Merge branches 'pm-cpuidle' and 'pm-devfreq'
[linux-2.6-microblaze.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35
36 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
37
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
41
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50
51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
52
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65         return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67
68 static inline int ceiling_fp(int32_t x)
69 {
70         int mask, ret;
71
72         ret = fp_toint(x);
73         mask = (1 << FRAC_BITS) - 1;
74         if (x & mask)
75                 ret += 1;
76         return ret;
77 }
78
79 static inline int32_t percent_fp(int percent)
80 {
81         return div_fp(percent, 100);
82 }
83
84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86         return (x * y) >> EXT_FRAC_BITS;
87 }
88
89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91         return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93
94 static inline int32_t percent_ext_fp(int percent)
95 {
96         return div_ext_fp(percent, 100);
97 }
98
99 /**
100  * struct sample -      Store performance sample
101  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
102  *                      performance during last sample period
103  * @busy_scaled:        Scaled busy value which is used to calculate next
104  *                      P state. This can be different than core_avg_perf
105  *                      to account for cpu idle period
106  * @aperf:              Difference of actual performance frequency clock count
107  *                      read from APERF MSR between last and current sample
108  * @mperf:              Difference of maximum performance frequency clock count
109  *                      read from MPERF MSR between last and current sample
110  * @tsc:                Difference of time stamp counter between last and
111  *                      current sample
112  * @time:               Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118         int32_t core_avg_perf;
119         int32_t busy_scaled;
120         u64 aperf;
121         u64 mperf;
122         u64 tsc;
123         u64 time;
124 };
125
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:     Current requested P state
129  * @min_pstate:         Min P state possible for this platform
130  * @max_pstate:         Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *                      This can be higher than the max_pstate which can
133  *                      be limited by platform thermal design power limits
134  * @scaling:            Scaling factor to  convert frequency to cpufreq
135  *                      frequency units
136  * @turbo_pstate:       Max Turbo P state possible for this platform
137  * @max_freq:           @max_pstate frequency in cpufreq units
138  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143         int     current_pstate;
144         int     min_pstate;
145         int     max_pstate;
146         int     max_pstate_physical;
147         int     scaling;
148         int     turbo_pstate;
149         unsigned int max_freq;
150         unsigned int turbo_freq;
151 };
152
153 /**
154  * struct vid_data -    Stores voltage information data
155  * @min:                VID data for this platform corresponding to
156  *                      the lowest P state
157  * @max:                VID data corresponding to the highest P State.
158  * @turbo:              VID data for turbo P state
159  * @ratio:              Ratio of (vid max - vid min) /
160  *                      (max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167         int min;
168         int max;
169         int turbo;
170         int32_t ratio;
171 };
172
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:           Whether or not to use turbo P-states.
176  * @turbo_disabled:     Whether or not turbo P-states are available at all,
177  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
178  *                      not the maximum reported turbo P-state is different from
179  *                      the maximum reported non-turbo one.
180  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
181  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
182  *                      P-state capacity.
183  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
184  *                      P-state capacity.
185  */
186 struct global_params {
187         bool no_turbo;
188         bool turbo_disabled;
189         bool turbo_disabled_mf;
190         int max_perf_pct;
191         int min_perf_pct;
192 };
193
194 /**
195  * struct cpudata -     Per CPU instance data storage
196  * @cpu:                CPU number for this instance data
197  * @policy:             CPUFreq policy value
198  * @update_util:        CPUFreq utility callback information
199  * @update_util_set:    CPUFreq utility callback is set
200  * @iowait_boost:       iowait-related boost fraction
201  * @last_update:        Time of the last update.
202  * @pstate:             Stores P state limits for this CPU
203  * @vid:                Stores VID limits for this CPU
204  * @last_sample_time:   Last Sample time
205  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
206  * @prev_aperf:         Last APERF value read from APERF MSR
207  * @prev_mperf:         Last MPERF value read from MPERF MSR
208  * @prev_tsc:           Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *                      current sample
211  * @sample:             Storage for storing last Sample data
212  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
215  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:      Last saved HWP energy performance preference
217  *                      (EPP) or energy performance bias (EPB),
218  *                      when policy switched to performance
219  * @epp_policy:         Last saved policy used to set EPP/EPB
220  * @epp_default:        Power on default HWP energy performance
221  *                      preference/bias
222  * @epp_cached          Cached HWP energy-performance preference value
223  * @hwp_req_cached:     Cached value of the last HWP Request MSR
224  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
225  * @last_io_update:     Last time when IO wake flag was set
226  * @sched_flags:        Store scheduler flags for possible cross CPU update
227  * @hwp_boost_min:      Last HWP boosted min performance
228  * @suspended:          Whether or not the driver has been suspended.
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233         int cpu;
234
235         unsigned int policy;
236         struct update_util_data update_util;
237         bool   update_util_set;
238
239         struct pstate_data pstate;
240         struct vid_data vid;
241
242         u64     last_update;
243         u64     last_sample_time;
244         u64     aperf_mperf_shift;
245         u64     prev_aperf;
246         u64     prev_mperf;
247         u64     prev_tsc;
248         u64     prev_cummulative_iowait;
249         struct sample sample;
250         int32_t min_perf_ratio;
251         int32_t max_perf_ratio;
252 #ifdef CONFIG_ACPI
253         struct acpi_processor_performance acpi_perf_data;
254         bool valid_pss_table;
255 #endif
256         unsigned int iowait_boost;
257         s16 epp_powersave;
258         s16 epp_policy;
259         s16 epp_default;
260         s16 epp_cached;
261         u64 hwp_req_cached;
262         u64 hwp_cap_cached;
263         u64 last_io_update;
264         unsigned int sched_flags;
265         u32 hwp_boost_min;
266         bool suspended;
267 };
268
269 static struct cpudata **all_cpu_data;
270
271 /**
272  * struct pstate_funcs - Per CPU model specific callbacks
273  * @get_max:            Callback to get maximum non turbo effective P state
274  * @get_max_physical:   Callback to get maximum non turbo physical P state
275  * @get_min:            Callback to get minimum P state
276  * @get_turbo:          Callback to get turbo P state
277  * @get_scaling:        Callback to get frequency scaling factor
278  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
279  * @get_val:            Callback to convert P state to actual MSR write value
280  * @get_vid:            Callback to get VID data for Atom platforms
281  *
282  * Core and Atom CPU models have different way to get P State limits. This
283  * structure is used to store those callbacks.
284  */
285 struct pstate_funcs {
286         int (*get_max)(void);
287         int (*get_max_physical)(void);
288         int (*get_min)(void);
289         int (*get_turbo)(void);
290         int (*get_scaling)(void);
291         int (*get_aperf_mperf_shift)(void);
292         u64 (*get_val)(struct cpudata*, int pstate);
293         void (*get_vid)(struct cpudata *);
294 };
295
296 static struct pstate_funcs pstate_funcs __read_mostly;
297
298 static int hwp_active __read_mostly;
299 static int hwp_mode_bdw __read_mostly;
300 static bool per_cpu_limits __read_mostly;
301 static bool hwp_boost __read_mostly;
302
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305 #ifdef CONFIG_ACPI
306 static bool acpi_ppc;
307 #endif
308
309 static struct global_params global;
310
311 static DEFINE_MUTEX(intel_pstate_driver_lock);
312 static DEFINE_MUTEX(intel_pstate_limits_lock);
313
314 #ifdef CONFIG_ACPI
315
316 static bool intel_pstate_acpi_pm_profile_server(void)
317 {
318         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
319             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
320                 return true;
321
322         return false;
323 }
324
325 static bool intel_pstate_get_ppc_enable_status(void)
326 {
327         if (intel_pstate_acpi_pm_profile_server())
328                 return true;
329
330         return acpi_ppc;
331 }
332
333 #ifdef CONFIG_ACPI_CPPC_LIB
334
335 /* The work item is needed to avoid CPU hotplug locking issues */
336 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
337 {
338         sched_set_itmt_support();
339 }
340
341 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
342
343 static void intel_pstate_set_itmt_prio(int cpu)
344 {
345         struct cppc_perf_caps cppc_perf;
346         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
347         int ret;
348
349         ret = cppc_get_perf_caps(cpu, &cppc_perf);
350         if (ret)
351                 return;
352
353         /*
354          * The priorities can be set regardless of whether or not
355          * sched_set_itmt_support(true) has been called and it is valid to
356          * update them at any time after it has been called.
357          */
358         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
359
360         if (max_highest_perf <= min_highest_perf) {
361                 if (cppc_perf.highest_perf > max_highest_perf)
362                         max_highest_perf = cppc_perf.highest_perf;
363
364                 if (cppc_perf.highest_perf < min_highest_perf)
365                         min_highest_perf = cppc_perf.highest_perf;
366
367                 if (max_highest_perf > min_highest_perf) {
368                         /*
369                          * This code can be run during CPU online under the
370                          * CPU hotplug locks, so sched_set_itmt_support()
371                          * cannot be called from here.  Queue up a work item
372                          * to invoke it.
373                          */
374                         schedule_work(&sched_itmt_work);
375                 }
376         }
377 }
378
379 static int intel_pstate_get_cppc_guranteed(int cpu)
380 {
381         struct cppc_perf_caps cppc_perf;
382         int ret;
383
384         ret = cppc_get_perf_caps(cpu, &cppc_perf);
385         if (ret)
386                 return ret;
387
388         if (cppc_perf.guaranteed_perf)
389                 return cppc_perf.guaranteed_perf;
390
391         return cppc_perf.nominal_perf;
392 }
393
394 #else /* CONFIG_ACPI_CPPC_LIB */
395 static void intel_pstate_set_itmt_prio(int cpu)
396 {
397 }
398 #endif /* CONFIG_ACPI_CPPC_LIB */
399
400 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
401 {
402         struct cpudata *cpu;
403         int ret;
404         int i;
405
406         if (hwp_active) {
407                 intel_pstate_set_itmt_prio(policy->cpu);
408                 return;
409         }
410
411         if (!intel_pstate_get_ppc_enable_status())
412                 return;
413
414         cpu = all_cpu_data[policy->cpu];
415
416         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
417                                                   policy->cpu);
418         if (ret)
419                 return;
420
421         /*
422          * Check if the control value in _PSS is for PERF_CTL MSR, which should
423          * guarantee that the states returned by it map to the states in our
424          * list directly.
425          */
426         if (cpu->acpi_perf_data.control_register.space_id !=
427                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
428                 goto err;
429
430         /*
431          * If there is only one entry _PSS, simply ignore _PSS and continue as
432          * usual without taking _PSS into account
433          */
434         if (cpu->acpi_perf_data.state_count < 2)
435                 goto err;
436
437         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
438         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
439                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
440                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
441                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
442                          (u32) cpu->acpi_perf_data.states[i].power,
443                          (u32) cpu->acpi_perf_data.states[i].control);
444         }
445
446         /*
447          * The _PSS table doesn't contain whole turbo frequency range.
