block: remove i_bdev
[linux-2.6-microblaze.git] / drivers / md / dm-table.c
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/lcm.h>
22 #include <linux/blk-mq.h>
23 #include <linux/mount.h>
24 #include <linux/dax.h>
25
26 #define DM_MSG_PREFIX "table"
27
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32 /*
33  * Similar to ceiling(log_size(n))
34  */
35 static unsigned int int_log(unsigned int n, unsigned int base)
36 {
37         int result = 0;
38
39         while (n > 1) {
40                 n = dm_div_up(n, base);
41                 result++;
42         }
43
44         return result;
45 }
46
47 /*
48  * Calculate the index of the child node of the n'th node k'th key.
49  */
50 static inline unsigned int get_child(unsigned int n, unsigned int k)
51 {
52         return (n * CHILDREN_PER_NODE) + k;
53 }
54
55 /*
56  * Return the n'th node of level l from table t.
57  */
58 static inline sector_t *get_node(struct dm_table *t,
59                                  unsigned int l, unsigned int n)
60 {
61         return t->index[l] + (n * KEYS_PER_NODE);
62 }
63
64 /*
65  * Return the highest key that you could lookup from the n'th
66  * node on level l of the btree.
67  */
68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
69 {
70         for (; l < t->depth - 1; l++)
71                 n = get_child(n, CHILDREN_PER_NODE - 1);
72
73         if (n >= t->counts[l])
74                 return (sector_t) - 1;
75
76         return get_node(t, l, n)[KEYS_PER_NODE - 1];
77 }
78
79 /*
80  * Fills in a level of the btree based on the highs of the level
81  * below it.
82  */
83 static int setup_btree_index(unsigned int l, struct dm_table *t)
84 {
85         unsigned int n, k;
86         sector_t *node;
87
88         for (n = 0U; n < t->counts[l]; n++) {
89                 node = get_node(t, l, n);
90
91                 for (k = 0U; k < KEYS_PER_NODE; k++)
92                         node[k] = high(t, l + 1, get_child(n, k));
93         }
94
95         return 0;
96 }
97
98 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
99 {
100         unsigned long size;
101         void *addr;
102
103         /*
104          * Check that we're not going to overflow.
105          */
106         if (nmemb > (ULONG_MAX / elem_size))
107                 return NULL;
108
109         size = nmemb * elem_size;
110         addr = vzalloc(size);
111
112         return addr;
113 }
114 EXPORT_SYMBOL(dm_vcalloc);
115
116 /*
117  * highs, and targets are managed as dynamic arrays during a
118  * table load.
119  */
120 static int alloc_targets(struct dm_table *t, unsigned int num)
121 {
122         sector_t *n_highs;
123         struct dm_target *n_targets;
124
125         /*
126          * Allocate both the target array and offset array at once.
127          */
128         n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
129                                           sizeof(sector_t));
130         if (!n_highs)
131                 return -ENOMEM;
132
133         n_targets = (struct dm_target *) (n_highs + num);
134
135         memset(n_highs, -1, sizeof(*n_highs) * num);
136         vfree(t->highs);
137
138         t->num_allocated = num;
139         t->highs = n_highs;
140         t->targets = n_targets;
141
142         return 0;
143 }
144
145 int dm_table_create(struct dm_table **result, fmode_t mode,
146                     unsigned num_targets, struct mapped_device *md)
147 {
148         struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
149
150         if (!t)
151                 return -ENOMEM;
152
153         INIT_LIST_HEAD(&t->devices);
154
155         if (!num_targets)
156                 num_targets = KEYS_PER_NODE;
157
158         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
159
160         if (!num_targets) {
161                 kfree(t);
162                 return -ENOMEM;
163         }
164
165         if (alloc_targets(t, num_targets)) {
166                 kfree(t);
167                 return -ENOMEM;
168         }
169
170         t->type = DM_TYPE_NONE;
171         t->mode = mode;
172         t->md = md;
173         *result = t;
174         return 0;
175 }
176
177 static void free_devices(struct list_head *devices, struct mapped_device *md)
178 {
179         struct list_head *tmp, *next;
180
181         list_for_each_safe(tmp, next, devices) {
182                 struct dm_dev_internal *dd =
183                     list_entry(tmp, struct dm_dev_internal, list);
184                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
185                        dm_device_name(md), dd->dm_dev->name);
186                 dm_put_table_device(md, dd->dm_dev);
187                 kfree(dd);
188         }
189 }
190
191 void dm_table_destroy(struct dm_table *t)
192 {
193         unsigned int i;
194
195         if (!t)
196                 return;
197
198         /* free the indexes */
199         if (t->depth >= 2)
200                 vfree(t->index[t->depth - 2]);
201
202         /* free the targets */
203         for (i = 0; i < t->num_targets; i++) {
204                 struct dm_target *tgt = t->targets + i;
205
206                 if (tgt->type->dtr)
207                         tgt->type->dtr(tgt);
208
209                 dm_put_target_type(tgt->type);
210         }
211
212         vfree(t->highs);
213
214         /* free the device list */
215         free_devices(&t->devices, t->md);
216
217         dm_free_md_mempools(t->mempools);
218
219         kfree(t);
220 }
221
222 /*
223  * See if we've already got a device in the list.
224  */
225 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
226 {
227         struct dm_dev_internal *dd;
228
229         list_for_each_entry (dd, l, list)
230                 if (dd->dm_dev->bdev->bd_dev == dev)
231                         return dd;
232
233         return NULL;
234 }
235
236 /*
237  * If possible, this checks an area of a destination device is invalid.
238  */
239 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
240                                   sector_t start, sector_t len, void *data)
241 {
242         struct queue_limits *limits = data;
243         struct block_device *bdev = dev->bdev;
244         sector_t dev_size =
245                 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
246         unsigned short logical_block_size_sectors =
247                 limits->logical_block_size >> SECTOR_SHIFT;
248         char b[BDEVNAME_SIZE];
249
250         if (!dev_size)
251                 return 0;
252
253         if ((start >= dev_size) || (start + len > dev_size)) {
254                 DMWARN("%s: %s too small for target: "
255                        "start=%llu, len=%llu, dev_size=%llu",
256                        dm_device_name(ti->table->md), bdevname(bdev, b),
257                        (unsigned long long)start,
258                        (unsigned long long)len,
259                        (unsigned long long)dev_size);
260                 return 1;
261         }
262
263         /*
264          * If the target is mapped to zoned block device(s), check
265          * that the zones are not partially mapped.
266          */
267         if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
268                 unsigned int zone_sectors = bdev_zone_sectors(bdev);
269
270                 if (start & (zone_sectors - 1)) {
271                         DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
272                                dm_device_name(ti->table->md),
273                                (unsigned long long)start,
274                                zone_sectors, bdevname(bdev, b));
275                         return 1;
276                 }
277
278                 /*
279                  * Note: The last zone of a zoned block device may be smaller
280                  * than other zones. So for a target mapping the end of a
281                  * zoned block device with such a zone, len would not be zone
282                  * aligned. We do not allow such last smaller zone to be part
283                  * of the mapping here to ensure that mappings with multiple
284                  * devices do not end up with a smaller zone in the middle of
285                  * the sector range.
