Merge branch 'topic/firewire' into for-next
[linux-2.6-microblaze.git] / drivers / pci / controller / vmd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-ecam.h>
15 #include <linux/srcu.h>
16 #include <linux/rculist.h>
17 #include <linux/rcupdate.h>
18
19 #include <asm/irqdomain.h>
20 #include <asm/device.h>
21 #include <asm/msi.h>
22
23 #define VMD_CFGBAR      0
24 #define VMD_MEMBAR1     2
25 #define VMD_MEMBAR2     4
26
27 #define PCI_REG_VMCAP           0x40
28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29 #define PCI_REG_VMCONFIG        0x44
30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31 #define VMCONFIG_MSI_REMAP      0x2
32 #define PCI_REG_VMLOCK          0x70
33 #define MB2_SHADOW_EN(vmlock)   (vmlock & 0x2)
34
35 #define MB2_SHADOW_OFFSET       0x2000
36 #define MB2_SHADOW_SIZE         16
37
38 enum vmd_features {
39         /*
40          * Device may contain registers which hint the physical location of the
41          * membars, in order to allow proper address translation during
42          * resource assignment to enable guest virtualization
43          */
44         VMD_FEAT_HAS_MEMBAR_SHADOW              = (1 << 0),
45
46         /*
47          * Device may provide root port configuration information which limits
48          * bus numbering
49          */
50         VMD_FEAT_HAS_BUS_RESTRICTIONS           = (1 << 1),
51
52         /*
53          * Device contains physical location shadow registers in
54          * vendor-specific capability space
55          */
56         VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP        = (1 << 2),
57
58         /*
59          * Device may use MSI-X vector 0 for software triggering and will not
60          * be used for MSI remapping
61          */
62         VMD_FEAT_OFFSET_FIRST_VECTOR            = (1 << 3),
63
64         /*
65          * Device can bypass remapping MSI-X transactions into its MSI-X table,
66          * avoiding the requirement of a VMD MSI domain for child device
67          * interrupt handling.
68          */
69         VMD_FEAT_CAN_BYPASS_MSI_REMAP           = (1 << 4),
70 };
71
72 /*
73  * Lock for manipulating VMD IRQ lists.
74  */
75 static DEFINE_RAW_SPINLOCK(list_lock);
76
77 /**
78  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
79  * @node:       list item for parent traversal.
80  * @irq:        back pointer to parent.
81  * @enabled:    true if driver enabled IRQ
82  * @virq:       the virtual IRQ value provided to the requesting driver.
83  *
84  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
85  * a VMD IRQ using this structure.
86  */
87 struct vmd_irq {
88         struct list_head        node;
89         struct vmd_irq_list     *irq;
90         bool                    enabled;
91         unsigned int            virq;
92 };
93
94 /**
95  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
96  * @irq_list:   the list of irq's the VMD one demuxes to.
97  * @srcu:       SRCU struct for local synchronization.
98  * @count:      number of child IRQs assigned to this vector; used to track
99  *              sharing.
100  */
101 struct vmd_irq_list {
102         struct list_head        irq_list;
103         struct srcu_struct      srcu;
104         unsigned int            count;
105 };
106
107 struct vmd_dev {
108         struct pci_dev          *dev;
109
110         spinlock_t              cfg_lock;
111         void __iomem            *cfgbar;
112
113         int msix_count;
114         struct vmd_irq_list     *irqs;
115
116         struct pci_sysdata      sysdata;
117         struct resource         resources[3];
118         struct irq_domain       *irq_domain;
119         struct pci_bus          *bus;
120         u8                      busn_start;
121         u8                      first_vec;
122 };
123
124 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
125 {
126         return container_of(bus->sysdata, struct vmd_dev, sysdata);
127 }
128
129 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
130                                            struct vmd_irq_list *irqs)
131 {
132         return irqs - vmd->irqs;
133 }
134
135 /*
136  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
137  * but the MSI entry for the hardware it's driving will be programmed with a
138  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
139  * domain into one of its own, and the VMD driver de-muxes these for the
140  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
141  * and irq_chip to set this up.
