Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[linux-2.6-microblaze.git] / net / ceph / messenger.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef  CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif  /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78
79 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
84
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99                                        * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107         switch (con_flag) {
108         case CON_FLAG_LOSSYTX:
109         case CON_FLAG_KEEPALIVE_PENDING:
110         case CON_FLAG_WRITE_PENDING:
111         case CON_FLAG_SOCK_CLOSED:
112         case CON_FLAG_BACKOFF:
113                 return true;
114         default:
115                 return false;
116         }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121         BUG_ON(!con_flag_valid(con_flag));
122
123         clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128         BUG_ON(!con_flag_valid(con_flag));
129
130         set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135         BUG_ON(!con_flag_valid(con_flag));
136
137         return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141                                         unsigned long con_flag)
142 {
143         BUG_ON(!con_flag_valid(con_flag));
144
145         return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149                                         unsigned long con_flag)
150 {
151         BUG_ON(!con_flag_valid(con_flag));
152
153         return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache        *ceph_msg_cache;
159
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169
170 static void queue_con(struct ceph_connection *con);
171 static void cancel_con(struct ceph_connection *con);
172 static void ceph_con_workfn(struct work_struct *);
173 static void con_fault(struct ceph_connection *con);
174
175 /*
176  * Nicely render a sockaddr as a string.  An array of formatted
177  * strings is used, to approximate reentrancy.
178  */
179 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
180 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
181 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
182 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
183
184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
185 static atomic_t addr_str_seq = ATOMIC_INIT(0);
186
187 static struct page *zero_page;          /* used in certain error cases */
188
189 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
190 {
191         int i;
192         char *s;
193         struct sockaddr_storage ss = addr->in_addr; /* align */
194         struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
195         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
196
197         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
198         s = addr_str[i];
199
200         switch (ss.ss_family) {
201         case AF_INET:
202                 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
203                          le32_to_cpu(addr->type), &in4->sin_addr,
204                          ntohs(in4->sin_port));
205                 break;
206
207         case AF_INET6:
208                 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
209                          le32_to_cpu(addr->type), &in6->sin6_addr,
210                          ntohs(in6->sin6_port));
211                 break;
212
213         default:
214                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
215                          ss.ss_family);
216         }
217
218         return s;
219 }
220 EXPORT_SYMBOL(ceph_pr_addr);
221
222 static void encode_my_addr(struct ceph_messenger *msgr)
223 {
224         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
225         ceph_encode_banner_addr(&msgr->my_enc_addr);
226 }
227
228 /*
229  * work queue for all reading and writing to/from the socket.
230  */
231 static struct workqueue_struct *ceph_msgr_wq;
232
233 static int ceph_msgr_slab_init(void)
234 {
235         BUG_ON(ceph_msg_cache);
236         ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
237         if (!ceph_msg_cache)
238                 return -ENOMEM;
239
240         return 0;
241 }
242
243 static void ceph_msgr_slab_exit(void)
244 {
245         BUG_ON(!ceph_msg_cache);
246         kmem_cache_destroy(ceph_msg_cache);
247         ceph_msg_cache = NULL;
248 }
249
250 static void _ceph_msgr_exit(void)
251 {
252         if (ceph_msgr_wq) {
253                 destroy_workqueue(ceph_msgr_wq);
254                 ceph_msgr_wq = NULL;
255         }
256
257         BUG_ON(zero_page == NULL);
258         put_page(zero_page);
259         zero_page = NULL;
260
261         ceph_msgr_slab_exit();
262 }
263
264 int __init ceph_msgr_init(void)
265 {
266         if (ceph_msgr_slab_init())
267                 return -ENOMEM;
268
269         BUG_ON(zero_page != NULL);
270         zero_page = ZERO_PAGE(0);
271         get_page(zero_page);
272
273         /*
274          * The number of active work items is limited by the number of
275          * connections, so leave @max_active at default.
276          */
277         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
278         if (ceph_msgr_wq)
279                 return 0;
280
281         pr_err("msgr_init failed to create workqueue\n");
282         _ceph_msgr_exit();
283
284         return -ENOMEM;
285 }
286
287 void ceph_msgr_exit(void)
288 {
289         BUG_ON(ceph_msgr_wq == NULL);
290
291         _ceph_msgr_exit();
292 }
293
294 void ceph_msgr_flush(void)
295 {
296         flush_workqueue(ceph_msgr_wq);
297 }
298 EXPORT_SYMBOL(ceph_msgr_flush);
299
300 /* Connection socket state transition functions */
301
302 static void con_sock_state_init(struct ceph_connection *con)
303 {
304         int old_state;
305
306         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
307         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
308                 printk("%s: unexpected old state %d\n", __func__, old_state);
309         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
310              CON_SOCK_STATE_CLOSED);
311 }
312
313 static void con_sock_state_connecting(struct ceph_connection *con)
314 {
315         int old_state;
316
317         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
318         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
319                 printk("%s: unexpected old state %d\n", __func__, old_state);
320         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
321              CON_SOCK_STATE_CONNECTING);
322 }
323
324 static void con_sock_state_connected(struct ceph_connection *con)
325 {
326         int old_state;
327
328         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
329         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
330                 printk("%s: unexpected old state %d\n", __func__, old_state);
331         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332              CON_SOCK_STATE_CONNECTED);
333 }
334
335 static void con_sock_state_closing(struct ceph_connection *con)
336 {
337         int old_state;
338
339         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
340         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
341                         old_state != CON_SOCK_STATE_CONNECTED &&
342                         old_state != CON_SOCK_STATE_CLOSING))
343                 printk("%s: unexpected old state %d\n", __func__, old_state);
344         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345              CON_SOCK_STATE_CLOSING);
346 }
347
348 static void con_sock_state_closed(struct ceph_connection *con)
349 {
350         int old_state;
351
352         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
353         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
354                     old_state != CON_SOCK_STATE_CLOSING &&
355                     old_state != CON_SOCK_STATE_CONNECTING &&
356                     old_state != CON_SOCK_STATE_CLOSED))
357                 printk("%s: unexpected old state %d\n", __func__, old_state);
358         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
359              CON_SOCK_STATE_CLOSED);
360 }
361
362 /*
363  * socket callback functions
364  */
365
366 /* data available on socket, or listen socket received a connect */
367 static void ceph_sock_data_ready(struct sock *sk)
368 {
369         struct ceph_connection *con = sk->sk_user_data;
370         if (atomic_read(&con->msgr->stopping)) {
371                 return;
372         }
373
374         if (sk->sk_state != TCP_CLOSE_WAIT) {
375                 dout("%s on %p state = %lu, queueing work\n", __func__,
376                      con, con->state);
377                 queue_con(con);
378         }
379 }
380
381 /* socket has buffer space for writing */
382 static void ceph_sock_write_space(struct sock *sk)
383 {
384         struct ceph_connection *con = sk->sk_user_data;
385
386         /* only queue to workqueue if there is data we want to write,
387          * and there is sufficient space in the socket buffer to accept
388          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
389          * doesn't get called again until try_write() fills the socket
390          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
391          * and net/core/stream.c:sk_stream_write_space().
392          */
393         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
394                 if (sk_stream_is_writeable(sk)) {
395                         dout("%s %p queueing write work\n", __func__, con);
396                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
397                         queue_con(con);
398                 }
399         } else {
400                 dout("%s %p nothing to write\n", __func__, con);
401         }
402 }
403
404 /* socket's state has changed */
405 static void ceph_sock_state_change(struct sock *sk)
406 {
407         struct ceph_connection *con = sk->sk_user_data;
408
409         dout("%s %p state = %lu sk_state = %u\n", __func__,
410              con, con->state, sk->sk_state);
411
412         switch (sk->sk_state) {
413         case TCP_CLOSE:
414                 dout("%s TCP_CLOSE\n", __func__);
415                 fallthrough;
416         case TCP_CLOSE_WAIT:
417                 dout("%s TCP_CLOSE_WAIT\n", __func__);
418                 con_sock_state_closing(con);
419                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
420                 queue_con(con);
421                 break;
422         case TCP_ESTABLISHED:
423                 dout("%s TCP_ESTABLISHED\n", __func__);
424                 con_sock_state_connected(con);
425                 queue_con(con);
426                 break;
427         default:        /* Everything else is uninteresting */
428                 break;
429         }
430 }
431
432 /*
433  * set up socket callbacks
434  */
435 static void set_sock_callbacks(struct socket *sock,
436                                struct ceph_connection *con)
437 {
438         struct sock *sk = sock->sk;
439         sk->sk_user_data = con;
440         sk->sk_data_ready = ceph_sock_data_ready;
441         sk->sk_write_space = ceph_sock_write_space;
442         sk->sk_state_change = ceph_sock_state_change;
443 }
444
445
446 /*
447  * socket helpers
448  */
449
450 /*
451  * initiate connection to a remote socket.
452  */
453 static int ceph_tcp_connect(struct ceph_connection *con)
454 {
455         struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
456         struct socket *sock;
457         unsigned int noio_flag;
458         int ret;
459
460         BUG_ON(con->sock);
461
462         /* sock_create_kern() allocates with GFP_KERNEL */
463         noio_flag = memalloc_noio_save();
464         ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
465                                SOCK_STREAM, IPPROTO_TCP, &sock);
466         memalloc_noio_restore(noio_flag);
467         if (ret)
468                 return ret;
469         sock->sk->sk_allocation = GFP_NOFS;
470
471 #ifdef CONFIG_LOCKDEP
472         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
473 #endif
474
475         set_sock_callbacks(sock, con);
476
477         dout("connect %s\n", ceph_pr_addr(&con->peer_addr));
478
479         con_sock_state_connecting(con);
480         ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
481                                  O_NONBLOCK);
482         if (ret == -EINPROGRESS) {
483                 dout("connect %s EINPROGRESS sk_state = %u\n",
484                      ceph_pr_addr(&con->peer_addr),
485                      sock->sk->sk_state);
486         } else if (ret < 0) {
487                 pr_err("connect %s error %d\n",
488                        ceph_pr_addr(&con->peer_addr), ret);
489                 sock_release(sock);
490                 return ret;
491         }
492
493         if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
494                 tcp_sock_set_nodelay(sock->sk);
495
496         con->sock = sock;
497         return 0;
498 }
499
500 /*
501  * If @buf is NULL, discard up to @len bytes.
502  */
503 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
504 {
505         struct kvec iov = {buf, len};
506         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
507         int r;
508
509         if (!buf)
510                 msg.msg_flags |= MSG_TRUNC;
511
512         iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len);
513         r = sock_recvmsg(sock, &msg, msg.msg_flags);
514         if (r == -EAGAIN)
515                 r = 0;
516         return r;
517 }
518
519 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
520                      int page_offset, size_t length)
521 {
522         struct bio_vec bvec = {
523                 .bv_page = page,
524                 .bv_offset = page_offset,
525                 .bv_len = length
526         };
527         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
528         int r;
529
530         BUG_ON(page_offset + length > PAGE_SIZE);
531         iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length);
532         r = sock_recvmsg(sock, &msg, msg.msg_flags);
533         if (r == -EAGAIN)
534                 r = 0;
535         return r;
536 }
537
538 /*
539  * write something.  @more is true if caller will be sending more data
540  * shortly.
541  */
542 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
543                             size_t kvlen, size_t len, bool more)
544 {
545         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
546         int r;
547
548         if (more)
549                 msg.msg_flags |= MSG_MORE;
550         else
551                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
552
553         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
554         if (r == -EAGAIN)
555                 r = 0;
556         return r;
557 }
558
559 /*
560  * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST
561  */
562 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
563                              int offset, size_t size, int more)
564 {
565         ssize_t (*sendpage)(struct socket *sock, struct page *page,
566                             int offset, size_t size, int flags);
567         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more;
568         int ret;
569
570         /*
571          * sendpage cannot properly handle pages with page_count == 0,
572          * we need to fall back to sendmsg if that's the case.
573          *
574          * Same goes for slab pages: skb_can_coalesce() allows
575          * coalescing neighboring slab objects into a single frag which
576          * triggers one of hardened usercopy checks.
577          */
578         if (sendpage_ok(page))
579                 sendpage = sock->ops->sendpage;
580         else
581                 sendpage = sock_no_sendpage;
582
583         ret = sendpage(sock, page, offset, size, flags);
584         if (ret == -EAGAIN)
585                 ret = 0;
586
587         return ret;
588 }
589
590 /*
591  * Shutdown/close the socket for the given connection.
592  */
593 static int con_close_socket(struct ceph_connection *con)
594 {
595         int rc = 0;
596
597         dout("con_close_socket on %p sock %p\n", con, con->sock);
598         if (con->sock) {
599                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
600                 sock_release(con->sock);
601                 con->sock = NULL;
602         }
603
604         /*
605          * Forcibly clear the SOCK_CLOSED flag.  It gets set
606          * independent of the connection mutex, and we could have
607          * received a socket close event before we had the chance to
608          * shut the socket down.
