Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / pci / controller / vmd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-acpi.h>
15 #include <linux/pci-ecam.h>
16 #include <linux/srcu.h>
17 #include <linux/rculist.h>
18 #include <linux/rcupdate.h>
19
20 #include <asm/irqdomain.h>
21
22 #define VMD_CFGBAR      0
23 #define VMD_MEMBAR1     2
24 #define VMD_MEMBAR2     4
25
26 #define PCI_REG_VMCAP           0x40
27 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
28 #define PCI_REG_VMCONFIG        0x44
29 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
30 #define VMCONFIG_MSI_REMAP      0x2
31 #define PCI_REG_VMLOCK          0x70
32 #define MB2_SHADOW_EN(vmlock)   (vmlock & 0x2)
33
34 #define MB2_SHADOW_OFFSET       0x2000
35 #define MB2_SHADOW_SIZE         16
36
37 enum vmd_features {
38         /*
39          * Device may contain registers which hint the physical location of the
40          * membars, in order to allow proper address translation during
41          * resource assignment to enable guest virtualization
42          */
43         VMD_FEAT_HAS_MEMBAR_SHADOW              = (1 << 0),
44
45         /*
46          * Device may provide root port configuration information which limits
47          * bus numbering
48          */
49         VMD_FEAT_HAS_BUS_RESTRICTIONS           = (1 << 1),
50
51         /*
52          * Device contains physical location shadow registers in
53          * vendor-specific capability space
54          */
55         VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP        = (1 << 2),
56
57         /*
58          * Device may use MSI-X vector 0 for software triggering and will not
59          * be used for MSI remapping
60          */
61         VMD_FEAT_OFFSET_FIRST_VECTOR            = (1 << 3),
62
63         /*
64          * Device can bypass remapping MSI-X transactions into its MSI-X table,
65          * avoiding the requirement of a VMD MSI domain for child device
66          * interrupt handling.
67          */
68         VMD_FEAT_CAN_BYPASS_MSI_REMAP           = (1 << 4),
69
70         /*
71          * Enable ASPM on the PCIE root ports and set the default LTR of the
72          * storage devices on platforms where these values are not configured by
73          * BIOS. This is needed for laptops, which require these settings for
74          * proper power management of the SoC.
75          */
76         VMD_FEAT_BIOS_PM_QUIRK          = (1 << 5),
77 };
78
79 #define VMD_BIOS_PM_QUIRK_LTR   0x1003  /* 3145728 ns */
80
81 #define VMD_FEATS_CLIENT        (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |     \
82                                  VMD_FEAT_HAS_BUS_RESTRICTIONS |        \
83                                  VMD_FEAT_OFFSET_FIRST_VECTOR |         \
84                                  VMD_FEAT_BIOS_PM_QUIRK)
85
86 static DEFINE_IDA(vmd_instance_ida);
87
88 /*
89  * Lock for manipulating VMD IRQ lists.
90  */
91 static DEFINE_RAW_SPINLOCK(list_lock);
92
93 /**
94  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
95  * @node:       list item for parent traversal.
96  * @irq:        back pointer to parent.
97  * @enabled:    true if driver enabled IRQ
98  * @virq:       the virtual IRQ value provided to the requesting driver.
99  *
100  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
101  * a VMD IRQ using this structure.
102  */
103 struct vmd_irq {
104         struct list_head        node;
105         struct vmd_irq_list     *irq;
106         bool                    enabled;
107         unsigned int            virq;
108 };
109
110 /**
111  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
112  * @irq_list:   the list of irq's the VMD one demuxes to.
113  * @srcu:       SRCU struct for local synchronization.
114  * @count:      number of child IRQs assigned to this vector; used to track
115  *              sharing.