286                  */
287                 if (len & (zone_sectors - 1)) {
288                         DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
289                                dm_device_name(ti->table->md),
290                                (unsigned long long)len,
291                                zone_sectors, bdevname(bdev, b));
292                         return 1;
293                 }
294         }
295
296         if (logical_block_size_sectors <= 1)
297                 return 0;
298
299         if (start & (logical_block_size_sectors - 1)) {
300                 DMWARN("%s: start=%llu not aligned to h/w "
301                        "logical block size %u of %s",
302                        dm_device_name(ti->table->md),
303                        (unsigned long long)start,
304                        limits->logical_block_size, bdevname(bdev, b));
305                 return 1;
306         }
307
308         if (len & (logical_block_size_sectors - 1)) {
309                 DMWARN("%s: len=%llu not aligned to h/w "
310                        "logical block size %u of %s",
311                        dm_device_name(ti->table->md),
312                        (unsigned long long)len,
313                        limits->logical_block_size, bdevname(bdev, b));
314                 return 1;
315         }
316
317         return 0;
318 }
319
320 /*
321  * This upgrades the mode on an already open dm_dev, being
322  * careful to leave things as they were if we fail to reopen the
323  * device and not to touch the existing bdev field in case
324  * it is accessed concurrently.
325  */
326 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
327                         struct mapped_device *md)
328 {
329         int r;
330         struct dm_dev *old_dev, *new_dev;
331
332         old_dev = dd->dm_dev;
333
334         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
335                                 dd->dm_dev->mode | new_mode, &new_dev);
336         if (r)
337                 return r;
338
339         dd->dm_dev = new_dev;
340         dm_put_table_device(md, old_dev);
341
342         return 0;
343 }
344
345 /*
346  * Convert the path to a device
347  */
348 dev_t dm_get_dev_t(const char *path)
349 {
350         dev_t dev;
351
352         if (lookup_bdev(path, &dev))
353                 dev = name_to_dev_t(path);
354         return dev;
355 }
356 EXPORT_SYMBOL_GPL(dm_get_dev_t);
357
358 /*
359  * Add a device to the list, or just increment the usage count if
360  * it's already present.
361  */
362 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
363                   struct dm_dev **result)
364 {
365         int r;
366         dev_t dev;
367         struct dm_dev_internal *dd;
368         struct dm_table *t = ti->table;
369
370         BUG_ON(!t);
371
372         dev = dm_get_dev_t(path);
373         if (!dev)
374                 return -ENODEV;
375
376         dd = find_device(&t->devices, dev);
377         if (!dd) {
378                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
379                 if (!dd)
380                         return -ENOMEM;
381
382                 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
383                         kfree(dd);
384                         return r;
385                 }
386
387                 refcount_set(&dd->count, 1);
388                 list_add(&dd->list, &t->devices);
389                 goto out;
390
391         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
392                 r = upgrade_mode(dd, mode, t->md);
393                 if (r)
394                         return r;
395         }
396         refcount_inc(&dd->count);
397 out:
398         *result = dd->dm_dev;
399         return 0;
400 }
401 EXPORT_SYMBOL(dm_get_device);
402
403 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
404                                 sector_t start, sector_t len, void *data)
405 {
406         struct queue_limits *limits = data;
407         struct block_device *bdev = dev->bdev;
408         struct request_queue *q = bdev_get_queue(bdev);
409         char b[BDEVNAME_SIZE];
410
411         if (unlikely(!q)) {
412                 DMWARN("%s: Cannot set limits for nonexistent device %s",
413                        dm_device_name(ti->table->md), bdevname(bdev, b));
414                 return 0;
415         }
416
417         if (blk_stack_limits(limits, &q->limits,
418                         get_start_sect(bdev) + start) < 0)
419                 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
420                        "physical_block_size=%u, logical_block_size=%u, "
421                        "alignment_offset=%u, start=%llu",
422                        dm_device_name(ti->table->md), bdevname(bdev, b),
423                        q->limits.physical_block_size,
424                        q->limits.logical_block_size,
425                        q->limits.alignment_offset,
426                        (unsigned long long) start << SECTOR_SHIFT);
427         return 0;
428 }
429
430 /*
431  * Decrement a device's use count and remove it if necessary.
432  */
433 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
434 {
435         int found = 0;
436         struct list_head *devices = &ti->table->devices;
437         struct dm_dev_internal *dd;
438
439         list_for_each_entry(dd, devices, list) {
440                 if (dd->dm_dev == d) {
441                         found = 1;
442                         break;
443                 }
444         }
445         if (!found) {
446                 DMWARN("%s: device %s not in table devices list",
447                        dm_device_name(ti->table->md), d->name);
448                 return;
449         }
450         if (refcount_dec_and_test(&dd->count)) {
451                 dm_put_table_device(ti->table->md, d);
452                 list_del(&dd->list);
453                 kfree(dd);
454         }
455 }
456 EXPORT_SYMBOL(dm_put_device);
457
458 /*
459  * Checks to see if the target joins onto the end of the table.
460  */
461 static int adjoin(struct dm_table *table, struct dm_target *ti)
462 {
463         struct dm_target *prev;
464
465         if (!table->num_targets)
466                 return !ti->begin;
467
468         prev = &table->targets[table->num_targets - 1];
469         return (ti->begin == (prev->begin + prev->len));
470 }
471
472 /*
473  * Used to dynamically allocate the arg array.
474  *
475  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
476  * process messages even if some device is suspended. These messages have a
477  * small fixed number of arguments.
478  *
479  * On the other hand, dm-switch needs to process bulk data using messages and
480  * excessive use of GFP_NOIO could cause trouble.
481  */
482 static char **realloc_argv(unsigned *size, char **old_argv)
483 {
484         char **argv;
485         unsigned new_size;
486         gfp_t gfp;
487
488         if (*size) {
489                 new_size = *size * 2;
490                 gfp = GFP_KERNEL;
491         } else {
492                 new_size = 8;
493                 gfp = GFP_NOIO;
494         }
495         argv = kmalloc_array(new_size, sizeof(*argv), gfp);
496         if (argv && old_argv) {
497                 memcpy(argv, old_argv, *size * sizeof(*argv));
498                 *size = new_size;
499         }
500
501         kfree(old_argv);
502         return argv;
503 }
504
505 /*
506  * Destructively splits up the argument list to pass to ctr.
