Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / md / dm-table.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2001 Sistina Software (UK) Limited.
4  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27
28 #define DM_MSG_PREFIX "table"
29
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34 /*
35  * Similar to ceiling(log_size(n))
36  */
37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39         int result = 0;
40
41         while (n > 1) {
42                 n = dm_div_up(n, base);
43                 result++;
44         }
45
46         return result;
47 }
48
49 /*
50  * Calculate the index of the child node of the n'th node k'th key.
51  */
52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54         return (n * CHILDREN_PER_NODE) + k;
55 }
56
57 /*
58  * Return the n'th node of level l from table t.
59  */
60 static inline sector_t *get_node(struct dm_table *t,
61                                  unsigned int l, unsigned int n)
62 {
63         return t->index[l] + (n * KEYS_PER_NODE);
64 }
65
66 /*
67  * Return the highest key that you could lookup from the n'th
68  * node on level l of the btree.
69  */
70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72         for (; l < t->depth - 1; l++)
73                 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75         if (n >= t->counts[l])
76                 return (sector_t) -1;
77
78         return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80
81 /*
82  * Fills in a level of the btree based on the highs of the level
83  * below it.
84  */
85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87         unsigned int n, k;
88         sector_t *node;
89
90         for (n = 0U; n < t->counts[l]; n++) {
91                 node = get_node(t, l, n);
92
93                 for (k = 0U; k < KEYS_PER_NODE; k++)
94                         node[k] = high(t, l + 1, get_child(n, k));
95         }
96
97         return 0;
98 }
99
100 /*
101  * highs, and targets are managed as dynamic arrays during a
102  * table load.
103  */
104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106         sector_t *n_highs;
107         struct dm_target *n_targets;
108
109         /*
110          * Allocate both the target array and offset array at once.
111          */
112         n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113                            GFP_KERNEL);
114         if (!n_highs)
115                 return -ENOMEM;
116
117         n_targets = (struct dm_target *) (n_highs + num);
118
119         memset(n_highs, -1, sizeof(*n_highs) * num);
120         kvfree(t->highs);
121
122         t->num_allocated = num;
123         t->highs = n_highs;
124         t->targets = n_targets;
125
126         return 0;
127 }
128
129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130                     unsigned int num_targets, struct mapped_device *md)
131 {
132         struct dm_table *t;
133
134         if (num_targets > DM_MAX_TARGETS)
135                 return -EOVERFLOW;
136
137         t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139         if (!t)
140                 return -ENOMEM;
141
142         INIT_LIST_HEAD(&t->devices);
143         init_rwsem(&t->devices_lock);
144
145         if (!num_targets)
146                 num_targets = KEYS_PER_NODE;
147
148         num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150         if (!num_targets) {
151                 kfree(t);
152                 return -EOVERFLOW;
153         }
154
155         if (alloc_targets(t, num_targets)) {
156                 kfree(t);
157                 return -ENOMEM;
158         }
159
160         t->type = DM_TYPE_NONE;
161         t->mode = mode;
162         t->md = md;
163         *result = t;
164         return 0;
165 }
166
167 static void free_devices(struct list_head *devices, struct mapped_device *md)
168 {
169         struct list_head *tmp, *next;
170
171         list_for_each_safe(tmp, next, devices) {
172                 struct dm_dev_internal *dd =
173                     list_entry(tmp, struct dm_dev_internal, list);
174                 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
175                        dm_device_name(md), dd->dm_dev->name);
176                 dm_put_table_device(md, dd->dm_dev);
177                 kfree(dd);
178         }
179 }
180
181 static void dm_table_destroy_crypto_profile(struct dm_table *t);
182
183 void dm_table_destroy(struct dm_table *t)
184 {
185         if (!t)
186                 return;
187
188         /* free the indexes */
189         if (t->depth >= 2)
190                 kvfree(t->index[t->depth - 2]);
191
192         /* free the targets */
193         for (unsigned int i = 0; i < t->num_targets; i++) {
194                 struct dm_target *ti = dm_table_get_target(t, i);
195
196                 if (ti->type->dtr)
197                         ti->type->dtr(ti);
198
199                 dm_put_target_type(ti->type);
200         }
201
202         kvfree(t->highs);
203
204         /* free the device list */
205         free_devices(&t->devices, t->md);
206
207         dm_free_md_mempools(t->mempools);
208
209         dm_table_destroy_crypto_profile(t);
210
211         kfree(t);
212 }
213
214 /*
215  * See if we've already got a device in the list.
216  */
217 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
218 {
219         struct dm_dev_internal *dd;
220
221         list_for_each_entry(dd, l, list)
222                 if (dd->dm_dev->bdev->bd_dev == dev)
223                         return dd;
224
225         return NULL;
226 }
227
228 /*
229  * If possible, this checks an area of a destination device is invalid.
230  */
231 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
232                                   sector_t start, sector_t len, void *data)
233 {
234         struct queue_limits *limits = data;
235         struct block_device *bdev = dev->bdev;
236         sector_t dev_size = bdev_nr_sectors(bdev);
237         unsigned short logical_block_size_sectors =
238                 limits->logical_block_size >> SECTOR_SHIFT;
239
240         if (!dev_size)
241                 return 0;
242
243         if ((start >= dev_size) || (start + len > dev_size)) {
244                 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
245                       dm_device_name(ti->table->md), bdev,
246                       (unsigned long long)start,
247                       (unsigned long long)len,
248                       (unsigned long long)dev_size);
249                 return 1;
250         }
251
252         /*
253          * If the target is mapped to zoned block device(s), check
254          * that the zones are not partially mapped.
255          */
256         if (bdev_is_zoned(bdev)) {
257                 unsigned int zone_sectors = bdev_zone_sectors(bdev);
258
259                 if (start & (zone_sectors - 1)) {
260                         DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
261                               dm_device_name(ti->table->md),
262                               (unsigned long long)start,
263                               zone_sectors, bdev);
264                         return 1;
265                 }
266
267                 /*
268                  * Note: The last zone of a zoned block device may be smaller
269                  * than other zones. So for a target mapping the end of a
270                  * zoned block device with such a zone, len would not be zone
271                  * aligned. We do not allow such last smaller zone to be part
272                  * of the mapping here to ensure that mappings with multiple
273                  * devices do not end up with a smaller zone in the middle of
274                  * the sector range.
275                  */
276                 if (len & (zone_sectors - 1)) {
277                         DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
278                               dm_device_name(ti->table->md),
279                               (unsigned long long)len,
280                               zone_sectors, bdev);
281                         return 1;
282                 }
283         }
284
285         if (logical_block_size_sectors <= 1)
286                 return 0;
287
288         if (start & (logical_block_size_sectors - 1)) {
289                 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
290                       dm_device_name(ti->table->md),
291                       (unsigned long long)start,
292                       limits->logical_block_size, bdev);
293                 return 1;
294         }
295
296         if (len & (logical_block_size_sectors - 1)) {
297                 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
298                       dm_device_name(ti->table->md),
299                       (unsigned long long)len,
300                       limits->logical_block_size, bdev);
301                 return 1;
302         }
303
304         return 0;
305 }
306
307 /*
308  * This upgrades the mode on an already open dm_dev, being
309  * careful to leave things as they were if we fail to reopen the
310  * device and not to touch the existing bdev field in case
311  * it is accessed concurrently.
312  */
313 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
314                         struct mapped_device *md)
315 {
316         int r;
317         struct dm_dev *old_dev, *new_dev;
318
319         old_dev = dd->dm_dev;
320
321         r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
322                                 dd->dm_dev->mode | new_mode, &new_dev);
323         if (r)
324                 return r;
325
326         dd->dm_dev = new_dev;
327         dm_put_table_device(md, old_dev);
328
329         return 0;
330 }
331
332 /*
333  * Add a device to the list, or just increment the usage count if
334  * it's already present.
