph_con_open);
711
712 /*
713  * return true if this connection ever successfully opened
714  */
715 bool ceph_con_opened(struct ceph_connection *con)
716 {
717         return con->connect_seq > 0;
718 }
719
720 /*
721  * initialize a new connection.
722  */
723 void ceph_con_init(struct ceph_connection *con, void *private,
724         const struct ceph_connection_operations *ops,
725         struct ceph_messenger *msgr)
726 {
727         dout("con_init %p\n", con);
728         memset(con, 0, sizeof(*con));
729         con->private = private;
730         con->ops = ops;
731         con->msgr = msgr;
732
733         con_sock_state_init(con);
734
735         mutex_init(&con->mutex);
736         INIT_LIST_HEAD(&con->out_queue);
737         INIT_LIST_HEAD(&con->out_sent);
738         INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
739
740         con->state = CON_STATE_CLOSED;
741 }
742 EXPORT_SYMBOL(ceph_con_init);
743
744
745 /*
746  * We maintain a global counter to order connection attempts.  Get
747  * a unique seq greater than @gt.
748  */
749 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
750 {
751         u32 ret;
752
753         spin_lock(&msgr->global_seq_lock);
754         if (msgr->global_seq < gt)
755                 msgr->global_seq = gt;
756         ret = ++msgr->global_seq;
757         spin_unlock(&msgr->global_seq_lock);
758         return ret;
759 }
760
761 static void con_out_kvec_reset(struct ceph_connection *con)
762 {
763         BUG_ON(con->out_skip);
764
765         con->out_kvec_left = 0;
766         con->out_kvec_bytes = 0;
767         con->out_kvec_cur = &con->out_kvec[0];
768 }
769
770 static void con_out_kvec_add(struct ceph_connection *con,
771                                 size_t size, void *data)
772 {
773         int index = con->out_kvec_left;
774
775         BUG_ON(con->out_skip);
776         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
777
778         con->out_kvec[index].iov_len = size;
779         con->out_kvec[index].iov_base = data;
780         con->out_kvec_left++;
781         con->out_kvec_bytes += size;
782 }
783
784 /*
785  * Chop off a kvec from the end.  Return residual number of bytes for
786  * that kvec, i.e. how many bytes would have been written if the kvec
787  * hadn't been nuked.
788  */
789 static int con_out_kvec_skip(struct ceph_connection *con)
790 {
791         int off = con->out_kvec_cur - con->out_kvec;
792         int skip = 0;
793
794         if (con->out_kvec_bytes > 0) {
795                 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
796                 BUG_ON(con->out_kvec_bytes < skip);
797                 BUG_ON(!con->out_kvec_left);
798                 con->out_kvec_bytes -= skip;
799                 con->out_kvec_left--;
800         }
801
802         return skip;
803 }
804
805 #ifdef CONFIG_BLOCK
806
807 /*
808  * For a bio data item, a piece is whatever remains of the next
809  * entry in the current bio iovec, or the first entry in the next
810  * bio in the list.
811  */
812 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
813                                         size_t length)
814 {
815         struct ceph_msg_data *data = cursor->data;
816         struct ceph_bio_iter *it = &cursor->bio_iter;
817
818         cursor->resid = min_t(size_t, length, data->bio_length);
819         *it = data->bio_pos;
820         if (cursor->resid < it->iter.bi_size)
821                 it->iter.bi_size = cursor->resid;
822
823         BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
824         cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
825 }
826
827 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
828                                                 size_t *page_offset,
829                                                 size_t *length)
830 {
831         struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
832                                            cursor->bio_iter.iter);
833
834         *page_offset = bv.bv_offset;
835         *length = bv.bv_len;
836         return bv.bv_page;
837 }
838
839 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
840                                         size_t bytes)
841 {
842         struct ceph_bio_iter *it = &cursor->bio_iter;
843         struct page *page = bio_iter_page(it->bio, it->iter);
844
845         BUG_ON(bytes > cursor->resid);
846         BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
847         cursor->resid -= bytes;
848         bio_advance_iter(it->bio, &it->iter, bytes);
849
850         if (!cursor->resid) {
851                 BUG_ON(!cursor->last_piece);
852                 return false;   /* no more data */
853         }
854
855         if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
856                        page == bio_iter_page(it->bio, it->iter)))
857                 return false;   /* more bytes to process in this segment */
858
859         if (!it->iter.bi_size) {
860                 it->bio = it->bio->bi_next;
861                 it->iter = it->bio->bi_iter;
862                 if (cursor->resid < it->iter.bi_size)
863                         it->iter.bi_size = cursor->resid;
864         }
865
866         BUG_ON(cursor->last_piece);
867         BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
868         cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
869         return true;
870 }
871 #endif /* CONFIG_BLOCK */
872
873 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
874                                         size_t length)
875 {
876         struct ceph_msg_data *data = cursor->data;
877         struct bio_vec *bvecs = data->bvec_pos.bvecs;
878
879         cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
880         cursor->bvec_iter = data->bvec_pos.iter;
881         cursor->bvec_iter.bi_size = cursor->resid;
882
883         BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
884         cursor->last_piece =
885             cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
886 }
887
888 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
889                                                 size_t *page_offset,
890                                                 size_t *length)
891 {
892         struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
893                                            cursor->bvec_iter);
894
895         *page_offset = bv.bv_offset;
896         *length = bv.bv_len;
897         return bv.bv_page;
898 }
899
900 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
901                                         size_t bytes)
902 {
903         struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
904         struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
905
906         BUG_ON(bytes > cursor->resid);
907         BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
908         cursor->resid -= bytes;
909         bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
910
911         if (!cursor->resid) {
912                 BUG_ON(!cursor->last_piece);
913                 return false;   /* no more data */
914         }
915
916         if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
917                        page == bvec_iter_page(bvecs, cursor->bvec_iter)))
918                 return false;   /* more bytes to process in this segment */
919
920         BUG_ON(cursor->last_piece);
921         BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
922         cursor->last_piece =
923             cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
924         return true;
925 }
926
927 /*
928  * For a page array, a piece comes from the first page in the array
929  * that has not already been fully consumed.
930  */
931 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
932                                         size_t length)
933 {
934         struct ceph_msg_data *data = cursor->data;
935         int page_count;
936
937         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
938
939         BUG_ON(!data->pages);
940         BUG_ON(!data->length);
941
942         cursor->resid = min(length, data->length);
943         page_count = calc_pages_for(data->alignment, (u64)data->length);
944         cursor->page_offset = data->alignment & ~PAGE_MASK;
945         cursor->page_index = 0;
946         BUG_ON(page_count > (int)USHRT_MAX);
947         cursor->page_count = (unsigned short)page_count;
948         BUG_ON(length > SIZE_MAX - cursor->page_offset);
949         cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
950 }
951
952 static struct page *
953 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
954                                         size_t *page_offset, size_t *length)
955 {
956         struct ceph_msg_data *data = cursor->data;
957
958         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
959
960         BUG_ON(cursor->page_index >= cursor->page_count);
961         BUG_ON(cursor->page_offset >= PAGE_SIZE);
962
963         *page_offset = cursor->page_offset;
964         if (cursor->last_piece)
965                 *length = cursor->resid;
966         else
967                 *length = PAGE_SIZE - *page_offset;
968
969         return data->pages[cursor->page_index];
970 }
971
972 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
973                                                 size_t bytes)
974 {
975         BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
976
977         BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
978
979         /* Advance the cursor page offset */
980
981         cursor->resid -= bytes;
982         cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
983         if (!bytes || cursor->page_offset)
984                 return false;   /* more bytes to process in the current page */
985
986         if (!cursor->resid)
987                 return false;   /* no more data */
988
989         /* Move on to the next page; offset is already at 0 */
990
991         BUG_ON(cursor->page_index >= cursor->page_count);
992         cursor->page_index++;
993         cursor->last_piece = cursor->resid <= PAGE_SIZE;
994
995         return true;
996 }
997
998 /*
999  * For a pagelist, a piece is whatever remains to be consumed in the
1000  * first page in the list, or the front of the next page.
1001  */
1002 static void
1003 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1004                                         size_t length)
1005 {
1006         struct ceph_msg_data *data = cursor->data;
1007         struct ceph_pagelist *pagelist;
1008         struct page *page;
1009
1010         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1011
1012         pagelist = data->pagelist;
1013         BUG_ON(!pagelist);
1014
1015         if (!length)
1016                 return;         /* pagelist can be assigned but empty */
1017
1018         BUG_ON(list_empty(&pagelist->head));
1019         page = list_first_entry(&pagelist->head, struct page, lru);
1020
1021         cursor->resid = min(length, pagelist->length);
1022         cursor->page = page;
1023         cursor->offset = 0;
1024         cursor->last_piece = cursor->resid <= PAGE_SIZE;
1025 }
1026
1027 static struct page *
1028 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1029                                 size_t *page_offset, size_t *length)
1030 {
1031         struct ceph_msg_data *data = cursor->data;
1032         struct ceph_pagelist *pagelist;
1033
1034         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1035
1036         pagelist = data->pagelist;
1037         BUG_ON(!pagelist);
1038
1039         BUG_ON(!cursor->page);
1040         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1041
1042         /* offset of first page in pagelist is always 0 */
1043         *page_offset = cursor->offset & ~PAGE_MASK;
1044         if (cursor->last_piece)
1045                 *length = cursor->resid;
1046         else
1047                 *length = PAGE_SIZE - *page_offset;
1048
1049         return cursor->page;
1050 }
1051
1052 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1053                                                 size_t bytes)
1054 {
1055         struct ceph_msg_data *data = cursor->data;
1056         struct ceph_pagelist *pagelist;
1057
1058         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1059
1060         pagelist = data->pagelist;
1061         BUG_ON(!pagelist);
1062
1063         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1064         BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1065
1066         /* Advance the cursor offset */
1067
1068         cursor->resid -= bytes;
1069         cursor->offset += bytes;
1070         /* offset of first page in pagelist is always 0 */
1071         if (!bytes || cursor->offset & ~PAGE_MASK)
1072                 return false;   /* more bytes to process in the current page */
1073
1074         if (!cursor->resid)
1075                 return false;   /* no more data */
1076
1077         /* Move on to the next page */
1078
1079         BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1080         cursor->page = list_next_entry(cursor->page, lru);
1081         cursor->last_piece = cursor->resid <= PAGE_SIZE;
1082
1083         return true;
1084 }
1085
1086 /*
1087  * Message data is handled (sent or received) in pieces, where each
1088  * piece resides on a single page.  The network layer might not
1089  * consume an entire piece at once.  A data item's cursor keeps
1090  * track of which piece is next to process and how much remains to
1091  * be processed in that piece.  It also tracks whether the current
1092  * piece is the last one in the data item.
