drm/i915: Correctly set SFC capability for video engines
[linux-2.6-microblaze.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67         /* The addr is used to check if the vma size fits */
68         unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70         if (!transhuge_vma_suitable(vma, addr))
71                 return false;
72         if (vma_is_anonymous(vma))
73                 return __transparent_hugepage_enabled(vma);
74         if (vma_is_shmem(vma))
75                 return shmem_huge_enabled(vma);
76
77         return false;
78 }
79
80 static struct page *get_huge_zero_page(void)
81 {
82         struct page *zero_page;
83 retry:
84         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85                 return READ_ONCE(huge_zero_page);
86
87         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88                         HPAGE_PMD_ORDER);
89         if (!zero_page) {
90                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91                 return NULL;
92         }
93         count_vm_event(THP_ZERO_PAGE_ALLOC);
94         preempt_disable();
95         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96                 preempt_enable();
97                 __free_pages(zero_page, compound_order(zero_page));
98                 goto retry;
99         }
100
101         /* We take additional reference here. It will be put back by shrinker */
102         atomic_set(&huge_zero_refcount, 2);
103         preempt_enable();
104         return READ_ONCE(huge_zero_page);
105 }
106
107 static void put_huge_zero_page(void)
108 {
109         /*
110          * Counter should never go to zero here. Only shrinker can put
111          * last reference.
112          */
113         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119                 return READ_ONCE(huge_zero_page);
120
121         if (!get_huge_zero_page())
122                 return NULL;
123
124         if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125                 put_huge_zero_page();
126
127         return READ_ONCE(huge_zero_page);
128 }
129
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133                 put_huge_zero_page();
134 }
135
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137                                         struct shrink_control *sc)
138 {
139         /* we can free zero page only if last reference remains */
140         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144                                        struct shrink_control *sc)
145 {
146         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147                 struct page *zero_page = xchg(&huge_zero_page, NULL);
148                 BUG_ON(zero_page == NULL);
149                 __free_pages(zero_page, compound_order(zero_page));
150                 return HPAGE_PMD_NR;
151         }
152
153         return 0;
154 }
155
156 static struct shrinker huge_zero_page_shrinker = {
157         .count_objects = shrink_huge_zero_page_count,
158         .scan_objects = shrink_huge_zero_page_scan,
159         .seeks = DEFAULT_SEEKS,
160 };
161
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164                             struct kobj_attribute *attr, char *buf)
165 {
166         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167                 return sprintf(buf, "[always] madvise never\n");
168         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169                 return sprintf(buf, "always [madvise] never\n");
170         else
171                 return sprintf(buf, "always madvise [never]\n");
172 }
173
174 static ssize_t enabled_store(struct kobject *kobj,
175                              struct kobj_attribute *attr,
176                              const char *buf, size_t count)
177 {
178         ssize_t ret = count;
179
180         if (sysfs_streq(buf, "always")) {
181                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182                 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183         } else if (sysfs_streq(buf, "madvise")) {
184                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186         } else if (sysfs_streq(buf, "never")) {
187                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189         } else
190                 ret = -EINVAL;
191
192         if (ret > 0) {
193                 int err = start_stop_khugepaged();
194                 if (err)
195                         ret = err;
196         }
197         return ret;
198 }
199 static struct kobj_attribute enabled_attr =
200         __ATTR(enabled, 0644, enabled_show, enabled_store);
201
202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203                                 struct kobj_attribute *attr, char *buf,
204                                 enum transparent_hugepage_flag flag)
205 {
206         return sprintf(buf, "%d\n",
207                        !!test_bit(flag, &transparent_hugepage_flags));
208 }
209
210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211                                  struct kobj_attribute *attr,
212                                  const char *buf, size_t count,
213                                  enum transparent_hugepage_flag flag)
214 {
215         unsigned long value;
216         int ret;
217
218         ret = kstrtoul(buf, 10, &value);
219         if (ret < 0)
220                 return ret;
221         if (value > 1)
222                 return -EINVAL;
223
224         if (value)
225                 set_bit(flag, &transparent_hugepage_flags);
226         else
227                 clear_bit(flag, &transparent_hugepage_flags);
228
229         return count;
230 }
231
232 static ssize_t defrag_show(struct kobject *kobj,
233                            struct kobj_attribute *attr, char *buf)
234 {
235         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236                 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238                 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240                 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242                 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243         return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244 }
245
246 static ssize_t defrag_store(struct kobject *kobj,
247                             struct kobj_attribute *attr,
248                             const char *buf, size_t count)
249 {
250         if (sysfs_streq(buf, "always")) {
251                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255         } else if (sysfs_streq(buf, "defer+madvise")) {
256                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260         } else if (sysfs_streq(buf, "defer")) {
261                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265         } else if (sysfs_streq(buf, "madvise")) {
266                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270         } else if (sysfs_streq(buf, "never")) {
271                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275         } else
276                 return -EINVAL;
277
278         return count;
279 }
280 static struct kobj_attribute defrag_attr =
281         __ATTR(defrag, 0644, defrag_show, defrag_store);
282
283 static ssize_t use_zero_page_show(struct kobject *kobj,
284                 struct kobj_attribute *attr, char *buf)
285 {
286         return single_hugepage_flag_show(kobj, attr, buf,
287                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
289 static ssize_t use_zero_page_store(struct kobject *kobj,
290                 struct kobj_attribute *attr, const char *buf, size_t count)
291 {
292         return single_hugepage_flag_store(kobj, attr, buf, count,
293                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294 }
295 static struct kobj_attribute use_zero_page_attr =
296         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297
298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299                 struct kobj_attribute *attr, char *buf)
300 {
301         return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302 }
303 static struct kobj_attribute hpage_pmd_size_attr =
304         __ATTR_RO(hpage_pmd_size);
305
306 static struct attribute *hugepage_attr[] = {
307         &enabled_attr.attr,
308         &defrag_attr.attr,
309         &use_zero_page_attr.attr,
310         &hpage_pmd_size_attr.attr,
311 #ifdef CONFIG_SHMEM
312         &shmem_enabled_attr.attr,
313 #endif
314         NULL,
315 };
316
317 static const struct attribute_group hugepage_attr_group = {
318         .attrs = hugepage_attr,
319 };
320
321 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
322 {
323         int err;
324
325         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
326         if (unlikely(!*hugepage_kobj)) {
327                 pr_err("failed to create transparent hugepage kobject\n");
328                 return -ENOMEM;
329         }
330
331         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
332         if (err) {
333                 pr_err("failed to register transparent hugepage group\n");
334                 goto delete_obj;
335         }
336
337         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
338         if (err) {
339                 pr_err("failed to register transparent hugepage group\n");
340                 goto remove_hp_group;
341         }
342
343         return 0;
344
345 remove_hp_group:
346         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
347 delete_obj:
348         kobject_put(*hugepage_kobj);
349         return err;
350 }
351
352 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
353 {
354         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
355         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
356         kobject_put(hugepage_kobj);
357 }
358 #else
359 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
360 {
361         return 0;
362 }
363
364 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366 }
367 #endif /* CONFIG_SYSFS */
368
369 static int __init hugepage_init(void)
370 {
371         int err;
372         struct kobject *hugepage_kobj;
373
374         if (!has_transparent_hugepage()) {
375                 transparent_hugepage_flags = 0;
376                 return -EINVAL;
377         }
378
379         /*
380          * hugepages can't be allocated by the buddy allocator
381          */
382         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
383         /*
384          * we use page->mapping and page->index in second tail page
385          * as list_head: assuming THP order >= 2
386          */
387         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
388
389         err = hugepage_init_sysfs(&hugepage_kobj);
390         if (err)
391                 goto err_sysfs;
392
393         err = khugepaged_init();
394         if (err)
395                 goto err_slab;
396
397         err = register_shrinker(&huge_zero_page_shrinker);
398         if (err)
399                 goto err_hzp_shrinker;
400         err = register_shrinker(&deferred_split_shrinker);
401         if (err)
402                 goto err_split_shrinker;
403
404         /*
405          * By default disable transparent hugepages on smaller systems,
406          * where the extra memory used could hurt more than TLB overhead
407          * is likely to save.  The admin can still enable it through /sys.
408          */
409         if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
410                 transparent_hugepage_flags = 0;
411                 return 0;
412         }
413
414         err = start_stop_khugepaged();
415         if (err)
416                 goto err_khugepaged;
417
418         return 0;
419 err_khugepaged:
420         unregister_shrinker(&deferred_split_shrinker);
421 err_split_shrinker:
422         unregister_shrinker(&huge_zero_page_shrinker);
423 err_hzp_shrinker:
424         khugepaged_destroy();
425 err_slab:
426         hugepage_exit_sysfs(hugepage_kobj);
427 err_sysfs:
428         return err;
429 }
430 subsys_initcall(hugepage_init);
431
432 static int __init setup_transparent_hugepage(char *str)
433 {
434         int ret = 0;
435         if (!str)
436                 goto out;
437         if (!strcmp(str, "always")) {
438                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
439                         &transparent_hugepage_flags);
440                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
441                           &transparent_hugepage_flags);
442                 ret = 1;
443         } else if (!strcmp(str, "madvise")) {
444                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
445                           &transparent_hugepage_flags);
446                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
447                         &transparent_hugepage_flags);
448                 ret = 1;
449         } else if (!strcmp(str, "never")) {
450                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
451                           &transparent_hugepage_flags);
452                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453                           &transparent_hugepage_flags);
454                 ret = 1;
455         }
456 out:
457         if (!ret)
458                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
459         return ret;
460 }
461 __setup("transparent_hugepage=", setup_transparent_hugepage);
462
463 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
464 {
465         if (likely(vma->vm_flags & VM_WRITE))
466                 pmd = pmd_mkwrite(pmd);
467         return pmd;
468 }
469
470 #ifdef CONFIG_MEMCG
471 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
472 {
473         struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
474         struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
475
476         if (memcg)
477                 return &memcg->deferred_split_queue;
478         else
479                 return &pgdat->deferred_split_queue;
480 }
481 #else
482 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
483 {
484         struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
485
486         return &pgdat->deferred_split_queue;
487 }
488 #endif
489
490 void prep_transhuge_page(struct page *page)
491 {
492         /*
493          * we use page->mapping and page->indexlru in second tail page
494          * as list_head: assuming THP order >= 2
495          */
496
497         INIT_LIST_HEAD(page_deferred_list(page));
498         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500
501 bool is_transparent_hugepage(struct page *page)
502 {
503         if (!PageCompound(page))
504                 return false;
505
506         page = compound_head(page);
507         return is_huge_zero_page(page) ||
508                page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
509 }
510 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
511
512 static unsigned long __thp_get_unmapped_area(struct file *filp,
513                 unsigned long addr, unsigned long len,
514                 loff_t off, unsigned long flags, unsigned long size)
515 {
516         loff_t off_end = off + len;
517         loff_t off_align = round_up(off, size);
518         unsigned long len_pad, ret;
519
520         if (off_end <= off_align || (off_end - off_align) < size)
521                 return 0;
522
523         len_pad = len + size;
524         if (len_pad < len || (off + len_pad) < off)
525                 return 0;
526
527         ret = current->mm->get_unmapped_area(filp, addr, len_pad,
528                                               off >> PAGE_SHIFT, flags);
529
530         /*
531          * The failure might be due to length padding. The caller will retry
532          * without the padding.