609          */
610         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
611
612         con_sock_state_closed(con);
613         return rc;
614 }
615
616 /*
617  * Reset a connection.  Discard all incoming and outgoing messages
618  * and clear *_seq state.
619  */
620 static void ceph_msg_remove(struct ceph_msg *msg)
621 {
622         list_del_init(&msg->list_head);
623
624         ceph_msg_put(msg);
625 }
626 static void ceph_msg_remove_list(struct list_head *head)
627 {
628         while (!list_empty(head)) {
629                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
630                                                         list_head);
631                 ceph_msg_remove(msg);
632         }
633 }
634
635 static void reset_connection(struct ceph_connection *con)
636 {
637         /* reset connection, out_queue, msg_ and connect_seq */
638         /* discard existing out_queue and msg_seq */
639         dout("reset_connection %p\n", con);
640         ceph_msg_remove_list(&con->out_queue);
641         ceph_msg_remove_list(&con->out_sent);
642
643         if (con->in_msg) {
644                 BUG_ON(con->in_msg->con != con);
645                 ceph_msg_put(con->in_msg);
646                 con->in_msg = NULL;
647         }
648
649         con->connect_seq = 0;
650         con->out_seq = 0;
651         if (con->out_msg) {
652                 BUG_ON(con->out_msg->con != con);
653                 ceph_msg_put(con->out_msg);
654                 con->out_msg = NULL;
655         }
656         con->in_seq = 0;
657         con->in_seq_acked = 0;
658
659         con->out_skip = 0;
660 }
661
662 /*
663  * mark a peer down.  drop any open connections.
664  */
665 void ceph_con_close(struct ceph_connection *con)
666 {
667         mutex_lock(&con->mutex);
668         dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
669         con->state = CON_STATE_CLOSED;
670
671         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
672         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
673         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
674         con_flag_clear(con, CON_FLAG_BACKOFF);
675
676         reset_connection(con);
677         con->peer_global_seq = 0;
678         cancel_con(con);
679         con_close_socket(con);
680         mutex_unlock(&con->mutex);
681 }
682 EXPORT_SYMBOL(ceph_con_close);
683
684 /*
685  * Reopen a closed connection, with a new peer address.
686  */
687 void ceph_con_open(struct ceph_connection *con,
688                    __u8 entity_type, __u64 entity_num,
689                    struct ceph_entity_addr *addr)
690 {
691         mutex_lock(&con->mutex);
692         dout("con_open %p %s\n", con, ceph_pr_addr(addr));
693
694         WARN_ON(con->state != CON_STATE_CLOSED);
695         con->state = CON_STATE_PREOPEN;
696
697         con->peer_name.type = (__u8) entity_type;
698         con->peer_name.num = cpu_to_le64(entity_num);
699
700         memcpy(&con->peer_addr, addr, sizeof(*addr));
701         con->delay = 0;      /* reset backoff memory */
702         mutex_unlock(&con->mutex);
703         queue_con(con);
704 }
705 EXPORT_SYMBOL(ceph_con_open);
706
707 /*
708  * return true if this connection ever successfully opened
709  */
710 bool ceph_con_opened(struct ceph_connection *con)
711 {
712         return con->connect_seq > 0;
713 }
714
715 /*
716  * initialize a new connection.
717  */
718 void ceph_con_init(struct ceph_connection *con, void *private,
719         const struct ceph_connection_operations *ops,
720         struct ceph_messenger *msgr)
721 {
722         dout("con_init %p\n", con);
723         memset(con, 0, sizeof(*con));
724         con->private = private;
725         con->ops = ops;
726         con->msgr = msgr;
727
728         con_sock_state_init(con);
729
730         mutex_init(&con->mutex);
731         INIT_LIST_HEAD(&con->out_queue);
732         INIT_LIST_HEAD(&con->out_sent);
733         INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
734
735         con->state = CON_STATE_CLOSED;
736 }
737 EXPORT_SYMBOL(ceph_con_init);
738
739
740 /*
741  * We maintain a global counter to order connection attempts.  Get
742  * a unique seq greater than @gt.
743  */
744 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
745 {
746         u32 ret;
747
748         spin_lock(&msgr->global_seq_lock);
749         if (msgr->global_seq < gt)
750                 msgr->global_seq = gt;
751         ret = ++msgr->global_seq;
752         spin_unlock(&msgr->global_seq_lock);
753         return ret;
754 }
755
756 static void con_out_kvec_reset(struct ceph_connection *con)
757 {
758         BUG_ON(con->out_skip);
759
760         con->out_kvec_left = 0;
761         con->out_kvec_bytes = 0;
762         con->out_kvec_cur = &con->out_kvec[0];
763 }
764
765 static void con_out_kvec_add(struct ceph_connection *con,
766                                 size_t size, void *data)
767 {
768         int index = con->out_kvec_left;
769
770         BUG_ON(con->out_skip);
771         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
772
773         con->out_kvec[index].iov_len = size;
774         con->out_kvec[index].iov_base = data;
775         con->out_kvec_left++;
776         con->out_kvec_bytes += size;
777 }
778
779 /*
780  * Chop off a kvec from the end.  Return residual number of bytes for
781  * that kvec, i.e. how many bytes would have been written if the kvec
782  * hadn't been nuked.
783  */
784 static int con_out_kvec_skip(struct ceph_connection *con)
785 {
786         int off = con->out_kvec_cur - con->out_kvec;
787         int skip = 0;
788
789         if (con->out_kvec_bytes > 0) {
790                 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
791                 BUG_ON(con->out_kvec_bytes < skip);
792                 BUG_ON(!con->out_kvec_left);
793                 con->out_kvec_bytes -= skip;
794                 con->out_kvec_left--;
795         }
796
797         return skip;
798 }
799
800 #ifdef CONFIG_BLOCK
801
802 /*
803  * For a bio data item, a piece is whatever remains of the next
804  * entry in the current bio iovec, or the first entry in the next
805  * bio in the list.
806  */
807 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
808                                         size_t length)
809 {
810         struct ceph_msg_data *data = cursor->data;
811         struct ceph_bio_iter *it = &cursor->bio_iter;
812
813         cursor->resid = min_t(size_t, length, data->bio_length);
814         *it = data->bio_pos;
815         if (cursor->resid < it->iter.bi_size)
816                 it->iter.bi_size = cursor->resid;
817
818         BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
819         cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
820 }
821
822 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
823                                                 size_t *page_offset,
824                                                 size_t *length)
825 {
826         struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
827                                            cursor->bio_iter.iter);
828
829         *page_offset = bv.bv_offset;
830         *length = bv.bv_len;
831         return bv.bv_page;
832 }
833
834 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
835                                         size_t bytes)
836 {
837         struct ceph_bio_iter *it = &cursor->bio_iter;
838         struct page *page = bio_iter_page(it->bio, it->iter);
839
840         BUG_ON(bytes > cursor->resid);
841         BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
842         cursor->resid -= bytes;
843         bio_advance_iter(it->bio, &it->iter, bytes);
844
845         if (!cursor->resid) {
846                 BUG_ON(!cursor->last_piece);
847                 return false;   /* no more data */
848         }
849
850         if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
851                        page == bio_iter_page(it->bio, it->iter)))
852                 return false;   /* more bytes to process in this segment */
853
854         if (!it->iter.bi_size) {
855                 it->bio = it->bio->bi_next;
856                 it->iter = it->bio->bi_iter;
857                 if (cursor->resid < it->iter.bi_size)
858                         it->iter.bi_size = cursor->resid;
859         }
860
861         BUG_ON(cursor->last_piece);
862         BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
863         cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
864         return true;
865 }
866 #endif /* CONFIG_BLOCK */
867
868 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
869                                         size_t length)
870 {
871         struct ceph_msg_data *data = cursor->data;
872         struct bio_vec *bvecs = data->bvec_pos.bvecs;
873
874         cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
875         cursor->bvec_iter = data->bvec_pos.iter;
876         cursor->bvec_iter.bi_size = cursor->resid;
877
878         BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
879         cursor->last_piece =
880             cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
881 }
882
883 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
884                                                 size_t *page_offset,
885                                                 size_t *length)
886 {
887         struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
888                                            cursor->bvec_iter);
889
890         *page_offset = bv.bv_offset;
891         *length = bv.bv_len;
892         return bv.bv_page;
893 }
894
895 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
896                                         size_t bytes)
897 {
898         struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
899         struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
900
901         BUG_ON(bytes > cursor->resid);
902         BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
903         cursor->resid -= bytes;
904         bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
905
906         if (!cursor->resid) {
907                 BUG_ON(!cursor->last_piece);
908                 return false;   /* no more data */
909         }
910
911         if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
912                        page == bvec_iter_page(bvecs, cursor->bvec_iter)))
913                 return false;   /* more bytes to process in this segment */
914
915         BUG_ON(cursor->last_piece);
916         BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
917         cursor->last_piece =
918             cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
919         return true;
920 }
921
922 /*
923  * For a page array, a piece comes from the first page in the array
924  * that has not already been fully consumed.
925  */
926 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
927                                         size_t length)
928 {
929         struct ceph_msg_data *data = cursor->data;
930         int page_count;
931
932         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
933
934         BUG_ON(!data->pages);
935         BUG_ON(!data->length);
936
937         cursor->resid = min(length, data->length);
938         page_count = calc_pages_for(data->alignment, (u64)data->length);
939         cursor->page_offset = data->alignment & ~PAGE_MASK;
940         cursor->page_index = 0;
941         BUG_ON(page_count > (int)USHRT_MAX);
942         cursor->page_count = (unsigned short)page_count;
943         BUG_ON(length > SIZE_MAX - cursor->page_offset);
944         cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
945 }
946
947 static struct page *
948 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
949                                         size_t *page_offset, size_t *length)
950 {
951         struct ceph_msg_data *data = cursor->data;
952
953         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
954
955         BUG_ON(cursor->page_index >= cursor->page_count);
956         BUG_ON(cursor->page_offset >= PAGE_SIZE);
957
958         *page_offset = cursor->page_offset;
959         if (cursor->last_piece)
960                 *length = cursor->resid;
961         else
962                 *length = PAGE_SIZE - *page_offset;
963
964         return data->pages[cursor->page_index];
965 }
966
967 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
968                                                 size_t bytes)
969 {
970         BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
971
972         BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
973
974         /* Advance the cursor page offset */
975
976         cursor->resid -= bytes;
977         cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
978         if (!bytes || cursor->page_offset)
979                 return false;   /* more bytes to process in the current page */
980
981         if (!cursor->resid)
982                 return false;   /* no more data */
983
984         /* Move on to the next page; offset is already at 0 */
985
986         BUG_ON(cursor->page_index >= cursor->page_count);
987         cursor->page_index++;
988         cursor->last_piece = cursor->resid <= PAGE_SIZE;
989
990         return true;
991 }
992
993 /*
994  * For a pagelist, a piece is whatever remains to be consumed in the
995  * first page in the list, or the front of the next page.
996  */
997 static void
998 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
999                                         size_t length)
1000 {
1001         struct ceph_msg_data *data = cursor->data;
1002         struct ceph_pagelist *pagelist;
1003         struct page *page;
1004
1005         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1006
1007         pagelist = data->pagelist;
1008         BUG_ON(!pagelist);
1009
1010         if (!length)
1011                 return;         /* pagelist can be assigned but empty */
1012
1013         BUG_ON(list_empty(&pagelist->head));
1014         page = list_first_entry(&pagelist->head, struct page, lru);
1015
1016         cursor->resid = min(length, pagelist->length);
1017         cursor->page = page;
1018         cursor->offset = 0;
1019         cursor->last_piece = cursor->resid <= PAGE_SIZE;
1020 }
1021
1022 static struct page *
1023 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1024                                 size_t *page_offset, size_t *length)
1025 {
1026         struct ceph_msg_data *data = cursor->data;
1027         struct ceph_pagelist *pagelist;
1028
1029         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1030
1031         pagelist = data->pagelist;
1032         BUG_ON(!pagelist);
1033
1034         BUG_ON(!cursor->page);
1035         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1036
1037         /* offset of first page in pagelist is always 0 */
1038         *page_offset = cursor->offset & ~PAGE_MASK;
1039         if (cursor->last_piece)
1040                 *length = cursor->resid;
1041         else
1042                 *length = PAGE_SIZE - *page_offset;
1043
1044         return cursor->page;
1045 }
1046
1047 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1048                                                 size_t bytes)
1049 {
1050         struct ceph_msg_data *data = cursor->data;
1051         struct ceph_pagelist *pagelist;
1052
1053         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1054
1055         pagelist = data->pagelist;
1056         BUG_ON(!pagelist);
1057
1058         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1059         BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1060
1061         /* Advance the cursor offset */
1062
1063         cursor->resid -= bytes;
1064         cursor->offset += bytes;
1065         /* offset of first page in pagelist is always 0 */
1066         if (!bytes || cursor->offset & ~PAGE_MASK)
1067                 return false;   /* more bytes to process in the current page */
1068
1069         if (!cursor->resid)
1070                 return false;   /* no more data */
1071
1072         /* Move on to the next page */
1073
1074         BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1075         cursor->page = list_next_entry(cursor->page, lru);
1076         cursor->last_piece = cursor->resid <= PAGE_SIZE;
1077
1078         return true;
1079 }
1080
1081 /*
1082  * Message data is handled (sent or received) in pieces, where each
1083  * piece resides on a single page.  The network layer might not
1084  * consume an entire piece at once.  A data item's cursor keeps
1085  * track of which piece is next to process and how much remains to
1086  * be processed in that piece.  It also tracks whether the current
1087  * piece is the last one in the data item.