116  * @virq:       The underlying VMD Linux interrupt number
117  */
118 struct vmd_irq_list {
119         struct list_head        irq_list;
120         struct srcu_struct      srcu;
121         unsigned int            count;
122         unsigned int            virq;
123 };
124
125 struct vmd_dev {
126         struct pci_dev          *dev;
127
128         spinlock_t              cfg_lock;
129         void __iomem            *cfgbar;
130
131         int msix_count;
132         struct vmd_irq_list     *irqs;
133
134         struct pci_sysdata      sysdata;
135         struct resource         resources[3];
136         struct irq_domain       *irq_domain;
137         struct pci_bus          *bus;
138         u8                      busn_start;
139         u8                      first_vec;
140         char                    *name;
141         int                     instance;
142 };
143
144 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
145 {
146         return container_of(bus->sysdata, struct vmd_dev, sysdata);
147 }
148
149 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
150                                            struct vmd_irq_list *irqs)
151 {
152         return irqs - vmd->irqs;
153 }
154
155 /*
156  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
157  * but the MSI entry for the hardware it's driving will be programmed with a
158  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
159  * domain into one of its own, and the VMD driver de-muxes these for the
160  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
161  * and irq_chip to set this up.
162  */
163 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
164 {
165         struct vmd_irq *vmdirq = data->chip_data;
166         struct vmd_irq_list *irq = vmdirq->irq;
167         struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
168
169         memset(msg, 0, sizeof(*msg));
170         msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
171         msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
172         msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
173 }
174
175 /*
176  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
177  */
178 static void vmd_irq_enable(struct irq_data *data)
179 {
180         struct vmd_irq *vmdirq = data->chip_data;
181         unsigned long flags;
182
183         raw_spin_lock_irqsave(&list_lock, flags);
184         WARN_ON(vmdirq->enabled);
185         list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
186         vmdirq->enabled = true;
187         raw_spin_unlock_irqrestore(&list_lock, flags);
188
189         data->chip->irq_unmask(data);
190 }
191
192 static void vmd_irq_disable(struct irq_data *data)
193 {
194         struct vmd_irq *vmdirq = data->chip_data;
195         unsigned long flags;
196
197         data->chip->irq_mask(data);
198
199         raw_spin_lock_irqsave(&list_lock, flags);
200         if (vmdirq->enabled) {
201                 list_del_rcu(&vmdirq->node);
202                 vmdirq->enabled = false;
203         }
204         raw_spin_unlock_irqrestore(&list_lock, flags);
205 }
206
207 /*
208  * XXX: Stubbed until we develop acceptable way to not create conflicts with
209  * other devices sharing the same vector.
210  */
211 static int vmd_irq_set_affinity(struct irq_data *data,
212                                 const struct cpumask *dest, bool force)
213 {
214         return -EINVAL;
215 }
216
217 static struct irq_chip vmd_msi_controller = {
218         .name                   = "VMD-MSI",
219         .irq_enable             = vmd_irq_enable,
220         .irq_disable            = vmd_irq_disable,
221         .irq_compose_msi_msg    = vmd_compose_msi_msg,
222         .irq_set_affinity       = vmd_irq_set_affinity,
223 };
224
225 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
226                                      msi_alloc_info_t *arg)
227 {
228         return 0;
229 }
230
231 /*
232  * XXX: We can be even smarter selecting the best IRQ once we solve the
233  * affinity problem.
234  */
235 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
236 {
237         unsigned long flags;
238         int i, best;
239
240         if (vmd->msix_count == 1 + vmd->first_vec)
241                 return &vmd->irqs[vmd->first_vec];
242
243         /*
244          * White list for fast-interrupt handlers. All others will share the
245          * "slow" interrupt vector.