533          */
534         if (IS_ERR_VALUE(ret))
535                 return 0;
536
537         /*
538          * Do not try to align to THP boundary if allocation at the address
539          * hint succeeds.
540          */
541         if (ret == addr)
542                 return addr;
543
544         ret += (off - ret) & (size - 1);
545         return ret;
546 }
547
548 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
549                 unsigned long len, unsigned long pgoff, unsigned long flags)
550 {
551         unsigned long ret;
552         loff_t off = (loff_t)pgoff << PAGE_SHIFT;
553
554         if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
555                 goto out;
556
557         ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
558         if (ret)
559                 return ret;
560 out:
561         return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
562 }
563 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
564
565 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
566                         struct page *page, gfp_t gfp)
567 {
568         struct vm_area_struct *vma = vmf->vma;
569         pgtable_t pgtable;
570         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
571         vm_fault_t ret = 0;
572
573         VM_BUG_ON_PAGE(!PageCompound(page), page);
574
575         if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
576                 put_page(page);
577                 count_vm_event(THP_FAULT_FALLBACK);
578                 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
579                 return VM_FAULT_FALLBACK;
580         }
581         cgroup_throttle_swaprate(page, gfp);
582
583         pgtable = pte_alloc_one(vma->vm_mm);
584         if (unlikely(!pgtable)) {
585                 ret = VM_FAULT_OOM;
586                 goto release;
587         }
588
589         clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
590         /*
591          * The memory barrier inside __SetPageUptodate makes sure that
592          * clear_huge_page writes become visible before the set_pmd_at()
593          * write.
594          */
595         __SetPageUptodate(page);
596
597         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
598         if (unlikely(!pmd_none(*vmf->pmd))) {
599                 goto unlock_release;
600         } else {
601                 pmd_t entry;
602
603                 ret = check_stable_address_space(vma->vm_mm);
604                 if (ret)
605                         goto unlock_release;
606
607                 /* Deliver the page fault to userland */
608                 if (userfaultfd_missing(vma)) {
609                         vm_fault_t ret2;
610
611                         spin_unlock(vmf->ptl);
612                         put_page(page);
613                         pte_free(vma->vm_mm, pgtable);
614                         ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
615                         VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
616                         return ret2;
617                 }
618
619                 entry = mk_huge_pmd(page, vma->vm_page_prot);
620                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
621                 page_add_new_anon_rmap(page, vma, haddr, true);
622                 lru_cache_add_inactive_or_unevictable(page, vma);
623                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
624                 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
625                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
626                 mm_inc_nr_ptes(vma->vm_mm);
627                 spin_unlock(vmf->ptl);
628                 count_vm_event(THP_FAULT_ALLOC);
629                 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
630         }
631
632         return 0;
633 unlock_release:
634         spin_unlock(vmf->ptl);
635 release:
636         if (pgtable)
637                 pte_free(vma->vm_mm, pgtable);
638         put_page(page);
639         return ret;
640
641 }
642
643 /*
644  * always: directly stall for all thp allocations
645  * defer: wake kswapd and fail if not immediately available
646  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
647  *                fail if not immediately available
648  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
649  *          available
650  * never: never stall for any thp allocation
651  */
652 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
653 {
654         const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
655
656         /* Always do synchronous compaction */
657         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
658                 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
659
660         /* Kick kcompactd and fail quickly */
661         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
662                 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
663
664         /* Synchronous compaction if madvised, otherwise kick kcompactd */
665         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
666                 return GFP_TRANSHUGE_LIGHT |
667                         (vma_madvised ? __GFP_DIRECT_RECLAIM :
668                                         __GFP_KSWAPD_RECLAIM);
669
670         /* Only do synchronous compaction if madvised */
671         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
672                 return GFP_TRANSHUGE_LIGHT |
673                        (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
674
675         return GFP_TRANSHUGE_LIGHT;
676 }
677
678 /* Caller must hold page table lock. */
679 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
680                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
681                 struct page *zero_page)
682 {
683         pmd_t entry;
684         if (!pmd_none(*pmd))
685                 return false;
686         entry = mk_pmd(zero_page, vma->vm_page_prot);
687         entry = pmd_mkhuge(entry);
688         if (pgtable)
689                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
690         set_pmd_at(mm, haddr, pmd, entry);
691         mm_inc_nr_ptes(mm);
692         return true;
693 }
694
695 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
696 {
697         struct vm_area_struct *vma = vmf->vma;
698         gfp_t gfp;
699         struct page *page;
700         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
701
702         if (!transhuge_vma_suitable(vma, haddr))
703                 return VM_FAULT_FALLBACK;
704         if (unlikely(anon_vma_prepare(vma)))
705                 return VM_FAULT_OOM;
706         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
707                 return VM_FAULT_OOM;
708         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
709                         !mm_forbids_zeropage(vma->vm_mm) &&
710                         transparent_hugepage_use_zero_page()) {
711                 pgtable_t pgtable;
712                 struct page *zero_page;
713                 bool set;
714                 vm_fault_t ret;
715                 pgtable = pte_alloc_one(vma->vm_mm);
716                 if (unlikely(!pgtable))
717                         return VM_FAULT_OOM;
718                 zero_page = mm_get_huge_zero_page(vma->vm_mm);
719                 if (unlikely(!zero_page)) {
720                         pte_free(vma->vm_mm, pgtable);
721                         count_vm_event(THP_FAULT_FALLBACK);
722                         return VM_FAULT_FALLBACK;
723                 }
724                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
725                 ret = 0;
726                 set = false;
727                 if (pmd_none(*vmf->pmd)) {
728                         ret = check_stable_address_space(vma->vm_mm);
729                         if (ret) {
730                                 spin_unlock(vmf->ptl);
731                         } else if (userfaultfd_missing(vma)) {
732                                 spin_unlock(vmf->ptl);
733                                 ret = handle_userfault(vmf, VM_UFFD_MISSING);
734                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
735                         } else {
736                                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
737                                                    haddr, vmf->pmd, zero_page);
738                                 spin_unlock(vmf->ptl);
739                                 set = true;
740                         }
741                 } else
742                         spin_unlock(vmf->ptl);
743                 if (!set)
744                         pte_free(vma->vm_mm, pgtable);
745                 return ret;
746         }
747         gfp = alloc_hugepage_direct_gfpmask(vma);
748         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
749         if (unlikely(!page)) {
750                 count_vm_event(THP_FAULT_FALLBACK);
751                 return VM_FAULT_FALLBACK;
752         }
753         prep_transhuge_page(page);
754         return __do_huge_pmd_anonymous_page(vmf, page, gfp);
755 }
756
757 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
758                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
759                 pgtable_t pgtable)
760 {
761         struct mm_struct *mm = vma->vm_mm;
762         pmd_t entry;
763         spinlock_t *ptl;
764
765         ptl = pmd_lock(mm, pmd);
766         if (!pmd_none(*pmd)) {
767                 if (write) {
768                         if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
769                                 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
770                                 goto out_unlock;
771                         }
772                         entry = pmd_mkyoung(*pmd);
773                         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
774                         if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
775                                 update_mmu_cache_pmd(vma, addr, pmd);
776                 }
777
778                 goto out_unlock;
779         }
780
781         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
782         if (pfn_t_devmap(pfn))
783                 entry = pmd_mkdevmap(entry);
784         if (write) {
785                 entry = pmd_mkyoung(pmd_mkdirty(entry));
786                 entry = maybe_pmd_mkwrite(entry, vma);
787         }
788
789         if (pgtable) {
790                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
791                 mm_inc_nr_ptes(mm);
792                 pgtable = NULL;
793         }
794
795         set_pmd_at(mm, addr, pmd, entry);
796         update_mmu_cache_pmd(vma, addr, pmd);
797
798 out_unlock:
799         spin_unlock(ptl);
800         if (pgtable)
801                 pte_free(mm, pgtable);
802 }
803
804 /**
805  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
806  * @vmf: Structure describing the fault
807  * @pfn: pfn to insert
808  * @pgprot: page protection to use
809  * @write: whether it's a write fault
810  *
811  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
812  * also consult the vmf_insert_mixed_prot() documentation when
813  * @pgprot != @vmf->vma->vm_page_prot.
814  *
815  * Return: vm_fault_t value.
816  */
817 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
818                                    pgprot_t pgprot, bool write)
819 {
820         unsigned long addr = vmf->address & PMD_MASK;
821         struct vm_area_struct *vma = vmf->vma;
822         pgtable_t pgtable = NULL;
823
824         /*
825          * If we had pmd_special, we could avoid all these restrictions,
826          * but we need to be consistent with PTEs and architectures that
827          * can't support a 'special' bit.
828          */
829         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
830                         !pfn_t_devmap(pfn));
831         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
832                                                 (VM_PFNMAP|VM_MIXEDMAP));
833         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
834
835         if (addr < vma->vm_start || addr >= vma->vm_end)
836                 return VM_FAULT_SIGBUS;
837
838         if (arch_needs_pgtable_deposit()) {
839                 pgtable = pte_alloc_one(vma->vm_mm);
840                 if (!pgtable)
841                         return VM_FAULT_OOM;
842         }
843
844         track_pfn_insert(vma, &pgprot, pfn);
845
846         insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
847         return VM_FAULT_NOPAGE;
848 }
849 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
850
851 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
852 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
853 {
854         if (likely(vma->vm_flags & VM_WRITE))
855                 pud = pud_mkwrite(pud);
856         return pud;
857 }
858
859 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
860                 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
861 {
862         struct mm_struct *mm = vma->vm_mm;
863         pud_t entry;
864         spinlock_t *ptl;
865
866         ptl = pud_lock(mm, pud);
867         if (!pud_none(*pud)) {
868                 if (write) {
869                         if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
870                                 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
871                                 goto out_unlock;
872                         }
873                         entry = pud_mkyoung(*pud);
874                         entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
875                         if (pudp_set_access_flags(vma, addr, pud, entry, 1))
876                                 update_mmu_cache_pud(vma, addr, pud);
877                 }
878                 goto out_unlock;
879         }
880
881         entry = pud_mkhuge(pfn_t_pud(pfn, prot));
882         if (pfn_t_devmap(pfn))
883                 entry = pud_mkdevmap(entry);
884         if (write) {
885                 entry = pud_mkyoung(pud_mkdirty(entry));
886                 entry = maybe_pud_mkwrite(entry, vma);
887         }
888         set_pud_at(mm, addr, pud, entry);
889         update_mmu_cache_pud(vma, addr, pud);
890
891 out_unlock:
892         spin_unlock(ptl);
893 }
894
895 /**
896  * vmf_insert_pfn_pud_prot - insert a pud size pfn
897  * @vmf: Structure describing the fault
898  * @pfn: pfn to insert
899  * @pgprot: page protection to use
900  * @write: whether it's a write fault
901  *
902  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
903  * also consult the vmf_insert_mixed_prot() documentation when
904  * @pgprot != @vmf->vma->vm_page_prot.
905  *
906  * Return: vm_fault_t value.
907  */
908 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
909                                    pgprot_t pgprot, bool write)
910 {
911         unsigned long addr = vmf->address & PUD_MASK;
912         struct vm_area_struct *vma = vmf->vma;
913
914         /*
915          * If we had pud_special, we could avoid all these restrictions,
916          * but we need to be consistent with PTEs and architectures that
917          * can't support a 'special' bit.
