Linux 6.9-rc1
[linux-2.6-microblaze.git] / net / ceph / messenger.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef  CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif  /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 #include <trace/events/sock.h>
21
22 #include <linux/ceph/ceph_features.h>
23 #include <linux/ceph/libceph.h>
24 #include <linux/ceph/messenger.h>
25 #include <linux/ceph/decode.h>
26 #include <linux/ceph/pagelist.h>
27 #include <linux/export.h>
28
29 /*
30  * Ceph uses the messenger to exchange ceph_msg messages with other
31  * hosts in the system.  The messenger provides ordered and reliable
32  * delivery.  We tolerate TCP disconnects by reconnecting (with
33  * exponential backoff) in the case of a fault (disconnection, bad
34  * crc, protocol error).  Acks allow sent messages to be discarded by
35  * the sender.
36  */
37
38 /*
39  * We track the state of the socket on a given connection using
40  * values defined below.  The transition to a new socket state is
41  * handled by a function which verifies we aren't coming from an
42  * unexpected state.
43  *
44  *      --------
45  *      | NEW* |  transient initial state
46  *      --------
47  *          | con_sock_state_init()
48  *          v
49  *      ----------
50  *      | CLOSED |  initialized, but no socket (and no
51  *      ----------  TCP connection)
52  *       ^      \
53  *       |       \ con_sock_state_connecting()
54  *       |        ----------------------
55  *       |                              \
56  *       + con_sock_state_closed()       \
57  *       |+---------------------------    \
58  *       | \                          \    \
59  *       |  -----------                \    \
60  *       |  | CLOSING |  socket event;  \    \
61  *       |  -----------  await close     \    \
62  *       |       ^                        \   |
63  *       |       |                         \  |
64  *       |       + con_sock_state_closing() \ |
65  *       |      / \                         | |
66  *       |     /   ---------------          | |
67  *       |    /                   \         v v
68  *       |   /                    --------------
69  *       |  /    -----------------| CONNECTING |  socket created, TCP
70  *       |  |   /                 --------------  connect initiated
71  *       |  |   | con_sock_state_connected()
72  *       |  |   v
73  *      -------------
74  *      | CONNECTED |  TCP connection established
75  *      -------------
76  *
77  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78  */
79
80 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
81 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
82 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
83 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
84 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
85
86 static bool con_flag_valid(unsigned long con_flag)
87 {
88         switch (con_flag) {
89         case CEPH_CON_F_LOSSYTX:
90         case CEPH_CON_F_KEEPALIVE_PENDING:
91         case CEPH_CON_F_WRITE_PENDING:
92         case CEPH_CON_F_SOCK_CLOSED:
93         case CEPH_CON_F_BACKOFF:
94                 return true;
95         default:
96                 return false;
97         }
98 }
99
100 void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
101 {
102         BUG_ON(!con_flag_valid(con_flag));
103
104         clear_bit(con_flag, &con->flags);
105 }
106
107 void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
108 {
109         BUG_ON(!con_flag_valid(con_flag));
110
111         set_bit(con_flag, &con->flags);
112 }
113
114 bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
115 {
116         BUG_ON(!con_flag_valid(con_flag));
117
118         return test_bit(con_flag, &con->flags);
119 }
120
121 bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
122                                   unsigned long con_flag)
123 {
124         BUG_ON(!con_flag_valid(con_flag));
125
126         return test_and_clear_bit(con_flag, &con->flags);
127 }
128
129 bool ceph_con_flag_test_and_set(struct ceph_connection *con,
130                                 unsigned long con_flag)
131 {
132         BUG_ON(!con_flag_valid(con_flag));
133
134         return test_and_set_bit(con_flag, &con->flags);
135 }
136
137 /* Slab caches for frequently-allocated structures */
138
139 static struct kmem_cache        *ceph_msg_cache;
140
141 #ifdef CONFIG_LOCKDEP
142 static struct lock_class_key socket_class;
143 #endif
144
145 static void queue_con(struct ceph_connection *con);
146 static void cancel_con(struct ceph_connection *con);
147 static void ceph_con_workfn(struct work_struct *);
148 static void con_fault(struct ceph_connection *con);
149
150 /*
151  * Nicely render a sockaddr as a string.  An array of formatted
152  * strings is used, to approximate reentrancy.
153  */
154 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
155 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
156 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
157 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
158
159 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
160 static atomic_t addr_str_seq = ATOMIC_INIT(0);
161
162 struct page *ceph_zero_page;            /* used in certain error cases */
163
164 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
165 {
166         int i;
167         char *s;
168         struct sockaddr_storage ss = addr->in_addr; /* align */
169         struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
170         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
171
172         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
173         s = addr_str[i];
174
175         switch (ss.ss_family) {
176         case AF_INET:
177                 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
178                          le32_to_cpu(addr->type), &in4->sin_addr,
179                          ntohs(in4->sin_port));
180                 break;
181
182         case AF_INET6:
183                 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
184                          le32_to_cpu(addr->type), &in6->sin6_addr,
185                          ntohs(in6->sin6_port));
186                 break;
187
188         default:
189                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
190                          ss.ss_family);
191         }
192
193         return s;
194 }
195 EXPORT_SYMBOL(ceph_pr_addr);
196
197 void ceph_encode_my_addr(struct ceph_messenger *msgr)
198 {
199         if (!ceph_msgr2(from_msgr(msgr))) {
200                 memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
201                        sizeof(msgr->my_enc_addr));
202                 ceph_encode_banner_addr(&msgr->my_enc_addr);
203         }
204 }
205
206 /*
207  * work queue for all reading and writing to/from the socket.
208  */
209 static struct workqueue_struct *ceph_msgr_wq;
210
211 static int ceph_msgr_slab_init(void)
212 {
213         BUG_ON(ceph_msg_cache);
214         ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
215         if (!ceph_msg_cache)
216                 return -ENOMEM;
217
218         return 0;
219 }
220
221 static void ceph_msgr_slab_exit(void)
222 {
223         BUG_ON(!ceph_msg_cache);
224         kmem_cache_destroy(ceph_msg_cache);
225         ceph_msg_cache = NULL;
226 }
227
228 static void _ceph_msgr_exit(void)
229 {
230         if (ceph_msgr_wq) {
231                 destroy_workqueue(ceph_msgr_wq);
232                 ceph_msgr_wq = NULL;
233         }
234
235         BUG_ON(!ceph_zero_page);
236         put_page(ceph_zero_page);
237         ceph_zero_page = NULL;
238
239         ceph_msgr_slab_exit();
240 }
241
242 int __init ceph_msgr_init(void)
243 {
244         if (ceph_msgr_slab_init())
245                 return -ENOMEM;
246
247         BUG_ON(ceph_zero_page);
248         ceph_zero_page = ZERO_PAGE(0);
249         get_page(ceph_zero_page);
250
251         /*
252          * The number of active work items is limited by the number of
253          * connections, so leave @max_active at default.