246          */
247         switch (msi_desc_to_pci_dev(desc)->class) {
248         case PCI_CLASS_STORAGE_EXPRESS:
249                 break;
250         default:
251                 return &vmd->irqs[vmd->first_vec];
252         }
253
254         raw_spin_lock_irqsave(&list_lock, flags);
255         best = vmd->first_vec + 1;
256         for (i = best; i < vmd->msix_count; i++)
257                 if (vmd->irqs[i].count < vmd->irqs[best].count)
258                         best = i;
259         vmd->irqs[best].count++;
260         raw_spin_unlock_irqrestore(&list_lock, flags);
261
262         return &vmd->irqs[best];
263 }
264
265 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
266                         unsigned int virq, irq_hw_number_t hwirq,
267                         msi_alloc_info_t *arg)
268 {
269         struct msi_desc *desc = arg->desc;
270         struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
271         struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
272
273         if (!vmdirq)
274                 return -ENOMEM;
275
276         INIT_LIST_HEAD(&vmdirq->node);
277         vmdirq->irq = vmd_next_irq(vmd, desc);
278         vmdirq->virq = virq;
279
280         irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq,
281                             handle_untracked_irq, vmd, NULL);
282         return 0;
283 }
284
285 static void vmd_msi_free(struct irq_domain *domain,
286                         struct msi_domain_info *info, unsigned int virq)
287 {
288         struct vmd_irq *vmdirq = irq_get_chip_data(virq);
289         unsigned long flags;
290
291         synchronize_srcu(&vmdirq->irq->srcu);
292
293         /* XXX: Potential optimization to rebalance */
294         raw_spin_lock_irqsave(&list_lock, flags);
295         vmdirq->irq->count--;
296         raw_spin_unlock_irqrestore(&list_lock, flags);
297
298         kfree(vmdirq);
299 }
300
301 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
302                            int nvec, msi_alloc_info_t *arg)
303 {
304         struct pci_dev *pdev = to_pci_dev(dev);
305         struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
306
307         if (nvec > vmd->msix_count)
308                 return vmd->msix_count;
309
310         memset(arg, 0, sizeof(*arg));
311         return 0;
312 }
313
314 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
315 {
316         arg->desc = desc;
317 }
318
319 static struct msi_domain_ops vmd_msi_domain_ops = {
320         .get_hwirq      = vmd_get_hwirq,
321         .msi_init       = vmd_msi_init,
322         .msi_free       = vmd_msi_free,
323         .msi_prepare    = vmd_msi_prepare,
324         .set_desc       = vmd_set_desc,
325 };
326
327 static struct msi_domain_info vmd_msi_domain_info = {
328         .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
329                           MSI_FLAG_PCI_MSIX,
330         .ops            = &vmd_msi_domain_ops,
331         .chip           = &vmd_msi_controller,
332 };
333
334 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
335 {
336         u16 reg;
337
338         pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
339         reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
340                        (reg | VMCONFIG_MSI_REMAP);
341         pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
342 }
343
344 static int vmd_create_irq_domain(struct vmd_dev *vmd)
345 {
346         struct fwnode_handle *fn;
347
348         fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
349         if (!fn)
350                 return -ENODEV;
351
352         vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
353         if (!vmd->irq_domain) {
354                 irq_domain_free_fwnode(fn);
355                 return -ENODEV;
356         }
357
358         return 0;
359 }
360
361 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
362 {
363         /*
364          * Some production BIOS won't enable remapping between soft reboots.
365          * Ensure remapping is restored before unloading the driver.
366          */
367         if (!vmd->msix_count)
368                 vmd_set_msi_remapping(vmd, true);
369
370         if (vmd->irq_domain) {
371                 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
372
373                 irq_domain_remove(vmd->irq_domain);
374                 irq_domain_free_fwnode(fn);
375         }
376 }
377
378 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
379                                   unsigned int devfn, int reg, int len)
380 {
381         unsigned int busnr_ecam = bus->number - vmd->busn_start;
382         u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
383
384         if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
385                 return NULL;
386
387         return vmd->cfgbar + offset;
388 }
389
390 /*
391  * CPU may deadlock if config space is not serialized on some versions of this
392  * hardware, so all config space access is done under a spinlock.
393  */
394 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
395                         int len, u32 *value)
396 {
397         struct vmd_dev *vmd = vmd_from_bus(bus);
398         void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
399         unsigned long flags;
400         int ret = 0;
401
402         if (!addr)
403                 return -EFAULT;
404
405         spin_lock_irqsave(&vmd->cfg_lock, flags);
406         switch (len) {
407         case 1:
408                 *value = readb(addr);
409                 break;
410         case 2:
411                 *value = readw(addr);
412                 break;
413         case 4:
414                 *value = readl(addr);
415                 break;
416         default:
417                 ret = -EINVAL;
418                 break;
419         }
420         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
421         return ret;
422 }
423
424 /*
425  * VMD h/w converts non-posted config writes to posted memory writes. The
426  * read-back in this function forces the completion so it returns only after
427  * the config space was written, as expected.