918          */
919         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
920                         !pfn_t_devmap(pfn));
921         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
922                                                 (VM_PFNMAP|VM_MIXEDMAP));
923         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
924
925         if (addr < vma->vm_start || addr >= vma->vm_end)
926                 return VM_FAULT_SIGBUS;
927
928         track_pfn_insert(vma, &pgprot, pfn);
929
930         insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
931         return VM_FAULT_NOPAGE;
932 }
933 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
934 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
935
936 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
937                 pmd_t *pmd, int flags)
938 {
939         pmd_t _pmd;
940
941         _pmd = pmd_mkyoung(*pmd);
942         if (flags & FOLL_WRITE)
943                 _pmd = pmd_mkdirty(_pmd);
944         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
945                                 pmd, _pmd, flags & FOLL_WRITE))
946                 update_mmu_cache_pmd(vma, addr, pmd);
947 }
948
949 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
950                 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
951 {
952         unsigned long pfn = pmd_pfn(*pmd);
953         struct mm_struct *mm = vma->vm_mm;
954         struct page *page;
955
956         assert_spin_locked(pmd_lockptr(mm, pmd));
957
958         /*
959          * When we COW a devmap PMD entry, we split it into PTEs, so we should
960          * not be in this function with `flags & FOLL_COW` set.
961          */
962         WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
963
964         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
965         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
966                          (FOLL_PIN | FOLL_GET)))
967                 return NULL;
968
969         if (flags & FOLL_WRITE && !pmd_write(*pmd))
970                 return NULL;
971
972         if (pmd_present(*pmd) && pmd_devmap(*pmd))
973                 /* pass */;
974         else
975                 return NULL;
976
977         if (flags & FOLL_TOUCH)
978                 touch_pmd(vma, addr, pmd, flags);
979
980         /*
981          * device mapped pages can only be returned if the
982          * caller will manage the page reference count.
983          */
984         if (!(flags & (FOLL_GET | FOLL_PIN)))
985                 return ERR_PTR(-EEXIST);
986
987         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
988         *pgmap = get_dev_pagemap(pfn, *pgmap);
989         if (!*pgmap)
990                 return ERR_PTR(-EFAULT);
991         page = pfn_to_page(pfn);
992         if (!try_grab_page(page, flags))
993                 page = ERR_PTR(-ENOMEM);
994
995         return page;
996 }
997
998 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
999                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1000                   struct vm_area_struct *vma)
1001 {
1002         spinlock_t *dst_ptl, *src_ptl;
1003         struct page *src_page;
1004         pmd_t pmd;
1005         pgtable_t pgtable = NULL;
1006         int ret = -ENOMEM;
1007
1008         /* Skip if can be re-fill on fault */
1009         if (!vma_is_anonymous(vma))
1010                 return 0;
1011
1012         pgtable = pte_alloc_one(dst_mm);
1013         if (unlikely(!pgtable))
1014                 goto out;
1015
1016         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1017         src_ptl = pmd_lockptr(src_mm, src_pmd);
1018         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1019
1020         ret = -EAGAIN;
1021         pmd = *src_pmd;
1022
1023         /*
1024          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1025          * does not have the VM_UFFD_WP, which means that the uffd
1026          * fork event is not enabled.
1027          */
1028         if (!(vma->vm_flags & VM_UFFD_WP))
1029                 pmd = pmd_clear_uffd_wp(pmd);
1030
1031 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1032         if (unlikely(is_swap_pmd(pmd))) {
1033                 swp_entry_t entry = pmd_to_swp_entry(pmd);
1034
1035                 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1036                 if (is_write_migration_entry(entry)) {
1037                         make_migration_entry_read(&entry);
1038                         pmd = swp_entry_to_pmd(entry);
1039                         if (pmd_swp_soft_dirty(*src_pmd))
1040                                 pmd = pmd_swp_mksoft_dirty(pmd);
1041                         set_pmd_at(src_mm, addr, src_pmd, pmd);
1042                 }
1043                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1044                 mm_inc_nr_ptes(dst_mm);
1045                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1046                 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1047                 ret = 0;
1048                 goto out_unlock;
1049         }
1050 #endif
1051
1052         if (unlikely(!pmd_trans_huge(pmd))) {
1053                 pte_free(dst_mm, pgtable);
1054                 goto out_unlock;
1055         }
1056         /*
1057          * When page table lock is held, the huge zero pmd should not be
1058          * under splitting since we don't split the page itself, only pmd to
1059          * a page table.
1060          */
1061         if (is_huge_zero_pmd(pmd)) {
1062                 struct page *zero_page;
1063                 /*
1064                  * get_huge_zero_page() will never allocate a new page here,
1065                  * since we already have a zero page to copy. It just takes a
1066                  * reference.
1067                  */
1068                 zero_page = mm_get_huge_zero_page(dst_mm);
1069                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1070                                 zero_page);
1071                 ret = 0;
1072                 goto out_unlock;
1073         }
1074
1075         src_page = pmd_page(pmd);
1076         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1077
1078         /*
1079          * If this page is a potentially pinned page, split and retry the fault
1080          * with smaller page size.  Normally this should not happen because the
1081          * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1082          * best effort that the pinned pages won't be replaced by another
1083          * random page during the coming copy-on-write.
1084          */
1085         if (unlikely(is_cow_mapping(vma->vm_flags) &&
1086                      atomic_read(&src_mm->has_pinned) &&
1087                      page_maybe_dma_pinned(src_page))) {
1088                 pte_free(dst_mm, pgtable);
1089                 spin_unlock(src_ptl);
1090                 spin_unlock(dst_ptl);
1091                 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1092                 return -EAGAIN;
1093         }
1094
1095         get_page(src_page);
1096         page_dup_rmap(src_page, true);
1097         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1098         mm_inc_nr_ptes(dst_mm);
1099         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1100
1101         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1102         pmd = pmd_mkold(pmd_wrprotect(pmd));
1103         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1104
1105         ret = 0;
1106 out_unlock:
1107         spin_unlock(src_ptl);
1108         spin_unlock(dst_ptl);
1109 out:
1110         return ret;
1111 }
1112
1113 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1114 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1115                 pud_t *pud, int flags)
1116 {
1117         pud_t _pud;
1118
1119         _pud = pud_mkyoung(*pud);
1120         if (flags & FOLL_WRITE)
1121                 _pud = pud_mkdirty(_pud);
1122         if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1123                                 pud, _pud, flags & FOLL_WRITE))
1124                 update_mmu_cache_pud(vma, addr, pud);
1125 }
1126
1127 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1128                 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1129 {
1130         unsigned long pfn = pud_pfn(*pud);
1131         struct mm_struct *mm = vma->vm_mm;
1132         struct page *page;
1133
1134         assert_spin_locked(pud_lockptr(mm, pud));
1135
1136         if (flags & FOLL_WRITE && !pud_write(*pud))
1137                 return NULL;
1138
1139         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1140         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1141                          (FOLL_PIN | FOLL_GET)))
1142                 return NULL;
1143
1144         if (pud_present(*pud) && pud_devmap(*pud))
1145                 /* pass */;
1146         else
1147                 return NULL;
1148
1149         if (flags & FOLL_TOUCH)
1150                 touch_pud(vma, addr, pud, flags);
1151
1152         /*
1153          * device mapped pages can only be returned if the
1154          * caller will manage the page reference count.
1155          *
1156          * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1157          */
1158         if (!(flags & (FOLL_GET | FOLL_PIN)))
1159                 return ERR_PTR(-EEXIST);
1160
1161         pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1162         *pgmap = get_dev_pagemap(pfn, *pgmap);
1163         if (!*pgmap)
1164                 return ERR_PTR(-EFAULT);
1165         page = pfn_to_page(pfn);
1166         if (!try_grab_page(page, flags))
1167                 page = ERR_PTR(-ENOMEM);
1168
1169         return page;
1170 }
1171
1172 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1173                   pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1174                   struct vm_area_struct *vma)
1175 {
1176         spinlock_t *dst_ptl, *src_ptl;
1177         pud_t pud;
1178         int ret;
1179
1180         dst_ptl = pud_lock(dst_mm, dst_pud);
1181         src_ptl = pud_lockptr(src_mm, src_pud);
1182         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1183
1184         ret = -EAGAIN;
1185         pud = *src_pud;
1186         if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1187                 goto out_unlock;
1188
1189         /*
1190          * When page table lock is held, the huge zero pud should not be
1191          * under splitting since we don't split the page itself, only pud to
1192          * a page table.
1193          */
1194         if (is_huge_zero_pud(pud)) {
1195                 /* No huge zero pud yet */
1196         }
1197
1198         /* Please refer to comments in copy_huge_pmd() */
1199         if (unlikely(is_cow_mapping(vma->vm_flags) &&
1200                      atomic_read(&src_mm->has_pinned) &&
1201                      page_maybe_dma_pinned(pud_page(pud)))) {
1202                 spin_unlock(src_ptl);
1203                 spin_unlock(dst_ptl);
1204                 __split_huge_pud(vma, src_pud, addr);
1205                 return -EAGAIN;
1206         }
1207
1208         pudp_set_wrprotect(src_mm, addr, src_pud);
1209         pud = pud_mkold(pud_wrprotect(pud));
1210         set_pud_at(dst_mm, addr, dst_pud, pud);
1211
1212         ret = 0;
1213 out_unlock:
1214         spin_unlock(src_ptl);
1215         spin_unlock(dst_ptl);
1216         return ret;
1217 }
1218
1219 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1220 {
1221         pud_t entry;
1222         unsigned long haddr;
1223         bool write = vmf->flags & FAULT_FLAG_WRITE;
1224
1225         vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1226         if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1227                 goto unlock;
1228
1229         entry = pud_mkyoung(orig_pud);
1230         if (write)
1231                 entry = pud_mkdirty(entry);
1232         haddr = vmf->address & HPAGE_PUD_MASK;
1233         if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1234                 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1235
1236 unlock:
1237         spin_unlock(vmf->ptl);
1238 }
1239 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1240
1241 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1242 {
1243         pmd_t entry;
1244         unsigned long haddr;
1245         bool write = vmf->flags & FAULT_FLAG_WRITE;
1246
1247         vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1248         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1249                 goto unlock;
1250
1251         entry = pmd_mkyoung(orig_pmd);
1252         if (write)
1253                 entry = pmd_mkdirty(entry);
1254         haddr = vmf->address & HPAGE_PMD_MASK;
1255         if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1256                 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1257
1258 unlock:
1259         spin_unlock(vmf->ptl);
1260 }
1261
1262 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1263 {
1264         struct vm_area_struct *vma = vmf->vma;
1265         struct page *page;
1266         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1267
1268         vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1269         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1270
1271         if (is_huge_zero_pmd(orig_pmd))
1272                 goto fallback;
1273
1274         spin_lock(vmf->ptl);
1275
1276         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1277                 spin_unlock(vmf->ptl);
1278                 return 0;
1279         }
1280
1281         page = pmd_page(orig_pmd);
1282         VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1283
1284         /* Lock page for reuse_swap_page() */
1285         if (!trylock_page(page)) {
1286                 get_page(page);
1287                 spin_unlock(vmf->ptl);
1288                 lock_page(page);
1289                 spin_lock(vmf->ptl);
1290                 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1291                         spin_unlock(vmf->ptl);
1292                         unlock_page(page);
1293                         put_page(page);
1294                         return 0;
1295                 }
1296                 put_page(page);
1297         }
1298
1299         /*
1300          * We can only reuse the page if nobody else maps the huge page or it's
1301          * part.