507  */
508 int dm_split_args(int *argc, char ***argvp, char *input)
509 {
510         char *start, *end = input, *out, **argv = NULL;
511         unsigned array_size = 0;
512
513         *argc = 0;
514
515         if (!input) {
516                 *argvp = NULL;
517                 return 0;
518         }
519
520         argv = realloc_argv(&array_size, argv);
521         if (!argv)
522                 return -ENOMEM;
523
524         while (1) {
525                 /* Skip whitespace */
526                 start = skip_spaces(end);
527
528                 if (!*start)
529                         break;  /* success, we hit the end */
530
531                 /* 'out' is used to remove any back-quotes */
532                 end = out = start;
533                 while (*end) {
534                         /* Everything apart from '\0' can be quoted */
535                         if (*end == '\\' && *(end + 1)) {
536                                 *out++ = *(end + 1);
537                                 end += 2;
538                                 continue;
539                         }
540
541                         if (isspace(*end))
542                                 break;  /* end of token */
543
544                         *out++ = *end++;
545                 }
546
547                 /* have we already filled the array ? */
548                 if ((*argc + 1) > array_size) {
549                         argv = realloc_argv(&array_size, argv);
550                         if (!argv)
551                                 return -ENOMEM;
552                 }
553
554                 /* we know this is whitespace */
555                 if (*end)
556                         end++;
557
558                 /* terminate the string and put it in the array */
559                 *out = '\0';
560                 argv[*argc] = start;
561                 (*argc)++;
562         }
563
564         *argvp = argv;
565         return 0;
566 }
567
568 /*
569  * Impose necessary and sufficient conditions on a devices's table such
570  * that any incoming bio which respects its logical_block_size can be
571  * processed successfully.  If it falls across the boundary between
572  * two or more targets, the size of each piece it gets split into must
573  * be compatible with the logical_block_size of the target processing it.
574  */
575 static int validate_hardware_logical_block_alignment(struct dm_table *table,
576                                                  struct queue_limits *limits)
577 {
578         /*
579          * This function uses arithmetic modulo the logical_block_size
580          * (in units of 512-byte sectors).
581          */
582         unsigned short device_logical_block_size_sects =
583                 limits->logical_block_size >> SECTOR_SHIFT;
584
585         /*
586          * Offset of the start of the next table entry, mod logical_block_size.
587          */
588         unsigned short next_target_start = 0;
589
590         /*
591          * Given an aligned bio that extends beyond the end of a
592          * target, how many sectors must the next target handle?
593          */
594         unsigned short remaining = 0;
595
596         struct dm_target *ti;
597         struct queue_limits ti_limits;
598         unsigned i;
599
600         /*
601          * Check each entry in the table in turn.
602          */
603         for (i = 0; i < dm_table_get_num_targets(table); i++) {
604                 ti = dm_table_get_target(table, i);
605
606                 blk_set_stacking_limits(&ti_limits);
607
608                 /* combine all target devices' limits */
609                 if (ti->type->iterate_devices)
610                         ti->type->iterate_devices(ti, dm_set_device_limits,
611                                                   &ti_limits);
612
613                 /*
614                  * If the remaining sectors fall entirely within this
615                  * table entry are they compatible with its logical_block_size?
616                  */
617                 if (remaining < ti->len &&
618                     remaining & ((ti_limits.logical_block_size >>
619                                   SECTOR_SHIFT) - 1))
620                         break;  /* Error */
621
622                 next_target_start =
623                     (unsigned short) ((next_target_start + ti->len) &
624                                       (device_logical_block_size_sects - 1));
625                 remaining = next_target_start ?
626                     device_logical_block_size_sects - next_target_start : 0;
627         }
628
629         if (remaining) {
630                 DMWARN("%s: table line %u (start sect %llu len %llu) "
631                        "not aligned to h/w logical block size %u",
632                        dm_device_name(table->md), i,
633                        (unsigned long long) ti->begin,
634                        (unsigned long long) ti->len,
635                        limits->logical_block_size);
636                 return -EINVAL;
637         }
638
639         return 0;
640 }
641
642 int dm_table_add_target(struct dm_table *t, const char *type,
643                         sector_t start, sector_t len, char *params)
644 {
645         int r = -EINVAL, argc;
646         char **argv;
647         struct dm_target *tgt;
648
649         if (t->singleton) {
650                 DMERR("%s: target type %s must appear alone in table",
651                       dm_device_name(t->md), t->targets->type->name);
652                 return -EINVAL;
653         }
654
655         BUG_ON(t->num_targets >= t->num_allocated);
656
657         tgt = t->targets + t->num_targets;
658         memset(tgt, 0, sizeof(*tgt));
659
660         if (!len) {
661                 DMERR("%s: zero-length target", dm_device_name(t->md));
662                 return -EINVAL;
663         }
664
665         tgt->type = dm_get_target_type(type);
666         if (!tgt->type) {
667                 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
668                 return -EINVAL;
669         }
670
671         if (dm_target_needs_singleton(tgt->type)) {
672                 if (t->num_targets) {
673                         tgt->error = "singleton target type must appear alone in table";
674                         goto bad;
675                 }
676                 t->singleton = true;
677         }
678
679         if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
680                 tgt->error = "target type may not be included in a read-only table";
681                 goto bad;
682         }
683
684         if (t->immutable_target_type) {
685                 if (t->immutable_target_type != tgt->type) {
686                         tgt->error = "immutable target type cannot be mixed with other target types";
687                         goto bad;
688                 }
689         } else if (dm_target_is_immutable(tgt->type)) {
690                 if (t->num_targets) {
691                         tgt->error = "immutable target type cannot be mixed with other target types";
692                         goto bad;
693                 }
694                 t->immutable_target_type = tgt->type;
695         }
696
697         if (dm_target_has_integrity(tgt->type))
698                 t->integrity_added = 1;
699
700         tgt->table = t;
701         tgt->begin = start;
702         tgt->len = len;
703         tgt->error = "Unknown error";
704
705         /*
706          * Does this target adjoin the previous one ?
707          */
708         if (!adjoin(t, tgt)) {
709                 tgt->error = "Gap in table";
710                 goto bad;
711         }
712
713         r = dm_split_args(&argc, &argv, params);
714         if (r) {
715                 tgt->error = "couldn't split parameters (insufficient memory)";
716                 goto bad;
717         }
718
719         r = tgt->type->ctr(tgt, argc, argv);
720         kfree(argv);
721         if (r)
722                 goto bad;
723
724         t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
725
726         if (!tgt->num_discard_bios && tgt->discards_supported)
727                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
728                        dm_device_name(t->md), type);
729
730         return 0;
731
732  bad:
733         DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
734         dm_put_target_type(tgt->type);
735         return r;
736 }
737
738 /*
739  * Target argument parsing helpers.