254          */
255         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
256         if (ceph_msgr_wq)
257                 return 0;
258
259         pr_err("msgr_init failed to create workqueue\n");
260         _ceph_msgr_exit();
261
262         return -ENOMEM;
263 }
264
265 void ceph_msgr_exit(void)
266 {
267         BUG_ON(ceph_msgr_wq == NULL);
268
269         _ceph_msgr_exit();
270 }
271
272 void ceph_msgr_flush(void)
273 {
274         flush_workqueue(ceph_msgr_wq);
275 }
276 EXPORT_SYMBOL(ceph_msgr_flush);
277
278 /* Connection socket state transition functions */
279
280 static void con_sock_state_init(struct ceph_connection *con)
281 {
282         int old_state;
283
284         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
285         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
286                 printk("%s: unexpected old state %d\n", __func__, old_state);
287         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
288              CON_SOCK_STATE_CLOSED);
289 }
290
291 static void con_sock_state_connecting(struct ceph_connection *con)
292 {
293         int old_state;
294
295         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
296         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
297                 printk("%s: unexpected old state %d\n", __func__, old_state);
298         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
299              CON_SOCK_STATE_CONNECTING);
300 }
301
302 static void con_sock_state_connected(struct ceph_connection *con)
303 {
304         int old_state;
305
306         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
307         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
308                 printk("%s: unexpected old state %d\n", __func__, old_state);
309         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
310              CON_SOCK_STATE_CONNECTED);
311 }
312
313 static void con_sock_state_closing(struct ceph_connection *con)
314 {
315         int old_state;
316
317         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
318         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
319                         old_state != CON_SOCK_STATE_CONNECTED &&
320                         old_state != CON_SOCK_STATE_CLOSING))
321                 printk("%s: unexpected old state %d\n", __func__, old_state);
322         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
323              CON_SOCK_STATE_CLOSING);
324 }
325
326 static void con_sock_state_closed(struct ceph_connection *con)
327 {
328         int old_state;
329
330         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
332                     old_state != CON_SOCK_STATE_CLOSING &&
333                     old_state != CON_SOCK_STATE_CONNECTING &&
334                     old_state != CON_SOCK_STATE_CLOSED))
335                 printk("%s: unexpected old state %d\n", __func__, old_state);
336         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337              CON_SOCK_STATE_CLOSED);
338 }
339
340 /*
341  * socket callback functions
342  */
343
344 /* data available on socket, or listen socket received a connect */
345 static void ceph_sock_data_ready(struct sock *sk)
346 {
347         struct ceph_connection *con = sk->sk_user_data;
348
349         trace_sk_data_ready(sk);
350
351         if (atomic_read(&con->msgr->stopping)) {
352                 return;
353         }
354
355         if (sk->sk_state != TCP_CLOSE_WAIT) {
356                 dout("%s %p state = %d, queueing work\n", __func__,
357                      con, con->state);
358                 queue_con(con);
359         }
360 }
361
362 /* socket has buffer space for writing */
363 static void ceph_sock_write_space(struct sock *sk)
364 {
365         struct ceph_connection *con = sk->sk_user_data;
366
367         /* only queue to workqueue if there is data we want to write,
368          * and there is sufficient space in the socket buffer to accept
369          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
370          * doesn't get called again until try_write() fills the socket
371          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
372          * and net/core/stream.c:sk_stream_write_space().
373          */
374         if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
375                 if (sk_stream_is_writeable(sk)) {
376                         dout("%s %p queueing write work\n", __func__, con);
377                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
378                         queue_con(con);
379                 }
380         } else {
381                 dout("%s %p nothing to write\n", __func__, con);
382         }
383 }
384
385 /* socket's state has changed */
386 static void ceph_sock_state_change(struct sock *sk)
387 {
388         struct ceph_connection *con = sk->sk_user_data;
389
390         dout("%s %p state = %d sk_state = %u\n", __func__,
391              con, con->state, sk->sk_state);
392
393         switch (sk->sk_state) {
394         case TCP_CLOSE:
395                 dout("%s TCP_CLOSE\n", __func__);
396                 fallthrough;
397         case TCP_CLOSE_WAIT:
398                 dout("%s TCP_CLOSE_WAIT\n", __func__);
399                 con_sock_state_closing(con);
400                 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
401                 queue_con(con);
402                 break;
403         case TCP_ESTABLISHED:
404                 dout("%s TCP_ESTABLISHED\n", __func__);
405                 con_sock_state_connected(con);
406                 queue_con(con);
407                 break;
408         default:        /* Everything else is uninteresting */
409                 break;
410         }
411 }
412
413 /*
414  * set up socket callbacks
415  */
416 static void set_sock_callbacks(struct socket *sock,
417                                struct ceph_connection *con)
418 {
419         struct sock *sk = sock->sk;
420         sk->sk_user_data = con;
421         sk->sk_data_ready = ceph_sock_data_ready;
422         sk->sk_write_space = ceph_sock_write_space;
423         sk->sk_state_change = ceph_sock_state_change;
424 }
425
426
427 /*
428  * socket helpers
429  */
430
431 /*
432  * initiate connection to a remote socket.
433  */
434 int ceph_tcp_connect(struct ceph_connection *con)
435 {
436         struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
437         struct socket *sock;
438         unsigned int noio_flag;
439         int ret;
440
441         dout("%s con %p peer_addr %s\n", __func__, con,
442              ceph_pr_addr(&con->peer_addr));
443         BUG_ON(con->sock);
444
445         /* sock_create_kern() allocates with GFP_KERNEL */
446         noio_flag = memalloc_noio_save();
447         ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
448                                SOCK_STREAM, IPPROTO_TCP, &sock);
449         memalloc_noio_restore(noio_flag);
450         if (ret)
451                 return ret;
452         sock->sk->sk_allocation = GFP_NOFS;
453         sock->sk->sk_use_task_frag = false;
454
455 #ifdef CONFIG_LOCKDEP
456         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
457 #endif
458
459         set_sock_callbacks(sock, con);
460
461         con_sock_state_connecting(con);
462         ret = kernel_connect(sock, (struct sockaddr *)&ss, sizeof(ss),
463                              O_NONBLOCK);
464         if (ret == -EINPROGRESS) {
465                 dout("connect %s EINPROGRESS sk_state = %u\n",
466                      ceph_pr_addr(&con->peer_addr),
467                      sock->sk->sk_state);
468         } else if (ret < 0) {
469                 pr_err("connect %s error %d\n",
470                        ceph_pr_addr(&con->peer_addr), ret);
471                 sock_release(sock);
472                 return ret;
473         }
474
475         if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
476                 tcp_sock_set_nodelay(sock->sk);
477
478         con->sock = sock;
479         return 0;
480 }
481
482 /*
483  * Shutdown/close the socket for the given connection.
484  */
485 int ceph_con_close_socket(struct ceph_connection *con)
486 {
487         int rc = 0;
488
489         dout("%s con %p sock %p\n", __func__, con, con->sock);
490         if (con->sock) {
491                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
492                 sock_release(con->sock);
493                 con->sock = NULL;
494         }
495
496         /*
497          * Forcibly clear the SOCK_CLOSED flag.  It gets set
498          * independent of the connection mutex, and we could have
499          * received a socket close event before we had the chance to
500          * shut the socket down.
501          */
502         ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
503
504         con_sock_state_closed(con);
505         return rc;
506 }
507
508 static void ceph_con_reset_protocol(struct ceph_connection *con)
509 {
510         dout("%s con %p\n", __func__, con);
511
512         ceph_con_close_socket(con);
513         if (con->in_msg) {
514                 WARN_ON(con->in_msg->con != con);
515                 ceph_msg_put(con->in_msg);
516                 con->in_msg = NULL;
517         }
518         if (con->out_msg) {
519                 WARN_ON(con->out_msg->con != con);
520                 ceph_msg_put(con->out_msg);
521                 con->out_msg = NULL;
522         }
523         if (con->bounce_page) {
524                 __free_page(con->bounce_page);
525                 con->bounce_page = NULL;
526         }
527
528         if (ceph_msgr2(from_msgr(con->msgr)))
529                 ceph_con_v2_reset_protocol(con);
530         else
531                 ceph_con_v1_reset_protocol(con);
532 }
533
534 /*
535  * Reset a connection.  Discard all incoming and outgoing messages
536  * and clear *_seq state.
537  */
538 static void ceph_msg_remove(struct ceph_msg *msg)
539 {
540         list_del_init(&msg->list_head);
541
542         ceph_msg_put(msg);
543 }
544
545 static void ceph_msg_remove_list(struct list_head *head)
546 {
547         while (!list_empty(head)) {
548                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
549                                                         list_head);
550                 ceph_msg_remove(msg);
551         }
552 }
553
554 void ceph_con_reset_session(struct ceph_connection *con)
555 {
556         dout("%s con %p\n", __func__, con);
557
558         WARN_ON(con->in_msg);
559         WARN_ON(con->out_msg);
560         ceph_msg_remove_list(&con->out_queue);
561         ceph_msg_remove_list(&con->out_sent);
562         con->out_seq = 0;
563         con->in_seq = 0;
564         con->in_seq_acked = 0;
565
566         if (ceph_msgr2(from_msgr(con->msgr)))
567                 ceph_con_v2_reset_session(con);
568         else
569                 ceph_con_v1_reset_session(con);
570 }
571
572 /*
573  * mark a peer down.  drop any open connections.
574  */
575 void ceph_con_close(struct ceph_connection *con)
576 {
577         mutex_lock(&con->mutex);
578         dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
579         con->state = CEPH_CON_S_CLOSED;
580
581         ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX);  /* so we retry next
582                                                           connect */
583         ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
584         ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
585         ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
586
587         ceph_con_reset_protocol(con);
588         ceph_con_reset_session(con);
589         cancel_con(con);
590         mutex_unlock(&con->mutex);
591 }
592 EXPORT_SYMBOL(ceph_con_close);
593
594 /*
595  * Reopen a closed connection, with a new peer address.