1302          */
1303         if (reuse_swap_page(page, NULL)) {
1304                 pmd_t entry;
1305                 entry = pmd_mkyoung(orig_pmd);
1306                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1307                 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1308                         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1309                 unlock_page(page);
1310                 spin_unlock(vmf->ptl);
1311                 return VM_FAULT_WRITE;
1312         }
1313
1314         unlock_page(page);
1315         spin_unlock(vmf->ptl);
1316 fallback:
1317         __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1318         return VM_FAULT_FALLBACK;
1319 }
1320
1321 /*
1322  * FOLL_FORCE can write to even unwritable pmd's, but only
1323  * after we've gone through a COW cycle and they are dirty.
1324  */
1325 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1326 {
1327         return pmd_write(pmd) ||
1328                ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1329 }
1330
1331 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1332                                    unsigned long addr,
1333                                    pmd_t *pmd,
1334                                    unsigned int flags)
1335 {
1336         struct mm_struct *mm = vma->vm_mm;
1337         struct page *page = NULL;
1338
1339         assert_spin_locked(pmd_lockptr(mm, pmd));
1340
1341         if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1342                 goto out;
1343
1344         /* Avoid dumping huge zero page */
1345         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1346                 return ERR_PTR(-EFAULT);
1347
1348         /* Full NUMA hinting faults to serialise migration in fault paths */
1349         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1350                 goto out;
1351
1352         page = pmd_page(*pmd);
1353         VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1354
1355         if (!try_grab_page(page, flags))
1356                 return ERR_PTR(-ENOMEM);
1357
1358         if (flags & FOLL_TOUCH)
1359                 touch_pmd(vma, addr, pmd, flags);
1360
1361         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1362                 /*
1363                  * We don't mlock() pte-mapped THPs. This way we can avoid
1364                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1365                  *
1366                  * For anon THP:
1367                  *
1368                  * In most cases the pmd is the only mapping of the page as we
1369                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1370                  * writable private mappings in populate_vma_page_range().
1371                  *
1372                  * The only scenario when we have the page shared here is if we
1373                  * mlocking read-only mapping shared over fork(). We skip
1374                  * mlocking such pages.
1375                  *
1376                  * For file THP:
1377                  *
1378                  * We can expect PageDoubleMap() to be stable under page lock:
1379                  * for file pages we set it in page_add_file_rmap(), which
1380                  * requires page to be locked.
1381                  */
1382
1383                 if (PageAnon(page) && compound_mapcount(page) != 1)
1384                         goto skip_mlock;
1385                 if (PageDoubleMap(page) || !page->mapping)
1386                         goto skip_mlock;
1387                 if (!trylock_page(page))
1388                         goto skip_mlock;
1389                 if (page->mapping && !PageDoubleMap(page))
1390                         mlock_vma_page(page);
1391                 unlock_page(page);
1392         }
1393 skip_mlock:
1394         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1395         VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1396
1397 out:
1398         return page;
1399 }
1400
1401 /* NUMA hinting page fault entry point for trans huge pmds */
1402 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1403 {
1404         struct vm_area_struct *vma = vmf->vma;
1405         struct anon_vma *anon_vma = NULL;
1406         struct page *page;
1407         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1408         int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1409         int target_nid, last_cpupid = -1;
1410         bool page_locked;
1411         bool migrated = false;
1412         bool was_writable;
1413         int flags = 0;
1414
1415         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1416         if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1417                 goto out_unlock;
1418
1419         /*
1420          * If there are potential migrations, wait for completion and retry
1421          * without disrupting NUMA hinting information. Do not relock and
1422          * check_same as the page may no longer be mapped.
1423          */
1424         if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1425                 page = pmd_page(*vmf->pmd);
1426                 if (!get_page_unless_zero(page))
1427                         goto out_unlock;
1428                 spin_unlock(vmf->ptl);
1429                 put_and_wait_on_page_locked(page);
1430                 goto out;
1431         }
1432
1433         page = pmd_page(pmd);
1434         BUG_ON(is_huge_zero_page(page));
1435         page_nid = page_to_nid(page);
1436         last_cpupid = page_cpupid_last(page);
1437         count_vm_numa_event(NUMA_HINT_FAULTS);
1438         if (page_nid == this_nid) {
1439                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1440                 flags |= TNF_FAULT_LOCAL;
1441         }
1442
1443         /* See similar comment in do_numa_page for explanation */
1444         if (!pmd_savedwrite(pmd))
1445                 flags |= TNF_NO_GROUP;
1446
1447         /*
1448          * Acquire the page lock to serialise THP migrations but avoid dropping
1449          * page_table_lock if at all possible
1450          */
1451         page_locked = trylock_page(page);
1452         target_nid = mpol_misplaced(page, vma, haddr);
1453         if (target_nid == NUMA_NO_NODE) {
1454                 /* If the page was locked, there are no parallel migrations */
1455                 if (page_locked)
1456                         goto clear_pmdnuma;
1457         }
1458
1459         /* Migration could have started since the pmd_trans_migrating check */
1460         if (!page_locked) {
1461                 page_nid = NUMA_NO_NODE;
1462                 if (!get_page_unless_zero(page))
1463                         goto out_unlock;
1464                 spin_unlock(vmf->ptl);
1465                 put_and_wait_on_page_locked(page);
1466                 goto out;
1467         }
1468
1469         /*
1470          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1471          * to serialises splits
1472          */
1473         get_page(page);
1474         spin_unlock(vmf->ptl);
1475         anon_vma = page_lock_anon_vma_read(page);
1476
1477         /* Confirm the PMD did not change while page_table_lock was released */
1478         spin_lock(vmf->ptl);
1479         if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1480                 unlock_page(page);
1481                 put_page(page);
1482                 page_nid = NUMA_NO_NODE;
1483                 goto out_unlock;
1484         }
1485
1486         /* Bail if we fail to protect against THP splits for any reason */
1487         if (unlikely(!anon_vma)) {
1488                 put_page(page);
1489                 page_nid = NUMA_NO_NODE;
1490                 goto clear_pmdnuma;
1491         }
1492
1493         /*
1494          * Since we took the NUMA fault, we must have observed the !accessible
1495          * bit. Make sure all other CPUs agree with that, to avoid them
1496          * modifying the page we're about to migrate.
1497          *
1498          * Must be done under PTL such that we'll observe the relevant
1499          * inc_tlb_flush_pending().
1500          *
1501          * We are not sure a pending tlb flush here is for a huge page
1502          * mapping or not. Hence use the tlb range variant
1503          */
1504         if (mm_tlb_flush_pending(vma->vm_mm)) {
1505                 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1506                 /*
1507                  * change_huge_pmd() released the pmd lock before
1508                  * invalidating the secondary MMUs sharing the primary
1509                  * MMU pagetables (with ->invalidate_range()). The
1510                  * mmu_notifier_invalidate_range_end() (which
1511                  * internally calls ->invalidate_range()) in
1512                  * change_pmd_range() will run after us, so we can't
1513                  * rely on it here and we need an explicit invalidate.
1514                  */
1515                 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1516                                               haddr + HPAGE_PMD_SIZE);
1517         }
1518
1519         /*
1520          * Migrate the THP to the requested node, returns with page unlocked
1521          * and access rights restored.
1522          */
1523         spin_unlock(vmf->ptl);
1524
1525         migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1526                                 vmf->pmd, pmd, vmf->address, page, target_nid);
1527         if (migrated) {
1528                 flags |= TNF_MIGRATED;
1529                 page_nid = target_nid;
1530         } else
1531                 flags |= TNF_MIGRATE_FAIL;
1532
1533         goto out;
1534 clear_pmdnuma:
1535         BUG_ON(!PageLocked(page));
1536         was_writable = pmd_savedwrite(pmd);
1537         pmd = pmd_modify(pmd, vma->vm_page_prot);
1538         pmd = pmd_mkyoung(pmd);
1539         if (was_writable)
1540                 pmd = pmd_mkwrite(pmd);
1541         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1542         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1543         unlock_page(page);
1544 out_unlock:
1545         spin_unlock(vmf->ptl);
1546
1547 out:
1548         if (anon_vma)
1549                 page_unlock_anon_vma_read(anon_vma);
1550
1551         if (page_nid != NUMA_NO_NODE)
1552                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1553                                 flags);
1554
1555         return 0;
1556 }
1557
1558 /*
1559  * Return true if we do MADV_FREE successfully on entire pmd page.
1560  * Otherwise, return false.
1561  */
1562 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1563                 pmd_t *pmd, unsigned long addr, unsigned long next)
1564 {
1565         spinlock_t *ptl;
1566         pmd_t orig_pmd;
1567         struct page *page;
1568         struct mm_struct *mm = tlb->mm;
1569         bool ret = false;
1570
1571         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1572
1573         ptl = pmd_trans_huge_lock(pmd, vma);
1574         if (!ptl)
1575                 goto out_unlocked;
1576
1577         orig_pmd = *pmd;
1578         if (is_huge_zero_pmd(orig_pmd))
1579                 goto out;
1580
1581         if (unlikely(!pmd_present(orig_pmd))) {
1582                 VM_BUG_ON(thp_migration_supported() &&
1583                                   !is_pmd_migration_entry(orig_pmd));
1584                 goto out;
1585         }
1586
1587         page = pmd_page(orig_pmd);
1588         /*
1589          * If other processes are mapping this page, we couldn't discard
1590          * the page unless they all do MADV_FREE so let's skip the page.
1591          */
1592         if (page_mapcount(page) != 1)
1593                 goto out;
1594
1595         if (!trylock_page(page))
1596                 goto out;
1597
1598         /*
1599          * If user want to discard part-pages of THP, split it so MADV_FREE
1600          * will deactivate only them.
1601          */
1602         if (next - addr != HPAGE_PMD_SIZE) {
1603                 get_page(page);
1604                 spin_unlock(ptl);
1605                 split_huge_page(page);
1606                 unlock_page(page);
1607                 put_page(page);
1608                 goto out_unlocked;
1609         }
1610
1611         if (PageDirty(page))
1612                 ClearPageDirty(page);
1613         unlock_page(page);
1614
1615         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1616                 pmdp_invalidate(vma, addr, pmd);
1617                 orig_pmd = pmd_mkold(orig_pmd);
1618                 orig_pmd = pmd_mkclean(orig_pmd);
1619
1620                 set_pmd_at(mm, addr, pmd, orig_pmd);
1621                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1622         }
1623
1624         mark_page_lazyfree(page);
1625         ret = true;
1626 out:
1627         spin_unlock(ptl);
1628 out_unlocked:
1629         return ret;
1630 }
1631
1632 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1633 {
1634         pgtable_t pgtable;
1635
1636         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1637         pte_free(mm, pgtable);
1638         mm_dec_nr_ptes(mm);
1639 }
1640
1641 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1642                  pmd_t *pmd, unsigned long addr)
1643 {
1644         pmd_t orig_pmd;
1645         spinlock_t *ptl;
1646
1647         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1648
1649         ptl = __pmd_trans_huge_lock(pmd, vma);
1650         if (!ptl)
1651                 return 0;
1652         /*
1653          * For architectures like ppc64 we look at deposited pgtable
1654          * when calling pmdp_huge_get_and_clear. So do the
1655          * pgtable_trans_huge_withdraw after finishing pmdp related
1656          * operations.