740  */
741 static int validate_next_arg(const struct dm_arg *arg,
742                              struct dm_arg_set *arg_set,
743                              unsigned *value, char **error, unsigned grouped)
744 {
745         const char *arg_str = dm_shift_arg(arg_set);
746         char dummy;
747
748         if (!arg_str ||
749             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
750             (*value < arg->min) ||
751             (*value > arg->max) ||
752             (grouped && arg_set->argc < *value)) {
753                 *error = arg->error;
754                 return -EINVAL;
755         }
756
757         return 0;
758 }
759
760 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
761                 unsigned *value, char **error)
762 {
763         return validate_next_arg(arg, arg_set, value, error, 0);
764 }
765 EXPORT_SYMBOL(dm_read_arg);
766
767 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
768                       unsigned *value, char **error)
769 {
770         return validate_next_arg(arg, arg_set, value, error, 1);
771 }
772 EXPORT_SYMBOL(dm_read_arg_group);
773
774 const char *dm_shift_arg(struct dm_arg_set *as)
775 {
776         char *r;
777
778         if (as->argc) {
779                 as->argc--;
780                 r = *as->argv;
781                 as->argv++;
782                 return r;
783         }
784
785         return NULL;
786 }
787 EXPORT_SYMBOL(dm_shift_arg);
788
789 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
790 {
791         BUG_ON(as->argc < num_args);
792         as->argc -= num_args;
793         as->argv += num_args;
794 }
795 EXPORT_SYMBOL(dm_consume_args);
796
797 static bool __table_type_bio_based(enum dm_queue_mode table_type)
798 {
799         return (table_type == DM_TYPE_BIO_BASED ||
800                 table_type == DM_TYPE_DAX_BIO_BASED);
801 }
802
803 static bool __table_type_request_based(enum dm_queue_mode table_type)
804 {
805         return table_type == DM_TYPE_REQUEST_BASED;
806 }
807
808 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
809 {
810         t->type = type;
811 }
812 EXPORT_SYMBOL_GPL(dm_table_set_type);
813
814 /* validate the dax capability of the target device span */
815 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
816                         sector_t start, sector_t len, void *data)
817 {
818         int blocksize = *(int *) data, id;
819         bool rc;
820
821         id = dax_read_lock();
822         rc = dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
823         dax_read_unlock(id);
824
825         return rc;
826 }
827
828 /* Check devices support synchronous DAX */
829 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
830                                   sector_t start, sector_t len, void *data)
831 {
832         return dev->dax_dev && dax_synchronous(dev->dax_dev);
833 }
834
835 bool dm_table_supports_dax(struct dm_table *t,
836                            iterate_devices_callout_fn iterate_fn, int *blocksize)
837 {
838         struct dm_target *ti;
839         unsigned i;
840
841         /* Ensure that all targets support DAX. */
842         for (i = 0; i < dm_table_get_num_targets(t); i++) {
843                 ti = dm_table_get_target(t, i);
844
845                 if (!ti->type->direct_access)
846                         return false;
847
848                 if (!ti->type->iterate_devices ||
849                     !ti->type->iterate_devices(ti, iterate_fn, blocksize))
850                         return false;
851         }
852
853         return true;
854 }
855
856 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
857                                   sector_t start, sector_t len, void *data)
858 {
859         struct block_device *bdev = dev->bdev;
860         struct request_queue *q = bdev_get_queue(bdev);
861
862         /* request-based cannot stack on partitions! */
863         if (bdev_is_partition(bdev))
864                 return false;
865
866         return queue_is_mq(q);
867 }
868
869 static int dm_table_determine_type(struct dm_table *t)
870 {
871         unsigned i;
872         unsigned bio_based = 0, request_based = 0, hybrid = 0;
873         struct dm_target *tgt;
874         struct list_head *devices = dm_table_get_devices(t);
875         enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
876         int page_size = PAGE_SIZE;
877
878         if (t->type != DM_TYPE_NONE) {
879                 /* target already set the table's type */
880                 if (t->type == DM_TYPE_BIO_BASED) {
881                         /* possibly upgrade to a variant of bio-based */
882                         goto verify_bio_based;
883                 }
884                 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
885                 goto verify_rq_based;
886         }
887
888         for (i = 0; i < t->num_targets; i++) {
889                 tgt = t->targets + i;
890                 if (dm_target_hybrid(tgt))
891                         hybrid = 1;
892                 else if (dm_target_request_based(tgt))
893                         request_based = 1;
894                 else
895                         bio_based = 1;
896
897                 if (bio_based && request_based) {
898                         DMERR("Inconsistent table: different target types"
899                               " can't be mixed up");
900                         return -EINVAL;
901                 }
902         }
903
904         if (hybrid && !bio_based && !request_based) {
905                 /*
906                  * The targets can work either way.
907                  * Determine the type from the live device.
908                  * Default to bio-based if device is new.
909                  */
910                 if (__table_type_request_based(live_md_type))
911                         request_based = 1;
912                 else
913                         bio_based = 1;
914         }
915
916         if (bio_based) {
917 verify_bio_based:
918                 /* We must use this table as bio-based */
919                 t->type = DM_TYPE_BIO_BASED;
920                 if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
921                     (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
922                         t->type = DM_TYPE_DAX_BIO_BASED;
923                 }
924                 return 0;
925         }
926
927         BUG_ON(!request_based); /* No targets in this table */
928
929         t->type = DM_TYPE_REQUEST_BASED;
930
931 verify_rq_based:
932         /*
933          * Request-based dm supports only tables that have a single target now.
934          * To support multiple targets, request splitting support is needed,
935          * and that needs lots of changes in the block-layer.
936          * (e.g. request completion process for partial completion.)
937          */
938         if (t->num_targets > 1) {
939                 DMERR("request-based DM doesn't support multiple targets");
940                 return -EINVAL;
941         }
942
943         if (list_empty(devices)) {
944                 int srcu_idx;
945                 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
946
947                 /* inherit live table's type */
948                 if (live_table)
949                         t->type = live_table->type;
950                 dm_put_live_table(t->md, srcu_idx);
951                 return 0;
952         }
953
954         tgt = dm_table_get_immutable_target(t);
955         if (!tgt) {
956                 DMERR("table load rejected: immutable target is required");
957                 return -EINVAL;
958         } else if (tgt->max_io_len) {
959                 DMERR("table load rejected: immutable target that splits IO is not supported");
960                 return -EINVAL;
961         }
962
963         /* Non-request-stackable devices can't be used for request-based dm */
964         if (!tgt->type->iterate_devices ||
965             !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
966                 DMERR("table load rejected: including non-request-stackable devices");
967                 return -EINVAL;
968         }
969
970         return 0;
971 }
972
973 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
974 {
975         return t->type;
976 }
977
978 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
979 {
980         return t->immutable_target_type;
981 }
982
983 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
984 {
985         /* Immutable target is implicitly a singleton */
986         if (t->num_targets > 1 ||
987             !dm_target_is_immutable(t->targets[0].type))
988                 return NULL;
989
990         return t->targets;
991 }
992
993 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
994 {
995         struct dm_target *ti;
996         unsigned i;
997
998         for (i = 0; i < dm_table_get_num_targets(t); i++) {
999                 ti = dm_table_get_target(t, i);
1000                 if (dm_target_is_wildcard(ti->type))
1001                         return ti;
1002         }
1003
1004         return NULL;
1005 }
1006
1007 bool dm_table_bio_based(struct dm_table *t)
1008 {
1009         return __table_type_bio_based(dm_table_get_type(t));
1010 }
1011
1012 bool dm_table_request_based(struct dm_table *t)
1013 {
1014         return __table_type_request_based(dm_table_get_type(t));
1015 }
1016
1017 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1018 {
1019         enum dm_queue_mode type = dm_table_get_type(t);
1020         unsigned per_io_data_size = 0;
1021         unsigned min_pool_size = 0;
1022         struct dm_target *ti;
1023         unsigned i;
1024
1025         if (unlikely(type == DM_TYPE_NONE)) {
1026                 DMWARN("no table type is set, can't allocate mempools");
1027                 return -EINVAL;
1028         }
1029
1030         if (__table_type_bio_based(type))
1031                 for (i = 0; i < t->num_targets; i++) {
1032                         ti = t->targets + i;
1033                         per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1034                         min_pool_size = max(min_pool_size, ti->num_flush_bios);
1035                 }
1036
1037         t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1038                                            per_io_data_size, min_pool_size);
1039         if (!t->mempools)
1040                 return -ENOMEM;
1041
1042         return 0;
1043 }
1044
1045 void dm_table_free_md_mempools(struct dm_table *t)
1046 {
1047         dm_free_md_mempools(t->mempools);
1048         t->mempools = NULL;
1049 }
1050
1051 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1052 {
1053         return t->mempools;
1054 }
1055
1056 static int setup_indexes(struct dm_table *t)
1057 {
1058         int i;
1059         unsigned int total = 0;
1060         sector_t *indexes;
1061
1062         /* allocate the space for *all* the indexes */
1063         for (i = t->depth - 2; i >= 0; i--) {
1064                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1065                 total += t->counts[i];
1066         }
1067
1068         indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1069         if (!indexes)
1070                 return -ENOMEM;
1071
1072         /* set up internal nodes, bottom-up */
1073         for (i = t->depth - 2; i >= 0; i--) {
1074                 t->index[i] = indexes;
1075                 indexes += (KEYS_PER_NODE * t->counts[i]);
1076                 setup_btree_index(i, t);
1077         }
1078
1079         return 0;
1080 }
1081
1082 /*
1083  * Builds the btree to index the map.
