Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / md / dm-bufio.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009-2011 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * This file is released under the GPL.
8  */
9
10 #include <linux/dm-bufio.h>
11
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/slab.h>
15 #include <linux/sched/mm.h>
16 #include <linux/jiffies.h>
17 #include <linux/vmalloc.h>
18 #include <linux/shrinker.h>
19 #include <linux/module.h>
20 #include <linux/rbtree.h>
21 #include <linux/stacktrace.h>
22 #include <linux/jump_label.h>
23
24 #include "dm.h"
25
26 #define DM_MSG_PREFIX "bufio"
27
28 /*
29  * Memory management policy:
30  *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
31  *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
32  *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
33  *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
34  *      dirty buffers.
35  */
36 #define DM_BUFIO_MIN_BUFFERS            8
37
38 #define DM_BUFIO_MEMORY_PERCENT         2
39 #define DM_BUFIO_VMALLOC_PERCENT        25
40 #define DM_BUFIO_WRITEBACK_RATIO        3
41 #define DM_BUFIO_LOW_WATERMARK_RATIO    16
42
43 /*
44  * Check buffer ages in this interval (seconds)
45  */
46 #define DM_BUFIO_WORK_TIMER_SECS        30
47
48 /*
49  * Free buffers when they are older than this (seconds)
50  */
51 #define DM_BUFIO_DEFAULT_AGE_SECS       300
52
53 /*
54  * The nr of bytes of cached data to keep around.
55  */
56 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
57
58 /*
59  * Align buffer writes to this boundary.
60  * Tests show that SSDs have the highest IOPS when using 4k writes.
61  */
62 #define DM_BUFIO_WRITE_ALIGN            4096
63
64 /*
65  * dm_buffer->list_mode
66  */
67 #define LIST_CLEAN      0
68 #define LIST_DIRTY      1
69 #define LIST_SIZE       2
70
71 /*--------------------------------------------------------------*/
72
73 /*
74  * Rather than use an LRU list, we use a clock algorithm where entries
75  * are held in a circular list.  When an entry is 'hit' a reference bit
76  * is set.  The least recently used entry is approximated by running a
77  * cursor around the list selecting unreferenced entries. Referenced
78  * entries have their reference bit cleared as the cursor passes them.
79  */
80 struct lru_entry {
81         struct list_head list;
82         atomic_t referenced;
83 };
84
85 struct lru_iter {
86         struct lru *lru;
87         struct list_head list;
88         struct lru_entry *stop;
89         struct lru_entry *e;
90 };
91
92 struct lru {
93         struct list_head *cursor;
94         unsigned long count;
95
96         struct list_head iterators;
97 };
98
99 /*--------------*/
100
101 static void lru_init(struct lru *lru)
102 {
103         lru->cursor = NULL;
104         lru->count = 0;
105         INIT_LIST_HEAD(&lru->iterators);
106 }
107
108 static void lru_destroy(struct lru *lru)
109 {
110         WARN_ON_ONCE(lru->cursor);
111         WARN_ON_ONCE(!list_empty(&lru->iterators));
112 }
113
114 /*
115  * Insert a new entry into the lru.
116  */
117 static void lru_insert(struct lru *lru, struct lru_entry *le)
118 {
119         /*
120          * Don't be tempted to set to 1, makes the lru aspect
121          * perform poorly.
122          */
123         atomic_set(&le->referenced, 0);
124
125         if (lru->cursor) {
126                 list_add_tail(&le->list, lru->cursor);
127         } else {
128                 INIT_LIST_HEAD(&le->list);
129                 lru->cursor = &le->list;
130         }
131         lru->count++;
132 }
133
134 /*--------------*/
135
136 /*
137  * Convert a list_head pointer to an lru_entry pointer.
138  */
139 static inline struct lru_entry *to_le(struct list_head *l)
140 {
141         return container_of(l, struct lru_entry, list);
142 }
143
144 /*
145  * Initialize an lru_iter and add it to the list of cursors in the lru.
146  */
147 static void lru_iter_begin(struct lru *lru, struct lru_iter *it)
148 {
149         it->lru = lru;
150         it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL;
151         it->e = lru->cursor ? to_le(lru->cursor) : NULL;
152         list_add(&it->list, &lru->iterators);
153 }
154
155 /*
156  * Remove an lru_iter from the list of cursors in the lru.
157  */
158 static inline void lru_iter_end(struct lru_iter *it)
159 {
160         list_del(&it->list);
161 }
162
163 /* Predicate function type to be used with lru_iter_next */
164 typedef bool (*iter_predicate)(struct lru_entry *le, void *context);
165
166 /*
167  * Advance the cursor to the next entry that passes the
168  * predicate, and return that entry.  Returns NULL if the
169  * iteration is complete.
170  */
171 static struct lru_entry *lru_iter_next(struct lru_iter *it,
172                                        iter_predicate pred, void *context)
173 {
174         struct lru_entry *e;
175
176         while (it->e) {
177                 e = it->e;
178
179                 /* advance the cursor */
180                 if (it->e == it->stop)
181                         it->e = NULL;
182                 else
183                         it->e = to_le(it->e->list.next);
184
185                 if (pred(e, context))
186                         return e;
187         }
188
189         return NULL;
190 }
191
192 /*
193  * Invalidate a specific lru_entry and update all cursors in
194  * the lru accordingly.
195  */
196 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e)
197 {
198         struct lru_iter *it;
199
200         list_for_each_entry(it, &lru->iterators, list) {
201                 /* Move c->e forwards if necc. */
202                 if (it->e == e) {
203                         it->e = to_le(it->e->list.next);
204                         if (it->e == e)
205                                 it->e = NULL;
206                 }
207
208                 /* Move it->stop backwards if necc. */
209                 if (it->stop == e) {
210                         it->stop = to_le(it->stop->list.prev);
211                         if (it->stop == e)
212                                 it->stop = NULL;
213                 }
214         }
215 }
216
217 /*--------------*/
218
219 /*
220  * Remove a specific entry from the lru.
221  */
222 static void lru_remove(struct lru *lru, struct lru_entry *le)
223 {
224         lru_iter_invalidate(lru, le);
225         if (lru->count == 1) {
226                 lru->cursor = NULL;
227         } else {
228                 if (lru->cursor == &le->list)
229                         lru->cursor = lru->cursor->next;
230                 list_del(&le->list);
231         }
232         lru->count--;
233 }
234
235 /*
236  * Mark as referenced.
237  */
238 static inline void lru_reference(struct lru_entry *le)
239 {
240         atomic_set(&le->referenced, 1);
241 }
242
243 /*--------------*/
244
245 /*
246  * Remove the least recently used entry (approx), that passes the predicate.
247  * Returns NULL on failure.
248  */
249 enum evict_result {
250         ER_EVICT,
251         ER_DONT_EVICT,
252         ER_STOP, /* stop looking for something to evict */
253 };
254
255 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context);
256
257 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep)
258 {
259         unsigned long tested = 0;
260         struct list_head *h = lru->cursor;
261         struct lru_entry *le;
262
263         if (!h)
264                 return NULL;
265         /*
266          * In the worst case we have to loop around twice. Once to clear
267          * the reference flags, and then again to discover the predicate
268          * fails for all entries.
269          */
270         while (tested < lru->count) {
271                 le = container_of(h, struct lru_entry, list);
272
273                 if (atomic_read(&le->referenced)) {
274                         atomic_set(&le->referenced, 0);
275                 } else {
276                         tested++;
277                         switch (pred(le, context)) {
278                         case ER_EVICT:
279                                 /*
280                                  * Adjust the cursor, so we start the next
281                                  * search from here.
282                                  */
283                                 lru->cursor = le->list.next;
284                                 lru_remove(lru, le);
285                                 return le;
286
287                         case ER_DONT_EVICT:
288                                 break;
289
290                         case ER_STOP:
291                                 lru->cursor = le->list.next;
292                                 return NULL;
293                         }
294                 }
295
296                 h = h->next;
297
298                 if (!no_sleep)
299                         cond_resched();
300         }
301
302         return NULL;
303 }
304
305 /*--------------------------------------------------------------*/
306
307 /*
308  * Buffer state bits.
309  */
310 #define B_READING       0
311 #define B_WRITING       1
312 #define B_DIRTY         2
313
314 /*
315  * Describes how the block was allocated:
316  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
317  * See the comment at alloc_buffer_data.
318  */
319 enum data_mode {
320         DATA_MODE_SLAB = 0,
321         DATA_MODE_GET_FREE_PAGES = 1,
322         DATA_MODE_VMALLOC = 2,
323         DATA_MODE_LIMIT = 3
324 };
325
326 struct dm_buffer {
327         /* protected by the locks in dm_buffer_cache */
328         struct rb_node node;
329
330         /* immutable, so don't need protecting */
331         sector_t block;
332         void *data;
333         unsigned char data_mode;                /* DATA_MODE_* */
334
335         /*
336          * These two fields are used in isolation, so do not need
337          * a surrounding lock.
338          */
339         atomic_t hold_count;
340         unsigned long last_accessed;
341
342         /*
343          * Everything else is protected by the mutex in
344          * dm_bufio_client
345          */
346         unsigned long state;
347         struct lru_entry lru;
348         unsigned char list_mode;                /* LIST_* */
349         blk_status_t read_error;
350         blk_status_t write_error;
351         unsigned int dirty_start;
352         unsigned int dirty_end;
353         unsigned int write_start;
354         unsigned int write_end;
355         struct list_head write_list;
356         struct dm_bufio_client *c;
357         void (*end_io)(struct dm_buffer *b, blk_status_t bs);
358 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
359 #define MAX_STACK 10
360         unsigned int stack_len;
361         unsigned long stack_entries[MAX_STACK];
362 #endif
363 };
364
365 /*--------------------------------------------------------------*/
366
367 /*
368  * The buffer cache manages buffers, particularly:
369  *  - inc/dec of holder count
370  *  - setting the last_accessed field
371  *  - maintains clean/dirty state along with lru
372  *  - selecting buffers that match predicates
373  *
374  * It does *not* handle:
375  *  - allocation/freeing of buffers.
376  *  - IO
377  *  - Eviction or cache sizing.
378  *
379  * cache_get() and cache_put() are threadsafe, you do not need to
380  * protect these calls with a surrounding mutex.  All the other
381  * methods are not threadsafe; they do use locking primitives, but
382  * only enough to ensure get/put are threadsafe.
383  */
384
385 struct buffer_tree {
386         union {
387                 struct rw_semaphore lock;
388                 rwlock_t spinlock;
389         } u;
390         struct rb_root root;
391 } ____cacheline_aligned_in_smp;
392
393 struct dm_buffer_cache {
394         struct lru lru[LIST_SIZE];
395         /*
396          * We spread entries across multiple trees to reduce contention
397          * on the locks.