1093  */
1094 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1095 {
1096         size_t length = cursor->total_resid;
1097
1098         switch (cursor->data->type) {
1099         case CEPH_MSG_DATA_PAGELIST:
1100                 ceph_msg_data_pagelist_cursor_init(cursor, length);
1101                 break;
1102         case CEPH_MSG_DATA_PAGES:
1103                 ceph_msg_data_pages_cursor_init(cursor, length);
1104                 break;
1105 #ifdef CONFIG_BLOCK
1106         case CEPH_MSG_DATA_BIO:
1107                 ceph_msg_data_bio_cursor_init(cursor, length);
1108                 break;
1109 #endif /* CONFIG_BLOCK */
1110         case CEPH_MSG_DATA_BVECS:
1111                 ceph_msg_data_bvecs_cursor_init(cursor, length);
1112                 break;
1113         case CEPH_MSG_DATA_NONE:
1114         default:
1115                 /* BUG(); */
1116                 break;
1117         }
1118         cursor->need_crc = true;
1119 }
1120
1121 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1122 {
1123         struct ceph_msg_data_cursor *cursor = &msg->cursor;
1124
1125         BUG_ON(!length);
1126         BUG_ON(length > msg->data_length);
1127         BUG_ON(!msg->num_data_items);
1128
1129         cursor->total_resid = length;
1130         cursor->data = msg->data;
1131
1132         __ceph_msg_data_cursor_init(cursor);
1133 }
1134
1135 /*
1136  * Return the page containing the next piece to process for a given
1137  * data item, and supply the page offset and length of that piece.
1138  * Indicate whether this is the last piece in this data item.
1139  */
1140 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1141                                         size_t *page_offset, size_t *length,
1142                                         bool *last_piece)
1143 {
1144         struct page *page;
1145
1146         switch (cursor->data->type) {
1147         case CEPH_MSG_DATA_PAGELIST:
1148                 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1149                 break;
1150         case CEPH_MSG_DATA_PAGES:
1151                 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1152                 break;
1153 #ifdef CONFIG_BLOCK
1154         case CEPH_MSG_DATA_BIO:
1155                 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1156                 break;
1157 #endif /* CONFIG_BLOCK */
1158         case CEPH_MSG_DATA_BVECS:
1159                 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1160                 break;
1161         case CEPH_MSG_DATA_NONE:
1162         default:
1163                 page = NULL;
1164                 break;
1165         }
1166
1167         BUG_ON(!page);
1168         BUG_ON(*page_offset + *length > PAGE_SIZE);
1169         BUG_ON(!*length);
1170         BUG_ON(*length > cursor->resid);
1171         if (last_piece)
1172                 *last_piece = cursor->last_piece;
1173
1174         return page;
1175 }
1176
1177 /*
1178  * Returns true if the result moves the cursor on to the next piece
1179  * of the data item.
1180  */
1181 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1182                                   size_t bytes)
1183 {
1184         bool new_piece;
1185
1186         BUG_ON(bytes > cursor->resid);
1187         switch (cursor->data->type) {
1188         case CEPH_MSG_DATA_PAGELIST:
1189                 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1190                 break;
1191         case CEPH_MSG_DATA_PAGES:
1192                 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1193                 break;
1194 #ifdef CONFIG_BLOCK
1195         case CEPH_MSG_DATA_BIO:
1196                 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1197                 break;
1198 #endif /* CONFIG_BLOCK */
1199         case CEPH_MSG_DATA_BVECS:
1200                 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1201                 break;
1202         case CEPH_MSG_DATA_NONE:
1203         default:
1204                 BUG();
1205                 break;
1206         }
1207         cursor->total_resid -= bytes;
1208
1209         if (!cursor->resid && cursor->total_resid) {
1210                 WARN_ON(!cursor->last_piece);
1211                 cursor->data++;
1212                 __ceph_msg_data_cursor_init(cursor);
1213                 new_piece = true;
1214         }
1215         cursor->need_crc = new_piece;
1216 }
1217
1218 static size_t sizeof_footer(struct ceph_connection *con)
1219 {
1220         return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1221             sizeof(struct ceph_msg_footer) :
1222             sizeof(struct ceph_msg_footer_old);
1223 }
1224
1225 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1226 {
1227         /* Initialize data cursor */
1228
1229         ceph_msg_data_cursor_init(msg, (size_t)data_len);
1230 }
1231
1232 /*
1233  * Prepare footer for currently outgoing message, and finish things
1234  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1235  */
1236 static void prepare_write_message_footer(struct ceph_connection *con)
1237 {
1238         struct ceph_msg *m = con->out_msg;
1239
1240         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1241
1242         dout("prepare_write_message_footer %p\n", con);
1243         con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1244         if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1245                 if (con->ops->sign_message)
1246                         con->ops->sign_message(m);
1247                 else
1248                         m->footer.sig = 0;
1249         } else {
1250                 m->old_footer.flags = m->footer.flags;
1251         }
1252         con->out_more = m->more_to_follow;
1253         con->out_msg_done = true;
1254 }
1255
1256 /*
1257  * Prepare headers for the next outgoing message.
1258  */
1259 static void prepare_write_message(struct ceph_connection *con)
1260 {
1261         struct ceph_msg *m;
1262         u32 crc;
1263
1264         con_out_kvec_reset(con);
1265         con->out_msg_done = false;
1266
1267         /* Sneak an ack in there first?  If we can get it into the same
1268          * TCP packet that's a good thing. */
1269         if (con->in_seq > con->in_seq_acked) {
1270                 con->in_seq_acked = con->in_seq;
1271                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1272                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1273                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1274                         &con->out_temp_ack);
1275         }
1276
1277         BUG_ON(list_empty(&con->out_queue));
1278         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1279         con->out_msg = m;
1280         BUG_ON(m->con != con);
1281
1282         /* put message on sent list */
1283         ceph_msg_get(m);
1284         list_move_tail(&m->list_head, &con->out_sent);
1285
1286         /*
1287          * only assign outgoing seq # if we haven't sent this message
1288          * yet.  if it is requeued, resend with it's original seq.
1289          */
1290         if (m->needs_out_seq) {
1291                 m->hdr.seq = cpu_to_le64(++con->out_seq);
1292                 m->needs_out_seq = false;
1293
1294                 if (con->ops->reencode_message)
1295                         con->ops->reencode_message(m);
1296         }
1297
1298         dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1299              m, con->out_seq, le16_to_cpu(m->hdr.type),
1300              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1301              m->data_length);
1302         WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1303         WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1304
1305         /* tag + hdr + front + middle */
1306         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1307         con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1308         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1309
1310         if (m->middle)
1311                 con_out_kvec_add(con, m->middle->vec.iov_len,
1312                         m->middle->vec.iov_base);
1313
1314         /* fill in hdr crc and finalize hdr */
1315         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1316         con->out_msg->hdr.crc = cpu_to_le32(crc);
1317         memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1318
1319         /* fill in front and middle crc, footer */
1320         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1321         con->out_msg->footer.front_crc = cpu_to_le32(crc);
1322         if (m->middle) {
1323                 crc = crc32c(0, m->middle->vec.iov_base,
1324                                 m->middle->vec.iov_len);
1325                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1326         } else
1327                 con->out_msg->footer.middle_crc = 0;
1328         dout("%s front_crc %u middle_crc %u\n", __func__,
1329              le32_to_cpu(con->out_msg->footer.front_crc),
1330              le32_to_cpu(con->out_msg->footer.middle_crc));
1331         con->out_msg->footer.flags = 0;
1332
1333         /* is there a data payload? */
1334         con->out_msg->footer.data_crc = 0;
1335         if (m->data_length) {
1336                 prepare_message_data(con->out_msg, m->data_length);
1337                 con->out_more = 1;  /* data + footer will follow */
1338         } else {
1339                 /* no, queue up footer too and be done */
1340                 prepare_write_message_footer(con);
1341         }
1342
1343         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1344 }
1345
1346 /*
1347  * Prepare an ack.
1348  */
1349 static void prepare_write_ack(struct ceph_connection *con)
1350 {
1351         dout("prepare_write_ack %p %llu -> %llu\n", con,
1352              con->in_seq_acked, con->in_seq);
1353         con->in_seq_acked = con->in_seq;
1354
1355         con_out_kvec_reset(con);
1356
1357         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1358
1359         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1360         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1361                                 &con->out_temp_ack);
1362
1363         con->out_more = 1;  /* more will follow.. eventually.. */
1364         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1365 }
1366
1367 /*
1368  * Prepare to share the seq during handshake
1369  */
1370 static void prepare_write_seq(struct ceph_connection *con)
1371 {
1372         dout("prepare_write_seq %p %llu -> %llu\n", con,
1373              con->in_seq_acked, con->in_seq);
1374         con->in_seq_acked = con->in_seq;
1375
1376         con_out_kvec_reset(con);
1377
1378         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1379         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1380                          &con->out_temp_ack);
1381
1382         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1383 }
1384
1385 /*
1386  * Prepare to write keepalive byte.
1387  */
1388 static void prepare_write_keepalive(struct ceph_connection *con)
1389 {
1390         dout("prepare_write_keepalive %p\n", con);
1391         con_out_kvec_reset(con);
1392         if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1393                 struct timespec64 now;
1394
1395                 ktime_get_real_ts64(&now);
1396                 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1397                 ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1398                 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1399                                  &con->out_temp_keepalive2);
1400         } else {
1401                 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1402         }
1403         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1404 }
1405
1406 /*
1407  * Connection negotiation.
1408  */
1409
1410 static int get_connect_authorizer(struct ceph_connection *con)
1411 {
1412         struct ceph_auth_handshake *auth;
1413         int auth_proto;
1414
1415         if (!con->ops->get_authorizer) {
1416                 con->auth = NULL;
1417                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1418                 con->out_connect.authorizer_len = 0;
1419                 return 0;
1420         }
1421
1422         auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1423         if (IS_ERR(auth))
1424                 return PTR_ERR(auth);
1425
1426         con->auth = auth;
1427         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1428         con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1429         return 0;
1430 }
1431
1432 /*
1433  * We connected to a peer and are saying hello.