448          * This just contains +1 MHZ above the max non turbo frequency,
449          * with control value corresponding to max turbo ratio. But
450          * when cpufreq set policy is called, it will call with this
451          * max frequency, which will cause a reduced performance as
452          * this driver uses real max turbo frequency as the max
453          * frequency. So correct this frequency in _PSS table to
454          * correct max turbo frequency based on the turbo state.
455          * Also need to convert to MHz as _PSS freq is in MHz.
456          */
457         if (!global.turbo_disabled)
458                 cpu->acpi_perf_data.states[0].core_frequency =
459                                         policy->cpuinfo.max_freq / 1000;
460         cpu->valid_pss_table = true;
461         pr_debug("_PPC limits will be enforced\n");
462
463         return;
464
465  err:
466         cpu->valid_pss_table = false;
467         acpi_processor_unregister_performance(policy->cpu);
468 }
469
470 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
471 {
472         struct cpudata *cpu;
473
474         cpu = all_cpu_data[policy->cpu];
475         if (!cpu->valid_pss_table)
476                 return;
477
478         acpi_processor_unregister_performance(policy->cpu);
479 }
480 #else /* CONFIG_ACPI */
481 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
482 {
483 }
484
485 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
486 {
487 }
488
489 static inline bool intel_pstate_acpi_pm_profile_server(void)
490 {
491         return false;
492 }
493 #endif /* CONFIG_ACPI */
494
495 #ifndef CONFIG_ACPI_CPPC_LIB
496 static int intel_pstate_get_cppc_guranteed(int cpu)
497 {
498         return -ENOTSUPP;
499 }
500 #endif /* CONFIG_ACPI_CPPC_LIB */
501
502 static inline void update_turbo_state(void)
503 {
504         u64 misc_en;
505         struct cpudata *cpu;
506
507         cpu = all_cpu_data[0];
508         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
509         global.turbo_disabled =
510                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
511                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
512 }
513
514 static int min_perf_pct_min(void)
515 {
516         struct cpudata *cpu = all_cpu_data[0];
517         int turbo_pstate = cpu->pstate.turbo_pstate;
518
519         return turbo_pstate ?
520                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
521 }
522
523 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
524 {
525         u64 epb;
526         int ret;
527
528         if (!boot_cpu_has(X86_FEATURE_EPB))
529                 return -ENXIO;
530
531         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
532         if (ret)
533                 return (s16)ret;
534
535         return (s16)(epb & 0x0f);
536 }
537
538 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
539 {
540         s16 epp;
541
542         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
543                 /*
544                  * When hwp_req_data is 0, means that caller didn't read
545                  * MSR_HWP_REQUEST, so need to read and get EPP.
546                  */
547                 if (!hwp_req_data) {
548                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
549                                             &hwp_req_data);
550                         if (epp)
551                                 return epp;
552                 }
553                 epp = (hwp_req_data >> 24) & 0xff;
554         } else {
555                 /* When there is no EPP present, HWP uses EPB settings */
556                 epp = intel_pstate_get_epb(cpu_data);
557         }
558
559         return epp;
560 }
561
562 static int intel_pstate_set_epb(int cpu, s16 pref)
563 {
564         u64 epb;
565         int ret;
566
567         if (!boot_cpu_has(X86_FEATURE_EPB))
568                 return -ENXIO;
569
570         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
571         if (ret)
572                 return ret;
573
574         epb = (epb & ~0x0f) | pref;
575         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
576
577         return 0;
578 }
579
580 /*
581  * EPP/EPB display strings corresponding to EPP index in the
582  * energy_perf_strings[]
583  *      index           String
584  *-------------------------------------
585  *      0               default
586  *      1               performance
587  *      2               balance_performance
588  *      3               balance_power
589  *      4               power
590  */
591 static const char * const energy_perf_strings[] = {
592         "default",
593         "performance",
594         "balance_performance",
595         "balance_power",
596         "power",
597         NULL
598 };
599 static const unsigned int epp_values[] = {
600         HWP_EPP_PERFORMANCE,
601         HWP_EPP_BALANCE_PERFORMANCE,
602         HWP_EPP_BALANCE_POWERSAVE,
603         HWP_EPP_POWERSAVE
604 };
605
606 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
607 {
608         s16 epp;
609         int index = -EINVAL;
610
611         *raw_epp = 0;
612         epp = intel_pstate_get_epp(cpu_data, 0);
613         if (epp < 0)
614                 return epp;
615
616         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
617                 if (epp == HWP_EPP_PERFORMANCE)
618                         return 1;
619                 if (epp == HWP_EPP_BALANCE_PERFORMANCE)
620                         return 2;
621                 if (epp == HWP_EPP_BALANCE_POWERSAVE)
622                         return 3;
623                 if (epp == HWP_EPP_POWERSAVE)
624                         return 4;
625                 *raw_epp = epp;
626                 return 0;
627         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
628                 /*
629                  * Range:
630                  *      0x00-0x03       :       Performance
631                  *      0x04-0x07       :       Balance performance
632                  *      0x08-0x0B       :       Balance power
633                  *      0x0C-0x0F       :       Power
634                  * The EPB is a 4 bit value, but our ranges restrict the
635                  * value which can be set. Here only using top two bits
636                  * effectively.
637                  */
638                 index = (epp >> 2) + 1;
639         }
640
641         return index;
642 }
643
644 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
645 {
646         int ret;
647
648         /*
649          * Use the cached HWP Request MSR value, because in the active mode the
650          * register itself may be updated by intel_pstate_hwp_boost_up() or
651          * intel_pstate_hwp_boost_down() at any time.
652          */
653         u64 value = READ_ONCE(cpu->hwp_req_cached);
654
655         value &= ~GENMASK_ULL(31, 24);
656         value |= (u64)epp << 24;
657         /*
658          * The only other updater of hwp_req_cached in the active mode,
659          * intel_pstate_hwp_set(), is called under the same lock as this
660          * function, so it cannot run in parallel with the update below.
661          */
662         WRITE_ONCE(cpu->hwp_req_cached, value);
663         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
664         if (!ret)
665                 cpu->epp_cached = epp;
666
667         return ret;
668 }
669
670 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
671                                               int pref_index, bool use_raw,
672                                               u32 raw_epp)
673 {
674         int epp = -EINVAL;
675         int ret;
676
677         if (!pref_index)
678                 epp = cpu_data->epp_default;
679
680         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
681                 if (use_raw)
682                         epp = raw_epp;
683                 else if (epp == -EINVAL)
684                         epp = epp_values[pref_index - 1];
685
686                 /*
687                  * To avoid confusion, refuse to set EPP to any values different
688                  * from 0 (performance) if the current policy is "performance",
689                  * because those values would be overridden.
690                  */
691                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
692                         return -EBUSY;
693
694                 ret = intel_pstate_set_epp(cpu_data, epp);
695         } else {
696                 if (epp == -EINVAL)
697                         epp = (pref_index - 1) << 2;
698                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
699         }
700
701         return ret;
702 }
703
704 static ssize_t show_energy_performance_available_preferences(
705                                 struct cpufreq_policy *policy, char *buf)
706 {
707         int i = 0;
708         int ret = 0;
709
710         while (energy_perf_strings[i] != NULL)
711                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
712
713         ret += sprintf(&buf[ret], "\n");
714
715         return ret;
716 }
717
718 cpufreq_freq_attr_ro(energy_performance_available_preferences);
719
720 static struct cpufreq_driver intel_pstate;
721
722 static ssize_t store_energy_performance_preference(
723                 struct cpufreq_policy *policy, const char *buf, size_t count)
724 {
725         struct cpudata *cpu = all_cpu_data[policy->cpu];
726         char str_preference[21];
727         bool raw = false;
728         ssize_t ret;
729         u32 epp = 0;
730
731         ret = sscanf(buf, "%20s", str_preference);
732         if (ret != 1)
733                 return -EINVAL;
734
735         ret = match_string(energy_perf_strings, -1, str_preference);
736         if (ret < 0) {
737                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
738                         return ret;
739
740                 ret = kstrtouint(buf, 10, &epp);
741                 if (ret)
742                         return ret;
743
744                 if (epp > 255)
745                         return -EINVAL;
746
747                 raw = true;
748         }
749
750         /*
751          * This function runs with the policy R/W semaphore held, which
752          * guarantees that the driver pointer will not change while it is
753          * running.
754          */
755         if (!intel_pstate_driver)
756                 return -EAGAIN;
757
758         mutex_lock(&intel_pstate_limits_lock);
759
760         if (intel_pstate_driver == &intel_pstate) {
761                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
762         } else {
763                 /*
764                  * In the passive mode the governor needs to be stopped on the
765                  * target CPU before the EPP update and restarted after it,
766                  * which is super-heavy-weight, so make sure it is worth doing
767                  * upfront.