596  */
597 void ceph_con_open(struct ceph_connection *con,
598                    __u8 entity_type, __u64 entity_num,
599                    struct ceph_entity_addr *addr)
600 {
601         mutex_lock(&con->mutex);
602         dout("con_open %p %s\n", con, ceph_pr_addr(addr));
603
604         WARN_ON(con->state != CEPH_CON_S_CLOSED);
605         con->state = CEPH_CON_S_PREOPEN;
606
607         con->peer_name.type = (__u8) entity_type;
608         con->peer_name.num = cpu_to_le64(entity_num);
609
610         memcpy(&con->peer_addr, addr, sizeof(*addr));
611         con->delay = 0;      /* reset backoff memory */
612         mutex_unlock(&con->mutex);
613         queue_con(con);
614 }
615 EXPORT_SYMBOL(ceph_con_open);
616
617 /*
618  * return true if this connection ever successfully opened
619  */
620 bool ceph_con_opened(struct ceph_connection *con)
621 {
622         if (ceph_msgr2(from_msgr(con->msgr)))
623                 return ceph_con_v2_opened(con);
624
625         return ceph_con_v1_opened(con);
626 }
627
628 /*
629  * initialize a new connection.
630  */
631 void ceph_con_init(struct ceph_connection *con, void *private,
632         const struct ceph_connection_operations *ops,
633         struct ceph_messenger *msgr)
634 {
635         dout("con_init %p\n", con);
636         memset(con, 0, sizeof(*con));
637         con->private = private;
638         con->ops = ops;
639         con->msgr = msgr;
640
641         con_sock_state_init(con);
642
643         mutex_init(&con->mutex);
644         INIT_LIST_HEAD(&con->out_queue);
645         INIT_LIST_HEAD(&con->out_sent);
646         INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
647
648         con->state = CEPH_CON_S_CLOSED;
649 }
650 EXPORT_SYMBOL(ceph_con_init);
651
652 /*
653  * We maintain a global counter to order connection attempts.  Get
654  * a unique seq greater than @gt.
655  */
656 u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
657 {
658         u32 ret;
659
660         spin_lock(&msgr->global_seq_lock);
661         if (msgr->global_seq < gt)
662                 msgr->global_seq = gt;
663         ret = ++msgr->global_seq;
664         spin_unlock(&msgr->global_seq_lock);
665         return ret;
666 }
667
668 /*
669  * Discard messages that have been acked by the server.
670  */
671 void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
672 {
673         struct ceph_msg *msg;
674         u64 seq;
675
676         dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
677         while (!list_empty(&con->out_sent)) {
678                 msg = list_first_entry(&con->out_sent, struct ceph_msg,
679                                        list_head);
680                 WARN_ON(msg->needs_out_seq);
681                 seq = le64_to_cpu(msg->hdr.seq);
682                 if (seq > ack_seq)
683                         break;
684
685                 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
686                      msg, seq);
687                 ceph_msg_remove(msg);
688         }
689 }
690
691 /*
692  * Discard messages that have been requeued in con_fault(), up to
693  * reconnect_seq.  This avoids gratuitously resending messages that
694  * the server had received and handled prior to reconnect.
695  */
696 void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
697 {
698         struct ceph_msg *msg;
699         u64 seq;
700
701         dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
702         while (!list_empty(&con->out_queue)) {
703                 msg = list_first_entry(&con->out_queue, struct ceph_msg,
704                                        list_head);
705                 if (msg->needs_out_seq)
706                         break;
707                 seq = le64_to_cpu(msg->hdr.seq);
708                 if (seq > reconnect_seq)
709                         break;
710
711                 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
712                      msg, seq);
713                 ceph_msg_remove(msg);
714         }
715 }
716
717 #ifdef CONFIG_BLOCK
718
719 /*
720  * For a bio data item, a piece is whatever remains of the next
721  * entry in the current bio iovec, or the first entry in the next
722  * bio in the list.
723  */
724 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
725                                         size_t length)
726 {
727         struct ceph_msg_data *data = cursor->data;
728         struct ceph_bio_iter *it = &cursor->bio_iter;
729
730         cursor->resid = min_t(size_t, length, data->bio_length);
731         *it = data->bio_pos;
732         if (cursor->resid < it->iter.bi_size)
733                 it->iter.bi_size = cursor->resid;
734
735         BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
736 }
737
738 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
739                                                 size_t *page_offset,
740                                                 size_t *length)
741 {
742         struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
743                                            cursor->bio_iter.iter);
744
745         *page_offset = bv.bv_offset;
746         *length = bv.bv_len;
747         return bv.bv_page;
748 }
749
750 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
751                                         size_t bytes)
752 {
753         struct ceph_bio_iter *it = &cursor->bio_iter;
754         struct page *page = bio_iter_page(it->bio, it->iter);
755
756         BUG_ON(bytes > cursor->resid);
757         BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
758         cursor->resid -= bytes;
759         bio_advance_iter(it->bio, &it->iter, bytes);
760
761         if (!cursor->resid)
762                 return false;   /* no more data */
763
764         if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
765                        page == bio_iter_page(it->bio, it->iter)))
766                 return false;   /* more bytes to process in this segment */
767
768         if (!it->iter.bi_size) {
769                 it->bio = it->bio->bi_next;
770                 it->iter = it->bio->bi_iter;
771                 if (cursor->resid < it->iter.bi_size)
772                         it->iter.bi_size = cursor->resid;
773         }
774
775         BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
776         return true;
777 }
778 #endif /* CONFIG_BLOCK */
779
780 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
781                                         size_t length)
782 {
783         struct ceph_msg_data *data = cursor->data;
784         struct bio_vec *bvecs = data->bvec_pos.bvecs;
785
786         cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
787         cursor->bvec_iter = data->bvec_pos.iter;
788         cursor->bvec_iter.bi_size = cursor->resid;
789
790         BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
791 }
792
793 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
794                                                 size_t *page_offset,
795                                                 size_t *length)
796 {
797         struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
798                                            cursor->bvec_iter);
799
800         *page_offset = bv.bv_offset;
801         *length = bv.bv_len;
802         return bv.bv_page;
803 }
804
805 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
806                                         size_t bytes)
807 {
808         struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
809         struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
810
811         BUG_ON(bytes > cursor->resid);
812         BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
813         cursor->resid -= bytes;
814         bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
815
816         if (!cursor->resid)
817                 return false;   /* no more data */
818
819         if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
820                        page == bvec_iter_page(bvecs, cursor->bvec_iter)))
821                 return false;   /* more bytes to process in this segment */
822
823         BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
824         return true;
825 }
826
827 /*
828  * For a page array, a piece comes from the first page in the array
829  * that has not already been fully consumed.
830  */
831 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
832                                         size_t length)
833 {
834         struct ceph_msg_data *data = cursor->data;
835         int page_count;
836
837         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
838
839         BUG_ON(!data->pages);
840         BUG_ON(!data->length);
841
842         cursor->resid = min(length, data->length);
843         page_count = calc_pages_for(data->alignment, (u64)data->length);
844         cursor->page_offset = data->alignment & ~PAGE_MASK;
845         cursor->page_index = 0;
846         BUG_ON(page_count > (int)USHRT_MAX);
847         cursor->page_count = (unsigned short)page_count;
848         BUG_ON(length > SIZE_MAX - cursor->page_offset);
849 }
850
851 static struct page *
852 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
853                                         size_t *page_offset, size_t *length)
854 {
855         struct ceph_msg_data *data = cursor->data;
856
857         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
858
859         BUG_ON(cursor->page_index >= cursor->page_count);
860         BUG_ON(cursor->page_offset >= PAGE_SIZE);
861
862         *page_offset = cursor->page_offset;
863         *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
864         return data->pages[cursor->page_index];
865 }
866
867 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
868                                                 size_t bytes)
869 {
870         BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
871
872         BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
873
874         /* Advance the cursor page offset */
875
876         cursor->resid -= bytes;
877         cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
878         if (!bytes || cursor->page_offset)
879                 return false;   /* more bytes to process in the current page */
880
881         if (!cursor->resid)
882                 return false;   /* no more data */
883
884         /* Move on to the next page; offset is already at 0 */
885
886         BUG_ON(cursor->page_index >= cursor->page_count);
887         cursor->page_index++;
888         return true;
889 }
890
891 /*
892  * For a pagelist, a piece is whatever remains to be consumed in the
893  * first page in the list, or the front of the next page.