1434  */
1435 static void prepare_write_banner(struct ceph_connection *con)
1436 {
1437         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1438         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1439                                         &con->msgr->my_enc_addr);
1440
1441         con->out_more = 0;
1442         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1443 }
1444
1445 static void __prepare_write_connect(struct ceph_connection *con)
1446 {
1447         con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1448         if (con->auth)
1449                 con_out_kvec_add(con, con->auth->authorizer_buf_len,
1450                                  con->auth->authorizer_buf);
1451
1452         con->out_more = 0;
1453         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1454 }
1455
1456 static int prepare_write_connect(struct ceph_connection *con)
1457 {
1458         unsigned int global_seq = get_global_seq(con->msgr, 0);
1459         int proto;
1460         int ret;
1461
1462         switch (con->peer_name.type) {
1463         case CEPH_ENTITY_TYPE_MON:
1464                 proto = CEPH_MONC_PROTOCOL;
1465                 break;
1466         case CEPH_ENTITY_TYPE_OSD:
1467                 proto = CEPH_OSDC_PROTOCOL;
1468                 break;
1469         case CEPH_ENTITY_TYPE_MDS:
1470                 proto = CEPH_MDSC_PROTOCOL;
1471                 break;
1472         default:
1473                 BUG();
1474         }
1475
1476         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1477              con->connect_seq, global_seq, proto);
1478
1479         con->out_connect.features =
1480             cpu_to_le64(from_msgr(con->msgr)->supported_features);
1481         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1482         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1483         con->out_connect.global_seq = cpu_to_le32(global_seq);
1484         con->out_connect.protocol_version = cpu_to_le32(proto);
1485         con->out_connect.flags = 0;
1486
1487         ret = get_connect_authorizer(con);
1488         if (ret)
1489                 return ret;
1490
1491         __prepare_write_connect(con);
1492         return 0;
1493 }
1494
1495 /*
1496  * write as much of pending kvecs to the socket as we can.
1497  *  1 -> done
1498  *  0 -> socket full, but more to do
1499  * <0 -> error
1500  */
1501 static int write_partial_kvec(struct ceph_connection *con)
1502 {
1503         int ret;
1504
1505         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1506         while (con->out_kvec_bytes > 0) {
1507                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1508                                        con->out_kvec_left, con->out_kvec_bytes,
1509                                        con->out_more);
1510                 if (ret <= 0)
1511                         goto out;
1512                 con->out_kvec_bytes -= ret;
1513                 if (con->out_kvec_bytes == 0)
1514                         break;            /* done */
1515
1516                 /* account for full iov entries consumed */
1517                 while (ret >= con->out_kvec_cur->iov_len) {
1518                         BUG_ON(!con->out_kvec_left);
1519                         ret -= con->out_kvec_cur->iov_len;
1520                         con->out_kvec_cur++;
1521                         con->out_kvec_left--;
1522                 }
1523                 /* and for a partially-consumed entry */
1524                 if (ret) {
1525                         con->out_kvec_cur->iov_len -= ret;
1526                         con->out_kvec_cur->iov_base += ret;
1527                 }
1528         }
1529         con->out_kvec_left = 0;
1530         ret = 1;
1531 out:
1532         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1533              con->out_kvec_bytes, con->out_kvec_left, ret);
1534         return ret;  /* done! */
1535 }
1536
1537 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1538                                 unsigned int page_offset,
1539                                 unsigned int length)
1540 {
1541         char *kaddr;
1542
1543         kaddr = kmap(page);
1544         BUG_ON(kaddr == NULL);
1545         crc = crc32c(crc, kaddr + page_offset, length);
1546         kunmap(page);
1547
1548         return crc;
1549 }
1550 /*
1551  * Write as much message data payload as we can.  If we finish, queue
1552  * up the footer.
1553  *  1 -> done, footer is now queued in out_kvec[].
1554  *  0 -> socket full, but more to do
1555  * <0 -> error
1556  */
1557 static int write_partial_message_data(struct ceph_connection *con)
1558 {
1559         struct ceph_msg *msg = con->out_msg;
1560         struct ceph_msg_data_cursor *cursor = &msg->cursor;
1561         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1562         int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1563         u32 crc;
1564
1565         dout("%s %p msg %p\n", __func__, con, msg);
1566
1567         if (!msg->num_data_items)
1568                 return -EINVAL;
1569
1570         /*
1571          * Iterate through each page that contains data to be
1572          * written, and send as much as possible for each.
1573          *
1574          * If we are calculating the data crc (the default), we will
1575          * need to map the page.  If we have no pages, they have
1576          * been revoked, so use the zero page.
1577          */
1578         crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1579         while (cursor->total_resid) {
1580                 struct page *page;
1581                 size_t page_offset;
1582                 size_t length;
1583                 int ret;
1584
1585                 if (!cursor->resid) {
1586                         ceph_msg_data_advance(cursor, 0);
1587                         continue;
1588                 }
1589
1590                 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
1591                 if (length == cursor->total_resid)
1592                         more = MSG_MORE;
1593                 ret = ceph_tcp_sendpage(con->sock, page, page_offset, length,
1594                                         more);
1595                 if (ret <= 0) {
1596                         if (do_datacrc)
1597                                 msg->footer.data_crc = cpu_to_le32(crc);
1598
1599                         return ret;
1600                 }
1601                 if (do_datacrc && cursor->need_crc)
1602                         crc = ceph_crc32c_page(crc, page, page_offset, length);
1603                 ceph_msg_data_advance(cursor, (size_t)ret);
1604         }
1605
1606         dout("%s %p msg %p done\n", __func__, con, msg);
1607
1608         /* prepare and queue up footer, too */
1609         if (do_datacrc)
1610                 msg->footer.data_crc = cpu_to_le32(crc);
1611         else
1612                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1613         con_out_kvec_reset(con);
1614         prepare_write_message_footer(con);
1615
1616         return 1;       /* must return > 0 to indicate success */
1617 }
1618
1619 /*
1620  * write some zeros
1621  */
1622 static int write_partial_skip(struct ceph_connection *con)
1623 {
1624         int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1625         int ret;
1626
1627         dout("%s %p %d left\n", __func__, con, con->out_skip);
1628         while (con->out_skip > 0) {
1629                 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1630
1631                 if (size == con->out_skip)
1632                         more = MSG_MORE;
1633                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more);
1634                 if (ret <= 0)
1635                         goto out;
1636                 con->out_skip -= ret;
1637         }
1638         ret = 1;
1639 out:
1640         return ret;
1641 }
1642
1643 /*
1644  * Prepare to read connection handshake, or an ack.
1645  */
1646 static void prepare_read_banner(struct ceph_connection *con)
1647 {
1648         dout("prepare_read_banner %p\n", con);
1649         con->in_base_pos = 0;
1650 }
1651
1652 static void prepare_read_connect(struct ceph_connection *con)
1653 {
1654         dout("prepare_read_connect %p\n", con);
1655         con->in_base_pos = 0;
1656 }
1657
1658 static void prepare_read_ack(struct ceph_connection *con)
1659 {
1660         dout("prepare_read_ack %p\n", con);
1661         con->in_base_pos = 0;
1662 }
1663
1664 static void prepare_read_seq(struct ceph_connection *con)
1665 {
1666         dout("prepare_read_seq %p\n", con);
1667         con->in_base_pos = 0;
1668         con->in_tag = CEPH_MSGR_TAG_SEQ;
1669 }
1670
1671 static void prepare_read_tag(struct ceph_connection *con)
1672 {
1673         dout("prepare_read_tag %p\n", con);
1674         con->in_base_pos = 0;
1675         con->in_tag = CEPH_MSGR_TAG_READY;
1676 }
1677
1678 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1679 {
1680         dout("prepare_read_keepalive_ack %p\n", con);
1681         con->in_base_pos = 0;
1682 }
1683
1684 /*
1685  * Prepare to read a message.
1686  */
1687 static int prepare_read_message(struct ceph_connection *con)
1688 {
1689         dout("prepare_read_message %p\n", con);
1690         BUG_ON(con->in_msg != NULL);
1691         con->in_base_pos = 0;
1692         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1693         return 0;
1694 }
1695
1696
1697 static int read_partial(struct ceph_connection *con,
1698                         int end, int size, void *object)
1699 {
1700         while (con->in_base_pos < end) {
1701                 int left = end - con->in_base_pos;
1702                 int have = size - left;
1703                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1704                 if (ret <= 0)
1705                         return ret;
1706                 con->in_base_pos += ret;
1707         }
1708         return 1;
1709 }
1710
1711
1712 /*
1713  * Read all or part of the connect-side handshake on a new connection
1714  */
1715 static int read_partial_banner(struct ceph_connection *con)
1716 {
1717         int size;
1718         int end;
1719         int ret;
1720
1721         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1722
1723         /* peer's banner */
1724         size = strlen(CEPH_BANNER);
1725         end = size;
1726         ret = read_partial(con, end, size, con->in_banner);
1727         if (ret <= 0)
1728                 goto out;
1729
1730         size = sizeof (con->actual_peer_addr);
1731         end += size;
1732         ret = read_partial(con, end, size, &con->actual_peer_addr);
1733         if (ret <= 0)
1734                 goto out;
1735
1736         size = sizeof (con->peer_addr_for_me);
1737         end += size;
1738         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1739         if (ret <= 0)
1740                 goto out;
1741
1742 out:
1743         return ret;
1744 }
1745
1746 static int read_partial_connect(struct ceph_connection *con)
1747 {
1748         int size;
1749         int end;
1750         int ret;
1751
1752         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1753
1754         size = sizeof (con->in_reply);
1755         end = size;
1756         ret = read_partial(con, end, size, &con->in_reply);
1757         if (ret <= 0)
1758                 goto out;
1759
1760         if (con->auth) {
1761                 size = le32_to_cpu(con->in_reply.authorizer_len);
1762                 if (size > con->auth->authorizer_reply_buf_len) {
1763                         pr_err("authorizer reply too big: %d > %zu\n", size,
1764                                con->auth->authorizer_reply_buf_len);
1765                         ret = -EINVAL;
1766                         goto out;
1767                 }
1768
1769                 end += size;
1770                 ret = read_partial(con, end, size,
1771                                    con->auth->authorizer_reply_buf);
1772                 if (ret <= 0)
1773                         goto out;
1774         }
1775
1776         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1777              con, (int)con->in_reply.tag,
1778              le32_to_cpu(con->in_reply.connect_seq),
1779              le32_to_cpu(con->in_reply.global_seq));
1780 out:
1781         return ret;
1782 }
1783
1784 /*
1785  * Verify the hello banner looks okay.
1786  */
1787 static int verify_hello(struct ceph_connection *con)
1788 {
1789         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1790                 pr_err("connect to %s got bad banner\n",
1791                        ceph_pr_addr(&con->peer_addr));
1792                 con->error_msg = "protocol error, bad banner";
1793                 return -1;
1794         }
1795         return 0;
1796 }
1797
1798 static bool addr_is_blank(struct ceph_entity_addr *addr)
1799 {
1800         struct sockaddr_storage ss = addr->in_addr; /* align */
1801         struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1802         struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1803
1804         switch (ss.ss_family) {
1805         case AF_INET:
1806                 return addr4->s_addr == htonl(INADDR_ANY);
1807         case AF_INET6:
1808                 return ipv6_addr_any(addr6);
1809         default:
1810                 return true;
1811         }
1812 }
1813
1814 static int addr_port(struct ceph_entity_addr *addr)
1815 {
1816         switch (get_unaligned(&addr->in_addr.ss_family)) {
1817         case AF_INET:
1818                 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1819         case AF_INET6:
1820                 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1821         }
1822         return 0;
1823 }
1824
1825 static void addr_set_port(struct ceph_entity_addr *addr, int p)
1826 {
1827         switch (get_unaligned(&addr->in_addr.ss_family)) {
1828         case AF_INET:
1829                 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1830                 break;
1831         case AF_INET6:
1832                 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1833                 break;
1834         }
1835 }
1836
1837 /*
1838  * Unlike other *_pton function semantics, zero indicates success.