398          */
399         unsigned int num_locks;
400         bool no_sleep;
401         struct buffer_tree trees[];
402 };
403
404 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
405
406 static inline unsigned int cache_index(sector_t block, unsigned int num_locks)
407 {
408         return dm_hash_locks_index(block, num_locks);
409 }
410
411 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block)
412 {
413         if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
414                 read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
415         else
416                 down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
417 }
418
419 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block)
420 {
421         if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
422                 read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
423         else
424                 up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
425 }
426
427 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block)
428 {
429         if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
430                 write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
431         else
432                 down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
433 }
434
435 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block)
436 {
437         if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
438                 write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
439         else
440                 up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
441 }
442
443 /*
444  * Sometimes we want to repeatedly get and drop locks as part of an iteration.
445  * This struct helps avoid redundant drop and gets of the same lock.
446  */
447 struct lock_history {
448         struct dm_buffer_cache *cache;
449         bool write;
450         unsigned int previous;
451         unsigned int no_previous;
452 };
453
454 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write)
455 {
456         lh->cache = cache;
457         lh->write = write;
458         lh->no_previous = cache->num_locks;
459         lh->previous = lh->no_previous;
460 }
461
462 static void __lh_lock(struct lock_history *lh, unsigned int index)
463 {
464         if (lh->write) {
465                 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
466                         write_lock_bh(&lh->cache->trees[index].u.spinlock);
467                 else
468                         down_write(&lh->cache->trees[index].u.lock);
469         } else {
470                 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
471                         read_lock_bh(&lh->cache->trees[index].u.spinlock);
472                 else
473                         down_read(&lh->cache->trees[index].u.lock);
474         }
475 }
476
477 static void __lh_unlock(struct lock_history *lh, unsigned int index)
478 {
479         if (lh->write) {
480                 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
481                         write_unlock_bh(&lh->cache->trees[index].u.spinlock);
482                 else
483                         up_write(&lh->cache->trees[index].u.lock);
484         } else {
485                 if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
486                         read_unlock_bh(&lh->cache->trees[index].u.spinlock);
487                 else
488                         up_read(&lh->cache->trees[index].u.lock);
489         }
490 }
491
492 /*
493  * Make sure you call this since it will unlock the final lock.
494  */
495 static void lh_exit(struct lock_history *lh)
496 {
497         if (lh->previous != lh->no_previous) {
498                 __lh_unlock(lh, lh->previous);
499                 lh->previous = lh->no_previous;
500         }
501 }
502
503 /*
504  * Named 'next' because there is no corresponding
505  * 'up/unlock' call since it's done automatically.
506  */
507 static void lh_next(struct lock_history *lh, sector_t b)
508 {
509         unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */
510
511         if (lh->previous != lh->no_previous) {
512                 if (lh->previous != index) {
513                         __lh_unlock(lh, lh->previous);
514                         __lh_lock(lh, index);
515                         lh->previous = index;
516                 }
517         } else {
518                 __lh_lock(lh, index);
519                 lh->previous = index;
520         }
521 }
522
523 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le)
524 {
525         return container_of(le, struct dm_buffer, lru);
526 }
527
528 static struct dm_buffer *list_to_buffer(struct list_head *l)
529 {
530         struct lru_entry *le = list_entry(l, struct lru_entry, list);
531
532         if (!le)
533                 return NULL;
534
535         return le_to_buffer(le);
536 }
537
538 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep)
539 {
540         unsigned int i;
541
542         bc->num_locks = num_locks;
543         bc->no_sleep = no_sleep;
544
545         for (i = 0; i < bc->num_locks; i++) {
546                 if (no_sleep)
547                         rwlock_init(&bc->trees[i].u.spinlock);
548                 else
549                         init_rwsem(&bc->trees[i].u.lock);
550                 bc->trees[i].root = RB_ROOT;
551         }
552
553         lru_init(&bc->lru[LIST_CLEAN]);
554         lru_init(&bc->lru[LIST_DIRTY]);
555 }
556
557 static void cache_destroy(struct dm_buffer_cache *bc)
558 {
559         unsigned int i;
560
561         for (i = 0; i < bc->num_locks; i++)
562                 WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root));
563
564         lru_destroy(&bc->lru[LIST_CLEAN]);
565         lru_destroy(&bc->lru[LIST_DIRTY]);
566 }
567
568 /*--------------*/
569
570 /*
571  * not threadsafe, or racey depending how you look at it
572  */
573 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode)
574 {
575         return bc->lru[list_mode].count;
576 }
577
578 static inline unsigned long cache_total(struct dm_buffer_cache *bc)
579 {
580         return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY);
581 }
582
583 /*--------------*/
584
585 /*
586  * Gets a specific buffer, indexed by block.
587  * If the buffer is found then its holder count will be incremented and
588  * lru_reference will be called.
589  *
590  * threadsafe
591  */
592 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block)
593 {
594         struct rb_node *n = root->rb_node;
595         struct dm_buffer *b;
596
597         while (n) {
598                 b = container_of(n, struct dm_buffer, node);
599
600                 if (b->block == block)
601                         return b;
602
603                 n = block < b->block ? n->rb_left : n->rb_right;
604         }
605
606         return NULL;
607 }
608
609 static void __cache_inc_buffer(struct dm_buffer *b)
610 {
611         atomic_inc(&b->hold_count);
612         WRITE_ONCE(b->last_accessed, jiffies);
613 }
614
615 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block)
616 {
617         struct dm_buffer *b;
618
619         cache_read_lock(bc, block);
620         b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block);
621         if (b) {
622                 lru_reference(&b->lru);
623                 __cache_inc_buffer(b);
624         }
625         cache_read_unlock(bc, block);
626
627         return b;
628 }
629
630 /*--------------*/
631
632 /*
633  * Returns true if the hold count hits zero.
634  * threadsafe
635  */
636 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b)
637 {
638         bool r;
639
640         cache_read_lock(bc, b->block);
641         BUG_ON(!atomic_read(&b->hold_count));
642         r = atomic_dec_and_test(&b->hold_count);
643         cache_read_unlock(bc, b->block);
644
645         return r;
646 }
647
648 /*--------------*/
649
650 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *);
651
652 /*
653  * Evicts a buffer based on a predicate.  The oldest buffer that
654  * matches the predicate will be selected.  In addition to the
655  * predicate the hold_count of the selected buffer will be zero.
656  */
657 struct evict_wrapper {
658         struct lock_history *lh;
659         b_predicate pred;
660         void *context;
661 };
662
663 /*
664  * Wraps the buffer predicate turning it into an lru predicate.  Adds
665  * extra test for hold_count.
666  */
667 static enum evict_result __evict_pred(struct lru_entry *le, void *context)
668 {
669         struct evict_wrapper *w = context;
670         struct dm_buffer *b = le_to_buffer(le);
671
672         lh_next(w->lh, b->block);
673
674         if (atomic_read(&b->hold_count))
675                 return ER_DONT_EVICT;
676
677         return w->pred(b, w->context);
678 }
679
680 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode,
681                                        b_predicate pred, void *context,
682                                        struct lock_history *lh)
683 {
684         struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
685         struct lru_entry *le;
686         struct dm_buffer *b;
687
688         le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep);
689         if (!le)
690                 return NULL;
691
692         b = le_to_buffer(le);
693         /* __evict_pred will have locked the appropriate tree. */
694         rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
695
696         return b;
697 }
698
699 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode,
700                                      b_predicate pred, void *context)
701 {
702         struct dm_buffer *b;
703         struct lock_history lh;
704
705         lh_init(&lh, bc, true);
706         b = __cache_evict(bc, list_mode, pred, context, &lh);
707         lh_exit(&lh);
708
709         return b;
710 }
711
712 /*--------------*/
713
714 /*
715  * Mark a buffer as clean or dirty. Not threadsafe.
716  */
717 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode)
718 {
719         cache_write_lock(bc, b->block);
720         if (list_mode != b->list_mode) {
721                 lru_remove(&bc->lru[b->list_mode], &b->lru);
722                 b->list_mode = list_mode;
723                 lru_insert(&bc->lru[b->list_mode], &b->lru);
724         }
725         cache_write_unlock(bc, b->block);
726 }
727
728 /*--------------*/
729
730 /*
731  * Runs through the lru associated with 'old_mode', if the predicate matches then
732  * it moves them to 'new_mode'.  Not threadsafe.
733  */
734 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
735                               b_predicate pred, void *context, struct lock_history *lh)
736 {
737         struct lru_entry *le;
738         struct dm_buffer *b;
739         struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
740
741         while (true) {
742                 le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep);
743                 if (!le)
744                         break;
745
746                 b = le_to_buffer(le);
747                 b->list_mode = new_mode;
748                 lru_insert(&bc->lru[b->list_mode], &b->lru);
749         }
750 }
751
752 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
753                             b_predicate pred, void *context)
754 {
755         struct lock_history lh;
756
757         lh_init(&lh, bc, true);
758         __cache_mark_many(bc, old_mode, new_mode, pred, context, &lh);
759         lh_exit(&lh);
760 }
761
762 /*--------------*/
763
764 /*
765  * Iterates through all clean or dirty entries calling a function for each
766  * entry.  The callback may terminate the iteration early.  Not threadsafe.
767  */
768
769 /*
770  * Iterator functions should return one of these actions to indicate
771  * how the iteration should proceed.
772  */
773 enum it_action {
774         IT_NEXT,
775         IT_COMPLETE,
776 };
777
778 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context);
779
780 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode,
781                             iter_fn fn, void *context, struct lock_history *lh)
782 {
783         struct lru *lru = &bc->lru[list_mode];
784         struct lru_entry *le, *first;
785
786         if (!lru->cursor)
787                 return;
788
789         first = le = to_le(lru->cursor);
790         do {
791                 struct dm_buffer *b = le_to_buffer(le);
792
793                 lh_next(lh, b->block);
794
795                 switch (fn(b, context)) {
796                 case IT_NEXT:
797                         break;
798
799                 case IT_COMPLETE:
800                         return;
801                 }
802                 cond_resched();
803
804                 le = to_le(le->list.next);
805         } while (le != first);
806 }
807
808 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode,
809                           iter_fn fn, void *context)
810 {
811         struct lock_history lh;
812
813         lh_init(&lh, bc, false);
814         __cache_iterate(bc, list_mode, fn, context, &lh);
815         lh_exit(&lh);
816 }
817
818 /*--------------*/
819
820 /*
821  * Passes ownership of the buffer to the cache. Returns false if the
822  * buffer was already present (in which case ownership does not pass).
823  * eg, a race with another thread.
824  *
825  * Holder count should be 1 on insertion.
826  *
827  * Not threadsafe.
828  */
829 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b)
830 {
831         struct rb_node **new = &root->rb_node, *parent = NULL;
832         struct dm_buffer *found;
833
834         while (*new) {
835                 found = container_of(*new, struct dm_buffer, node);
836
837                 if (found->block == b->block)
838                         return false;
839
840                 parent = *new;
841                 new = b->block < found->block ?
