Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / drivers / md / dm-bufio.c
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8
9 #include <linux/dm-bufio.h>
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21
22 #define DM_MSG_PREFIX "bufio"
23
24 /*
25  * Memory management policy:
26  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30  *      dirty buffers.
31  */
32 #define DM_BUFIO_MIN_BUFFERS            8
33
34 #define DM_BUFIO_MEMORY_PERCENT         2
35 #define DM_BUFIO_VMALLOC_PERCENT        25
36 #define DM_BUFIO_WRITEBACK_RATIO        3
37 #define DM_BUFIO_LOW_WATERMARK_RATIO    16
38
39 /*
40  * Check buffer ages in this interval (seconds)
41  */
42 #define DM_BUFIO_WORK_TIMER_SECS        30
43
44 /*
45  * Free buffers when they are older than this (seconds)
46  */
47 #define DM_BUFIO_DEFAULT_AGE_SECS       300
48
49 /*
50  * The nr of bytes of cached data to keep around.
51  */
52 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
53
54 /*
55  * Align buffer writes to this boundary.
56  * Tests show that SSDs have the highest IOPS when using 4k writes.
57  */
58 #define DM_BUFIO_WRITE_ALIGN            4096
59
60 /*
61  * dm_buffer->list_mode
62  */
63 #define LIST_CLEAN      0
64 #define LIST_DIRTY      1
65 #define LIST_SIZE       2
66
67 /*
68  * Linking of buffers:
69  *      All buffers are linked to buffer_tree with their node field.
70  *
71  *      Clean buffers that are not being written (B_WRITING not set)
72  *      are linked to lru[LIST_CLEAN] with their lru_list field.
73  *
74  *      Dirty and clean buffers that are being written are linked to
75  *      lru[LIST_DIRTY] with their lru_list field. When the write
76  *      finishes, the buffer cannot be relinked immediately (because we
77  *      are in an interrupt context and relinking requires process
78  *      context), so some clean-not-writing buffers can be held on
79  *      dirty_lru too.  They are later added to lru in the process
80  *      context.
81  */
82 struct dm_bufio_client {
83         struct mutex lock;
84
85         struct list_head lru[LIST_SIZE];
86         unsigned long n_buffers[LIST_SIZE];
87
88         struct block_device *bdev;
89         unsigned block_size;
90         s8 sectors_per_block_bits;
91         void (*alloc_callback)(struct dm_buffer *);
92         void (*write_callback)(struct dm_buffer *);
93
94         struct kmem_cache *slab_buffer;
95         struct kmem_cache *slab_cache;
96         struct dm_io_client *dm_io;
97
98         struct list_head reserved_buffers;
99         unsigned need_reserved_buffers;
100
101         unsigned minimum_buffers;
102
103         struct rb_root buffer_tree;
104         wait_queue_head_t free_buffer_wait;
105
106         sector_t start;
107
108         int async_write_error;
109
110         struct list_head client_list;
111
112         struct shrinker shrinker;
113         struct work_struct shrink_work;
114         atomic_long_t need_shrink;
115 };
116
117 /*
118  * Buffer state bits.
119  */
120 #define B_READING       0
121 #define B_WRITING       1
122 #define B_DIRTY         2
123
124 /*
125  * Describes how the block was allocated:
126  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
127  * See the comment at alloc_buffer_data.
128  */
129 enum data_mode {
130         DATA_MODE_SLAB = 0,
131         DATA_MODE_GET_FREE_PAGES = 1,
132         DATA_MODE_VMALLOC = 2,
133         DATA_MODE_LIMIT = 3
134 };
135
136 struct dm_buffer {
137         struct rb_node node;
138         struct list_head lru_list;
139         struct list_head global_list;
140         sector_t block;
141         void *data;
142         unsigned char data_mode;                /* DATA_MODE_* */
143         unsigned char list_mode;                /* LIST_* */
144         blk_status_t read_error;
145         blk_status_t write_error;
146         unsigned accessed;
147         unsigned hold_count;
148         unsigned long state;
149         unsigned long last_accessed;
150         unsigned dirty_start;
151         unsigned dirty_end;
152         unsigned write_start;
153         unsigned write_end;
154         struct dm_bufio_client *c;
155         struct list_head write_list;
156         void (*end_io)(struct dm_buffer *, blk_status_t);
157 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
158 #define MAX_STACK 10
159         unsigned int stack_len;
160         unsigned long stack_entries[MAX_STACK];
161 #endif
162 };
163
164 /*----------------------------------------------------------------*/
165
166 #define dm_bufio_in_request()   (!!current->bio_list)
167
168 static void dm_bufio_lock(struct dm_bufio_client *c)
169 {
170         mutex_lock_nested(&c->lock, dm_bufio_in_request());
171 }
172
173 static int dm_bufio_trylock(struct dm_bufio_client *c)
174 {
175         return mutex_trylock(&c->lock);
176 }
177
178 static void dm_bufio_unlock(struct dm_bufio_client *c)
179 {
180         mutex_unlock(&c->lock);
181 }
182
183 /*----------------------------------------------------------------*/
184
185 /*
186  * Default cache size: available memory divided by the ratio.
187  */
188 static unsigned long dm_bufio_default_cache_size;
189
190 /*
191  * Total cache size set by the user.
192  */
193 static unsigned long dm_bufio_cache_size;
194
195 /*
196  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
197  * at any time.  If it disagrees, the user has changed cache size.
198  */
199 static unsigned long dm_bufio_cache_size_latch;
200
201 static DEFINE_SPINLOCK(global_spinlock);
202
203 static LIST_HEAD(global_queue);
204
205 static unsigned long global_num = 0;
206
207 /*
208  * Buffers are freed after this timeout
209  */
210 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
211 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
212
213 static unsigned long dm_bufio_peak_allocated;
214 static unsigned long dm_bufio_allocated_kmem_cache;
215 static unsigned long dm_bufio_allocated_get_free_pages;
216 static unsigned long dm_bufio_allocated_vmalloc;
217 static unsigned long dm_bufio_current_allocated;
218
219 /*----------------------------------------------------------------*/
220
221 /*
222  * The current number of clients.
223  */
224 static int dm_bufio_client_count;
225
226 /*
227  * The list of all clients.
228  */
229 static LIST_HEAD(dm_bufio_all_clients);
230
231 /*
232  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
233  */
234 static DEFINE_MUTEX(dm_bufio_clients_lock);
235
236 static struct workqueue_struct *dm_bufio_wq;
237 static struct delayed_work dm_bufio_cleanup_old_work;
238 static struct work_struct dm_bufio_replacement_work;
239
240
241 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
242 static void buffer_record_stack(struct dm_buffer *b)
243 {
244         b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
245 }
246 #endif
247
248 /*----------------------------------------------------------------
249  * A red/black tree acts as an index for all the buffers.
250  *--------------------------------------------------------------*/
251 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
252 {
253         struct rb_node *n = c->buffer_tree.rb_node;
254         struct dm_buffer *b;
255
256         while (n) {
257                 b = container_of(n, struct dm_buffer, node);
258
259                 if (b->block == block)
260                         return b;
261
262                 n = block < b->block ? n->rb_left : n->rb_right;
263         }
264
265         return NULL;
266 }
267
268 static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block)
269 {
270         struct rb_node *n = c->buffer_tree.rb_node;
271         struct dm_buffer *b;
272         struct dm_buffer *best = NULL;
273
274         while (n) {
275                 b = container_of(n, struct dm_buffer, node);
276
277                 if (b->block == block)
278                         return b;
279
280                 if (block <= b->block) {
281                         n = n->rb_left;
282                         best = b;
283                 } else {
284                         n = n->rb_right;
285                 }
286         }
287
288         return best;
289 }
290
291 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
292 {
293         struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
294         struct dm_buffer *found;
295
296         while (*new) {
297                 found = container_of(*new, struct dm_buffer, node);
298
299                 if (found->block == b->block) {
300                         BUG_ON(found != b);
301                         return;
302                 }
303
304                 parent = *new;
305                 new = b->block < found->block ?