894  */
895 static void
896 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
897                                         size_t length)
898 {
899         struct ceph_msg_data *data = cursor->data;
900         struct ceph_pagelist *pagelist;
901         struct page *page;
902
903         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
904
905         pagelist = data->pagelist;
906         BUG_ON(!pagelist);
907
908         if (!length)
909                 return;         /* pagelist can be assigned but empty */
910
911         BUG_ON(list_empty(&pagelist->head));
912         page = list_first_entry(&pagelist->head, struct page, lru);
913
914         cursor->resid = min(length, pagelist->length);
915         cursor->page = page;
916         cursor->offset = 0;
917 }
918
919 static struct page *
920 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
921                                 size_t *page_offset, size_t *length)
922 {
923         struct ceph_msg_data *data = cursor->data;
924         struct ceph_pagelist *pagelist;
925
926         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
927
928         pagelist = data->pagelist;
929         BUG_ON(!pagelist);
930
931         BUG_ON(!cursor->page);
932         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
933
934         /* offset of first page in pagelist is always 0 */
935         *page_offset = cursor->offset & ~PAGE_MASK;
936         *length = min_t(size_t, cursor->resid, PAGE_SIZE - *page_offset);
937         return cursor->page;
938 }
939
940 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
941                                                 size_t bytes)
942 {
943         struct ceph_msg_data *data = cursor->data;
944         struct ceph_pagelist *pagelist;
945
946         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
947
948         pagelist = data->pagelist;
949         BUG_ON(!pagelist);
950
951         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
952         BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
953
954         /* Advance the cursor offset */
955
956         cursor->resid -= bytes;
957         cursor->offset += bytes;
958         /* offset of first page in pagelist is always 0 */
959         if (!bytes || cursor->offset & ~PAGE_MASK)
960                 return false;   /* more bytes to process in the current page */
961
962         if (!cursor->resid)
963                 return false;   /* no more data */
964
965         /* Move on to the next page */
966
967         BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
968         cursor->page = list_next_entry(cursor->page, lru);
969         return true;
970 }
971
972 static void ceph_msg_data_iter_cursor_init(struct ceph_msg_data_cursor *cursor,
973                                            size_t length)
974 {
975         struct ceph_msg_data *data = cursor->data;
976
977         cursor->iov_iter = data->iter;
978         cursor->lastlen = 0;
979         iov_iter_truncate(&cursor->iov_iter, length);
980         cursor->resid = iov_iter_count(&cursor->iov_iter);
981 }
982
983 static struct page *ceph_msg_data_iter_next(struct ceph_msg_data_cursor *cursor,
984                                             size_t *page_offset, size_t *length)
985 {
986         struct page *page;
987         ssize_t len;
988
989         if (cursor->lastlen)
990                 iov_iter_revert(&cursor->iov_iter, cursor->lastlen);
991
992         len = iov_iter_get_pages2(&cursor->iov_iter, &page, PAGE_SIZE,
993                                   1, page_offset);
994         BUG_ON(len < 0);
995
996         cursor->lastlen = len;
997
998         /*
999          * FIXME: The assumption is that the pages represented by the iov_iter
1000          *        are pinned, with the references held by the upper-level
1001          *        callers, or by virtue of being under writeback. Eventually,
1002          *        we'll get an iov_iter_get_pages2 variant that doesn't take
1003          *        page refs. Until then, just put the page ref.
1004          */
1005         VM_BUG_ON_PAGE(!PageWriteback(page) && page_count(page) < 2, page);
1006         put_page(page);
1007
1008         *length = min_t(size_t, len, cursor->resid);
1009         return page;
1010 }
1011
1012 static bool ceph_msg_data_iter_advance(struct ceph_msg_data_cursor *cursor,
1013                                        size_t bytes)
1014 {
1015         BUG_ON(bytes > cursor->resid);
1016         cursor->resid -= bytes;
1017
1018         if (bytes < cursor->lastlen) {
1019                 cursor->lastlen -= bytes;
1020         } else {
1021                 iov_iter_advance(&cursor->iov_iter, bytes - cursor->lastlen);
1022                 cursor->lastlen = 0;
1023         }
1024
1025         return cursor->resid;
1026 }
1027
1028 /*
1029  * Message data is handled (sent or received) in pieces, where each
1030  * piece resides on a single page.  The network layer might not
1031  * consume an entire piece at once.  A data item's cursor keeps
1032  * track of which piece is next to process and how much remains to
1033  * be processed in that piece.  It also tracks whether the current
1034  * piece is the last one in the data item.
1035  */
1036 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1037 {
1038         size_t length = cursor->total_resid;
1039
1040         switch (cursor->data->type) {
1041         case CEPH_MSG_DATA_PAGELIST:
1042                 ceph_msg_data_pagelist_cursor_init(cursor, length);
1043                 break;
1044         case CEPH_MSG_DATA_PAGES:
1045                 ceph_msg_data_pages_cursor_init(cursor, length);
1046                 break;
1047 #ifdef CONFIG_BLOCK
1048         case CEPH_MSG_DATA_BIO:
1049                 ceph_msg_data_bio_cursor_init(cursor, length);
1050                 break;
1051 #endif /* CONFIG_BLOCK */
1052         case CEPH_MSG_DATA_BVECS:
1053                 ceph_msg_data_bvecs_cursor_init(cursor, length);
1054                 break;
1055         case CEPH_MSG_DATA_ITER:
1056                 ceph_msg_data_iter_cursor_init(cursor, length);
1057                 break;
1058         case CEPH_MSG_DATA_NONE:
1059         default:
1060                 /* BUG(); */
1061                 break;
1062         }
1063         cursor->need_crc = true;
1064 }
1065
1066 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1067                                struct ceph_msg *msg, size_t length)
1068 {
1069         BUG_ON(!length);
1070         BUG_ON(length > msg->data_length);
1071         BUG_ON(!msg->num_data_items);
1072
1073         cursor->total_resid = length;
1074         cursor->data = msg->data;
1075         cursor->sr_resid = 0;
1076
1077         __ceph_msg_data_cursor_init(cursor);
1078 }
1079
1080 /*
1081  * Return the page containing the next piece to process for a given
1082  * data item, and supply the page offset and length of that piece.
1083  * Indicate whether this is the last piece in this data item.
1084  */
1085 struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1086                                 size_t *page_offset, size_t *length)
1087 {
1088         struct page *page;
1089
1090         switch (cursor->data->type) {
1091         case CEPH_MSG_DATA_PAGELIST:
1092                 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1093                 break;
1094         case CEPH_MSG_DATA_PAGES:
1095                 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1096                 break;
1097 #ifdef CONFIG_BLOCK
1098         case CEPH_MSG_DATA_BIO:
1099                 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1100                 break;
1101 #endif /* CONFIG_BLOCK */
1102         case CEPH_MSG_DATA_BVECS:
1103                 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1104                 break;
1105         case CEPH_MSG_DATA_ITER:
1106                 page = ceph_msg_data_iter_next(cursor, page_offset, length);
1107                 break;
1108         case CEPH_MSG_DATA_NONE:
1109         default:
1110                 page = NULL;
1111                 break;
1112         }
1113
1114         BUG_ON(!page);
1115         BUG_ON(*page_offset + *length > PAGE_SIZE);
1116         BUG_ON(!*length);
1117         BUG_ON(*length > cursor->resid);
1118
1119         return page;
1120 }
1121
1122 /*
1123  * Returns true if the result moves the cursor on to the next piece
1124  * of the data item.