1088  */
1089 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1090 {
1091         size_t length = cursor->total_resid;
1092
1093         switch (cursor->data->type) {
1094         case CEPH_MSG_DATA_PAGELIST:
1095                 ceph_msg_data_pagelist_cursor_init(cursor, length);
1096                 break;
1097         case CEPH_MSG_DATA_PAGES:
1098                 ceph_msg_data_pages_cursor_init(cursor, length);
1099                 break;
1100 #ifdef CONFIG_BLOCK
1101         case CEPH_MSG_DATA_BIO:
1102                 ceph_msg_data_bio_cursor_init(cursor, length);
1103                 break;
1104 #endif /* CONFIG_BLOCK */
1105         case CEPH_MSG_DATA_BVECS:
1106                 ceph_msg_data_bvecs_cursor_init(cursor, length);
1107                 break;
1108         case CEPH_MSG_DATA_NONE:
1109         default:
1110                 /* BUG(); */
1111                 break;
1112         }
1113         cursor->need_crc = true;
1114 }
1115
1116 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1117 {
1118         struct ceph_msg_data_cursor *cursor = &msg->cursor;
1119
1120         BUG_ON(!length);
1121         BUG_ON(length > msg->data_length);
1122         BUG_ON(!msg->num_data_items);
1123
1124         cursor->total_resid = length;
1125         cursor->data = msg->data;
1126
1127         __ceph_msg_data_cursor_init(cursor);
1128 }
1129
1130 /*
1131  * Return the page containing the next piece to process for a given
1132  * data item, and supply the page offset and length of that piece.
1133  * Indicate whether this is the last piece in this data item.
1134  */
1135 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1136                                         size_t *page_offset, size_t *length,
1137                                         bool *last_piece)
1138 {
1139         struct page *page;
1140
1141         switch (cursor->data->type) {
1142         case CEPH_MSG_DATA_PAGELIST:
1143                 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1144                 break;
1145         case CEPH_MSG_DATA_PAGES:
1146                 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1147                 break;
1148 #ifdef CONFIG_BLOCK
1149         case CEPH_MSG_DATA_BIO:
1150                 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1151                 break;
1152 #endif /* CONFIG_BLOCK */
1153         case CEPH_MSG_DATA_BVECS:
1154                 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1155                 break;
1156         case CEPH_MSG_DATA_NONE:
1157         default:
1158                 page = NULL;
1159                 break;
1160         }
1161
1162         BUG_ON(!page);
1163         BUG_ON(*page_offset + *length > PAGE_SIZE);
1164         BUG_ON(!*length);
1165         BUG_ON(*length > cursor->resid);
1166         if (last_piece)
1167                 *last_piece = cursor->last_piece;
1168
1169         return page;
1170 }
1171
1172 /*
1173  * Returns true if the result moves the cursor on to the next piece
1174  * of the data item.
1175  */
1176 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1177                                   size_t bytes)
1178 {
1179         bool new_piece;
1180
1181         BUG_ON(bytes > cursor->resid);
1182         switch (cursor->data->type) {
1183         case CEPH_MSG_DATA_PAGELIST:
1184                 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1185                 break;
1186         case CEPH_MSG_DATA_PAGES:
1187                 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1188                 break;
1189 #ifdef CONFIG_BLOCK
1190         case CEPH_MSG_DATA_BIO:
1191                 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1192                 break;
1193 #endif /* CONFIG_BLOCK */
1194         case CEPH_MSG_DATA_BVECS:
1195                 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1196                 break;
1197         case CEPH_MSG_DATA_NONE:
1198         default:
1199                 BUG();
1200                 break;
1201         }
1202         cursor->total_resid -= bytes;
1203
1204         if (!cursor->resid && cursor->total_resid) {
1205                 WARN_ON(!cursor->last_piece);
1206                 cursor->data++;
1207                 __ceph_msg_data_cursor_init(cursor);
1208                 new_piece = true;
1209         }
1210         cursor->need_crc = new_piece;
1211 }
1212
1213 static size_t sizeof_footer(struct ceph_connection *con)
1214 {
1215         return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1216             sizeof(struct ceph_msg_footer) :
1217             sizeof(struct ceph_msg_footer_old);
1218 }
1219
1220 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1221 {
1222         /* Initialize data cursor */
1223
1224         ceph_msg_data_cursor_init(msg, (size_t)data_len);
1225 }
1226
1227 /*
1228  * Prepare footer for currently outgoing message, and finish things
1229  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1230  */
1231 static void prepare_write_message_footer(struct ceph_connection *con)
1232 {
1233         struct ceph_msg *m = con->out_msg;
1234
1235         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1236
1237         dout("prepare_write_message_footer %p\n", con);
1238         con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1239         if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1240                 if (con->ops->sign_message)
1241                         con->ops->sign_message(m);
1242                 else
1243                         m->footer.sig = 0;
1244         } else {
1245                 m->old_footer.flags = m->footer.flags;
1246         }
1247         con->out_more = m->more_to_follow;
1248         con->out_msg_done = true;
1249 }
1250
1251 /*
1252  * Prepare headers for the next outgoing message.
1253  */
1254 static void prepare_write_message(struct ceph_connection *con)
1255 {
1256         struct ceph_msg *m;
1257         u32 crc;
1258
1259         con_out_kvec_reset(con);
1260         con->out_msg_done = false;
1261
1262         /* Sneak an ack in there first?  If we can get it into the same
1263          * TCP packet that's a good thing. */
1264         if (con->in_seq > con->in_seq_acked) {
1265                 con->in_seq_acked = con->in_seq;
1266                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1267                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1268                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1269                         &con->out_temp_ack);
1270         }
1271
1272         BUG_ON(list_empty(&con->out_queue));
1273         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1274         con->out_msg = m;
1275         BUG_ON(m->con != con);
1276
1277         /* put message on sent list */
1278         ceph_msg_get(m);
1279         list_move_tail(&m->list_head, &con->out_sent);
1280
1281         /*
1282          * only assign outgoing seq # if we haven't sent this message
1283          * yet.  if it is requeued, resend with it's original seq.
1284          */
1285         if (m->needs_out_seq) {
1286                 m->hdr.seq = cpu_to_le64(++con->out_seq);
1287                 m->needs_out_seq = false;
1288
1289                 if (con->ops->reencode_message)
1290                         con->ops->reencode_message(m);
1291         }
1292
1293         dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1294              m, con->out_seq, le16_to_cpu(m->hdr.type),
1295              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1296              m->data_length);
1297         WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1298         WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1299
1300         /* tag + hdr + front + middle */
1301         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1302         con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1303         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1304
1305         if (m->middle)
1306                 con_out_kvec_add(con, m->middle->vec.iov_len,
1307                         m->middle->vec.iov_base);
1308
1309         /* fill in hdr crc and finalize hdr */
1310         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1311         con->out_msg->hdr.crc = cpu_to_le32(crc);
1312         memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1313
1314         /* fill in front and middle crc, footer */
1315         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1316         con->out_msg->footer.front_crc = cpu_to_le32(crc);
1317         if (m->middle) {
1318                 crc = crc32c(0, m->middle->vec.iov_base,
1319                                 m->middle->vec.iov_len);
1320                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1321         } else
1322                 con->out_msg->footer.middle_crc = 0;
1323         dout("%s front_crc %u middle_crc %u\n", __func__,
1324              le32_to_cpu(con->out_msg->footer.front_crc),
1325              le32_to_cpu(con->out_msg->footer.middle_crc));
1326         con->out_msg->footer.flags = 0;
1327
1328         /* is there a data payload? */
1329         con->out_msg->footer.data_crc = 0;
1330         if (m->data_length) {
1331                 prepare_message_data(con->out_msg, m->data_length);
1332                 con->out_more = 1;  /* data + footer will follow */
1333         } else {
1334                 /* no, queue up footer too and be done */
1335                 prepare_write_message_footer(con);
1336         }
1337
1338         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1339 }
1340
1341 /*
1342  * Prepare an ack.
1343  */
1344 static void prepare_write_ack(struct ceph_connection *con)
1345 {
1346         dout("prepare_write_ack %p %llu -> %llu\n", con,
1347              con->in_seq_acked, con->in_seq);
1348         con->in_seq_acked = con->in_seq;
1349
1350         con_out_kvec_reset(con);
1351
1352         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1353
1354         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1355         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1356                                 &con->out_temp_ack);
1357
1358         con->out_more = 1;  /* more will follow.. eventually.. */
1359         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1360 }
1361
1362 /*
1363  * Prepare to share the seq during handshake
1364  */
1365 static void prepare_write_seq(struct ceph_connection *con)
1366 {
1367         dout("prepare_write_seq %p %llu -> %llu\n", con,
1368              con->in_seq_acked, con->in_seq);
1369         con->in_seq_acked = con->in_seq;
1370
1371         con_out_kvec_reset(con);
1372
1373         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1374         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1375                          &con->out_temp_ack);
1376
1377         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1378 }
1379
1380 /*
1381  * Prepare to write keepalive byte.
1382  */
1383 static void prepare_write_keepalive(struct ceph_connection *con)
1384 {
1385         dout("prepare_write_keepalive %p\n", con);
1386         con_out_kvec_reset(con);
1387         if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1388                 struct timespec64 now;
1389
1390                 ktime_get_real_ts64(&now);
1391                 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1392                 ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1393                 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1394                                  &con->out_temp_keepalive2);
1395         } else {
1396                 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1397         }
1398         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1399 }
1400
1401 /*
1402  * Connection negotiation.
1403  */
1404
1405 static int get_connect_authorizer(struct ceph_connection *con)
1406 {
1407         struct ceph_auth_handshake *auth;
1408         int auth_proto;
1409
1410         if (!con->ops->get_authorizer) {
1411                 con->auth = NULL;
1412                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1413                 con->out_connect.authorizer_len = 0;
1414                 return 0;
1415         }
1416
1417         auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1418         if (IS_ERR(auth))
1419                 return PTR_ERR(auth);
1420
1421         con->auth = auth;
1422         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1423         con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1424         return 0;
1425 }
1426
1427 /*
1428  * We connected to a peer and are saying hello.
1429  */
1430 static void prepare_write_banner(struct ceph_connection *con)
1431 {
1432         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1433         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1434                                         &con->msgr->my_enc_addr);
1435
1436         con->out_more = 0;
1437         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1438 }
1439
1440 static void __prepare_write_connect(struct ceph_connection *con)
1441 {
1442         con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1443         if (con->auth)
1444                 con_out_kvec_add(con, con->auth->authorizer_buf_len,
1445                                  con->auth->authorizer_buf);
1446
1447         con->out_more = 0;
1448         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1449 }
1450
1451 static int prepare_write_connect(struct ceph_connection *con)
1452 {
1453         unsigned int global_seq = get_global_seq(con->msgr, 0);
1454         int proto;
1455         int ret;
1456
1457         switch (con->peer_name.type) {
1458         case CEPH_ENTITY_TYPE_MON:
1459                 proto = CEPH_MONC_PROTOCOL;
1460                 break;
1461         case CEPH_ENTITY_TYPE_OSD:
1462                 proto = CEPH_OSDC_PROTOCOL;
1463                 break;
1464         case CEPH_ENTITY_TYPE_MDS:
1465                 proto = CEPH_MDSC_PROTOCOL;
1466                 break;
1467         default:
1468                 BUG();
1469         }
1470
1471         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1472              con->connect_seq, global_seq, proto);
1473
1474         con->out_connect.features =
1475             cpu_to_le64(from_msgr(con->msgr)->supported_features);
1476         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1477         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1478         con->out_connect.global_seq = cpu_to_le32(global_seq);
1479         con->out_connect.protocol_version = cpu_to_le32(proto);
1480         con->out_connect.flags = 0;
1481
1482         ret = get_connect_authorizer(con);
1483         if (ret)
1484                 return ret;
1485
1486         __prepare_write_connect(con);
1487         return 0;
1488 }
1489
1490 /*
1491  * write as much of pending kvecs to the socket as we can.