1084  */
1085 static int dm_table_build_index(struct dm_table *t)
1086 {
1087         int r = 0;
1088         unsigned int leaf_nodes;
1089
1090         /* how many indexes will the btree have ? */
1091         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1092         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1093
1094         /* leaf layer has already been set up */
1095         t->counts[t->depth - 1] = leaf_nodes;
1096         t->index[t->depth - 1] = t->highs;
1097
1098         if (t->depth >= 2)
1099                 r = setup_indexes(t);
1100
1101         return r;
1102 }
1103
1104 static bool integrity_profile_exists(struct gendisk *disk)
1105 {
1106         return !!blk_get_integrity(disk);
1107 }
1108
1109 /*
1110  * Get a disk whose integrity profile reflects the table's profile.
1111  * Returns NULL if integrity support was inconsistent or unavailable.
1112  */
1113 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1114 {
1115         struct list_head *devices = dm_table_get_devices(t);
1116         struct dm_dev_internal *dd = NULL;
1117         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1118         unsigned i;
1119
1120         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1121                 struct dm_target *ti = dm_table_get_target(t, i);
1122                 if (!dm_target_passes_integrity(ti->type))
1123                         goto no_integrity;
1124         }
1125
1126         list_for_each_entry(dd, devices, list) {
1127                 template_disk = dd->dm_dev->bdev->bd_disk;
1128                 if (!integrity_profile_exists(template_disk))
1129                         goto no_integrity;
1130                 else if (prev_disk &&
1131                          blk_integrity_compare(prev_disk, template_disk) < 0)
1132                         goto no_integrity;
1133                 prev_disk = template_disk;
1134         }
1135
1136         return template_disk;
1137
1138 no_integrity:
1139         if (prev_disk)
1140                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1141                        dm_device_name(t->md),
1142                        prev_disk->disk_name,
1143                        template_disk->disk_name);
1144         return NULL;
1145 }
1146
1147 /*
1148  * Register the mapped device for blk_integrity support if the
1149  * underlying devices have an integrity profile.  But all devices may
1150  * not have matching profiles (checking all devices isn't reliable
1151  * during table load because this table may use other DM device(s) which
1152  * must be resumed before they will have an initialized integity
1153  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1154  * profile validation: First pass during table load, final pass during
1155  * resume.
1156  */
1157 static int dm_table_register_integrity(struct dm_table *t)
1158 {
1159         struct mapped_device *md = t->md;
1160         struct gendisk *template_disk = NULL;
1161
1162         /* If target handles integrity itself do not register it here. */
1163         if (t->integrity_added)
1164                 return 0;
1165
1166         template_disk = dm_table_get_integrity_disk(t);
1167         if (!template_disk)
1168                 return 0;
1169
1170         if (!integrity_profile_exists(dm_disk(md))) {
1171                 t->integrity_supported = true;
1172                 /*
1173                  * Register integrity profile during table load; we can do
1174                  * this because the final profile must match during resume.
1175                  */
1176                 blk_integrity_register(dm_disk(md),
1177                                        blk_get_integrity(template_disk));
1178                 return 0;
1179         }
1180
1181         /*
1182          * If DM device already has an initialized integrity
1183          * profile the new profile should not conflict.
1184          */
1185         if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1186                 DMWARN("%s: conflict with existing integrity profile: "
1187                        "%s profile mismatch",
1188                        dm_device_name(t->md),
1189                        template_disk->disk_name);
1190                 return 1;
1191         }
1192
1193         /* Preserve existing integrity profile */
1194         t->integrity_supported = true;
1195         return 0;
1196 }
1197
1198 /*
1199  * Prepares the table for use by building the indices,
1200  * setting the type, and allocating mempools.
1201  */
1202 int dm_table_complete(struct dm_table *t)
1203 {
1204         int r;
1205
1206         r = dm_table_determine_type(t);
1207         if (r) {
1208                 DMERR("unable to determine table type");
1209                 return r;
1210         }
1211
1212         r = dm_table_build_index(t);
1213         if (r) {
1214                 DMERR("unable to build btrees");
1215                 return r;
1216         }
1217
1218         r = dm_table_register_integrity(t);
1219         if (r) {
1220                 DMERR("could not register integrity profile.");
1221                 return r;
1222         }
1223
1224         r = dm_table_alloc_md_mempools(t, t->md);
1225         if (r)
1226                 DMERR("unable to allocate mempools");
1227
1228         return r;
1229 }
1230
1231 static DEFINE_MUTEX(_event_lock);
1232 void dm_table_event_callback(struct dm_table *t,
1233                              void (*fn)(void *), void *context)
1234 {
1235         mutex_lock(&_event_lock);
1236         t->event_fn = fn;
1237         t->event_context = context;
1238         mutex_unlock(&_event_lock);
1239 }
1240
1241 void dm_table_event(struct dm_table *t)
1242 {
1243         /*
1244          * You can no longer call dm_table_event() from interrupt
1245          * context, use a bottom half instead.
1246          */
1247         BUG_ON(in_interrupt());
1248
1249         mutex_lock(&_event_lock);
1250         if (t->event_fn)
1251                 t->event_fn(t->event_context);
1252         mutex_unlock(&_event_lock);
1253 }
1254 EXPORT_SYMBOL(dm_table_event);
1255
1256 inline sector_t dm_table_get_size(struct dm_table *t)
1257 {
1258         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1259 }
1260 EXPORT_SYMBOL(dm_table_get_size);
1261
1262 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1263 {
1264         if (index >= t->num_targets)
1265                 return NULL;
1266
1267         return t->targets + index;
1268 }
1269
1270 /*
1271  * Search the btree for the correct target.
1272  *
1273  * Caller should check returned pointer for NULL
1274  * to trap I/O beyond end of device.