306                         &found->node.rb_left : &found->node.rb_right;
307         }
308
309         rb_link_node(&b->node, parent, new);
310         rb_insert_color(&b->node, &c->buffer_tree);
311 }
312
313 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
314 {
315         rb_erase(&b->node, &c->buffer_tree);
316 }
317
318 /*----------------------------------------------------------------*/
319
320 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
321 {
322         unsigned char data_mode;
323         long diff;
324
325         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
326                 &dm_bufio_allocated_kmem_cache,
327                 &dm_bufio_allocated_get_free_pages,
328                 &dm_bufio_allocated_vmalloc,
329         };
330
331         data_mode = b->data_mode;
332         diff = (long)b->c->block_size;
333         if (unlink)
334                 diff = -diff;
335
336         spin_lock(&global_spinlock);
337
338         *class_ptr[data_mode] += diff;
339
340         dm_bufio_current_allocated += diff;
341
342         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
343                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
344
345         b->accessed = 1;
346
347         if (!unlink) {
348                 list_add(&b->global_list, &global_queue);
349                 global_num++;
350                 if (dm_bufio_current_allocated > dm_bufio_cache_size)
351                         queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
352         } else {
353                 list_del(&b->global_list);
354                 global_num--;
355         }
356
357         spin_unlock(&global_spinlock);
358 }
359
360 /*
361  * Change the number of clients and recalculate per-client limit.
362  */
363 static void __cache_size_refresh(void)
364 {
365         BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
366         BUG_ON(dm_bufio_client_count < 0);
367
368         dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
369
370         /*
371          * Use default if set to 0 and report the actual cache size used.
372          */
373         if (!dm_bufio_cache_size_latch) {
374                 (void)cmpxchg(&dm_bufio_cache_size, 0,
375                               dm_bufio_default_cache_size);
376                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
377         }
378 }
379
380 /*
381  * Allocating buffer data.
382  *
383  * Small buffers are allocated with kmem_cache, to use space optimally.
384  *
385  * For large buffers, we choose between get_free_pages and vmalloc.
386  * Each has advantages and disadvantages.
387  *
388  * __get_free_pages can randomly fail if the memory is fragmented.
389  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
390  * as low as 128M) so using it for caching is not appropriate.
391  *
392  * If the allocation may fail we use __get_free_pages. Memory fragmentation
393  * won't have a fatal effect here, but it just causes flushes of some other
394  * buffers and more I/O will be performed. Don't use __get_free_pages if it
395  * always fails (i.e. order >= MAX_ORDER).
396  *
397  * If the allocation shouldn't fail we use __vmalloc. This is only for the
398  * initial reserve allocation, so there's no risk of wasting all vmalloc
399  * space.
400  */
401 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
402                                unsigned char *data_mode)
403 {
404         if (unlikely(c->slab_cache != NULL)) {
405                 *data_mode = DATA_MODE_SLAB;
406                 return kmem_cache_alloc(c->slab_cache, gfp_mask);
407         }
408
409         if (c->block_size <= KMALLOC_MAX_SIZE &&
410             gfp_mask & __GFP_NORETRY) {
411                 *data_mode = DATA_MODE_GET_FREE_PAGES;
412                 return (void *)__get_free_pages(gfp_mask,
413                                                 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
414         }
415
416         *data_mode = DATA_MODE_VMALLOC;
417
418         /*
419          * __vmalloc allocates the data pages and auxiliary structures with
420          * gfp_flags that were specified, but pagetables are always allocated
421          * with GFP_KERNEL, no matter what was specified as gfp_mask.
422          *
423          * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
424          * all allocations done by this process (including pagetables) are done
425          * as if GFP_NOIO was specified.
426          */
427         if (gfp_mask & __GFP_NORETRY) {
428                 unsigned noio_flag = memalloc_noio_save();
429                 void *ptr = __vmalloc(c->block_size, gfp_mask);
430
431                 memalloc_noio_restore(noio_flag);
432                 return ptr;
433         }
434
435         return __vmalloc(c->block_size, gfp_mask);
436 }
437
438 /*
439  * Free buffer's data.
440  */
441 static void free_buffer_data(struct dm_bufio_client *c,
442                              void *data, unsigned char data_mode)
443 {
444         switch (data_mode) {
445         case DATA_MODE_SLAB:
446                 kmem_cache_free(c->slab_cache, data);
447                 break;
448
449         case DATA_MODE_GET_FREE_PAGES:
450                 free_pages((unsigned long)data,
451                            c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
452                 break;
453
454         case DATA_MODE_VMALLOC:
455                 vfree(data);
456                 break;
457
458         default:
459                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
460                        data_mode);
461                 BUG();
462         }
463 }
464
465 /*
466  * Allocate buffer and its data.
467  */
468 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
469 {
470         struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
471
472         if (!b)
473                 return NULL;
474
475         b->c = c;
476
477         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
478         if (!b->data) {
479                 kmem_cache_free(c->slab_buffer, b);
480                 return NULL;
481         }
482
483 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
484         b->stack_len = 0;
485 #endif
486         return b;
487 }
488
489 /*
490  * Free buffer and its data.
491  */
492 static void free_buffer(struct dm_buffer *b)
493 {
494         struct dm_bufio_client *c = b->c;
495
496         free_buffer_data(c, b->data, b->data_mode);
497         kmem_cache_free(c->slab_buffer, b);
498 }
499
500 /*
501  * Link buffer to the buffer tree and clean or dirty queue.
502  */
503 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
504 {
505         struct dm_bufio_client *c = b->c;
506
507         c->n_buffers[dirty]++;
508         b->block = block;
509         b->list_mode = dirty;
510         list_add(&b->lru_list, &c->lru[dirty]);
511         __insert(b->c, b);
512         b->last_accessed = jiffies;
513
514         adjust_total_allocated(b, false);
515 }
516
517 /*
518  * Unlink buffer from the buffer tree and dirty or clean queue.
519  */
520 static void __unlink_buffer(struct dm_buffer *b)
521 {
522         struct dm_bufio_client *c = b->c;
523
524         BUG_ON(!c->n_buffers[b->list_mode]);
525
526         c->n_buffers[b->list_mode]--;
527         __remove(b->c, b);
528         list_del(&b->lru_list);
529
530         adjust_total_allocated(b, true);
531 }
532
533 /*
534  * Place the buffer to the head of dirty or clean LRU queue.
535  */
536 static void __relink_lru(struct dm_buffer *b, int dirty)
537 {
538         struct dm_bufio_client *c = b->c;
539
540         b->accessed = 1;
541
542         BUG_ON(!c->n_buffers[b->list_mode]);
543
544         c->n_buffers[b->list_mode]--;
545         c->n_buffers[dirty]++;
546         b->list_mode = dirty;
547         list_move(&b->lru_list, &c->lru[dirty]);
548         b->last_accessed = jiffies;
549 }
550
551 /*----------------------------------------------------------------
552  * Submit I/O on the buffer.
553  *
554  * Bio interface is faster but it has some problems:
555  *      the vector list is limited (increasing this limit increases
556  *      memory-consumption per buffer, so it is not viable);
557  *
558  *      the memory must be direct-mapped, not vmalloced;
559  *
560  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
561  * it is not vmalloced, try using the bio interface.
562  *
563  * If the buffer is big, if it is vmalloced or if the underlying device
564  * rejects the bio because it is too large, use dm-io layer to do the I/O.