842                         &found->node.rb_left : &found->node.rb_right;
843         }
844
845         rb_link_node(&b->node, parent, new);
846         rb_insert_color(&b->node, root);
847
848         return true;
849 }
850
851 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b)
852 {
853         bool r;
854
855         if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE))
856                 return false;
857
858         cache_write_lock(bc, b->block);
859         BUG_ON(atomic_read(&b->hold_count) != 1);
860         r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b);
861         if (r)
862                 lru_insert(&bc->lru[b->list_mode], &b->lru);
863         cache_write_unlock(bc, b->block);
864
865         return r;
866 }
867
868 /*--------------*/
869
870 /*
871  * Removes buffer from cache, ownership of the buffer passes back to the caller.
872  * Fails if the hold_count is not one (ie. the caller holds the only reference).
873  *
874  * Not threadsafe.
875  */
876 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b)
877 {
878         bool r;
879
880         cache_write_lock(bc, b->block);
881
882         if (atomic_read(&b->hold_count) != 1) {
883                 r = false;
884         } else {
885                 r = true;
886                 rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
887                 lru_remove(&bc->lru[b->list_mode], &b->lru);
888         }
889
890         cache_write_unlock(bc, b->block);
891
892         return r;
893 }
894
895 /*--------------*/
896
897 typedef void (*b_release)(struct dm_buffer *);
898
899 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block)
900 {
901         struct rb_node *n = root->rb_node;
902         struct dm_buffer *b;
903         struct dm_buffer *best = NULL;
904
905         while (n) {
906                 b = container_of(n, struct dm_buffer, node);
907
908                 if (b->block == block)
909                         return b;
910
911                 if (block <= b->block) {
912                         n = n->rb_left;
913                         best = b;
914                 } else {
915                         n = n->rb_right;
916                 }
917         }
918
919         return best;
920 }
921
922 static void __remove_range(struct dm_buffer_cache *bc,
923                            struct rb_root *root,
924                            sector_t begin, sector_t end,
925                            b_predicate pred, b_release release)
926 {
927         struct dm_buffer *b;
928
929         while (true) {
930                 cond_resched();
931
932                 b = __find_next(root, begin);
933                 if (!b || (b->block >= end))
934                         break;
935
936                 begin = b->block + 1;
937
938                 if (atomic_read(&b->hold_count))
939                         continue;
940
941                 if (pred(b, NULL) == ER_EVICT) {
942                         rb_erase(&b->node, root);
943                         lru_remove(&bc->lru[b->list_mode], &b->lru);
944                         release(b);
945                 }
946         }
947 }
948
949 static void cache_remove_range(struct dm_buffer_cache *bc,
950                                sector_t begin, sector_t end,
951                                b_predicate pred, b_release release)
952 {
953         unsigned int i;
954
955         BUG_ON(bc->no_sleep);
956         for (i = 0; i < bc->num_locks; i++) {
957                 down_write(&bc->trees[i].u.lock);
958                 __remove_range(bc, &bc->trees[i].root, begin, end, pred, release);
959                 up_write(&bc->trees[i].u.lock);
960         }
961 }
962
963 /*----------------------------------------------------------------*/
964
965 /*
966  * Linking of buffers:
967  *      All buffers are linked to buffer_cache with their node field.
968  *
969  *      Clean buffers that are not being written (B_WRITING not set)
970  *      are linked to lru[LIST_CLEAN] with their lru_list field.
971  *
972  *      Dirty and clean buffers that are being written are linked to
973  *      lru[LIST_DIRTY] with their lru_list field. When the write
974  *      finishes, the buffer cannot be relinked immediately (because we
975  *      are in an interrupt context and relinking requires process
976  *      context), so some clean-not-writing buffers can be held on
977  *      dirty_lru too.  They are later added to lru in the process
978  *      context.
979  */
980 struct dm_bufio_client {
981         struct block_device *bdev;
982         unsigned int block_size;
983         s8 sectors_per_block_bits;
984
985         bool no_sleep;
986         struct mutex lock;
987         spinlock_t spinlock;
988
989         int async_write_error;
990
991         void (*alloc_callback)(struct dm_buffer *buf);
992         void (*write_callback)(struct dm_buffer *buf);
993         struct kmem_cache *slab_buffer;
994         struct kmem_cache *slab_cache;
995         struct dm_io_client *dm_io;
996
997         struct list_head reserved_buffers;
998         unsigned int need_reserved_buffers;
999
1000         unsigned int minimum_buffers;
1001
1002         sector_t start;
1003
1004         struct shrinker *shrinker;
1005         struct work_struct shrink_work;
1006         atomic_long_t need_shrink;
1007
1008         wait_queue_head_t free_buffer_wait;
1009
1010         struct list_head client_list;
1011
1012         /*
1013          * Used by global_cleanup to sort the clients list.
1014          */
1015         unsigned long oldest_buffer;
1016
1017         struct dm_buffer_cache cache; /* must be last member */
1018 };
1019
1020 /*----------------------------------------------------------------*/
1021
1022 #define dm_bufio_in_request()   (!!current->bio_list)
1023
1024 static void dm_bufio_lock(struct dm_bufio_client *c)
1025 {
1026         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1027                 spin_lock_bh(&c->spinlock);
1028         else
1029                 mutex_lock_nested(&c->lock, dm_bufio_in_request());
1030 }
1031
1032 static void dm_bufio_unlock(struct dm_bufio_client *c)
1033 {
1034         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1035                 spin_unlock_bh(&c->spinlock);
1036         else
1037                 mutex_unlock(&c->lock);
1038 }
1039
1040 /*----------------------------------------------------------------*/
1041
1042 /*
1043  * Default cache size: available memory divided by the ratio.
1044  */
1045 static unsigned long dm_bufio_default_cache_size;
1046
1047 /*
1048  * Total cache size set by the user.
1049  */
1050 static unsigned long dm_bufio_cache_size;
1051
1052 /*
1053  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
1054  * at any time.  If it disagrees, the user has changed cache size.
1055  */
1056 static unsigned long dm_bufio_cache_size_latch;
1057
1058 static DEFINE_SPINLOCK(global_spinlock);
1059
1060 /*
1061  * Buffers are freed after this timeout
1062  */
1063 static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
1064 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
1065
1066 static unsigned long dm_bufio_peak_allocated;
1067 static unsigned long dm_bufio_allocated_kmem_cache;
1068 static unsigned long dm_bufio_allocated_get_free_pages;
1069 static unsigned long dm_bufio_allocated_vmalloc;
1070 static unsigned long dm_bufio_current_allocated;
1071
1072 /*----------------------------------------------------------------*/
1073
1074 /*
1075  * The current number of clients.
1076  */
1077 static int dm_bufio_client_count;
1078
1079 /*
1080  * The list of all clients.
1081  */
1082 static LIST_HEAD(dm_bufio_all_clients);
1083
1084 /*
1085  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
1086  */
1087 static DEFINE_MUTEX(dm_bufio_clients_lock);
1088
1089 static struct workqueue_struct *dm_bufio_wq;
1090 static struct delayed_work dm_bufio_cleanup_old_work;
1091 static struct work_struct dm_bufio_replacement_work;
1092
1093
1094 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1095 static void buffer_record_stack(struct dm_buffer *b)
1096 {
1097         b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
1098 }
1099 #endif
1100
1101 /*----------------------------------------------------------------*/
1102
1103 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
1104 {
1105         unsigned char data_mode;
1106         long diff;
1107
1108         static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
1109                 &dm_bufio_allocated_kmem_cache,
1110                 &dm_bufio_allocated_get_free_pages,
1111                 &dm_bufio_allocated_vmalloc,
1112         };
1113
1114         data_mode = b->data_mode;
1115         diff = (long)b->c->block_size;
1116         if (unlink)
1117                 diff = -diff;
1118
1119         spin_lock(&global_spinlock);
1120
1121         *class_ptr[data_mode] += diff;
1122
1123         dm_bufio_current_allocated += diff;
1124
1125         if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
1126                 dm_bufio_peak_allocated = dm_bufio_current_allocated;
1127
1128         if (!unlink) {
1129                 if (dm_bufio_current_allocated > dm_bufio_cache_size)
1130                         queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
1131         }
1132
1133         spin_unlock(&global_spinlock);
1134 }
1135
1136 /*
1137  * Change the number of clients and recalculate per-client limit.
1138  */
1139 static void __cache_size_refresh(void)
1140 {
1141         if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock)))
1142                 return;
1143         if (WARN_ON(dm_bufio_client_count < 0))
1144                 return;
1145
1146         dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
1147
1148         /*
1149          * Use default if set to 0 and report the actual cache size used.
1150          */
1151         if (!dm_bufio_cache_size_latch) {
1152                 (void)cmpxchg(&dm_bufio_cache_size, 0,
1153                               dm_bufio_default_cache_size);
1154                 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
1155         }
1156 }
1157
1158 /*
1159  * Allocating buffer data.
1160  *
1161  * Small buffers are allocated with kmem_cache, to use space optimally.
1162  *
1163  * For large buffers, we choose between get_free_pages and vmalloc.
1164  * Each has advantages and disadvantages.
1165  *
1166  * __get_free_pages can randomly fail if the memory is fragmented.
1167  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
1168  * as low as 128M) so using it for caching is not appropriate.
1169  *
1170  * If the allocation may fail we use __get_free_pages. Memory fragmentation
1171  * won't have a fatal effect here, but it just causes flushes of some other
1172  * buffers and more I/O will be performed. Don't use __get_free_pages if it
1173  * always fails (i.e. order > MAX_PAGE_ORDER).
1174  *
1175  * If the allocation shouldn't fail we use __vmalloc. This is only for the
1176  * initial reserve allocation, so there's no risk of wasting all vmalloc
1177  * space.
1178  */
1179 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
1180                                unsigned char *data_mode)
1181 {
1182         if (unlikely(c->slab_cache != NULL)) {
1183                 *data_mode = DATA_MODE_SLAB;
1184                 return kmem_cache_alloc(c->slab_cache, gfp_mask);
1185         }
1186
1187         if (c->block_size <= KMALLOC_MAX_SIZE &&
1188             gfp_mask & __GFP_NORETRY) {
1189                 *data_mode = DATA_MODE_GET_FREE_PAGES;
1190                 return (void *)__get_free_pages(gfp_mask,
1191                                                 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1192         }
1193
1194         *data_mode = DATA_MODE_VMALLOC;
1195
1196         return __vmalloc(c->block_size, gfp_mask);
1197 }
1198
1199 /*
1200  * Free buffer's data.