428  */
429 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
430                          int len, u32 value)
431 {
432         struct vmd_dev *vmd = vmd_from_bus(bus);
433         void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
434         unsigned long flags;
435         int ret = 0;
436
437         if (!addr)
438                 return -EFAULT;
439
440         spin_lock_irqsave(&vmd->cfg_lock, flags);
441         switch (len) {
442         case 1:
443                 writeb(value, addr);
444                 readb(addr);
445                 break;
446         case 2:
447                 writew(value, addr);
448                 readw(addr);
449                 break;
450         case 4:
451                 writel(value, addr);
452                 readl(addr);
453                 break;
454         default:
455                 ret = -EINVAL;
456                 break;
457         }
458         spin_unlock_irqrestore(&vmd->cfg_lock, flags);
459         return ret;
460 }
461
462 static struct pci_ops vmd_ops = {
463         .read           = vmd_pci_read,
464         .write          = vmd_pci_write,
465 };
466
467 #ifdef CONFIG_ACPI
468 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
469 {
470         struct pci_host_bridge *bridge;
471         u32 busnr, addr;
472
473         if (pci_dev->bus->ops != &vmd_ops)
474                 return NULL;
475
476         bridge = pci_find_host_bridge(pci_dev->bus);
477         busnr = pci_dev->bus->number - bridge->bus->number;
478         /*
479          * The address computation below is only applicable to relative bus
480          * numbers below 32.
481          */
482         if (busnr > 31)
483                 return NULL;
484
485         addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
486
487         dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
488                 addr);
489
490         return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
491                                       false);
492 }
493
494 static bool hook_installed;
495
496 static void vmd_acpi_begin(void)
497 {
498         if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
499                 return;
500
501         hook_installed = true;
502 }
503
504 static void vmd_acpi_end(void)
505 {
506         if (!hook_installed)
507                 return;
508
509         pci_acpi_clear_companion_lookup_hook();
510         hook_installed = false;
511 }
512 #else
513 static inline void vmd_acpi_begin(void) { }
514 static inline void vmd_acpi_end(void) { }
515 #endif /* CONFIG_ACPI */
516
517 static void vmd_domain_reset(struct vmd_dev *vmd)
518 {
519         u16 bus, max_buses = resource_size(&vmd->resources[0]);
520         u8 dev, functions, fn, hdr_type;
521         char __iomem *base;
522
523         for (bus = 0; bus < max_buses; bus++) {
524                 for (dev = 0; dev < 32; dev++) {
525                         base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
526                                                 PCI_DEVFN(dev, 0), 0);
527
528                         hdr_type = readb(base + PCI_HEADER_TYPE);
529
530                         functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1;
531                         for (fn = 0; fn < functions; fn++) {
532                                 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
533                                                 PCI_DEVFN(dev, fn), 0);
534
535                                 hdr_type = readb(base + PCI_HEADER_TYPE) &
536                                                 PCI_HEADER_TYPE_MASK;
537
538                                 if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
539                                     (readw(base + PCI_CLASS_DEVICE) !=
540                                      PCI_CLASS_BRIDGE_PCI))
541                                         continue;
542
543                                 /*
544                                  * Temporarily disable the I/O range before updating
545                                  * PCI_IO_BASE.
546                                  */
547                                 writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
548                                 /* Update lower 16 bits of I/O base/limit */
549                                 writew(0x00f0, base + PCI_IO_BASE);
550                                 /* Update upper 16 bits of I/O base/limit */
551                                 writel(0, base + PCI_IO_BASE_UPPER16);
552
553                                 /* MMIO Base/Limit */
554                                 writel(0x0000fff0, base + PCI_MEMORY_BASE);
555
556                                 /* Prefetchable MMIO Base/Limit */
557                                 writel(0, base + PCI_PREF_LIMIT_UPPER32);
558                                 writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
559                                 writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
560                         }
561                 }
562         }
563 }
564
565 static void vmd_attach_resources(struct vmd_dev *vmd)
566 {
567         vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
568         vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
569 }
570
571 static void vmd_detach_resources(struct vmd_dev *vmd)
572 {
573         vmd->dev->resource[VMD_MEMBAR1].child = NULL;
574         vmd->dev->resource[VMD_MEMBAR2].child = NULL;
575 }
576
577 /*
578  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
579  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
580  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
581  * currently reserved.