1657          */
1658         orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1659                                                 tlb->fullmm);
1660         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1661         if (vma_is_special_huge(vma)) {
1662                 if (arch_needs_pgtable_deposit())
1663                         zap_deposited_table(tlb->mm, pmd);
1664                 spin_unlock(ptl);
1665                 if (is_huge_zero_pmd(orig_pmd))
1666                         tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1667         } else if (is_huge_zero_pmd(orig_pmd)) {
1668                 zap_deposited_table(tlb->mm, pmd);
1669                 spin_unlock(ptl);
1670                 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1671         } else {
1672                 struct page *page = NULL;
1673                 int flush_needed = 1;
1674
1675                 if (pmd_present(orig_pmd)) {
1676                         page = pmd_page(orig_pmd);
1677                         page_remove_rmap(page, true);
1678                         VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1679                         VM_BUG_ON_PAGE(!PageHead(page), page);
1680                 } else if (thp_migration_supported()) {
1681                         swp_entry_t entry;
1682
1683                         VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1684                         entry = pmd_to_swp_entry(orig_pmd);
1685                         page = pfn_to_page(swp_offset(entry));
1686                         flush_needed = 0;
1687                 } else
1688                         WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1689
1690                 if (PageAnon(page)) {
1691                         zap_deposited_table(tlb->mm, pmd);
1692                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1693                 } else {
1694                         if (arch_needs_pgtable_deposit())
1695                                 zap_deposited_table(tlb->mm, pmd);
1696                         add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1697                 }
1698
1699                 spin_unlock(ptl);
1700                 if (flush_needed)
1701                         tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1702         }
1703         return 1;
1704 }
1705
1706 #ifndef pmd_move_must_withdraw
1707 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1708                                          spinlock_t *old_pmd_ptl,
1709                                          struct vm_area_struct *vma)
1710 {
1711         /*
1712          * With split pmd lock we also need to move preallocated
1713          * PTE page table if new_pmd is on different PMD page table.
1714          *
1715          * We also don't deposit and withdraw tables for file pages.
1716          */
1717         return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1718 }
1719 #endif
1720
1721 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1722 {
1723 #ifdef CONFIG_MEM_SOFT_DIRTY
1724         if (unlikely(is_pmd_migration_entry(pmd)))
1725                 pmd = pmd_swp_mksoft_dirty(pmd);
1726         else if (pmd_present(pmd))
1727                 pmd = pmd_mksoft_dirty(pmd);
1728 #endif
1729         return pmd;
1730 }
1731
1732 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1733                   unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1734 {
1735         spinlock_t *old_ptl, *new_ptl;
1736         pmd_t pmd;
1737         struct mm_struct *mm = vma->vm_mm;
1738         bool force_flush = false;
1739
1740         /*
1741          * The destination pmd shouldn't be established, free_pgtables()
1742          * should have release it.
1743          */
1744         if (WARN_ON(!pmd_none(*new_pmd))) {
1745                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1746                 return false;
1747         }
1748
1749         /*
1750          * We don't have to worry about the ordering of src and dst
1751          * ptlocks because exclusive mmap_lock prevents deadlock.
1752          */
1753         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1754         if (old_ptl) {
1755                 new_ptl = pmd_lockptr(mm, new_pmd);
1756                 if (new_ptl != old_ptl)
1757                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1758                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1759                 if (pmd_present(pmd))
1760                         force_flush = true;
1761                 VM_BUG_ON(!pmd_none(*new_pmd));
1762
1763                 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1764                         pgtable_t pgtable;
1765                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1766                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1767                 }
1768                 pmd = move_soft_dirty_pmd(pmd);
1769                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1770                 if (force_flush)
1771                         flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1772                 if (new_ptl != old_ptl)
1773                         spin_unlock(new_ptl);
1774                 spin_unlock(old_ptl);
1775                 return true;
1776         }
1777         return false;
1778 }
1779
1780 /*
1781  * Returns
1782  *  - 0 if PMD could not be locked
1783  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1784  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1785  */
1786 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1787                 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1788 {
1789         struct mm_struct *mm = vma->vm_mm;
1790         spinlock_t *ptl;
1791         pmd_t entry;
1792         bool preserve_write;
1793         int ret;
1794         bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1795         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1796         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1797
1798         ptl = __pmd_trans_huge_lock(pmd, vma);
1799         if (!ptl)
1800                 return 0;
1801
1802         preserve_write = prot_numa && pmd_write(*pmd);
1803         ret = 1;
1804
1805 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1806         if (is_swap_pmd(*pmd)) {
1807                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1808
1809                 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1810                 if (is_write_migration_entry(entry)) {
1811                         pmd_t newpmd;
1812                         /*
1813                          * A protection check is difficult so
1814                          * just be safe and disable write
1815                          */
1816                         make_migration_entry_read(&entry);
1817                         newpmd = swp_entry_to_pmd(entry);
1818                         if (pmd_swp_soft_dirty(*pmd))
1819                                 newpmd = pmd_swp_mksoft_dirty(newpmd);
1820                         set_pmd_at(mm, addr, pmd, newpmd);
1821                 }
1822                 goto unlock;
1823         }
1824 #endif
1825
1826         /*
1827          * Avoid trapping faults against the zero page. The read-only
1828          * data is likely to be read-cached on the local CPU and
1829          * local/remote hits to the zero page are not interesting.
1830          */
1831         if (prot_numa && is_huge_zero_pmd(*pmd))
1832                 goto unlock;
1833
1834         if (prot_numa && pmd_protnone(*pmd))
1835                 goto unlock;
1836
1837         /*
1838          * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1839          * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1840          * which is also under mmap_read_lock(mm):
1841          *
1842          *      CPU0:                           CPU1:
1843          *                              change_huge_pmd(prot_numa=1)
1844          *                               pmdp_huge_get_and_clear_notify()
1845          * madvise_dontneed()
1846          *  zap_pmd_range()
1847          *   pmd_trans_huge(*pmd) == 0 (without ptl)
1848          *   // skip the pmd
1849          *                               set_pmd_at();
1850          *                               // pmd is re-established
1851          *
1852          * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1853          * which may break userspace.
1854          *
1855          * pmdp_invalidate() is required to make sure we don't miss
1856          * dirty/young flags set by hardware.
1857          */
1858         entry = pmdp_invalidate(vma, addr, pmd);
1859
1860         entry = pmd_modify(entry, newprot);
1861         if (preserve_write)
1862                 entry = pmd_mk_savedwrite(entry);
1863         if (uffd_wp) {
1864                 entry = pmd_wrprotect(entry);
1865                 entry = pmd_mkuffd_wp(entry);
1866         } else if (uffd_wp_resolve) {
1867                 /*
1868                  * Leave the write bit to be handled by PF interrupt
1869                  * handler, then things like COW could be properly
1870                  * handled.
1871                  */
1872                 entry = pmd_clear_uffd_wp(entry);
1873         }
1874         ret = HPAGE_PMD_NR;
1875         set_pmd_at(mm, addr, pmd, entry);
1876         BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1877 unlock:
1878         spin_unlock(ptl);
1879         return ret;
1880 }
1881
1882 /*
1883  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1884  *
1885  * Note that if it returns page table lock pointer, this routine returns without
1886  * unlocking page table lock. So callers must unlock it.
1887  */
1888 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1889 {
1890         spinlock_t *ptl;
1891         ptl = pmd_lock(vma->vm_mm, pmd);
1892         if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1893                         pmd_devmap(*pmd)))
1894                 return ptl;
1895         spin_unlock(ptl);
1896         return NULL;
1897 }
1898
1899 /*
1900  * Returns true if a given pud maps a thp, false otherwise.
1901  *
1902  * Note that if it returns true, this routine returns without unlocking page
1903  * table lock. So callers must unlock it.
1904  */
1905 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1906 {
1907         spinlock_t *ptl;
1908
1909         ptl = pud_lock(vma->vm_mm, pud);
1910         if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1911                 return ptl;
1912         spin_unlock(ptl);
1913         return NULL;
1914 }
1915
1916 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1917 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1918                  pud_t *pud, unsigned long addr)
1919 {
1920         spinlock_t *ptl;
1921
1922         ptl = __pud_trans_huge_lock(pud, vma);
1923         if (!ptl)
1924                 return 0;
1925         /*
1926          * For architectures like ppc64 we look at deposited pgtable
1927          * when calling pudp_huge_get_and_clear. So do the
1928          * pgtable_trans_huge_withdraw after finishing pudp related
1929          * operations.
1930          */
1931         pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1932         tlb_remove_pud_tlb_entry(tlb, pud, addr);
1933         if (vma_is_special_huge(vma)) {
1934                 spin_unlock(ptl);
1935                 /* No zero page support yet */
1936         } else {
1937                 /* No support for anonymous PUD pages yet */
1938                 BUG();
1939         }
1940         return 1;
1941 }
1942
1943 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1944                 unsigned long haddr)
1945 {
1946         VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1947         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1948         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1949         VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1950
1951         count_vm_event(THP_SPLIT_PUD);
1952
1953         pudp_huge_clear_flush_notify(vma, haddr, pud);
1954 }
1955
1956 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1957                 unsigned long address)
1958 {
1959         spinlock_t *ptl;
1960         struct mmu_notifier_range range;
1961
1962         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1963                                 address & HPAGE_PUD_MASK,
1964                                 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1965         mmu_notifier_invalidate_range_start(&range);
1966         ptl = pud_lock(vma->vm_mm, pud);
1967         if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1968                 goto out;
1969         __split_huge_pud_locked(vma, pud, range.start);
1970
1971 out:
1972         spin_unlock(ptl);
1973         /*
1974          * No need to double call mmu_notifier->invalidate_range() callback as
1975          * the above pudp_huge_clear_flush_notify() did already call it.
1976          */
1977         mmu_notifier_invalidate_range_only_end(&range);
1978 }
1979 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1980
1981 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1982                 unsigned long haddr, pmd_t *pmd)
1983 {
1984         struct mm_struct *mm = vma->vm_mm;
1985         pgtable_t pgtable;
1986         pmd_t _pmd;
1987         int i;
1988
1989         /*
1990          * Leave pmd empty until pte is filled note that it is fine to delay
1991          * notification until mmu_notifier_invalidate_range_end() as we are
1992          * replacing a zero pmd write protected page with a zero pte write
1993          * protected page.