1201  */
1202 static void free_buffer_data(struct dm_bufio_client *c,
1203                              void *data, unsigned char data_mode)
1204 {
1205         switch (data_mode) {
1206         case DATA_MODE_SLAB:
1207                 kmem_cache_free(c->slab_cache, data);
1208                 break;
1209
1210         case DATA_MODE_GET_FREE_PAGES:
1211                 free_pages((unsigned long)data,
1212                            c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1213                 break;
1214
1215         case DATA_MODE_VMALLOC:
1216                 vfree(data);
1217                 break;
1218
1219         default:
1220                 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
1221                        data_mode);
1222                 BUG();
1223         }
1224 }
1225
1226 /*
1227  * Allocate buffer and its data.
1228  */
1229 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
1230 {
1231         struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
1232
1233         if (!b)
1234                 return NULL;
1235
1236         b->c = c;
1237
1238         b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
1239         if (!b->data) {
1240                 kmem_cache_free(c->slab_buffer, b);
1241                 return NULL;
1242         }
1243         adjust_total_allocated(b, false);
1244
1245 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1246         b->stack_len = 0;
1247 #endif
1248         return b;
1249 }
1250
1251 /*
1252  * Free buffer and its data.
1253  */
1254 static void free_buffer(struct dm_buffer *b)
1255 {
1256         struct dm_bufio_client *c = b->c;
1257
1258         adjust_total_allocated(b, true);
1259         free_buffer_data(c, b->data, b->data_mode);
1260         kmem_cache_free(c->slab_buffer, b);
1261 }
1262
1263 /*
1264  *--------------------------------------------------------------------------
1265  * Submit I/O on the buffer.
1266  *
1267  * Bio interface is faster but it has some problems:
1268  *      the vector list is limited (increasing this limit increases
1269  *      memory-consumption per buffer, so it is not viable);
1270  *
1271  *      the memory must be direct-mapped, not vmalloced;
1272  *
1273  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
1274  * it is not vmalloced, try using the bio interface.
1275  *
1276  * If the buffer is big, if it is vmalloced or if the underlying device
1277  * rejects the bio because it is too large, use dm-io layer to do the I/O.
1278  * The dm-io layer splits the I/O into multiple requests, avoiding the above
1279  * shortcomings.
1280  *--------------------------------------------------------------------------
1281  */
1282
1283 /*
1284  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
1285  * that the request was handled directly with bio interface.
1286  */
1287 static void dmio_complete(unsigned long error, void *context)
1288 {
1289         struct dm_buffer *b = context;
1290
1291         b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
1292 }
1293
1294 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
1295                      unsigned int n_sectors, unsigned int offset,
1296                      unsigned short ioprio)
1297 {
1298         int r;
1299         struct dm_io_request io_req = {
1300                 .bi_opf = op,
1301                 .notify.fn = dmio_complete,
1302                 .notify.context = b,
1303                 .client = b->c->dm_io,
1304         };
1305         struct dm_io_region region = {
1306                 .bdev = b->c->bdev,
1307                 .sector = sector,
1308                 .count = n_sectors,
1309         };
1310
1311         if (b->data_mode != DATA_MODE_VMALLOC) {
1312                 io_req.mem.type = DM_IO_KMEM;
1313                 io_req.mem.ptr.addr = (char *)b->data + offset;
1314         } else {
1315                 io_req.mem.type = DM_IO_VMA;
1316                 io_req.mem.ptr.vma = (char *)b->data + offset;
1317         }
1318
1319         r = dm_io(&io_req, 1, &region, NULL, ioprio);
1320         if (unlikely(r))
1321                 b->end_io(b, errno_to_blk_status(r));
1322 }
1323
1324 static void bio_complete(struct bio *bio)
1325 {
1326         struct dm_buffer *b = bio->bi_private;
1327         blk_status_t status = bio->bi_status;
1328
1329         bio_uninit(bio);
1330         kfree(bio);
1331         b->end_io(b, status);
1332 }
1333
1334 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
1335                     unsigned int n_sectors, unsigned int offset,
1336                     unsigned short ioprio)
1337 {
1338         struct bio *bio;
1339         char *ptr;
1340         unsigned int len;
1341
1342         bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
1343         if (!bio) {
1344                 use_dmio(b, op, sector, n_sectors, offset, ioprio);
1345                 return;
1346         }
1347         bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op);
1348         bio->bi_iter.bi_sector = sector;
1349         bio->bi_end_io = bio_complete;
1350         bio->bi_private = b;
1351         bio->bi_ioprio = ioprio;
1352
1353         ptr = (char *)b->data + offset;
1354         len = n_sectors << SECTOR_SHIFT;
1355
1356         __bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr));
1357
1358         submit_bio(bio);
1359 }
1360
1361 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
1362 {
1363         sector_t sector;
1364
1365         if (likely(c->sectors_per_block_bits >= 0))
1366                 sector = block << c->sectors_per_block_bits;
1367         else
1368                 sector = block * (c->block_size >> SECTOR_SHIFT);
1369         sector += c->start;
1370
1371         return sector;
1372 }
1373
1374 static void submit_io(struct dm_buffer *b, enum req_op op, unsigned short ioprio,
1375                       void (*end_io)(struct dm_buffer *, blk_status_t))
1376 {
1377         unsigned int n_sectors;
1378         sector_t sector;
1379         unsigned int offset, end;
1380
1381         b->end_io = end_io;
1382
1383         sector = block_to_sector(b->c, b->block);
1384
1385         if (op != REQ_OP_WRITE) {
1386                 n_sectors = b->c->block_size >> SECTOR_SHIFT;
1387                 offset = 0;
1388         } else {
1389                 if (b->c->write_callback)
1390                         b->c->write_callback(b);
1391                 offset = b->write_start;
1392                 end = b->write_end;
1393                 offset &= -DM_BUFIO_WRITE_ALIGN;
1394                 end += DM_BUFIO_WRITE_ALIGN - 1;
1395                 end &= -DM_BUFIO_WRITE_ALIGN;
1396                 if (unlikely(end > b->c->block_size))
1397                         end = b->c->block_size;
1398
1399                 sector += offset >> SECTOR_SHIFT;
1400                 n_sectors = (end - offset) >> SECTOR_SHIFT;
1401         }
1402
1403         if (b->data_mode != DATA_MODE_VMALLOC)
1404                 use_bio(b, op, sector, n_sectors, offset, ioprio);
1405         else
1406                 use_dmio(b, op, sector, n_sectors, offset, ioprio);
1407 }
1408
1409 /*
1410  *--------------------------------------------------------------
1411  * Writing dirty buffers
1412  *--------------------------------------------------------------
1413  */
1414
1415 /*
1416  * The endio routine for write.
1417  *
1418  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
1419  * it.
1420  */
1421 static void write_endio(struct dm_buffer *b, blk_status_t status)
1422 {
1423         b->write_error = status;
1424         if (unlikely(status)) {
1425                 struct dm_bufio_client *c = b->c;
1426
1427                 (void)cmpxchg(&c->async_write_error, 0,
1428                                 blk_status_to_errno(status));
1429         }
1430
1431         BUG_ON(!test_bit(B_WRITING, &b->state));
1432
1433         smp_mb__before_atomic();
1434         clear_bit(B_WRITING, &b->state);
1435         smp_mb__after_atomic();
1436
1437         wake_up_bit(&b->state, B_WRITING);
1438 }
1439
1440 /*
1441  * Initiate a write on a dirty buffer, but don't wait for it.
1442  *
1443  * - If the buffer is not dirty, exit.
1444  * - If there some previous write going on, wait for it to finish (we can't
1445  *   have two writes on the same buffer simultaneously).
1446  * - Submit our write and don't wait on it. We set B_WRITING indicating
1447  *   that there is a write in progress.
1448  */
1449 static void __write_dirty_buffer(struct dm_buffer *b,
1450                                  struct list_head *write_list)
1451 {
1452         if (!test_bit(B_DIRTY, &b->state))
1453                 return;
1454
1455         clear_bit(B_DIRTY, &b->state);
1456         wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1457
1458         b->write_start = b->dirty_start;
1459         b->write_end = b->dirty_end;
1460
1461         if (!write_list)
1462                 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1463         else
1464                 list_add_tail(&b->write_list, write_list);
1465 }
1466
1467 static void __flush_write_list(struct list_head *write_list)
1468 {
1469         struct blk_plug plug;
1470
1471         blk_start_plug(&plug);
1472         while (!list_empty(write_list)) {
1473                 struct dm_buffer *b =
1474                         list_entry(write_list->next, struct dm_buffer, write_list);
1475                 list_del(&b->write_list);
1476                 submit_io(b, REQ_OP_WRITE, IOPRIO_DEFAULT, write_endio);
1477                 cond_resched();
1478         }
1479         blk_finish_plug(&plug);
1480 }
1481
1482 /*
1483  * Wait until any activity on the buffer finishes.  Possibly write the
1484  * buffer if it is dirty.  When this function finishes, there is no I/O
1485  * running on the buffer and the buffer is not dirty.
1486  */
1487 static void __make_buffer_clean(struct dm_buffer *b)
1488 {
1489         BUG_ON(atomic_read(&b->hold_count));
1490
1491         /* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
1492         if (!smp_load_acquire(&b->state))       /* fast case */
1493                 return;
1494
1495         wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1496         __write_dirty_buffer(b, NULL);
1497         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1498 }
1499
1500 static enum evict_result is_clean(struct dm_buffer *b, void *context)
1501 {
1502         struct dm_bufio_client *c = context;
1503
1504         /* These should never happen */
1505         if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state)))
1506                 return ER_DONT_EVICT;
1507         if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state)))
1508                 return ER_DONT_EVICT;
1509         if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN))
1510                 return ER_DONT_EVICT;
1511
1512         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
1513             unlikely(test_bit(B_READING, &b->state)))
1514                 return ER_DONT_EVICT;
1515
1516         return ER_EVICT;
1517 }
1518
1519 static enum evict_result is_dirty(struct dm_buffer *b, void *context)
1520 {
1521         /* These should never happen */
1522         if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1523                 return ER_DONT_EVICT;
1524         if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY))
1525                 return ER_DONT_EVICT;
1526
1527         return ER_EVICT;
1528 }
1529
1530 /*
1531  * Find some buffer that is not held by anybody, clean it, unlink it and
1532  * return it.
1533  */
1534 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
1535 {
1536         struct dm_buffer *b;
1537
1538         b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c);
1539         if (b) {
1540                 /* this also waits for pending reads */
1541                 __make_buffer_clean(b);
1542                 return b;
1543         }
1544
1545         if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1546                 return NULL;
1547
1548         b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL);
1549         if (b) {
1550                 __make_buffer_clean(b);
1551                 return b;
1552         }
1553
1554         return NULL;
1555 }
1556
1557 /*
1558  * Wait until some other threads free some buffer or release hold count on
1559  * some buffer.
1560  *
1561  * This function is entered with c->lock held, drops it and regains it
1562  * before exiting.