1839  */
1840 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1841                 char delim, const char **ipend)
1842 {
1843         memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1844
1845         if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1846                 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1847                 return 0;
1848         }
1849
1850         if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1851                 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1852                 return 0;
1853         }
1854
1855         return -EINVAL;
1856 }
1857
1858 /*
1859  * Extract hostname string and resolve using kernel DNS facility.
1860  */
1861 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1862 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1863                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1864 {
1865         const char *end, *delim_p;
1866         char *colon_p, *ip_addr = NULL;
1867         int ip_len, ret;
1868
1869         /*
1870          * The end of the hostname occurs immediately preceding the delimiter or
1871          * the port marker (':') where the delimiter takes precedence.
1872          */
1873         delim_p = memchr(name, delim, namelen);
1874         colon_p = memchr(name, ':', namelen);
1875
1876         if (delim_p && colon_p)
1877                 end = delim_p < colon_p ? delim_p : colon_p;
1878         else if (!delim_p && colon_p)
1879                 end = colon_p;
1880         else {
1881                 end = delim_p;
1882                 if (!end) /* case: hostname:/ */
1883                         end = name + namelen;
1884         }
1885
1886         if (end <= name)
1887                 return -EINVAL;
1888
1889         /* do dns_resolve upcall */
1890         ip_len = dns_query(current->nsproxy->net_ns,
1891                            NULL, name, end - name, NULL, &ip_addr, NULL, false);
1892         if (ip_len > 0)
1893                 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1894         else
1895                 ret = -ESRCH;
1896
1897         kfree(ip_addr);
1898
1899         *ipend = end;
1900
1901         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1902                         ret, ret ? "failed" : ceph_pr_addr(addr));
1903
1904         return ret;
1905 }
1906 #else
1907 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1908                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1909 {
1910         return -EINVAL;
1911 }
1912 #endif
1913
1914 /*
1915  * Parse a server name (IP or hostname). If a valid IP address is not found
1916  * then try to extract a hostname to resolve using userspace DNS upcall.
1917  */
1918 static int ceph_parse_server_name(const char *name, size_t namelen,
1919                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1920 {
1921         int ret;
1922
1923         ret = ceph_pton(name, namelen, addr, delim, ipend);
1924         if (ret)
1925                 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1926
1927         return ret;
1928 }
1929
1930 /*
1931  * Parse an ip[:port] list into an addr array.  Use the default
1932  * monitor port if a port isn't specified.
1933  */
1934 int ceph_parse_ips(const char *c, const char *end,
1935                    struct ceph_entity_addr *addr,
1936                    int max_count, int *count)
1937 {
1938         int i, ret = -EINVAL;
1939         const char *p = c;
1940
1941         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1942         for (i = 0; i < max_count; i++) {
1943                 const char *ipend;
1944                 int port;
1945                 char delim = ',';
1946
1947                 if (*p == '[') {
1948                         delim = ']';
1949                         p++;
1950                 }
1951
1952                 ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend);
1953                 if (ret)
1954                         goto bad;
1955                 ret = -EINVAL;
1956
1957                 p = ipend;
1958
1959                 if (delim == ']') {
1960                         if (*p != ']') {
1961                                 dout("missing matching ']'\n");
1962                                 goto bad;
1963                         }
1964                         p++;
1965                 }
1966
1967                 /* port? */
1968                 if (p < end && *p == ':') {
1969                         port = 0;
1970                         p++;
1971                         while (p < end && *p >= '0' && *p <= '9') {
1972                                 port = (port * 10) + (*p - '0');
1973                                 p++;
1974                         }
1975                         if (port == 0)
1976                                 port = CEPH_MON_PORT;
1977                         else if (port > 65535)
1978                                 goto bad;
1979                 } else {
1980                         port = CEPH_MON_PORT;
1981                 }
1982
1983                 addr_set_port(&addr[i], port);
1984
1985                 dout("parse_ips got %s\n", ceph_pr_addr(&addr[i]));
1986
1987                 if (p == end)
1988                         break;
1989                 if (*p != ',')
1990                         goto bad;
1991                 p++;
1992         }
1993
1994         if (p != end)
1995                 goto bad;
1996
1997         if (count)
1998                 *count = i + 1;
1999         return 0;
2000
2001 bad:
2002         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2003         return ret;
2004 }
2005 EXPORT_SYMBOL(ceph_parse_ips);
2006
2007 static int process_banner(struct ceph_connection *con)
2008 {
2009         dout("process_banner on %p\n", con);
2010
2011         if (verify_hello(con) < 0)
2012                 return -1;
2013
2014         ceph_decode_addr(&con->actual_peer_addr);
2015         ceph_decode_addr(&con->peer_addr_for_me);
2016
2017         /*
2018          * Make sure the other end is who we wanted.  note that the other
2019          * end may not yet know their ip address, so if it's 0.0.0.0, give
2020          * them the benefit of the doubt.
2021          */
2022         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2023                    sizeof(con->peer_addr)) != 0 &&
2024             !(addr_is_blank(&con->actual_peer_addr) &&
2025               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2026                 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2027                         ceph_pr_addr(&con->peer_addr),
2028                         (int)le32_to_cpu(con->peer_addr.nonce),
2029                         ceph_pr_addr(&con->actual_peer_addr),
2030                         (int)le32_to_cpu(con->actual_peer_addr.nonce));
2031                 con->error_msg = "wrong peer at address";
2032                 return -1;
2033         }
2034
2035         /*
2036          * did we learn our address?
2037          */
2038         if (addr_is_blank(&con->msgr->inst.addr)) {
2039                 int port = addr_port(&con->msgr->inst.addr);
2040
2041                 memcpy(&con->msgr->inst.addr.in_addr,
2042                        &con->peer_addr_for_me.in_addr,
2043                        sizeof(con->peer_addr_for_me.in_addr));
2044                 addr_set_port(&con->msgr->inst.addr, port);
2045                 encode_my_addr(con->msgr);
2046                 dout("process_banner learned my addr is %s\n",
2047                      ceph_pr_addr(&con->msgr->inst.addr));
2048         }
2049
2050         return 0;
2051 }
2052
2053 static int process_connect(struct ceph_connection *con)
2054 {
2055         u64 sup_feat = from_msgr(con->msgr)->supported_features;
2056         u64 req_feat = from_msgr(con->msgr)->required_features;
2057         u64 server_feat = le64_to_cpu(con->in_reply.features);
2058         int ret;
2059
2060         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2061
2062         if (con->auth) {
2063                 int len = le32_to_cpu(con->in_reply.authorizer_len);
2064
2065                 /*
2066                  * Any connection that defines ->get_authorizer()
2067                  * should also define ->add_authorizer_challenge() and
2068                  * ->verify_authorizer_reply().
2069                  *
2070                  * See get_connect_authorizer().
2071                  */
2072                 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2073                         ret = con->ops->add_authorizer_challenge(
2074                                     con, con->auth->authorizer_reply_buf, len);
2075                         if (ret < 0)
2076                                 return ret;
2077
2078                         con_out_kvec_reset(con);
2079                         __prepare_write_connect(con);
2080                         prepare_read_connect(con);
2081                         return 0;
2082                 }
2083
2084                 if (len) {
2085                         ret = con->ops->verify_authorizer_reply(con);
2086                         if (ret < 0) {
2087                                 con->error_msg = "bad authorize reply";
2088                                 return ret;
2089                         }
2090                 }
2091         }
2092
2093         switch (con->in_reply.tag) {
2094         case CEPH_MSGR_TAG_FEATURES:
2095                 pr_err("%s%lld %s feature set mismatch,"
2096                        " my %llx < server's %llx, missing %llx\n",
2097                        ENTITY_NAME(con->peer_name),
2098                        ceph_pr_addr(&con->peer_addr),
2099                        sup_feat, server_feat, server_feat & ~sup_feat);
2100                 con->error_msg = "missing required protocol features";
2101                 reset_connection(con);
2102                 return -1;
2103
2104         case CEPH_MSGR_TAG_BADPROTOVER:
2105                 pr_err("%s%lld %s protocol version mismatch,"
2106                        " my %d != server's %d\n",
2107                        ENTITY_NAME(con->peer_name),
2108                        ceph_pr_addr(&con->peer_addr),
2109                        le32_to_cpu(con->out_connect.protocol_version),
2110                        le32_to_cpu(con->in_reply.protocol_version));
2111                 con->error_msg = "protocol version mismatch";
2112                 reset_connection(con);
2113                 return -1;
2114
2115         case CEPH_MSGR_TAG_BADAUTHORIZER:
2116                 con->auth_retry++;
2117                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2118                      con->auth_retry);
2119                 if (con->auth_retry == 2) {
2120                         con->error_msg = "connect authorization failure";
2121                         return -1;
2122                 }
2123                 con_out_kvec_reset(con);
2124                 ret = prepare_write_connect(con);
2125                 if (ret < 0)
2126                         return ret;
2127                 prepare_read_connect(con);
2128                 break;
2129
2130         case CEPH_MSGR_TAG_RESETSESSION:
2131                 /*
2132                  * If we connected with a large connect_seq but the peer
2133                  * has no record of a session with us (no connection, or
2134                  * connect_seq == 0), they will send RESETSESION to indicate
2135                  * that they must have reset their session, and may have
2136                  * dropped messages.
2137                  */
2138                 dout("process_connect got RESET peer seq %u\n",
2139                      le32_to_cpu(con->in_reply.connect_seq));
2140                 pr_err("%s%lld %s connection reset\n",
2141                        ENTITY_NAME(con->peer_name),
2142                        ceph_pr_addr(&con->peer_addr));
2143                 reset_connection(con);
2144                 con_out_kvec_reset(con);
2145                 ret = prepare_write_connect(con);
2146                 if (ret < 0)
2147                         return ret;
2148                 prepare_read_connect(con);
2149
2150                 /* Tell ceph about it. */
2151                 mutex_unlock(&con->mutex);
2152                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2153                 if (con->ops->peer_reset)
2154                         con->ops->peer_reset(con);
2155                 mutex_lock(&con->mutex);
2156                 if (con->state != CON_STATE_NEGOTIATING)
2157                         return -EAGAIN;
2158                 break;
2159
2160         case CEPH_MSGR_TAG_RETRY_SESSION:
2161                 /*
2162                  * If we sent a smaller connect_seq than the peer has, try
2163                  * again with a larger value.