1994          *
1995          * See Documentation/vm/mmu_notifier.rst
1996          */
1997         pmdp_huge_clear_flush(vma, haddr, pmd);
1998
1999         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2000         pmd_populate(mm, &_pmd, pgtable);
2001
2002         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2003                 pte_t *pte, entry;
2004                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2005                 entry = pte_mkspecial(entry);
2006                 pte = pte_offset_map(&_pmd, haddr);
2007                 VM_BUG_ON(!pte_none(*pte));
2008                 set_pte_at(mm, haddr, pte, entry);
2009                 pte_unmap(pte);
2010         }
2011         smp_wmb(); /* make pte visible before pmd */
2012         pmd_populate(mm, pmd, pgtable);
2013 }
2014
2015 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2016                 unsigned long haddr, bool freeze)
2017 {
2018         struct mm_struct *mm = vma->vm_mm;
2019         struct page *page;
2020         pgtable_t pgtable;
2021         pmd_t old_pmd, _pmd;
2022         bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2023         unsigned long addr;
2024         int i;
2025
2026         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2027         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2028         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2029         VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2030                                 && !pmd_devmap(*pmd));
2031
2032         count_vm_event(THP_SPLIT_PMD);
2033
2034         if (!vma_is_anonymous(vma)) {
2035                 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2036                 /*
2037                  * We are going to unmap this huge page. So
2038                  * just go ahead and zap it
2039                  */
2040                 if (arch_needs_pgtable_deposit())
2041                         zap_deposited_table(mm, pmd);
2042                 if (vma_is_special_huge(vma))
2043                         return;
2044                 page = pmd_page(_pmd);
2045                 if (!PageDirty(page) && pmd_dirty(_pmd))
2046                         set_page_dirty(page);
2047                 if (!PageReferenced(page) && pmd_young(_pmd))
2048                         SetPageReferenced(page);
2049                 page_remove_rmap(page, true);
2050                 put_page(page);
2051                 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2052                 return;
2053         } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2054                 /*
2055                  * FIXME: Do we want to invalidate secondary mmu by calling
2056                  * mmu_notifier_invalidate_range() see comments below inside
2057                  * __split_huge_pmd() ?
2058                  *
2059                  * We are going from a zero huge page write protected to zero
2060                  * small page also write protected so it does not seems useful
2061                  * to invalidate secondary mmu at this time.
2062                  */
2063                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2064         }
2065
2066         /*
2067          * Up to this point the pmd is present and huge and userland has the
2068          * whole access to the hugepage during the split (which happens in
2069          * place). If we overwrite the pmd with the not-huge version pointing
2070          * to the pte here (which of course we could if all CPUs were bug
2071          * free), userland could trigger a small page size TLB miss on the
2072          * small sized TLB while the hugepage TLB entry is still established in
2073          * the huge TLB. Some CPU doesn't like that.
2074          * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2075          * 383 on page 105. Intel should be safe but is also warns that it's
2076          * only safe if the permission and cache attributes of the two entries
2077          * loaded in the two TLB is identical (which should be the case here).
2078          * But it is generally safer to never allow small and huge TLB entries
2079          * for the same virtual address to be loaded simultaneously. So instead
2080          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2081          * current pmd notpresent (atomically because here the pmd_trans_huge
2082          * must remain set at all times on the pmd until the split is complete
2083          * for this pmd), then we flush the SMP TLB and finally we write the
2084          * non-huge version of the pmd entry with pmd_populate.
2085          */
2086         old_pmd = pmdp_invalidate(vma, haddr, pmd);
2087
2088         pmd_migration = is_pmd_migration_entry(old_pmd);
2089         if (unlikely(pmd_migration)) {
2090                 swp_entry_t entry;
2091
2092                 entry = pmd_to_swp_entry(old_pmd);
2093                 page = pfn_to_page(swp_offset(entry));
2094                 write = is_write_migration_entry(entry);
2095                 young = false;
2096                 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2097                 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2098         } else {
2099                 page = pmd_page(old_pmd);
2100                 if (pmd_dirty(old_pmd))
2101                         SetPageDirty(page);
2102                 write = pmd_write(old_pmd);
2103                 young = pmd_young(old_pmd);
2104                 soft_dirty = pmd_soft_dirty(old_pmd);
2105                 uffd_wp = pmd_uffd_wp(old_pmd);
2106         }
2107         VM_BUG_ON_PAGE(!page_count(page), page);
2108         page_ref_add(page, HPAGE_PMD_NR - 1);
2109
2110         /*
2111          * Withdraw the table only after we mark the pmd entry invalid.
2112          * This's critical for some architectures (Power).
2113          */
2114         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2115         pmd_populate(mm, &_pmd, pgtable);
2116
2117         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2118                 pte_t entry, *pte;
2119                 /*
2120                  * Note that NUMA hinting access restrictions are not
2121                  * transferred to avoid any possibility of altering
2122                  * permissions across VMAs.
2123                  */
2124                 if (freeze || pmd_migration) {
2125                         swp_entry_t swp_entry;
2126                         swp_entry = make_migration_entry(page + i, write);
2127                         entry = swp_entry_to_pte(swp_entry);
2128                         if (soft_dirty)
2129                                 entry = pte_swp_mksoft_dirty(entry);
2130                         if (uffd_wp)
2131                                 entry = pte_swp_mkuffd_wp(entry);
2132                 } else {
2133                         entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2134                         entry = maybe_mkwrite(entry, vma);
2135                         if (!write)
2136                                 entry = pte_wrprotect(entry);
2137                         if (!young)
2138                                 entry = pte_mkold(entry);
2139                         if (soft_dirty)
2140                                 entry = pte_mksoft_dirty(entry);
2141                         if (uffd_wp)
2142                                 entry = pte_mkuffd_wp(entry);
2143                 }
2144                 pte = pte_offset_map(&_pmd, addr);
2145                 BUG_ON(!pte_none(*pte));
2146                 set_pte_at(mm, addr, pte, entry);
2147                 if (!pmd_migration)
2148                         atomic_inc(&page[i]._mapcount);
2149                 pte_unmap(pte);
2150         }
2151
2152         if (!pmd_migration) {
2153                 /*
2154                  * Set PG_double_map before dropping compound_mapcount to avoid
2155                  * false-negative page_mapped().
2156                  */
2157                 if (compound_mapcount(page) > 1 &&
2158                     !TestSetPageDoubleMap(page)) {
2159                         for (i = 0; i < HPAGE_PMD_NR; i++)
2160                                 atomic_inc(&page[i]._mapcount);
2161                 }
2162
2163                 lock_page_memcg(page);
2164                 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2165                         /* Last compound_mapcount is gone. */
2166                         __dec_lruvec_page_state(page, NR_ANON_THPS);
2167                         if (TestClearPageDoubleMap(page)) {
2168                                 /* No need in mapcount reference anymore */
2169                                 for (i = 0; i < HPAGE_PMD_NR; i++)
2170                                         atomic_dec(&page[i]._mapcount);
2171                         }
2172                 }
2173                 unlock_page_memcg(page);
2174         }
2175
2176         smp_wmb(); /* make pte visible before pmd */
2177         pmd_populate(mm, pmd, pgtable);
2178
2179         if (freeze) {
2180                 for (i = 0; i < HPAGE_PMD_NR; i++) {
2181                         page_remove_rmap(page + i, false);
2182                         put_page(page + i);
2183                 }
2184         }
2185 }
2186
2187 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2188                 unsigned long address, bool freeze, struct page *page)
2189 {
2190         spinlock_t *ptl;
2191         struct mmu_notifier_range range;
2192         bool was_locked = false;
2193         pmd_t _pmd;
2194
2195         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2196                                 address & HPAGE_PMD_MASK,
2197                                 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2198         mmu_notifier_invalidate_range_start(&range);
2199         ptl = pmd_lock(vma->vm_mm, pmd);
2200
2201         /*
2202          * If caller asks to setup a migration entries, we need a page to check
2203          * pmd against. Otherwise we can end up replacing wrong page.
2204          */
2205         VM_BUG_ON(freeze && !page);
2206         if (page) {
2207                 VM_WARN_ON_ONCE(!PageLocked(page));
2208                 was_locked = true;
2209                 if (page != pmd_page(*pmd))
2210                         goto out;
2211         }
2212
2213 repeat:
2214         if (pmd_trans_huge(*pmd)) {
2215                 if (!page) {
2216                         page = pmd_page(*pmd);
2217                         if (unlikely(!trylock_page(page))) {
2218                                 get_page(page);
2219                                 _pmd = *pmd;
2220                                 spin_unlock(ptl);
2221                                 lock_page(page);
2222                                 spin_lock(ptl);
2223                                 if (unlikely(!pmd_same(*pmd, _pmd))) {
2224                                         unlock_page(page);
2225                                         put_page(page);
2226                                         page = NULL;
2227                                         goto repeat;
2228                                 }
2229                                 put_page(page);
2230                         }
2231                 }
2232                 if (PageMlocked(page))
2233                         clear_page_mlock(page);
2234         } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2235                 goto out;
2236         __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2237 out:
2238         spin_unlock(ptl);
2239         if (!was_locked && page)
2240                 unlock_page(page);
2241         /*
2242          * No need to double call mmu_notifier->invalidate_range() callback.
2243          * They are 3 cases to consider inside __split_huge_pmd_locked():
2244          *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2245          *  2) __split_huge_zero_page_pmd() read only zero page and any write
2246          *    fault will trigger a flush_notify before pointing to a new page
2247          *    (it is fine if the secondary mmu keeps pointing to the old zero
2248          *    page in the meantime)
2249          *  3) Split a huge pmd into pte pointing to the same page. No need
2250          *     to invalidate secondary tlb entry they are all still valid.
2251          *     any further changes to individual pte will notify. So no need
2252          *     to call mmu_notifier->invalidate_range()
2253          */
2254         mmu_notifier_invalidate_range_only_end(&range);
2255 }
2256
2257 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2258                 bool freeze, struct page *page)
2259 {
2260         pgd_t *pgd;
2261         p4d_t *p4d;
2262         pud_t *pud;
2263         pmd_t *pmd;
2264
2265         pgd = pgd_offset(vma->vm_mm, address);
2266         if (!pgd_present(*pgd))
2267                 return;
2268
2269         p4d = p4d_offset(pgd, address);
2270         if (!p4d_present(*p4d))
2271                 return;
2272
2273         pud = pud_offset(p4d, address);
2274         if (!pud_present(*pud))
2275                 return;
2276
2277         pmd = pmd_offset(pud, address);
2278
2279         __split_huge_pmd(vma, pmd, address, freeze, page);
2280 }
2281
2282 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2283                              unsigned long start,
2284                              unsigned long end,
2285                              long adjust_next)
2286 {
2287         /*
2288          * If the new start address isn't hpage aligned and it could
2289          * previously contain an hugepage: check if we need to split
2290          * an huge pmd.
2291          */
2292         if (start & ~HPAGE_PMD_MASK &&
2293             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2294             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2295                 split_huge_pmd_address(vma, start, false, NULL);
2296
2297         /*
2298          * If the new end address isn't hpage aligned and it could
2299          * previously contain an hugepage: check if we need to split
2300          * an huge pmd.
2301          */
2302         if (end & ~HPAGE_PMD_MASK &&
2303             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2304             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2305                 split_huge_pmd_address(vma, end, false, NULL);
2306
2307         /*
2308          * If we're also updating the vma->vm_next->vm_start, if the new
2309          * vm_next->vm_start isn't hpage aligned and it could previously
2310          * contain an hugepage: check if we need to split an huge pmd.