1563  */
1564 static void __wait_for_free_buffer(struct dm_bufio_client *c)
1565 {
1566         DECLARE_WAITQUEUE(wait, current);
1567
1568         add_wait_queue(&c->free_buffer_wait, &wait);
1569         set_current_state(TASK_UNINTERRUPTIBLE);
1570         dm_bufio_unlock(c);
1571
1572         /*
1573          * It's possible to miss a wake up event since we don't always
1574          * hold c->lock when wake_up is called.  So we have a timeout here,
1575          * just in case.
1576          */
1577         io_schedule_timeout(5 * HZ);
1578
1579         remove_wait_queue(&c->free_buffer_wait, &wait);
1580
1581         dm_bufio_lock(c);
1582 }
1583
1584 enum new_flag {
1585         NF_FRESH = 0,
1586         NF_READ = 1,
1587         NF_GET = 2,
1588         NF_PREFETCH = 3
1589 };
1590
1591 /*
1592  * Allocate a new buffer. If the allocation is not possible, wait until
1593  * some other thread frees a buffer.
1594  *
1595  * May drop the lock and regain it.
1596  */
1597 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
1598 {
1599         struct dm_buffer *b;
1600         bool tried_noio_alloc = false;
1601
1602         /*
1603          * dm-bufio is resistant to allocation failures (it just keeps
1604          * one buffer reserved in cases all the allocations fail).
1605          * So set flags to not try too hard:
1606          *      GFP_NOWAIT: don't wait; if we need to sleep we'll release our
1607          *                  mutex and wait ourselves.
1608          *      __GFP_NORETRY: don't retry and rather return failure
1609          *      __GFP_NOMEMALLOC: don't use emergency reserves
1610          *      __GFP_NOWARN: don't print a warning in case of failure
1611          *
1612          * For debugging, if we set the cache size to 1, no new buffers will
1613          * be allocated.
1614          */
1615         while (1) {
1616                 if (dm_bufio_cache_size_latch != 1) {
1617                         b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1618                         if (b)
1619                                 return b;
1620                 }
1621
1622                 if (nf == NF_PREFETCH)
1623                         return NULL;
1624
1625                 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
1626                         dm_bufio_unlock(c);
1627                         b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1628                         dm_bufio_lock(c);
1629                         if (b)
1630                                 return b;
1631                         tried_noio_alloc = true;
1632                 }
1633
1634                 if (!list_empty(&c->reserved_buffers)) {
1635                         b = list_to_buffer(c->reserved_buffers.next);
1636                         list_del(&b->lru.list);
1637                         c->need_reserved_buffers++;
1638
1639                         return b;
1640                 }
1641
1642                 b = __get_unclaimed_buffer(c);
1643                 if (b)
1644                         return b;
1645
1646                 __wait_for_free_buffer(c);
1647         }
1648 }
1649
1650 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
1651 {
1652         struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
1653
1654         if (!b)
1655                 return NULL;
1656
1657         if (c->alloc_callback)
1658                 c->alloc_callback(b);
1659
1660         return b;
1661 }
1662
1663 /*
1664  * Free a buffer and wake other threads waiting for free buffers.
1665  */
1666 static void __free_buffer_wake(struct dm_buffer *b)
1667 {
1668         struct dm_bufio_client *c = b->c;
1669
1670         b->block = -1;
1671         if (!c->need_reserved_buffers)
1672                 free_buffer(b);
1673         else {
1674                 list_add(&b->lru.list, &c->reserved_buffers);
1675                 c->need_reserved_buffers--;
1676         }
1677
1678         /*
1679          * We hold the bufio lock here, so no one can add entries to the
1680          * wait queue anyway.
1681          */
1682         if (unlikely(waitqueue_active(&c->free_buffer_wait)))
1683                 wake_up(&c->free_buffer_wait);
1684 }
1685
1686 static enum evict_result cleaned(struct dm_buffer *b, void *context)
1687 {
1688         if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1689                 return ER_DONT_EVICT; /* should never happen */
1690
1691         if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state))
1692                 return ER_DONT_EVICT;
1693         else
1694                 return ER_EVICT;
1695 }
1696
1697 static void __move_clean_buffers(struct dm_bufio_client *c)
1698 {
1699         cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL);
1700 }
1701
1702 struct write_context {
1703         int no_wait;
1704         struct list_head *write_list;
1705 };
1706
1707 static enum it_action write_one(struct dm_buffer *b, void *context)
1708 {
1709         struct write_context *wc = context;
1710
1711         if (wc->no_wait && test_bit(B_WRITING, &b->state))
1712                 return IT_COMPLETE;
1713
1714         __write_dirty_buffer(b, wc->write_list);
1715         return IT_NEXT;
1716 }
1717
1718 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
1719                                         struct list_head *write_list)
1720 {
1721         struct write_context wc = {.no_wait = no_wait, .write_list = write_list};
1722
1723         __move_clean_buffers(c);
1724         cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc);
1725 }
1726
1727 /*
1728  * Check if we're over watermark.
1729  * If we are over threshold_buffers, start freeing buffers.
1730  * If we're over "limit_buffers", block until we get under the limit.
1731  */
1732 static void __check_watermark(struct dm_bufio_client *c,
1733                               struct list_head *write_list)
1734 {
1735         if (cache_count(&c->cache, LIST_DIRTY) >
1736             cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO)
1737                 __write_dirty_buffers_async(c, 1, write_list);
1738 }
1739
1740 /*
1741  *--------------------------------------------------------------
1742  * Getting a buffer
1743  *--------------------------------------------------------------
1744  */
1745
1746 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b)
1747 {
1748         /*
1749          * Relying on waitqueue_active() is racey, but we sleep
1750          * with schedule_timeout anyway.
1751          */
1752         if (cache_put(&c->cache, b) &&
1753             unlikely(waitqueue_active(&c->free_buffer_wait)))
1754                 wake_up(&c->free_buffer_wait);
1755 }
1756
1757 /*
1758  * This assumes you have already checked the cache to see if the buffer
1759  * is already present (it will recheck after dropping the lock for allocation).
1760  */
1761 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1762                                      enum new_flag nf, int *need_submit,
1763                                      struct list_head *write_list)
1764 {
1765         struct dm_buffer *b, *new_b = NULL;
1766
1767         *need_submit = 0;
1768
1769         /* This can't be called with NF_GET */
1770         if (WARN_ON_ONCE(nf == NF_GET))
1771                 return NULL;
1772
1773         new_b = __alloc_buffer_wait(c, nf);
1774         if (!new_b)
1775                 return NULL;
1776
1777         /*
1778          * We've had a period where the mutex was unlocked, so need to
1779          * recheck the buffer tree.
1780          */
1781         b = cache_get(&c->cache, block);
1782         if (b) {
1783                 __free_buffer_wake(new_b);
1784                 goto found_buffer;
1785         }
1786
1787         __check_watermark(c, write_list);
1788
1789         b = new_b;
1790         atomic_set(&b->hold_count, 1);
1791         WRITE_ONCE(b->last_accessed, jiffies);
1792         b->block = block;
1793         b->read_error = 0;
1794         b->write_error = 0;
1795         b->list_mode = LIST_CLEAN;
1796
1797         if (nf == NF_FRESH)
1798                 b->state = 0;
1799         else {
1800                 b->state = 1 << B_READING;
1801                 *need_submit = 1;
1802         }
1803
1804         /*
1805          * We mustn't insert into the cache until the B_READING state
1806          * is set.  Otherwise another thread could get it and use
1807          * it before it had been read.
1808          */
1809         cache_insert(&c->cache, b);
1810
1811         return b;
1812
1813 found_buffer:
1814         if (nf == NF_PREFETCH) {
1815                 cache_put_and_wake(c, b);
1816                 return NULL;
1817         }
1818
1819         /*
1820          * Note: it is essential that we don't wait for the buffer to be
1821          * read if dm_bufio_get function is used. Both dm_bufio_get and
1822          * dm_bufio_prefetch can be used in the driver request routine.
1823          * If the user called both dm_bufio_prefetch and dm_bufio_get on
1824          * the same buffer, it would deadlock if we waited.
1825          */
1826         if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1827                 cache_put_and_wake(c, b);
1828                 return NULL;
1829         }
1830
1831         return b;
1832 }
1833
1834 /*
1835  * The endio routine for reading: set the error, clear the bit and wake up
1836  * anyone waiting on the buffer.
1837  */
1838 static void read_endio(struct dm_buffer *b, blk_status_t status)
1839 {
1840         b->read_error = status;
1841
1842         BUG_ON(!test_bit(B_READING, &b->state));
1843
1844         smp_mb__before_atomic();
1845         clear_bit(B_READING, &b->state);
1846         smp_mb__after_atomic();
1847
1848         wake_up_bit(&b->state, B_READING);
1849 }
1850
1851 /*
1852  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1853  * functions is similar except that dm_bufio_new doesn't read the
1854  * buffer from the disk (assuming that the caller overwrites all the data
1855  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1856  */
1857 static void *new_read(struct dm_bufio_client *c, sector_t block,
1858                       enum new_flag nf, struct dm_buffer **bp,
1859                       unsigned short ioprio)
1860 {
1861         int need_submit = 0;
1862         struct dm_buffer *b;
1863
1864         LIST_HEAD(write_list);
1865
1866         *bp = NULL;
1867
1868         /*
1869          * Fast path, hopefully the block is already in the cache.  No need
1870          * to get the client lock for this.
1871          */
1872         b = cache_get(&c->cache, block);
1873         if (b) {
1874                 if (nf == NF_PREFETCH) {
1875                         cache_put_and_wake(c, b);
1876                         return NULL;
1877                 }
1878
1879                 /*
1880                  * Note: it is essential that we don't wait for the buffer to be
1881                  * read if dm_bufio_get function is used. Both dm_bufio_get and
1882                  * dm_bufio_prefetch can be used in the driver request routine.
1883                  * If the user called both dm_bufio_prefetch and dm_bufio_get on
1884                  * the same buffer, it would deadlock if we waited.