335  *
336  * Note: the __ref annotation is because this function can call the __init
337  * marked early_lookup_bdev when called during early boot code from dm-init.c.
338  */
339 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
340                   struct dm_dev **result)
341 {
342         int r;
343         dev_t dev;
344         unsigned int major, minor;
345         char dummy;
346         struct dm_dev_internal *dd;
347         struct dm_table *t = ti->table;
348
349         BUG_ON(!t);
350
351         if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
352                 /* Extract the major/minor numbers */
353                 dev = MKDEV(major, minor);
354                 if (MAJOR(dev) != major || MINOR(dev) != minor)
355                         return -EOVERFLOW;
356         } else {
357                 r = lookup_bdev(path, &dev);
358 #ifndef MODULE
359                 if (r && system_state < SYSTEM_RUNNING)
360                         r = early_lookup_bdev(path, &dev);
361 #endif
362                 if (r)
363                         return r;
364         }
365         if (dev == disk_devt(t->md->disk))
366                 return -EINVAL;
367
368         down_write(&t->devices_lock);
369
370         dd = find_device(&t->devices, dev);
371         if (!dd) {
372                 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373                 if (!dd) {
374                         r = -ENOMEM;
375                         goto unlock_ret_r;
376                 }
377
378                 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
379                 if (r) {
380                         kfree(dd);
381                         goto unlock_ret_r;
382                 }
383
384                 refcount_set(&dd->count, 1);
385                 list_add(&dd->list, &t->devices);
386                 goto out;
387
388         } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
389                 r = upgrade_mode(dd, mode, t->md);
390                 if (r)
391                         goto unlock_ret_r;
392         }
393         refcount_inc(&dd->count);
394 out:
395         up_write(&t->devices_lock);
396         *result = dd->dm_dev;
397         return 0;
398
399 unlock_ret_r:
400         up_write(&t->devices_lock);
401         return r;
402 }
403 EXPORT_SYMBOL(dm_get_device);
404
405 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
406                                 sector_t start, sector_t len, void *data)
407 {
408         struct queue_limits *limits = data;
409         struct block_device *bdev = dev->bdev;
410         struct request_queue *q = bdev_get_queue(bdev);
411
412         if (unlikely(!q)) {
413                 DMWARN("%s: Cannot set limits for nonexistent device %pg",
414                        dm_device_name(ti->table->md), bdev);
415                 return 0;
416         }
417
418         if (blk_stack_limits(limits, &q->limits,
419                         get_start_sect(bdev) + start) < 0)
420                 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
421                        "physical_block_size=%u, logical_block_size=%u, "
422                        "alignment_offset=%u, start=%llu",
423                        dm_device_name(ti->table->md), bdev,
424                        q->limits.physical_block_size,
425                        q->limits.logical_block_size,
426                        q->limits.alignment_offset,
427                        (unsigned long long) start << SECTOR_SHIFT);
428         return 0;
429 }
430
431 /*
432  * Decrement a device's use count and remove it if necessary.
433  */
434 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
435 {
436         int found = 0;
437         struct dm_table *t = ti->table;
438         struct list_head *devices = &t->devices;
439         struct dm_dev_internal *dd;
440
441         down_write(&t->devices_lock);
442
443         list_for_each_entry(dd, devices, list) {
444                 if (dd->dm_dev == d) {
445                         found = 1;
446                         break;
447                 }
448         }
449         if (!found) {
450                 DMERR("%s: device %s not in table devices list",
451                       dm_device_name(t->md), d->name);
452                 goto unlock_ret;
453         }
454         if (refcount_dec_and_test(&dd->count)) {
455                 dm_put_table_device(t->md, d);
456                 list_del(&dd->list);
457                 kfree(dd);
458         }
459
460 unlock_ret:
461         up_write(&t->devices_lock);
462 }
463 EXPORT_SYMBOL(dm_put_device);
464
465 /*
466  * Checks to see if the target joins onto the end of the table.
467  */
468 static int adjoin(struct dm_table *t, struct dm_target *ti)
469 {
470         struct dm_target *prev;
471
472         if (!t->num_targets)
473                 return !ti->begin;
474
475         prev = &t->targets[t->num_targets - 1];
476         return (ti->begin == (prev->begin + prev->len));
477 }
478
479 /*
480  * Used to dynamically allocate the arg array.
481  *
482  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
483  * process messages even if some device is suspended. These messages have a
484  * small fixed number of arguments.
485  *
486  * On the other hand, dm-switch needs to process bulk data using messages and
487  * excessive use of GFP_NOIO could cause trouble.
488  */
489 static char **realloc_argv(unsigned int *size, char **old_argv)
490 {
491         char **argv;
492         unsigned int new_size;
493         gfp_t gfp;
494
495         if (*size) {
496                 new_size = *size * 2;
497                 gfp = GFP_KERNEL;
498         } else {
499                 new_size = 8;
500                 gfp = GFP_NOIO;
501         }
502         argv = kmalloc_array(new_size, sizeof(*argv), gfp);
503         if (argv && old_argv) {
504                 memcpy(argv, old_argv, *size * sizeof(*argv));
505                 *size = new_size;
506         }
507
508         kfree(old_argv);
509         return argv;
510 }
511
512 /*
513  * Destructively splits up the argument list to pass to ctr.
514  */
515 int dm_split_args(int *argc, char ***argvp, char *input)
516 {
517         char *start, *end = input, *out, **argv = NULL;
518         unsigned int array_size = 0;
519
520         *argc = 0;
521
522         if (!input) {
523                 *argvp = NULL;
524                 return 0;
525         }
526
527         argv = realloc_argv(&array_size, argv);
528         if (!argv)
529                 return -ENOMEM;
530
531         while (1) {
532                 /* Skip whitespace */
533                 start = skip_spaces(end);
534
535                 if (!*start)
536                         break;  /* success, we hit the end */
537
538                 /* 'out' is used to remove any back-quotes */
539                 end = out = start;
540                 while (*end) {
541                         /* Everything apart from '\0' can be quoted */
542                         if (*end == '\\' && *(end + 1)) {
543                                 *out++ = *(end + 1);
544                                 end += 2;
545                                 continue;
546                         }
547
548                         if (isspace(*end))
549                                 break;  /* end of token */
550
551                         *out++ = *end++;
552                 }
553
554                 /* have we already filled the array ? */
555                 if ((*argc + 1) > array_size) {
556                         argv = realloc_argv(&array_size, argv);
557                         if (!argv)
558                                 return -ENOMEM;
559                 }
560
561                 /* we know this is whitespace */
562                 if (*end)
563                         end++;
564
565                 /* terminate the string and put it in the array */
566                 *out = '\0';
567                 argv[*argc] = start;
568                 (*argc)++;
569         }
570
571         *argvp = argv;
572         return 0;
573 }
574
575 /*
576  * Impose necessary and sufficient conditions on a devices's table such
577  * that any incoming bio which respects its logical_block_size can be
578  * processed successfully.  If it falls across the boundary between
579  * two or more targets, the size of each piece it gets split into must
580  * be compatible with the logical_block_size of the target processing it.
581  */
582 static int validate_hardware_logical_block_alignment(struct dm_table *t,
583                                                      struct queue_limits *limits)
584 {
585         /*
586          * This function uses arithmetic modulo the logical_block_size
587          * (in units of 512-byte sectors).
588          */
589         unsigned short device_logical_block_size_sects =
590                 limits->logical_block_size >> SECTOR_SHIFT;
591
592         /*
593          * Offset of the start of the next table entry, mod logical_block_size.
594          */
595         unsigned short next_target_start = 0;
596
597         /*
598          * Given an aligned bio that extends beyond the end of a
599          * target, how many sectors must the next target handle?
600          */
601         unsigned short remaining = 0;
602
603         struct dm_target *ti;
604         struct queue_limits ti_limits;
605         unsigned int i;
606
607         /*
608          * Check each entry in the table in turn.