1492  *  1 -> done
1493  *  0 -> socket full, but more to do
1494  * <0 -> error
1495  */
1496 static int write_partial_kvec(struct ceph_connection *con)
1497 {
1498         int ret;
1499
1500         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1501         while (con->out_kvec_bytes > 0) {
1502                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1503                                        con->out_kvec_left, con->out_kvec_bytes,
1504                                        con->out_more);
1505                 if (ret <= 0)
1506                         goto out;
1507                 con->out_kvec_bytes -= ret;
1508                 if (con->out_kvec_bytes == 0)
1509                         break;            /* done */
1510
1511                 /* account for full iov entries consumed */
1512                 while (ret >= con->out_kvec_cur->iov_len) {
1513                         BUG_ON(!con->out_kvec_left);
1514                         ret -= con->out_kvec_cur->iov_len;
1515                         con->out_kvec_cur++;
1516                         con->out_kvec_left--;
1517                 }
1518                 /* and for a partially-consumed entry */
1519                 if (ret) {
1520                         con->out_kvec_cur->iov_len -= ret;
1521                         con->out_kvec_cur->iov_base += ret;
1522                 }
1523         }
1524         con->out_kvec_left = 0;
1525         ret = 1;
1526 out:
1527         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1528              con->out_kvec_bytes, con->out_kvec_left, ret);
1529         return ret;  /* done! */
1530 }
1531
1532 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1533                                 unsigned int page_offset,
1534                                 unsigned int length)
1535 {
1536         char *kaddr;
1537
1538         kaddr = kmap(page);
1539         BUG_ON(kaddr == NULL);
1540         crc = crc32c(crc, kaddr + page_offset, length);
1541         kunmap(page);
1542
1543         return crc;
1544 }
1545 /*
1546  * Write as much message data payload as we can.  If we finish, queue
1547  * up the footer.
1548  *  1 -> done, footer is now queued in out_kvec[].
1549  *  0 -> socket full, but more to do
1550  * <0 -> error
1551  */
1552 static int write_partial_message_data(struct ceph_connection *con)
1553 {
1554         struct ceph_msg *msg = con->out_msg;
1555         struct ceph_msg_data_cursor *cursor = &msg->cursor;
1556         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1557         int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1558         u32 crc;
1559
1560         dout("%s %p msg %p\n", __func__, con, msg);
1561
1562         if (!msg->num_data_items)
1563                 return -EINVAL;
1564
1565         /*
1566          * Iterate through each page that contains data to be
1567          * written, and send as much as possible for each.
1568          *
1569          * If we are calculating the data crc (the default), we will
1570          * need to map the page.  If we have no pages, they have
1571          * been revoked, so use the zero page.
1572          */
1573         crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1574         while (cursor->total_resid) {
1575                 struct page *page;
1576                 size_t page_offset;
1577                 size_t length;
1578                 int ret;
1579
1580                 if (!cursor->resid) {
1581                         ceph_msg_data_advance(cursor, 0);
1582                         continue;
1583                 }
1584
1585                 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
1586                 if (length == cursor->total_resid)
1587                         more = MSG_MORE;
1588                 ret = ceph_tcp_sendpage(con->sock, page, page_offset, length,
1589                                         more);
1590                 if (ret <= 0) {
1591                         if (do_datacrc)
1592                                 msg->footer.data_crc = cpu_to_le32(crc);
1593
1594                         return ret;
1595                 }
1596                 if (do_datacrc && cursor->need_crc)
1597                         crc = ceph_crc32c_page(crc, page, page_offset, length);
1598                 ceph_msg_data_advance(cursor, (size_t)ret);
1599         }
1600
1601         dout("%s %p msg %p done\n", __func__, con, msg);
1602
1603         /* prepare and queue up footer, too */
1604         if (do_datacrc)
1605                 msg->footer.data_crc = cpu_to_le32(crc);
1606         else
1607                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1608         con_out_kvec_reset(con);
1609         prepare_write_message_footer(con);
1610
1611         return 1;       /* must return > 0 to indicate success */
1612 }
1613
1614 /*
1615  * write some zeros
1616  */
1617 static int write_partial_skip(struct ceph_connection *con)
1618 {
1619         int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1620         int ret;
1621
1622         dout("%s %p %d left\n", __func__, con, con->out_skip);
1623         while (con->out_skip > 0) {
1624                 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1625
1626                 if (size == con->out_skip)
1627                         more = MSG_MORE;
1628                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more);
1629                 if (ret <= 0)
1630                         goto out;
1631                 con->out_skip -= ret;
1632         }
1633         ret = 1;
1634 out:
1635         return ret;
1636 }
1637
1638 /*
1639  * Prepare to read connection handshake, or an ack.
1640  */
1641 static void prepare_read_banner(struct ceph_connection *con)
1642 {
1643         dout("prepare_read_banner %p\n", con);
1644         con->in_base_pos = 0;
1645 }
1646
1647 static void prepare_read_connect(struct ceph_connection *con)
1648 {
1649         dout("prepare_read_connect %p\n", con);
1650         con->in_base_pos = 0;
1651 }
1652
1653 static void prepare_read_ack(struct ceph_connection *con)
1654 {
1655         dout("prepare_read_ack %p\n", con);
1656         con->in_base_pos = 0;
1657 }
1658
1659 static void prepare_read_seq(struct ceph_connection *con)
1660 {
1661         dout("prepare_read_seq %p\n", con);
1662         con->in_base_pos = 0;
1663         con->in_tag = CEPH_MSGR_TAG_SEQ;
1664 }
1665
1666 static void prepare_read_tag(struct ceph_connection *con)
1667 {
1668         dout("prepare_read_tag %p\n", con);
1669         con->in_base_pos = 0;
1670         con->in_tag = CEPH_MSGR_TAG_READY;
1671 }
1672
1673 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1674 {
1675         dout("prepare_read_keepalive_ack %p\n", con);
1676         con->in_base_pos = 0;
1677 }
1678
1679 /*
1680  * Prepare to read a message.
1681  */
1682 static int prepare_read_message(struct ceph_connection *con)
1683 {
1684         dout("prepare_read_message %p\n", con);
1685         BUG_ON(con->in_msg != NULL);
1686         con->in_base_pos = 0;
1687         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1688         return 0;
1689 }
1690
1691
1692 static int read_partial(struct ceph_connection *con,
1693                         int end, int size, void *object)
1694 {
1695         while (con->in_base_pos < end) {
1696                 int left = end - con->in_base_pos;
1697                 int have = size - left;
1698                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1699                 if (ret <= 0)
1700                         return ret;
1701                 con->in_base_pos += ret;
1702         }
1703         return 1;
1704 }
1705
1706
1707 /*
1708  * Read all or part of the connect-side handshake on a new connection
1709  */
1710 static int read_partial_banner(struct ceph_connection *con)
1711 {
1712         int size;
1713         int end;
1714         int ret;
1715
1716         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1717
1718         /* peer's banner */
1719         size = strlen(CEPH_BANNER);
1720         end = size;
1721         ret = read_partial(con, end, size, con->in_banner);
1722         if (ret <= 0)
1723                 goto out;
1724
1725         size = sizeof (con->actual_peer_addr);
1726         end += size;
1727         ret = read_partial(con, end, size, &con->actual_peer_addr);
1728         if (ret <= 0)
1729                 goto out;
1730         ceph_decode_banner_addr(&con->actual_peer_addr);
1731
1732         size = sizeof (con->peer_addr_for_me);
1733         end += size;
1734         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1735         if (ret <= 0)
1736                 goto out;
1737         ceph_decode_banner_addr(&con->peer_addr_for_me);
1738
1739 out:
1740         return ret;
1741 }
1742
1743 static int read_partial_connect(struct ceph_connection *con)
1744 {
1745         int size;
1746         int end;
1747         int ret;
1748
1749         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1750
1751         size = sizeof (con->in_reply);
1752         end = size;
1753         ret = read_partial(con, end, size, &con->in_reply);
1754         if (ret <= 0)
1755                 goto out;
1756
1757         if (con->auth) {
1758                 size = le32_to_cpu(con->in_reply.authorizer_len);
1759                 if (size > con->auth->authorizer_reply_buf_len) {
1760                         pr_err("authorizer reply too big: %d > %zu\n", size,
1761                                con->auth->authorizer_reply_buf_len);
1762                         ret = -EINVAL;
1763                         goto out;
1764                 }
1765
1766                 end += size;
1767                 ret = read_partial(con, end, size,
1768                                    con->auth->authorizer_reply_buf);
1769                 if (ret <= 0)
1770                         goto out;
1771         }
1772
1773         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1774              con, (int)con->in_reply.tag,
1775              le32_to_cpu(con->in_reply.connect_seq),
1776              le32_to_cpu(con->in_reply.global_seq));
1777 out:
1778         return ret;
1779 }
1780
1781 /*
1782  * Verify the hello banner looks okay.
1783  */
1784 static int verify_hello(struct ceph_connection *con)
1785 {
1786         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1787                 pr_err("connect to %s got bad banner\n",
1788                        ceph_pr_addr(&con->peer_addr));
1789                 con->error_msg = "protocol error, bad banner";
1790                 return -1;
1791         }
1792         return 0;
1793 }
1794
1795 static bool addr_is_blank(struct ceph_entity_addr *addr)
1796 {
1797         struct sockaddr_storage ss = addr->in_addr; /* align */
1798         struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1799         struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1800
1801         switch (ss.ss_family) {
1802         case AF_INET:
1803                 return addr4->s_addr == htonl(INADDR_ANY);
1804         case AF_INET6:
1805                 return ipv6_addr_any(addr6);
1806         default:
1807                 return true;
1808         }
1809 }
1810
1811 static int addr_port(struct ceph_entity_addr *addr)
1812 {
1813         switch (get_unaligned(&addr->in_addr.ss_family)) {
1814         case AF_INET:
1815                 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1816         case AF_INET6:
1817                 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1818         }
1819         return 0;
1820 }
1821
1822 static void addr_set_port(struct ceph_entity_addr *addr, int p)
1823 {
1824         switch (get_unaligned(&addr->in_addr.ss_family)) {
1825         case AF_INET:
1826                 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1827                 break;
1828         case AF_INET6:
1829                 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1830                 break;
1831         }
1832 }
1833
1834 /*
1835  * Unlike other *_pton function semantics, zero indicates success.
1836  */
1837 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1838                 char delim, const char **ipend)
1839 {
1840         memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1841
1842         if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1843                 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1844                 return 0;
1845         }
1846
1847         if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1848                 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1849                 return 0;
1850         }
1851
1852         return -EINVAL;
1853 }
1854
1855 /*
1856  * Extract hostname string and resolve using kernel DNS facility.
1857  */
1858 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1859 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1860                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1861 {
1862         const char *end, *delim_p;
1863         char *colon_p, *ip_addr = NULL;
1864         int ip_len, ret;
1865
1866         /*
1867          * The end of the hostname occurs immediately preceding the delimiter or
1868          * the port marker (':') where the delimiter takes precedence.
1869          */
1870         delim_p = memchr(name, delim, namelen);
1871         colon_p = memchr(name, ':', namelen);
1872
1873         if (delim_p && colon_p)
1874                 end = delim_p < colon_p ? delim_p : colon_p;
1875         else if (!delim_p && colon_p)
1876                 end = colon_p;
1877         else {
1878                 end = delim_p;
1879                 if (!end) /* case: hostname:/ */
1880                         end = name + namelen;
1881         }
1882
1883         if (end <= name)
1884                 return -EINVAL;
1885
1886         /* do dns_resolve upcall */
1887         ip_len = dns_query(current->nsproxy->net_ns,
1888                            NULL, name, end - name, NULL, &ip_addr, NULL, false);
1889         if (ip_len > 0)
1890                 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1891         else
1892                 ret = -ESRCH;
1893
1894         kfree(ip_addr);
1895
1896         *ipend = end;
1897
1898         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1899                         ret, ret ? "failed" : ceph_pr_addr(addr));
1900
1901         return ret;
1902 }
1903 #else
1904 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1905                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1906 {
1907         return -EINVAL;
1908 }
1909 #endif
1910
1911 /*
1912  * Parse a server name (IP or hostname). If a valid IP address is not found
1913  * then try to extract a hostname to resolve using userspace DNS upcall.
1914  */
1915 static int ceph_parse_server_name(const char *name, size_t namelen,
1916                 struct ceph_entity_addr *addr, char delim, const char **ipend)
1917 {
1918         int ret;
1919
1920         ret = ceph_pton(name, namelen, addr, delim, ipend);
1921         if (ret)
1922                 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1923
1924         return ret;
1925 }
1926
1927 /*
1928  * Parse an ip[:port] list into an addr array.  Use the default
1929  * monitor port if a port isn't specified.