2164                  */
2165                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2166                      le32_to_cpu(con->out_connect.connect_seq),
2167                      le32_to_cpu(con->in_reply.connect_seq));
2168                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2169                 con_out_kvec_reset(con);
2170                 ret = prepare_write_connect(con);
2171                 if (ret < 0)
2172                         return ret;
2173                 prepare_read_connect(con);
2174                 break;
2175
2176         case CEPH_MSGR_TAG_RETRY_GLOBAL:
2177                 /*
2178                  * If we sent a smaller global_seq than the peer has, try
2179                  * again with a larger value.
2180                  */
2181                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2182                      con->peer_global_seq,
2183                      le32_to_cpu(con->in_reply.global_seq));
2184                 get_global_seq(con->msgr,
2185                                le32_to_cpu(con->in_reply.global_seq));
2186                 con_out_kvec_reset(con);
2187                 ret = prepare_write_connect(con);
2188                 if (ret < 0)
2189                         return ret;
2190                 prepare_read_connect(con);
2191                 break;
2192
2193         case CEPH_MSGR_TAG_SEQ:
2194         case CEPH_MSGR_TAG_READY:
2195                 if (req_feat & ~server_feat) {
2196                         pr_err("%s%lld %s protocol feature mismatch,"
2197                                " my required %llx > server's %llx, need %llx\n",
2198                                ENTITY_NAME(con->peer_name),
2199                                ceph_pr_addr(&con->peer_addr),
2200                                req_feat, server_feat, req_feat & ~server_feat);
2201                         con->error_msg = "missing required protocol features";
2202                         reset_connection(con);
2203                         return -1;
2204                 }
2205
2206                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2207                 con->state = CON_STATE_OPEN;
2208                 con->auth_retry = 0;    /* we authenticated; clear flag */
2209                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2210                 con->connect_seq++;
2211                 con->peer_features = server_feat;
2212                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2213                      con->peer_global_seq,
2214                      le32_to_cpu(con->in_reply.connect_seq),
2215                      con->connect_seq);
2216                 WARN_ON(con->connect_seq !=
2217                         le32_to_cpu(con->in_reply.connect_seq));
2218
2219                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2220                         con_flag_set(con, CON_FLAG_LOSSYTX);
2221
2222                 con->delay = 0;      /* reset backoff memory */
2223
2224                 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2225                         prepare_write_seq(con);
2226                         prepare_read_seq(con);
2227                 } else {
2228                         prepare_read_tag(con);
2229                 }
2230                 break;
2231
2232         case CEPH_MSGR_TAG_WAIT:
2233                 /*
2234                  * If there is a connection race (we are opening
2235                  * connections to each other), one of us may just have
2236                  * to WAIT.  This shouldn't happen if we are the
2237                  * client.
2238                  */
2239                 con->error_msg = "protocol error, got WAIT as client";
2240                 return -1;
2241
2242         default:
2243                 con->error_msg = "protocol error, garbage tag during connect";
2244                 return -1;
2245         }
2246         return 0;
2247 }
2248
2249
2250 /*
2251  * read (part of) an ack
2252  */
2253 static int read_partial_ack(struct ceph_connection *con)
2254 {
2255         int size = sizeof (con->in_temp_ack);
2256         int end = size;
2257
2258         return read_partial(con, end, size, &con->in_temp_ack);
2259 }
2260
2261 /*
2262  * We can finally discard anything that's been acked.
2263  */
2264 static void process_ack(struct ceph_connection *con)
2265 {
2266         struct ceph_msg *m;
2267         u64 ack = le64_to_cpu(con->in_temp_ack);
2268         u64 seq;
2269         bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2270         struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2271
2272         /*
2273          * In the reconnect case, con_fault() has requeued messages
2274          * in out_sent. We should cleanup old messages according to
2275          * the reconnect seq.
2276          */
2277         while (!list_empty(list)) {
2278                 m = list_first_entry(list, struct ceph_msg, list_head);
2279                 if (reconnect && m->needs_out_seq)
2280                         break;
2281                 seq = le64_to_cpu(m->hdr.seq);
2282                 if (seq > ack)
2283                         break;
2284                 dout("got ack for seq %llu type %d at %p\n", seq,
2285                      le16_to_cpu(m->hdr.type), m);
2286                 m->ack_stamp = jiffies;
2287                 ceph_msg_remove(m);
2288         }
2289
2290         prepare_read_tag(con);
2291 }
2292
2293
2294 static int read_partial_message_section(struct ceph_connection *con,
2295                                         struct kvec *section,
2296                                         unsigned int sec_len, u32 *crc)
2297 {
2298         int ret, left;
2299
2300         BUG_ON(!section);
2301
2302         while (section->iov_len < sec_len) {
2303                 BUG_ON(section->iov_base == NULL);
2304                 left = sec_len - section->iov_len;
2305                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2306                                        section->iov_len, left);
2307                 if (ret <= 0)
2308                         return ret;
2309                 section->iov_len += ret;
2310         }
2311         if (section->iov_len == sec_len)
2312                 *crc = crc32c(0, section->iov_base, section->iov_len);
2313
2314         return 1;
2315 }
2316
2317 static int read_partial_msg_data(struct ceph_connection *con)
2318 {
2319         struct ceph_msg *msg = con->in_msg;
2320         struct ceph_msg_data_cursor *cursor = &msg->cursor;
2321         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2322         struct page *page;
2323         size_t page_offset;
2324         size_t length;
2325         u32 crc = 0;
2326         int ret;
2327
2328         if (!msg->num_data_items)
2329                 return -EIO;
2330
2331         if (do_datacrc)
2332                 crc = con->in_data_crc;
2333         while (cursor->total_resid) {
2334                 if (!cursor->resid) {
2335                         ceph_msg_data_advance(cursor, 0);
2336                         continue;
2337                 }
2338
2339                 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2340                 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2341                 if (ret <= 0) {
2342                         if (do_datacrc)
2343                                 con->in_data_crc = crc;
2344
2345                         return ret;
2346                 }
2347
2348                 if (do_datacrc)
2349                         crc = ceph_crc32c_page(crc, page, page_offset, ret);
2350                 ceph_msg_data_advance(cursor, (size_t)ret);
2351         }
2352         if (do_datacrc)
2353                 con->in_data_crc = crc;
2354
2355         return 1;       /* must return > 0 to indicate success */
2356 }
2357
2358 /*
2359  * read (part of) a message.
2360  */
2361 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2362
2363 static int read_partial_message(struct ceph_connection *con)
2364 {
2365         struct ceph_msg *m = con->in_msg;
2366         int size;
2367         int end;
2368         int ret;
2369         unsigned int front_len, middle_len, data_len;
2370         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2371         bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2372         u64 seq;
2373         u32 crc;
2374
2375         dout("read_partial_message con %p msg %p\n", con, m);
2376
2377         /* header */
2378         size = sizeof (con->in_hdr);
2379         end = size;
2380         ret = read_partial(con, end, size, &con->in_hdr);
2381         if (ret <= 0)
2382                 return ret;
2383
2384         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2385         if (cpu_to_le32(crc) != con->in_hdr.crc) {
2386                 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2387                        crc, con->in_hdr.crc);
2388                 return -EBADMSG;
2389         }
2390
2391         front_len = le32_to_cpu(con->in_hdr.front_len);
2392         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2393                 return -EIO;
2394         middle_len = le32_to_cpu(con->in_hdr.middle_len);
2395         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2396                 return -EIO;
2397         data_len = le32_to_cpu(con->in_hdr.data_len);
2398         if (data_len > CEPH_MSG_MAX_DATA_LEN)
2399                 return -EIO;
2400
2401         /* verify seq# */
2402         seq = le64_to_cpu(con->in_hdr.seq);
2403         if ((s64)seq - (s64)con->in_seq < 1) {
2404                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2405                         ENTITY_NAME(con->peer_name),
2406                         ceph_pr_addr(&con->peer_addr),
2407                         seq, con->in_seq + 1);
2408                 con->in_base_pos = -front_len - middle_len - data_len -
2409                         sizeof_footer(con);
2410                 con->in_tag = CEPH_MSGR_TAG_READY;
2411                 return 1;
2412         } else if ((s64)seq - (s64)con->in_seq > 1) {
2413                 pr_err("read_partial_message bad seq %lld expected %lld\n",
2414                        seq, con->in_seq + 1);
2415                 con->error_msg = "bad message sequence # for incoming message";
2416                 return -EBADE;
2417         }
2418
2419         /* allocate message? */
2420         if (!con->in_msg) {
2421                 int skip = 0;
2422
2423                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2424                      front_len, data_len);
2425                 ret = ceph_con_in_msg_alloc(con, &skip);
2426                 if (ret < 0)
2427                         return ret;
2428
2429                 BUG_ON(!con->in_msg ^ skip);
2430                 if (skip) {
2431                         /* skip this message */
2432                         dout("alloc_msg said skip message\n");
2433                         con->in_base_pos = -front_len - middle_len - data_len -
2434                                 sizeof_footer(con);
2435                         con->in_tag = CEPH_MSGR_TAG_READY;
2436                         con->in_seq++;
2437                         return 1;
2438                 }
2439
2440                 BUG_ON(!con->in_msg);
2441                 BUG_ON(con->in_msg->con != con);
2442                 m = con->in_msg;
2443                 m->front.iov_len = 0;    /* haven't read it yet */
2444                 if (m->middle)
2445                         m->middle->vec.iov_len = 0;
2446
2447                 /* prepare for data payload, if any */
2448
2449                 if (data_len)
2450                         prepare_message_data(con->in_msg, data_len);
2451         }
2452
2453         /* front */
2454         ret = read_partial_message_section(con, &m->front, front_len,
2455                                            &con->in_front_crc);
2456         if (ret <= 0)
2457                 return ret;
2458
2459         /* middle */
2460         if (m->middle) {
2461                 ret = read_partial_message_section(con, &m->middle->vec,
2462                                                    middle_len,
2463                                                    &con->in_middle_crc);
2464                 if (ret <= 0)
2465                         return ret;
2466         }
2467
2468         /* (page) data */
2469         if (data_len) {
2470                 ret = read_partial_msg_data(con);
2471                 if (ret <= 0)
2472                         return ret;
2473         }
2474
2475         /* footer */
2476         size = sizeof_footer(con);
2477         end += size;
2478         ret = read_partial(con, end, size, &m->footer);
2479         if (ret <= 0)
2480                 return ret;
2481
2482         if (!need_sign) {
2483                 m->footer.flags = m->old_footer.flags;
2484                 m->footer.sig = 0;
2485         }
2486
2487         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2488              m, front_len, m->footer.front_crc, middle_len,
2489              m->footer.middle_crc, data_len, m->footer.data_crc);
2490
2491         /* crc ok? */
2492         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2493                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2494                        m, con->in_front_crc, m->footer.front_crc);
2495                 return -EBADMSG;
2496         }
2497         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2498                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2499                        m, con->in_middle_crc, m->footer.middle_crc);
2500                 return -EBADMSG;
2501         }
2502         if (do_datacrc &&
2503             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2504             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2505                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2506                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2507                 return -EBADMSG;
2508         }
2509
2510         if (need_sign && con->ops->check_message_signature &&
2511             con->ops->check_message_signature(m)) {
2512                 pr_err("read_partial_message %p signature check failed\n", m);
2513                 return -EBADMSG;
2514         }
2515
2516         return 1; /* done! */
2517 }
2518
2519 /*
2520  * Process message.  This happens in the worker thread.  The callback should
2521  * be careful not to do anything that waits on other incoming messages or it
2522  * may deadlock.