609          */
610         for (i = 0; i < t->num_targets; i++) {
611                 ti = dm_table_get_target(t, i);
612
613                 blk_set_stacking_limits(&ti_limits);
614
615                 /* combine all target devices' limits */
616                 if (ti->type->iterate_devices)
617                         ti->type->iterate_devices(ti, dm_set_device_limits,
618                                                   &ti_limits);
619
620                 /*
621                  * If the remaining sectors fall entirely within this
622                  * table entry are they compatible with its logical_block_size?
623                  */
624                 if (remaining < ti->len &&
625                     remaining & ((ti_limits.logical_block_size >>
626                                   SECTOR_SHIFT) - 1))
627                         break;  /* Error */
628
629                 next_target_start =
630                     (unsigned short) ((next_target_start + ti->len) &
631                                       (device_logical_block_size_sects - 1));
632                 remaining = next_target_start ?
633                     device_logical_block_size_sects - next_target_start : 0;
634         }
635
636         if (remaining) {
637                 DMERR("%s: table line %u (start sect %llu len %llu) "
638                       "not aligned to h/w logical block size %u",
639                       dm_device_name(t->md), i,
640                       (unsigned long long) ti->begin,
641                       (unsigned long long) ti->len,
642                       limits->logical_block_size);
643                 return -EINVAL;
644         }
645
646         return 0;
647 }
648
649 int dm_table_add_target(struct dm_table *t, const char *type,
650                         sector_t start, sector_t len, char *params)
651 {
652         int r = -EINVAL, argc;
653         char **argv;
654         struct dm_target *ti;
655
656         if (t->singleton) {
657                 DMERR("%s: target type %s must appear alone in table",
658                       dm_device_name(t->md), t->targets->type->name);
659                 return -EINVAL;
660         }
661
662         BUG_ON(t->num_targets >= t->num_allocated);
663
664         ti = t->targets + t->num_targets;
665         memset(ti, 0, sizeof(*ti));
666
667         if (!len) {
668                 DMERR("%s: zero-length target", dm_device_name(t->md));
669                 return -EINVAL;
670         }
671
672         ti->type = dm_get_target_type(type);
673         if (!ti->type) {
674                 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
675                 return -EINVAL;
676         }
677
678         if (dm_target_needs_singleton(ti->type)) {
679                 if (t->num_targets) {
680                         ti->error = "singleton target type must appear alone in table";
681                         goto bad;
682                 }
683                 t->singleton = true;
684         }
685
686         if (dm_target_always_writeable(ti->type) &&
687             !(t->mode & BLK_OPEN_WRITE)) {
688                 ti->error = "target type may not be included in a read-only table";
689                 goto bad;
690         }
691
692         if (t->immutable_target_type) {
693                 if (t->immutable_target_type != ti->type) {
694                         ti->error = "immutable target type cannot be mixed with other target types";
695                         goto bad;
696                 }
697         } else if (dm_target_is_immutable(ti->type)) {
698                 if (t->num_targets) {
699                         ti->error = "immutable target type cannot be mixed with other target types";
700                         goto bad;
701                 }
702                 t->immutable_target_type = ti->type;
703         }
704
705         if (dm_target_has_integrity(ti->type))
706                 t->integrity_added = 1;
707
708         ti->table = t;
709         ti->begin = start;
710         ti->len = len;
711         ti->error = "Unknown error";
712
713         /*
714          * Does this target adjoin the previous one ?
715          */
716         if (!adjoin(t, ti)) {
717                 ti->error = "Gap in table";
718                 goto bad;
719         }
720
721         r = dm_split_args(&argc, &argv, params);
722         if (r) {
723                 ti->error = "couldn't split parameters";
724                 goto bad;
725         }
726
727         r = ti->type->ctr(ti, argc, argv);
728         kfree(argv);
729         if (r)
730                 goto bad;
731
732         t->highs[t->num_targets++] = ti->begin + ti->len - 1;
733
734         if (!ti->num_discard_bios && ti->discards_supported)
735                 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
736                        dm_device_name(t->md), type);
737
738         if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
739                 static_branch_enable(&swap_bios_enabled);
740
741         return 0;
742
743  bad:
744         DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
745         dm_put_target_type(ti->type);
746         return r;
747 }
748
749 /*
750  * Target argument parsing helpers.
751  */
752 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
753                              unsigned int *value, char **error, unsigned int grouped)
754 {
755         const char *arg_str = dm_shift_arg(arg_set);
756         char dummy;
757
758         if (!arg_str ||
759             (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
760             (*value < arg->min) ||
761             (*value > arg->max) ||
762             (grouped && arg_set->argc < *value)) {
763                 *error = arg->error;
764                 return -EINVAL;
765         }
766
767         return 0;
768 }
769
770 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
771                 unsigned int *value, char **error)
772 {
773         return validate_next_arg(arg, arg_set, value, error, 0);
774 }
775 EXPORT_SYMBOL(dm_read_arg);
776
777 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
778                       unsigned int *value, char **error)
779 {
780         return validate_next_arg(arg, arg_set, value, error, 1);
781 }
782 EXPORT_SYMBOL(dm_read_arg_group);
783
784 const char *dm_shift_arg(struct dm_arg_set *as)
785 {
786         char *r;
787
788         if (as->argc) {
789                 as->argc--;
790                 r = *as->argv;
791                 as->argv++;
792                 return r;
793         }
794
795         return NULL;
796 }
797 EXPORT_SYMBOL(dm_shift_arg);
798
799 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
800 {
801         BUG_ON(as->argc < num_args);
802         as->argc -= num_args;
803         as->argv += num_args;
804 }
805 EXPORT_SYMBOL(dm_consume_args);
806
807 static bool __table_type_bio_based(enum dm_queue_mode table_type)
808 {
809         return (table_type == DM_TYPE_BIO_BASED ||
810                 table_type == DM_TYPE_DAX_BIO_BASED);
811 }
812
813 static bool __table_type_request_based(enum dm_queue_mode table_type)
814 {
815         return table_type == DM_TYPE_REQUEST_BASED;
816 }
817
818 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
819 {
820         t->type = type;
821 }
822 EXPORT_SYMBOL_GPL(dm_table_set_type);
823
824 /* validate the dax capability of the target device span */
825 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
826                         sector_t start, sector_t len, void *data)
827 {
828         if (dev->dax_dev)
829                 return false;
830
831         DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
832         return true;
833 }
834
835 /* Check devices support synchronous DAX */
836 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
837                                               sector_t start, sector_t len, void *data)
838 {
839         return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
840 }
841
842 static bool dm_table_supports_dax(struct dm_table *t,
843                                   iterate_devices_callout_fn iterate_fn)
844 {
845         /* Ensure that all targets support DAX. */
846         for (unsigned int i = 0; i < t->num_targets; i++) {
847                 struct dm_target *ti = dm_table_get_target(t, i);
848
849                 if (!ti->type->direct_access)
850                         return false;
851
852                 if (dm_target_is_wildcard(ti->type) ||
853                     !ti->type->iterate_devices ||
854                     ti->type->iterate_devices(ti, iterate_fn, NULL))
855                         return false;
856         }
857
858         return true;
859 }
860
861 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
862                                   sector_t start, sector_t len, void *data)
863 {
864         struct block_device *bdev = dev->bdev;
865         struct request_queue *q = bdev_get_queue(bdev);
866
867         /* request-based cannot stack on partitions! */
868         if (bdev_is_partition(bdev))
869                 return false;
870
871         return queue_is_mq(q);
872 }
873
874 static int dm_table_determine_type(struct dm_table *t)
875 {
876         unsigned int bio_based = 0, request_based = 0, hybrid = 0;
877         struct dm_target *ti;
878         struct list_head *devices = dm_table_get_devices(t);
879         enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
880
881         if (t->type != DM_TYPE_NONE) {
882                 /* target already set the table's type */
883                 if (t->type == DM_TYPE_BIO_BASED) {
884                         /* possibly upgrade to a variant of bio-based */
885                         goto verify_bio_based;
886                 }
887                 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
888                 goto verify_rq_based;
889         }
890
891         for (unsigned int i = 0; i < t->num_targets; i++) {
892                 ti = dm_table_get_target(t, i);
893                 if (dm_target_hybrid(ti))
894                         hybrid = 1;
895                 else if (dm_target_request_based(ti))
896                         request_based = 1;
897                 else
898                         bio_based = 1;
899
900                 if (bio_based && request_based) {
901                         DMERR("Inconsistent table: different target types can't be mixed up");
902                         return -EINVAL;
903                 }
904         }
905
906         if (hybrid && !bio_based && !request_based) {
907                 /*
908                  * The targets can work either way.