142  */
143 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
144 {
145         struct vmd_irq *vmdirq = data->chip_data;
146         struct vmd_irq_list *irq = vmdirq->irq;
147         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
148
149         memset(msg, 0, sizeof(*msg));
150         msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
151         msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
152         msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
153 }
154
155 /*
156  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
157  */
158 static void vmd_irq_enable(struct irq_data *data)
159 {
160         struct vmd_irq *vmdirq = data->chip_data;
161         unsigned long flags;
162
163         raw_spin_lock_irqsave(&list_lock, flags);
164         WARN_ON(vmdirq->enabled);
165         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
166         vmdirq->enabled = true;
167         raw_spin_unlock_irqrestore(&list_lock, flags);
168
169         data->chip->irq_unmask(data);
170 }
171
172 static void vmd_irq_disable(struct irq_data *data)
173 {
174         struct vmd_irq *vmdirq = data->chip_data;
175         unsigned long flags;
176
177         data->chip->irq_mask(data);
178
179         raw_spin_lock_irqsave(&list_lock, flags);
180         if (vmdirq->enabled) {
181                 list_del_rcu(&vmdirq->node);
182                 vmdirq->enabled = false;
183         }
184         raw_spin_unlock_irqrestore(&list_lock, flags);
185 }
186
187 /*
188  * XXX: Stubbed until we develop acceptable way to not create conflicts with
189  * other devices sharing the same vector.
190  */
191 static int vmd_irq_set_affinity(struct irq_data *data,
192                                 const struct cpumask *dest, bool force)
193 {
194         return -EINVAL;
195 }
196
197 static struct irq_chip vmd_msi_controller = {
198         .name                   = "VMD-MSI",
199         .irq_enable             = vmd_irq_enable,
200         .irq_disable            = vmd_irq_disable,
201         .irq_compose_msi_msg    = vmd_compose_msi_msg,
202         .irq_set_affinity       = vmd_irq_set_affinity,
203 };
204
205 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
206                                      msi_alloc_info_t *arg)
207 {
208         return 0;
209 }
210
211 /*
212  * XXX: We can be even smarter selecting the best IRQ once we solve the
213  * affinity problem.
214  */
215 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
216 {
217         unsigned long flags;
218         int i, best;
219
220         if (vmd->msix_count == 1 + vmd->first_vec)
221                 return &vmd->irqs[vmd->first_vec];
222
223         /*
224          * White list for fast-interrupt handlers. All others will share the
225          * "slow" interrupt vector.
226          */
227         switch (msi_desc_to_pci_dev(desc)->class) {
228         case PCI_CLASS_STORAGE_EXPRESS:
229                 break;
230         default:
231                 return &vmd->irqs[vmd->first_vec];
232         }
233
234         raw_spin_lock_irqsave(&list_lock, flags);
235         best = vmd->first_vec + 1;
236         for (i = best; i < vmd->msix_count; i++)
237                 if (vmd->irqs[i].count < vmd->irqs[best].count)
238                         best = i;
239         vmd->irqs[best].count++;
240         raw_spin_unlock_irqrestore(&list_lock, flags);
241
242         return &vmd->irqs[best];
243 }
244
245 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
246                         unsigned int virq, irq_hw_number_t hwirq,
247                         msi_alloc_info_t *arg)
248 {
249         struct msi_desc *desc = arg->desc;
250         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
251         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
252         unsigned int index, vector;
253
254         if (!vmdirq)
255                 return -ENOMEM;
256
257         INIT_LIST_HEAD(&vmdirq->node);
258         vmdirq->irq = vmd_next_irq(vmd, desc);
259         vmdirq->virq = virq;
260         index = index_from_irqs(vmd, vmdirq->irq);
261         vector = pci_irq_vector(vmd->dev, index);
262
263         irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
264                             handle_untracked_irq, vmd, NULL);
265         return 0;
266 }
267
268 static void vmd_msi_free(struct irq_domain *domain,
269                         struct msi_domain_info *info, unsigned int virq)
270 {
271         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
272         unsigned long flags;
273
274         synchronize_srcu(&vmdirq->irq->srcu);
275
276         /* XXX: Potential optimization to rebalance */
277         raw_spin_lock_irqsave(&list_lock, flags);
278         vmdirq->irq->count--;
279         raw_spin_unlock_irqrestore(&list_lock, flags);
280
281         kfree(vmdirq);
282 }
283
284 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
285                            int nvec, msi_alloc_info_t *arg)
286 {
287         struct pci_dev *pdev = to_pci_dev(dev);
288         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
289
290         if (nvec > vmd->msix_count)
291                 return vmd->msix_count;
292
293         memset(arg, 0, sizeof(*arg));
294         return 0;
295 }
296
297 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
298 {
299         arg->desc = desc;
300 }
301
302 static struct msi_domain_ops vmd_msi_domain_ops = {