565  * The dm-io layer splits the I/O into multiple requests, avoiding the above
566  * shortcomings.
567  *--------------------------------------------------------------*/
568
569 /*
570  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
571  * that the request was handled directly with bio interface.
572  */
573 static void dmio_complete(unsigned long error, void *context)
574 {
575         struct dm_buffer *b = context;
576
577         b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
578 }
579
580 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
581                      unsigned n_sectors, unsigned offset)
582 {
583         int r;
584         struct dm_io_request io_req = {
585                 .bi_op = rw,
586                 .bi_op_flags = 0,
587                 .notify.fn = dmio_complete,
588                 .notify.context = b,
589                 .client = b->c->dm_io,
590         };
591         struct dm_io_region region = {
592                 .bdev = b->c->bdev,
593                 .sector = sector,
594                 .count = n_sectors,
595         };
596
597         if (b->data_mode != DATA_MODE_VMALLOC) {
598                 io_req.mem.type = DM_IO_KMEM;
599                 io_req.mem.ptr.addr = (char *)b->data + offset;
600         } else {
601                 io_req.mem.type = DM_IO_VMA;
602                 io_req.mem.ptr.vma = (char *)b->data + offset;
603         }
604
605         r = dm_io(&io_req, 1, &region, NULL);
606         if (unlikely(r))
607                 b->end_io(b, errno_to_blk_status(r));
608 }
609
610 static void bio_complete(struct bio *bio)
611 {
612         struct dm_buffer *b = bio->bi_private;
613         blk_status_t status = bio->bi_status;
614         bio_put(bio);
615         b->end_io(b, status);
616 }
617
618 static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
619                     unsigned n_sectors, unsigned offset)
620 {
621         struct bio *bio;
622         char *ptr;
623         unsigned vec_size, len;
624
625         vec_size = b->c->block_size >> PAGE_SHIFT;
626         if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
627                 vec_size += 2;
628
629         bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
630         if (!bio) {
631 dmio:
632                 use_dmio(b, rw, sector, n_sectors, offset);
633                 return;
634         }
635
636         bio->bi_iter.bi_sector = sector;
637         bio_set_dev(bio, b->c->bdev);
638         bio_set_op_attrs(bio, rw, 0);
639         bio->bi_end_io = bio_complete;
640         bio->bi_private = b;
641
642         ptr = (char *)b->data + offset;
643         len = n_sectors << SECTOR_SHIFT;
644
645         do {
646                 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
647                 if (!bio_add_page(bio, virt_to_page(ptr), this_step,
648                                   offset_in_page(ptr))) {
649                         bio_put(bio);
650                         goto dmio;
651                 }
652
653                 len -= this_step;
654                 ptr += this_step;
655         } while (len > 0);
656
657         submit_bio(bio);
658 }
659
660 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
661 {
662         sector_t sector;
663
664         if (likely(c->sectors_per_block_bits >= 0))
665                 sector = block << c->sectors_per_block_bits;
666         else
667                 sector = block * (c->block_size >> SECTOR_SHIFT);
668         sector += c->start;
669
670         return sector;
671 }
672
673 static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
674 {
675         unsigned n_sectors;
676         sector_t sector;
677         unsigned offset, end;
678
679         b->end_io = end_io;
680
681         sector = block_to_sector(b->c, b->block);
682
683         if (rw != REQ_OP_WRITE) {
684                 n_sectors = b->c->block_size >> SECTOR_SHIFT;
685                 offset = 0;
686         } else {
687                 if (b->c->write_callback)
688                         b->c->write_callback(b);
689                 offset = b->write_start;
690                 end = b->write_end;
691                 offset &= -DM_BUFIO_WRITE_ALIGN;
692                 end += DM_BUFIO_WRITE_ALIGN - 1;
693                 end &= -DM_BUFIO_WRITE_ALIGN;
694                 if (unlikely(end > b->c->block_size))
695                         end = b->c->block_size;
696
697                 sector += offset >> SECTOR_SHIFT;
698                 n_sectors = (end - offset) >> SECTOR_SHIFT;
699         }
700
701         if (b->data_mode != DATA_MODE_VMALLOC)
702                 use_bio(b, rw, sector, n_sectors, offset);
703         else
704                 use_dmio(b, rw, sector, n_sectors, offset);
705 }
706
707 /*----------------------------------------------------------------
708  * Writing dirty buffers
709  *--------------------------------------------------------------*/
710
711 /*
712  * The endio routine for write.
713  *
714  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
715  * it.
716  */
717 static void write_endio(struct dm_buffer *b, blk_status_t status)
718 {
719         b->write_error = status;
720         if (unlikely(status)) {
721                 struct dm_bufio_client *c = b->c;
722
723                 (void)cmpxchg(&c->async_write_error, 0,
724                                 blk_status_to_errno(status));
725         }
726
727         BUG_ON(!test_bit(B_WRITING, &b->state));
728
729         smp_mb__before_atomic();
730         clear_bit(B_WRITING, &b->state);
731         smp_mb__after_atomic();
732
733         wake_up_bit(&b->state, B_WRITING);
734 }
735
736 /*
737  * Initiate a write on a dirty buffer, but don't wait for it.
738  *
739  * - If the buffer is not dirty, exit.
740  * - If there some previous write going on, wait for it to finish (we can't
741  *   have two writes on the same buffer simultaneously).
742  * - Submit our write and don't wait on it. We set B_WRITING indicating
743  *   that there is a write in progress.
744  */
745 static void __write_dirty_buffer(struct dm_buffer *b,
746                                  struct list_head *write_list)
747 {
748         if (!test_bit(B_DIRTY, &b->state))
749                 return;
750
751         clear_bit(B_DIRTY, &b->state);
752         wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
753
754         b->write_start = b->dirty_start;
755         b->write_end = b->dirty_end;
756
757         if (!write_list)
758                 submit_io(b, REQ_OP_WRITE, write_endio);
759         else
760                 list_add_tail(&b->write_list, write_list);
761 }
762
763 static void __flush_write_list(struct list_head *write_list)
764 {
765         struct blk_plug plug;
766         blk_start_plug(&plug);
767         while (!list_empty(write_list)) {
768                 struct dm_buffer *b =
769                         list_entry(write_list->next, struct dm_buffer, write_list);
770                 list_del(&b->write_list);
771                 submit_io(b, REQ_OP_WRITE, write_endio);
772                 cond_resched();
773         }
774         blk_finish_plug(&plug);
775 }
776
777 /*
778  * Wait until any activity on the buffer finishes.  Possibly write the
779  * buffer if it is dirty.  When this function finishes, there is no I/O
780  * running on the buffer and the buffer is not dirty.
781  */
782 static void __make_buffer_clean(struct dm_buffer *b)
783 {
784         BUG_ON(b->hold_count);
785
786         if (!b->state)  /* fast case */
787                 return;
788
789         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
790         __write_dirty_buffer(b, NULL);
791         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
792 }
793
794 /*
795  * Find some buffer that is not held by anybody, clean it, unlink it and
796  * return it.
797  */
798 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
799 {
800         struct dm_buffer *b;
801
802         list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
803                 BUG_ON(test_bit(B_WRITING, &b->state));
804                 BUG_ON(test_bit(B_DIRTY, &b->state));
805
806                 if (!b->hold_count) {
807                         __make_buffer_clean(b);
808                         __unlink_buffer(b);
809                         return b;
810                 }
811                 cond_resched();
812         }
813
814         list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
815                 BUG_ON(test_bit(B_READING, &b->state));
816
817                 if (!b->hold_count) {
818                         __make_buffer_clean(b);
819                         __unlink_buffer(b);
820                         return b;
821                 }
822                 cond_resched();
823         }
824
825         return NULL;
826 }
827
828 /*
829  * Wait until some other threads free some buffer or release hold count on
830  * some buffer.