909                  * Determine the type from the live device.
910                  * Default to bio-based if device is new.
911                  */
912                 if (__table_type_request_based(live_md_type))
913                         request_based = 1;
914                 else
915                         bio_based = 1;
916         }
917
918         if (bio_based) {
919 verify_bio_based:
920                 /* We must use this table as bio-based */
921                 t->type = DM_TYPE_BIO_BASED;
922                 if (dm_table_supports_dax(t, device_not_dax_capable) ||
923                     (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
924                         t->type = DM_TYPE_DAX_BIO_BASED;
925                 }
926                 return 0;
927         }
928
929         BUG_ON(!request_based); /* No targets in this table */
930
931         t->type = DM_TYPE_REQUEST_BASED;
932
933 verify_rq_based:
934         /*
935          * Request-based dm supports only tables that have a single target now.
936          * To support multiple targets, request splitting support is needed,
937          * and that needs lots of changes in the block-layer.
938          * (e.g. request completion process for partial completion.)
939          */
940         if (t->num_targets > 1) {
941                 DMERR("request-based DM doesn't support multiple targets");
942                 return -EINVAL;
943         }
944
945         if (list_empty(devices)) {
946                 int srcu_idx;
947                 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
948
949                 /* inherit live table's type */
950                 if (live_table)
951                         t->type = live_table->type;
952                 dm_put_live_table(t->md, srcu_idx);
953                 return 0;
954         }
955
956         ti = dm_table_get_immutable_target(t);
957         if (!ti) {
958                 DMERR("table load rejected: immutable target is required");
959                 return -EINVAL;
960         } else if (ti->max_io_len) {
961                 DMERR("table load rejected: immutable target that splits IO is not supported");
962                 return -EINVAL;
963         }
964
965         /* Non-request-stackable devices can't be used for request-based dm */
966         if (!ti->type->iterate_devices ||
967             !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
968                 DMERR("table load rejected: including non-request-stackable devices");
969                 return -EINVAL;
970         }
971
972         return 0;
973 }
974
975 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
976 {
977         return t->type;
978 }
979
980 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
981 {
982         return t->immutable_target_type;
983 }
984
985 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
986 {
987         /* Immutable target is implicitly a singleton */
988         if (t->num_targets > 1 ||
989             !dm_target_is_immutable(t->targets[0].type))
990                 return NULL;
991
992         return t->targets;
993 }
994
995 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
996 {
997         for (unsigned int i = 0; i < t->num_targets; i++) {
998                 struct dm_target *ti = dm_table_get_target(t, i);
999
1000                 if (dm_target_is_wildcard(ti->type))
1001                         return ti;
1002         }
1003
1004         return NULL;
1005 }
1006
1007 bool dm_table_bio_based(struct dm_table *t)
1008 {
1009         return __table_type_bio_based(dm_table_get_type(t));
1010 }
1011
1012 bool dm_table_request_based(struct dm_table *t)
1013 {
1014         return __table_type_request_based(dm_table_get_type(t));
1015 }
1016
1017 static bool dm_table_supports_poll(struct dm_table *t);
1018
1019 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1020 {
1021         enum dm_queue_mode type = dm_table_get_type(t);
1022         unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1023         unsigned int min_pool_size = 0, pool_size;
1024         struct dm_md_mempools *pools;
1025
1026         if (unlikely(type == DM_TYPE_NONE)) {
1027                 DMERR("no table type is set, can't allocate mempools");
1028                 return -EINVAL;
1029         }
1030
1031         pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1032         if (!pools)
1033                 return -ENOMEM;
1034
1035         if (type == DM_TYPE_REQUEST_BASED) {
1036                 pool_size = dm_get_reserved_rq_based_ios();
1037                 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1038                 goto init_bs;
1039         }
1040
1041         for (unsigned int i = 0; i < t->num_targets; i++) {
1042                 struct dm_target *ti = dm_table_get_target(t, i);
1043
1044                 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1045                 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1046         }
1047         pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1048         front_pad = roundup(per_io_data_size,
1049                 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1050
1051         io_front_pad = roundup(per_io_data_size,
1052                 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1053         if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1054                         dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1055                 goto out_free_pools;
1056         if (t->integrity_supported &&
1057             bioset_integrity_create(&pools->io_bs, pool_size))
1058                 goto out_free_pools;
1059 init_bs:
1060         if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1061                 goto out_free_pools;
1062         if (t->integrity_supported &&
1063             bioset_integrity_create(&pools->bs, pool_size))
1064                 goto out_free_pools;
1065
1066         t->mempools = pools;
1067         return 0;
1068
1069 out_free_pools:
1070         dm_free_md_mempools(pools);
1071         return -ENOMEM;
1072 }
1073
1074 static int setup_indexes(struct dm_table *t)
1075 {
1076         int i;
1077         unsigned int total = 0;
1078         sector_t *indexes;
1079
1080         /* allocate the space for *all* the indexes */
1081         for (i = t->depth - 2; i >= 0; i--) {
1082                 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1083                 total += t->counts[i];
1084         }
1085
1086         indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1087         if (!indexes)
1088                 return -ENOMEM;
1089
1090         /* set up internal nodes, bottom-up */
1091         for (i = t->depth - 2; i >= 0; i--) {
1092                 t->index[i] = indexes;
1093                 indexes += (KEYS_PER_NODE * t->counts[i]);
1094                 setup_btree_index(i, t);
1095         }
1096
1097         return 0;
1098 }
1099
1100 /*
1101  * Builds the btree to index the map.
1102  */
1103 static int dm_table_build_index(struct dm_table *t)
1104 {
1105         int r = 0;
1106         unsigned int leaf_nodes;
1107
1108         /* how many indexes will the btree have ? */
1109         leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1110         t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1111
1112         /* leaf layer has already been set up */
1113         t->counts[t->depth - 1] = leaf_nodes;
1114         t->index[t->depth - 1] = t->highs;
1115
1116         if (t->depth >= 2)
1117                 r = setup_indexes(t);
1118
1119         return r;
1120 }
1121
1122 static bool integrity_profile_exists(struct gendisk *disk)
1123 {
1124         return !!blk_get_integrity(disk);
1125 }
1126
1127 /*
1128  * Get a disk whose integrity profile reflects the table's profile.
1129  * Returns NULL if integrity support was inconsistent or unavailable.
1130  */
1131 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1132 {
1133         struct list_head *devices = dm_table_get_devices(t);
1134         struct dm_dev_internal *dd = NULL;
1135         struct gendisk *prev_disk = NULL, *template_disk = NULL;
1136
1137         for (unsigned int i = 0; i < t->num_targets; i++) {
1138                 struct dm_target *ti = dm_table_get_target(t, i);
1139
1140                 if (!dm_target_passes_integrity(ti->type))
1141                         goto no_integrity;
1142         }
1143
1144         list_for_each_entry(dd, devices, list) {
1145                 template_disk = dd->dm_dev->bdev->bd_disk;
1146                 if (!integrity_profile_exists(template_disk))
1147                         goto no_integrity;
1148                 else if (prev_disk &&
1149                          blk_integrity_compare(prev_disk, template_disk) < 0)
1150                         goto no_integrity;
1151                 prev_disk = template_disk;
1152         }
1153
1154         return template_disk;
1155
1156 no_integrity:
1157         if (prev_disk)
1158                 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1159                        dm_device_name(t->md),
1160                        prev_disk->disk_name,
1161                        template_disk->disk_name);
1162         return NULL;
1163 }
1164
1165 /*
1166  * Register the mapped device for blk_integrity support if the
1167  * underlying devices have an integrity profile.  But all devices may
1168  * not have matching profiles (checking all devices isn't reliable
1169  * during table load because this table may use other DM device(s) which
1170  * must be resumed before they will have an initialized integity
1171  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1172  * profile validation: First pass during table load, final pass during
1173  * resume.