303         .get_hwirq      = vmd_get_hwirq,
304         .msi_init       = vmd_msi_init,
305         .msi_free       = vmd_msi_free,
306         .msi_prepare    = vmd_msi_prepare,
307         .set_desc       = vmd_set_desc,
308 };
309
310 static struct msi_domain_info vmd_msi_domain_info = {
311         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
312                           MSI_FLAG_PCI_MSIX,
313         .ops            = &vmd_msi_domain_ops,
314         .chip           = &vmd_msi_controller,
315 };
316
317 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
318 {
319         u16 reg;
320
321         pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
322         reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
323                        (reg | VMCONFIG_MSI_REMAP);
324         pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
325 }
326
327 static int vmd_create_irq_domain(struct vmd_dev *vmd)
328 {
329         struct fwnode_handle *fn;
330
331         fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
332         if (!fn)
333                 return -ENODEV;
334
335         vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
336         if (!vmd->irq_domain) {
337                 irq_domain_free_fwnode(fn);
338                 return -ENODEV;
339         }
340
341         return 0;
342 }
343
344 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
345 {
346         /*
347          * Some production BIOS won't enable remapping between soft reboots.
348          * Ensure remapping is restored before unloading the driver.
349          */
350         if (!vmd->msix_count)
351                 vmd_set_msi_remapping(vmd, true);
352
353         if (vmd->irq_domain) {
354                 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
355
356                 irq_domain_remove(vmd->irq_domain);
357                 irq_domain_free_fwnode(fn);
358         }
359 }
360
361 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
362                                   unsigned int devfn, int reg, int len)
363 {
364         unsigned int busnr_ecam = bus->number - vmd->busn_start;
365         u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
366
367         if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
368                 return NULL;
369
370         return vmd->cfgbar + offset;
371 }
372
373 /*
374  * CPU may deadlock if config space is not serialized on some versions of this
375  * hardware, so all config space access is done under a spinlock.
376  */
377 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
378                         int len, u32 *value)
379 {
380         struct vmd_dev *vmd = vmd_from_bus(bus);
381         void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
382         unsigned long flags;
383         int ret = 0;
384
385         if (!addr)
386                 return -EFAULT;
387
388         spin_lock_irqsave(&vmd->cfg_lock, flags);
389         switch (len) {
390         case 1:
391                 *value = readb(addr);
392                 break;
393         case 2:
394                 *value = readw(addr);
395                 break;
396         case 4:
397                 *value = readl(addr);
398                 break;
399         default:
400                 ret = -EINVAL;
401                 break;
402         }
403         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
404         return ret;
405 }
406
407 /*
408  * VMD h/w converts non-posted config writes to posted memory writes. The
409  * read-back in this function forces the completion so it returns only after
410  * the config space was written, as expected.
411  */
412 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
413                          int len, u32 value)
414 {
415         struct vmd_dev *vmd = vmd_from_bus(bus);
416         void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
417         unsigned long flags;
418         int ret = 0;
419
420         if (!addr)
421                 return -EFAULT;
422
423         spin_lock_irqsave(&vmd->cfg_lock, flags);
424         switch (len) {
425         case 1:
426                 writeb(value, addr);
427                 readb(addr);
428                 break;
429         case 2:
430                 writew(value, addr);
431                 readw(addr);
432                 break;
433         case 4:
434                 writel(value, addr);
435                 readl(addr);
436                 break;
437         default:
438                 ret = -EINVAL;
439                 break;
440         }
441         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
442         return ret;
443 }
444
445 static struct pci_ops vmd_ops = {
446         .read           = vmd_pci_read,
447         .write          = vmd_pci_write,
448 };
449
450 static void vmd_attach_resources(struct vmd_dev *vmd)
451 {
452         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
453         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
454 }
455
456 static void vmd_detach_resources(struct vmd_dev *vmd)
457 {
458         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
459         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
460 }
461
462 /*
463  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
464  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
465  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
466  * currently reserved.