831  *
832  * This function is entered with c->lock held, drops it and regains it
833  * before exiting.
834  */
835 static void __wait_for_free_buffer(struct dm_bufio_client *c)
836 {
837         DECLARE_WAITQUEUE(wait, current);
838
839         add_wait_queue(&c->free_buffer_wait, &wait);
840         set_current_state(TASK_UNINTERRUPTIBLE);
841         dm_bufio_unlock(c);
842
843         io_schedule();
844
845         remove_wait_queue(&c->free_buffer_wait, &wait);
846
847         dm_bufio_lock(c);
848 }
849
850 enum new_flag {
851         NF_FRESH = 0,
852         NF_READ = 1,
853         NF_GET = 2,
854         NF_PREFETCH = 3
855 };
856
857 /*
858  * Allocate a new buffer. If the allocation is not possible, wait until
859  * some other thread frees a buffer.
860  *
861  * May drop the lock and regain it.
862  */
863 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
864 {
865         struct dm_buffer *b;
866         bool tried_noio_alloc = false;
867
868         /*
869          * dm-bufio is resistant to allocation failures (it just keeps
870          * one buffer reserved in cases all the allocations fail).
871          * So set flags to not try too hard:
872          *      GFP_NOWAIT: don't wait; if we need to sleep we'll release our
873          *                  mutex and wait ourselves.
874          *      __GFP_NORETRY: don't retry and rather return failure
875          *      __GFP_NOMEMALLOC: don't use emergency reserves
876          *      __GFP_NOWARN: don't print a warning in case of failure
877          *
878          * For debugging, if we set the cache size to 1, no new buffers will
879          * be allocated.
880          */
881         while (1) {
882                 if (dm_bufio_cache_size_latch != 1) {
883                         b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
884                         if (b)
885                                 return b;
886                 }
887
888                 if (nf == NF_PREFETCH)
889                         return NULL;
890
891                 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
892                         dm_bufio_unlock(c);
893                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
894                         dm_bufio_lock(c);
895                         if (b)
896                                 return b;
897                         tried_noio_alloc = true;
898                 }
899
900                 if (!list_empty(&c->reserved_buffers)) {
901                         b = list_entry(c->reserved_buffers.next,
902                                        struct dm_buffer, lru_list);
903                         list_del(&b->lru_list);
904                         c->need_reserved_buffers++;
905
906                         return b;
907                 }
908
909                 b = __get_unclaimed_buffer(c);
910                 if (b)
911                         return b;
912
913                 __wait_for_free_buffer(c);
914         }
915 }
916
917 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
918 {
919         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
920
921         if (!b)
922                 return NULL;
923
924         if (c->alloc_callback)
925                 c->alloc_callback(b);
926
927         return b;
928 }
929
930 /*
931  * Free a buffer and wake other threads waiting for free buffers.
932  */
933 static void __free_buffer_wake(struct dm_buffer *b)
934 {
935         struct dm_bufio_client *c = b->c;
936
937         if (!c->need_reserved_buffers)
938                 free_buffer(b);
939         else {
940                 list_add(&b->lru_list, &c->reserved_buffers);
941                 c->need_reserved_buffers--;
942         }
943
944         wake_up(&c->free_buffer_wait);
945 }
946
947 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
948                                         struct list_head *write_list)
949 {
950         struct dm_buffer *b, *tmp;
951
952         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
953                 BUG_ON(test_bit(B_READING, &b->state));
954
955                 if (!test_bit(B_DIRTY, &b->state) &&
956                     !test_bit(B_WRITING, &b->state)) {
957                         __relink_lru(b, LIST_CLEAN);
958                         continue;
959                 }
960
961                 if (no_wait && test_bit(B_WRITING, &b->state))
962                         return;
963
964                 __write_dirty_buffer(b, write_list);
965                 cond_resched();
966         }
967 }
968
969 /*
970  * Check if we're over watermark.
971  * If we are over threshold_buffers, start freeing buffers.
972  * If we're over "limit_buffers", block until we get under the limit.
973  */
974 static void __check_watermark(struct dm_bufio_client *c,
975                               struct list_head *write_list)
976 {
977         if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
978                 __write_dirty_buffers_async(c, 1, write_list);
979 }
980
981 /*----------------------------------------------------------------
982  * Getting a buffer
983  *--------------------------------------------------------------*/
984
985 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
986                                      enum new_flag nf, int *need_submit,
987                                      struct list_head *write_list)
988 {
989         struct dm_buffer *b, *new_b = NULL;
990
991         *need_submit = 0;
992
993         b = __find(c, block);
994         if (b)
995                 goto found_buffer;
996
997         if (nf == NF_GET)
998                 return NULL;
999
1000         new_b = __alloc_buffer_wait(c, nf);
1001         if (!new_b)
1002                 return NULL;
1003
1004         /*
1005          * We've had a period where the mutex was unlocked, so need to
1006          * recheck the buffer tree.
1007          */
1008         b = __find(c, block);
1009         if (b) {
1010                 __free_buffer_wake(new_b);
1011                 goto found_buffer;
1012         }
1013
1014         __check_watermark(c, write_list);
1015
1016         b = new_b;
1017         b->hold_count = 1;
1018         b->read_error = 0;
1019         b->write_error = 0;
1020         __link_buffer(b, block, LIST_CLEAN);
1021
1022         if (nf == NF_FRESH) {
1023                 b->state = 0;
1024                 return b;
1025         }
1026
1027         b->state = 1 << B_READING;
1028         *need_submit = 1;
1029
1030         return b;
1031
1032 found_buffer:
1033         if (nf == NF_PREFETCH)
1034                 return NULL;
1035         /*
1036          * Note: it is essential that we don't wait for the buffer to be
1037          * read if dm_bufio_get function is used. Both dm_bufio_get and
1038          * dm_bufio_prefetch can be used in the driver request routine.
1039          * If the user called both dm_bufio_prefetch and dm_bufio_get on
1040          * the same buffer, it would deadlock if we waited.
1041          */
1042         if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1043                 return NULL;
1044
1045         b->hold_count++;
1046         __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1047                      test_bit(B_WRITING, &b->state));
1048         return b;
1049 }
1050
1051 /*
1052  * The endio routine for reading: set the error, clear the bit and wake up
1053  * anyone waiting on the buffer.