2523  */
2524 static void process_message(struct ceph_connection *con)
2525 {
2526         struct ceph_msg *msg = con->in_msg;
2527
2528         BUG_ON(con->in_msg->con != con);
2529         con->in_msg = NULL;
2530
2531         /* if first message, set peer_name */
2532         if (con->peer_name.type == 0)
2533                 con->peer_name = msg->hdr.src;
2534
2535         con->in_seq++;
2536         mutex_unlock(&con->mutex);
2537
2538         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2539              msg, le64_to_cpu(msg->hdr.seq),
2540              ENTITY_NAME(msg->hdr.src),
2541              le16_to_cpu(msg->hdr.type),
2542              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2543              le32_to_cpu(msg->hdr.front_len),
2544              le32_to_cpu(msg->hdr.data_len),
2545              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2546         con->ops->dispatch(con, msg);
2547
2548         mutex_lock(&con->mutex);
2549 }
2550
2551 static int read_keepalive_ack(struct ceph_connection *con)
2552 {
2553         struct ceph_timespec ceph_ts;
2554         size_t size = sizeof(ceph_ts);
2555         int ret = read_partial(con, size, size, &ceph_ts);
2556         if (ret <= 0)
2557                 return ret;
2558         ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2559         prepare_read_tag(con);
2560         return 1;
2561 }
2562
2563 /*
2564  * Write something to the socket.  Called in a worker thread when the
2565  * socket appears to be writeable and we have something ready to send.
2566  */
2567 static int try_write(struct ceph_connection *con)
2568 {
2569         int ret = 1;
2570
2571         dout("try_write start %p state %lu\n", con, con->state);
2572         if (con->state != CON_STATE_PREOPEN &&
2573             con->state != CON_STATE_CONNECTING &&
2574             con->state != CON_STATE_NEGOTIATING &&
2575             con->state != CON_STATE_OPEN)
2576                 return 0;
2577
2578         /* open the socket first? */
2579         if (con->state == CON_STATE_PREOPEN) {
2580                 BUG_ON(con->sock);
2581                 con->state = CON_STATE_CONNECTING;
2582
2583                 con_out_kvec_reset(con);
2584                 prepare_write_banner(con);
2585                 prepare_read_banner(con);
2586
2587                 BUG_ON(con->in_msg);
2588                 con->in_tag = CEPH_MSGR_TAG_READY;
2589                 dout("try_write initiating connect on %p new state %lu\n",
2590                      con, con->state);
2591                 ret = ceph_tcp_connect(con);
2592                 if (ret < 0) {
2593                         con->error_msg = "connect error";
2594                         goto out;
2595                 }
2596         }
2597
2598 more:
2599         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2600         BUG_ON(!con->sock);
2601
2602         /* kvec data queued? */
2603         if (con->out_kvec_left) {
2604                 ret = write_partial_kvec(con);
2605                 if (ret <= 0)
2606                         goto out;
2607         }
2608         if (con->out_skip) {
2609                 ret = write_partial_skip(con);
2610                 if (ret <= 0)
2611                         goto out;
2612         }
2613
2614         /* msg pages? */
2615         if (con->out_msg) {
2616                 if (con->out_msg_done) {
2617                         ceph_msg_put(con->out_msg);
2618                         con->out_msg = NULL;   /* we're done with this one */
2619                         goto do_next;
2620                 }
2621
2622                 ret = write_partial_message_data(con);
2623                 if (ret == 1)
2624                         goto more;  /* we need to send the footer, too! */
2625                 if (ret == 0)
2626                         goto out;
2627                 if (ret < 0) {
2628                         dout("try_write write_partial_message_data err %d\n",
2629                              ret);
2630                         goto out;
2631                 }
2632         }
2633
2634 do_next:
2635         if (con->state == CON_STATE_OPEN) {
2636                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2637                         prepare_write_keepalive(con);
2638                         goto more;
2639                 }
2640                 /* is anything else pending? */
2641                 if (!list_empty(&con->out_queue)) {
2642                         prepare_write_message(con);
2643                         goto more;
2644                 }
2645                 if (con->in_seq > con->in_seq_acked) {
2646                         prepare_write_ack(con);
2647                         goto more;
2648                 }
2649         }
2650
2651         /* Nothing to do! */
2652         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2653         dout("try_write nothing else to write.\n");
2654         ret = 0;
2655 out:
2656         dout("try_write done on %p ret %d\n", con, ret);
2657         return ret;
2658 }
2659
2660 /*
2661  * Read what we can from the socket.
2662  */
2663 static int try_read(struct ceph_connection *con)
2664 {
2665         int ret = -1;
2666
2667 more:
2668         dout("try_read start on %p state %lu\n", con, con->state);
2669         if (con->state != CON_STATE_CONNECTING &&
2670             con->state != CON_STATE_NEGOTIATING &&
2671             con->state != CON_STATE_OPEN)
2672                 return 0;
2673
2674         BUG_ON(!con->sock);
2675
2676         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2677              con->in_base_pos);
2678
2679         if (con->state == CON_STATE_CONNECTING) {
2680                 dout("try_read connecting\n");
2681                 ret = read_partial_banner(con);
2682                 if (ret <= 0)
2683                         goto out;
2684                 ret = process_banner(con);
2685                 if (ret < 0)
2686                         goto out;
2687
2688                 con->state = CON_STATE_NEGOTIATING;
2689
2690                 /*
2691                  * Received banner is good, exchange connection info.
2692                  * Do not reset out_kvec, as sending our banner raced
2693                  * with receiving peer banner after connect completed.
2694                  */
2695                 ret = prepare_write_connect(con);
2696                 if (ret < 0)
2697                         goto out;
2698                 prepare_read_connect(con);
2699
2700                 /* Send connection info before awaiting response */
2701                 goto out;
2702         }
2703
2704         if (con->state == CON_STATE_NEGOTIATING) {
2705                 dout("try_read negotiating\n");
2706                 ret = read_partial_connect(con);
2707                 if (ret <= 0)
2708                         goto out;
2709                 ret = process_connect(con);
2710                 if (ret < 0)
2711                         goto out;
2712                 goto more;
2713         }
2714
2715         WARN_ON(con->state != CON_STATE_OPEN);
2716
2717         if (con->in_base_pos < 0) {
2718                 /*
2719                  * skipping + discarding content.
2720                  */
2721                 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2722                 if (ret <= 0)
2723                         goto out;
2724                 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2725                 con->in_base_pos += ret;
2726                 if (con->in_base_pos)
2727                         goto more;
2728         }
2729         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2730                 /*
2731                  * what's next?
2732                  */
2733                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2734                 if (ret <= 0)
2735                         goto out;
2736                 dout("try_read got tag %d\n", (int)con->in_tag);
2737                 switch (con->in_tag) {
2738                 case CEPH_MSGR_TAG_MSG:
2739                         prepare_read_message(con);
2740                         break;
2741                 case CEPH_MSGR_TAG_ACK:
2742                         prepare_read_ack(con);
2743                         break;
2744                 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2745                         prepare_read_keepalive_ack(con);
2746                         break;
2747                 case CEPH_MSGR_TAG_CLOSE:
2748                         con_close_socket(con);
2749                         con->state = CON_STATE_CLOSED;
2750                         goto out;
2751                 default:
2752                         goto bad_tag;
2753                 }
2754         }
2755         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2756                 ret = read_partial_message(con);
2757                 if (ret <= 0) {
2758                         switch (ret) {
2759                         case -EBADMSG:
2760                                 con->error_msg = "bad crc/signature";
2761                                 /* fall through */
2762                         case -EBADE:
2763                                 ret = -EIO;
2764                                 break;
2765                         case -EIO:
2766                                 con->error_msg = "io error";
2767                                 break;
2768                         }
2769                         goto out;
2770                 }
2771                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2772                         goto more;
2773                 process_message(con);
2774                 if (con->state == CON_STATE_OPEN)
2775                         prepare_read_tag(con);
2776                 goto more;
2777         }
2778         if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2779             con->in_tag == CEPH_MSGR_TAG_SEQ) {
2780                 /*
2781                  * the final handshake seq exchange is semantically
2782                  * equivalent to an ACK
2783                  */
2784                 ret = read_partial_ack(con);
2785                 if (ret <= 0)
2786                         goto out;
2787                 process_ack(con);
2788                 goto more;
2789         }
2790         if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2791                 ret = read_keepalive_ack(con);
2792                 if (ret <= 0)
2793                         goto out;
2794                 goto more;
2795         }
2796
2797 out:
2798         dout("try_read done on %p ret %d\n", con, ret);
2799         return ret;
2800
2801 bad_tag:
2802         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2803         con->error_msg = "protocol error, garbage tag";
2804         ret = -1;
2805         goto out;
2806 }
2807
2808
2809 /*
2810  * Atomically queue work on a connection after the specified delay.
2811  * Bump @con reference to avoid races with connection teardown.
2812  * Returns 0 if work was queued, or an error code otherwise.
2813  */
2814 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2815 {
2816         if (!con->ops->get(con)) {
2817                 dout("%s %p ref count 0\n", __func__, con);
2818                 return -ENOENT;
2819         }
2820
2821         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2822                 dout("%s %p - already queued\n", __func__, con);
2823                 con->ops->put(con);
2824                 return -EBUSY;
2825         }
2826
2827         dout("%s %p %lu\n", __func__, con, delay);
2828         return 0;
2829 }
2830
2831 static void queue_con(struct ceph_connection *con)
2832 {
2833         (void) queue_con_delay(con, 0);
2834 }
2835
2836 static void cancel_con(struct ceph_connection *con)
2837 {
2838         if (cancel_delayed_work(&con->work)) {
2839                 dout("%s %p\n", __func__, con);
2840                 con->ops->put(con);
2841         }
2842 }
2843
2844 static bool con_sock_closed(struct ceph_connection *con)
2845 {
2846         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2847                 return false;
2848
2849 #define CASE(x)                                                         \
2850         case CON_STATE_ ## x:                                           \
2851                 con->error_msg = "socket closed (con state " #x ")";    \
2852                 break;
2853
2854         switch (con->state) {
2855         CASE(CLOSED);
2856         CASE(PREOPEN);
2857         CASE(CONNECTING);
2858         CASE(NEGOTIATING);
2859         CASE(OPEN);
2860         CASE(STANDBY);
2861         default:
2862                 pr_warn("%s con %p unrecognized state %lu\n",
2863                         __func__, con, con->state);
2864                 con->error_msg = "unrecognized con state";
2865                 BUG();
2866                 break;
2867         }
2868 #undef CASE
2869
2870         return true;
2871 }
2872
2873 static bool con_backoff(struct ceph_connection *con)
2874 {
2875         int ret;
2876
2877         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2878                 return false;
2879
2880         ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2881         if (ret) {
2882                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2883                         con, con->delay);
2884                 BUG_ON(ret == -ENOENT);
2885                 con_flag_set(con, CON_FLAG_BACKOFF);
2886         }
2887
2888         return true;
2889 }
2890
2891 /* Finish fault handling; con->mutex must *not* be held here */
2892
2893 static void con_fault_finish(struct ceph_connection *con)
2894 {
2895         dout("%s %p\n", __func__, con);
2896
2897         /*
2898          * in case we faulted due to authentication, invalidate our
2899          * current tickets so that we can get new ones.