768                  */
769                 if (!raw)
770                         epp = ret ? epp_values[ret - 1] : cpu->epp_default;
771
772                 if (cpu->epp_cached != epp) {
773                         int err;
774
775                         cpufreq_stop_governor(policy);
776                         ret = intel_pstate_set_epp(cpu, epp);
777                         err = cpufreq_start_governor(policy);
778                         if (!ret)
779                                 ret = err;
780                 }
781         }
782
783         mutex_unlock(&intel_pstate_limits_lock);
784
785         return ret ?: count;
786 }
787
788 static ssize_t show_energy_performance_preference(
789                                 struct cpufreq_policy *policy, char *buf)
790 {
791         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
792         int preference, raw_epp;
793
794         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
795         if (preference < 0)
796                 return preference;
797
798         if (raw_epp)
799                 return  sprintf(buf, "%d\n", raw_epp);
800         else
801                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
802 }
803
804 cpufreq_freq_attr_rw(energy_performance_preference);
805
806 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
807 {
808         struct cpudata *cpu;
809         u64 cap;
810         int ratio;
811
812         ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
813         if (ratio <= 0) {
814                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
815                 ratio = HWP_GUARANTEED_PERF(cap);
816         }
817
818         cpu = all_cpu_data[policy->cpu];
819
820         return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
821 }
822
823 cpufreq_freq_attr_ro(base_frequency);
824
825 static struct freq_attr *hwp_cpufreq_attrs[] = {
826         &energy_performance_preference,
827         &energy_performance_available_preferences,
828         &base_frequency,
829         NULL,
830 };
831
832 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
833                                      int *current_max)
834 {
835         u64 cap;
836
837         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
838         WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
839         if (global.no_turbo || global.turbo_disabled)
840                 *current_max = HWP_GUARANTEED_PERF(cap);
841         else
842                 *current_max = HWP_HIGHEST_PERF(cap);
843
844         *phy_max = HWP_HIGHEST_PERF(cap);
845 }
846
847 static void intel_pstate_hwp_set(unsigned int cpu)
848 {
849         struct cpudata *cpu_data = all_cpu_data[cpu];
850         int max, min;
851         u64 value;
852         s16 epp;
853
854         max = cpu_data->max_perf_ratio;
855         min = cpu_data->min_perf_ratio;
856
857         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
858                 min = max;
859
860         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
861
862         value &= ~HWP_MIN_PERF(~0L);
863         value |= HWP_MIN_PERF(min);
864
865         value &= ~HWP_MAX_PERF(~0L);
866         value |= HWP_MAX_PERF(max);
867
868         if (cpu_data->epp_policy == cpu_data->policy)
869                 goto skip_epp;
870
871         cpu_data->epp_policy = cpu_data->policy;
872
873         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
874                 epp = intel_pstate_get_epp(cpu_data, value);
875                 cpu_data->epp_powersave = epp;
876                 /* If EPP read was failed, then don't try to write */
877                 if (epp < 0)
878                         goto skip_epp;
879
880                 epp = 0;
881         } else {
882                 /* skip setting EPP, when saved value is invalid */
883                 if (cpu_data->epp_powersave < 0)
884                         goto skip_epp;
885
886                 /*
887                  * No need to restore EPP when it is not zero. This
888                  * means:
889                  *  - Policy is not changed
890                  *  - user has manually changed
891                  *  - Error reading EPB
892                  */
893                 epp = intel_pstate_get_epp(cpu_data, value);
894                 if (epp)
895                         goto skip_epp;
896
897                 epp = cpu_data->epp_powersave;
898         }
899         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
900                 value &= ~GENMASK_ULL(31, 24);
901                 value |= (u64)epp << 24;
902         } else {
903                 intel_pstate_set_epb(cpu, epp);
904         }
905 skip_epp:
906         WRITE_ONCE(cpu_data->hwp_req_cached, value);
907         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
908 }
909
910 static void intel_pstate_hwp_offline(struct cpudata *cpu)
911 {
912         u64 value = READ_ONCE(cpu->hwp_req_cached);
913         int min_perf;
914
915         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
916                 /*
917                  * In case the EPP has been set to "performance" by the
918                  * active mode "performance" scaling algorithm, replace that
919                  * temporary value with the cached EPP one.
920                  */
921                 value &= ~GENMASK_ULL(31, 24);
922                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
923                 WRITE_ONCE(cpu->hwp_req_cached, value);
924         }
925
926         value &= ~GENMASK_ULL(31, 0);
927         min_perf = HWP_LOWEST_PERF(cpu->hwp_cap_cached);
928
929         /* Set hwp_max = hwp_min */
930         value |= HWP_MAX_PERF(min_perf);
931         value |= HWP_MIN_PERF(min_perf);
932
933         /* Set EPP to min */
934         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
935                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
936
937         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
938 }
939
940 #define POWER_CTL_EE_ENABLE     1
941 #define POWER_CTL_EE_DISABLE    2
942
943 static int power_ctl_ee_state;
944
945 static void set_power_ctl_ee_state(bool input)
946 {
947         u64 power_ctl;
948
949         mutex_lock(&intel_pstate_driver_lock);
950         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
951         if (input) {
952                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
953                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
954         } else {
955                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
956                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
957         }
958         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
959         mutex_unlock(&intel_pstate_driver_lock);
960 }
961
962 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
963
964 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
965 {
966         intel_pstate_hwp_enable(cpu);
967         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
968 }
969
970 static int intel_pstate_suspend(struct cpufreq_policy *policy)
971 {
972         struct cpudata *cpu = all_cpu_data[policy->cpu];
973
974         pr_debug("CPU %d suspending\n", cpu->cpu);
975
976         cpu->suspended = true;
977
978         return 0;
979 }
980
981 static int intel_pstate_resume(struct cpufreq_policy *policy)
982 {
983         struct cpudata *cpu = all_cpu_data[policy->cpu];
984
985         pr_debug("CPU %d resuming\n", cpu->cpu);
986
987         /* Only restore if the system default is changed */
988         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
989                 set_power_ctl_ee_state(true);
990         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
991                 set_power_ctl_ee_state(false);
992
993         if (cpu->suspended && hwp_active) {
994                 mutex_lock(&intel_pstate_limits_lock);
995
996                 /* Re-enable HWP, because "online" has not done that. */
997                 intel_pstate_hwp_reenable(cpu);
998
999                 mutex_unlock(&intel_pstate_limits_lock);
1000         }
1001
1002         cpu->suspended = false;
1003
1004         return 0;
1005 }
1006
1007 static void intel_pstate_update_policies(void)
1008 {
1009         int cpu;
1010
1011         for_each_possible_cpu(cpu)
1012                 cpufreq_update_policy(cpu);
1013 }
1014
1015 static void intel_pstate_update_max_freq(unsigned int cpu)
1016 {
1017         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1018         struct cpudata *cpudata;
1019
1020         if (!policy)
1021                 return;
1022
1023         cpudata = all_cpu_data[cpu];
1024         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1025                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1026
1027         refresh_frequency_limits(policy);
1028
1029         cpufreq_cpu_release(policy);
1030 }
1031
1032 static void intel_pstate_update_limits(unsigned int cpu)
1033 {
1034         mutex_lock(&intel_pstate_driver_lock);
1035
1036         update_turbo_state();
1037         /*
1038          * If turbo has been turned on or off globally, policy limits for
1039          * all CPUs need to be updated to reflect that.
1040          */
1041         if (global.turbo_disabled_mf != global.turbo_disabled) {
1042                 global.turbo_disabled_mf = global.turbo_disabled;
1043                 arch_set_max_freq_ratio(global.turbo_disabled);
1044                 for_each_possible_cpu(cpu)
1045                         intel_pstate_update_max_freq(cpu);
1046         } else {
1047                 cpufreq_update_policy(cpu);
1048         }
1049
1050         mutex_unlock(&intel_pstate_driver_lock);
1051 }
1052
1053 /************************** sysfs begin ************************/
1054 #define show_one(file_name, object)                                     \
1055         static ssize_t show_##file_name                                 \
1056         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1057         {                                                               \
1058                 return sprintf(buf, "%u\n", global.object);             \
1059         }
1060
1061 static ssize_t intel_pstate_show_status(char *buf);
1062 static int intel_pstate_update_status(const char *buf, size_t size);
1063
1064 static ssize_t show_status(struct kobject *kobj,
1065                            struct kobj_attribute *attr, char *buf)
1066 {
1067         ssize_t ret;
1068
1069         mutex_lock(&intel_pstate_driver_lock);
1070         ret = intel_pstate_show_status(buf);
1071         mutex_unlock(&intel_pstate_driver_lock);
1072
1073         return ret;
1074 }
1075
1076 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1077                             const char *buf, size_t count)
1078 {
1079         char *p = memchr(buf, '\n', count);
1080         int ret;
1081
1082         mutex_lock(&intel_pstate_driver_lock);
1083         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1084         mutex_unlock(&intel_pstate_driver_lock);
1085
1086         return ret < 0 ? ret : count;
1087 }
1088
1089 static ssize_t show_turbo_pct(struct kobject *kobj,
1090                                 struct kobj_attribute *attr, char *buf)
1091 {
1092         struct cpudata *cpu;
1093         int total, no_turbo, turbo_pct;
1094         uint32_t turbo_fp;
1095
1096         mutex_lock(&intel_pstate_driver_lock);
1097
1098         if (!intel_pstate_driver) {
1099                 mutex_unlock(&intel_pstate_driver_lock);
1100                 return -EAGAIN;
1101         }
1102
1103         cpu = all_cpu_data[0];
1104
1105         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1106         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1107         turbo_fp = div_fp(no_turbo, total);
1108         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1109
1110         mutex_unlock(&intel_pstate_driver_lock);
1111
1112         return sprintf(buf, "%u\n", turbo_pct);
1113 }
1114
1115 static ssize_t show_num_pstates(struct kobject *kobj,
1116                                 struct kobj_attribute *attr, char *buf)
1117 {
1118         struct cpudata *cpu;
1119         int total;
1120
1121         mutex_lock(&intel_pstate_driver_lock);
1122
1123         if (!intel_pstate_driver) {
1124                 mutex_unlock(&intel_pstate_driver_lock);
1125                 return -EAGAIN;
1126         }
1127
1128         cpu = all_cpu_data[0];
1129         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1130
1131         mutex_unlock(&intel_pstate_driver_lock);
1132
1133         return sprintf(buf, "%u\n", total);
1134 }
1135
1136 static ssize_t show_no_turbo(struct kobject *kobj,
1137                              struct kobj_attribute *attr, char *buf)
1138 {
1139         ssize_t ret;
1140
1141         mutex_lock(&intel_pstate_driver_lock);
1142
1143         if (!intel_pstate_driver) {
1144                 mutex_unlock(&intel_pstate_driver_lock);
1145                 return -EAGAIN;
1146         }
1147
1148         update_turbo_state();
1149         if (global.turbo_disabled)
1150                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1151         else
1152                 ret = sprintf(buf, "%u\n", global.no_turbo);
1153
1154         mutex_unlock(&intel_pstate_driver_lock);
1155
1156         return ret;
1157 }
1158
1159 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1160                               const char *buf, size_t count)
1161 {
1162         unsigned int input;
1163         int ret;
1164
1165         ret = sscanf(buf, "%u", &input);
1166         if (ret != 1)
1167                 return -EINVAL;
1168
1169         mutex_lock(&intel_pstate_driver_lock);
1170
1171         if (!intel_pstate_driver) {
1172                 mutex_unlock(&intel_pstate_driver_lock);
1173                 return -EAGAIN;
1174         }
1175
1176         mutex_lock(&intel_pstate_limits_lock);
1177
1178         update_turbo_state();
1179         if (global.turbo_disabled) {
1180                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1181                 mutex_unlock(&intel_pstate_limits_lock);
1182                 mutex_unlock(&intel_pstate_driver_lock);
1183                 return -EPERM;
1184         }
1185
1186         global.no_turbo = clamp_t(int, input, 0, 1);
1187
1188         if (global.no_turbo) {
1189                 struct cpudata *cpu = all_cpu_data[0];
1190                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1191
1192                 /* Squash the global minimum into the permitted range. */
1193                 if (global.min_perf_pct > pct)
1194                         global.min_perf_pct = pct;
1195         }
1196
1197         mutex_unlock(&intel_pstate_limits_lock);
1198
1199         intel_pstate_update_policies();
1200
1201         mutex_unlock(&intel_pstate_driver_lock);
1202
1203         return count;
1204 }
1205
1206 static void update_qos_request(enum freq_qos_req_type type)
1207 {
1208         int max_state, turbo_max, freq, i, perf_pct;