1054  */
1055 static void read_endio(struct dm_buffer *b, blk_status_t status)
1056 {
1057         b->read_error = status;
1058
1059         BUG_ON(!test_bit(B_READING, &b->state));
1060
1061         smp_mb__before_atomic();
1062         clear_bit(B_READING, &b->state);
1063         smp_mb__after_atomic();
1064
1065         wake_up_bit(&b->state, B_READING);
1066 }
1067
1068 /*
1069  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1070  * functions is similar except that dm_bufio_new doesn't read the
1071  * buffer from the disk (assuming that the caller overwrites all the data
1072  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1073  */
1074 static void *new_read(struct dm_bufio_client *c, sector_t block,
1075                       enum new_flag nf, struct dm_buffer **bp)
1076 {
1077         int need_submit;
1078         struct dm_buffer *b;
1079
1080         LIST_HEAD(write_list);
1081
1082         dm_bufio_lock(c);
1083         b = __bufio_new(c, block, nf, &need_submit, &write_list);
1084 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1085         if (b && b->hold_count == 1)
1086                 buffer_record_stack(b);
1087 #endif
1088         dm_bufio_unlock(c);
1089
1090         __flush_write_list(&write_list);
1091
1092         if (!b)
1093                 return NULL;
1094
1095         if (need_submit)
1096                 submit_io(b, REQ_OP_READ, read_endio);
1097
1098         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1099
1100         if (b->read_error) {
1101                 int error = blk_status_to_errno(b->read_error);
1102
1103                 dm_bufio_release(b);
1104
1105                 return ERR_PTR(error);
1106         }
1107
1108         *bp = b;
1109
1110         return b->data;
1111 }
1112
1113 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1114                    struct dm_buffer **bp)
1115 {
1116         return new_read(c, block, NF_GET, bp);
1117 }
1118 EXPORT_SYMBOL_GPL(dm_bufio_get);
1119
1120 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1121                     struct dm_buffer **bp)
1122 {
1123         BUG_ON(dm_bufio_in_request());
1124
1125         return new_read(c, block, NF_READ, bp);
1126 }
1127 EXPORT_SYMBOL_GPL(dm_bufio_read);
1128
1129 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1130                    struct dm_buffer **bp)
1131 {
1132         BUG_ON(dm_bufio_in_request());
1133
1134         return new_read(c, block, NF_FRESH, bp);
1135 }
1136 EXPORT_SYMBOL_GPL(dm_bufio_new);
1137
1138 void dm_bufio_prefetch(struct dm_bufio_client *c,
1139                        sector_t block, unsigned n_blocks)
1140 {
1141         struct blk_plug plug;
1142
1143         LIST_HEAD(write_list);
1144
1145         BUG_ON(dm_bufio_in_request());
1146
1147         blk_start_plug(&plug);
1148         dm_bufio_lock(c);
1149
1150         for (; n_blocks--; block++) {
1151                 int need_submit;
1152                 struct dm_buffer *b;
1153                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1154                                 &write_list);
1155                 if (unlikely(!list_empty(&write_list))) {
1156                         dm_bufio_unlock(c);
1157                         blk_finish_plug(&plug);
1158                         __flush_write_list(&write_list);
1159                         blk_start_plug(&plug);
1160                         dm_bufio_lock(c);
1161                 }
1162                 if (unlikely(b != NULL)) {
1163                         dm_bufio_unlock(c);
1164
1165                         if (need_submit)
1166                                 submit_io(b, REQ_OP_READ, read_endio);
1167                         dm_bufio_release(b);
1168
1169                         cond_resched();
1170
1171                         if (!n_blocks)
1172                                 goto flush_plug;
1173                         dm_bufio_lock(c);
1174                 }
1175         }
1176
1177         dm_bufio_unlock(c);
1178
1179 flush_plug:
1180         blk_finish_plug(&plug);
1181 }
1182 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1183
1184 void dm_bufio_release(struct dm_buffer *b)
1185 {
1186         struct dm_bufio_client *c = b->c;
1187
1188         dm_bufio_lock(c);
1189
1190         BUG_ON(!b->hold_count);
1191
1192         b->hold_count--;
1193         if (!b->hold_count) {
1194                 wake_up(&c->free_buffer_wait);
1195
1196                 /*
1197                  * If there were errors on the buffer, and the buffer is not
1198                  * to be written, free the buffer. There is no point in caching
1199                  * invalid buffer.
1200                  */
1201                 if ((b->read_error || b->write_error) &&
1202                     !test_bit(B_READING, &b->state) &&
1203                     !test_bit(B_WRITING, &b->state) &&
1204                     !test_bit(B_DIRTY, &b->state)) {
1205                         __unlink_buffer(b);
1206                         __free_buffer_wake(b);
1207                 }
1208         }
1209
1210         dm_bufio_unlock(c);
1211 }
1212 EXPORT_SYMBOL_GPL(dm_bufio_release);
1213
1214 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1215                                         unsigned start, unsigned end)
1216 {
1217         struct dm_bufio_client *c = b->c;
1218
1219         BUG_ON(start >= end);
1220         BUG_ON(end > b->c->block_size);
1221
1222         dm_bufio_lock(c);
1223
1224         BUG_ON(test_bit(B_READING, &b->state));
1225
1226         if (!test_and_set_bit(B_DIRTY, &b->state)) {
1227                 b->dirty_start = start;
1228                 b->dirty_end = end;
1229                 __relink_lru(b, LIST_DIRTY);
1230         } else {
1231                 if (start < b->dirty_start)
1232                         b->dirty_start = start;
1233                 if (end > b->dirty_end)
1234                         b->dirty_end = end;
1235         }
1236
1237         dm_bufio_unlock(c);
1238 }
1239 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1240
1241 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1242 {
1243         dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1244 }
1245 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1246
1247 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1248 {
1249         LIST_HEAD(write_list);
1250
1251         BUG_ON(dm_bufio_in_request());
1252
1253         dm_bufio_lock(c);
1254         __write_dirty_buffers_async(c, 0, &write_list);
1255         dm_bufio_unlock(c);
1256         __flush_write_list(&write_list);
1257 }
1258 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1259
1260 /*
1261  * For performance, it is essential that the buffers are written asynchronously
1262  * and simultaneously (so that the block layer can merge the writes) and then
1263  * waited upon.
1264  *
1265  * Finally, we flush hardware disk cache.
1266  */
1267 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1268 {
1269         int a, f;
1270         unsigned long buffers_processed = 0;
1271         struct dm_buffer *b, *tmp;
1272
1273         LIST_HEAD(write_list);
1274
1275         dm_bufio_lock(c);
1276         __write_dirty_buffers_async(c, 0, &write_list);
1277         dm_bufio_unlock(c);
1278         __flush_write_list(&write_list);
1279         dm_bufio_lock(c);
1280
1281 again:
1282         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1283                 int dropped_lock = 0;
1284
1285                 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1286                         buffers_processed++;
1287
1288                 BUG_ON(test_bit(B_READING, &b->state));
1289
1290                 if (test_bit(B_WRITING, &b->state)) {
1291                         if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1292                                 dropped_lock = 1;
1293                                 b->hold_count++;
1294                                 dm_bufio_unlock(c);
1295                                 wait_on_bit_io(&b->state, B_WRITING,
1296                                                TASK_UNINTERRUPTIBLE);
1297                                 dm_bufio_lock(c);
1298                                 b->hold_count--;
1299                         } else
1300                                 wait_on_bit_io(&b->state, B_WRITING,
1301                                                TASK_UNINTERRUPTIBLE);
1302                 }
1303
1304                 if (!test_bit(B_DIRTY, &b->state) &&
1305                     !test_bit(B_WRITING, &b->state))
1306                         __relink_lru(b, LIST_CLEAN);
1307
1308                 cond_resched();
1309
1310                 /*
1311                  * If we dropped the lock, the list is no longer consistent,
1312                  * so we must restart the search.
1313                  *
1314                  * In the most common case, the buffer just processed is
1315                  * relinked to the clean list, so we won't loop scanning the
1316                  * same buffer again and again.
1317                  *
1318                  * This may livelock if there is another thread simultaneously
1319                  * dirtying buffers, so we count the number of buffers walked
1320                  * and if it exceeds the total number of buffers, it means that
1321                  * someone is doing some writes simultaneously with us.  In
1322                  * this case, stop, dropping the lock.
1323                  */
1324                 if (dropped_lock)
1325                         goto again;
1326         }
1327         wake_up(&c->free_buffer_wait);
1328         dm_bufio_unlock(c);
1329
1330         a = xchg(&c->async_write_error, 0);
1331         f = dm_bufio_issue_flush(c);
1332         if (a)
1333                 return a;
1334
1335         return f;
1336 }
1337 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1338
1339 /*
1340  * Use dm-io to send an empty barrier to flush the device.