1275  */
1276 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1277 {
1278         unsigned int l, n = 0, k = 0;
1279         sector_t *node;
1280
1281         if (unlikely(sector >= dm_table_get_size(t)))
1282                 return NULL;
1283
1284         for (l = 0; l < t->depth; l++) {
1285                 n = get_child(n, k);
1286                 node = get_node(t, l, n);
1287
1288                 for (k = 0; k < KEYS_PER_NODE; k++)
1289                         if (node[k] >= sector)
1290                                 break;
1291         }
1292
1293         return &t->targets[(KEYS_PER_NODE * n) + k];
1294 }
1295
1296 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1297                         sector_t start, sector_t len, void *data)
1298 {
1299         unsigned *num_devices = data;
1300
1301         (*num_devices)++;
1302
1303         return 0;
1304 }
1305
1306 /*
1307  * Check whether a table has no data devices attached using each
1308  * target's iterate_devices method.
1309  * Returns false if the result is unknown because a target doesn't
1310  * support iterate_devices.
1311  */
1312 bool dm_table_has_no_data_devices(struct dm_table *table)
1313 {
1314         struct dm_target *ti;
1315         unsigned i, num_devices;
1316
1317         for (i = 0; i < dm_table_get_num_targets(table); i++) {
1318                 ti = dm_table_get_target(table, i);
1319
1320                 if (!ti->type->iterate_devices)
1321                         return false;
1322
1323                 num_devices = 0;
1324                 ti->type->iterate_devices(ti, count_device, &num_devices);
1325                 if (num_devices)
1326                         return false;
1327         }
1328
1329         return true;
1330 }
1331
1332 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1333                                  sector_t start, sector_t len, void *data)
1334 {
1335         struct request_queue *q = bdev_get_queue(dev->bdev);
1336         enum blk_zoned_model *zoned_model = data;
1337
1338         return q && blk_queue_zoned_model(q) == *zoned_model;
1339 }
1340
1341 static bool dm_table_supports_zoned_model(struct dm_table *t,
1342                                           enum blk_zoned_model zoned_model)
1343 {
1344         struct dm_target *ti;
1345         unsigned i;
1346
1347         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1348                 ti = dm_table_get_target(t, i);
1349
1350                 if (zoned_model == BLK_ZONED_HM &&
1351                     !dm_target_supports_zoned_hm(ti->type))
1352                         return false;
1353
1354                 if (!ti->type->iterate_devices ||
1355                     !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1356                         return false;
1357         }
1358
1359         return true;
1360 }
1361
1362 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1363                                        sector_t start, sector_t len, void *data)
1364 {
1365         struct request_queue *q = bdev_get_queue(dev->bdev);
1366         unsigned int *zone_sectors = data;
1367
1368         return q && blk_queue_zone_sectors(q) == *zone_sectors;
1369 }
1370
1371 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1372                                           unsigned int zone_sectors)
1373 {
1374         struct dm_target *ti;
1375         unsigned i;
1376
1377         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1378                 ti = dm_table_get_target(t, i);
1379
1380                 if (!ti->type->iterate_devices ||
1381                     !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1382                         return false;
1383         }
1384
1385         return true;
1386 }
1387
1388 static int validate_hardware_zoned_model(struct dm_table *table,
1389                                          enum blk_zoned_model zoned_model,
1390                                          unsigned int zone_sectors)
1391 {
1392         if (zoned_model == BLK_ZONED_NONE)
1393                 return 0;
1394
1395         if (!dm_table_supports_zoned_model(table, zoned_model)) {
1396                 DMERR("%s: zoned model is not consistent across all devices",
1397                       dm_device_name(table->md));
1398                 return -EINVAL;
1399         }
1400
1401         /* Check zone size validity and compatibility */
1402         if (!zone_sectors || !is_power_of_2(zone_sectors))
1403                 return -EINVAL;
1404
1405         if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1406                 DMERR("%s: zone sectors is not consistent across all devices",
1407                       dm_device_name(table->md));
1408                 return -EINVAL;
1409         }
1410
1411         return 0;
1412 }
1413
1414 /*
1415  * Establish the new table's queue_limits and validate them.
1416  */
1417 int dm_calculate_queue_limits(struct dm_table *table,
1418                               struct queue_limits *limits)
1419 {
1420         struct dm_target *ti;
1421         struct queue_limits ti_limits;
1422         unsigned i;
1423         enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1424         unsigned int zone_sectors = 0;
1425
1426         blk_set_stacking_limits(limits);
1427
1428         for (i = 0; i < dm_table_get_num_targets(table); i++) {
1429                 blk_set_stacking_limits(&ti_limits);
1430
1431                 ti = dm_table_get_target(table, i);
1432
1433                 if (!ti->type->iterate_devices)
1434                         goto combine_limits;
1435
1436                 /*
1437                  * Combine queue limits of all the devices this target uses.
1438                  */
1439                 ti->type->iterate_devices(ti, dm_set_device_limits,
1440                                           &ti_limits);
1441
1442                 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1443                         /*
1444                          * After stacking all limits, validate all devices
1445                          * in table support this zoned model and zone sectors.
1446                          */
1447                         zoned_model = ti_limits.zoned;
1448                         zone_sectors = ti_limits.chunk_sectors;
1449                 }
1450
1451                 /* Stack chunk_sectors if target-specific splitting is required */
1452                 if (ti->max_io_len)
1453                         ti_limits.chunk_sectors = lcm_not_zero(ti->max_io_len,
1454                                                                ti_limits.chunk_sectors);
1455                 /* Set I/O hints portion of queue limits */
1456                 if (ti->type->io_hints)
1457                         ti->type->io_hints(ti, &ti_limits);
1458
1459                 /*
1460                  * Check each device area is consistent with the target's
1461                  * overall queue limits.
1462                  */
1463                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1464                                               &ti_limits))
1465                         return -EINVAL;
1466
1467 combine_limits:
1468                 /*
1469                  * Merge this target's queue limits into the overall limits
1470                  * for the table.
1471                  */
1472                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1473                         DMWARN("%s: adding target device "
1474                                "(start sect %llu len %llu) "
1475                                "caused an alignment inconsistency",
1476                                dm_device_name(table->md),
1477                                (unsigned long long) ti->begin,
1478                                (unsigned long long) ti->len);
1479         }
1480
1481         /*
1482          * Verify that the zoned model and zone sectors, as determined before
1483          * any .io_hints override, are the same across all devices in the table.
1484          * - this is especially relevant if .io_hints is emulating a disk-managed
1485          *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1486          * BUT...
1487          */
1488         if (limits->zoned != BLK_ZONED_NONE) {
1489                 /*
1490                  * ...IF the above limits stacking determined a zoned model
1491                  * validate that all of the table's devices conform to it.
1492                  */
1493                 zoned_model = limits->zoned;
1494                 zone_sectors = limits->chunk_sectors;
1495         }
1496         if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1497                 return -EINVAL;
1498
1499         return validate_hardware_logical_block_alignment(table, limits);
1500 }
1501
1502 /*
1503  * Verify that all devices have an integrity profile that matches the
1504  * DM device's registered integrity profile.  If the profiles don't
1505  * match then unregister the DM device's integrity profile.