467  */
468 static int vmd_find_free_domain(void)
469 {
470         int domain = 0xffff;
471         struct pci_bus *bus = NULL;
472
473         while ((bus = pci_find_next_bus(bus)) != NULL)
474                 domain = max_t(int, domain, pci_domain_nr(bus));
475         return domain + 1;
476 }
477
478 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
479                                 resource_size_t *offset1,
480                                 resource_size_t *offset2)
481 {
482         struct pci_dev *dev = vmd->dev;
483         u64 phys1, phys2;
484
485         if (native_hint) {
486                 u32 vmlock;
487                 int ret;
488
489                 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
490                 if (ret || vmlock == ~0)
491                         return -ENODEV;
492
493                 if (MB2_SHADOW_EN(vmlock)) {
494                         void __iomem *membar2;
495
496                         membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
497                         if (!membar2)
498                                 return -ENOMEM;
499                         phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
500                         phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
501                         pci_iounmap(dev, membar2);
502                 } else
503                         return 0;
504         } else {
505                 /* Hypervisor-Emulated Vendor-Specific Capability */
506                 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
507                 u32 reg, regu;
508
509                 pci_read_config_dword(dev, pos + 4, &reg);
510
511                 /* "SHDW" */
512                 if (pos && reg == 0x53484457) {
513                         pci_read_config_dword(dev, pos + 8, &reg);
514                         pci_read_config_dword(dev, pos + 12, &regu);
515                         phys1 = (u64) regu << 32 | reg;
516
517                         pci_read_config_dword(dev, pos + 16, &reg);
518                         pci_read_config_dword(dev, pos + 20, &regu);
519                         phys2 = (u64) regu << 32 | reg;
520                 } else
521                         return 0;
522         }
523
524         *offset1 = dev->resource[VMD_MEMBAR1].start -
525                         (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
526         *offset2 = dev->resource[VMD_MEMBAR2].start -
527                         (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
528
529         return 0;
530 }
531
532 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
533 {
534         struct pci_dev *dev = vmd->dev;
535         u16 reg;
536
537         pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
538         if (BUS_RESTRICT_CAP(reg)) {
539                 pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
540
541                 switch (BUS_RESTRICT_CFG(reg)) {
542                 case 0:
543                         vmd->busn_start = 0;
544                         break;
545                 case 1:
546                         vmd->busn_start = 128;
547                         break;
548                 case 2:
549                         vmd->busn_start = 224;
550                         break;
551                 default:
552                         pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
553                                 BUS_RESTRICT_CFG(reg));
554                         return -ENODEV;
555                 }
556         }
557
558         return 0;
559 }
560
561 static irqreturn_t vmd_irq(int irq, void *data)
562 {
563         struct vmd_irq_list *irqs = data;
564         struct vmd_irq *vmdirq;
565         int idx;
566
567         idx = srcu_read_lock(&irqs->srcu);
568         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
569                 generic_handle_irq(vmdirq->virq);
570         srcu_read_unlock(&irqs->srcu, idx);
571
572         return IRQ_HANDLED;
573 }
574
575 static int vmd_alloc_irqs(struct vmd_dev *vmd)
576 {
577         struct pci_dev *dev = vmd->dev;
578         int i, err;
579
580         vmd->msix_count = pci_msix_vec_count(dev);
581         if (vmd->msix_count < 0)
582                 return -ENODEV;
583
584         vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
585                                                 vmd->msix_count, PCI_IRQ_MSIX);
586         if (vmd->msix_count < 0)
587                 return vmd->msix_count;
588
589         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
590                                  GFP_KERNEL);
591         if (!vmd->irqs)
592                 return -ENOMEM;
593
594         for (i = 0; i < vmd->msix_count; i++) {
595                 err = init_srcu_struct(&vmd->irqs[i].srcu);
596                 if (err)
597                         return err;
598
599                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
600                 err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
601                                        vmd_irq, IRQF_NO_THREAD,
602                                        "vmd", &vmd->irqs[i]);
603                 if (err)
604                         return err;
605         }
606
607         return 0;
608 }
609
610 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
611 {
612         struct pci_sysdata *sd = &vmd->sysdata;
613         struct resource *res;
614         u32 upper_bits;
615         unsigned long flags;
616         LIST_HEAD(resources);
617         resource_size_t offset[2] = {0};
618         resource_size_t membar2_offset = 0x2000;
619         struct pci_bus *child;
620         int ret;
621
622         /*
623          * Shadow registers may exist in certain VMD device ids which allow
624          * guests to correctly assign host physical addresses to the root ports
625          * and child devices. These registers will either return the host value
626          * or 0, depending on an enable bit in the VMD device.