1125  */
1126 void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1127 {
1128         bool new_piece;
1129
1130         BUG_ON(bytes > cursor->resid);
1131         switch (cursor->data->type) {
1132         case CEPH_MSG_DATA_PAGELIST:
1133                 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1134                 break;
1135         case CEPH_MSG_DATA_PAGES:
1136                 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1137                 break;
1138 #ifdef CONFIG_BLOCK
1139         case CEPH_MSG_DATA_BIO:
1140                 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1141                 break;
1142 #endif /* CONFIG_BLOCK */
1143         case CEPH_MSG_DATA_BVECS:
1144                 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1145                 break;
1146         case CEPH_MSG_DATA_ITER:
1147                 new_piece = ceph_msg_data_iter_advance(cursor, bytes);
1148                 break;
1149         case CEPH_MSG_DATA_NONE:
1150         default:
1151                 BUG();
1152                 break;
1153         }
1154         cursor->total_resid -= bytes;
1155
1156         if (!cursor->resid && cursor->total_resid) {
1157                 cursor->data++;
1158                 __ceph_msg_data_cursor_init(cursor);
1159                 new_piece = true;
1160         }
1161         cursor->need_crc = new_piece;
1162 }
1163
1164 u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1165                      unsigned int length)
1166 {
1167         char *kaddr;
1168
1169         kaddr = kmap(page);
1170         BUG_ON(kaddr == NULL);
1171         crc = crc32c(crc, kaddr + page_offset, length);
1172         kunmap(page);
1173
1174         return crc;
1175 }
1176
1177 bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1178 {
1179         struct sockaddr_storage ss = addr->in_addr; /* align */
1180         struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1181         struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1182
1183         switch (ss.ss_family) {
1184         case AF_INET:
1185                 return addr4->s_addr == htonl(INADDR_ANY);
1186         case AF_INET6:
1187                 return ipv6_addr_any(addr6);
1188         default:
1189                 return true;
1190         }
1191 }
1192 EXPORT_SYMBOL(ceph_addr_is_blank);
1193
1194 int ceph_addr_port(const struct ceph_entity_addr *addr)
1195 {
1196         switch (get_unaligned(&addr->in_addr.ss_family)) {
1197         case AF_INET:
1198                 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1199         case AF_INET6:
1200                 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1201         }
1202         return 0;
1203 }
1204
1205 void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1206 {
1207         switch (get_unaligned(&addr->in_addr.ss_family)) {
1208         case AF_INET:
1209                 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1210                 break;
1211         case AF_INET6:
1212                 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1213                 break;
1214         }
1215 }
1216
1217 /*
1218  * Unlike other *_pton function semantics, zero indicates success.
1219  */
1220 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1221                 char delim, const char **ipend)
1222 {
1223         memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1224
1225         if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1226                 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1227                 return 0;
1228         }
1229
1230         if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1231                 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1232                 return 0;
1233         }
1234
1235         return -EINVAL;
1236 }
1237
1238 /*
1239  * Extract hostname string and resolve using kernel DNS facility.
1240  */
1241 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1242 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1243                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1244 {
1245         const char *end, *delim_p;
1246         char *colon_p, *ip_addr = NULL;
1247         int ip_len, ret;
1248
1249         /*
1250          * The end of the hostname occurs immediately preceding the delimiter or
1251          * the port marker (':') where the delimiter takes precedence.
1252          */
1253         delim_p = memchr(name, delim, namelen);
1254         colon_p = memchr(name, ':', namelen);
1255
1256         if (delim_p && colon_p)
1257                 end = delim_p < colon_p ? delim_p : colon_p;
1258         else if (!delim_p && colon_p)
1259                 end = colon_p;
1260         else {
1261                 end = delim_p;
1262                 if (!end) /* case: hostname:/ */
1263                         end = name + namelen;
1264         }
1265
1266         if (end <= name)
1267                 return -EINVAL;
1268
1269         /* do dns_resolve upcall */
1270         ip_len = dns_query(current->nsproxy->net_ns,
1271                            NULL, name, end - name, NULL, &ip_addr, NULL, false);
1272         if (ip_len > 0)
1273                 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1274         else
1275                 ret = -ESRCH;
1276
1277         kfree(ip_addr);
1278
1279         *ipend = end;
1280
1281         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1282                         ret, ret ? "failed" : ceph_pr_addr(addr));
1283
1284         return ret;
1285 }
1286 #else
1287 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1288                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1289 {
1290         return -EINVAL;
1291 }
1292 #endif
1293
1294 /*
1295  * Parse a server name (IP or hostname). If a valid IP address is not found
1296  * then try to extract a hostname to resolve using userspace DNS upcall.
1297  */
1298 static int ceph_parse_server_name(const char *name, size_t namelen,
1299                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1300 {
1301         int ret;
1302
1303         ret = ceph_pton(name, namelen, addr, delim, ipend);
1304         if (ret)
1305                 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1306
1307         return ret;
1308 }
1309
1310 /*
1311  * Parse an ip[:port] list into an addr array.  Use the default
1312  * monitor port if a port isn't specified.
1313  */
1314 int ceph_parse_ips(const char *c, const char *end,
1315                    struct ceph_entity_addr *addr,
1316                    int max_count, int *count, char delim)
1317 {
1318         int i, ret = -EINVAL;
1319         const char *p = c;
1320
1321         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1322         for (i = 0; i < max_count; i++) {
1323                 char cur_delim = delim;
1324                 const char *ipend;
1325                 int port;
1326
1327                 if (*p == '[') {
1328                         cur_delim = ']';
1329                         p++;
1330                 }
1331
1332                 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1333                                              &ipend);
1334                 if (ret)
1335                         goto bad;
1336                 ret = -EINVAL;
1337
1338                 p = ipend;
1339
1340                 if (cur_delim == ']') {
1341                         if (*p != ']') {
1342                                 dout("missing matching ']'\n");
1343                                 goto bad;
1344                         }
1345                         p++;
1346                 }
1347
1348                 /* port? */
1349                 if (p < end && *p == ':') {
1350                         port = 0;
1351                         p++;
1352                         while (p < end && *p >= '0' && *p <= '9') {
1353                                 port = (port * 10) + (*p - '0');
1354                                 p++;
1355                         }
1356                         if (port == 0)
1357                                 port = CEPH_MON_PORT;
1358                         else if (port > 65535)
1359                                 goto bad;
1360                 } else {
1361                         port = CEPH_MON_PORT;
1362                 }
1363
1364                 ceph_addr_set_port(&addr[i], port);
1365                 /*
1366                  * We want the type to be set according to ms_mode
1367                  * option, but options are normally parsed after mon
1368                  * addresses.  Rather than complicating parsing, set
1369                  * to LEGACY and override in build_initial_monmap()
1370                  * for mon addresses and ceph_messenger_init() for
1371                  * ip option.
1372                  */
1373                 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1374                 addr[i].nonce = 0;
1375
1376                 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1377
1378                 if (p == end)
1379                         break;
1380                 if (*p != delim)
1381                         goto bad;
1382                 p++;
1383         }
1384
1385         if (p != end)
1386                 goto bad;
1387
1388         if (count)
1389                 *count = i + 1;
1390         return 0;
1391
1392 bad:
1393         return ret;
1394 }
1395
1396 /*
1397  * Process message.  This happens in the worker thread.  The callback should
1398  * be careful not to do anything that waits on other incoming messages or it
1399  * may deadlock.
1400  */
1401 void ceph_con_process_message(struct ceph_connection *con)
1402 {
1403         struct ceph_msg *msg = con->in_msg;
1404
1405         BUG_ON(con->in_msg->con != con);
1406         con->in_msg = NULL;
1407
1408         /* if first message, set peer_name */
1409         if (con->peer_name.type == 0)
1410                 con->peer_name = msg->hdr.src;
1411
1412         con->in_seq++;
1413         mutex_unlock(&con->mutex);
1414
1415         dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1416              msg, le64_to_cpu(msg->hdr.seq),
1417              ENTITY_NAME(msg->hdr.src),
1418              le16_to_cpu(msg->hdr.type),
1419              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1420              le32_to_cpu(msg->hdr.front_len),
1421              le32_to_cpu(msg->hdr.middle_len),
1422              le32_to_cpu(msg->hdr.data_len),
1423              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1424         con->ops->dispatch(con, msg);
1425
1426         mutex_lock(&con->mutex);
1427 }
1428
1429 /*
1430  * Atomically queue work on a connection after the specified delay.
1431  * Bump @con reference to avoid races with connection teardown.
1432  * Returns 0 if work was queued, or an error code otherwise.