1209         struct freq_qos_request *req;
1210         struct cpufreq_policy *policy;
1211
1212         for_each_possible_cpu(i) {
1213                 struct cpudata *cpu = all_cpu_data[i];
1214
1215                 policy = cpufreq_cpu_get(i);
1216                 if (!policy)
1217                         continue;
1218
1219                 req = policy->driver_data;
1220                 cpufreq_cpu_put(policy);
1221
1222                 if (!req)
1223                         continue;
1224
1225                 if (hwp_active)
1226                         intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1227                 else
1228                         turbo_max = cpu->pstate.turbo_pstate;
1229
1230                 if (type == FREQ_QOS_MIN) {
1231                         perf_pct = global.min_perf_pct;
1232                 } else {
1233                         req++;
1234                         perf_pct = global.max_perf_pct;
1235                 }
1236
1237                 freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1238                 freq *= cpu->pstate.scaling;
1239
1240                 if (freq_qos_update_request(req, freq) < 0)
1241                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1242         }
1243 }
1244
1245 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1246                                   const char *buf, size_t count)
1247 {
1248         unsigned int input;
1249         int ret;
1250
1251         ret = sscanf(buf, "%u", &input);
1252         if (ret != 1)
1253                 return -EINVAL;
1254
1255         mutex_lock(&intel_pstate_driver_lock);
1256
1257         if (!intel_pstate_driver) {
1258                 mutex_unlock(&intel_pstate_driver_lock);
1259                 return -EAGAIN;
1260         }
1261
1262         mutex_lock(&intel_pstate_limits_lock);
1263
1264         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1265
1266         mutex_unlock(&intel_pstate_limits_lock);
1267
1268         if (intel_pstate_driver == &intel_pstate)
1269                 intel_pstate_update_policies();
1270         else
1271                 update_qos_request(FREQ_QOS_MAX);
1272
1273         mutex_unlock(&intel_pstate_driver_lock);
1274
1275         return count;
1276 }
1277
1278 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1279                                   const char *buf, size_t count)
1280 {
1281         unsigned int input;
1282         int ret;
1283
1284         ret = sscanf(buf, "%u", &input);
1285         if (ret != 1)
1286                 return -EINVAL;
1287
1288         mutex_lock(&intel_pstate_driver_lock);
1289
1290         if (!intel_pstate_driver) {
1291                 mutex_unlock(&intel_pstate_driver_lock);
1292                 return -EAGAIN;
1293         }
1294
1295         mutex_lock(&intel_pstate_limits_lock);
1296
1297         global.min_perf_pct = clamp_t(int, input,
1298                                       min_perf_pct_min(), global.max_perf_pct);
1299
1300         mutex_unlock(&intel_pstate_limits_lock);
1301
1302         if (intel_pstate_driver == &intel_pstate)
1303                 intel_pstate_update_policies();
1304         else
1305                 update_qos_request(FREQ_QOS_MIN);
1306
1307         mutex_unlock(&intel_pstate_driver_lock);
1308
1309         return count;
1310 }
1311
1312 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1313                                 struct kobj_attribute *attr, char *buf)
1314 {
1315         return sprintf(buf, "%u\n", hwp_boost);
1316 }
1317
1318 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1319                                        struct kobj_attribute *b,
1320                                        const char *buf, size_t count)
1321 {
1322         unsigned int input;
1323         int ret;
1324
1325         ret = kstrtouint(buf, 10, &input);
1326         if (ret)
1327                 return ret;
1328
1329         mutex_lock(&intel_pstate_driver_lock);
1330         hwp_boost = !!input;
1331         intel_pstate_update_policies();
1332         mutex_unlock(&intel_pstate_driver_lock);
1333
1334         return count;
1335 }
1336
1337 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1338                                       char *buf)
1339 {
1340         u64 power_ctl;
1341         int enable;
1342
1343         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1344         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1345         return sprintf(buf, "%d\n", !enable);
1346 }
1347
1348 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1349                                        const char *buf, size_t count)
1350 {
1351         bool input;
1352         int ret;
1353
1354         ret = kstrtobool(buf, &input);
1355         if (ret)
1356                 return ret;
1357
1358         set_power_ctl_ee_state(input);
1359
1360         return count;
1361 }
1362
1363 show_one(max_perf_pct, max_perf_pct);
1364 show_one(min_perf_pct, min_perf_pct);
1365
1366 define_one_global_rw(status);
1367 define_one_global_rw(no_turbo);
1368 define_one_global_rw(max_perf_pct);
1369 define_one_global_rw(min_perf_pct);
1370 define_one_global_ro(turbo_pct);
1371 define_one_global_ro(num_pstates);
1372 define_one_global_rw(hwp_dynamic_boost);
1373 define_one_global_rw(energy_efficiency);
1374
1375 static struct attribute *intel_pstate_attributes[] = {
1376         &status.attr,
1377         &no_turbo.attr,
1378         &turbo_pct.attr,
1379         &num_pstates.attr,
1380         NULL
1381 };
1382
1383 static const struct attribute_group intel_pstate_attr_group = {
1384         .attrs = intel_pstate_attributes,
1385 };
1386
1387 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1388
1389 static struct kobject *intel_pstate_kobject;
1390
1391 static void __init intel_pstate_sysfs_expose_params(void)
1392 {
1393         int rc;
1394
1395         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1396                                                 &cpu_subsys.dev_root->kobj);
1397         if (WARN_ON(!intel_pstate_kobject))
1398                 return;
1399
1400         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1401         if (WARN_ON(rc))
1402                 return;
1403
1404         /*
1405          * If per cpu limits are enforced there are no global limits, so
1406          * return without creating max/min_perf_pct attributes
1407          */
1408         if (per_cpu_limits)
1409                 return;
1410
1411         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1412         WARN_ON(rc);
1413
1414         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1415         WARN_ON(rc);
1416
1417         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1418                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1419                 WARN_ON(rc);
1420         }
1421 }
1422
1423 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1424 {
1425         int rc;
1426
1427         if (!hwp_active)
1428                 return;
1429
1430         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1431         WARN_ON_ONCE(rc);
1432 }
1433
1434 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1435 {
1436         if (!hwp_active)
1437                 return;
1438
1439         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1440 }
1441
1442 /************************** sysfs end ************************/
1443
1444 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1445 {
1446         /* First disable HWP notification interrupt as we don't process them */
1447         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1448                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1449
1450         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1451         if (cpudata->epp_default == -EINVAL)
1452                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1453 }
1454
1455 static int atom_get_min_pstate(void)
1456 {
1457         u64 value;
1458
1459         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1460         return (value >> 8) & 0x7F;
1461 }
1462
1463 static int atom_get_max_pstate(void)
1464 {
1465         u64 value;
1466
1467         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1468         return (value >> 16) & 0x7F;
1469 }
1470
1471 static int atom_get_turbo_pstate(void)
1472 {
1473         u64 value;
1474
1475         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1476         return value & 0x7F;
1477 }
1478
1479 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1480 {
1481         u64 val;
1482         int32_t vid_fp;
1483         u32 vid;
1484
1485         val = (u64)pstate << 8;
1486         if (global.no_turbo && !global.turbo_disabled)
1487                 val |= (u64)1 << 32;
1488
1489         vid_fp = cpudata->vid.min + mul_fp(
1490                 int_tofp(pstate - cpudata->pstate.min_pstate),
1491                 cpudata->vid.ratio);
1492
1493         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1494         vid = ceiling_fp(vid_fp);
1495
1496         if (pstate > cpudata->pstate.max_pstate)
1497                 vid = cpudata->vid.turbo;
1498
1499         return val | vid;
1500 }
1501
1502 static int silvermont_get_scaling(void)
1503 {
1504         u64 value;
1505         int i;
1506         /* Defined in Table 35-6 from SDM (Sept 2015) */
1507         static int silvermont_freq_table[] = {
1508                 83300, 100000, 133300, 116700, 80000};
1509
1510         rdmsrl(MSR_FSB_FREQ, value);
1511         i = value & 0x7;
1512         WARN_ON(i > 4);
1513
1514         return silvermont_freq_table[i];
1515 }
1516
1517 static int airmont_get_scaling(void)
1518 {
1519         u64 value;
1520         int i;
1521         /* Defined in Table 35-10 from SDM (Sept 2015) */
1522         static int airmont_freq_table[] = {
1523                 83300, 100000, 133300, 116700, 80000,
1524                 93300, 90000, 88900, 87500};
1525
1526         rdmsrl(MSR_FSB_FREQ, value);
1527         i = value & 0xF;
1528         WARN_ON(i > 8);
1529
1530         return airmont_freq_table[i];
1531 }
1532
1533 static void atom_get_vid(struct cpudata *cpudata)
1534 {
1535         u64 value;
1536
1537         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1538         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1539         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1540         cpudata->vid.ratio = div_fp(
1541                 cpudata->vid.max - cpudata->vid.min,
1542                 int_tofp(cpudata->pstate.max_pstate -
1543                         cpudata->pstate.min_pstate));
1544
1545         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1546         cpudata->vid.turbo = value & 0x7f;
1547 }
1548
1549 static int core_get_min_pstate(void)
1550 {
1551         u64 value;
1552
1553         rdmsrl(MSR_PLATFORM_INFO, value);
1554         return (value >> 40) & 0xFF;
1555 }
1556
1557 static int core_get_max_pstate_physical(void)
1558 {
1559         u64 value;
1560
1561         rdmsrl(MSR_PLATFORM_INFO, value);
1562         return (value >> 8) & 0xFF;
1563 }
1564
1565 static int core_get_tdp_ratio(u64 plat_info)
1566 {
1567         /* Check how many TDP levels present */
1568         if (plat_info & 0x600000000) {
1569                 u64 tdp_ctrl;
1570                 u64 tdp_ratio;
1571                 int tdp_msr;
1572                 int err;
1573
1574                 /* Get the TDP level (0, 1, 2) to get ratios */
1575                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1576                 if (err)
1577                         return err;
1578
1579                 /* TDP MSR are continuous starting at 0x648 */
1580                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1581                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1582                 if (err)
1583                         return err;
1584
1585                 /* For level 1 and 2, bits[23:16] contain the ratio */
1586                 if (tdp_ctrl & 0x03)
1587                         tdp_ratio >>= 16;
1588
1589                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1590                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1591
1592                 return (int)tdp_ratio;
1593         }
1594
1595         return -ENXIO;
1596 }
1597
1598 static int core_get_max_pstate(void)
1599 {
1600         u64 tar;
1601         u64 plat_info;
1602         int max_pstate;
1603         int tdp_ratio;
1604         int err;
1605
1606         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1607         max_pstate = (plat_info >> 8) & 0xFF;
1608
1609         tdp_ratio = core_get_tdp_ratio(plat_info);
1610         if (tdp_ratio <= 0)
1611                 return max_pstate;
1612
1613         if (hwp_active) {
1614                 /* Turbo activation ratio is not used on HWP platforms */
1615                 return tdp_ratio;
1616         }
1617
1618         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1619         if (!err) {
1620                 int tar_levels;
1621
1622                 /* Do some sanity checking for safety */
1623                 tar_levels = tar & 0xff;
1624                 if (tdp_ratio - 1 == tar_levels) {
1625                         max_pstate = tar_levels;
1626                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1627                 }
1628         }
1629
1630         return max_pstate;
1631 }
1632
1633 static int core_get_turbo_pstate(void)
1634 {
1635         u64 value;
1636         int nont, ret;
1637
1638         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1639         nont = core_get_max_pstate();
1640         ret = (value) & 255;
1641         if (ret <= nont)
1642                 ret = nont;
1643         return ret;
1644 }
1645
1646 static inline int core_get_scaling(void)
1647 {
1648         return 100000;
1649 }
1650
1651 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1652 {
1653         u64 val;
1654
1655         val = (u64)pstate << 8;
1656         if (global.no_turbo && !global.turbo_disabled)
1657                 val |= (u64)1 << 32;
1658
1659         return val;
1660 }
1661
1662 static int knl_get_aperf_mperf_shift(void)
1663 {
1664         return 10;
1665 }
1666
1667 static int knl_get_turbo_pstate(void)
1668 {
1669         u64 value;
1670         int nont, ret;
1671
1672         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1673         nont = core_get_max_pstate();
1674         ret = (((value) >> 8) & 0xFF);
1675         if (ret <= nont)
1676                 ret = nont;
1677         return ret;
1678 }
1679
1680 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1681 {
1682         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1683         cpu->pstate.current_pstate = pstate;
1684         /*
1685          * Generally, there is no guarantee that this code will always run on
1686          * the CPU being updated, so force the register update to run on the
1687          * right CPU.