1174  */
1175 static int dm_table_register_integrity(struct dm_table *t)
1176 {
1177         struct mapped_device *md = t->md;
1178         struct gendisk *template_disk = NULL;
1179
1180         /* If target handles integrity itself do not register it here. */
1181         if (t->integrity_added)
1182                 return 0;
1183
1184         template_disk = dm_table_get_integrity_disk(t);
1185         if (!template_disk)
1186                 return 0;
1187
1188         if (!integrity_profile_exists(dm_disk(md))) {
1189                 t->integrity_supported = true;
1190                 /*
1191                  * Register integrity profile during table load; we can do
1192                  * this because the final profile must match during resume.
1193                  */
1194                 blk_integrity_register(dm_disk(md),
1195                                        blk_get_integrity(template_disk));
1196                 return 0;
1197         }
1198
1199         /*
1200          * If DM device already has an initialized integrity
1201          * profile the new profile should not conflict.
1202          */
1203         if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1204                 DMERR("%s: conflict with existing integrity profile: %s profile mismatch",
1205                       dm_device_name(t->md),
1206                       template_disk->disk_name);
1207                 return 1;
1208         }
1209
1210         /* Preserve existing integrity profile */
1211         t->integrity_supported = true;
1212         return 0;
1213 }
1214
1215 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1216
1217 struct dm_crypto_profile {
1218         struct blk_crypto_profile profile;
1219         struct mapped_device *md;
1220 };
1221
1222 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1223                                      sector_t start, sector_t len, void *data)
1224 {
1225         const struct blk_crypto_key *key = data;
1226
1227         blk_crypto_evict_key(dev->bdev, key);
1228         return 0;
1229 }
1230
1231 /*
1232  * When an inline encryption key is evicted from a device-mapper device, evict
1233  * it from all the underlying devices.
1234  */
1235 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1236                             const struct blk_crypto_key *key, unsigned int slot)
1237 {
1238         struct mapped_device *md =
1239                 container_of(profile, struct dm_crypto_profile, profile)->md;
1240         struct dm_table *t;
1241         int srcu_idx;
1242
1243         t = dm_get_live_table(md, &srcu_idx);
1244         if (!t)
1245                 return 0;
1246
1247         for (unsigned int i = 0; i < t->num_targets; i++) {
1248                 struct dm_target *ti = dm_table_get_target(t, i);
1249
1250                 if (!ti->type->iterate_devices)
1251                         continue;
1252                 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1253                                           (void *)key);
1254         }
1255
1256         dm_put_live_table(md, srcu_idx);
1257         return 0;
1258 }
1259
1260 static int
1261 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1262                                      sector_t start, sector_t len, void *data)
1263 {
1264         struct blk_crypto_profile *parent = data;
1265         struct blk_crypto_profile *child =
1266                 bdev_get_queue(dev->bdev)->crypto_profile;
1267
1268         blk_crypto_intersect_capabilities(parent, child);
1269         return 0;
1270 }
1271
1272 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1273 {
1274         struct dm_crypto_profile *dmcp = container_of(profile,
1275                                                       struct dm_crypto_profile,
1276                                                       profile);
1277
1278         if (!profile)
1279                 return;
1280
1281         blk_crypto_profile_destroy(profile);
1282         kfree(dmcp);
1283 }
1284
1285 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1286 {
1287         dm_destroy_crypto_profile(t->crypto_profile);
1288         t->crypto_profile = NULL;
1289 }
1290
1291 /*
1292  * Constructs and initializes t->crypto_profile with a crypto profile that
1293  * represents the common set of crypto capabilities of the devices described by
1294  * the dm_table.  However, if the constructed crypto profile doesn't support all
1295  * crypto capabilities that are supported by the current mapped_device, it
1296  * returns an error instead, since we don't support removing crypto capabilities
1297  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1298  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1299  */
1300 static int dm_table_construct_crypto_profile(struct dm_table *t)
1301 {
1302         struct dm_crypto_profile *dmcp;
1303         struct blk_crypto_profile *profile;
1304         unsigned int i;
1305         bool empty_profile = true;
1306
1307         dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1308         if (!dmcp)
1309                 return -ENOMEM;
1310         dmcp->md = t->md;
1311
1312         profile = &dmcp->profile;
1313         blk_crypto_profile_init(profile, 0);
1314         profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1315         profile->max_dun_bytes_supported = UINT_MAX;
1316         memset(profile->modes_supported, 0xFF,
1317                sizeof(profile->modes_supported));
1318
1319         for (i = 0; i < t->num_targets; i++) {
1320                 struct dm_target *ti = dm_table_get_target(t, i);
1321
1322                 if (!dm_target_passes_crypto(ti->type)) {
1323                         blk_crypto_intersect_capabilities(profile, NULL);
1324                         break;
1325                 }
1326                 if (!ti->type->iterate_devices)
1327                         continue;
1328                 ti->type->iterate_devices(ti,
1329                                           device_intersect_crypto_capabilities,
1330                                           profile);
1331         }
1332
1333         if (t->md->queue &&
1334             !blk_crypto_has_capabilities(profile,
1335                                          t->md->queue->crypto_profile)) {
1336                 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1337                 dm_destroy_crypto_profile(profile);
1338                 return -EINVAL;
1339         }
1340
1341         /*
1342          * If the new profile doesn't actually support any crypto capabilities,
1343          * we may as well represent it with a NULL profile.
1344          */
1345         for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1346                 if (profile->modes_supported[i]) {
1347                         empty_profile = false;
1348                         break;
1349                 }
1350         }
1351
1352         if (empty_profile) {
1353                 dm_destroy_crypto_profile(profile);
1354                 profile = NULL;
1355         }
1356
1357         /*
1358          * t->crypto_profile is only set temporarily while the table is being
1359          * set up, and it gets set to NULL after the profile has been
1360          * transferred to the request_queue.
1361          */
1362         t->crypto_profile = profile;
1363
1364         return 0;
1365 }
1366
1367 static void dm_update_crypto_profile(struct request_queue *q,
1368                                      struct dm_table *t)
1369 {
1370         if (!t->crypto_profile)
1371                 return;
1372
1373         /* Make the crypto profile less restrictive. */
1374         if (!q->crypto_profile) {
1375                 blk_crypto_register(t->crypto_profile, q);
1376         } else {
1377                 blk_crypto_update_capabilities(q->crypto_profile,
1378                                                t->crypto_profile);
1379                 dm_destroy_crypto_profile(t->crypto_profile);
1380         }
1381         t->crypto_profile = NULL;
1382 }
1383
1384 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1385
1386 static int dm_table_construct_crypto_profile(struct dm_table *t)
1387 {
1388         return 0;
1389 }
1390
1391 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1392 {
1393 }
1394
1395 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1396 {
1397 }
1398
1399 static void dm_update_crypto_profile(struct request_queue *q,
1400                                      struct dm_table *t)
1401 {
1402 }
1403
1404 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1405
1406 /*
1407  * Prepares the table for use by building the indices,
1408  * setting the type, and allocating mempools.