1341  */
1342 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1343 {
1344         struct dm_io_request io_req = {
1345                 .bi_op = REQ_OP_WRITE,
1346                 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1347                 .mem.type = DM_IO_KMEM,
1348                 .mem.ptr.addr = NULL,
1349                 .client = c->dm_io,
1350         };
1351         struct dm_io_region io_reg = {
1352                 .bdev = c->bdev,
1353                 .sector = 0,
1354                 .count = 0,
1355         };
1356
1357         BUG_ON(dm_bufio_in_request());
1358
1359         return dm_io(&io_req, 1, &io_reg, NULL);
1360 }
1361 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1362
1363 /*
1364  * Use dm-io to send a discard request to flush the device.
1365  */
1366 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
1367 {
1368         struct dm_io_request io_req = {
1369                 .bi_op = REQ_OP_DISCARD,
1370                 .bi_op_flags = REQ_SYNC,
1371                 .mem.type = DM_IO_KMEM,
1372                 .mem.ptr.addr = NULL,
1373                 .client = c->dm_io,
1374         };
1375         struct dm_io_region io_reg = {
1376                 .bdev = c->bdev,
1377                 .sector = block_to_sector(c, block),
1378                 .count = block_to_sector(c, count),
1379         };
1380
1381         BUG_ON(dm_bufio_in_request());
1382
1383         return dm_io(&io_req, 1, &io_reg, NULL);
1384 }
1385 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
1386
1387 /*
1388  * We first delete any other buffer that may be at that new location.
1389  *
1390  * Then, we write the buffer to the original location if it was dirty.
1391  *
1392  * Then, if we are the only one who is holding the buffer, relink the buffer
1393  * in the buffer tree for the new location.
1394  *
1395  * If there was someone else holding the buffer, we write it to the new
1396  * location but not relink it, because that other user needs to have the buffer
1397  * at the same place.
1398  */
1399 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1400 {
1401         struct dm_bufio_client *c = b->c;
1402         struct dm_buffer *new;
1403
1404         BUG_ON(dm_bufio_in_request());
1405
1406         dm_bufio_lock(c);
1407
1408 retry:
1409         new = __find(c, new_block);
1410         if (new) {
1411                 if (new->hold_count) {
1412                         __wait_for_free_buffer(c);
1413                         goto retry;
1414                 }
1415
1416                 /*
1417                  * FIXME: Is there any point waiting for a write that's going
1418                  * to be overwritten in a bit?
1419                  */
1420                 __make_buffer_clean(new);
1421                 __unlink_buffer(new);
1422                 __free_buffer_wake(new);
1423         }
1424
1425         BUG_ON(!b->hold_count);
1426         BUG_ON(test_bit(B_READING, &b->state));
1427
1428         __write_dirty_buffer(b, NULL);
1429         if (b->hold_count == 1) {
1430                 wait_on_bit_io(&b->state, B_WRITING,
1431                                TASK_UNINTERRUPTIBLE);
1432                 set_bit(B_DIRTY, &b->state);
1433                 b->dirty_start = 0;
1434                 b->dirty_end = c->block_size;
1435                 __unlink_buffer(b);
1436                 __link_buffer(b, new_block, LIST_DIRTY);
1437         } else {
1438                 sector_t old_block;
1439                 wait_on_bit_lock_io(&b->state, B_WRITING,
1440                                     TASK_UNINTERRUPTIBLE);
1441                 /*
1442                  * Relink buffer to "new_block" so that write_callback
1443                  * sees "new_block" as a block number.
1444                  * After the write, link the buffer back to old_block.
1445                  * All this must be done in bufio lock, so that block number
1446                  * change isn't visible to other threads.
1447                  */
1448                 old_block = b->block;
1449                 __unlink_buffer(b);
1450                 __link_buffer(b, new_block, b->list_mode);
1451                 submit_io(b, REQ_OP_WRITE, write_endio);
1452                 wait_on_bit_io(&b->state, B_WRITING,
1453                                TASK_UNINTERRUPTIBLE);
1454                 __unlink_buffer(b);
1455                 __link_buffer(b, old_block, b->list_mode);
1456         }
1457
1458         dm_bufio_unlock(c);
1459         dm_bufio_release(b);
1460 }
1461 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1462
1463 static void forget_buffer_locked(struct dm_buffer *b)
1464 {
1465         if (likely(!b->hold_count) && likely(!b->state)) {
1466                 __unlink_buffer(b);
1467                 __free_buffer_wake(b);
1468         }
1469 }
1470
1471 /*
1472  * Free the given buffer.
1473  *
1474  * This is just a hint, if the buffer is in use or dirty, this function
1475  * does nothing.
1476  */
1477 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1478 {
1479         struct dm_buffer *b;
1480
1481         dm_bufio_lock(c);
1482
1483         b = __find(c, block);
1484         if (b)
1485                 forget_buffer_locked(b);
1486
1487         dm_bufio_unlock(c);
1488 }
1489 EXPORT_SYMBOL_GPL(dm_bufio_forget);
1490
1491 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
1492 {
1493         struct dm_buffer *b;
1494         sector_t end_block = block + n_blocks;
1495
1496         while (block < end_block) {
1497                 dm_bufio_lock(c);
1498
1499                 b = __find_next(c, block);
1500                 if (b) {
1501                         block = b->block + 1;
1502                         forget_buffer_locked(b);
1503                 }
1504
1505                 dm_bufio_unlock(c);
1506
1507                 if (!b)
1508                         break;
1509         }
1510
1511 }
1512 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
1513
1514 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1515 {
1516         c->minimum_buffers = n;
1517 }
1518 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1519
1520 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1521 {
1522         return c->block_size;
1523 }
1524 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1525
1526 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1527 {
1528         sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
1529         if (s >= c->start)
1530                 s -= c->start;
1531         else
1532                 s = 0;
1533         if (likely(c->sectors_per_block_bits >= 0))
1534                 s >>= c->sectors_per_block_bits;
1535         else
1536                 sector_div(s, c->block_size >> SECTOR_SHIFT);
1537         return s;
1538 }
1539 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1540
1541 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
1542 {
1543         return c->dm_io;
1544 }
1545 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
1546
1547 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1548 {
1549         return b->block;
1550 }
1551 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1552
1553 void *dm_bufio_get_block_data(struct dm_buffer *b)
1554 {
1555         return b->data;
1556 }
1557 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1558
1559 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1560 {
1561         return b + 1;
1562 }
1563 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1564
1565 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1566 {
1567         return b->c;
1568 }
1569 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1570
1571 static void drop_buffers(struct dm_bufio_client *c)
1572 {
1573         struct dm_buffer *b;
1574         int i;
1575         bool warned = false;
1576
1577         BUG_ON(dm_bufio_in_request());
1578
1579         /*
1580          * An optimization so that the buffers are not written one-by-one.
1581          */
1582         dm_bufio_write_dirty_buffers_async(c);
1583
1584         dm_bufio_lock(c);
1585
1586         while ((b = __get_unclaimed_buffer(c)))
1587                 __free_buffer_wake(b);
1588
1589         for (i = 0; i < LIST_SIZE; i++)
1590                 list_for_each_entry(b, &c->lru[i], lru_list) {
1591                         WARN_ON(!warned);
1592                         warned = true;
1593                         DMERR("leaked buffer %llx, hold count %u, list %d",
1594                               (unsigned long long)b->block, b->hold_count, i);
1595 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1596                         stack_trace_print(b->stack_entries, b->stack_len, 1);
1597                         /* mark unclaimed to avoid BUG_ON below */
1598                         b->hold_count = 0;
1599 #endif
1600                 }
1601
1602 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1603         while ((b = __get_unclaimed_buffer(c)))
1604                 __free_buffer_wake(b);
1605 #endif
1606
1607         for (i = 0; i < LIST_SIZE; i++)
1608                 BUG_ON(!list_empty(&c->lru[i]));
1609
1610         dm_bufio_unlock(c);
1611 }
1612
1613 /*
1614  * We may not be able to evict this buffer if IO pending or the client
1615  * is still using it.  Caller is expected to know buffer is too old.