1433  */
1434 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1435 {
1436         if (!con->ops->get(con)) {
1437                 dout("%s %p ref count 0\n", __func__, con);
1438                 return -ENOENT;
1439         }
1440
1441         if (delay >= HZ)
1442                 delay = round_jiffies_relative(delay);
1443
1444         dout("%s %p %lu\n", __func__, con, delay);
1445         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1446                 dout("%s %p - already queued\n", __func__, con);
1447                 con->ops->put(con);
1448                 return -EBUSY;
1449         }
1450
1451         return 0;
1452 }
1453
1454 static void queue_con(struct ceph_connection *con)
1455 {
1456         (void) queue_con_delay(con, 0);
1457 }
1458
1459 static void cancel_con(struct ceph_connection *con)
1460 {
1461         if (cancel_delayed_work(&con->work)) {
1462                 dout("%s %p\n", __func__, con);
1463                 con->ops->put(con);
1464         }
1465 }
1466
1467 static bool con_sock_closed(struct ceph_connection *con)
1468 {
1469         if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1470                 return false;
1471
1472 #define CASE(x)                                                         \
1473         case CEPH_CON_S_ ## x:                                          \
1474                 con->error_msg = "socket closed (con state " #x ")";    \
1475                 break;
1476
1477         switch (con->state) {
1478         CASE(CLOSED);
1479         CASE(PREOPEN);
1480         CASE(V1_BANNER);
1481         CASE(V1_CONNECT_MSG);
1482         CASE(V2_BANNER_PREFIX);
1483         CASE(V2_BANNER_PAYLOAD);
1484         CASE(V2_HELLO);
1485         CASE(V2_AUTH);
1486         CASE(V2_AUTH_SIGNATURE);
1487         CASE(V2_SESSION_CONNECT);
1488         CASE(V2_SESSION_RECONNECT);
1489         CASE(OPEN);
1490         CASE(STANDBY);
1491         default:
1492                 BUG();
1493         }
1494 #undef CASE
1495
1496         return true;
1497 }
1498
1499 static bool con_backoff(struct ceph_connection *con)
1500 {
1501         int ret;
1502
1503         if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1504                 return false;
1505
1506         ret = queue_con_delay(con, con->delay);
1507         if (ret) {
1508                 dout("%s: con %p FAILED to back off %lu\n", __func__,
1509                         con, con->delay);
1510                 BUG_ON(ret == -ENOENT);
1511                 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1512         }
1513
1514         return true;
1515 }
1516
1517 /* Finish fault handling; con->mutex must *not* be held here */
1518
1519 static void con_fault_finish(struct ceph_connection *con)
1520 {
1521         dout("%s %p\n", __func__, con);
1522
1523         /*
1524          * in case we faulted due to authentication, invalidate our
1525          * current tickets so that we can get new ones.
1526          */
1527         if (con->v1.auth_retry) {
1528                 dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1529                 if (con->ops->invalidate_authorizer)
1530                         con->ops->invalidate_authorizer(con);
1531                 con->v1.auth_retry = 0;
1532         }
1533
1534         if (con->ops->fault)
1535                 con->ops->fault(con);
1536 }
1537
1538 /*
1539  * Do some work on a connection.  Drop a connection ref when we're done.
1540  */
1541 static void ceph_con_workfn(struct work_struct *work)
1542 {
1543         struct ceph_connection *con = container_of(work, struct ceph_connection,
1544                                                    work.work);
1545         bool fault;
1546
1547         mutex_lock(&con->mutex);
1548         while (true) {
1549                 int ret;
1550
1551                 if ((fault = con_sock_closed(con))) {
1552                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1553                         break;
1554                 }
1555                 if (con_backoff(con)) {
1556                         dout("%s: con %p BACKOFF\n", __func__, con);
1557                         break;
1558                 }
1559                 if (con->state == CEPH_CON_S_STANDBY) {
1560                         dout("%s: con %p STANDBY\n", __func__, con);
1561                         break;
1562                 }
1563                 if (con->state == CEPH_CON_S_CLOSED) {
1564                         dout("%s: con %p CLOSED\n", __func__, con);
1565                         BUG_ON(con->sock);
1566                         break;
1567                 }
1568                 if (con->state == CEPH_CON_S_PREOPEN) {
1569                         dout("%s: con %p PREOPEN\n", __func__, con);
1570                         BUG_ON(con->sock);
1571                 }
1572
1573                 if (ceph_msgr2(from_msgr(con->msgr)))
1574                         ret = ceph_con_v2_try_read(con);
1575                 else
1576                         ret = ceph_con_v1_try_read(con);
1577                 if (ret < 0) {
1578                         if (ret == -EAGAIN)
1579                                 continue;
1580                         if (!con->error_msg)
1581                                 con->error_msg = "socket error on read";
1582                         fault = true;
1583                         break;
1584                 }
1585
1586                 if (ceph_msgr2(from_msgr(con->msgr)))
1587                         ret = ceph_con_v2_try_write(con);
1588                 else
1589                         ret = ceph_con_v1_try_write(con);
1590                 if (ret < 0) {
1591                         if (ret == -EAGAIN)
1592                                 continue;
1593                         if (!con->error_msg)
1594                                 con->error_msg = "socket error on write";
1595                         fault = true;
1596                 }
1597
1598                 break;  /* If we make it to here, we're done */
1599         }
1600         if (fault)
1601                 con_fault(con);
1602         mutex_unlock(&con->mutex);
1603
1604         if (fault)
1605                 con_fault_finish(con);
1606
1607         con->ops->put(con);
1608 }
1609
1610 /*
1611  * Generic error/fault handler.  A retry mechanism is used with
1612  * exponential backoff
1613  */
1614 static void con_fault(struct ceph_connection *con)
1615 {
1616         dout("fault %p state %d to peer %s\n",
1617              con, con->state, ceph_pr_addr(&con->peer_addr));
1618
1619         pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1620                 ceph_pr_addr(&con->peer_addr), con->error_msg);
1621         con->error_msg = NULL;
1622
1623         WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1624                 con->state == CEPH_CON_S_CLOSED);
1625
1626         ceph_con_reset_protocol(con);
1627
1628         if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1629                 dout("fault on LOSSYTX channel, marking CLOSED\n");
1630                 con->state = CEPH_CON_S_CLOSED;
1631                 return;
1632         }
1633
1634         /* Requeue anything that hasn't been acked */
1635         list_splice_init(&con->out_sent, &con->out_queue);
1636
1637         /* If there are no messages queued or keepalive pending, place
1638          * the connection in a STANDBY state */
1639         if (list_empty(&con->out_queue) &&
1640             !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1641                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1642                 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1643                 con->state = CEPH_CON_S_STANDBY;
1644         } else {
1645                 /* retry after a delay. */
1646                 con->state = CEPH_CON_S_PREOPEN;
1647                 if (!con->delay) {
1648                         con->delay = BASE_DELAY_INTERVAL;
1649                 } else if (con->delay < MAX_DELAY_INTERVAL) {
1650                         con->delay *= 2;
1651                         if (con->delay > MAX_DELAY_INTERVAL)
1652                                 con->delay = MAX_DELAY_INTERVAL;
1653                 }
1654                 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1655                 queue_con(con);
1656         }
1657 }
1658
1659 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1660 {
1661         u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1662         msgr->inst.addr.nonce = cpu_to_le32(nonce);
1663         ceph_encode_my_addr(msgr);
1664 }
1665
1666 /*
1667  * initialize a new messenger instance
1668  */
1669 void ceph_messenger_init(struct ceph_messenger *msgr,
1670                          struct ceph_entity_addr *myaddr)
1671 {
1672         spin_lock_init(&msgr->global_seq_lock);
1673
1674         if (myaddr) {
1675                 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1676                        sizeof(msgr->inst.addr.in_addr));
1677                 ceph_addr_set_port(&msgr->inst.addr, 0);
1678         }
1679
1680         /*
1681          * Since nautilus, clients are identified using type ANY.
1682          * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1683          */
1684         msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1685
1686         /* generate a random non-zero nonce */
1687         do {
1688                 get_random_bytes(&msgr->inst.addr.nonce,
1689                                  sizeof(msgr->inst.addr.nonce));
1690         } while (!msgr->inst.addr.nonce);
1691         ceph_encode_my_addr(msgr);
1692
1693         atomic_set(&msgr->stopping, 0);
1694         write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1695
1696         dout("%s %p\n", __func__, msgr);
1697 }
1698
1699 void ceph_messenger_fini(struct ceph_messenger *msgr)
1700 {
1701         put_net(read_pnet(&msgr->net));
1702 }
1703
1704 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1705 {
1706         if (msg->con)
1707                 msg->con->ops->put(msg->con);
1708
1709         msg->con = con ? con->ops->get(con) : NULL;
1710         BUG_ON(msg->con != con);
1711 }
1712
1713 static void clear_standby(struct ceph_connection *con)
1714 {
1715         /* come back from STANDBY? */
1716         if (con->state == CEPH_CON_S_STANDBY) {
1717                 dout("clear_standby %p and ++connect_seq\n", con);
1718                 con->state = CEPH_CON_S_PREOPEN;
1719                 con->v1.connect_seq++;
1720                 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1721                 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1722         }
1723 }
1724
1725 /*
1726  * Queue up an outgoing message on the given connection.