2311          */
2312         if (adjust_next > 0) {
2313                 struct vm_area_struct *next = vma->vm_next;
2314                 unsigned long nstart = next->vm_start;
2315                 nstart += adjust_next;
2316                 if (nstart & ~HPAGE_PMD_MASK &&
2317                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2318                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2319                         split_huge_pmd_address(next, nstart, false, NULL);
2320         }
2321 }
2322
2323 static void unmap_page(struct page *page)
2324 {
2325         enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2326                 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2327         bool unmap_success;
2328
2329         VM_BUG_ON_PAGE(!PageHead(page), page);
2330
2331         if (PageAnon(page))
2332                 ttu_flags |= TTU_SPLIT_FREEZE;
2333
2334         unmap_success = try_to_unmap(page, ttu_flags);
2335         VM_BUG_ON_PAGE(!unmap_success, page);
2336 }
2337
2338 static void remap_page(struct page *page, unsigned int nr)
2339 {
2340         int i;
2341         if (PageTransHuge(page)) {
2342                 remove_migration_ptes(page, page, true);
2343         } else {
2344                 for (i = 0; i < nr; i++)
2345                         remove_migration_ptes(page + i, page + i, true);
2346         }
2347 }
2348
2349 static void __split_huge_page_tail(struct page *head, int tail,
2350                 struct lruvec *lruvec, struct list_head *list)
2351 {
2352         struct page *page_tail = head + tail;
2353
2354         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2355
2356         /*
2357          * Clone page flags before unfreezing refcount.
2358          *
2359          * After successful get_page_unless_zero() might follow flags change,
2360          * for exmaple lock_page() which set PG_waiters.
2361          */
2362         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2363         page_tail->flags |= (head->flags &
2364                         ((1L << PG_referenced) |
2365                          (1L << PG_swapbacked) |
2366                          (1L << PG_swapcache) |
2367                          (1L << PG_mlocked) |
2368                          (1L << PG_uptodate) |
2369                          (1L << PG_active) |
2370                          (1L << PG_workingset) |
2371                          (1L << PG_locked) |
2372                          (1L << PG_unevictable) |
2373 #ifdef CONFIG_64BIT
2374                          (1L << PG_arch_2) |
2375 #endif
2376                          (1L << PG_dirty)));
2377
2378         /* ->mapping in first tail page is compound_mapcount */
2379         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2380                         page_tail);
2381         page_tail->mapping = head->mapping;
2382         page_tail->index = head->index + tail;
2383
2384         /* Page flags must be visible before we make the page non-compound. */
2385         smp_wmb();
2386
2387         /*
2388          * Clear PageTail before unfreezing page refcount.
2389          *
2390          * After successful get_page_unless_zero() might follow put_page()
2391          * which needs correct compound_head().
2392          */
2393         clear_compound_head(page_tail);
2394
2395         /* Finally unfreeze refcount. Additional reference from page cache. */
2396         page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2397                                           PageSwapCache(head)));
2398
2399         if (page_is_young(head))
2400                 set_page_young(page_tail);
2401         if (page_is_idle(head))
2402                 set_page_idle(page_tail);
2403
2404         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2405
2406         /*
2407          * always add to the tail because some iterators expect new
2408          * pages to show after the currently processed elements - e.g.
2409          * migrate_pages
2410          */
2411         lru_add_page_tail(head, page_tail, lruvec, list);
2412 }
2413
2414 static void __split_huge_page(struct page *page, struct list_head *list,
2415                 pgoff_t end, unsigned long flags)
2416 {
2417         struct page *head = compound_head(page);
2418         pg_data_t *pgdat = page_pgdat(head);
2419         struct lruvec *lruvec;
2420         struct address_space *swap_cache = NULL;
2421         unsigned long offset = 0;
2422         unsigned int nr = thp_nr_pages(head);
2423         int i;
2424
2425         lruvec = mem_cgroup_page_lruvec(head, pgdat);
2426
2427         /* complete memcg works before add pages to LRU */
2428         mem_cgroup_split_huge_fixup(head);
2429
2430         if (PageAnon(head) && PageSwapCache(head)) {
2431                 swp_entry_t entry = { .val = page_private(head) };
2432
2433                 offset = swp_offset(entry);
2434                 swap_cache = swap_address_space(entry);
2435                 xa_lock(&swap_cache->i_pages);
2436         }
2437
2438         for (i = nr - 1; i >= 1; i--) {
2439                 __split_huge_page_tail(head, i, lruvec, list);
2440                 /* Some pages can be beyond i_size: drop them from page cache */
2441                 if (head[i].index >= end) {
2442                         ClearPageDirty(head + i);
2443                         __delete_from_page_cache(head + i, NULL);
2444                         if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2445                                 shmem_uncharge(head->mapping->host, 1);
2446                         put_page(head + i);
2447                 } else if (!PageAnon(page)) {
2448                         __xa_store(&head->mapping->i_pages, head[i].index,
2449                                         head + i, 0);
2450                 } else if (swap_cache) {
2451                         __xa_store(&swap_cache->i_pages, offset + i,
2452                                         head + i, 0);
2453                 }
2454         }
2455
2456         ClearPageCompound(head);
2457
2458         split_page_owner(head, nr);
2459
2460         /* See comment in __split_huge_page_tail() */
2461         if (PageAnon(head)) {
2462                 /* Additional pin to swap cache */
2463                 if (PageSwapCache(head)) {
2464                         page_ref_add(head, 2);
2465                         xa_unlock(&swap_cache->i_pages);
2466                 } else {
2467                         page_ref_inc(head);
2468                 }
2469         } else {
2470                 /* Additional pin to page cache */
2471                 page_ref_add(head, 2);
2472                 xa_unlock(&head->mapping->i_pages);
2473         }
2474
2475         spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2476
2477         remap_page(head, nr);
2478
2479         if (PageSwapCache(head)) {
2480                 swp_entry_t entry = { .val = page_private(head) };
2481
2482                 split_swap_cluster(entry);
2483         }
2484
2485         for (i = 0; i < nr; i++) {
2486                 struct page *subpage = head + i;
2487                 if (subpage == page)
2488                         continue;
2489                 unlock_page(subpage);
2490
2491                 /*
2492                  * Subpages may be freed if there wasn't any mapping
2493                  * like if add_to_swap() is running on a lru page that
2494                  * had its mapping zapped. And freeing these pages
2495                  * requires taking the lru_lock so we do the put_page
2496                  * of the tail pages after the split is complete.
2497                  */
2498                 put_page(subpage);
2499         }
2500 }
2501
2502 int total_mapcount(struct page *page)
2503 {
2504         int i, compound, nr, ret;
2505
2506         VM_BUG_ON_PAGE(PageTail(page), page);
2507
2508         if (likely(!PageCompound(page)))
2509                 return atomic_read(&page->_mapcount) + 1;
2510
2511         compound = compound_mapcount(page);
2512         nr = compound_nr(page);
2513         if (PageHuge(page))
2514                 return compound;
2515         ret = compound;
2516         for (i = 0; i < nr; i++)
2517                 ret += atomic_read(&page[i]._mapcount) + 1;
2518         /* File pages has compound_mapcount included in _mapcount */
2519         if (!PageAnon(page))
2520                 return ret - compound * nr;
2521         if (PageDoubleMap(page))
2522                 ret -= nr;
2523         return ret;
2524 }
2525
2526 /*
2527  * This calculates accurately how many mappings a transparent hugepage
2528  * has (unlike page_mapcount() which isn't fully accurate). This full
2529  * accuracy is primarily needed to know if copy-on-write faults can
2530  * reuse the page and change the mapping to read-write instead of
2531  * copying them. At the same time this returns the total_mapcount too.
2532  *
2533  * The function returns the highest mapcount any one of the subpages
2534  * has. If the return value is one, even if different processes are
2535  * mapping different subpages of the transparent hugepage, they can
2536  * all reuse it, because each process is reusing a different subpage.
2537  *
2538  * The total_mapcount is instead counting all virtual mappings of the
2539  * subpages. If the total_mapcount is equal to "one", it tells the
2540  * caller all mappings belong to the same "mm" and in turn the
2541  * anon_vma of the transparent hugepage can become the vma->anon_vma
2542  * local one as no other process may be mapping any of the subpages.
2543  *
2544  * It would be more accurate to replace page_mapcount() with
2545  * page_trans_huge_mapcount(), however we only use
2546  * page_trans_huge_mapcount() in the copy-on-write faults where we
2547  * need full accuracy to avoid breaking page pinning, because
2548  * page_trans_huge_mapcount() is slower than page_mapcount().
2549  */
2550 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2551 {
2552         int i, ret, _total_mapcount, mapcount;
2553
2554         /* hugetlbfs shouldn't call it */
2555         VM_BUG_ON_PAGE(PageHuge(page), page);
2556
2557         if (likely(!PageTransCompound(page))) {
2558                 mapcount = atomic_read(&page->_mapcount) + 1;
2559                 if (total_mapcount)
2560                         *total_mapcount = mapcount;
2561                 return mapcount;
2562         }
2563
2564         page = compound_head(page);
2565
2566         _total_mapcount = ret = 0;
2567         for (i = 0; i < thp_nr_pages(page); i++) {
2568                 mapcount = atomic_read(&page[i]._mapcount) + 1;
2569                 ret = max(ret, mapcount);
2570                 _total_mapcount += mapcount;
2571         }
2572         if (PageDoubleMap(page)) {
2573                 ret -= 1;
2574                 _total_mapcount -= thp_nr_pages(page);
2575         }
2576         mapcount = compound_mapcount(page);
2577         ret += mapcount;
2578         _total_mapcount += mapcount;
2579         if (total_mapcount)
2580                 *total_mapcount = _total_mapcount;
2581         return ret;
2582 }
2583
2584 /* Racy check whether the huge page can be split */
2585 bool can_split_huge_page(struct page *page, int *pextra_pins)
2586 {
2587         int extra_pins;
2588
2589         /* Additional pins from page cache */
2590         if (PageAnon(page))
2591                 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2592         else
2593                 extra_pins = thp_nr_pages(page);
2594         if (pextra_pins)
2595                 *pextra_pins = extra_pins;
2596         return total_mapcount(page) == page_count(page) - extra_pins - 1;
2597 }
2598
2599 /*
2600  * This function splits huge page into normal pages. @page can point to any
2601  * subpage of huge page to split. Split doesn't change the position of @page.
2602  *
2603  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2604  * The huge page must be locked.
2605  *
2606  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2607  *
2608  * Both head page and tail pages will inherit mapping, flags, and so on from
2609  * the hugepage.
2610  *
2611  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2612  * they are not mapped.
2613  *
2614  * Returns 0 if the hugepage is split successfully.
2615  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2616  * us.
2617  */
2618 int split_huge_page_to_list(struct page *page, struct list_head *list)
2619 {
2620         struct page *head = compound_head(page);
2621         struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2622         struct deferred_split *ds_queue = get_deferred_split_queue(head);
2623         struct anon_vma *anon_vma = NULL;
2624         struct address_space *mapping = NULL;
2625         int count, mapcount, extra_pins, ret;
2626         unsigned long flags;
2627         pgoff_t end;
2628
2629         VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2630         VM_BUG_ON_PAGE(!PageLocked(head), head);
2631         VM_BUG_ON_PAGE(!PageCompound(head), head);
2632
2633         if (PageWriteback(head))
2634                 return -EBUSY;
2635
2636         if (PageAnon(head)) {
2637                 /*
2638                  * The caller does not necessarily hold an mmap_lock that would
2639                  * prevent the anon_vma disappearing so we first we take a
2640                  * reference to it and then lock the anon_vma for write. This
2641                  * is similar to page_lock_anon_vma_read except the write lock
2642                  * is taken to serialise against parallel split or collapse
2643                  * operations.