1409  */
1410 int dm_table_complete(struct dm_table *t)
1411 {
1412         int r;
1413
1414         r = dm_table_determine_type(t);
1415         if (r) {
1416                 DMERR("unable to determine table type");
1417                 return r;
1418         }
1419
1420         r = dm_table_build_index(t);
1421         if (r) {
1422                 DMERR("unable to build btrees");
1423                 return r;
1424         }
1425
1426         r = dm_table_register_integrity(t);
1427         if (r) {
1428                 DMERR("could not register integrity profile.");
1429                 return r;
1430         }
1431
1432         r = dm_table_construct_crypto_profile(t);
1433         if (r) {
1434                 DMERR("could not construct crypto profile.");
1435                 return r;
1436         }
1437
1438         r = dm_table_alloc_md_mempools(t, t->md);
1439         if (r)
1440                 DMERR("unable to allocate mempools");
1441
1442         return r;
1443 }
1444
1445 static DEFINE_MUTEX(_event_lock);
1446 void dm_table_event_callback(struct dm_table *t,
1447                              void (*fn)(void *), void *context)
1448 {
1449         mutex_lock(&_event_lock);
1450         t->event_fn = fn;
1451         t->event_context = context;
1452         mutex_unlock(&_event_lock);
1453 }
1454
1455 void dm_table_event(struct dm_table *t)
1456 {
1457         mutex_lock(&_event_lock);
1458         if (t->event_fn)
1459                 t->event_fn(t->event_context);
1460         mutex_unlock(&_event_lock);
1461 }
1462 EXPORT_SYMBOL(dm_table_event);
1463
1464 inline sector_t dm_table_get_size(struct dm_table *t)
1465 {
1466         return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1467 }
1468 EXPORT_SYMBOL(dm_table_get_size);
1469
1470 /*
1471  * Search the btree for the correct target.
1472  *
1473  * Caller should check returned pointer for NULL
1474  * to trap I/O beyond end of device.
1475  */
1476 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1477 {
1478         unsigned int l, n = 0, k = 0;
1479         sector_t *node;
1480
1481         if (unlikely(sector >= dm_table_get_size(t)))
1482                 return NULL;
1483
1484         for (l = 0; l < t->depth; l++) {
1485                 n = get_child(n, k);
1486                 node = get_node(t, l, n);
1487
1488                 for (k = 0; k < KEYS_PER_NODE; k++)
1489                         if (node[k] >= sector)
1490                                 break;
1491         }
1492
1493         return &t->targets[(KEYS_PER_NODE * n) + k];
1494 }
1495
1496 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1497                                    sector_t start, sector_t len, void *data)
1498 {
1499         struct request_queue *q = bdev_get_queue(dev->bdev);
1500
1501         return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1502 }
1503
1504 /*
1505  * type->iterate_devices() should be called when the sanity check needs to
1506  * iterate and check all underlying data devices. iterate_devices() will
1507  * iterate all underlying data devices until it encounters a non-zero return
1508  * code, returned by whether the input iterate_devices_callout_fn, or
1509  * iterate_devices() itself internally.
1510  *
1511  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1512  * iterate multiple underlying devices internally, in which case a non-zero
1513  * return code returned by iterate_devices_callout_fn will stop the iteration
1514  * in advance.
1515  *
1516  * Cases requiring _any_ underlying device supporting some kind of attribute,
1517  * should use the iteration structure like dm_table_any_dev_attr(), or call
1518  * it directly. @func should handle semantics of positive examples, e.g.
1519  * capable of something.
1520  *
1521  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1522  * should use the iteration structure like dm_table_supports_nowait() or
1523  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1524  * uses an @anti_func that handle semantics of counter examples, e.g. not
1525  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1526  */
1527 static bool dm_table_any_dev_attr(struct dm_table *t,
1528                                   iterate_devices_callout_fn func, void *data)
1529 {
1530         for (unsigned int i = 0; i < t->num_targets; i++) {
1531                 struct dm_target *ti = dm_table_get_target(t, i);
1532
1533                 if (ti->type->iterate_devices &&
1534                     ti->type->iterate_devices(ti, func, data))
1535                         return true;
1536         }
1537
1538         return false;
1539 }
1540
1541 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1542                         sector_t start, sector_t len, void *data)
1543 {
1544         unsigned int *num_devices = data;
1545
1546         (*num_devices)++;
1547
1548         return 0;
1549 }
1550
1551 static bool dm_table_supports_poll(struct dm_table *t)
1552 {
1553         for (unsigned int i = 0; i < t->num_targets; i++) {
1554                 struct dm_target *ti = dm_table_get_target(t, i);
1555
1556                 if (!ti->type->iterate_devices ||
1557                     ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1558                         return false;
1559         }
1560
1561         return true;
1562 }
1563
1564 /*
1565  * Check whether a table has no data devices attached using each
1566  * target's iterate_devices method.
1567  * Returns false if the result is unknown because a target doesn't
1568  * support iterate_devices.
1569  */
1570 bool dm_table_has_no_data_devices(struct dm_table *t)
1571 {
1572         for (unsigned int i = 0; i < t->num_targets; i++) {
1573                 struct dm_target *ti = dm_table_get_target(t, i);
1574                 unsigned int num_devices = 0;
1575
1576                 if (!ti->type->iterate_devices)
1577                         return false;
1578
1579                 ti->type->iterate_devices(ti, count_device, &num_devices);
1580                 if (num_devices)
1581                         return false;
1582         }
1583
1584         return true;
1585 }
1586
1587 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1588                             sector_t start, sector_t len, void *data)
1589 {
1590         bool *zoned = data;
1591
1592         return bdev_is_zoned(dev->bdev) != *zoned;
1593 }
1594
1595 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1596                                  sector_t start, sector_t len, void *data)
1597 {
1598         return bdev_is_zoned(dev->bdev);
1599 }
1600
1601 /*
1602  * Check the device zoned model based on the target feature flag. If the target
1603  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1604  * also accepted but all devices must have the same zoned model. If the target
1605  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1606  * zoned model with all zoned devices having the same zone size.
1607  */
1608 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1609 {
1610         for (unsigned int i = 0; i < t->num_targets; i++) {
1611                 struct dm_target *ti = dm_table_get_target(t, i);
1612
1613                 /*
1614                  * For the wildcard target (dm-error), if we do not have a
1615                  * backing device, we must always return false. If we have a
1616                  * backing device, the result must depend on checking zoned
1617                  * model, like for any other target. So for this, check directly
1618                  * if the target backing device is zoned as we get "false" when
1619                  * dm-error was set without a backing device.
1620                  */
1621                 if (dm_target_is_wildcard(ti->type) &&
1622                     !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1623                         return false;
1624
1625                 if (dm_target_supports_zoned_hm(ti->type)) {
1626                         if (!ti->type->iterate_devices ||
1627                             ti->type->iterate_devices(ti, device_not_zoned,
1628                                                       &zoned))
1629                                 return false;
1630                 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1631                         if (zoned)
1632                                 return false;
1633                 }
1634         }
1635
1636         return true;
1637 }
1638
1639 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1640                                            sector_t start, sector_t len, void *data)
1641 {
1642         unsigned int *zone_sectors = data;
1643
1644         if (!bdev_is_zoned(dev->bdev))
1645                 return 0;
1646         return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1647 }
1648
1649 /*
1650  * Check consistency of zoned model and zone sectors across all targets. For
1651  * zone sectors, if the destination device is a zoned block device, it shall
1652  * have the specified zone_sectors.
1653  */
1654 static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1655                                    unsigned int zone_sectors)
1656 {
1657         if (!zoned)
1658                 return 0;
1659
1660         if (!dm_table_supports_zoned(t, zoned)) {
1661                 DMERR("%s: zoned model is not consistent across all devices",
1662                       dm_device_name(t->md));
1663                 return -EINVAL;
1664         }
1665
1666         /* Check zone size validity and compatibility */
1667         if (!zone_sectors || !is_power_of_2(zone_sectors))
1668                 return -EINVAL;
1669
1670         if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1671                 DMERR("%s: zone sectors is not consistent across all zoned devices",
1672                       dm_device_name(t->md));
1673                 return -EINVAL;
1674         }
1675
1676         return 0;
1677 }
1678
1679 /*
1680  * Establish the new table's queue_limits and validate them.