627          */
628         if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
629                 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
630                 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
631                 if (ret)
632                         return ret;
633         } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
634                 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
635                 if (ret)
636                         return ret;
637         }
638
639         /*
640          * Certain VMD devices may have a root port configuration option which
641          * limits the bus range to between 0-127, 128-255, or 224-255
642          */
643         if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
644                 ret = vmd_get_bus_number_start(vmd);
645                 if (ret)
646                         return ret;
647         }
648
649         res = &vmd->dev->resource[VMD_CFGBAR];
650         vmd->resources[0] = (struct resource) {
651                 .name  = "VMD CFGBAR",
652                 .start = vmd->busn_start,
653                 .end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
654                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
655         };
656
657         /*
658          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
659          * put 32-bit resources in the window.
660          *
661          * There's no hardware reason why a 64-bit window *couldn't*
662          * contain a 32-bit resource, but pbus_size_mem() computes the
663          * bridge window size assuming a 64-bit window will contain no
664          * 32-bit resources.  __pci_assign_resource() enforces that
665          * artificial restriction to make sure everything will fit.
666          *
667          * The only way we could use a 64-bit non-prefetchable MEMBAR is
668          * if its address is <4GB so that we can convert it to a 32-bit
669          * resource.  To be visible to the host OS, all VMD endpoints must
670          * be initially configured by platform BIOS, which includes setting
671          * up these resources.  We can assume the device is configured
672          * according to the platform needs.
673          */
674         res = &vmd->dev->resource[VMD_MEMBAR1];
675         upper_bits = upper_32_bits(res->end);
676         flags = res->flags & ~IORESOURCE_SIZEALIGN;
677         if (!upper_bits)
678                 flags &= ~IORESOURCE_MEM_64;
679         vmd->resources[1] = (struct resource) {
680                 .name  = "VMD MEMBAR1",
681                 .start = res->start,
682                 .end   = res->end,
683                 .flags = flags,
684                 .parent = res,
685         };
686
687         res = &vmd->dev->resource[VMD_MEMBAR2];
688         upper_bits = upper_32_bits(res->end);
689         flags = res->flags & ~IORESOURCE_SIZEALIGN;
690         if (!upper_bits)
691                 flags &= ~IORESOURCE_MEM_64;
692         vmd->resources[2] = (struct resource) {
693                 .name  = "VMD MEMBAR2",
694                 .start = res->start + membar2_offset,
695                 .end   = res->end,
696                 .flags = flags,
697                 .parent = res,
698         };
699
700         sd->vmd_dev = vmd->dev;
701         sd->domain = vmd_find_free_domain();
702         if (sd->domain < 0)
703                 return sd->domain;
704
705         sd->node = pcibus_to_node(vmd->dev->bus);
706
707         /*
708          * Currently MSI remapping must be enabled in guest passthrough mode
709          * due to some missing interrupt remapping plumbing. This is probably
710          * acceptable because the guest is usually CPU-limited and MSI
711          * remapping doesn't become a performance bottleneck.
712          */
713         if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
714             offset[0] || offset[1]) {
715                 ret = vmd_alloc_irqs(vmd);
716                 if (ret)
717                         return ret;
718
719                 vmd_set_msi_remapping(vmd, true);
720
721                 ret = vmd_create_irq_domain(vmd);
722                 if (ret)
723                         return ret;
724
725                 /*
726                  * Override the IRQ domain bus token so the domain can be
727                  * distinguished from a regular PCI/MSI domain.