1885                  */
1886                 if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1887                         cache_put_and_wake(c, b);
1888                         return NULL;
1889                 }
1890         }
1891
1892         if (!b) {
1893                 if (nf == NF_GET)
1894                         return NULL;
1895
1896                 dm_bufio_lock(c);
1897                 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1898                 dm_bufio_unlock(c);
1899         }
1900
1901 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1902         if (b && (atomic_read(&b->hold_count) == 1))
1903                 buffer_record_stack(b);
1904 #endif
1905
1906         __flush_write_list(&write_list);
1907
1908         if (!b)
1909                 return NULL;
1910
1911         if (need_submit)
1912                 submit_io(b, REQ_OP_READ, ioprio, read_endio);
1913
1914         if (nf != NF_GET)       /* we already tested this condition above */
1915                 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1916
1917         if (b->read_error) {
1918                 int error = blk_status_to_errno(b->read_error);
1919
1920                 dm_bufio_release(b);
1921
1922                 return ERR_PTR(error);
1923         }
1924
1925         *bp = b;
1926
1927         return b->data;
1928 }
1929
1930 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1931                    struct dm_buffer **bp)
1932 {
1933         return new_read(c, block, NF_GET, bp, IOPRIO_DEFAULT);
1934 }
1935 EXPORT_SYMBOL_GPL(dm_bufio_get);
1936
1937 static void *__dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1938                         struct dm_buffer **bp, unsigned short ioprio)
1939 {
1940         if (WARN_ON_ONCE(dm_bufio_in_request()))
1941                 return ERR_PTR(-EINVAL);
1942
1943         return new_read(c, block, NF_READ, bp, ioprio);
1944 }
1945
1946 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1947                     struct dm_buffer **bp)
1948 {
1949         return __dm_bufio_read(c, block, bp, IOPRIO_DEFAULT);
1950 }
1951 EXPORT_SYMBOL_GPL(dm_bufio_read);
1952
1953 void *dm_bufio_read_with_ioprio(struct dm_bufio_client *c, sector_t block,
1954                                 struct dm_buffer **bp, unsigned short ioprio)
1955 {
1956         return __dm_bufio_read(c, block, bp, ioprio);
1957 }
1958 EXPORT_SYMBOL_GPL(dm_bufio_read_with_ioprio);
1959
1960 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1961                    struct dm_buffer **bp)
1962 {
1963         if (WARN_ON_ONCE(dm_bufio_in_request()))
1964                 return ERR_PTR(-EINVAL);
1965
1966         return new_read(c, block, NF_FRESH, bp, IOPRIO_DEFAULT);
1967 }
1968 EXPORT_SYMBOL_GPL(dm_bufio_new);
1969
1970 static void __dm_bufio_prefetch(struct dm_bufio_client *c,
1971                         sector_t block, unsigned int n_blocks,
1972                         unsigned short ioprio)
1973 {
1974         struct blk_plug plug;
1975
1976         LIST_HEAD(write_list);
1977
1978         if (WARN_ON_ONCE(dm_bufio_in_request()))
1979                 return; /* should never happen */
1980
1981         blk_start_plug(&plug);
1982
1983         for (; n_blocks--; block++) {
1984                 int need_submit;
1985                 struct dm_buffer *b;
1986
1987                 b = cache_get(&c->cache, block);
1988                 if (b) {
1989                         /* already in cache */
1990                         cache_put_and_wake(c, b);
1991                         continue;
1992                 }
1993
1994                 dm_bufio_lock(c);
1995                 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1996                                 &write_list);
1997                 if (unlikely(!list_empty(&write_list))) {
1998                         dm_bufio_unlock(c);
1999                         blk_finish_plug(&plug);
2000                         __flush_write_list(&write_list);
2001                         blk_start_plug(&plug);
2002                         dm_bufio_lock(c);
2003                 }
2004                 if (unlikely(b != NULL)) {
2005                         dm_bufio_unlock(c);
2006
2007                         if (need_submit)
2008                                 submit_io(b, REQ_OP_READ, ioprio, read_endio);
2009                         dm_bufio_release(b);
2010
2011                         cond_resched();
2012
2013                         if (!n_blocks)
2014                                 goto flush_plug;
2015                         dm_bufio_lock(c);
2016                 }
2017                 dm_bufio_unlock(c);
2018         }
2019
2020 flush_plug:
2021         blk_finish_plug(&plug);
2022 }
2023
2024 void dm_bufio_prefetch(struct dm_bufio_client *c, sector_t block, unsigned int n_blocks)
2025 {
2026         return __dm_bufio_prefetch(c, block, n_blocks, IOPRIO_DEFAULT);
2027 }
2028 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
2029
2030 void dm_bufio_prefetch_with_ioprio(struct dm_bufio_client *c, sector_t block,
2031                                 unsigned int n_blocks, unsigned short ioprio)
2032 {
2033         return __dm_bufio_prefetch(c, block, n_blocks, ioprio);
2034 }
2035 EXPORT_SYMBOL_GPL(dm_bufio_prefetch_with_ioprio);
2036
2037 void dm_bufio_release(struct dm_buffer *b)
2038 {
2039         struct dm_bufio_client *c = b->c;
2040
2041         /*
2042          * If there were errors on the buffer, and the buffer is not
2043          * to be written, free the buffer. There is no point in caching
2044          * invalid buffer.
2045          */
2046         if ((b->read_error || b->write_error) &&
2047             !test_bit_acquire(B_READING, &b->state) &&
2048             !test_bit(B_WRITING, &b->state) &&
2049             !test_bit(B_DIRTY, &b->state)) {
2050                 dm_bufio_lock(c);
2051
2052                 /* cache remove can fail if there are other holders */
2053                 if (cache_remove(&c->cache, b)) {
2054                         __free_buffer_wake(b);
2055                         dm_bufio_unlock(c);
2056                         return;
2057                 }
2058
2059                 dm_bufio_unlock(c);
2060         }
2061
2062         cache_put_and_wake(c, b);
2063 }
2064 EXPORT_SYMBOL_GPL(dm_bufio_release);
2065
2066 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
2067                                         unsigned int start, unsigned int end)
2068 {
2069         struct dm_bufio_client *c = b->c;
2070
2071         BUG_ON(start >= end);
2072         BUG_ON(end > b->c->block_size);
2073
2074         dm_bufio_lock(c);
2075
2076         BUG_ON(test_bit(B_READING, &b->state));
2077
2078         if (!test_and_set_bit(B_DIRTY, &b->state)) {
2079                 b->dirty_start = start;
2080                 b->dirty_end = end;
2081                 cache_mark(&c->cache, b, LIST_DIRTY);
2082         } else {
2083                 if (start < b->dirty_start)
2084                         b->dirty_start = start;
2085                 if (end > b->dirty_end)
2086                         b->dirty_end = end;
2087         }
2088
2089         dm_bufio_unlock(c);
2090 }
2091 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
2092
2093 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
2094 {
2095         dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
2096 }
2097 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
2098
2099 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
2100 {
2101         LIST_HEAD(write_list);
2102
2103         if (WARN_ON_ONCE(dm_bufio_in_request()))
2104                 return; /* should never happen */
2105
2106         dm_bufio_lock(c);
2107         __write_dirty_buffers_async(c, 0, &write_list);
2108         dm_bufio_unlock(c);
2109         __flush_write_list(&write_list);
2110 }
2111 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
2112
2113 /*
2114  * For performance, it is essential that the buffers are written asynchronously
2115  * and simultaneously (so that the block layer can merge the writes) and then
2116  * waited upon.
2117  *
2118  * Finally, we flush hardware disk cache.
2119  */
2120 static bool is_writing(struct lru_entry *e, void *context)
2121 {
2122         struct dm_buffer *b = le_to_buffer(e);
2123
2124         return test_bit(B_WRITING, &b->state);
2125 }
2126
2127 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
2128 {
2129         int a, f;
2130         unsigned long nr_buffers;
2131         struct lru_entry *e;
2132         struct lru_iter it;
2133
2134         LIST_HEAD(write_list);
2135
2136         dm_bufio_lock(c);
2137         __write_dirty_buffers_async(c, 0, &write_list);
2138         dm_bufio_unlock(c);
2139         __flush_write_list(&write_list);
2140         dm_bufio_lock(c);
2141
2142         nr_buffers = cache_count(&c->cache, LIST_DIRTY);
2143         lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it);
2144         while ((e = lru_iter_next(&it, is_writing, c))) {
2145                 struct dm_buffer *b = le_to_buffer(e);
2146                 __cache_inc_buffer(b);
2147
2148                 BUG_ON(test_bit(B_READING, &b->state));
2149
2150                 if (nr_buffers) {
2151                         nr_buffers--;
2152                         dm_bufio_unlock(c);
2153                         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2154                         dm_bufio_lock(c);
2155                 } else {
2156                         wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2157                 }
2158
2159                 if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state))
2160                         cache_mark(&c->cache, b, LIST_CLEAN);
2161
2162                 cache_put_and_wake(c, b);
2163
2164                 cond_resched();
2165         }
2166         lru_iter_end(&it);
2167
2168         wake_up(&c->free_buffer_wait);
2169         dm_bufio_unlock(c);
2170
2171         a = xchg(&c->async_write_error, 0);
2172         f = dm_bufio_issue_flush(c);
2173         if (a)
2174                 return a;
2175
2176         return f;
2177 }
2178 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
2179
2180 /*
2181  * Use dm-io to send an empty barrier to flush the device.
2182  */
2183 int dm_bufio_issue_flush(struct dm_bufio_client *c)
2184 {
2185         struct dm_io_request io_req = {
2186                 .bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
2187                 .mem.type = DM_IO_KMEM,
2188                 .mem.ptr.addr = NULL,
2189                 .client = c->dm_io,
2190         };
2191         struct dm_io_region io_reg = {
2192                 .bdev = c->bdev,
2193                 .sector = 0,
2194                 .count = 0,
2195         };
2196
2197         if (WARN_ON_ONCE(dm_bufio_in_request()))
2198                 return -EINVAL;
2199
2200         return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2201 }
2202 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
2203
2204 /*
2205  * Use dm-io to send a discard request to flush the device.
2206  */
2207 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
2208 {
2209         struct dm_io_request io_req = {
2210                 .bi_opf = REQ_OP_DISCARD | REQ_SYNC,
2211                 .mem.type = DM_IO_KMEM,
2212                 .mem.ptr.addr = NULL,
2213                 .client = c->dm_io,
2214         };
2215         struct dm_io_region io_reg = {
2216                 .bdev = c->bdev,
2217                 .sector = block_to_sector(c, block),
2218                 .count = block_to_sector(c, count),
2219         };
2220
2221         if (WARN_ON_ONCE(dm_bufio_in_request()))
2222                 return -EINVAL; /* discards are optional */
2223
2224         return dm_io(&io_req, 1, &io_reg, NULL, IOPRIO_DEFAULT);
2225 }
2226 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
2227
2228 static bool forget_buffer(struct dm_bufio_client *c, sector_t block)
2229 {
2230         struct dm_buffer *b;
2231
2232         b = cache_get(&c->cache, block);
2233         if (b) {
2234                 if (likely(!smp_load_acquire(&b->state))) {
2235                         if (cache_remove(&c->cache, b))
2236                                 __free_buffer_wake(b);
2237                         else
2238                                 cache_put_and_wake(c, b);
2239                 } else {
2240                         cache_put_and_wake(c, b);
2241                 }
2242         }
2243
2244         return b ? true : false;
2245 }
2246
2247 /*
2248  * Free the given buffer.
2249  *
2250  * This is just a hint, if the buffer is in use or dirty, this function
2251  * does nothing.