1688          */
1689         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1690                       pstate_funcs.get_val(cpu, pstate));
1691 }
1692
1693 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1694 {
1695         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1696 }
1697
1698 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1699 {
1700         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1701
1702         update_turbo_state();
1703         intel_pstate_set_pstate(cpu, pstate);
1704 }
1705
1706 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1707 {
1708         cpu->pstate.min_pstate = pstate_funcs.get_min();
1709         cpu->pstate.max_pstate = pstate_funcs.get_max();
1710         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1711         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1712         cpu->pstate.scaling = pstate_funcs.get_scaling();
1713         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1714
1715         if (hwp_active && !hwp_mode_bdw) {
1716                 unsigned int phy_max, current_max;
1717
1718                 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1719                 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1720                 cpu->pstate.turbo_pstate = phy_max;
1721         } else {
1722                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1723         }
1724
1725         if (pstate_funcs.get_aperf_mperf_shift)
1726                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1727
1728         if (pstate_funcs.get_vid)
1729                 pstate_funcs.get_vid(cpu);
1730
1731         intel_pstate_set_min_pstate(cpu);
1732 }
1733
1734 /*
1735  * Long hold time will keep high perf limits for long time,
1736  * which negatively impacts perf/watt for some workloads,
1737  * like specpower. 3ms is based on experiements on some
1738  * workoads.
1739  */
1740 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1741
1742 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1743 {
1744         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1745         u32 max_limit = (hwp_req & 0xff00) >> 8;
1746         u32 min_limit = (hwp_req & 0xff);
1747         u32 boost_level1;
1748
1749         /*
1750          * Cases to consider (User changes via sysfs or boot time):
1751          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1752          *      No boost, return.
1753          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1754          *     Should result in one level boost only for P0.
1755          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1756          *     Should result in two level boost:
1757          *         (min + p1)/2 and P1.
1758          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1759          *     Should result in three level boost:
1760          *        (min + p1)/2, P1 and P0.
1761          */
1762
1763         /* If max and min are equal or already at max, nothing to boost */
1764         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1765                 return;
1766
1767         if (!cpu->hwp_boost_min)
1768                 cpu->hwp_boost_min = min_limit;
1769
1770         /* level at half way mark between min and guranteed */
1771         boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1772
1773         if (cpu->hwp_boost_min < boost_level1)
1774                 cpu->hwp_boost_min = boost_level1;
1775         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1776                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1777         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1778                  max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1779                 cpu->hwp_boost_min = max_limit;
1780         else
1781                 return;
1782
1783         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1784         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1785         cpu->last_update = cpu->sample.time;
1786 }
1787
1788 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1789 {
1790         if (cpu->hwp_boost_min) {
1791                 bool expired;
1792
1793                 /* Check if we are idle for hold time to boost down */
1794                 expired = time_after64(cpu->sample.time, cpu->last_update +
1795                                        hwp_boost_hold_time_ns);
1796                 if (expired) {
1797                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1798                         cpu->hwp_boost_min = 0;
1799                 }
1800         }
1801         cpu->last_update = cpu->sample.time;
1802 }
1803
1804 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1805                                                       u64 time)
1806 {
1807         cpu->sample.time = time;
1808
1809         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1810                 bool do_io = false;
1811
1812                 cpu->sched_flags = 0;
1813                 /*
1814                  * Set iowait_boost flag and update time. Since IO WAIT flag
1815                  * is set all the time, we can't just conclude that there is
1816                  * some IO bound activity is scheduled on this CPU with just
1817                  * one occurrence. If we receive at least two in two
1818                  * consecutive ticks, then we treat as boost candidate.
1819                  */
1820                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1821                         do_io = true;
1822
1823                 cpu->last_io_update = time;
1824
1825                 if (do_io)
1826                         intel_pstate_hwp_boost_up(cpu);
1827
1828         } else {
1829                 intel_pstate_hwp_boost_down(cpu);
1830         }
1831 }
1832
1833 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1834                                                 u64 time, unsigned int flags)
1835 {
1836         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1837
1838         cpu->sched_flags |= flags;
1839
1840         if (smp_processor_id() == cpu->cpu)
1841                 intel_pstate_update_util_hwp_local(cpu, time);
1842 }
1843
1844 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1845 {
1846         struct sample *sample = &cpu->sample;
1847
1848         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1849 }
1850
1851 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1852 {
1853         u64 aperf, mperf;
1854         unsigned long flags;
1855         u64 tsc;
1856
1857         local_irq_save(flags);
1858         rdmsrl(MSR_IA32_APERF, aperf);
1859         rdmsrl(MSR_IA32_MPERF, mperf);
1860         tsc = rdtsc();
1861         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1862                 local_irq_restore(flags);
1863                 return false;
1864         }
1865         local_irq_restore(flags);
1866
1867         cpu->last_sample_time = cpu->sample.time;
1868         cpu->sample.time = time;
1869         cpu->sample.aperf = aperf;
1870         cpu->sample.mperf = mperf;
1871         cpu->sample.tsc =  tsc;
1872         cpu->sample.aperf -= cpu->prev_aperf;
1873         cpu->sample.mperf -= cpu->prev_mperf;
1874         cpu->sample.tsc -= cpu->prev_tsc;
1875
1876         cpu->prev_aperf = aperf;
1877         cpu->prev_mperf = mperf;
1878         cpu->prev_tsc = tsc;
1879         /*
1880          * First time this function is invoked in a given cycle, all of the
1881          * previous sample data fields are equal to zero or stale and they must
1882          * be populated with meaningful numbers for things to work, so assume
1883          * that sample.time will always be reset before setting the utilization
1884          * update hook and make the caller skip the sample then.
1885          */
1886         if (cpu->last_sample_time) {
1887                 intel_pstate_calc_avg_perf(cpu);
1888                 return true;
1889         }
1890         return false;
1891 }
1892
1893 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1894 {
1895         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1896 }
1897
1898 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1899 {
1900         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1901                           cpu->sample.core_avg_perf);
1902 }
1903
1904 static inline int32_t get_target_pstate(struct cpudata *cpu)
1905 {
1906         struct sample *sample = &cpu->sample;
1907         int32_t busy_frac;
1908         int target, avg_pstate;
1909
1910         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1911                            sample->tsc);
1912
1913         if (busy_frac < cpu->iowait_boost)
1914                 busy_frac = cpu->iowait_boost;
1915
1916         sample->busy_scaled = busy_frac * 100;
1917
1918         target = global.no_turbo || global.turbo_disabled ?
1919                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1920         target += target >> 2;
1921         target = mul_fp(target, busy_frac);
1922         if (target < cpu->pstate.min_pstate)
1923                 target = cpu->pstate.min_pstate;
1924
1925         /*
1926          * If the average P-state during the previous cycle was higher than the
1927          * current target, add 50% of the difference to the target to reduce
1928          * possible performance oscillations and offset possible performance
1929          * loss related to moving the workload from one CPU to another within
1930          * a package/module.