1506  */
1507 static void dm_table_verify_integrity(struct dm_table *t)
1508 {
1509         struct gendisk *template_disk = NULL;
1510
1511         if (t->integrity_added)
1512                 return;
1513
1514         if (t->integrity_supported) {
1515                 /*
1516                  * Verify that the original integrity profile
1517                  * matches all the devices in this table.
1518                  */
1519                 template_disk = dm_table_get_integrity_disk(t);
1520                 if (template_disk &&
1521                     blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1522                         return;
1523         }
1524
1525         if (integrity_profile_exists(dm_disk(t->md))) {
1526                 DMWARN("%s: unable to establish an integrity profile",
1527                        dm_device_name(t->md));
1528                 blk_integrity_unregister(dm_disk(t->md));
1529         }
1530 }
1531
1532 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1533                                 sector_t start, sector_t len, void *data)
1534 {
1535         unsigned long flush = (unsigned long) data;
1536         struct request_queue *q = bdev_get_queue(dev->bdev);
1537
1538         return q && (q->queue_flags & flush);
1539 }
1540
1541 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1542 {
1543         struct dm_target *ti;
1544         unsigned i;
1545
1546         /*
1547          * Require at least one underlying device to support flushes.
1548          * t->devices includes internal dm devices such as mirror logs
1549          * so we need to use iterate_devices here, which targets
1550          * supporting flushes must provide.
1551          */
1552         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1553                 ti = dm_table_get_target(t, i);
1554
1555                 if (!ti->num_flush_bios)
1556                         continue;
1557
1558                 if (ti->flush_supported)
1559                         return true;
1560
1561                 if (ti->type->iterate_devices &&
1562                     ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1563                         return true;
1564         }
1565
1566         return false;
1567 }
1568
1569 static int device_dax_write_cache_enabled(struct dm_target *ti,
1570                                           struct dm_dev *dev, sector_t start,
1571                                           sector_t len, void *data)
1572 {
1573         struct dax_device *dax_dev = dev->dax_dev;
1574
1575         if (!dax_dev)
1576                 return false;
1577
1578         if (dax_write_cache_enabled(dax_dev))
1579                 return true;
1580         return false;
1581 }
1582
1583 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1584 {
1585         struct dm_target *ti;
1586         unsigned i;
1587
1588         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1589                 ti = dm_table_get_target(t, i);
1590
1591                 if (ti->type->iterate_devices &&
1592                     ti->type->iterate_devices(ti,
1593                                 device_dax_write_cache_enabled, NULL))
1594                         return true;
1595         }
1596
1597         return false;
1598 }
1599
1600 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1601                             sector_t start, sector_t len, void *data)
1602 {
1603         struct request_queue *q = bdev_get_queue(dev->bdev);
1604
1605         return q && blk_queue_nonrot(q);
1606 }
1607
1608 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1609                              sector_t start, sector_t len, void *data)
1610 {
1611         struct request_queue *q = bdev_get_queue(dev->bdev);
1612
1613         return q && !blk_queue_add_random(q);
1614 }
1615
1616 static bool dm_table_all_devices_attribute(struct dm_table *t,
1617                                            iterate_devices_callout_fn func)
1618 {
1619         struct dm_target *ti;
1620         unsigned i;
1621
1622         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1623                 ti = dm_table_get_target(t, i);
1624
1625                 if (!ti->type->iterate_devices ||
1626                     !ti->type->iterate_devices(ti, func, NULL))
1627                         return false;
1628         }
1629
1630         return true;
1631 }
1632
1633 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1634                                          sector_t start, sector_t len, void *data)
1635 {
1636         struct request_queue *q = bdev_get_queue(dev->bdev);
1637
1638         return q && !q->limits.max_write_same_sectors;
1639 }
1640
1641 static bool dm_table_supports_write_same(struct dm_table *t)
1642 {
1643         struct dm_target *ti;
1644         unsigned i;
1645
1646         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1647                 ti = dm_table_get_target(t, i);
1648
1649                 if (!ti->num_write_same_bios)
1650                         return false;
1651
1652                 if (!ti->type->iterate_devices ||
1653                     ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1654                         return false;
1655         }
1656
1657         return true;
1658 }
1659
1660 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1661                                            sector_t start, sector_t len, void *data)
1662 {
1663         struct request_queue *q = bdev_get_queue(dev->bdev);
1664
1665         return q && !q->limits.max_write_zeroes_sectors;
1666 }
1667
1668 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1669 {
1670         struct dm_target *ti;
1671         unsigned i = 0;
1672
1673         while (i < dm_table_get_num_targets(t)) {
1674                 ti = dm_table_get_target(t, i++);
1675
1676                 if (!ti->num_write_zeroes_bios)
1677                         return false;
1678
1679                 if (!ti->type->iterate_devices ||
1680                     ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1681                         return false;
1682         }
1683
1684         return true;
1685 }
1686
1687 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1688                                      sector_t start, sector_t len, void *data)
1689 {
1690         struct request_queue *q = bdev_get_queue(dev->bdev);
1691
1692         return q && !blk_queue_nowait(q);
1693 }
1694
1695 static bool dm_table_supports_nowait(struct dm_table *t)
1696 {
1697         struct dm_target *ti;
1698         unsigned i = 0;
1699
1700         while (i < dm_table_get_num_targets(t)) {
1701                 ti = dm_table_get_target(t, i++);
1702
1703                 if (!dm_target_supports_nowait(ti->type))
1704                         return false;
1705
1706                 if (!ti->type->iterate_devices ||
1707                     ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1708                         return false;
1709         }
1710
1711         return true;
1712 }
1713
1714 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1715                                       sector_t start, sector_t len, void *data)
1716 {
1717         struct request_queue *q = bdev_get_queue(dev->bdev);
1718
1719         return q && !blk_queue_discard(q);
1720 }
1721
1722 static bool dm_table_supports_discards(struct dm_table *t)
1723 {
1724         struct dm_target *ti;
1725         unsigned i;
1726
1727         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1728                 ti = dm_table_get_target(t, i);
1729
1730                 if (!ti->num_discard_bios)
1731                         return false;
1732
1733                 /*
1734                  * Either the target provides discard support (as implied by setting
1735                  * 'discards_supported') or it relies on _all_ data devices having
1736                  * discard support.
1737                  */
1738                 if (!ti->discards_supported &&
1739                     (!ti->type->iterate_devices ||
1740                      ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1741                         return false;
1742         }
1743
1744         return true;
1745 }
1746
1747 static int device_not_secure_erase_capable(struct dm_target *ti,
1748                                            struct dm_dev *dev, sector_t start,
1749                                            sector_t len, void *data)
1750 {
1751         struct request_queue *q = bdev_get_queue(dev->bdev);
1752
1753         return q && !blk_queue_secure_erase(q);
1754 }
1755
1756 static bool dm_table_supports_secure_erase(struct dm_table *t)
1757 {
1758         struct dm_target *ti;
1759         unsigned int i;
1760
1761         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1762                 ti = dm_table_get_target(t, i);
1763
1764                 if (!ti->num_secure_erase_bios)
1765                         return false;
1766
1767                 if (!ti->type->iterate_devices ||
1768                     ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1769                         return false;
1770         }
1771
1772         return true;
1773 }
1774
1775 static int device_requires_stable_pages(struct dm_target *ti,
1776                                         struct dm_dev *dev, sector_t start,
1777                                         sector_t len, void *data)
1778 {
1779         struct request_queue *q = bdev_get_queue(dev->bdev);
1780
1781         return q && blk_queue_stable_writes(q);
1782 }
1783
1784 /*
1785  * If any underlying device requires stable pages, a table must require
1786  * them as well.  Only targets that support iterate_devices are considered:
1787  * don't want error, zero, etc to require stable pages.