1930  */
1931 int ceph_parse_ips(const char *c, const char *end,
1932                    struct ceph_entity_addr *addr,
1933                    int max_count, int *count)
1934 {
1935         int i, ret = -EINVAL;
1936         const char *p = c;
1937
1938         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1939         for (i = 0; i < max_count; i++) {
1940                 const char *ipend;
1941                 int port;
1942                 char delim = ',';
1943
1944                 if (*p == '[') {
1945                         delim = ']';
1946                         p++;
1947                 }
1948
1949                 ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend);
1950                 if (ret)
1951                         goto bad;
1952                 ret = -EINVAL;
1953
1954                 p = ipend;
1955
1956                 if (delim == ']') {
1957                         if (*p != ']') {
1958                                 dout("missing matching ']'\n");
1959                                 goto bad;
1960                         }
1961                         p++;
1962                 }
1963
1964                 /* port? */
1965                 if (p < end && *p == ':') {
1966                         port = 0;
1967                         p++;
1968                         while (p < end && *p >= '0' && *p <= '9') {
1969                                 port = (port * 10) + (*p - '0');
1970                                 p++;
1971                         }
1972                         if (port == 0)
1973                                 port = CEPH_MON_PORT;
1974                         else if (port > 65535)
1975                                 goto bad;
1976                 } else {
1977                         port = CEPH_MON_PORT;
1978                 }
1979
1980                 addr_set_port(&addr[i], port);
1981                 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1982
1983                 dout("parse_ips got %s\n", ceph_pr_addr(&addr[i]));
1984
1985                 if (p == end)
1986                         break;
1987                 if (*p != ',')
1988                         goto bad;
1989                 p++;
1990         }
1991
1992         if (p != end)
1993                 goto bad;
1994
1995         if (count)
1996                 *count = i + 1;
1997         return 0;
1998
1999 bad:
2000         return ret;
2001 }
2002
2003 static int process_banner(struct ceph_connection *con)
2004 {
2005         dout("process_banner on %p\n", con);
2006
2007         if (verify_hello(con) < 0)
2008                 return -1;
2009
2010         /*
2011          * Make sure the other end is who we wanted.  note that the other
2012          * end may not yet know their ip address, so if it's 0.0.0.0, give
2013          * them the benefit of the doubt.
2014          */
2015         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2016                    sizeof(con->peer_addr)) != 0 &&
2017             !(addr_is_blank(&con->actual_peer_addr) &&
2018               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2019                 pr_warn("wrong peer, want %s/%u, got %s/%u\n",
2020                         ceph_pr_addr(&con->peer_addr),
2021                         le32_to_cpu(con->peer_addr.nonce),
2022                         ceph_pr_addr(&con->actual_peer_addr),
2023                         le32_to_cpu(con->actual_peer_addr.nonce));
2024                 con->error_msg = "wrong peer at address";
2025                 return -1;
2026         }
2027
2028         /*
2029          * did we learn our address?
2030          */
2031         if (addr_is_blank(&con->msgr->inst.addr)) {
2032                 int port = addr_port(&con->msgr->inst.addr);
2033
2034                 memcpy(&con->msgr->inst.addr.in_addr,
2035                        &con->peer_addr_for_me.in_addr,
2036                        sizeof(con->peer_addr_for_me.in_addr));
2037                 addr_set_port(&con->msgr->inst.addr, port);
2038                 encode_my_addr(con->msgr);
2039                 dout("process_banner learned my addr is %s\n",
2040                      ceph_pr_addr(&con->msgr->inst.addr));
2041         }
2042
2043         return 0;
2044 }
2045
2046 static int process_connect(struct ceph_connection *con)
2047 {
2048         u64 sup_feat = from_msgr(con->msgr)->supported_features;
2049         u64 req_feat = from_msgr(con->msgr)->required_features;
2050         u64 server_feat = le64_to_cpu(con->in_reply.features);
2051         int ret;
2052
2053         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2054
2055         if (con->auth) {
2056                 int len = le32_to_cpu(con->in_reply.authorizer_len);
2057
2058                 /*
2059                  * Any connection that defines ->get_authorizer()
2060                  * should also define ->add_authorizer_challenge() and
2061                  * ->verify_authorizer_reply().
2062                  *
2063                  * See get_connect_authorizer().
2064                  */
2065                 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2066                         ret = con->ops->add_authorizer_challenge(
2067                                     con, con->auth->authorizer_reply_buf, len);
2068                         if (ret < 0)
2069                                 return ret;
2070
2071                         con_out_kvec_reset(con);
2072                         __prepare_write_connect(con);
2073                         prepare_read_connect(con);
2074                         return 0;
2075                 }
2076
2077                 if (len) {
2078                         ret = con->ops->verify_authorizer_reply(con);
2079                         if (ret < 0) {
2080                                 con->error_msg = "bad authorize reply";
2081                                 return ret;
2082                         }
2083                 }
2084         }
2085
2086         switch (con->in_reply.tag) {
2087         case CEPH_MSGR_TAG_FEATURES:
2088                 pr_err("%s%lld %s feature set mismatch,"
2089                        " my %llx < server's %llx, missing %llx\n",
2090                        ENTITY_NAME(con->peer_name),
2091                        ceph_pr_addr(&con->peer_addr),
2092                        sup_feat, server_feat, server_feat & ~sup_feat);
2093                 con->error_msg = "missing required protocol features";
2094                 reset_connection(con);
2095                 return -1;
2096
2097         case CEPH_MSGR_TAG_BADPROTOVER:
2098                 pr_err("%s%lld %s protocol version mismatch,"
2099                        " my %d != server's %d\n",
2100                        ENTITY_NAME(con->peer_name),
2101                        ceph_pr_addr(&con->peer_addr),
2102                        le32_to_cpu(con->out_connect.protocol_version),
2103                        le32_to_cpu(con->in_reply.protocol_version));
2104                 con->error_msg = "protocol version mismatch";
2105                 reset_connection(con);
2106                 return -1;
2107
2108         case CEPH_MSGR_TAG_BADAUTHORIZER:
2109                 con->auth_retry++;
2110                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2111                      con->auth_retry);
2112                 if (con->auth_retry == 2) {
2113                         con->error_msg = "connect authorization failure";
2114                         return -1;
2115                 }
2116                 con_out_kvec_reset(con);
2117                 ret = prepare_write_connect(con);
2118                 if (ret < 0)
2119                         return ret;
2120                 prepare_read_connect(con);
2121                 break;
2122
2123         case CEPH_MSGR_TAG_RESETSESSION:
2124                 /*
2125                  * If we connected with a large connect_seq but the peer
2126                  * has no record of a session with us (no connection, or
2127                  * connect_seq == 0), they will send RESETSESION to indicate
2128                  * that they must have reset their session, and may have
2129                  * dropped messages.
2130                  */
2131                 dout("process_connect got RESET peer seq %u\n",
2132                      le32_to_cpu(con->in_reply.connect_seq));
2133                 pr_err("%s%lld %s connection reset\n",
2134                        ENTITY_NAME(con->peer_name),
2135                        ceph_pr_addr(&con->peer_addr));
2136                 reset_connection(con);
2137                 con_out_kvec_reset(con);
2138                 ret = prepare_write_connect(con);
2139                 if (ret < 0)
2140                         return ret;
2141                 prepare_read_connect(con);
2142
2143                 /* Tell ceph about it. */
2144                 mutex_unlock(&con->mutex);
2145                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2146                 if (con->ops->peer_reset)
2147                         con->ops->peer_reset(con);
2148                 mutex_lock(&con->mutex);
2149                 if (con->state != CON_STATE_NEGOTIATING)
2150                         return -EAGAIN;
2151                 break;
2152
2153         case CEPH_MSGR_TAG_RETRY_SESSION:
2154                 /*
2155                  * If we sent a smaller connect_seq than the peer has, try
2156                  * again with a larger value.
2157                  */
2158                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2159                      le32_to_cpu(con->out_connect.connect_seq),
2160                      le32_to_cpu(con->in_reply.connect_seq));
2161                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2162                 con_out_kvec_reset(con);
2163                 ret = prepare_write_connect(con);
2164                 if (ret < 0)
2165                         return ret;
2166                 prepare_read_connect(con);
2167                 break;
2168
2169         case CEPH_MSGR_TAG_RETRY_GLOBAL:
2170                 /*
2171                  * If we sent a smaller global_seq than the peer has, try
2172                  * again with a larger value.
2173                  */
2174                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2175                      con->peer_global_seq,
2176                      le32_to_cpu(con->in_reply.global_seq));
2177                 get_global_seq(con->msgr,
2178                                le32_to_cpu(con->in_reply.global_seq));
2179                 con_out_kvec_reset(con);
2180                 ret = prepare_write_connect(con);
2181                 if (ret < 0)
2182                         return ret;
2183                 prepare_read_connect(con);
2184                 break;
2185
2186         case CEPH_MSGR_TAG_SEQ:
2187         case CEPH_MSGR_TAG_READY:
2188                 if (req_feat & ~server_feat) {
2189                         pr_err("%s%lld %s protocol feature mismatch,"
2190                                " my required %llx > server's %llx, need %llx\n",
2191                                ENTITY_NAME(con->peer_name),
2192                                ceph_pr_addr(&con->peer_addr),
2193                                req_feat, server_feat, req_feat & ~server_feat);
2194                         con->error_msg = "missing required protocol features";
2195                         reset_connection(con);
2196                         return -1;
2197                 }
2198
2199                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2200                 con->state = CON_STATE_OPEN;
2201                 con->auth_retry = 0;    /* we authenticated; clear flag */
2202                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2203                 con->connect_seq++;
2204                 con->peer_features = server_feat;
2205                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2206                      con->peer_global_seq,
2207                      le32_to_cpu(con->in_reply.connect_seq),
2208                      con->connect_seq);
2209                 WARN_ON(con->connect_seq !=
2210                         le32_to_cpu(con->in_reply.connect_seq));
2211
2212                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2213                         con_flag_set(con, CON_FLAG_LOSSYTX);
2214
2215                 con->delay = 0;      /* reset backoff memory */
2216
2217                 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2218                         prepare_write_seq(con);
2219                         prepare_read_seq(con);
2220                 } else {
2221                         prepare_read_tag(con);
2222                 }
2223                 break;
2224
2225         case CEPH_MSGR_TAG_WAIT:
2226                 /*
2227                  * If there is a connection race (we are opening
2228                  * connections to each other), one of us may just have
2229                  * to WAIT.  This shouldn't happen if we are the
2230                  * client.
2231                  */
2232                 con->error_msg = "protocol error, got WAIT as client";
2233                 return -1;
2234
2235         default:
2236                 con->error_msg = "protocol error, garbage tag during connect";
2237                 return -1;
2238         }
2239         return 0;
2240 }
2241
2242
2243 /*
2244  * read (part of) an ack
2245  */
2246 static int read_partial_ack(struct ceph_connection *con)
2247 {
2248         int size = sizeof (con->in_temp_ack);
2249         int end = size;
2250
2251         return read_partial(con, end, size, &con->in_temp_ack);
2252 }
2253
2254 /*
2255  * We can finally discard anything that's been acked.
2256  */
2257 static void process_ack(struct ceph_connection *con)
2258 {
2259         struct ceph_msg *m;
2260         u64 ack = le64_to_cpu(con->in_temp_ack);
2261         u64 seq;
2262         bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2263         struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2264
2265         /*
2266          * In the reconnect case, con_fault() has requeued messages
2267          * in out_sent. We should cleanup old messages according to
2268          * the reconnect seq.
2269          */
2270         while (!list_empty(list)) {
2271                 m = list_first_entry(list, struct ceph_msg, list_head);
2272                 if (reconnect && m->needs_out_seq)
2273                         break;
2274                 seq = le64_to_cpu(m->hdr.seq);
2275                 if (seq > ack)
2276                         break;
2277                 dout("got ack for seq %llu type %d at %p\n", seq,
2278                      le16_to_cpu(m->hdr.type), m);
2279                 m->ack_stamp = jiffies;
2280                 ceph_msg_remove(m);
2281         }
2282
2283         prepare_read_tag(con);
2284 }
2285
2286
2287 static int read_partial_message_section(struct ceph_connection *con,
2288                                         struct kvec *section,
2289                                         unsigned int sec_len, u32 *crc)
2290 {
2291         int ret, left;
2292
2293         BUG_ON(!section);
2294
2295         while (section->iov_len < sec_len) {
2296                 BUG_ON(section->iov_base == NULL);
2297                 left = sec_len - section->iov_len;
2298                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2299                                        section->iov_len, left);
2300                 if (ret <= 0)
2301                         return ret;
2302                 section->iov_len += ret;
2303         }
2304         if (section->iov_len == sec_len)
2305                 *crc = crc32c(0, section->iov_base, section->iov_len);
2306
2307         return 1;
2308 }
2309
2310 static int read_partial_msg_data(struct ceph_connection *con)
2311 {
2312         struct ceph_msg *msg = con->in_msg;
2313         struct ceph_msg_data_cursor *cursor = &msg->cursor;
2314         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2315         struct page *page;
2316         size_t page_offset;
2317         size_t length;
2318         u32 crc = 0;
2319         int ret;
2320
2321         if (!msg->num_data_items)
2322                 return -EIO;
2323
2324         if (do_datacrc)
2325                 crc = con->in_data_crc;
2326         while (cursor->total_resid) {
2327                 if (!cursor->resid) {
2328                         ceph_msg_data_advance(cursor, 0);
2329                         continue;
2330                 }
2331
2332                 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2333                 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2334                 if (ret <= 0) {
2335                         if (do_datacrc)
2336                                 con->in_data_crc = crc;
2337
2338                         return ret;
2339                 }
2340
2341                 if (do_datacrc)
2342                         crc = ceph_crc32c_page(crc, page, page_offset, ret);
2343                 ceph_msg_data_advance(cursor, (size_t)ret);
2344         }
2345         if (do_datacrc)
2346                 con->in_data_crc = crc;
2347
2348         return 1;       /* must return > 0 to indicate success */
2349 }
2350
2351 /*
2352  * read (part of) a message.