1931          */
1932         avg_pstate = get_avg_pstate(cpu);
1933         if (avg_pstate > target)
1934                 target += (avg_pstate - target) >> 1;
1935
1936         return target;
1937 }
1938
1939 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1940 {
1941         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1942         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1943
1944         return clamp_t(int, pstate, min_pstate, max_pstate);
1945 }
1946
1947 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1948 {
1949         if (pstate == cpu->pstate.current_pstate)
1950                 return;
1951
1952         cpu->pstate.current_pstate = pstate;
1953         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1954 }
1955
1956 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1957 {
1958         int from = cpu->pstate.current_pstate;
1959         struct sample *sample;
1960         int target_pstate;
1961
1962         update_turbo_state();
1963
1964         target_pstate = get_target_pstate(cpu);
1965         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1966         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1967         intel_pstate_update_pstate(cpu, target_pstate);
1968
1969         sample = &cpu->sample;
1970         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1971                 fp_toint(sample->busy_scaled),
1972                 from,
1973                 cpu->pstate.current_pstate,
1974                 sample->mperf,
1975                 sample->aperf,
1976                 sample->tsc,
1977                 get_avg_frequency(cpu),
1978                 fp_toint(cpu->iowait_boost * 100));
1979 }
1980
1981 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1982                                      unsigned int flags)
1983 {
1984         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1985         u64 delta_ns;
1986
1987         /* Don't allow remote callbacks */
1988         if (smp_processor_id() != cpu->cpu)
1989                 return;
1990
1991         delta_ns = time - cpu->last_update;
1992         if (flags & SCHED_CPUFREQ_IOWAIT) {
1993                 /* Start over if the CPU may have been idle. */
1994                 if (delta_ns > TICK_NSEC) {
1995                         cpu->iowait_boost = ONE_EIGHTH_FP;
1996                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1997                         cpu->iowait_boost <<= 1;
1998                         if (cpu->iowait_boost > int_tofp(1))
1999                                 cpu->iowait_boost = int_tofp(1);
2000                 } else {
2001                         cpu->iowait_boost = ONE_EIGHTH_FP;
2002                 }
2003         } else if (cpu->iowait_boost) {
2004                 /* Clear iowait_boost if the CPU may have been idle. */
2005                 if (delta_ns > TICK_NSEC)
2006                         cpu->iowait_boost = 0;
2007                 else
2008                         cpu->iowait_boost >>= 1;
2009         }
2010         cpu->last_update = time;
2011         delta_ns = time - cpu->sample.time;
2012         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2013                 return;
2014
2015         if (intel_pstate_sample(cpu, time))
2016                 intel_pstate_adjust_pstate(cpu);
2017 }
2018
2019 static struct pstate_funcs core_funcs = {
2020         .get_max = core_get_max_pstate,
2021         .get_max_physical = core_get_max_pstate_physical,
2022         .get_min = core_get_min_pstate,
2023         .get_turbo = core_get_turbo_pstate,
2024         .get_scaling = core_get_scaling,
2025         .get_val = core_get_val,
2026 };
2027
2028 static const struct pstate_funcs silvermont_funcs = {
2029         .get_max = atom_get_max_pstate,
2030         .get_max_physical = atom_get_max_pstate,
2031         .get_min = atom_get_min_pstate,
2032         .get_turbo = atom_get_turbo_pstate,
2033         .get_val = atom_get_val,
2034         .get_scaling = silvermont_get_scaling,
2035         .get_vid = atom_get_vid,
2036 };
2037
2038 static const struct pstate_funcs airmont_funcs = {
2039         .get_max = atom_get_max_pstate,
2040         .get_max_physical = atom_get_max_pstate,
2041         .get_min = atom_get_min_pstate,
2042         .get_turbo = atom_get_turbo_pstate,
2043         .get_val = atom_get_val,
2044         .get_scaling = airmont_get_scaling,
2045         .get_vid = atom_get_vid,
2046 };
2047
2048 static const struct pstate_funcs knl_funcs = {
2049         .get_max = core_get_max_pstate,
2050         .get_max_physical = core_get_max_pstate_physical,
2051         .get_min = core_get_min_pstate,
2052         .get_turbo = knl_get_turbo_pstate,
2053         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2054         .get_scaling = core_get_scaling,
2055         .get_val = core_get_val,
2056 };
2057
2058 #define X86_MATCH(model, policy)                                         \
2059         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2060                                            X86_FEATURE_APERFMPERF, &policy)
2061
2062 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2063         X86_MATCH(SANDYBRIDGE,          core_funcs),
2064         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2065         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2066         X86_MATCH(IVYBRIDGE,            core_funcs),
2067         X86_MATCH(HASWELL,              core_funcs),
2068         X86_MATCH(BROADWELL,            core_funcs),
2069         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2070         X86_MATCH(HASWELL_X,            core_funcs),
2071         X86_MATCH(HASWELL_L,            core_funcs),
2072         X86_MATCH(HASWELL_G,            core_funcs),
2073         X86_MATCH(BROADWELL_G,          core_funcs),
2074         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2075         X86_MATCH(SKYLAKE_L,            core_funcs),
2076         X86_MATCH(BROADWELL_X,          core_funcs),
2077         X86_MATCH(SKYLAKE,              core_funcs),
2078         X86_MATCH(BROADWELL_D,          core_funcs),
2079         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2080         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2081         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2082         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2083         X86_MATCH(SKYLAKE_X,            core_funcs),
2084         {}
2085 };
2086 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2087
2088 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2089         X86_MATCH(BROADWELL_D,          core_funcs),
2090         X86_MATCH(BROADWELL_X,          core_funcs),
2091         X86_MATCH(SKYLAKE_X,            core_funcs),
2092         {}
2093 };
2094
2095 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2096         X86_MATCH(KABYLAKE,             core_funcs),
2097         {}
2098 };
2099
2100 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2101         X86_MATCH(SKYLAKE_X,            core_funcs),
2102         X86_MATCH(SKYLAKE,              core_funcs),
2103         {}
2104 };
2105
2106 static int intel_pstate_init_cpu(unsigned int cpunum)
2107 {
2108         struct cpudata *cpu;
2109
2110         cpu = all_cpu_data[cpunum];
2111
2112         if (!cpu) {
2113                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2114                 if (!cpu)
2115                         return -ENOMEM;
2116
2117                 all_cpu_data[cpunum] = cpu;
2118
2119                 cpu->cpu = cpunum;
2120
2121                 cpu->epp_default = -EINVAL;
2122
2123                 if (hwp_active) {
2124                         const struct x86_cpu_id *id;
2125
2126                         intel_pstate_hwp_enable(cpu);
2127
2128                         id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2129                         if (id && intel_pstate_acpi_pm_profile_server())
2130                                 hwp_boost = true;
2131                 }
2132         } else if (hwp_active) {
2133                 /*
2134                  * Re-enable HWP in case this happens after a resume from ACPI
2135                  * S3 if the CPU was offline during the whole system/resume
2136                  * cycle.
2137                  */
2138                 intel_pstate_hwp_reenable(cpu);
2139         }
2140
2141         cpu->epp_powersave = -EINVAL;
2142         cpu->epp_policy = 0;
2143
2144         intel_pstate_get_cpu_pstates(cpu);
2145
2146         pr_debug("controlling: cpu %d\n", cpunum);
2147
2148         return 0;
2149 }
2150
2151 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2152 {
2153         struct cpudata *cpu = all_cpu_data[cpu_num];
2154
2155         if (hwp_active && !hwp_boost)
2156                 return;
2157
2158         if (cpu->update_util_set)
2159                 return;
2160
2161         /* Prevent intel_pstate_update_util() from using stale data. */
2162         cpu->sample.time = 0;
2163         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2164                                      (hwp_active ?
2165                                       intel_pstate_update_util_hwp :
2166                                       intel_pstate_update_util));
2167         cpu->update_util_set = true;
2168 }
2169
2170 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2171 {
2172         struct cpudata *cpu_data = all_cpu_data[cpu];
2173
2174         if (!cpu_data->update_util_set)
2175                 return;
2176
2177         cpufreq_remove_update_util_hook(cpu);
2178         cpu_data->update_util_set = false;
2179         synchronize_rcu();
2180 }
2181
2182 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2183 {
2184         return global.turbo_disabled || global.no_turbo ?
2185                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2186 }
2187
2188 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2189                                             unsigned int policy_min,
2190                                             unsigned int policy_max)
2191 {
2192         int max_freq = intel_pstate_get_max_freq(cpu);
2193         int32_t max_policy_perf, min_policy_perf;
2194         int max_state, turbo_max;
2195
2196         /*
2197          * HWP needs some special consideration, because on BDX the
2198          * HWP_REQUEST uses abstract value to represent performance
2199          * rather than pure ratios.
2200          */
2201         if (hwp_active) {
2202                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2203         } else {
2204                 max_state = global.no_turbo || global.turbo_disabled ?
2205                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2206                 turbo_max = cpu->pstate.turbo_pstate;
2207         }
2208
2209         max_policy_perf = max_state * policy_max / max_freq;
2210         if (policy_max == policy_min) {
2211                 min_policy_perf = max_policy_perf;
2212         } else {
2213                 min_policy_perf = max_state * policy_min / max_freq;
2214                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2215                                           0, max_policy_perf);
2216         }
2217
2218         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2219                  cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2220
2221         /* Normalize user input to [min_perf, max_perf] */
2222         if (per_cpu_limits) {
2223                 cpu->min_perf_ratio = min_policy_perf;
2224                 cpu->max_perf_ratio = max_policy_perf;
2225         } else {
2226                 int32_t global_min, global_max;
2227
2228                 /* Global limits are in percent of the maximum turbo P-state. */
2229                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2230                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2231                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2232
2233                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2234                          global_min, global_max);
2235
2236                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2237                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2238                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2239                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2240
2241                 /* Make sure min_perf <= max_perf */
2242                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2243                                           cpu->max_perf_ratio);
2244
2245         }
2246         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2247                  cpu->max_perf_ratio,
2248                  cpu->min_perf_ratio);
2249 }
2250
2251 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2252 {
2253         struct cpudata *cpu;
2254
2255         if (!policy->cpuinfo.max_freq)
2256                 return -ENODEV;
2257
2258         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2259                  policy->cpuinfo.max_freq, policy->max);
2260
2261         cpu = all_cpu_data[policy->cpu];
2262         cpu->policy = policy->policy;
2263
2264         mutex_lock(&intel_pstate_limits_lock);
2265
2266         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2267
2268         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2269                 /*
2270                  * NOHZ_FULL CPUs need this as the governor callback may not
2271                  * be invoked on them.
2272                  */
2273                 intel_pstate_clear_update_util_hook(policy->cpu);
2274                 intel_pstate_max_within_limits(cpu);
2275         } else {
2276                 intel_pstate_set_update_util_hook(policy->cpu);
2277         }
2278
2279         if (hwp_active) {
2280                 /*
2281                  * When hwp_boost was active before and dynamically it
2282                  * was turned off, in that case we need to clear the
2283                  * update util hook.
2284                  */
2285                 if (!hwp_boost)
2286                         intel_pstate_clear_update_util_hook(policy->cpu);
2287                 intel_pstate_hwp_set(policy->cpu);
2288         }
2289
2290         mutex_unlock(&intel_pstate_limits_lock);
2291
2292         return 0;
2293 }
2294
2295 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2296                                            struct cpufreq_policy_data *policy)
2297 {
2298         if (!hwp_active &&
2299             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2300             policy->max < policy->cpuinfo.max_freq &&
2301             policy->max > cpu->pstate.max_freq) {
2302                 pr_debug("policy->max > max non turbo frequency\n");
2303                 policy->max = policy->cpuinfo.max_freq;
2304         }
2305 }
2306
2307 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2308                                            struct cpufreq_policy_data *policy)
2309 {
2310         update_turbo_state();
2311         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2312                                      intel_pstate_get_max_freq(cpu));
2313
2314         intel_pstate_adjust_policy_max(cpu, policy);
2315 }
2316
2317 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2318 {
2319         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2320
2321         return 0;
2322 }
2323
2324 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2325 {
2326         struct cpudata *cpu = all_cpu_data[policy->cpu];
2327
2328         pr_debug("CPU %d going offline\n", cpu->cpu);
2329
2330         if (cpu->suspended)
2331                 return 0;
2332
2333         /*
2334          * If the CPU is an SMT thread and it goes offline with the performance
2335          * settings different from the minimum, it will prevent its sibling
2336          * from getting to lower performance levels, so force the minimum
2337          * performance on CPU offline to prevent that from happening.