582  */
583 static int vmd_find_free_domain(void)
584 {
585         int domain = 0xffff;
586         struct pci_bus *bus = NULL;
587
588         while ((bus = pci_find_next_bus(bus)) != NULL)
589                 domain = max_t(int, domain, pci_domain_nr(bus));
590         return domain + 1;
591 }
592
593 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
594                                 resource_size_t *offset1,
595                                 resource_size_t *offset2)
596 {
597         struct pci_dev *dev = vmd->dev;
598         u64 phys1, phys2;
599
600         if (native_hint) {
601                 u32 vmlock;
602                 int ret;
603
604                 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
605                 if (ret || PCI_POSSIBLE_ERROR(vmlock))
606                         return -ENODEV;
607
608                 if (MB2_SHADOW_EN(vmlock)) {
609                         void __iomem *membar2;
610
611                         membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
612                         if (!membar2)
613                                 return -ENOMEM;
614                         phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
615                         phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
616                         pci_iounmap(dev, membar2);
617                 } else
618                         return 0;
619         } else {
620                 /* Hypervisor-Emulated Vendor-Specific Capability */
621                 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
622                 u32 reg, regu;
623
624                 pci_read_config_dword(dev, pos + 4, &reg);
625
626                 /* "SHDW" */
627                 if (pos && reg == 0x53484457) {
628                         pci_read_config_dword(dev, pos + 8, &reg);
629                         pci_read_config_dword(dev, pos + 12, &regu);
630                         phys1 = (u64) regu << 32 | reg;
631
632                         pci_read_config_dword(dev, pos + 16, &reg);
633                         pci_read_config_dword(dev, pos + 20, &regu);
634                         phys2 = (u64) regu << 32 | reg;
635                 } else
636                         return 0;
637         }
638
639         *offset1 = dev->resource[VMD_MEMBAR1].start -
640                         (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
641         *offset2 = dev->resource[VMD_MEMBAR2].start -
642                         (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
643
644         return 0;
645 }
646
647 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
648 {
649         struct pci_dev *dev = vmd->dev;
650         u16 reg;
651
652         pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
653         if (BUS_RESTRICT_CAP(reg)) {
654                 pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
655
656                 switch (BUS_RESTRICT_CFG(reg)) {
657                 case 0:
658                         vmd->busn_start = 0;
659                         break;
660                 case 1:
661                         vmd->busn_start = 128;
662                         break;
663                 case 2:
664                         vmd->busn_start = 224;
665                         break;
666                 default:
667                         pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
668                                 BUS_RESTRICT_CFG(reg));
669                         return -ENODEV;
670                 }
671         }
672
673         return 0;
674 }
675
676 static irqreturn_t vmd_irq(int irq, void *data)
677 {
678         struct vmd_irq_list *irqs = data;
679         struct vmd_irq *vmdirq;
680         int idx;
681
682         idx = srcu_read_lock(&irqs->srcu);
683         list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
684                 generic_handle_irq(vmdirq->virq);
685         srcu_read_unlock(&irqs->srcu, idx);
686
687         return IRQ_HANDLED;
688 }
689
690 static int vmd_alloc_irqs(struct vmd_dev *vmd)
691 {
692         struct pci_dev *dev = vmd->dev;
693         int i, err;
694
695         vmd->msix_count = pci_msix_vec_count(dev);
696         if (vmd->msix_count < 0)
697                 return -ENODEV;
698
699         vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
700                                                 vmd->msix_count, PCI_IRQ_MSIX);
701         if (vmd->msix_count < 0)
702                 return vmd->msix_count;
703
704         vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
705                                  GFP_KERNEL);
706         if (!vmd->irqs)
707                 return -ENOMEM;
708
709         for (i = 0; i < vmd->msix_count; i++) {
710                 err = init_srcu_struct(&vmd->irqs[i].srcu);
711                 if (err)
712                         return err;
713
714                 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
715                 vmd->irqs[i].virq = pci_irq_vector(dev, i);
716                 err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
717                                        vmd_irq, IRQF_NO_THREAD,
718                                        vmd->name, &vmd->irqs[i]);
719                 if (err)
720                         return err;
721         }
722
723         return 0;
724 }
725
726 /*
727  * Since VMD is an aperture to regular PCIe root ports, only allow it to
728  * control features that the OS is allowed to control on the physical PCI bus.