2353  */
2354 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2355
2356 static int read_partial_message(struct ceph_connection *con)
2357 {
2358         struct ceph_msg *m = con->in_msg;
2359         int size;
2360         int end;
2361         int ret;
2362         unsigned int front_len, middle_len, data_len;
2363         bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2364         bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2365         u64 seq;
2366         u32 crc;
2367
2368         dout("read_partial_message con %p msg %p\n", con, m);
2369
2370         /* header */
2371         size = sizeof (con->in_hdr);
2372         end = size;
2373         ret = read_partial(con, end, size, &con->in_hdr);
2374         if (ret <= 0)
2375                 return ret;
2376
2377         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2378         if (cpu_to_le32(crc) != con->in_hdr.crc) {
2379                 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2380                        crc, con->in_hdr.crc);
2381                 return -EBADMSG;
2382         }
2383
2384         front_len = le32_to_cpu(con->in_hdr.front_len);
2385         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2386                 return -EIO;
2387         middle_len = le32_to_cpu(con->in_hdr.middle_len);
2388         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2389                 return -EIO;
2390         data_len = le32_to_cpu(con->in_hdr.data_len);
2391         if (data_len > CEPH_MSG_MAX_DATA_LEN)
2392                 return -EIO;
2393
2394         /* verify seq# */
2395         seq = le64_to_cpu(con->in_hdr.seq);
2396         if ((s64)seq - (s64)con->in_seq < 1) {
2397                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2398                         ENTITY_NAME(con->peer_name),
2399                         ceph_pr_addr(&con->peer_addr),
2400                         seq, con->in_seq + 1);
2401                 con->in_base_pos = -front_len - middle_len - data_len -
2402                         sizeof_footer(con);
2403                 con->in_tag = CEPH_MSGR_TAG_READY;
2404                 return 1;
2405         } else if ((s64)seq - (s64)con->in_seq > 1) {
2406                 pr_err("read_partial_message bad seq %lld expected %lld\n",
2407                        seq, con->in_seq + 1);
2408                 con->error_msg = "bad message sequence # for incoming message";
2409                 return -EBADE;
2410         }
2411
2412         /* allocate message? */
2413         if (!con->in_msg) {
2414                 int skip = 0;
2415
2416                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2417                      front_len, data_len);
2418                 ret = ceph_con_in_msg_alloc(con, &skip);
2419                 if (ret < 0)
2420                         return ret;
2421
2422                 BUG_ON(!con->in_msg ^ skip);
2423                 if (skip) {
2424                         /* skip this message */
2425                         dout("alloc_msg said skip message\n");
2426                         con->in_base_pos = -front_len - middle_len - data_len -
2427                                 sizeof_footer(con);
2428                         con->in_tag = CEPH_MSGR_TAG_READY;
2429                         con->in_seq++;
2430                         return 1;
2431                 }
2432
2433                 BUG_ON(!con->in_msg);
2434                 BUG_ON(con->in_msg->con != con);
2435                 m = con->in_msg;
2436                 m->front.iov_len = 0;    /* haven't read it yet */
2437                 if (m->middle)
2438                         m->middle->vec.iov_len = 0;
2439
2440                 /* prepare for data payload, if any */
2441
2442                 if (data_len)
2443                         prepare_message_data(con->in_msg, data_len);
2444         }
2445
2446         /* front */
2447         ret = read_partial_message_section(con, &m->front, front_len,
2448                                            &con->in_front_crc);
2449         if (ret <= 0)
2450                 return ret;
2451
2452         /* middle */
2453         if (m->middle) {
2454                 ret = read_partial_message_section(con, &m->middle->vec,
2455                                                    middle_len,
2456                                                    &con->in_middle_crc);
2457                 if (ret <= 0)
2458                         return ret;
2459         }
2460
2461         /* (page) data */
2462         if (data_len) {
2463                 ret = read_partial_msg_data(con);
2464                 if (ret <= 0)
2465                         return ret;
2466         }
2467
2468         /* footer */
2469         size = sizeof_footer(con);
2470         end += size;
2471         ret = read_partial(con, end, size, &m->footer);
2472         if (ret <= 0)
2473                 return ret;
2474
2475         if (!need_sign) {
2476                 m->footer.flags = m->old_footer.flags;
2477                 m->footer.sig = 0;
2478         }
2479
2480         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2481              m, front_len, m->footer.front_crc, middle_len,
2482              m->footer.middle_crc, data_len, m->footer.data_crc);
2483
2484         /* crc ok? */
2485         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2486                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2487                        m, con->in_front_crc, m->footer.front_crc);
2488                 return -EBADMSG;
2489         }
2490         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2491                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2492                        m, con->in_middle_crc, m->footer.middle_crc);
2493                 return -EBADMSG;
2494         }
2495         if (do_datacrc &&
2496             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2497             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2498                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2499                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2500                 return -EBADMSG;
2501         }
2502
2503         if (need_sign && con->ops->check_message_signature &&
2504             con->ops->check_message_signature(m)) {
2505                 pr_err("read_partial_message %p signature check failed\n", m);
2506                 return -EBADMSG;
2507         }
2508
2509         return 1; /* done! */
2510 }
2511
2512 /*
2513  * Process message.  This happens in the worker thread.  The callback should
2514  * be careful not to do anything that waits on other incoming messages or it
2515  * may deadlock.
2516  */
2517 static void process_message(struct ceph_connection *con)
2518 {
2519         struct ceph_msg *msg = con->in_msg;
2520
2521         BUG_ON(con->in_msg->con != con);
2522         con->in_msg = NULL;
2523
2524         /* if first message, set peer_name */
2525         if (con->peer_name.type == 0)
2526                 con->peer_name = msg->hdr.src;
2527
2528         con->in_seq++;
2529         mutex_unlock(&con->mutex);
2530
2531         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2532              msg, le64_to_cpu(msg->hdr.seq),
2533              ENTITY_NAME(msg->hdr.src),
2534              le16_to_cpu(msg->hdr.type),
2535              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2536              le32_to_cpu(msg->hdr.front_len),
2537              le32_to_cpu(msg->hdr.data_len),
2538              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2539         con->ops->dispatch(con, msg);
2540
2541         mutex_lock(&con->mutex);
2542 }
2543
2544 static int read_keepalive_ack(struct ceph_connection *con)
2545 {
2546         struct ceph_timespec ceph_ts;
2547         size_t size = sizeof(ceph_ts);
2548         int ret = read_partial(con, size, size, &ceph_ts);
2549         if (ret <= 0)
2550                 return ret;
2551         ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2552         prepare_read_tag(con);
2553         return 1;
2554 }
2555
2556 /*
2557  * Write something to the socket.  Called in a worker thread when the
2558  * socket appears to be writeable and we have something ready to send.
2559  */
2560 static int try_write(struct ceph_connection *con)
2561 {
2562         int ret = 1;
2563
2564         dout("try_write start %p state %lu\n", con, con->state);
2565         if (con->state != CON_STATE_PREOPEN &&
2566             con->state != CON_STATE_CONNECTING &&
2567             con->state != CON_STATE_NEGOTIATING &&
2568             con->state != CON_STATE_OPEN)
2569                 return 0;
2570
2571         /* open the socket first? */
2572         if (con->state == CON_STATE_PREOPEN) {
2573                 BUG_ON(con->sock);
2574                 con->state = CON_STATE_CONNECTING;
2575
2576                 con_out_kvec_reset(con);
2577                 prepare_write_banner(con);
2578                 prepare_read_banner(con);
2579
2580                 BUG_ON(con->in_msg);
2581                 con->in_tag = CEPH_MSGR_TAG_READY;
2582                 dout("try_write initiating connect on %p new state %lu\n",
2583                      con, con->state);
2584                 ret = ceph_tcp_connect(con);
2585                 if (ret < 0) {
2586                         con->error_msg = "connect error";
2587                         goto out;
2588                 }
2589         }
2590
2591 more:
2592         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2593         BUG_ON(!con->sock);
2594
2595         /* kvec data queued? */
2596         if (con->out_kvec_left) {
2597                 ret = write_partial_kvec(con);
2598                 if (ret <= 0)
2599                         goto out;
2600         }
2601         if (con->out_skip) {
2602                 ret = write_partial_skip(con);
2603                 if (ret <= 0)
2604                         goto out;
2605         }
2606
2607         /* msg pages? */
2608         if (con->out_msg) {
2609                 if (con->out_msg_done) {
2610                         ceph_msg_put(con->out_msg);
2611                         con->out_msg = NULL;   /* we're done with this one */
2612                         goto do_next;
2613                 }
2614
2615                 ret = write_partial_message_data(con);
2616                 if (ret == 1)
2617                         goto more;  /* we need to send the footer, too! */
2618                 if (ret == 0)
2619                         goto out;
2620                 if (ret < 0) {
2621                         dout("try_write write_partial_message_data err %d\n",
2622                              ret);
2623                         goto out;
2624                 }
2625         }
2626
2627 do_next:
2628         if (con->state == CON_STATE_OPEN) {
2629                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2630                         prepare_write_keepalive(con);
2631                         goto more;
2632                 }
2633                 /* is anything else pending? */
2634                 if (!list_empty(&con->out_queue)) {
2635                         prepare_write_message(con);
2636                         goto more;
2637                 }
2638                 if (con->in_seq > con->in_seq_acked) {
2639                         prepare_write_ack(con);
2640                         goto more;
2641                 }
2642         }
2643
2644         /* Nothing to do! */
2645         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2646         dout("try_write nothing else to write.\n");
2647         ret = 0;
2648 out:
2649         dout("try_write done on %p ret %d\n", con, ret);
2650         return ret;
2651 }
2652
2653 /*
2654  * Read what we can from the socket.
2655  */
2656 static int try_read(struct ceph_connection *con)
2657 {
2658         int ret = -1;
2659
2660 more:
2661         dout("try_read start on %p state %lu\n", con, con->state);
2662         if (con->state != CON_STATE_CONNECTING &&
2663             con->state != CON_STATE_NEGOTIATING &&
2664             con->state != CON_STATE_OPEN)
2665                 return 0;
2666
2667         BUG_ON(!con->sock);
2668
2669         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2670              con->in_base_pos);
2671
2672         if (con->state == CON_STATE_CONNECTING) {
2673                 dout("try_read connecting\n");
2674                 ret = read_partial_banner(con);
2675                 if (ret <= 0)
2676                         goto out;
2677                 ret = process_banner(con);
2678                 if (ret < 0)
2679                         goto out;
2680
2681                 con->state = CON_STATE_NEGOTIATING;
2682
2683                 /*
2684                  * Received banner is good, exchange connection info.
2685                  * Do not reset out_kvec, as sending our banner raced
2686                  * with receiving peer banner after connect completed.
2687                  */
2688                 ret = prepare_write_connect(con);
2689                 if (ret < 0)
2690                         goto out;
2691                 prepare_read_connect(con);
2692
2693                 /* Send connection info before awaiting response */
2694                 goto out;
2695         }
2696
2697         if (con->state == CON_STATE_NEGOTIATING) {
2698                 dout("try_read negotiating\n");
2699                 ret = read_partial_connect(con);
2700                 if (ret <= 0)
2701                         goto out;
2702                 ret = process_connect(con);
2703                 if (ret < 0)
2704                         goto out;
2705                 goto more;
2706         }
2707
2708         WARN_ON(con->state != CON_STATE_OPEN);
2709
2710         if (con->in_base_pos < 0) {
2711                 /*
2712                  * skipping + discarding content.
2713                  */
2714                 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2715                 if (ret <= 0)
2716                         goto out;
2717                 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2718                 con->in_base_pos += ret;
2719                 if (con->in_base_pos)
2720                         goto more;
2721         }
2722         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2723                 /*
2724                  * what's next?