2338          */
2339         if (hwp_active)
2340                 intel_pstate_hwp_offline(cpu);
2341         else
2342                 intel_pstate_set_min_pstate(cpu);
2343
2344         intel_pstate_exit_perf_limits(policy);
2345
2346         return 0;
2347 }
2348
2349 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2350 {
2351         struct cpudata *cpu = all_cpu_data[policy->cpu];
2352
2353         pr_debug("CPU %d going online\n", cpu->cpu);
2354
2355         intel_pstate_init_acpi_perf_limits(policy);
2356
2357         if (hwp_active) {
2358                 /*
2359                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2360                  * know that it need not do that.
2361                  */
2362                 intel_pstate_hwp_reenable(cpu);
2363                 cpu->suspended = false;
2364         }
2365
2366         return 0;
2367 }
2368
2369 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2370 {
2371         pr_debug("CPU %d stopping\n", policy->cpu);
2372
2373         intel_pstate_clear_update_util_hook(policy->cpu);
2374 }
2375
2376 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2377 {
2378         pr_debug("CPU %d exiting\n", policy->cpu);
2379
2380         policy->fast_switch_possible = false;
2381
2382         return 0;
2383 }
2384
2385 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2386 {
2387         struct cpudata *cpu;
2388         int rc;
2389
2390         rc = intel_pstate_init_cpu(policy->cpu);
2391         if (rc)
2392                 return rc;
2393
2394         cpu = all_cpu_data[policy->cpu];
2395
2396         cpu->max_perf_ratio = 0xFF;
2397         cpu->min_perf_ratio = 0;
2398
2399         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2400         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2401
2402         /* cpuinfo and default policy values */
2403         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2404         update_turbo_state();
2405         global.turbo_disabled_mf = global.turbo_disabled;
2406         policy->cpuinfo.max_freq = global.turbo_disabled ?
2407                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2408         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2409
2410         if (hwp_active) {
2411                 unsigned int max_freq;
2412
2413                 max_freq = global.turbo_disabled ?
2414                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2415                 if (max_freq < policy->cpuinfo.max_freq)
2416                         policy->cpuinfo.max_freq = max_freq;
2417         }
2418
2419         intel_pstate_init_acpi_perf_limits(policy);
2420
2421         policy->fast_switch_possible = true;
2422
2423         return 0;
2424 }
2425
2426 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2427 {
2428         int ret = __intel_pstate_cpu_init(policy);
2429
2430         if (ret)
2431                 return ret;
2432
2433         /*
2434          * Set the policy to powersave to provide a valid fallback value in case
2435          * the default cpufreq governor is neither powersave nor performance.
2436          */
2437         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2438
2439         if (hwp_active) {
2440                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2441
2442                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2443         }
2444
2445         return 0;
2446 }
2447
2448 static struct cpufreq_driver intel_pstate = {
2449         .flags          = CPUFREQ_CONST_LOOPS,
2450         .verify         = intel_pstate_verify_policy,
2451         .setpolicy      = intel_pstate_set_policy,
2452         .suspend        = intel_pstate_suspend,
2453         .resume         = intel_pstate_resume,
2454         .init           = intel_pstate_cpu_init,
2455         .exit           = intel_pstate_cpu_exit,
2456         .stop_cpu       = intel_pstate_stop_cpu,
2457         .offline        = intel_pstate_cpu_offline,
2458         .online         = intel_pstate_cpu_online,
2459         .update_limits  = intel_pstate_update_limits,
2460         .name           = "intel_pstate",
2461 };
2462
2463 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2464 {
2465         struct cpudata *cpu = all_cpu_data[policy->cpu];
2466
2467         intel_pstate_verify_cpu_policy(cpu, policy);
2468         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2469
2470         return 0;
2471 }
2472
2473 /* Use of trace in passive mode:
2474  *
2475  * In passive mode the trace core_busy field (also known as the
2476  * performance field, and lablelled as such on the graphs; also known as
2477  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2478  * driver call was via the normal or fast switch path. Various graphs
2479  * output from the intel_pstate_tracer.py utility that include core_busy
2480  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2481  * so we use 10 to indicate the the normal path through the driver, and
2482  * 90 to indicate the fast switch path through the driver.
2483  * The scaled_busy field is not used, and is set to 0.
2484  */
2485
2486 #define INTEL_PSTATE_TRACE_TARGET 10
2487 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2488
2489 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2490 {
2491         struct sample *sample;
2492
2493         if (!trace_pstate_sample_enabled())
2494                 return;
2495
2496         if (!intel_pstate_sample(cpu, ktime_get()))
2497                 return;
2498
2499         sample = &cpu->sample;
2500         trace_pstate_sample(trace_type,
2501                 0,
2502                 old_pstate,
2503                 cpu->pstate.current_pstate,
2504                 sample->mperf,
2505                 sample->aperf,
2506                 sample->tsc,
2507                 get_avg_frequency(cpu),
2508                 fp_toint(cpu->iowait_boost * 100));
2509 }
2510
2511 static void intel_cpufreq_adjust_hwp(struct cpudata *cpu, u32 target_pstate,
2512                                      bool fast_switch)
2513 {
2514         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2515
2516         value &= ~HWP_MIN_PERF(~0L);
2517         value |= HWP_MIN_PERF(target_pstate);
2518
2519         /*
2520          * The entire MSR needs to be updated in order to update the HWP min
2521          * field in it, so opportunistically update the max too if needed.
2522          */
2523         value &= ~HWP_MAX_PERF(~0L);
2524         value |= HWP_MAX_PERF(cpu->max_perf_ratio);
2525
2526         if (value == prev)
2527                 return;
2528
2529         WRITE_ONCE(cpu->hwp_req_cached, value);
2530         if (fast_switch)
2531                 wrmsrl(MSR_HWP_REQUEST, value);
2532         else
2533                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2534 }
2535
2536 static void intel_cpufreq_adjust_perf_ctl(struct cpudata *cpu,
2537                                           u32 target_pstate, bool fast_switch)
2538 {
2539         if (fast_switch)
2540                 wrmsrl(MSR_IA32_PERF_CTL,
2541                        pstate_funcs.get_val(cpu, target_pstate));
2542         else
2543                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2544                               pstate_funcs.get_val(cpu, target_pstate));
2545 }
2546
2547 static int intel_cpufreq_update_pstate(struct cpudata *cpu, int target_pstate,
2548                                        bool fast_switch)
2549 {
2550         int old_pstate = cpu->pstate.current_pstate;
2551
2552         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2553         if (target_pstate != old_pstate) {
2554                 cpu->pstate.current_pstate = target_pstate;
2555                 if (hwp_active)
2556                         intel_cpufreq_adjust_hwp(cpu, target_pstate,
2557                                                  fast_switch);
2558                 else
2559                         intel_cpufreq_adjust_perf_ctl(cpu, target_pstate,
2560                                                       fast_switch);
2561         }
2562
2563         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2564                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2565
2566         return target_pstate;
2567 }
2568
2569 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2570                                 unsigned int target_freq,
2571                                 unsigned int relation)
2572 {
2573         struct cpudata *cpu = all_cpu_data[policy->cpu];
2574         struct cpufreq_freqs freqs;
2575         int target_pstate;
2576
2577         update_turbo_state();
2578
2579         freqs.old = policy->cur;
2580         freqs.new = target_freq;
2581
2582         cpufreq_freq_transition_begin(policy, &freqs);
2583
2584         switch (relation) {
2585         case CPUFREQ_RELATION_L:
2586                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2587                 break;
2588         case CPUFREQ_RELATION_H:
2589                 target_pstate = freqs.new / cpu->pstate.scaling;
2590                 break;
2591         default:
2592                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2593                 break;
2594         }
2595
2596         target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, false);
2597
2598         freqs.new = target_pstate * cpu->pstate.scaling;
2599
2600         cpufreq_freq_transition_end(policy, &freqs, false);
2601
2602         return 0;
2603 }
2604
2605 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2606                                               unsigned int target_freq)
2607 {
2608         struct cpudata *cpu = all_cpu_data[policy->cpu];
2609         int target_pstate;
2610
2611         update_turbo_state();
2612
2613         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2614
2615         target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, true);
2616
2617         return target_pstate * cpu->pstate.scaling;
2618 }
2619
2620 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2621 {
2622         int max_state, turbo_max, min_freq, max_freq, ret;
2623         struct freq_qos_request *req;
2624         struct cpudata *cpu;
2625         struct device *dev;
2626
2627         dev = get_cpu_device(policy->cpu);
2628         if (!dev)
2629                 return -ENODEV;
2630
2631         ret = __intel_pstate_cpu_init(policy);
2632         if (ret)
2633                 return ret;
2634
2635         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2636         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2637         policy->cur = policy->cpuinfo.min_freq;
2638
2639         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2640         if (!req) {
2641                 ret = -ENOMEM;
2642                 goto pstate_exit;
2643         }
2644
2645         cpu = all_cpu_data[policy->cpu];
2646
2647         if (hwp_active) {
2648                 u64 value;
2649
2650                 intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2651                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2652                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2653                 WRITE_ONCE(cpu->hwp_req_cached, value);
2654                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2655         } else {
2656                 turbo_max = cpu->pstate.turbo_pstate;
2657                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2658         }
2659
2660         min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2661         min_freq *= cpu->pstate.scaling;
2662         max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2663         max_freq *= cpu->pstate.scaling;
2664
2665         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2666                                    min_freq);
2667         if (ret < 0) {
2668                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2669                 goto free_req;
2670         }
2671
2672         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2673                                    max_freq);
2674         if (ret < 0) {
2675                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2676                 goto remove_min_req;
2677         }
2678
2679         policy->driver_data = req;
2680
2681         return 0;
2682
2683 remove_min_req:
2684         freq_qos_remove_request(req);
2685 free_req:
2686         kfree(req);
2687 pstate_exit:
2688         intel_pstate_exit_perf_limits(policy);
2689
2690         return ret;
2691 }
2692
2693 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2694 {
2695         struct freq_qos_request *req;
2696
2697         req = policy->driver_data;
2698
2699         freq_qos_remove_request(req + 1);
2700         freq_qos_remove_request(req);
2701         kfree(req);
2702
2703         return intel_pstate_cpu_exit(policy);
2704 }
2705
2706 static struct cpufreq_driver intel_cpufreq = {
2707         .flags          = CPUFREQ_CONST_LOOPS,
2708         .verify         = intel_cpufreq_verify_policy,
2709         .target         = intel_cpufreq_target,
2710         .fast_switch    = intel_cpufreq_fast_switch,
2711         .init           = intel_cpufreq_cpu_init,
2712         .exit           = intel_cpufreq_cpu_exit,
2713         .offline        = intel_pstate_cpu_offline,
2714         .online         = intel_pstate_cpu_online,
2715         .suspend        = intel_pstate_suspend,
2716         .resume         = intel_pstate_resume,