729  */
730 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
731                                        struct pci_host_bridge *vmd_bridge)
732 {
733         vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
734         vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
735         vmd_bridge->native_aer = root_bridge->native_aer;
736         vmd_bridge->native_pme = root_bridge->native_pme;
737         vmd_bridge->native_ltr = root_bridge->native_ltr;
738         vmd_bridge->native_dpc = root_bridge->native_dpc;
739 }
740
741 /*
742  * Enable ASPM and LTR settings on devices that aren't configured by BIOS.
743  */
744 static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
745 {
746         unsigned long features = *(unsigned long *)userdata;
747         u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
748         u32 ltr_reg;
749         int pos;
750
751         if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
752                 return 0;
753
754         pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL);
755
756         pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
757         if (!pos)
758                 return 0;
759
760         /*
761          * Skip if the max snoop LTR is non-zero, indicating BIOS has set it
762          * so the LTR quirk is not needed.
763          */
764         pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, &ltr_reg);
765         if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
766                 return 0;
767
768         /*
769          * Set the default values to the maximum required by the platform to
770          * allow the deepest power management savings. Write as a DWORD where
771          * the lower word is the max snoop latency and the upper word is the
772          * max non-snoop latency.
773          */
774         ltr_reg = (ltr << 16) | ltr;
775         pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
776         pci_info(pdev, "VMD: Default LTR value set by driver\n");
777
778         return 0;
779 }
780
781 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
782 {
783         struct pci_sysdata *sd = &vmd->sysdata;
784         struct resource *res;
785         u32 upper_bits;
786         unsigned long flags;
787         LIST_HEAD(resources);
788         resource_size_t offset[2] = {0};
789         resource_size_t membar2_offset = 0x2000;
790         struct pci_bus *child;
791         struct pci_dev *dev;
792         int ret;
793
794         /*
795          * Shadow registers may exist in certain VMD device ids which allow
796          * guests to correctly assign host physical addresses to the root ports
797          * and child devices. These registers will either return the host value
798          * or 0, depending on an enable bit in the VMD device.
799          */
800         if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
801                 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
802                 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
803                 if (ret)
804                         return ret;
805         } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
806                 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
807                 if (ret)
808                         return ret;
809         }
810
811         /*
812          * Certain VMD devices may have a root port configuration option which
813          * limits the bus range to between 0-127, 128-255, or 224-255
814          */
815         if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
816                 ret = vmd_get_bus_number_start(vmd);
817                 if (ret)
818                         return ret;
819         }
820
821         res = &vmd->dev->resource[VMD_CFGBAR];
822         vmd->resources[0] = (struct resource) {
823                 .name  = "VMD CFGBAR",
824                 .start = vmd->busn_start,
825                 .end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
826                 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
827         };
828
829         /*
830          * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
831          * put 32-bit resources in the window.
832          *
833          * There's no hardware reason why a 64-bit window *couldn't*
834          * contain a 32-bit resource, but pbus_size_mem() computes the
835          * bridge window size assuming a 64-bit window will contain no
836          * 32-bit resources.  __pci_assign_resource() enforces that
837          * artificial restriction to make sure everything will fit.
838          *
839          * The only way we could use a 64-bit non-prefetchable MEMBAR is
840          * if its address is <4GB so that we can convert it to a 32-bit
841          * resource.  To be visible to the host OS, all VMD endpoints must
842          * be initially configured by platform BIOS, which includes setting
843          * up these resources.  We can assume the device is configured
844          * according to the platform needs.
845          */
846         res = &vmd->dev->resource[VMD_MEMBAR1];
847         upper_bits = upper_32_bits(res->end);
848         flags = res->flags & ~IORESOURCE_SIZEALIGN;
849         if (!upper_bits)
850                 flags &= ~IORESOURCE_MEM_64;
851         vmd->resources[1] = (struct resource) {
852                 .name  = "VMD MEMBAR1",
853                 .start = res->start,
854                 .end   = res->end,
855                 .flags = flags,
856                 .parent = res,
857         };
858
859         res = &vmd->dev->resource[VMD_MEMBAR2];
860         upper_bits = upper_32_bits(res->end);
861         flags = res->flags & ~IORESOURCE_SIZEALIGN;
862         if (!upper_bits)
863                 flags &= ~IORESOURCE_MEM_64;
864         vmd->resources[2] = (struct resource) {
865                 .name  = "VMD MEMBAR2",
866                 .start = res->start + membar2_offset,
867                 .end   = res->end,
868                 .flags = flags,
869                 .parent = res,
870         };
871
872         sd->vmd_dev = vmd->dev;
873         sd->domain = vmd_find_free_domain();
874         if (sd->domain < 0)
875                 return sd->domain;
876
877         sd->node = pcibus_to_node(vmd->dev->bus);
878
879         /*
880          * Currently MSI remapping must be enabled in guest passthrough mode
881          * due to some missing interrupt remapping plumbing. This is probably
882          * acceptable because the guest is usually CPU-limited and MSI
883          * remapping doesn't become a performance bottleneck.