2252  */
2253 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
2254 {
2255         dm_bufio_lock(c);
2256         forget_buffer(c, block);
2257         dm_bufio_unlock(c);
2258 }
2259 EXPORT_SYMBOL_GPL(dm_bufio_forget);
2260
2261 static enum evict_result idle(struct dm_buffer *b, void *context)
2262 {
2263         return b->state ? ER_DONT_EVICT : ER_EVICT;
2264 }
2265
2266 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
2267 {
2268         dm_bufio_lock(c);
2269         cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake);
2270         dm_bufio_unlock(c);
2271 }
2272 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
2273
2274 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
2275 {
2276         c->minimum_buffers = n;
2277 }
2278 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
2279
2280 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
2281 {
2282         return c->block_size;
2283 }
2284 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
2285
2286 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
2287 {
2288         sector_t s = bdev_nr_sectors(c->bdev);
2289
2290         if (s >= c->start)
2291                 s -= c->start;
2292         else
2293                 s = 0;
2294         if (likely(c->sectors_per_block_bits >= 0))
2295                 s >>= c->sectors_per_block_bits;
2296         else
2297                 sector_div(s, c->block_size >> SECTOR_SHIFT);
2298         return s;
2299 }
2300 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
2301
2302 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
2303 {
2304         return c->dm_io;
2305 }
2306 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
2307
2308 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
2309 {
2310         return b->block;
2311 }
2312 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
2313
2314 void *dm_bufio_get_block_data(struct dm_buffer *b)
2315 {
2316         return b->data;
2317 }
2318 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
2319
2320 void *dm_bufio_get_aux_data(struct dm_buffer *b)
2321 {
2322         return b + 1;
2323 }
2324 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
2325
2326 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
2327 {
2328         return b->c;
2329 }
2330 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
2331
2332 static enum it_action warn_leak(struct dm_buffer *b, void *context)
2333 {
2334         bool *warned = context;
2335
2336         WARN_ON(!(*warned));
2337         *warned = true;
2338         DMERR("leaked buffer %llx, hold count %u, list %d",
2339               (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode);
2340 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2341         stack_trace_print(b->stack_entries, b->stack_len, 1);
2342         /* mark unclaimed to avoid WARN_ON at end of drop_buffers() */
2343         atomic_set(&b->hold_count, 0);
2344 #endif
2345         return IT_NEXT;
2346 }
2347
2348 static void drop_buffers(struct dm_bufio_client *c)
2349 {
2350         int i;
2351         struct dm_buffer *b;
2352
2353         if (WARN_ON(dm_bufio_in_request()))
2354                 return; /* should never happen */
2355
2356         /*
2357          * An optimization so that the buffers are not written one-by-one.
2358          */
2359         dm_bufio_write_dirty_buffers_async(c);
2360
2361         dm_bufio_lock(c);
2362
2363         while ((b = __get_unclaimed_buffer(c)))
2364                 __free_buffer_wake(b);
2365
2366         for (i = 0; i < LIST_SIZE; i++) {
2367                 bool warned = false;
2368
2369                 cache_iterate(&c->cache, i, warn_leak, &warned);
2370         }
2371
2372 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2373         while ((b = __get_unclaimed_buffer(c)))
2374                 __free_buffer_wake(b);
2375 #endif
2376
2377         for (i = 0; i < LIST_SIZE; i++)
2378                 WARN_ON(cache_count(&c->cache, i));
2379
2380         dm_bufio_unlock(c);
2381 }
2382
2383 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
2384 {
2385         unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
2386
2387         if (likely(c->sectors_per_block_bits >= 0))
2388                 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
2389         else
2390                 retain_bytes /= c->block_size;
2391
2392         return retain_bytes;
2393 }
2394
2395 static void __scan(struct dm_bufio_client *c)
2396 {
2397         int l;
2398         struct dm_buffer *b;
2399         unsigned long freed = 0;
2400         unsigned long retain_target = get_retain_buffers(c);
2401         unsigned long count = cache_total(&c->cache);
2402
2403         for (l = 0; l < LIST_SIZE; l++) {
2404                 while (true) {
2405                         if (count - freed <= retain_target)
2406                                 atomic_long_set(&c->need_shrink, 0);
2407                         if (!atomic_long_read(&c->need_shrink))
2408                                 break;
2409
2410                         b = cache_evict(&c->cache, l,
2411                                         l == LIST_CLEAN ? is_clean : is_dirty, c);
2412                         if (!b)
2413                                 break;
2414
2415                         __make_buffer_clean(b);
2416                         __free_buffer_wake(b);
2417
2418                         atomic_long_dec(&c->need_shrink);
2419                         freed++;
2420                         cond_resched();
2421                 }
2422         }
2423 }
2424
2425 static void shrink_work(struct work_struct *w)
2426 {
2427         struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
2428
2429         dm_bufio_lock(c);
2430         __scan(c);
2431         dm_bufio_unlock(c);
2432 }
2433
2434 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
2435 {
2436         struct dm_bufio_client *c;
2437
2438         c = shrink->private_data;
2439         atomic_long_add(sc->nr_to_scan, &c->need_shrink);
2440         queue_work(dm_bufio_wq, &c->shrink_work);
2441
2442         return sc->nr_to_scan;
2443 }
2444
2445 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
2446 {
2447         struct dm_bufio_client *c = shrink->private_data;
2448         unsigned long count = cache_total(&c->cache);
2449         unsigned long retain_target = get_retain_buffers(c);
2450         unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
2451
2452         if (unlikely(count < retain_target))
2453                 count = 0;
2454         else
2455                 count -= retain_target;
2456
2457         if (unlikely(count < queued_for_cleanup))
2458                 count = 0;
2459         else
2460                 count -= queued_for_cleanup;
2461
2462         return count;
2463 }
2464
2465 /*
2466  * Create the buffering interface
2467  */
2468 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
2469                                                unsigned int reserved_buffers, unsigned int aux_size,
2470                                                void (*alloc_callback)(struct dm_buffer *),
2471                                                void (*write_callback)(struct dm_buffer *),
2472                                                unsigned int flags)
2473 {
2474         int r;
2475         unsigned int num_locks;
2476         struct dm_bufio_client *c;
2477         char slab_name[27];
2478
2479         if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
2480                 DMERR("%s: block size not specified or is not multiple of 512b", __func__);
2481                 r = -EINVAL;
2482                 goto bad_client;
2483         }
2484
2485         num_locks = dm_num_hash_locks();
2486         c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL);
2487         if (!c) {
2488                 r = -ENOMEM;
2489                 goto bad_client;
2490         }
2491         cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0);
2492
2493         c->bdev = bdev;
2494         c->block_size = block_size;
2495         if (is_power_of_2(block_size))
2496                 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
2497         else
2498                 c->sectors_per_block_bits = -1;
2499
2500         c->alloc_callback = alloc_callback;
2501         c->write_callback = write_callback;
2502
2503         if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
2504                 c->no_sleep = true;
2505                 static_branch_inc(&no_sleep_enabled);
2506         }
2507
2508         mutex_init(&c->lock);
2509         spin_lock_init(&c->spinlock);
2510         INIT_LIST_HEAD(&c->reserved_buffers);
2511         c->need_reserved_buffers = reserved_buffers;
2512
2513         dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
2514
2515         init_waitqueue_head(&c->free_buffer_wait);
2516         c->async_write_error = 0;
2517
2518         c->dm_io = dm_io_client_create();
2519         if (IS_ERR(c->dm_io)) {
2520                 r = PTR_ERR(c->dm_io);
2521                 goto bad_dm_io;
2522         }
2523
2524         if (block_size <= KMALLOC_MAX_SIZE &&
2525             (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
2526                 unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
2527
2528                 snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u", block_size);
2529                 c->slab_cache = kmem_cache_create(slab_name, block_size, align,
2530                                                   SLAB_RECLAIM_ACCOUNT, NULL);
2531                 if (!c->slab_cache) {
2532                         r = -ENOMEM;
2533                         goto bad;
2534                 }
2535         }
2536         if (aux_size)
2537                 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u", aux_size);
2538         else
2539                 snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer");
2540         c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
2541                                            0, SLAB_RECLAIM_ACCOUNT, NULL);
2542         if (!c->slab_buffer) {
2543                 r = -ENOMEM;
2544                 goto bad;
2545         }
2546
2547         while (c->need_reserved_buffers) {
2548                 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
2549
2550                 if (!b) {
2551                         r = -ENOMEM;
2552                         goto bad;
2553                 }
2554                 __free_buffer_wake(b);
2555         }
2556
2557         INIT_WORK(&c->shrink_work, shrink_work);
2558         atomic_long_set(&c->need_shrink, 0);
2559
2560         c->shrinker = shrinker_alloc(0, "dm-bufio:(%u:%u)",
2561                                      MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2562         if (!c->shrinker) {
2563                 r = -ENOMEM;
2564                 goto bad;
2565         }
2566
2567         c->shrinker->count_objects = dm_bufio_shrink_count;
2568         c->shrinker->scan_objects = dm_bufio_shrink_scan;
2569         c->shrinker->seeks = 1;
2570         c->shrinker->batch = 0;
2571         c->shrinker->private_data = c;
2572
2573         shrinker_register(c->shrinker);
2574
2575         mutex_lock(&dm_bufio_clients_lock);
2576         dm_bufio_client_count++;
2577         list_add(&c->client_list, &dm_bufio_all_clients);
2578         __cache_size_refresh();
2579         mutex_unlock(&dm_bufio_clients_lock);
2580
2581         return c;
2582
2583 bad:
2584         while (!list_empty(&c->reserved_buffers)) {
2585                 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2586
2587                 list_del(&b->lru.list);
2588                 free_buffer(b);
2589         }
2590         kmem_cache_destroy(c->slab_cache);
2591         kmem_cache_destroy(c->slab_buffer);
2592         dm_io_client_destroy(c->dm_io);
2593 bad_dm_io:
2594         mutex_destroy(&c->lock);
2595         if (c->no_sleep)
2596                 static_branch_dec(&no_sleep_enabled);
2597         kfree(c);
2598 bad_client:
2599         return ERR_PTR(r);
2600 }
2601 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
2602
2603 /*
2604  * Free the buffering interface.
2605  * It is required that there are no references on any buffers.