2644                  */
2645                 anon_vma = page_get_anon_vma(head);
2646                 if (!anon_vma) {
2647                         ret = -EBUSY;
2648                         goto out;
2649                 }
2650                 end = -1;
2651                 mapping = NULL;
2652                 anon_vma_lock_write(anon_vma);
2653         } else {
2654                 mapping = head->mapping;
2655
2656                 /* Truncated ? */
2657                 if (!mapping) {
2658                         ret = -EBUSY;
2659                         goto out;
2660                 }
2661
2662                 anon_vma = NULL;
2663                 i_mmap_lock_read(mapping);
2664
2665                 /*
2666                  *__split_huge_page() may need to trim off pages beyond EOF:
2667                  * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2668                  * which cannot be nested inside the page tree lock. So note
2669                  * end now: i_size itself may be changed at any moment, but
2670                  * head page lock is good enough to serialize the trimming.
2671                  */
2672                 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2673         }
2674
2675         /*
2676          * Racy check if we can split the page, before unmap_page() will
2677          * split PMDs
2678          */
2679         if (!can_split_huge_page(head, &extra_pins)) {
2680                 ret = -EBUSY;
2681                 goto out_unlock;
2682         }
2683
2684         unmap_page(head);
2685         VM_BUG_ON_PAGE(compound_mapcount(head), head);
2686
2687         /* prevent PageLRU to go away from under us, and freeze lru stats */
2688         spin_lock_irqsave(&pgdata->lru_lock, flags);
2689
2690         if (mapping) {
2691                 XA_STATE(xas, &mapping->i_pages, page_index(head));
2692
2693                 /*
2694                  * Check if the head page is present in page cache.
2695                  * We assume all tail are present too, if head is there.
2696                  */
2697                 xa_lock(&mapping->i_pages);
2698                 if (xas_load(&xas) != head)
2699                         goto fail;
2700         }
2701
2702         /* Prevent deferred_split_scan() touching ->_refcount */
2703         spin_lock(&ds_queue->split_queue_lock);
2704         count = page_count(head);
2705         mapcount = total_mapcount(head);
2706         if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2707                 if (!list_empty(page_deferred_list(head))) {
2708                         ds_queue->split_queue_len--;
2709                         list_del(page_deferred_list(head));
2710                 }
2711                 spin_unlock(&ds_queue->split_queue_lock);
2712                 if (mapping) {
2713                         if (PageSwapBacked(head))
2714                                 __dec_node_page_state(head, NR_SHMEM_THPS);
2715                         else
2716                                 __dec_node_page_state(head, NR_FILE_THPS);
2717                 }
2718
2719                 __split_huge_page(page, list, end, flags);
2720                 ret = 0;
2721         } else {
2722                 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2723                         pr_alert("total_mapcount: %u, page_count(): %u\n",
2724                                         mapcount, count);
2725                         if (PageTail(page))
2726                                 dump_page(head, NULL);
2727                         dump_page(page, "total_mapcount(head) > 0");
2728                         BUG();
2729                 }
2730                 spin_unlock(&ds_queue->split_queue_lock);
2731 fail:           if (mapping)
2732                         xa_unlock(&mapping->i_pages);
2733                 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2734                 remap_page(head, thp_nr_pages(head));
2735                 ret = -EBUSY;
2736         }
2737
2738 out_unlock:
2739         if (anon_vma) {
2740                 anon_vma_unlock_write(anon_vma);
2741                 put_anon_vma(anon_vma);
2742         }
2743         if (mapping)
2744                 i_mmap_unlock_read(mapping);
2745 out:
2746         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2747         return ret;
2748 }
2749
2750 void free_transhuge_page(struct page *page)
2751 {
2752         struct deferred_split *ds_queue = get_deferred_split_queue(page);
2753         unsigned long flags;
2754
2755         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2756         if (!list_empty(page_deferred_list(page))) {
2757                 ds_queue->split_queue_len--;
2758                 list_del(page_deferred_list(page));
2759         }
2760         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2761         free_compound_page(page);
2762 }
2763
2764 void deferred_split_huge_page(struct page *page)
2765 {
2766         struct deferred_split *ds_queue = get_deferred_split_queue(page);
2767 #ifdef CONFIG_MEMCG
2768         struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2769 #endif
2770         unsigned long flags;
2771
2772         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2773
2774         /*
2775          * The try_to_unmap() in page reclaim path might reach here too,
2776          * this may cause a race condition to corrupt deferred split queue.
2777          * And, if page reclaim is already handling the same page, it is
2778          * unnecessary to handle it again in shrinker.
2779          *
2780          * Check PageSwapCache to determine if the page is being
2781          * handled by page reclaim since THP swap would add the page into
2782          * swap cache before calling try_to_unmap().
2783          */
2784         if (PageSwapCache(page))
2785                 return;
2786
2787         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2788         if (list_empty(page_deferred_list(page))) {
2789                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2790                 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2791                 ds_queue->split_queue_len++;
2792 #ifdef CONFIG_MEMCG
2793                 if (memcg)
2794                         memcg_set_shrinker_bit(memcg, page_to_nid(page),
2795                                                deferred_split_shrinker.id);
2796 #endif
2797         }
2798         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2799 }
2800
2801 static unsigned long deferred_split_count(struct shrinker *shrink,
2802                 struct shrink_control *sc)
2803 {
2804         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2805         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2806
2807 #ifdef CONFIG_MEMCG
2808         if (sc->memcg)
2809                 ds_queue = &sc->memcg->deferred_split_queue;
2810 #endif
2811         return READ_ONCE(ds_queue->split_queue_len);
2812 }
2813
2814 static unsigned long deferred_split_scan(struct shrinker *shrink,
2815                 struct shrink_control *sc)
2816 {
2817         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2818         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2819         unsigned long flags;
2820         LIST_HEAD(list), *pos, *next;
2821         struct page *page;
2822         int split = 0;
2823
2824 #ifdef CONFIG_MEMCG
2825         if (sc->memcg)
2826                 ds_queue = &sc->memcg->deferred_split_queue;
2827 #endif
2828
2829         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2830         /* Take pin on all head pages to avoid freeing them under us */
2831         list_for_each_safe(pos, next, &ds_queue->split_queue) {
2832                 page = list_entry((void *)pos, struct page, mapping);
2833                 page = compound_head(page);
2834                 if (get_page_unless_zero(page)) {
2835                         list_move(page_deferred_list(page), &list);
2836                 } else {
2837                         /* We lost race with put_compound_page() */
2838                         list_del_init(page_deferred_list(page));
2839                         ds_queue->split_queue_len--;
2840                 }
2841                 if (!--sc->nr_to_scan)
2842                         break;
2843         }
2844         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2845
2846         list_for_each_safe(pos, next, &list) {
2847                 page = list_entry((void *)pos, struct page, mapping);
2848                 if (!trylock_page(page))
2849                         goto next;
2850                 /* split_huge_page() removes page from list on success */
2851                 if (!split_huge_page(page))
2852                         split++;
2853                 unlock_page(page);
2854 next:
2855                 put_page(page);
2856         }
2857
2858         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2859         list_splice_tail(&list, &ds_queue->split_queue);
2860         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2861
2862         /*
2863          * Stop shrinker if we didn't split any page, but the queue is empty.
2864          * This can happen if pages were freed under us.
2865          */
2866         if (!split && list_empty(&ds_queue->split_queue))
2867                 return SHRINK_STOP;
2868         return split;
2869 }
2870
2871 static struct shrinker deferred_split_shrinker = {
2872         .count_objects = deferred_split_count,
2873         .scan_objects = deferred_split_scan,
2874         .seeks = DEFAULT_SEEKS,
2875         .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2876                  SHRINKER_NONSLAB,
2877 };
2878
2879 #ifdef CONFIG_DEBUG_FS
2880 static int split_huge_pages_set(void *data, u64 val)
2881 {
2882         struct zone *zone;
2883         struct page *page;
2884         unsigned long pfn, max_zone_pfn;
2885         unsigned long total = 0, split = 0;
2886
2887         if (val != 1)
2888                 return -EINVAL;
2889
2890         for_each_populated_zone(zone) {
2891                 max_zone_pfn = zone_end_pfn(zone);
2892                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2893                         if (!pfn_valid(pfn))
2894                                 continue;
2895
2896                         page = pfn_to_page(pfn);
2897                         if (!get_page_unless_zero(page))
2898                                 continue;
2899
2900                         if (zone != page_zone(page))
2901                                 goto next;
2902
2903                         if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2904                                 goto next;
2905
2906                         total++;
2907                         lock_page(page);
2908                         if (!split_huge_page(page))
2909                                 split++;
2910                         unlock_page(page);
2911 next:
2912                         put_page(page);
2913                 }
2914         }
2915
2916         pr_info("%lu of %lu THP split\n", split, total);
2917
2918         return 0;
2919 }
2920 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2921                 "%llu\n");
2922
2923 static int __init split_huge_pages_debugfs(void)
2924 {
2925         debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2926                             &split_huge_pages_fops);
2927         return 0;
2928 }
2929 late_initcall(split_huge_pages_debugfs);
2930 #endif
2931
2932 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2933 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2934                 struct page *page)
2935 {
2936         struct vm_area_struct *vma = pvmw->vma;
2937         struct mm_struct *mm = vma->vm_mm;
2938         unsigned long address = pvmw->address;
2939         pmd_t pmdval;
2940         swp_entry_t entry;
2941         pmd_t pmdswp;
2942
2943         if (!(pvmw->pmd && !pvmw->pte))
2944                 return;
2945
2946         flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2947         pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2948         if (pmd_dirty(pmdval))
2949                 set_page_dirty(page);
2950         entry = make_migration_entry(page, pmd_write(pmdval));
2951         pmdswp = swp_entry_to_pmd(entry);
2952         if (pmd_soft_dirty(pmdval))
2953                 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2954         set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2955         page_remove_rmap(page, true);
2956         put_page(page);
2957 }
2958
2959 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2960 {
2961         struct vm_area_struct *vma = pvmw->vma;
2962         struct mm_struct *mm = vma->vm_mm;
2963         unsigned long address = pvmw->address;
2964         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2965         pmd_t pmde;
2966         swp_entry_t entry;
2967
2968         if (!(pvmw->pmd && !pvmw->pte))
2969                 return;
2970
2971         entry = pmd_to_swp_entry(*pvmw->pmd);
2972         get_page(new);
2973         pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2974         if (pmd_swp_soft_dirty(*pvmw->pmd))
2975                 pmde = pmd_mksoft_dirty(pmde);
2976         if (is_write_migration_entry(entry))
2977                 pmde = maybe_pmd_mkwrite(pmde, vma);
2978
2979         flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2980         if (PageAnon(new))
2981                 page_add_anon_rmap(new, vma, mmun_start, true);
2982         else
2983                 page_add_file_rmap(new, true);
2984         set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2985         if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2986                 mlock_vma_page(new);
2987         update_mmu_cache_pmd(vma, address, pvmw->pmd);
2988 }
2989 #endif