2900          */
2901         if (con->auth_retry) {
2902                 dout("auth_retry %d, invalidating\n", con->auth_retry);
2903                 if (con->ops->invalidate_authorizer)
2904                         con->ops->invalidate_authorizer(con);
2905                 con->auth_retry = 0;
2906         }
2907
2908         if (con->ops->fault)
2909                 con->ops->fault(con);
2910 }
2911
2912 /*
2913  * Do some work on a connection.  Drop a connection ref when we're done.
2914  */
2915 static void ceph_con_workfn(struct work_struct *work)
2916 {
2917         struct ceph_connection *con = container_of(work, struct ceph_connection,
2918                                                    work.work);
2919         bool fault;
2920
2921         mutex_lock(&con->mutex);
2922         while (true) {
2923                 int ret;
2924
2925                 if ((fault = con_sock_closed(con))) {
2926                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2927                         break;
2928                 }
2929                 if (con_backoff(con)) {
2930                         dout("%s: con %p BACKOFF\n", __func__, con);
2931                         break;
2932                 }
2933                 if (con->state == CON_STATE_STANDBY) {
2934                         dout("%s: con %p STANDBY\n", __func__, con);
2935                         break;
2936                 }
2937                 if (con->state == CON_STATE_CLOSED) {
2938                         dout("%s: con %p CLOSED\n", __func__, con);
2939                         BUG_ON(con->sock);
2940                         break;
2941                 }
2942                 if (con->state == CON_STATE_PREOPEN) {
2943                         dout("%s: con %p PREOPEN\n", __func__, con);
2944                         BUG_ON(con->sock);
2945                 }
2946
2947                 ret = try_read(con);
2948                 if (ret < 0) {
2949                         if (ret == -EAGAIN)
2950                                 continue;
2951                         if (!con->error_msg)
2952                                 con->error_msg = "socket error on read";
2953                         fault = true;
2954                         break;
2955                 }
2956
2957                 ret = try_write(con);
2958                 if (ret < 0) {
2959                         if (ret == -EAGAIN)
2960                                 continue;
2961                         if (!con->error_msg)
2962                                 con->error_msg = "socket error on write";
2963                         fault = true;
2964                 }
2965
2966                 break;  /* If we make it to here, we're done */
2967         }
2968         if (fault)
2969                 con_fault(con);
2970         mutex_unlock(&con->mutex);
2971
2972         if (fault)
2973                 con_fault_finish(con);
2974
2975         con->ops->put(con);
2976 }
2977
2978 /*
2979  * Generic error/fault handler.  A retry mechanism is used with
2980  * exponential backoff
2981  */
2982 static void con_fault(struct ceph_connection *con)
2983 {
2984         dout("fault %p state %lu to peer %s\n",
2985              con, con->state, ceph_pr_addr(&con->peer_addr));
2986
2987         pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2988                 ceph_pr_addr(&con->peer_addr), con->error_msg);
2989         con->error_msg = NULL;
2990
2991         WARN_ON(con->state != CON_STATE_CONNECTING &&
2992                con->state != CON_STATE_NEGOTIATING &&
2993                con->state != CON_STATE_OPEN);
2994
2995         con_close_socket(con);
2996
2997         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2998                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2999                 con->state = CON_STATE_CLOSED;
3000                 return;
3001         }
3002
3003         if (con->in_msg) {
3004                 BUG_ON(con->in_msg->con != con);
3005                 ceph_msg_put(con->in_msg);
3006                 con->in_msg = NULL;
3007         }
3008
3009         /* Requeue anything that hasn't been acked */
3010         list_splice_init(&con->out_sent, &con->out_queue);
3011
3012         /* If there are no messages queued or keepalive pending, place
3013          * the connection in a STANDBY state */
3014         if (list_empty(&con->out_queue) &&
3015             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3016                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3017                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3018                 con->state = CON_STATE_STANDBY;
3019         } else {
3020                 /* retry after a delay. */
3021                 con->state = CON_STATE_PREOPEN;
3022                 if (con->delay == 0)
3023                         con->delay = BASE_DELAY_INTERVAL;
3024                 else if (con->delay < MAX_DELAY_INTERVAL)
3025                         con->delay *= 2;
3026                 con_flag_set(con, CON_FLAG_BACKOFF);
3027                 queue_con(con);
3028         }
3029 }
3030
3031
3032
3033 /*
3034  * initialize a new messenger instance
3035  */
3036 void ceph_messenger_init(struct ceph_messenger *msgr,
3037                          struct ceph_entity_addr *myaddr)
3038 {
3039         spin_lock_init(&msgr->global_seq_lock);
3040
3041         if (myaddr)
3042                 msgr->inst.addr = *myaddr;
3043
3044         /* select a random nonce */
3045         msgr->inst.addr.type = 0;
3046         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3047         encode_my_addr(msgr);
3048
3049         atomic_set(&msgr->stopping, 0);
3050         write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3051
3052         dout("%s %p\n", __func__, msgr);
3053 }
3054 EXPORT_SYMBOL(ceph_messenger_init);
3055
3056 void ceph_messenger_fini(struct ceph_messenger *msgr)
3057 {
3058         put_net(read_pnet(&msgr->net));
3059 }
3060 EXPORT_SYMBOL(ceph_messenger_fini);
3061
3062 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3063 {
3064         if (msg->con)
3065                 msg->con->ops->put(msg->con);
3066
3067         msg->con = con ? con->ops->get(con) : NULL;
3068         BUG_ON(msg->con != con);
3069 }
3070
3071 static void clear_standby(struct ceph_connection *con)
3072 {
3073         /* come back from STANDBY? */
3074         if (con->state == CON_STATE_STANDBY) {
3075                 dout("clear_standby %p and ++connect_seq\n", con);
3076                 con->state = CON_STATE_PREOPEN;
3077                 con->connect_seq++;
3078                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3079                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3080         }
3081 }
3082
3083 /*
3084  * Queue up an outgoing message on the given connection.
3085  */
3086 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3087 {
3088         /* set src+dst */
3089         msg->hdr.src = con->msgr->inst.name;
3090         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3091         msg->needs_out_seq = true;
3092
3093         mutex_lock(&con->mutex);
3094
3095         if (con->state == CON_STATE_CLOSED) {
3096                 dout("con_send %p closed, dropping %p\n", con, msg);
3097                 ceph_msg_put(msg);
3098                 mutex_unlock(&con->mutex);
3099                 return;
3100         }
3101
3102         msg_con_set(msg, con);
3103
3104         BUG_ON(!list_empty(&msg->list_head));
3105         list_add_tail(&msg->list_head, &con->out_queue);
3106         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3107              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3108              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3109              le32_to_cpu(msg->hdr.front_len),
3110              le32_to_cpu(msg->hdr.middle_len),
3111              le32_to_cpu(msg->hdr.data_len));
3112
3113         clear_standby(con);
3114         mutex_unlock(&con->mutex);
3115
3116         /* if there wasn't anything waiting to send before, queue
3117          * new work */
3118         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3119                 queue_con(con);
3120 }
3121 EXPORT_SYMBOL(ceph_con_send);
3122
3123 /*
3124  * Revoke a message that was previously queued for send
3125  */
3126 void ceph_msg_revoke(struct ceph_msg *msg)
3127 {
3128         struct ceph_connection *con = msg->con;
3129
3130         if (!con) {
3131                 dout("%s msg %p null con\n", __func__, msg);
3132                 return;         /* Message not in our possession */
3133         }
3134
3135         mutex_lock(&con->mutex);
3136         if (!list_empty(&msg->list_head)) {
3137                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3138                 list_del_init(&msg->list_head);
3139                 msg->hdr.seq = 0;
3140
3141                 ceph_msg_put(msg);
3142         }
3143         if (con->out_msg == msg) {
3144                 BUG_ON(con->out_skip);
3145                 /* footer */
3146                 if (con->out_msg_done) {
3147                         con->out_skip += con_out_kvec_skip(con);
3148                 } else {
3149                         BUG_ON(!msg->data_length);
3150                         con->out_skip += sizeof_footer(con);
3151                 }
3152                 /* data, middle, front */
3153                 if (msg->data_length)
3154                         con->out_skip += msg->cursor.total_resid;
3155                 if (msg->middle)
3156                         con->out_skip += con_out_kvec_skip(con);
3157                 con->out_skip += con_out_kvec_skip(con);
3158
3159                 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3160                      __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3161                 msg->hdr.seq = 0;
3162                 con->out_msg = NULL;
3163                 ceph_msg_put(msg);
3164         }
3165
3166         mutex_unlock(&con->mutex);
3167 }
3168
3169 /*
3170  * Revoke a message that we may be reading data into
3171  */
3172 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3173 {
3174         struct ceph_connection *con = msg->con;
3175
3176         if (!con) {
3177                 dout("%s msg %p null con\n", __func__, msg);
3178                 return;         /* Message not in our possession */
3179         }
3180
3181         mutex_lock(&con->mutex);
3182         if (con->in_msg == msg) {
3183                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3184                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3185                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3186
3187                 /* skip rest of message */
3188                 dout("%s %p msg %p revoked\n", __func__, con, msg);
3189                 con->in_base_pos = con->in_base_pos -
3190                                 sizeof(struct ceph_msg_header) -
3191                                 front_len -
3192                                 middle_len -
3193                                 data_len -
3194                                 sizeof(struct ceph_msg_footer);
3195                 ceph_msg_put(con->in_msg);
3196                 con->in_msg = NULL;
3197                 con->in_tag = CEPH_MSGR_TAG_READY;
3198                 con->in_seq++;
3199         } else {
3200                 dout("%s %p in_msg %p msg %p no-op\n",
3201                      __func__, con, con->in_msg, msg);
3202         }
3203         mutex_unlock(&con->mutex);
3204 }
3205
3206 /*
3207  * Queue a keepalive byte to ensure the tcp connection is alive.