728                  */
729                 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
730         } else {
731                 vmd_set_msi_remapping(vmd, false);
732         }
733
734         pci_add_resource(&resources, &vmd->resources[0]);
735         pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
736         pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
737
738         vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
739                                        &vmd_ops, sd, &resources);
740         if (!vmd->bus) {
741                 pci_free_resource_list(&resources);
742                 vmd_remove_irq_domain(vmd);
743                 return -ENODEV;
744         }
745
746         vmd_attach_resources(vmd);
747         if (vmd->irq_domain)
748                 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
749
750         pci_scan_child_bus(vmd->bus);
751         pci_assign_unassigned_bus_resources(vmd->bus);
752
753         /*
754          * VMD root buses are virtual and don't return true on pci_is_pcie()
755          * and will fail pcie_bus_configure_settings() early. It can instead be
756          * run on each of the real root ports.
757          */
758         list_for_each_entry(child, &vmd->bus->children, node)
759                 pcie_bus_configure_settings(child);
760
761         pci_bus_add_devices(vmd->bus);
762
763         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
764                                "domain"), "Can't create symlink to domain\n");
765         return 0;
766 }
767
768 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
769 {
770         unsigned long features = (unsigned long) id->driver_data;
771         struct vmd_dev *vmd;
772         int err;
773
774         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
775                 return -ENOMEM;
776
777         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
778         if (!vmd)
779                 return -ENOMEM;
780
781         vmd->dev = dev;
782         err = pcim_enable_device(dev);
783         if (err < 0)
784                 return err;
785
786         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
787         if (!vmd->cfgbar)
788                 return -ENOMEM;
789
790         pci_set_master(dev);
791         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
792             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
793                 return -ENODEV;
794
795         if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
796                 vmd->first_vec = 1;
797
798         spin_lock_init(&vmd->cfg_lock);
799         pci_set_drvdata(dev, vmd);
800         err = vmd_enable_domain(vmd, features);
801         if (err)
802                 return err;
803
804         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
805                  vmd->sysdata.domain);
806         return 0;
807 }
808
809 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
810 {
811         int i;
812
813         for (i = 0; i < vmd->msix_count; i++)
814                 cleanup_srcu_struct(&vmd->irqs[i].srcu);
815 }
816
817 static void vmd_remove(struct pci_dev *dev)
818 {
819         struct vmd_dev *vmd = pci_get_drvdata(dev);
820
821         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
822         pci_stop_root_bus(vmd->bus);
823         pci_remove_root_bus(vmd->bus);
824         vmd_cleanup_srcu(vmd);
825         vmd_detach_resources(vmd);
826         vmd_remove_irq_domain(vmd);
827 }
828
829 #ifdef CONFIG_PM_SLEEP
830 static int vmd_suspend(struct device *dev)
831 {
832         struct pci_dev *pdev = to_pci_dev(dev);
833         struct vmd_dev *vmd = pci_get_drvdata(pdev);
834         int i;
835
836         for (i = 0; i < vmd->msix_count; i++)
837                 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
838
839         return 0;
840 }
841
842 static int vmd_resume(struct device *dev)
843 {
844         struct pci_dev *pdev = to_pci_dev(dev);
845         struct vmd_dev *vmd = pci_get_drvdata(pdev);
846         int err, i;
847
848         for (i = 0; i < vmd->msix_count; i++) {
849                 err = devm_request_irq(dev, pci_irq_vector(pdev, i),
850                                        vmd_irq, IRQF_NO_THREAD,
851                                        "vmd", &vmd->irqs[i]);
852                 if (err)
853                         return err;
854         }
855
856         return 0;
857 }
858 #endif
859 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
860
861 static const struct pci_device_id vmd_ids[] = {
862         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
863                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
864         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
865                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
866                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
867                                 VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
868         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
869                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
870                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
871                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
872         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
873                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
874                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
875                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
876         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
877                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
878                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
879                                 VMD_FEAT_OFFSET_FIRST_VECTOR,},
880         {0,}
881 };
882 MODULE_DEVICE_TABLE(pci, vmd_ids);
883
884 static struct pci_driver vmd_drv = {
885         .name           = "vmd",
886         .id_table       = vmd_ids,
887         .probe          = vmd_probe,
888         .remove         = vmd_remove,
889         .driver         = {
890                 .pm     = &vmd_dev_pm_ops,
891         },
892 };
893 module_pci_driver(vmd_drv);
894
895 MODULE_AUTHOR("Intel Corporation");
896 MODULE_LICENSE("GPL v2");
897 MODULE_VERSION("0.6");