1727  *
1728  * Consumes a ref on @msg.
1729  */
1730 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1731 {
1732         /* set src+dst */
1733         msg->hdr.src = con->msgr->inst.name;
1734         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1735         msg->needs_out_seq = true;
1736
1737         mutex_lock(&con->mutex);
1738
1739         if (con->state == CEPH_CON_S_CLOSED) {
1740                 dout("con_send %p closed, dropping %p\n", con, msg);
1741                 ceph_msg_put(msg);
1742                 mutex_unlock(&con->mutex);
1743                 return;
1744         }
1745
1746         msg_con_set(msg, con);
1747
1748         BUG_ON(!list_empty(&msg->list_head));
1749         list_add_tail(&msg->list_head, &con->out_queue);
1750         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1751              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1752              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1753              le32_to_cpu(msg->hdr.front_len),
1754              le32_to_cpu(msg->hdr.middle_len),
1755              le32_to_cpu(msg->hdr.data_len));
1756
1757         clear_standby(con);
1758         mutex_unlock(&con->mutex);
1759
1760         /* if there wasn't anything waiting to send before, queue
1761          * new work */
1762         if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1763                 queue_con(con);
1764 }
1765 EXPORT_SYMBOL(ceph_con_send);
1766
1767 /*
1768  * Revoke a message that was previously queued for send
1769  */
1770 void ceph_msg_revoke(struct ceph_msg *msg)
1771 {
1772         struct ceph_connection *con = msg->con;
1773
1774         if (!con) {
1775                 dout("%s msg %p null con\n", __func__, msg);
1776                 return;         /* Message not in our possession */
1777         }
1778
1779         mutex_lock(&con->mutex);
1780         if (list_empty(&msg->list_head)) {
1781                 WARN_ON(con->out_msg == msg);
1782                 dout("%s con %p msg %p not linked\n", __func__, con, msg);
1783                 mutex_unlock(&con->mutex);
1784                 return;
1785         }
1786
1787         dout("%s con %p msg %p was linked\n", __func__, con, msg);
1788         msg->hdr.seq = 0;
1789         ceph_msg_remove(msg);
1790
1791         if (con->out_msg == msg) {
1792                 WARN_ON(con->state != CEPH_CON_S_OPEN);
1793                 dout("%s con %p msg %p was sending\n", __func__, con, msg);
1794                 if (ceph_msgr2(from_msgr(con->msgr)))
1795                         ceph_con_v2_revoke(con);
1796                 else
1797                         ceph_con_v1_revoke(con);
1798                 ceph_msg_put(con->out_msg);
1799                 con->out_msg = NULL;
1800         } else {
1801                 dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1802                      con, msg, con->out_msg);
1803         }
1804         mutex_unlock(&con->mutex);
1805 }
1806
1807 /*
1808  * Revoke a message that we may be reading data into
1809  */
1810 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1811 {
1812         struct ceph_connection *con = msg->con;
1813
1814         if (!con) {
1815                 dout("%s msg %p null con\n", __func__, msg);
1816                 return;         /* Message not in our possession */
1817         }
1818
1819         mutex_lock(&con->mutex);
1820         if (con->in_msg == msg) {
1821                 WARN_ON(con->state != CEPH_CON_S_OPEN);
1822                 dout("%s con %p msg %p was recving\n", __func__, con, msg);
1823                 if (ceph_msgr2(from_msgr(con->msgr)))
1824                         ceph_con_v2_revoke_incoming(con);
1825                 else
1826                         ceph_con_v1_revoke_incoming(con);
1827                 ceph_msg_put(con->in_msg);
1828                 con->in_msg = NULL;
1829         } else {
1830                 dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1831                      con, msg, con->in_msg);
1832         }
1833         mutex_unlock(&con->mutex);
1834 }
1835
1836 /*
1837  * Queue a keepalive byte to ensure the tcp connection is alive.
1838  */
1839 void ceph_con_keepalive(struct ceph_connection *con)
1840 {
1841         dout("con_keepalive %p\n", con);
1842         mutex_lock(&con->mutex);
1843         clear_standby(con);
1844         ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1845         mutex_unlock(&con->mutex);
1846
1847         if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1848                 queue_con(con);
1849 }
1850 EXPORT_SYMBOL(ceph_con_keepalive);
1851
1852 bool ceph_con_keepalive_expired(struct ceph_connection *con,
1853                                unsigned long interval)
1854 {
1855         if (interval > 0 &&
1856             (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1857                 struct timespec64 now;
1858                 struct timespec64 ts;
1859                 ktime_get_real_ts64(&now);
1860                 jiffies_to_timespec64(interval, &ts);
1861                 ts = timespec64_add(con->last_keepalive_ack, ts);
1862                 return timespec64_compare(&now, &ts) >= 0;
1863         }
1864         return false;
1865 }
1866
1867 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1868 {
1869         BUG_ON(msg->num_data_items >= msg->max_data_items);
1870         return &msg->data[msg->num_data_items++];
1871 }
1872
1873 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1874 {
1875         if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1876                 int num_pages = calc_pages_for(data->alignment, data->length);
1877                 ceph_release_page_vector(data->pages, num_pages);
1878         } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1879                 ceph_pagelist_release(data->pagelist);
1880         }
1881 }
1882
1883 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1884                              size_t length, size_t alignment, bool own_pages)
1885 {
1886         struct ceph_msg_data *data;
1887
1888         BUG_ON(!pages);
1889         BUG_ON(!length);
1890
1891         data = ceph_msg_data_add(msg);
1892         data->type = CEPH_MSG_DATA_PAGES;
1893         data->pages = pages;
1894         data->length = length;
1895         data->alignment = alignment & ~PAGE_MASK;
1896         data->own_pages = own_pages;
1897
1898         msg->data_length += length;
1899 }
1900 EXPORT_SYMBOL(ceph_msg_data_add_pages);
1901
1902 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1903                                 struct ceph_pagelist *pagelist)
1904 {
1905         struct ceph_msg_data *data;
1906
1907         BUG_ON(!pagelist);
1908         BUG_ON(!pagelist->length);
1909
1910         data = ceph_msg_data_add(msg);
1911         data->type = CEPH_MSG_DATA_PAGELIST;
1912         refcount_inc(&pagelist->refcnt);
1913         data->pagelist = pagelist;
1914
1915         msg->data_length += pagelist->length;
1916 }
1917 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1918
1919 #ifdef  CONFIG_BLOCK
1920 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1921                            u32 length)
1922 {
1923         struct ceph_msg_data *data;
1924
1925         data = ceph_msg_data_add(msg);
1926         data->type = CEPH_MSG_DATA_BIO;
1927         data->bio_pos = *bio_pos;
1928         data->bio_length = length;
1929
1930         msg->data_length += length;
1931 }
1932 EXPORT_SYMBOL(ceph_msg_data_add_bio);
1933 #endif  /* CONFIG_BLOCK */
1934
1935 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1936                              struct ceph_bvec_iter *bvec_pos)
1937 {
1938         struct ceph_msg_data *data;
1939
1940         data = ceph_msg_data_add(msg);
1941         data->type = CEPH_MSG_DATA_BVECS;
1942         data->bvec_pos = *bvec_pos;
1943
1944         msg->data_length += bvec_pos->iter.bi_size;
1945 }
1946 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1947
1948 void ceph_msg_data_add_iter(struct ceph_msg *msg,
1949                             struct iov_iter *iter)
1950 {
1951         struct ceph_msg_data *data;
1952
1953         data = ceph_msg_data_add(msg);
1954         data->type = CEPH_MSG_DATA_ITER;
1955         data->iter = *iter;
1956
1957         msg->data_length += iov_iter_count(&data->iter);
1958 }
1959
1960 /*
1961  * construct a new message with given type, size
1962  * the new msg has a ref count of 1.