3208  */
3209 void ceph_con_keepalive(struct ceph_connection *con)
3210 {
3211         dout("con_keepalive %p\n", con);
3212         mutex_lock(&con->mutex);
3213         clear_standby(con);
3214         con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING);
3215         mutex_unlock(&con->mutex);
3216
3217         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3218                 queue_con(con);
3219 }
3220 EXPORT_SYMBOL(ceph_con_keepalive);
3221
3222 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3223                                unsigned long interval)
3224 {
3225         if (interval > 0 &&
3226             (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3227                 struct timespec64 now;
3228                 struct timespec64 ts;
3229                 ktime_get_real_ts64(&now);
3230                 jiffies_to_timespec64(interval, &ts);
3231                 ts = timespec64_add(con->last_keepalive_ack, ts);
3232                 return timespec64_compare(&now, &ts) >= 0;
3233         }
3234         return false;
3235 }
3236
3237 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
3238 {
3239         BUG_ON(msg->num_data_items >= msg->max_data_items);
3240         return &msg->data[msg->num_data_items++];
3241 }
3242
3243 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3244 {
3245         if (data->type == CEPH_MSG_DATA_PAGELIST)
3246                 ceph_pagelist_release(data->pagelist);
3247 }
3248
3249 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3250                 size_t length, size_t alignment)
3251 {
3252         struct ceph_msg_data *data;
3253
3254         BUG_ON(!pages);
3255         BUG_ON(!length);
3256
3257         data = ceph_msg_data_add(msg);
3258         data->type = CEPH_MSG_DATA_PAGES;
3259         data->pages = pages;
3260         data->length = length;
3261         data->alignment = alignment & ~PAGE_MASK;
3262
3263         msg->data_length += length;
3264 }
3265 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3266
3267 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3268                                 struct ceph_pagelist *pagelist)
3269 {
3270         struct ceph_msg_data *data;
3271
3272         BUG_ON(!pagelist);
3273         BUG_ON(!pagelist->length);
3274
3275         data = ceph_msg_data_add(msg);
3276         data->type = CEPH_MSG_DATA_PAGELIST;
3277         refcount_inc(&pagelist->refcnt);
3278         data->pagelist = pagelist;
3279
3280         msg->data_length += pagelist->length;
3281 }
3282 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3283
3284 #ifdef  CONFIG_BLOCK
3285 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3286                            u32 length)
3287 {
3288         struct ceph_msg_data *data;
3289
3290         data = ceph_msg_data_add(msg);
3291         data->type = CEPH_MSG_DATA_BIO;
3292         data->bio_pos = *bio_pos;
3293         data->bio_length = length;
3294
3295         msg->data_length += length;
3296 }
3297 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3298 #endif  /* CONFIG_BLOCK */
3299
3300 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3301                              struct ceph_bvec_iter *bvec_pos)
3302 {
3303         struct ceph_msg_data *data;
3304
3305         data = ceph_msg_data_add(msg);
3306         data->type = CEPH_MSG_DATA_BVECS;
3307         data->bvec_pos = *bvec_pos;
3308
3309         msg->data_length += bvec_pos->iter.bi_size;
3310 }
3311 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3312
3313 /*
3314  * construct a new message with given type, size
3315  * the new msg has a ref count of 1.
3316  */
3317 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
3318                                gfp_t flags, bool can_fail)
3319 {
3320         struct ceph_msg *m;
3321
3322         m = kmem_cache_zalloc(ceph_msg_cache, flags);
3323         if (m == NULL)
3324                 goto out;
3325
3326         m->hdr.type = cpu_to_le16(type);
3327         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3328         m->hdr.front_len = cpu_to_le32(front_len);
3329
3330         INIT_LIST_HEAD(&m->list_head);
3331         kref_init(&m->kref);
3332
3333         /* front */
3334         if (front_len) {
3335                 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3336                 if (m->front.iov_base == NULL) {
3337                         dout("ceph_msg_new can't allocate %d bytes\n",
3338                              front_len);
3339                         goto out2;
3340                 }
3341         } else {
3342                 m->front.iov_base = NULL;
3343         }
3344         m->front_alloc_len = m->front.iov_len = front_len;
3345
3346         if (max_data_items) {
3347                 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
3348                                         flags);
3349                 if (!m->data)
3350                         goto out2;
3351
3352                 m->max_data_items = max_data_items;
3353         }
3354
3355         dout("ceph_msg_new %p front %d\n", m, front_len);
3356         return m;
3357
3358 out2:
3359         ceph_msg_put(m);
3360 out:
3361         if (!can_fail) {
3362                 pr_err("msg_new can't create type %d front %d\n", type,
3363                        front_len);
3364                 WARN_ON(1);
3365         } else {
3366                 dout("msg_new can't create type %d front %d\n", type,
3367                      front_len);
3368         }
3369         return NULL;
3370 }
3371 EXPORT_SYMBOL(ceph_msg_new2);
3372
3373 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3374                               bool can_fail)
3375 {
3376         return ceph_msg_new2(type, front_len, 0, flags, can_fail);
3377 }
3378 EXPORT_SYMBOL(ceph_msg_new);
3379
3380 /*
3381  * Allocate "middle" portion of a message, if it is needed and wasn't
3382  * allocated by alloc_msg.  This allows us to read a small fixed-size
3383  * per-type header in the front and then gracefully fail (i.e.,
3384  * propagate the error to the caller based on info in the front) when
3385  * the middle is too large.
3386  */
3387 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3388 {
3389         int type = le16_to_cpu(msg->hdr.type);
3390         int middle_len = le32_to_cpu(msg->hdr.middle_len);
3391
3392         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3393              ceph_msg_type_name(type), middle_len);
3394         BUG_ON(!middle_len);
3395         BUG_ON(msg->middle);
3396
3397         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3398         if (!msg->middle)
3399                 return -ENOMEM;
3400         return 0;
3401 }
3402
3403 /*
3404  * Allocate a message for receiving an incoming message on a
3405  * connection, and save the result in con->in_msg.  Uses the
3406  * connection's private alloc_msg op if available.
3407  *
3408  * Returns 0 on success, or a negative error code.
3409  *
3410  * On success, if we set *skip = 1:
3411  *  - the next message should be skipped and ignored.
3412  *  - con->in_msg == NULL
3413  * or if we set *skip = 0:
3414  *  - con->in_msg is non-null.
3415  * On error (ENOMEM, EAGAIN, ...),
3416  *  - con->in_msg == NULL
3417  */
3418 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3419 {
3420         struct ceph_msg_header *hdr = &con->in_hdr;
3421         int middle_len = le32_to_cpu(hdr->middle_len);
3422         struct ceph_msg *msg;
3423         int ret = 0;
3424
3425         BUG_ON(con->in_msg != NULL);
3426         BUG_ON(!con->ops->alloc_msg);
3427
3428         mutex_unlock(&con->mutex);
3429         msg = con->ops->alloc_msg(con, hdr, skip);
3430         mutex_lock(&con->mutex);
3431         if (con->state != CON_STATE_OPEN) {
3432                 if (msg)
3433                         ceph_msg_put(msg);
3434                 return -EAGAIN;
3435         }
3436         if (msg) {
3437                 BUG_ON(*skip);
3438                 msg_con_set(msg, con);
3439                 con->in_msg = msg;
3440         } else {
3441                 /*
3442                  * Null message pointer means either we should skip
3443                  * this message or we couldn't allocate memory.  The
3444                  * former is not an error.
3445                  */
3446                 if (*skip)
3447                         return 0;
3448
3449                 con->error_msg = "error allocating memory for incoming message";
3450                 return -ENOMEM;
3451         }
3452         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3453
3454         if (middle_len && !con->in_msg->middle) {
3455                 ret = ceph_alloc_middle(con, con->in_msg);
3456                 if (ret < 0) {
3457                         ceph_msg_put(con->in_msg);
3458                         con->in_msg = NULL;
3459                 }
3460         }
3461
3462         return ret;
3463 }
3464
3465
3466 /*
3467  * Free a generically kmalloc'd message.
3468  */
3469 static void ceph_msg_free(struct ceph_msg *m)
3470 {
3471         dout("%s %p\n", __func__, m);
3472         kvfree(m->front.iov_base);
3473         kfree(m->data);
3474         kmem_cache_free(ceph_msg_cache, m);
3475 }
3476
3477 static void ceph_msg_release(struct kref *kref)
3478 {
3479         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3480         int i;
3481
3482         dout("%s %p\n", __func__, m);
3483         WARN_ON(!list_empty(&m->list_head));
3484
3485         msg_con_set(m, NULL);
3486
3487         /* drop middle, data, if any */
3488         if (m->middle) {
3489                 ceph_buffer_put(m->middle);
3490                 m->middle = NULL;
3491         }
3492
3493         for (i = 0; i < m->num_data_items; i++)
3494                 ceph_msg_data_destroy(&m->data[i]);
3495
3496         if (m->pool)
3497                 ceph_msgpool_put(m->pool, m);
3498         else
3499                 ceph_msg_free(m);
3500 }
3501
3502 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3503 {
3504         dout("%s %p (was %d)\n", __func__, msg,
3505              kref_read(&msg->kref));
3506         kref_get(&msg->kref);
3507         return msg;
3508 }
3509 EXPORT_SYMBOL(ceph_msg_get);
3510
3511 void ceph_msg_put(struct ceph_msg *msg)
3512 {
3513         dout("%s %p (was %d)\n", __func__, msg,
3514              kref_read(&msg->kref));
3515         kref_put(&msg->kref, ceph_msg_release);
3516 }
3517 EXPORT_SYMBOL(ceph_msg_put);
3518
3519 void ceph_msg_dump(struct ceph_msg *msg)
3520 {
3521         pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3522                  msg->front_alloc_len, msg->data_length);
3523         print_hex_dump(KERN_DEBUG, "header: ",
3524                        DUMP_PREFIX_OFFSET, 16, 1,
3525                        &msg->hdr, sizeof(msg->hdr), true);
3526         print_hex_dump(KERN_DEBUG, " front: ",
3527                        DUMP_PREFIX_OFFSET, 16, 1,
3528                        msg->front.iov_base, msg->front.iov_len, true);
3529         if (msg->middle)
3530                 print_hex_dump(KERN_DEBUG, "middle: ",
3531                                DUMP_PREFIX_OFFSET, 16, 1,
3532                                msg->middle->vec.iov_base,
3533                                msg->middle->vec.iov_len, true);
3534         print_hex_dump(KERN_DEBUG, "footer: ",
3535                        DUMP_PREFIX_OFFSET, 16, 1,
3536                        &msg->footer, sizeof(msg->footer), true);
3537 }
3538 EXPORT_SYMBOL(ceph_msg_dump);