1788  */
1789 static bool dm_table_requires_stable_pages(struct dm_table *t)
1790 {
1791         struct dm_target *ti;
1792         unsigned i;
1793
1794         for (i = 0; i < dm_table_get_num_targets(t); i++) {
1795                 ti = dm_table_get_target(t, i);
1796
1797                 if (ti->type->iterate_devices &&
1798                     ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1799                         return true;
1800         }
1801
1802         return false;
1803 }
1804
1805 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1806                                struct queue_limits *limits)
1807 {
1808         bool wc = false, fua = false;
1809         int page_size = PAGE_SIZE;
1810
1811         /*
1812          * Copy table's limits to the DM device's request_queue
1813          */
1814         q->limits = *limits;
1815
1816         if (dm_table_supports_nowait(t))
1817                 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1818         else
1819                 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1820
1821         if (!dm_table_supports_discards(t)) {
1822                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1823                 /* Must also clear discard limits... */
1824                 q->limits.max_discard_sectors = 0;
1825                 q->limits.max_hw_discard_sectors = 0;
1826                 q->limits.discard_granularity = 0;
1827                 q->limits.discard_alignment = 0;
1828                 q->limits.discard_misaligned = 0;
1829         } else
1830                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1831
1832         if (dm_table_supports_secure_erase(t))
1833                 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1834
1835         if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1836                 wc = true;
1837                 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1838                         fua = true;
1839         }
1840         blk_queue_write_cache(q, wc, fua);
1841
1842         if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1843                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1844                 if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1845                         set_dax_synchronous(t->md->dax_dev);
1846         }
1847         else
1848                 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1849
1850         if (dm_table_supports_dax_write_cache(t))
1851                 dax_write_cache(t->md->dax_dev, true);
1852
1853         /* Ensure that all underlying devices are non-rotational. */
1854         if (dm_table_all_devices_attribute(t, device_is_nonrot))
1855                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1856         else
1857                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1858
1859         if (!dm_table_supports_write_same(t))
1860                 q->limits.max_write_same_sectors = 0;
1861         if (!dm_table_supports_write_zeroes(t))
1862                 q->limits.max_write_zeroes_sectors = 0;
1863
1864         dm_table_verify_integrity(t);
1865
1866         /*
1867          * Some devices don't use blk_integrity but still want stable pages
1868          * because they do their own checksumming.
1869          */
1870         if (dm_table_requires_stable_pages(t))
1871                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
1872         else
1873                 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
1874
1875         /*
1876          * Determine whether or not this queue's I/O timings contribute
1877          * to the entropy pool, Only request-based targets use this.
1878          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1879          * have it set.
1880          */
1881         if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1882                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1883
1884         /*
1885          * For a zoned target, the number of zones should be updated for the
1886          * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1887          * target, this is all that is needed.
1888          */
1889 #ifdef CONFIG_BLK_DEV_ZONED
1890         if (blk_queue_is_zoned(q)) {
1891                 WARN_ON_ONCE(queue_is_mq(q));
1892                 q->nr_zones = blkdev_nr_zones(t->md->disk);
1893         }
1894 #endif
1895
1896         blk_queue_update_readahead(q);
1897 }
1898
1899 unsigned int dm_table_get_num_targets(struct dm_table *t)
1900 {
1901         return t->num_targets;
1902 }
1903
1904 struct list_head *dm_table_get_devices(struct dm_table *t)
1905 {
1906         return &t->devices;
1907 }
1908
1909 fmode_t dm_table_get_mode(struct dm_table *t)
1910 {
1911         return t->mode;
1912 }
1913 EXPORT_SYMBOL(dm_table_get_mode);
1914
1915 enum suspend_mode {
1916         PRESUSPEND,
1917         PRESUSPEND_UNDO,
1918         POSTSUSPEND,
1919 };
1920
1921 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1922 {
1923         int i = t->num_targets;
1924         struct dm_target *ti = t->targets;
1925
1926         lockdep_assert_held(&t->md->suspend_lock);
1927
1928         while (i--) {
1929                 switch (mode) {
1930                 case PRESUSPEND:
1931                         if (ti->type->presuspend)
1932                                 ti->type->presuspend(ti);
1933                         break;
1934                 case PRESUSPEND_UNDO:
1935                         if (ti->type->presuspend_undo)
1936                                 ti->type->presuspend_undo(ti);
1937                         break;
1938                 case POSTSUSPEND:
1939                         if (ti->type->postsuspend)
1940                                 ti->type->postsuspend(ti);
1941                         break;
1942                 }
1943                 ti++;
1944         }
1945 }
1946
1947 void dm_table_presuspend_targets(struct dm_table *t)
1948 {
1949         if (!t)
1950                 return;
1951
1952         suspend_targets(t, PRESUSPEND);
1953 }
1954
1955 void dm_table_presuspend_undo_targets(struct dm_table *t)
1956 {
1957         if (!t)
1958                 return;
1959
1960         suspend_targets(t, PRESUSPEND_UNDO);
1961 }
1962
1963 void dm_table_postsuspend_targets(struct dm_table *t)
1964 {
1965         if (!t)
1966                 return;
1967
1968         suspend_targets(t, POSTSUSPEND);
1969 }
1970
1971 int dm_table_resume_targets(struct dm_table *t)
1972 {
1973         int i, r = 0;
1974
1975         lockdep_assert_held(&t->md->suspend_lock);
1976
1977         for (i = 0; i < t->num_targets; i++) {
1978                 struct dm_target *ti = t->targets + i;
1979
1980                 if (!ti->type->preresume)
1981                         continue;
1982
1983                 r = ti->type->preresume(ti);
1984                 if (r) {
1985                         DMERR("%s: %s: preresume failed, error = %d",
1986                               dm_device_name(t->md), ti->type->name, r);
1987                         return r;
1988                 }
1989         }
1990
1991         for (i = 0; i < t->num_targets; i++) {
1992                 struct dm_target *ti = t->targets + i;
1993
1994                 if (ti->type->resume)
1995                         ti->type->resume(ti);
1996         }
1997
1998         return 0;
1999 }
2000
2001 struct mapped_device *dm_table_get_md(struct dm_table *t)
2002 {
2003         return t->md;
2004 }
2005 EXPORT_SYMBOL(dm_table_get_md);
2006
2007 const char *dm_table_device_name(struct dm_table *t)
2008 {
2009         return dm_device_name(t->md);
2010 }
2011 EXPORT_SYMBOL_GPL(dm_table_device_name);
2012
2013 void dm_table_run_md_queue_async(struct dm_table *t)
2014 {
2015         if (!dm_table_request_based(t))
2016                 return;
2017
2018         if (t->md->queue)
2019                 blk_mq_run_hw_queues(t->md->queue, true);
2020 }
2021 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2022