1616  *
1617  * And if GFP_NOFS is used, we must not do any I/O because we hold
1618  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1619  * rerouted to different bufio client.
1620  */
1621 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1622 {
1623         if (!(gfp & __GFP_FS)) {
1624                 if (test_bit(B_READING, &b->state) ||
1625                     test_bit(B_WRITING, &b->state) ||
1626                     test_bit(B_DIRTY, &b->state))
1627                         return false;
1628         }
1629
1630         if (b->hold_count)
1631                 return false;
1632
1633         __make_buffer_clean(b);
1634         __unlink_buffer(b);
1635         __free_buffer_wake(b);
1636
1637         return true;
1638 }
1639
1640 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1641 {
1642         unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1643         if (likely(c->sectors_per_block_bits >= 0))
1644                 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1645         else
1646                 retain_bytes /= c->block_size;
1647         return retain_bytes;
1648 }
1649
1650 static void __scan(struct dm_bufio_client *c)
1651 {
1652         int l;
1653         struct dm_buffer *b, *tmp;
1654         unsigned long freed = 0;
1655         unsigned long count = c->n_buffers[LIST_CLEAN] +
1656                               c->n_buffers[LIST_DIRTY];
1657         unsigned long retain_target = get_retain_buffers(c);
1658
1659         for (l = 0; l < LIST_SIZE; l++) {
1660                 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1661                         if (count - freed <= retain_target)
1662                                 atomic_long_set(&c->need_shrink, 0);
1663                         if (!atomic_long_read(&c->need_shrink))
1664                                 return;
1665                         if (__try_evict_buffer(b, GFP_KERNEL)) {
1666                                 atomic_long_dec(&c->need_shrink);
1667                                 freed++;
1668                         }
1669                         cond_resched();
1670                 }
1671         }
1672 }
1673
1674 static void shrink_work(struct work_struct *w)
1675 {
1676         struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
1677
1678         dm_bufio_lock(c);
1679         __scan(c);
1680         dm_bufio_unlock(c);
1681 }
1682
1683 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1684 {
1685         struct dm_bufio_client *c;
1686
1687         c = container_of(shrink, struct dm_bufio_client, shrinker);
1688         atomic_long_add(sc->nr_to_scan, &c->need_shrink);
1689         queue_work(dm_bufio_wq, &c->shrink_work);
1690
1691         return sc->nr_to_scan;
1692 }
1693
1694 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1695 {
1696         struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1697         unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1698                               READ_ONCE(c->n_buffers[LIST_DIRTY]);
1699         unsigned long retain_target = get_retain_buffers(c);
1700         unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
1701
1702         if (unlikely(count < retain_target))
1703                 count = 0;
1704         else
1705                 count -= retain_target;
1706
1707         if (unlikely(count < queued_for_cleanup))
1708                 count = 0;
1709         else
1710                 count -= queued_for_cleanup;
1711
1712         return count;
1713 }
1714
1715 /*
1716  * Create the buffering interface
1717  */
1718 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1719                                                unsigned reserved_buffers, unsigned aux_size,
1720                                                void (*alloc_callback)(struct dm_buffer *),
1721                                                void (*write_callback)(struct dm_buffer *))
1722 {
1723         int r;
1724         struct dm_bufio_client *c;
1725         unsigned i;
1726         char slab_name[27];
1727
1728         if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1729                 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1730                 r = -EINVAL;
1731                 goto bad_client;
1732         }
1733
1734         c = kzalloc(sizeof(*c), GFP_KERNEL);
1735         if (!c) {
1736                 r = -ENOMEM;
1737                 goto bad_client;
1738         }
1739         c->buffer_tree = RB_ROOT;
1740
1741         c->bdev = bdev;
1742         c->block_size = block_size;
1743         if (is_power_of_2(block_size))
1744                 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1745         else
1746                 c->sectors_per_block_bits = -1;
1747
1748         c->alloc_callback = alloc_callback;
1749         c->write_callback = write_callback;
1750
1751         for (i = 0; i < LIST_SIZE; i++) {
1752                 INIT_LIST_HEAD(&c->lru[i]);
1753                 c->n_buffers[i] = 0;
1754         }
1755
1756         mutex_init(&c->lock);
1757         INIT_LIST_HEAD(&c->reserved_buffers);
1758         c->need_reserved_buffers = reserved_buffers;
1759
1760         dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1761
1762         init_waitqueue_head(&c->free_buffer_wait);
1763         c->async_write_error = 0;
1764
1765         c->dm_io = dm_io_client_create();
1766         if (IS_ERR(c->dm_io)) {
1767                 r = PTR_ERR(c->dm_io);
1768                 goto bad_dm_io;
1769         }
1770
1771         if (block_size <= KMALLOC_MAX_SIZE &&
1772             (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1773                 unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1774                 snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1775                 c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1776                                                   SLAB_RECLAIM_ACCOUNT, NULL);
1777                 if (!c->slab_cache) {
1778                         r = -ENOMEM;
1779                         goto bad;
1780                 }
1781         }
1782         if (aux_size)
1783                 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1784         else
1785                 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1786         c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1787                                            0, SLAB_RECLAIM_ACCOUNT, NULL);
1788         if (!c->slab_buffer) {
1789                 r = -ENOMEM;
1790                 goto bad;
1791         }
1792
1793         while (c->need_reserved_buffers) {
1794                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1795
1796                 if (!b) {
1797                         r = -ENOMEM;
1798                         goto bad;
1799                 }
1800                 __free_buffer_wake(b);
1801         }
1802
1803         INIT_WORK(&c->shrink_work, shrink_work);
1804         atomic_long_set(&c->need_shrink, 0);
1805
1806         c->shrinker.count_objects = dm_bufio_shrink_count;
1807         c->shrinker.scan_objects = dm_bufio_shrink_scan;
1808         c->shrinker.seeks = 1;
1809         c->shrinker.batch = 0;
1810         r = register_shrinker(&c->shrinker);
1811         if (r)
1812                 goto bad;
1813
1814         mutex_lock(&dm_bufio_clients_lock);
1815         dm_bufio_client_count++;
1816         list_add(&c->client_list, &dm_bufio_all_clients);
1817         __cache_size_refresh();
1818         mutex_unlock(&dm_bufio_clients_lock);
1819
1820         return c;
1821
1822 bad:
1823         while (!list_empty(&c->reserved_buffers)) {
1824                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1825                                                  struct dm_buffer, lru_list);
1826                 list_del(&b->lru_list);
1827                 free_buffer(b);
1828         }
1829         kmem_cache_destroy(c->slab_cache);
1830         kmem_cache_destroy(c->slab_buffer);
1831         dm_io_client_destroy(c->dm_io);
1832 bad_dm_io:
1833         mutex_destroy(&c->lock);
1834         kfree(c);
1835 bad_client:
1836         return ERR_PTR(r);
1837 }
1838 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1839
1840 /*
1841  * Free the buffering interface.
1842  * It is required that there are no references on any buffers.