1681  */
1682 int dm_calculate_queue_limits(struct dm_table *t,
1683                               struct queue_limits *limits)
1684 {
1685         struct queue_limits ti_limits;
1686         unsigned int zone_sectors = 0;
1687         bool zoned = false;
1688
1689         blk_set_stacking_limits(limits);
1690
1691         for (unsigned int i = 0; i < t->num_targets; i++) {
1692                 struct dm_target *ti = dm_table_get_target(t, i);
1693
1694                 blk_set_stacking_limits(&ti_limits);
1695
1696                 if (!ti->type->iterate_devices) {
1697                         /* Set I/O hints portion of queue limits */
1698                         if (ti->type->io_hints)
1699                                 ti->type->io_hints(ti, &ti_limits);
1700                         goto combine_limits;
1701                 }
1702
1703                 /*
1704                  * Combine queue limits of all the devices this target uses.
1705                  */
1706                 ti->type->iterate_devices(ti, dm_set_device_limits,
1707                                           &ti_limits);
1708
1709                 if (!zoned && ti_limits.zoned) {
1710                         /*
1711                          * After stacking all limits, validate all devices
1712                          * in table support this zoned model and zone sectors.
1713                          */
1714                         zoned = ti_limits.zoned;
1715                         zone_sectors = ti_limits.chunk_sectors;
1716                 }
1717
1718                 /* Set I/O hints portion of queue limits */
1719                 if (ti->type->io_hints)
1720                         ti->type->io_hints(ti, &ti_limits);
1721
1722                 /*
1723                  * Check each device area is consistent with the target's
1724                  * overall queue limits.
1725                  */
1726                 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1727                                               &ti_limits))
1728                         return -EINVAL;
1729
1730 combine_limits:
1731                 /*
1732                  * Merge this target's queue limits into the overall limits
1733                  * for the table.
1734                  */
1735                 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1736                         DMWARN("%s: adding target device (start sect %llu len %llu) "
1737                                "caused an alignment inconsistency",
1738                                dm_device_name(t->md),
1739                                (unsigned long long) ti->begin,
1740                                (unsigned long long) ti->len);
1741         }
1742
1743         /*
1744          * Verify that the zoned model and zone sectors, as determined before
1745          * any .io_hints override, are the same across all devices in the table.
1746          * - this is especially relevant if .io_hints is emulating a disk-managed
1747          *   zoned model on host-managed zoned block devices.
1748          * BUT...
1749          */
1750         if (limits->zoned) {
1751                 /*
1752                  * ...IF the above limits stacking determined a zoned model
1753                  * validate that all of the table's devices conform to it.
1754                  */
1755                 zoned = limits->zoned;
1756                 zone_sectors = limits->chunk_sectors;
1757         }
1758         if (validate_hardware_zoned(t, zoned, zone_sectors))
1759                 return -EINVAL;
1760
1761         return validate_hardware_logical_block_alignment(t, limits);
1762 }
1763
1764 /*
1765  * Verify that all devices have an integrity profile that matches the
1766  * DM device's registered integrity profile.  If the profiles don't
1767  * match then unregister the DM device's integrity profile.
1768  */
1769 static void dm_table_verify_integrity(struct dm_table *t)
1770 {
1771         struct gendisk *template_disk = NULL;
1772
1773         if (t->integrity_added)
1774                 return;
1775
1776         if (t->integrity_supported) {
1777                 /*
1778                  * Verify that the original integrity profile
1779                  * matches all the devices in this table.
1780                  */
1781                 template_disk = dm_table_get_integrity_disk(t);
1782                 if (template_disk &&
1783                     blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1784                         return;
1785         }
1786
1787         if (integrity_profile_exists(dm_disk(t->md))) {
1788                 DMWARN("%s: unable to establish an integrity profile",
1789                        dm_device_name(t->md));
1790                 blk_integrity_unregister(dm_disk(t->md));
1791         }
1792 }
1793
1794 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1795                                 sector_t start, sector_t len, void *data)
1796 {
1797         unsigned long flush = (unsigned long) data;
1798         struct request_queue *q = bdev_get_queue(dev->bdev);
1799
1800         return (q->queue_flags & flush);
1801 }
1802
1803 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1804 {
1805         /*
1806          * Require at least one underlying device to support flushes.
1807          * t->devices includes internal dm devices such as mirror logs
1808          * so we need to use iterate_devices here, which targets
1809          * supporting flushes must provide.
1810          */
1811         for (unsigned int i = 0; i < t->num_targets; i++) {
1812                 struct dm_target *ti = dm_table_get_target(t, i);
1813
1814                 if (!ti->num_flush_bios)
1815                         continue;
1816
1817                 if (ti->flush_supported)
1818                         return true;
1819
1820                 if (ti->type->iterate_devices &&
1821                     ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1822                         return true;
1823         }
1824
1825         return false;
1826 }
1827
1828 static int device_dax_write_cache_enabled(struct dm_target *ti,
1829                                           struct dm_dev *dev, sector_t start,
1830                                           sector_t len, void *data)
1831 {
1832         struct dax_device *dax_dev = dev->dax_dev;
1833
1834         if (!dax_dev)
1835                 return false;
1836
1837         if (dax_write_cache_enabled(dax_dev))
1838                 return true;
1839         return false;
1840 }
1841
1842 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1843                                 sector_t start, sector_t len, void *data)
1844 {
1845         return !bdev_nonrot(dev->bdev);
1846 }
1847
1848 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1849                              sector_t start, sector_t len, void *data)
1850 {
1851         struct request_queue *q = bdev_get_queue(dev->bdev);
1852
1853         return !blk_queue_add_random(q);
1854 }
1855
1856 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1857                                            sector_t start, sector_t len, void *data)
1858 {
1859         struct request_queue *q = bdev_get_queue(dev->bdev);
1860
1861         return !q->limits.max_write_zeroes_sectors;
1862 }
1863
1864 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1865 {
1866         for (unsigned int i = 0; i < t->num_targets; i++) {
1867                 struct dm_target *ti = dm_table_get_target(t, i);
1868
1869                 if (!ti->num_write_zeroes_bios)
1870                         return false;
1871
1872                 if (!ti->type->iterate_devices ||
1873                     ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1874                         return false;
1875         }
1876
1877         return true;
1878 }
1879
1880 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1881                                      sector_t start, sector_t len, void *data)
1882 {
1883         return !bdev_nowait(dev->bdev);
1884 }
1885
1886 static bool dm_table_supports_nowait(struct dm_table *t)
1887 {
1888         for (unsigned int i = 0; i < t->num_targets; i++) {
1889                 struct dm_target *ti = dm_table_get_target(t, i);
1890
1891                 if (!dm_target_supports_nowait(ti->type))
1892                         return false;
1893
1894                 if (!ti->type->iterate_devices ||
1895                     ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1896                         return false;
1897         }
1898
1899         return true;
1900 }
1901
1902 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1903                                       sector_t start, sector_t len, void *data)
1904 {
1905         return !bdev_max_discard_sectors(dev->bdev);
1906 }
1907
1908 static bool dm_table_supports_discards(struct dm_table *t)
1909 {
1910         for (unsigned int i = 0; i < t->num_targets; i++) {
1911                 struct dm_target *ti = dm_table_get_target(t, i);
1912
1913                 if (!ti->num_discard_bios)
1914                         return false;
1915
1916                 /*
1917                  * Either the target provides discard support (as implied by setting
1918                  * 'discards_supported') or it relies on _all_ data devices having
1919                  * discard support.