884          */
885         if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
886             offset[0] || offset[1]) {
887                 ret = vmd_alloc_irqs(vmd);
888                 if (ret)
889                         return ret;
890
891                 vmd_set_msi_remapping(vmd, true);
892
893                 ret = vmd_create_irq_domain(vmd);
894                 if (ret)
895                         return ret;
896
897                 /*
898                  * Override the IRQ domain bus token so the domain can be
899                  * distinguished from a regular PCI/MSI domain.
900                  */
901                 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
902         } else {
903                 vmd_set_msi_remapping(vmd, false);
904         }
905
906         pci_add_resource(&resources, &vmd->resources[0]);
907         pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
908         pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
909
910         vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
911                                        &vmd_ops, sd, &resources);
912         if (!vmd->bus) {
913                 pci_free_resource_list(&resources);
914                 vmd_remove_irq_domain(vmd);
915                 return -ENODEV;
916         }
917
918         vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
919                                    to_pci_host_bridge(vmd->bus->bridge));
920
921         vmd_attach_resources(vmd);
922         if (vmd->irq_domain)
923                 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
924         else
925                 dev_set_msi_domain(&vmd->bus->dev,
926                                    dev_get_msi_domain(&vmd->dev->dev));
927
928         vmd_acpi_begin();
929
930         pci_scan_child_bus(vmd->bus);
931         vmd_domain_reset(vmd);
932
933         /* When Intel VMD is enabled, the OS does not discover the Root Ports
934          * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
935          * a reset to the parent of the PCI device supplied as argument. This
936          * is why we pass a child device, so the reset can be triggered at
937          * the Intel bridge level and propagated to all the children in the
938          * hierarchy.
939          */
940         list_for_each_entry(child, &vmd->bus->children, node) {
941                 if (!list_empty(&child->devices)) {
942                         dev = list_first_entry(&child->devices,
943                                                struct pci_dev, bus_list);
944                         ret = pci_reset_bus(dev);
945                         if (ret)
946                                 pci_warn(dev, "can't reset device: %d\n", ret);
947
948                         break;
949                 }
950         }
951
952         pci_assign_unassigned_bus_resources(vmd->bus);
953
954         pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
955
956         /*
957          * VMD root buses are virtual and don't return true on pci_is_pcie()
958          * and will fail pcie_bus_configure_settings() early. It can instead be
959          * run on each of the real root ports.