1843  */
1844 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1845 {
1846         unsigned i;
1847
1848         drop_buffers(c);
1849
1850         unregister_shrinker(&c->shrinker);
1851         flush_work(&c->shrink_work);
1852
1853         mutex_lock(&dm_bufio_clients_lock);
1854
1855         list_del(&c->client_list);
1856         dm_bufio_client_count--;
1857         __cache_size_refresh();
1858
1859         mutex_unlock(&dm_bufio_clients_lock);
1860
1861         BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1862         BUG_ON(c->need_reserved_buffers);
1863
1864         while (!list_empty(&c->reserved_buffers)) {
1865                 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1866                                                  struct dm_buffer, lru_list);
1867                 list_del(&b->lru_list);
1868                 free_buffer(b);
1869         }
1870
1871         for (i = 0; i < LIST_SIZE; i++)
1872                 if (c->n_buffers[i])
1873                         DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1874
1875         for (i = 0; i < LIST_SIZE; i++)
1876                 BUG_ON(c->n_buffers[i]);
1877
1878         kmem_cache_destroy(c->slab_cache);
1879         kmem_cache_destroy(c->slab_buffer);
1880         dm_io_client_destroy(c->dm_io);
1881         mutex_destroy(&c->lock);
1882         kfree(c);
1883 }
1884 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1885
1886 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1887 {
1888         c->start = start;
1889 }
1890 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1891
1892 static unsigned get_max_age_hz(void)
1893 {
1894         unsigned max_age = READ_ONCE(dm_bufio_max_age);
1895
1896         if (max_age > UINT_MAX / HZ)
1897                 max_age = UINT_MAX / HZ;
1898
1899         return max_age * HZ;
1900 }
1901
1902 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1903 {
1904         return time_after_eq(jiffies, b->last_accessed + age_hz);
1905 }
1906
1907 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1908 {
1909         struct dm_buffer *b, *tmp;
1910         unsigned long retain_target = get_retain_buffers(c);
1911         unsigned long count;
1912         LIST_HEAD(write_list);
1913
1914         dm_bufio_lock(c);
1915
1916         __check_watermark(c, &write_list);
1917         if (unlikely(!list_empty(&write_list))) {
1918                 dm_bufio_unlock(c);
1919                 __flush_write_list(&write_list);
1920                 dm_bufio_lock(c);
1921         }
1922
1923         count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1924         list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1925                 if (count <= retain_target)
1926                         break;
1927
1928                 if (!older_than(b, age_hz))
1929                         break;
1930
1931                 if (__try_evict_buffer(b, 0))
1932                         count--;
1933
1934                 cond_resched();
1935         }
1936
1937         dm_bufio_unlock(c);
1938 }
1939
1940 static void do_global_cleanup(struct work_struct *w)
1941 {
1942         struct dm_bufio_client *locked_client = NULL;
1943         struct dm_bufio_client *current_client;
1944         struct dm_buffer *b;
1945         unsigned spinlock_hold_count;
1946         unsigned long threshold = dm_bufio_cache_size -
1947                 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1948         unsigned long loops = global_num * 2;
1949
1950         mutex_lock(&dm_bufio_clients_lock);
1951
1952         while (1) {
1953                 cond_resched();
1954
1955                 spin_lock(&global_spinlock);
1956                 if (unlikely(dm_bufio_current_allocated <= threshold))
1957                         break;
1958
1959                 spinlock_hold_count = 0;
1960 get_next:
1961                 if (!loops--)
1962                         break;
1963                 if (unlikely(list_empty(&global_queue)))
1964                         break;
1965                 b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1966
1967                 if (b->accessed) {
1968                         b->accessed = 0;
1969                         list_move(&b->global_list, &global_queue);
1970                         if (likely(++spinlock_hold_count < 16))
1971                                 goto get_next;
1972                         spin_unlock(&global_spinlock);
1973                         continue;
1974                 }
1975
1976                 current_client = b->c;
1977                 if (unlikely(current_client != locked_client)) {
1978                         if (locked_client)
1979                                 dm_bufio_unlock(locked_client);
1980
1981                         if (!dm_bufio_trylock(current_client)) {
1982                                 spin_unlock(&global_spinlock);
1983                                 dm_bufio_lock(current_client);
1984                                 locked_client = current_client;
1985                                 continue;
1986                         }
1987
1988                         locked_client = current_client;
1989                 }
1990
1991                 spin_unlock(&global_spinlock);
1992
1993                 if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
1994                         spin_lock(&global_spinlock);
1995                         list_move(&b->global_list, &global_queue);
1996                         spin_unlock(&global_spinlock);
1997                 }
1998         }
1999
2000         spin_unlock(&global_spinlock);
2001
2002         if (locked_client)
2003                 dm_bufio_unlock(locked_client);
2004
2005         mutex_unlock(&dm_bufio_clients_lock);
2006 }
2007
2008 static void cleanup_old_buffers(void)
2009 {
2010         unsigned long max_age_hz = get_max_age_hz();
2011         struct dm_bufio_client *c;
2012
2013         mutex_lock(&dm_bufio_clients_lock);
2014
2015         __cache_size_refresh();
2016
2017         list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2018                 __evict_old_buffers(c, max_age_hz);
2019
2020         mutex_unlock(&dm_bufio_clients_lock);
2021 }
2022
2023 static void work_fn(struct work_struct *w)
2024 {
2025         cleanup_old_buffers();
2026
2027         queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2028                            DM_BUFIO_WORK_TIMER_SECS * HZ);
2029 }
2030
2031 /*----------------------------------------------------------------
2032  * Module setup
2033  *--------------------------------------------------------------*/
2034
2035 /*
2036  * This is called only once for the whole dm_bufio module.
2037  * It initializes memory limit.
2038  */
2039 static int __init dm_bufio_init(void)
2040 {
2041         __u64 mem;
2042
2043         dm_bufio_allocated_kmem_cache = 0;
2044         dm_bufio_allocated_get_free_pages = 0;
2045         dm_bufio_allocated_vmalloc = 0;
2046         dm_bufio_current_allocated = 0;
2047
2048         mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2049                                DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2050
2051         if (mem > ULONG_MAX)
2052                 mem = ULONG_MAX;
2053
2054 #ifdef CONFIG_MMU
2055         if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2056                 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2057 #endif
2058
2059         dm_bufio_default_cache_size = mem;
2060
2061         mutex_lock(&dm_bufio_clients_lock);
2062         __cache_size_refresh();
2063         mutex_unlock(&dm_bufio_clients_lock);
2064
2065         dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2066         if (!dm_bufio_wq)
2067                 return -ENOMEM;
2068
2069         INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2070         INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2071         queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2072                            DM_BUFIO_WORK_TIMER_SECS * HZ);
2073
2074         return 0;
2075 }
2076
2077 /*
2078  * This is called once when unloading the dm_bufio module.
2079  */
2080 static void __exit dm_bufio_exit(void)
2081 {
2082         int bug = 0;
2083
2084         cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2085         flush_workqueue(dm_bufio_wq);
2086         destroy_workqueue(dm_bufio_wq);
2087
2088         if (dm_bufio_client_count) {
2089                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
2090                         __func__, dm_bufio_client_count);
2091                 bug = 1;
2092         }
2093
2094         if (dm_bufio_current_allocated) {
2095                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2096                         __func__, dm_bufio_current_allocated);
2097                 bug = 1;
2098         }
2099
2100         if (dm_bufio_allocated_get_free_pages) {
2101                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2102                        __func__, dm_bufio_allocated_get_free_pages);
2103                 bug = 1;
2104         }
2105
2106         if (dm_bufio_allocated_vmalloc) {
2107                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2108                        __func__, dm_bufio_allocated_vmalloc);
2109                 bug = 1;
2110         }
2111
2112         BUG_ON(bug);
2113 }
2114
2115 module_init(dm_bufio_init)
2116 module_exit(dm_bufio_exit)
2117
2118 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2119 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2120
2121 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2122 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2123
2124 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2125 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2126
2127 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2128 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2129
2130 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2131 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2132
2133 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2134 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2135
2136 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2137 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2138
2139 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2140 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2141
2142 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2143 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2144 MODULE_LICENSE("GPL");