2606  */
2607 void dm_bufio_client_destroy(struct dm_bufio_client *c)
2608 {
2609         unsigned int i;
2610
2611         drop_buffers(c);
2612
2613         shrinker_free(c->shrinker);
2614         flush_work(&c->shrink_work);
2615
2616         mutex_lock(&dm_bufio_clients_lock);
2617
2618         list_del(&c->client_list);
2619         dm_bufio_client_count--;
2620         __cache_size_refresh();
2621
2622         mutex_unlock(&dm_bufio_clients_lock);
2623
2624         WARN_ON(c->need_reserved_buffers);
2625
2626         while (!list_empty(&c->reserved_buffers)) {
2627                 struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2628
2629                 list_del(&b->lru.list);
2630                 free_buffer(b);
2631         }
2632
2633         for (i = 0; i < LIST_SIZE; i++)
2634                 if (cache_count(&c->cache, i))
2635                         DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i));
2636
2637         for (i = 0; i < LIST_SIZE; i++)
2638                 WARN_ON(cache_count(&c->cache, i));
2639
2640         cache_destroy(&c->cache);
2641         kmem_cache_destroy(c->slab_cache);
2642         kmem_cache_destroy(c->slab_buffer);
2643         dm_io_client_destroy(c->dm_io);
2644         mutex_destroy(&c->lock);
2645         if (c->no_sleep)
2646                 static_branch_dec(&no_sleep_enabled);
2647         kfree(c);
2648 }
2649 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
2650
2651 void dm_bufio_client_reset(struct dm_bufio_client *c)
2652 {
2653         drop_buffers(c);
2654         flush_work(&c->shrink_work);
2655 }
2656 EXPORT_SYMBOL_GPL(dm_bufio_client_reset);
2657
2658 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
2659 {
2660         c->start = start;
2661 }
2662 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
2663
2664 /*--------------------------------------------------------------*/
2665
2666 static unsigned int get_max_age_hz(void)
2667 {
2668         unsigned int max_age = READ_ONCE(dm_bufio_max_age);
2669
2670         if (max_age > UINT_MAX / HZ)
2671                 max_age = UINT_MAX / HZ;
2672
2673         return max_age * HZ;
2674 }
2675
2676 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
2677 {
2678         return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz);
2679 }
2680
2681 struct evict_params {
2682         gfp_t gfp;
2683         unsigned long age_hz;
2684
2685         /*
2686          * This gets updated with the largest last_accessed (ie. most
2687          * recently used) of the evicted buffers.  It will not be reinitialised
2688          * by __evict_many(), so you can use it across multiple invocations.
2689          */
2690         unsigned long last_accessed;
2691 };
2692
2693 /*
2694  * We may not be able to evict this buffer if IO pending or the client
2695  * is still using it.
2696  *
2697  * And if GFP_NOFS is used, we must not do any I/O because we hold
2698  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
2699  * rerouted to different bufio client.
2700  */
2701 static enum evict_result select_for_evict(struct dm_buffer *b, void *context)
2702 {
2703         struct evict_params *params = context;
2704
2705         if (!(params->gfp & __GFP_FS) ||
2706             (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
2707                 if (test_bit_acquire(B_READING, &b->state) ||
2708                     test_bit(B_WRITING, &b->state) ||
2709                     test_bit(B_DIRTY, &b->state))
2710                         return ER_DONT_EVICT;
2711         }
2712
2713         return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP;
2714 }
2715
2716 static unsigned long __evict_many(struct dm_bufio_client *c,
2717                                   struct evict_params *params,
2718                                   int list_mode, unsigned long max_count)
2719 {
2720         unsigned long count;
2721         unsigned long last_accessed;
2722         struct dm_buffer *b;
2723
2724         for (count = 0; count < max_count; count++) {
2725                 b = cache_evict(&c->cache, list_mode, select_for_evict, params);
2726                 if (!b)
2727                         break;
2728
2729                 last_accessed = READ_ONCE(b->last_accessed);
2730                 if (time_after_eq(params->last_accessed, last_accessed))
2731                         params->last_accessed = last_accessed;
2732
2733                 __make_buffer_clean(b);
2734                 __free_buffer_wake(b);
2735
2736                 cond_resched();
2737         }
2738
2739         return count;
2740 }
2741
2742 static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
2743 {
2744         struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0};
2745         unsigned long retain = get_retain_buffers(c);
2746         unsigned long count;
2747         LIST_HEAD(write_list);
2748
2749         dm_bufio_lock(c);
2750
2751         __check_watermark(c, &write_list);
2752         if (unlikely(!list_empty(&write_list))) {
2753                 dm_bufio_unlock(c);
2754                 __flush_write_list(&write_list);
2755                 dm_bufio_lock(c);
2756         }
2757
2758         count = cache_total(&c->cache);
2759         if (count > retain)
2760                 __evict_many(c, &params, LIST_CLEAN, count - retain);
2761
2762         dm_bufio_unlock(c);
2763 }
2764
2765 static void cleanup_old_buffers(void)
2766 {
2767         unsigned long max_age_hz = get_max_age_hz();
2768         struct dm_bufio_client *c;
2769
2770         mutex_lock(&dm_bufio_clients_lock);
2771
2772         __cache_size_refresh();
2773
2774         list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2775                 evict_old_buffers(c, max_age_hz);
2776
2777         mutex_unlock(&dm_bufio_clients_lock);
2778 }
2779
2780 static void work_fn(struct work_struct *w)
2781 {
2782         cleanup_old_buffers();
2783
2784         queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2785                            DM_BUFIO_WORK_TIMER_SECS * HZ);
2786 }
2787
2788 /*--------------------------------------------------------------*/
2789
2790 /*
2791  * Global cleanup tries to evict the oldest buffers from across _all_
2792  * the clients.  It does this by repeatedly evicting a few buffers from
2793  * the client that holds the oldest buffer.  It's approximate, but hopefully
2794  * good enough.
2795  */
2796 static struct dm_bufio_client *__pop_client(void)
2797 {
2798         struct list_head *h;
2799
2800         if (list_empty(&dm_bufio_all_clients))
2801                 return NULL;
2802
2803         h = dm_bufio_all_clients.next;
2804         list_del(h);
2805         return container_of(h, struct dm_bufio_client, client_list);
2806 }
2807
2808 /*
2809  * Inserts the client in the global client list based on its
2810  * 'oldest_buffer' field.
2811  */
2812 static void __insert_client(struct dm_bufio_client *new_client)
2813 {
2814         struct dm_bufio_client *c;
2815         struct list_head *h = dm_bufio_all_clients.next;
2816
2817         while (h != &dm_bufio_all_clients) {
2818                 c = container_of(h, struct dm_bufio_client, client_list);
2819                 if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer))
2820                         break;
2821                 h = h->next;
2822         }
2823
2824         list_add_tail(&new_client->client_list, h);
2825 }
2826
2827 static unsigned long __evict_a_few(unsigned long nr_buffers)
2828 {
2829         unsigned long count;
2830         struct dm_bufio_client *c;
2831         struct evict_params params = {
2832                 .gfp = GFP_KERNEL,
2833                 .age_hz = 0,
2834                 /* set to jiffies in case there are no buffers in this client */
2835                 .last_accessed = jiffies
2836         };
2837
2838         c = __pop_client();
2839         if (!c)
2840                 return 0;
2841
2842         dm_bufio_lock(c);
2843         count = __evict_many(c, &params, LIST_CLEAN, nr_buffers);
2844         dm_bufio_unlock(c);
2845
2846         if (count)
2847                 c->oldest_buffer = params.last_accessed;
2848         __insert_client(c);
2849
2850         return count;
2851 }
2852
2853 static void check_watermarks(void)
2854 {
2855         LIST_HEAD(write_list);
2856         struct dm_bufio_client *c;
2857
2858         mutex_lock(&dm_bufio_clients_lock);
2859         list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
2860                 dm_bufio_lock(c);
2861                 __check_watermark(c, &write_list);
2862                 dm_bufio_unlock(c);
2863         }
2864         mutex_unlock(&dm_bufio_clients_lock);
2865
2866         __flush_write_list(&write_list);
2867 }
2868
2869 static void evict_old(void)
2870 {
2871         unsigned long threshold = dm_bufio_cache_size -
2872                 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
2873
2874         mutex_lock(&dm_bufio_clients_lock);
2875         while (dm_bufio_current_allocated > threshold) {
2876                 if (!__evict_a_few(64))
2877                         break;
2878                 cond_resched();
2879         }
2880         mutex_unlock(&dm_bufio_clients_lock);
2881 }
2882
2883 static void do_global_cleanup(struct work_struct *w)
2884 {
2885         check_watermarks();
2886         evict_old();
2887 }
2888
2889 /*
2890  *--------------------------------------------------------------
2891  * Module setup
2892  *--------------------------------------------------------------
2893  */
2894
2895 /*
2896  * This is called only once for the whole dm_bufio module.
2897  * It initializes memory limit.
2898  */
2899 static int __init dm_bufio_init(void)
2900 {
2901         __u64 mem;
2902
2903         dm_bufio_allocated_kmem_cache = 0;
2904         dm_bufio_allocated_get_free_pages = 0;
2905         dm_bufio_allocated_vmalloc = 0;
2906         dm_bufio_current_allocated = 0;
2907
2908         mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2909                                DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2910
2911         if (mem > ULONG_MAX)
2912                 mem = ULONG_MAX;
2913
2914 #ifdef CONFIG_MMU
2915         if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2916                 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2917 #endif
2918
2919         dm_bufio_default_cache_size = mem;
2920
2921         mutex_lock(&dm_bufio_clients_lock);
2922         __cache_size_refresh();
2923         mutex_unlock(&dm_bufio_clients_lock);
2924
2925         dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2926         if (!dm_bufio_wq)
2927                 return -ENOMEM;
2928
2929         INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2930         INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2931         queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2932                            DM_BUFIO_WORK_TIMER_SECS * HZ);
2933
2934         return 0;
2935 }
2936
2937 /*
2938  * This is called once when unloading the dm_bufio module.
2939  */
2940 static void __exit dm_bufio_exit(void)
2941 {
2942         int bug = 0;
2943
2944         cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2945         destroy_workqueue(dm_bufio_wq);
2946
2947         if (dm_bufio_client_count) {
2948                 DMCRIT("%s: dm_bufio_client_count leaked: %d",
2949                         __func__, dm_bufio_client_count);
2950                 bug = 1;
2951         }
2952
2953         if (dm_bufio_current_allocated) {
2954                 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2955                         __func__, dm_bufio_current_allocated);
2956                 bug = 1;
2957         }
2958
2959         if (dm_bufio_allocated_get_free_pages) {
2960                 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2961                        __func__, dm_bufio_allocated_get_free_pages);
2962                 bug = 1;
2963         }
2964
2965         if (dm_bufio_allocated_vmalloc) {
2966                 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2967                        __func__, dm_bufio_allocated_vmalloc);
2968                 bug = 1;
2969         }
2970
2971         WARN_ON(bug); /* leaks are not worth crashing the system */
2972 }
2973
2974 module_init(dm_bufio_init)
2975 module_exit(dm_bufio_exit)
2976
2977 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644);
2978 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2979
2980 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644);
2981 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2982
2983 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644);
2984 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2985
2986 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644);
2987 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2988
2989 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444);
2990 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2991
2992 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444);
2993 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2994
2995 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444);
2996 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2997
2998 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444);
2999 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
3000
3001 MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>");
3002 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
3003 MODULE_LICENSE("GPL");