1920                  */
1921                 if (!ti->discards_supported &&
1922                     (!ti->type->iterate_devices ||
1923                      ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1924                         return false;
1925         }
1926
1927         return true;
1928 }
1929
1930 static int device_not_secure_erase_capable(struct dm_target *ti,
1931                                            struct dm_dev *dev, sector_t start,
1932                                            sector_t len, void *data)
1933 {
1934         return !bdev_max_secure_erase_sectors(dev->bdev);
1935 }
1936
1937 static bool dm_table_supports_secure_erase(struct dm_table *t)
1938 {
1939         for (unsigned int i = 0; i < t->num_targets; i++) {
1940                 struct dm_target *ti = dm_table_get_target(t, i);
1941
1942                 if (!ti->num_secure_erase_bios)
1943                         return false;
1944
1945                 if (!ti->type->iterate_devices ||
1946                     ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1947                         return false;
1948         }
1949
1950         return true;
1951 }
1952
1953 static int device_requires_stable_pages(struct dm_target *ti,
1954                                         struct dm_dev *dev, sector_t start,
1955                                         sector_t len, void *data)
1956 {
1957         return bdev_stable_writes(dev->bdev);
1958 }
1959
1960 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1961                               struct queue_limits *limits)
1962 {
1963         bool wc = false, fua = false;
1964         int r;
1965
1966         /*
1967          * Copy table's limits to the DM device's request_queue
1968          */
1969         q->limits = *limits;
1970
1971         if (dm_table_supports_nowait(t))
1972                 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1973         else
1974                 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1975
1976         if (!dm_table_supports_discards(t)) {
1977                 q->limits.max_discard_sectors = 0;
1978                 q->limits.max_hw_discard_sectors = 0;
1979                 q->limits.discard_granularity = 0;
1980                 q->limits.discard_alignment = 0;
1981                 q->limits.discard_misaligned = 0;
1982         }
1983
1984         if (!dm_table_supports_secure_erase(t))
1985                 q->limits.max_secure_erase_sectors = 0;
1986
1987         if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1988                 wc = true;
1989                 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1990                         fua = true;
1991         }
1992         blk_queue_write_cache(q, wc, fua);
1993
1994         if (dm_table_supports_dax(t, device_not_dax_capable)) {
1995                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1996                 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1997                         set_dax_synchronous(t->md->dax_dev);
1998         } else
1999                 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2000
2001         if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2002                 dax_write_cache(t->md->dax_dev, true);
2003
2004         /* Ensure that all underlying devices are non-rotational. */
2005         if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2006                 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2007         else
2008                 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2009
2010         if (!dm_table_supports_write_zeroes(t))
2011                 q->limits.max_write_zeroes_sectors = 0;
2012
2013         dm_table_verify_integrity(t);
2014
2015         /*
2016          * Some devices don't use blk_integrity but still want stable pages
2017          * because they do their own checksumming.
2018          * If any underlying device requires stable pages, a table must require
2019          * them as well.  Only targets that support iterate_devices are considered:
2020          * don't want error, zero, etc to require stable pages.
2021          */
2022         if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2023                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2024         else
2025                 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2026
2027         /*
2028          * Determine whether or not this queue's I/O timings contribute
2029          * to the entropy pool, Only request-based targets use this.
2030          * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2031          * have it set.
2032          */
2033         if (blk_queue_add_random(q) &&
2034             dm_table_any_dev_attr(t, device_is_not_random, NULL))
2035                 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2036
2037         /*
2038          * For a zoned target, setup the zones related queue attributes
2039          * and resources necessary for zone append emulation if necessary.
2040          */
2041         if (blk_queue_is_zoned(q)) {
2042                 r = dm_set_zones_restrictions(t, q);
2043                 if (r)
2044                         return r;
2045                 if (!static_key_enabled(&zoned_enabled.key))
2046                         static_branch_enable(&zoned_enabled);
2047         }
2048
2049         dm_update_crypto_profile(q, t);
2050         disk_update_readahead(t->md->disk);
2051
2052         /*
2053          * Check for request-based device is left to
2054          * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2055          *
2056          * For bio-based device, only set QUEUE_FLAG_POLL when all
2057          * underlying devices supporting polling.
2058          */
2059         if (__table_type_bio_based(t->type)) {
2060                 if (dm_table_supports_poll(t))
2061                         blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2062                 else
2063                         blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2064         }
2065
2066         return 0;
2067 }
2068
2069 struct list_head *dm_table_get_devices(struct dm_table *t)
2070 {
2071         return &t->devices;
2072 }
2073
2074 blk_mode_t dm_table_get_mode(struct dm_table *t)
2075 {
2076         return t->mode;
2077 }
2078 EXPORT_SYMBOL(dm_table_get_mode);
2079
2080 enum suspend_mode {
2081         PRESUSPEND,
2082         PRESUSPEND_UNDO,
2083         POSTSUSPEND,
2084 };
2085
2086 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2087 {
2088         lockdep_assert_held(&t->md->suspend_lock);
2089
2090         for (unsigned int i = 0; i < t->num_targets; i++) {
2091                 struct dm_target *ti = dm_table_get_target(t, i);
2092
2093                 switch (mode) {
2094                 case PRESUSPEND:
2095                         if (ti->type->presuspend)
2096                                 ti->type->presuspend(ti);
2097                         break;
2098                 case PRESUSPEND_UNDO:
2099                         if (ti->type->presuspend_undo)
2100                                 ti->type->presuspend_undo(ti);
2101                         break;
2102                 case POSTSUSPEND:
2103                         if (ti->type->postsuspend)
2104                                 ti->type->postsuspend(ti);
2105                         break;
2106                 }
2107         }
2108 }
2109
2110 void dm_table_presuspend_targets(struct dm_table *t)
2111 {
2112         if (!t)
2113                 return;
2114
2115         suspend_targets(t, PRESUSPEND);
2116 }
2117
2118 void dm_table_presuspend_undo_targets(struct dm_table *t)
2119 {
2120         if (!t)
2121                 return;
2122
2123         suspend_targets(t, PRESUSPEND_UNDO);
2124 }
2125
2126 void dm_table_postsuspend_targets(struct dm_table *t)
2127 {
2128         if (!t)
2129                 return;
2130
2131         suspend_targets(t, POSTSUSPEND);
2132 }
2133
2134 int dm_table_resume_targets(struct dm_table *t)
2135 {
2136         unsigned int i;
2137         int r = 0;
2138
2139         lockdep_assert_held(&t->md->suspend_lock);
2140
2141         for (i = 0; i < t->num_targets; i++) {
2142                 struct dm_target *ti = dm_table_get_target(t, i);
2143
2144                 if (!ti->type->preresume)
2145                         continue;
2146
2147                 r = ti->type->preresume(ti);
2148                 if (r) {
2149                         DMERR("%s: %s: preresume failed, error = %d",
2150                               dm_device_name(t->md), ti->type->name, r);
2151                         return r;
2152                 }
2153         }
2154
2155         for (i = 0; i < t->num_targets; i++) {
2156                 struct dm_target *ti = dm_table_get_target(t, i);
2157
2158                 if (ti->type->resume)
2159                         ti->type->resume(ti);
2160         }
2161
2162         return 0;
2163 }
2164
2165 struct mapped_device *dm_table_get_md(struct dm_table *t)
2166 {
2167         return t->md;
2168 }
2169 EXPORT_SYMBOL(dm_table_get_md);
2170
2171 const char *dm_table_device_name(struct dm_table *t)
2172 {
2173         return dm_device_name(t->md);
2174 }
2175 EXPORT_SYMBOL_GPL(dm_table_device_name);
2176
2177 void dm_table_run_md_queue_async(struct dm_table *t)
2178 {
2179         if (!dm_table_request_based(t))
2180                 return;
2181
2182         if (t->md->queue)
2183                 blk_mq_run_hw_queues(t->md->queue, true);
2184 }
2185 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2186