1963  */
1964 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1965                                gfp_t flags, bool can_fail)
1966 {
1967         struct ceph_msg *m;
1968
1969         m = kmem_cache_zalloc(ceph_msg_cache, flags);
1970         if (m == NULL)
1971                 goto out;
1972
1973         m->hdr.type = cpu_to_le16(type);
1974         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1975         m->hdr.front_len = cpu_to_le32(front_len);
1976
1977         INIT_LIST_HEAD(&m->list_head);
1978         kref_init(&m->kref);
1979
1980         /* front */
1981         if (front_len) {
1982                 m->front.iov_base = kvmalloc(front_len, flags);
1983                 if (m->front.iov_base == NULL) {
1984                         dout("ceph_msg_new can't allocate %d bytes\n",
1985                              front_len);
1986                         goto out2;
1987                 }
1988         } else {
1989                 m->front.iov_base = NULL;
1990         }
1991         m->front_alloc_len = m->front.iov_len = front_len;
1992
1993         if (max_data_items) {
1994                 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1995                                         flags);
1996                 if (!m->data)
1997                         goto out2;
1998
1999                 m->max_data_items = max_data_items;
2000         }
2001
2002         dout("ceph_msg_new %p front %d\n", m, front_len);
2003         return m;
2004
2005 out2:
2006         ceph_msg_put(m);
2007 out:
2008         if (!can_fail) {
2009                 pr_err("msg_new can't create type %d front %d\n", type,
2010                        front_len);
2011                 WARN_ON(1);
2012         } else {
2013                 dout("msg_new can't create type %d front %d\n", type,
2014                      front_len);
2015         }
2016         return NULL;
2017 }
2018 EXPORT_SYMBOL(ceph_msg_new2);
2019
2020 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2021                               bool can_fail)
2022 {
2023         return ceph_msg_new2(type, front_len, 0, flags, can_fail);
2024 }
2025 EXPORT_SYMBOL(ceph_msg_new);
2026
2027 /*
2028  * Allocate "middle" portion of a message, if it is needed and wasn't
2029  * allocated by alloc_msg.  This allows us to read a small fixed-size
2030  * per-type header in the front and then gracefully fail (i.e.,
2031  * propagate the error to the caller based on info in the front) when
2032  * the middle is too large.
2033  */
2034 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2035 {
2036         int type = le16_to_cpu(msg->hdr.type);
2037         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2038
2039         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2040              ceph_msg_type_name(type), middle_len);
2041         BUG_ON(!middle_len);
2042         BUG_ON(msg->middle);
2043
2044         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2045         if (!msg->middle)
2046                 return -ENOMEM;
2047         return 0;
2048 }
2049
2050 /*
2051  * Allocate a message for receiving an incoming message on a
2052  * connection, and save the result in con->in_msg.  Uses the
2053  * connection's private alloc_msg op if available.
2054  *
2055  * Returns 0 on success, or a negative error code.
2056  *
2057  * On success, if we set *skip = 1:
2058  *  - the next message should be skipped and ignored.
2059  *  - con->in_msg == NULL
2060  * or if we set *skip = 0:
2061  *  - con->in_msg is non-null.
2062  * On error (ENOMEM, EAGAIN, ...),
2063  *  - con->in_msg == NULL
2064  */
2065 int ceph_con_in_msg_alloc(struct ceph_connection *con,
2066                           struct ceph_msg_header *hdr, int *skip)
2067 {
2068         int middle_len = le32_to_cpu(hdr->middle_len);
2069         struct ceph_msg *msg;
2070         int ret = 0;
2071
2072         BUG_ON(con->in_msg != NULL);
2073         BUG_ON(!con->ops->alloc_msg);
2074
2075         mutex_unlock(&con->mutex);
2076         msg = con->ops->alloc_msg(con, hdr, skip);
2077         mutex_lock(&con->mutex);
2078         if (con->state != CEPH_CON_S_OPEN) {
2079                 if (msg)
2080                         ceph_msg_put(msg);
2081                 return -EAGAIN;
2082         }
2083         if (msg) {
2084                 BUG_ON(*skip);
2085                 msg_con_set(msg, con);
2086                 con->in_msg = msg;
2087         } else {
2088                 /*
2089                  * Null message pointer means either we should skip
2090                  * this message or we couldn't allocate memory.  The
2091                  * former is not an error.
2092                  */
2093                 if (*skip)
2094                         return 0;
2095
2096                 con->error_msg = "error allocating memory for incoming message";
2097                 return -ENOMEM;
2098         }
2099         memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2100
2101         if (middle_len && !con->in_msg->middle) {
2102                 ret = ceph_alloc_middle(con, con->in_msg);
2103                 if (ret < 0) {
2104                         ceph_msg_put(con->in_msg);
2105                         con->in_msg = NULL;
2106                 }
2107         }
2108
2109         return ret;
2110 }
2111
2112 void ceph_con_get_out_msg(struct ceph_connection *con)
2113 {
2114         struct ceph_msg *msg;
2115
2116         BUG_ON(list_empty(&con->out_queue));
2117         msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2118         WARN_ON(msg->con != con);
2119
2120         /*
2121          * Put the message on "sent" list using a ref from ceph_con_send().
2122          * It is put when the message is acked or revoked.
2123          */
2124         list_move_tail(&msg->list_head, &con->out_sent);
2125
2126         /*
2127          * Only assign outgoing seq # if we haven't sent this message
2128          * yet.  If it is requeued, resend with it's original seq.
2129          */
2130         if (msg->needs_out_seq) {
2131                 msg->hdr.seq = cpu_to_le64(++con->out_seq);
2132                 msg->needs_out_seq = false;
2133
2134                 if (con->ops->reencode_message)
2135                         con->ops->reencode_message(msg);
2136         }
2137
2138         /*
2139          * Get a ref for out_msg.  It is put when we are done sending the
2140          * message or in case of a fault.
2141          */
2142         WARN_ON(con->out_msg);
2143         con->out_msg = ceph_msg_get(msg);
2144 }
2145
2146 /*
2147  * Free a generically kmalloc'd message.
2148  */
2149 static void ceph_msg_free(struct ceph_msg *m)
2150 {
2151         dout("%s %p\n", __func__, m);
2152         kvfree(m->front.iov_base);
2153         kfree(m->data);
2154         kmem_cache_free(ceph_msg_cache, m);
2155 }
2156
2157 static void ceph_msg_release(struct kref *kref)
2158 {
2159         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2160         int i;
2161
2162         dout("%s %p\n", __func__, m);
2163         WARN_ON(!list_empty(&m->list_head));
2164
2165         msg_con_set(m, NULL);
2166
2167         /* drop middle, data, if any */
2168         if (m->middle) {
2169                 ceph_buffer_put(m->middle);
2170                 m->middle = NULL;
2171         }
2172
2173         for (i = 0; i < m->num_data_items; i++)
2174                 ceph_msg_data_destroy(&m->data[i]);
2175
2176         if (m->pool)
2177                 ceph_msgpool_put(m->pool, m);
2178         else
2179                 ceph_msg_free(m);
2180 }
2181
2182 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2183 {
2184         dout("%s %p (was %d)\n", __func__, msg,
2185              kref_read(&msg->kref));
2186         kref_get(&msg->kref);
2187         return msg;
2188 }
2189 EXPORT_SYMBOL(ceph_msg_get);
2190
2191 void ceph_msg_put(struct ceph_msg *msg)
2192 {
2193         dout("%s %p (was %d)\n", __func__, msg,
2194              kref_read(&msg->kref));
2195         kref_put(&msg->kref, ceph_msg_release);
2196 }
2197 EXPORT_SYMBOL(ceph_msg_put);
2198
2199 void ceph_msg_dump(struct ceph_msg *msg)
2200 {
2201         pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2202                  msg->front_alloc_len, msg->data_length);
2203         print_hex_dump(KERN_DEBUG, "header: ",
2204                        DUMP_PREFIX_OFFSET, 16, 1,
2205                        &msg->hdr, sizeof(msg->hdr), true);
2206         print_hex_dump(KERN_DEBUG, " front: ",
2207                        DUMP_PREFIX_OFFSET, 16, 1,
2208                        msg->front.iov_base, msg->front.iov_len, true);
2209         if (msg->middle)
2210                 print_hex_dump(KERN_DEBUG, "middle: ",
2211                                DUMP_PREFIX_OFFSET, 16, 1,
2212                                msg->middle->vec.iov_base,
2213                                msg->middle->vec.iov_len, true);
2214         print_hex_dump(KERN_DEBUG, "footer: ",
2215                        DUMP_PREFIX_OFFSET, 16, 1,
2216                        &msg->footer, sizeof(msg->footer), true);
2217 }
2218 EXPORT_SYMBOL(ceph_msg_dump);