2725                  */
2726                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2727                 if (ret <= 0)
2728                         goto out;
2729                 dout("try_read got tag %d\n", (int)con->in_tag);
2730                 switch (con->in_tag) {
2731                 case CEPH_MSGR_TAG_MSG:
2732                         prepare_read_message(con);
2733                         break;
2734                 case CEPH_MSGR_TAG_ACK:
2735                         prepare_read_ack(con);
2736                         break;
2737                 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2738                         prepare_read_keepalive_ack(con);
2739                         break;
2740                 case CEPH_MSGR_TAG_CLOSE:
2741                         con_close_socket(con);
2742                         con->state = CON_STATE_CLOSED;
2743                         goto out;
2744                 default:
2745                         goto bad_tag;
2746                 }
2747         }
2748         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2749                 ret = read_partial_message(con);
2750                 if (ret <= 0) {
2751                         switch (ret) {
2752                         case -EBADMSG:
2753                                 con->error_msg = "bad crc/signature";
2754                                 fallthrough;
2755                         case -EBADE:
2756                                 ret = -EIO;
2757                                 break;
2758                         case -EIO:
2759                                 con->error_msg = "io error";
2760                                 break;
2761                         }
2762                         goto out;
2763                 }
2764                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2765                         goto more;
2766                 process_message(con);
2767                 if (con->state == CON_STATE_OPEN)
2768                         prepare_read_tag(con);
2769                 goto more;
2770         }
2771         if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2772             con->in_tag == CEPH_MSGR_TAG_SEQ) {
2773                 /*
2774                  * the final handshake seq exchange is semantically
2775                  * equivalent to an ACK
2776                  */
2777                 ret = read_partial_ack(con);
2778                 if (ret <= 0)
2779                         goto out;
2780                 process_ack(con);
2781                 goto more;
2782         }
2783         if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2784                 ret = read_keepalive_ack(con);
2785                 if (ret <= 0)
2786                         goto out;
2787                 goto more;
2788         }
2789
2790 out:
2791         dout("try_read done on %p ret %d\n", con, ret);
2792         return ret;
2793
2794 bad_tag:
2795         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2796         con->error_msg = "protocol error, garbage tag";
2797         ret = -1;
2798         goto out;
2799 }
2800
2801
2802 /*
2803  * Atomically queue work on a connection after the specified delay.
2804  * Bump @con reference to avoid races with connection teardown.
2805  * Returns 0 if work was queued, or an error code otherwise.
2806  */
2807 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2808 {
2809         if (!con->ops->get(con)) {
2810                 dout("%s %p ref count 0\n", __func__, con);
2811                 return -ENOENT;
2812         }
2813
2814         dout("%s %p %lu\n", __func__, con, delay);
2815         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2816                 dout("%s %p - already queued\n", __func__, con);
2817                 con->ops->put(con);
2818                 return -EBUSY;
2819         }
2820
2821         return 0;
2822 }
2823
2824 static void queue_con(struct ceph_connection *con)
2825 {
2826         (void) queue_con_delay(con, 0);
2827 }
2828
2829 static void cancel_con(struct ceph_connection *con)
2830 {
2831         if (cancel_delayed_work(&con->work)) {
2832                 dout("%s %p\n", __func__, con);
2833                 con->ops->put(con);
2834         }
2835 }
2836
2837 static bool con_sock_closed(struct ceph_connection *con)
2838 {
2839         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2840                 return false;
2841
2842 #define CASE(x)                                                         \
2843         case CON_STATE_ ## x:                                           \
2844                 con->error_msg = "socket closed (con state " #x ")";    \
2845                 break;
2846
2847         switch (con->state) {
2848         CASE(CLOSED);
2849         CASE(PREOPEN);
2850         CASE(CONNECTING);
2851         CASE(NEGOTIATING);
2852         CASE(OPEN);
2853         CASE(STANDBY);
2854         default:
2855                 pr_warn("%s con %p unrecognized state %lu\n",
2856                         __func__, con, con->state);
2857                 con->error_msg = "unrecognized con state";
2858                 BUG();
2859                 break;
2860         }
2861 #undef CASE
2862
2863         return true;
2864 }
2865
2866 static bool con_backoff(struct ceph_connection *con)
2867 {
2868         int ret;
2869
2870         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2871                 return false;
2872
2873         ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2874         if (ret) {
2875                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2876                         con, con->delay);
2877                 BUG_ON(ret == -ENOENT);
2878                 con_flag_set(con, CON_FLAG_BACKOFF);
2879         }
2880
2881         return true;
2882 }
2883
2884 /* Finish fault handling; con->mutex must *not* be held here */
2885
2886 static void con_fault_finish(struct ceph_connection *con)
2887 {
2888         dout("%s %p\n", __func__, con);
2889
2890         /*
2891          * in case we faulted due to authentication, invalidate our
2892          * current tickets so that we can get new ones.
2893          */
2894         if (con->auth_retry) {
2895                 dout("auth_retry %d, invalidating\n", con->auth_retry);
2896                 if (con->ops->invalidate_authorizer)
2897                         con->ops->invalidate_authorizer(con);
2898                 con->auth_retry = 0;
2899         }
2900
2901         if (con->ops->fault)
2902                 con->ops->fault(con);
2903 }
2904
2905 /*
2906  * Do some work on a connection.  Drop a connection ref when we're done.
2907  */
2908 static void ceph_con_workfn(struct work_struct *work)
2909 {
2910         struct ceph_connection *con = container_of(work, struct ceph_connection,
2911                                                    work.work);
2912         bool fault;
2913
2914         mutex_lock(&con->mutex);
2915         while (true) {
2916                 int ret;
2917
2918                 if ((fault = con_sock_closed(con))) {
2919                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2920                         break;
2921                 }
2922                 if (con_backoff(con)) {
2923                         dout("%s: con %p BACKOFF\n", __func__, con);
2924                         break;
2925                 }
2926                 if (con->state == CON_STATE_STANDBY) {
2927                         dout("%s: con %p STANDBY\n", __func__, con);
2928                         break;
2929                 }
2930                 if (con->state == CON_STATE_CLOSED) {
2931                         dout("%s: con %p CLOSED\n", __func__, con);
2932                         BUG_ON(con->sock);
2933                         break;
2934                 }
2935                 if (con->state == CON_STATE_PREOPEN) {
2936                         dout("%s: con %p PREOPEN\n", __func__, con);
2937                         BUG_ON(con->sock);
2938                 }
2939
2940                 ret = try_read(con);
2941                 if (ret < 0) {
2942                         if (ret == -EAGAIN)
2943                                 continue;
2944                         if (!con->error_msg)
2945                                 con->error_msg = "socket error on read";
2946                         fault = true;
2947                         break;
2948                 }
2949
2950                 ret = try_write(con);
2951                 if (ret < 0) {
2952                         if (ret == -EAGAIN)
2953                                 continue;
2954                         if (!con->error_msg)
2955                                 con->error_msg = "socket error on write";
2956                         fault = true;
2957                 }
2958
2959                 break;  /* If we make it to here, we're done */
2960         }
2961         if (fault)
2962                 con_fault(con);
2963         mutex_unlock(&con->mutex);
2964
2965         if (fault)
2966                 con_fault_finish(con);
2967
2968         con->ops->put(con);
2969 }
2970
2971 /*
2972  * Generic error/fault handler.  A retry mechanism is used with
2973  * exponential backoff
2974  */
2975 static void con_fault(struct ceph_connection *con)
2976 {
2977         dout("fault %p state %lu to peer %s\n",
2978              con, con->state, ceph_pr_addr(&con->peer_addr));
2979
2980         pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2981                 ceph_pr_addr(&con->peer_addr), con->error_msg);
2982         con->error_msg = NULL;
2983
2984         WARN_ON(con->state != CON_STATE_CONNECTING &&
2985                con->state != CON_STATE_NEGOTIATING &&
2986                con->state != CON_STATE_OPEN);
2987
2988         con_close_socket(con);
2989
2990         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2991                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2992                 con->state = CON_STATE_CLOSED;
2993                 return;
2994         }
2995
2996         if (con->in_msg) {
2997                 BUG_ON(con->in_msg->con != con);
2998                 ceph_msg_put(con->in_msg);
2999                 con->in_msg = NULL;
3000         }
3001         if (con->out_msg) {
3002                 BUG_ON(con->out_msg->con != con);
3003                 ceph_msg_put(con->out_msg);
3004                 con->out_msg = NULL;
3005         }
3006
3007         /* Requeue anything that hasn't been acked */
3008         list_splice_init(&con->out_sent, &con->out_queue);
3009
3010         /* If there are no messages queued or keepalive pending, place
3011          * the connection in a STANDBY state */
3012         if (list_empty(&con->out_queue) &&
3013             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3014                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3015                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3016                 con->state = CON_STATE_STANDBY;
3017         } else {
3018                 /* retry after a delay. */
3019                 con->state = CON_STATE_PREOPEN;
3020                 if (con->delay == 0)
3021                         con->delay = BASE_DELAY_INTERVAL;
3022                 else if (con->delay < MAX_DELAY_INTERVAL)
3023                         con->delay *= 2;
3024                 con_flag_set(con, CON_FLAG_BACKOFF);
3025                 queue_con(con);
3026         }
3027 }
3028
3029
3030 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
3031 {
3032         u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
3033         msgr->inst.addr.nonce = cpu_to_le32(nonce);
3034         encode_my_addr(msgr);
3035 }
3036
3037 /*
3038  * initialize a new messenger instance
3039  */
3040 void ceph_messenger_init(struct ceph_messenger *msgr,
3041                          struct ceph_entity_addr *myaddr)
3042 {
3043         spin_lock_init(&msgr->global_seq_lock);
3044
3045         if (myaddr)
3046                 msgr->inst.addr = *myaddr;
3047
3048         /* select a random nonce */
3049         msgr->inst.addr.type = 0;
3050         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3051         encode_my_addr(msgr);
3052
3053         atomic_set(&msgr->stopping, 0);
3054         write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3055
3056         dout("%s %p\n", __func__, msgr);
3057 }
3058 EXPORT_SYMBOL(ceph_messenger_init);
3059
3060 void ceph_messenger_fini(struct ceph_messenger *msgr)
3061 {
3062         put_net(read_pnet(&msgr->net));
3063 }
3064 EXPORT_SYMBOL(ceph_messenger_fini);
3065
3066 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3067 {
3068         if (msg->con)
3069                 msg->con->ops->put(msg->con);
3070
3071         msg->con = con ? con->ops->get(con) : NULL;
3072         BUG_ON(msg->con != con);
3073 }
3074
3075 static void clear_standby(struct ceph_connection *con)
3076 {
3077         /* come back from STANDBY? */
3078         if (con->state == CON_STATE_STANDBY) {
3079                 dout("clear_standby %p and ++connect_seq\n", con);
3080                 con->state = CON_STATE_PREOPEN;
3081                 con->connect_seq++;
3082                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3083                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3084         }
3085 }
3086
3087 /*
3088  * Queue up an outgoing message on the given connection.