960          */
961         list_for_each_entry(child, &vmd->bus->children, node)
962                 pcie_bus_configure_settings(child);
963
964         pci_bus_add_devices(vmd->bus);
965
966         vmd_acpi_end();
967
968         WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
969                                "domain"), "Can't create symlink to domain\n");
970         return 0;
971 }
972
973 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
974 {
975         unsigned long features = (unsigned long) id->driver_data;
976         struct vmd_dev *vmd;
977         int err;
978
979         if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
980                 return -ENOMEM;
981
982         vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
983         if (!vmd)
984                 return -ENOMEM;
985
986         vmd->dev = dev;
987         vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL);
988         if (vmd->instance < 0)
989                 return vmd->instance;
990
991         vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
992                                    vmd->instance);
993         if (!vmd->name) {
994                 err = -ENOMEM;
995                 goto out_release_instance;
996         }
997
998         err = pcim_enable_device(dev);
999         if (err < 0)
1000                 goto out_release_instance;
1001
1002         vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
1003         if (!vmd->cfgbar) {
1004                 err = -ENOMEM;
1005                 goto out_release_instance;
1006         }
1007
1008         pci_set_master(dev);
1009         if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
1010             dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
1011                 err = -ENODEV;
1012                 goto out_release_instance;
1013         }
1014
1015         if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
1016                 vmd->first_vec = 1;
1017
1018         spin_lock_init(&vmd->cfg_lock);
1019         pci_set_drvdata(dev, vmd);
1020         err = vmd_enable_domain(vmd, features);
1021         if (err)
1022                 goto out_release_instance;
1023
1024         dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
1025                  vmd->sysdata.domain);
1026         return 0;
1027
1028  out_release_instance:
1029         ida_free(&vmd_instance_ida, vmd->instance);
1030         return err;
1031 }
1032
1033 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
1034 {
1035         int i;
1036
1037         for (i = 0; i < vmd->msix_count; i++)
1038                 cleanup_srcu_struct(&vmd->irqs[i].srcu);
1039 }
1040
1041 static void vmd_remove(struct pci_dev *dev)
1042 {
1043         struct vmd_dev *vmd = pci_get_drvdata(dev);
1044
1045         sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
1046         pci_stop_root_bus(vmd->bus);
1047         pci_remove_root_bus(vmd->bus);
1048         vmd_cleanup_srcu(vmd);
1049         vmd_detach_resources(vmd);
1050         vmd_remove_irq_domain(vmd);
1051         ida_free(&vmd_instance_ida, vmd->instance);
1052 }
1053
1054 static void vmd_shutdown(struct pci_dev *dev)
1055 {
1056         struct vmd_dev *vmd = pci_get_drvdata(dev);
1057
1058         vmd_remove_irq_domain(vmd);
1059 }
1060
1061 #ifdef CONFIG_PM_SLEEP
1062 static int vmd_suspend(struct device *dev)
1063 {
1064         struct pci_dev *pdev = to_pci_dev(dev);
1065         struct vmd_dev *vmd = pci_get_drvdata(pdev);
1066         int i;
1067
1068         for (i = 0; i < vmd->msix_count; i++)
1069                 devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
1070
1071         return 0;
1072 }
1073
1074 static int vmd_resume(struct device *dev)
1075 {
1076         struct pci_dev *pdev = to_pci_dev(dev);
1077         struct vmd_dev *vmd = pci_get_drvdata(pdev);
1078         int err, i;
1079
1080         vmd_set_msi_remapping(vmd, !!vmd->irq_domain);
1081
1082         for (i = 0; i < vmd->msix_count; i++) {
1083                 err = devm_request_irq(dev, vmd->irqs[i].virq,
1084                                        vmd_irq, IRQF_NO_THREAD,
1085                                        vmd->name, &vmd->irqs[i]);
1086                 if (err)
1087                         return err;
1088         }
1089
1090         return 0;
1091 }
1092 #endif
1093 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1094
1095 static const struct pci_device_id vmd_ids[] = {
1096         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1097                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1098         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1099                 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1100                                 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1101                                 VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1102         {PCI_VDEVICE(INTEL, 0x467f),
1103                 .driver_data = VMD_FEATS_CLIENT,},
1104         {PCI_VDEVICE(INTEL, 0x4c3d),
1105                 .driver_data = VMD_FEATS_CLIENT,},
1106         {PCI_VDEVICE(INTEL, 0xa77f),
1107                 .driver_data = VMD_FEATS_CLIENT,},
1108         {PCI_VDEVICE(INTEL, 0x7d0b),
1109                 .driver_data = VMD_FEATS_CLIENT,},
1110         {PCI_VDEVICE(INTEL, 0xad0b),
1111                 .driver_data = VMD_FEATS_CLIENT,},
1112         {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1113                 .driver_data = VMD_FEATS_CLIENT,},
1114         {0,}
1115 };
1116 MODULE_DEVICE_TABLE(pci, vmd_ids);
1117
1118 static struct pci_driver vmd_drv = {
1119         .name           = "vmd",
1120         .id_table       = vmd_ids,
1121         .probe          = vmd_probe,
1122         .remove         = vmd_remove,
1123         .shutdown       = vmd_shutdown,
1124         .driver         = {
1125                 .pm     = &vmd_dev_pm_ops,
1126         },
1127 };
1128 module_pci_driver(vmd_drv);
1129
1130 MODULE_AUTHOR("Intel Corporation");
1131 MODULE_LICENSE("GPL v2");
1132 MODULE_VERSION("0.6");