3089  */
3090 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3091 {
3092         /* set src+dst */
3093         msg->hdr.src = con->msgr->inst.name;
3094         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3095         msg->needs_out_seq = true;
3096
3097         mutex_lock(&con->mutex);
3098
3099         if (con->state == CON_STATE_CLOSED) {
3100                 dout("con_send %p closed, dropping %p\n", con, msg);
3101                 ceph_msg_put(msg);
3102                 mutex_unlock(&con->mutex);
3103                 return;
3104         }
3105
3106         msg_con_set(msg, con);
3107
3108         BUG_ON(!list_empty(&msg->list_head));
3109         list_add_tail(&msg->list_head, &con->out_queue);
3110         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3111              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3112              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3113              le32_to_cpu(msg->hdr.front_len),
3114              le32_to_cpu(msg->hdr.middle_len),
3115              le32_to_cpu(msg->hdr.data_len));
3116
3117         clear_standby(con);
3118         mutex_unlock(&con->mutex);
3119
3120         /* if there wasn't anything waiting to send before, queue
3121          * new work */
3122         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3123                 queue_con(con);
3124 }
3125 EXPORT_SYMBOL(ceph_con_send);
3126
3127 /*
3128  * Revoke a message that was previously queued for send
3129  */
3130 void ceph_msg_revoke(struct ceph_msg *msg)
3131 {
3132         struct ceph_connection *con = msg->con;
3133
3134         if (!con) {
3135                 dout("%s msg %p null con\n", __func__, msg);
3136                 return;         /* Message not in our possession */
3137         }
3138
3139         mutex_lock(&con->mutex);
3140         if (!list_empty(&msg->list_head)) {
3141                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3142                 list_del_init(&msg->list_head);
3143                 msg->hdr.seq = 0;
3144
3145                 ceph_msg_put(msg);
3146         }
3147         if (con->out_msg == msg) {
3148                 BUG_ON(con->out_skip);
3149                 /* footer */
3150                 if (con->out_msg_done) {
3151                         con->out_skip += con_out_kvec_skip(con);
3152                 } else {
3153                         BUG_ON(!msg->data_length);
3154                         con->out_skip += sizeof_footer(con);
3155                 }
3156                 /* data, middle, front */
3157                 if (msg->data_length)
3158                         con->out_skip += msg->cursor.total_resid;
3159                 if (msg->middle)
3160                         con->out_skip += con_out_kvec_skip(con);
3161                 con->out_skip += con_out_kvec_skip(con);
3162
3163                 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3164                      __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3165                 msg->hdr.seq = 0;
3166                 con->out_msg = NULL;
3167                 ceph_msg_put(msg);
3168         }
3169
3170         mutex_unlock(&con->mutex);
3171 }
3172
3173 /*
3174  * Revoke a message that we may be reading data into
3175  */
3176 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3177 {
3178         struct ceph_connection *con = msg->con;
3179
3180         if (!con) {
3181                 dout("%s msg %p null con\n", __func__, msg);
3182                 return;         /* Message not in our possession */
3183         }
3184
3185         mutex_lock(&con->mutex);
3186         if (con->in_msg == msg) {
3187                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3188                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3189                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3190
3191                 /* skip rest of message */
3192                 dout("%s %p msg %p revoked\n", __func__, con, msg);
3193                 con->in_base_pos = con->in_base_pos -
3194                                 sizeof(struct ceph_msg_header) -
3195                                 front_len -
3196                                 middle_len -
3197                                 data_len -
3198                                 sizeof(struct ceph_msg_footer);
3199                 ceph_msg_put(con->in_msg);
3200                 con->in_msg = NULL;
3201                 con->in_tag = CEPH_MSGR_TAG_READY;
3202                 con->in_seq++;
3203         } else {
3204                 dout("%s %p in_msg %p msg %p no-op\n",
3205                      __func__, con, con->in_msg, msg);
3206         }
3207         mutex_unlock(&con->mutex);
3208 }
3209
3210 /*
3211  * Queue a keepalive byte to ensure the tcp connection is alive.
3212  */
3213 void ceph_con_keepalive(struct ceph_connection *con)
3214 {
3215         dout("con_keepalive %p\n", con);
3216         mutex_lock(&con->mutex);
3217         clear_standby(con);
3218         con_flag_set(con, CON_FLAG_KEEPALIVE_PENDING);
3219         mutex_unlock(&con->mutex);
3220
3221         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3222                 queue_con(con);
3223 }
3224 EXPORT_SYMBOL(ceph_con_keepalive);
3225
3226 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3227                                unsigned long interval)
3228 {
3229         if (interval > 0 &&
3230             (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3231                 struct timespec64 now;
3232                 struct timespec64 ts;
3233                 ktime_get_real_ts64(&now);
3234                 jiffies_to_timespec64(interval, &ts);
3235                 ts = timespec64_add(con->last_keepalive_ack, ts);
3236                 return timespec64_compare(&now, &ts) >= 0;
3237         }
3238         return false;
3239 }
3240
3241 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
3242 {
3243         BUG_ON(msg->num_data_items >= msg->max_data_items);
3244         return &msg->data[msg->num_data_items++];
3245 }
3246
3247 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3248 {
3249         if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
3250                 int num_pages = calc_pages_for(data->alignment, data->length);
3251                 ceph_release_page_vector(data->pages, num_pages);
3252         } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
3253                 ceph_pagelist_release(data->pagelist);
3254         }
3255 }
3256
3257 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3258                              size_t length, size_t alignment, bool own_pages)
3259 {
3260         struct ceph_msg_data *data;
3261
3262         BUG_ON(!pages);
3263         BUG_ON(!length);
3264
3265         data = ceph_msg_data_add(msg);
3266         data->type = CEPH_MSG_DATA_PAGES;
3267         data->pages = pages;
3268         data->length = length;
3269         data->alignment = alignment & ~PAGE_MASK;
3270         data->own_pages = own_pages;
3271
3272         msg->data_length += length;
3273 }
3274 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3275
3276 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3277                                 struct ceph_pagelist *pagelist)
3278 {
3279         struct ceph_msg_data *data;
3280
3281         BUG_ON(!pagelist);
3282         BUG_ON(!pagelist->length);
3283
3284         data = ceph_msg_data_add(msg);
3285         data->type = CEPH_MSG_DATA_PAGELIST;
3286         refcount_inc(&pagelist->refcnt);
3287         data->pagelist = pagelist;
3288
3289         msg->data_length += pagelist->length;
3290 }
3291 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3292
3293 #ifdef  CONFIG_BLOCK
3294 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3295                            u32 length)
3296 {
3297         struct ceph_msg_data *data;
3298
3299         data = ceph_msg_data_add(msg);
3300         data->type = CEPH_MSG_DATA_BIO;
3301         data->bio_pos = *bio_pos;
3302         data->bio_length = length;
3303
3304         msg->data_length += length;
3305 }
3306 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3307 #endif  /* CONFIG_BLOCK */
3308
3309 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3310                              struct ceph_bvec_iter *bvec_pos)
3311 {
3312         struct ceph_msg_data *data;
3313
3314         data = ceph_msg_data_add(msg);
3315         data->type = CEPH_MSG_DATA_BVECS;
3316         data->bvec_pos = *bvec_pos;
3317
3318         msg->data_length += bvec_pos->iter.bi_size;
3319 }
3320 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3321
3322 /*
3323  * construct a new message with given type, size
3324  * the new msg has a ref count of 1.
3325  */
3326 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
3327                                gfp_t flags, bool can_fail)
3328 {
3329         struct ceph_msg *m;
3330
3331         m = kmem_cache_zalloc(ceph_msg_cache, flags);
3332         if (m == NULL)
3333                 goto out;
3334
3335         m->hdr.type = cpu_to_le16(type);
3336         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3337         m->hdr.front_len = cpu_to_le32(front_len);
3338
3339         INIT_LIST_HEAD(&m->list_head);
3340         kref_init(&m->kref);
3341
3342         /* front */
3343         if (front_len) {
3344                 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3345                 if (m->front.iov_base == NULL) {
3346                         dout("ceph_msg_new can't allocate %d bytes\n",
3347                              front_len);
3348                         goto out2;
3349                 }
3350         } else {
3351                 m->front.iov_base = NULL;
3352         }
3353         m->front_alloc_len = m->front.iov_len = front_len;
3354
3355         if (max_data_items) {
3356                 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
3357                                         flags);
3358                 if (!m->data)
3359                         goto out2;
3360
3361                 m->max_data_items = max_data_items;
3362         }
3363
3364         dout("ceph_msg_new %p front %d\n", m, front_len);
3365         return m;
3366
3367 out2:
3368         ceph_msg_put(m);
3369 out:
3370         if (!can_fail) {
3371                 pr_err("msg_new can't create type %d front %d\n", type,
3372                        front_len);
3373                 WARN_ON(1);
3374         } else {
3375                 dout("msg_new can't create type %d front %d\n", type,
3376                      front_len);
3377         }
3378         return NULL;
3379 }
3380 EXPORT_SYMBOL(ceph_msg_new2);
3381
3382 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3383                               bool can_fail)
3384 {
3385         return ceph_msg_new2(type, front_len, 0, flags, can_fail);
3386 }
3387 EXPORT_SYMBOL(ceph_msg_new);
3388
3389 /*
3390  * Allocate "middle" portion of a message, if it is needed and wasn't
3391  * allocated by alloc_msg.  This allows us to read a small fixed-size
3392  * per-type header in the front and then gracefully fail (i.e.,
3393  * propagate the error to the caller based on info in the front) when
3394  * the middle is too large.
3395  */
3396 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3397 {
3398         int type = le16_to_cpu(msg->hdr.type);
3399         int middle_len = le32_to_cpu(msg->hdr.middle_len);
3400
3401         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3402              ceph_msg_type_name(type), middle_len);
3403         BUG_ON(!middle_len);
3404         BUG_ON(msg->middle);
3405
3406         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3407         if (!msg->middle)
3408                 return -ENOMEM;
3409         return 0;
3410 }
3411
3412 /*
3413  * Allocate a message for receiving an incoming message on a
3414  * connection, and save the result in con->in_msg.  Uses the
3415  * connection's private alloc_msg op if available.
3416  *
3417  * Returns 0 on success, or a negative error code.
3418  *
3419  * On success, if we set *skip = 1:
3420  *  - the next message should be skipped and ignored.
3421  *  - con->in_msg == NULL
3422  * or if we set *skip = 0:
3423  *  - con->in_msg is non-null.
3424  * On error (ENOMEM, EAGAIN, ...),
3425  *  - con->in_msg == NULL
3426  */
3427 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3428 {
3429         struct ceph_msg_header *hdr = &con->in_hdr;
3430         int middle_len = le32_to_cpu(hdr->middle_len);
3431         struct ceph_msg *msg;
3432         int ret = 0;
3433
3434         BUG_ON(con->in_msg != NULL);
3435         BUG_ON(!con->ops->alloc_msg);
3436
3437         mutex_unlock(&con->mutex);
3438         msg = con->ops->alloc_msg(con, hdr, skip);
3439         mutex_lock(&con->mutex);
3440         if (con->state != CON_STATE_OPEN) {
3441                 if (msg)
3442                         ceph_msg_put(msg);
3443                 return -EAGAIN;
3444         }
3445         if (msg) {
3446                 BUG_ON(*skip);
3447                 msg_con_set(msg, con);
3448                 con->in_msg = msg;
3449         } else {
3450                 /*
3451                  * Null message pointer means either we should skip
3452                  * this message or we couldn't allocate memory.  The
3453                  * former is not an error.
3454                  */
3455                 if (*skip)
3456                         return 0;
3457
3458                 con->error_msg = "error allocating memory for incoming message";
3459                 return -ENOMEM;
3460         }
3461         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3462
3463         if (middle_len && !con->in_msg->middle) {
3464                 ret = ceph_alloc_middle(con, con->in_msg);
3465                 if (ret < 0) {
3466                         ceph_msg_put(con->in_msg);
3467                         con->in_msg = NULL;
3468                 }
3469         }
3470
3471         return ret;
3472 }
3473
3474
3475 /*
3476  * Free a generically kmalloc'd message.
3477  */
3478 static void ceph_msg_free(struct ceph_msg *m)
3479 {
3480         dout("%s %p\n", __func__, m);
3481         kvfree(m->front.iov_base);
3482         kfree(m->data);
3483         kmem_cache_free(ceph_msg_cache, m);
3484 }
3485
3486 static void ceph_msg_release(struct kref *kref)
3487 {
3488         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3489         int i;
3490
3491         dout("%s %p\n", __func__, m);
3492         WARN_ON(!list_empty(&m->list_head));
3493
3494         msg_con_set(m, NULL);
3495
3496         /* drop middle, data, if any */
3497         if (m->middle) {
3498                 ceph_buffer_put(m->middle);
3499                 m->middle = NULL;
3500         }
3501
3502         for (i = 0; i < m->num_data_items; i++)
3503                 ceph_msg_data_destroy(&m->data[i]);
3504
3505         if (m->pool)
3506                 ceph_msgpool_put(m->pool, m);
3507         else
3508                 ceph_msg_free(m);
3509 }
3510
3511 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3512 {
3513         dout("%s %p (was %d)\n", __func__, msg,
3514              kref_read(&msg->kref));
3515         kref_get(&msg->kref);
3516         return msg;
3517 }
3518 EXPORT_SYMBOL(ceph_msg_get);
3519
3520 void ceph_msg_put(struct ceph_msg *msg)
3521 {
3522         dout("%s %p (was %d)\n", __func__, msg,
3523              kref_read(&msg->kref));
3524         kref_put(&msg->kref, ceph_msg_release);
3525 }
3526 EXPORT_SYMBOL(ceph_msg_put);
3527
3528 void ceph_msg_dump(struct ceph_msg *msg)
3529 {
3530         pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3531                  msg->front_alloc_len, msg->data_length);
3532         print_hex_dump(KERN_DEBUG, "header: ",
3533                        DUMP_PREFIX_OFFSET, 16, 1,
3534                        &msg->hdr, sizeof(msg->hdr), true);
3535         print_hex_dump(KERN_DEBUG, " front: ",
3536                        DUMP_PREFIX_OFFSET, 16, 1,
3537                        msg->front.iov_base, msg->front.iov_len, true);
3538         if (msg->middle)
3539                 print_hex_dump(KERN_DEBUG, "middle: ",
3540                                DUMP_PREFIX_OFFSET, 16, 1,
3541                                msg->middle->vec.iov_base,
3542                                msg->middle->vec.iov_len, true);
3543         print_hex_dump(KERN_DEBUG, "footer: ",
3544                        DUMP_PREFIX_OFFSET, 16, 1,
3545                        &msg->footer, sizeof(msg->footer), true);
3546 }
3547 EXPORT_SYMBOL(ceph_msg_dump);