2717         .update_limits  = intel_pstate_update_limits,
2718         .name           = "intel_cpufreq",
2719 };
2720
2721 static struct cpufreq_driver *default_driver;
2722
2723 static void intel_pstate_driver_cleanup(void)
2724 {
2725         unsigned int cpu;
2726
2727         get_online_cpus();
2728         for_each_online_cpu(cpu) {
2729                 if (all_cpu_data[cpu]) {
2730                         if (intel_pstate_driver == &intel_pstate)
2731                                 intel_pstate_clear_update_util_hook(cpu);
2732
2733                         kfree(all_cpu_data[cpu]);
2734                         all_cpu_data[cpu] = NULL;
2735                 }
2736         }
2737         put_online_cpus();
2738
2739         intel_pstate_driver = NULL;
2740 }
2741
2742 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2743 {
2744         int ret;
2745
2746         if (driver == &intel_pstate)
2747                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
2748
2749         memset(&global, 0, sizeof(global));
2750         global.max_perf_pct = 100;
2751
2752         intel_pstate_driver = driver;
2753         ret = cpufreq_register_driver(intel_pstate_driver);
2754         if (ret) {
2755                 intel_pstate_driver_cleanup();
2756                 return ret;
2757         }
2758
2759         global.min_perf_pct = min_perf_pct_min();
2760
2761         return 0;
2762 }
2763
2764 static ssize_t intel_pstate_show_status(char *buf)
2765 {
2766         if (!intel_pstate_driver)
2767                 return sprintf(buf, "off\n");
2768
2769         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2770                                         "active" : "passive");
2771 }
2772
2773 static int intel_pstate_update_status(const char *buf, size_t size)
2774 {
2775         if (size == 3 && !strncmp(buf, "off", size)) {
2776                 if (!intel_pstate_driver)
2777                         return -EINVAL;
2778
2779                 if (hwp_active)
2780                         return -EBUSY;
2781
2782                 cpufreq_unregister_driver(intel_pstate_driver);
2783                 intel_pstate_driver_cleanup();
2784                 return 0;
2785         }
2786
2787         if (size == 6 && !strncmp(buf, "active", size)) {
2788                 if (intel_pstate_driver) {
2789                         if (intel_pstate_driver == &intel_pstate)
2790                                 return 0;
2791
2792                         cpufreq_unregister_driver(intel_pstate_driver);
2793                 }
2794
2795                 return intel_pstate_register_driver(&intel_pstate);
2796         }
2797
2798         if (size == 7 && !strncmp(buf, "passive", size)) {
2799                 if (intel_pstate_driver) {
2800                         if (intel_pstate_driver == &intel_cpufreq)
2801                                 return 0;
2802
2803                         cpufreq_unregister_driver(intel_pstate_driver);
2804                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
2805                 }
2806
2807                 return intel_pstate_register_driver(&intel_cpufreq);
2808         }
2809
2810         return -EINVAL;
2811 }
2812
2813 static int no_load __initdata;
2814 static int no_hwp __initdata;
2815 static int hwp_only __initdata;
2816 static unsigned int force_load __initdata;
2817
2818 static int __init intel_pstate_msrs_not_valid(void)
2819 {
2820         if (!pstate_funcs.get_max() ||
2821             !pstate_funcs.get_min() ||
2822             !pstate_funcs.get_turbo())
2823                 return -ENODEV;
2824
2825         return 0;
2826 }
2827
2828 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2829 {
2830         pstate_funcs.get_max   = funcs->get_max;
2831         pstate_funcs.get_max_physical = funcs->get_max_physical;
2832         pstate_funcs.get_min   = funcs->get_min;
2833         pstate_funcs.get_turbo = funcs->get_turbo;
2834         pstate_funcs.get_scaling = funcs->get_scaling;
2835         pstate_funcs.get_val   = funcs->get_val;
2836         pstate_funcs.get_vid   = funcs->get_vid;
2837         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2838 }
2839
2840 #ifdef CONFIG_ACPI
2841
2842 static bool __init intel_pstate_no_acpi_pss(void)
2843 {
2844         int i;
2845
2846         for_each_possible_cpu(i) {
2847                 acpi_status status;
2848                 union acpi_object *pss;
2849                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2850                 struct acpi_processor *pr = per_cpu(processors, i);
2851
2852                 if (!pr)
2853                         continue;
2854
2855                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2856                 if (ACPI_FAILURE(status))
2857                         continue;
2858
2859                 pss = buffer.pointer;
2860                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2861                         kfree(pss);
2862                         return false;
2863                 }
2864
2865                 kfree(pss);
2866         }
2867
2868         pr_debug("ACPI _PSS not found\n");
2869         return true;
2870 }
2871
2872 static bool __init intel_pstate_no_acpi_pcch(void)
2873 {
2874         acpi_status status;
2875         acpi_handle handle;
2876
2877         status = acpi_get_handle(NULL, "\\_SB", &handle);
2878         if (ACPI_FAILURE(status))
2879                 goto not_found;
2880
2881         if (acpi_has_method(handle, "PCCH"))
2882                 return false;
2883
2884 not_found:
2885         pr_debug("ACPI PCCH not found\n");
2886         return true;
2887 }
2888
2889 static bool __init intel_pstate_has_acpi_ppc(void)
2890 {
2891         int i;
2892
2893         for_each_possible_cpu(i) {
2894                 struct acpi_processor *pr = per_cpu(processors, i);
2895
2896                 if (!pr)
2897                         continue;
2898                 if (acpi_has_method(pr->handle, "_PPC"))
2899                         return true;
2900         }
2901         pr_debug("ACPI _PPC not found\n");
2902         return false;
2903 }
2904
2905 enum {
2906         PSS,
2907         PPC,
2908 };
2909
2910 /* Hardware vendor-specific info that has its own power management modes */
2911 static struct acpi_platform_list plat_info[] __initdata = {
2912         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2913         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2914         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2915         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2916         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2917         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2918         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2919         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2920         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2921         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2922         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2923         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2924         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2925         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2926         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2927         { } /* End */
2928 };
2929
2930 #define BITMASK_OOB     (BIT(8) | BIT(18))
2931
2932 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2933 {
2934         const struct x86_cpu_id *id;
2935         u64 misc_pwr;
2936         int idx;
2937
2938         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2939         if (id) {
2940                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2941                 if (misc_pwr & BITMASK_OOB) {
2942                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
2943                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
2944                         return true;
2945                 }
2946         }
2947
2948         idx = acpi_match_platform_list(plat_info);
2949         if (idx < 0)
2950                 return false;
2951
2952         switch (plat_info[idx].data) {
2953         case PSS:
2954                 if (!intel_pstate_no_acpi_pss())
2955                         return false;
2956
2957                 return intel_pstate_no_acpi_pcch();
2958         case PPC:
2959                 return intel_pstate_has_acpi_ppc() && !force_load;
2960         }
2961
2962         return false;
2963 }
2964
2965 static void intel_pstate_request_control_from_smm(void)
2966 {
2967         /*
2968          * It may be unsafe to request P-states control from SMM if _PPC support
2969          * has not been enabled.
2970          */
2971         if (acpi_ppc)
2972                 acpi_processor_pstate_control();
2973 }
2974 #else /* CONFIG_ACPI not enabled */
2975 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2976 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2977 static inline void intel_pstate_request_control_from_smm(void) {}
2978 #endif /* CONFIG_ACPI */
2979
2980 #define INTEL_PSTATE_HWP_BROADWELL      0x01
2981
2982 #define X86_MATCH_HWP(model, hwp_mode)                                  \
2983         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2984                                            X86_FEATURE_HWP, hwp_mode)
2985
2986 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2987         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
2988         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
2989         X86_MATCH_HWP(ANY,              0),
2990         {}
2991 };
2992
2993 static int __init intel_pstate_init(void)
2994 {
2995         const struct x86_cpu_id *id;
2996         int rc;
2997
2998         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2999                 return -ENODEV;
3000
3001         if (no_load)
3002                 return -ENODEV;
3003
3004         id = x86_match_cpu(hwp_support_ids);
3005         if (id) {
3006                 copy_cpu_funcs(&core_funcs);
3007                 /*
3008                  * Avoid enabling HWP for processors without EPP support,
3009                  * because that means incomplete HWP implementation which is a
3010                  * corner case and supporting it is generally problematic.
3011                  */
3012                 if (!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) {
3013                         hwp_active++;
3014                         hwp_mode_bdw = id->driver_data;
3015                         intel_pstate.attr = hwp_cpufreq_attrs;
3016                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3017                         if (!default_driver)
3018                                 default_driver = &intel_pstate;
3019
3020                         goto hwp_cpu_matched;
3021                 }
3022         } else {
3023                 id = x86_match_cpu(intel_pstate_cpu_ids);
3024                 if (!id) {
3025                         pr_info("CPU model not supported\n");
3026                         return -ENODEV;
3027                 }
3028
3029                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3030         }
3031
3032         if (intel_pstate_msrs_not_valid()) {
3033                 pr_info("Invalid MSRs\n");
3034                 return -ENODEV;
3035         }
3036         /* Without HWP start in the passive mode. */
3037         if (!default_driver)
3038                 default_driver = &intel_cpufreq;
3039
3040 hwp_cpu_matched:
3041         /*
3042          * The Intel pstate driver will be ignored if the platform
3043          * firmware has its own power management modes.
3044          */
3045         if (intel_pstate_platform_pwr_mgmt_exists()) {
3046                 pr_info("P-states controlled by the platform\n");
3047                 return -ENODEV;
3048         }
3049
3050         if (!hwp_active && hwp_only)
3051                 return -ENOTSUPP;
3052
3053         pr_info("Intel P-state driver initializing\n");
3054
3055         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3056         if (!all_cpu_data)
3057                 return -ENOMEM;
3058
3059         intel_pstate_request_control_from_smm();
3060
3061         intel_pstate_sysfs_expose_params();
3062
3063         mutex_lock(&intel_pstate_driver_lock);
3064         rc = intel_pstate_register_driver(default_driver);
3065         mutex_unlock(&intel_pstate_driver_lock);
3066         if (rc)
3067                 return rc;
3068
3069         if (hwp_active) {
3070                 const struct x86_cpu_id *id;
3071
3072                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3073                 if (id) {
3074                         set_power_ctl_ee_state(false);
3075                         pr_info("Disabling energy efficiency optimization\n");
3076                 }
3077
3078                 pr_info("HWP enabled\n");
3079         }
3080
3081         return 0;
3082 }
3083 device_initcall(intel_pstate_init);
3084
3085 static int __init intel_pstate_setup(char *str)
3086 {
3087         if (!str)
3088                 return -EINVAL;
3089
3090         if (!strcmp(str, "disable"))
3091                 no_load = 1;
3092         else if (!strcmp(str, "active"))
3093                 default_driver = &intel_pstate;
3094         else if (!strcmp(str, "passive"))
3095                 default_driver = &intel_cpufreq;
3096
3097         if (!strcmp(str, "no_hwp")) {
3098                 pr_info("HWP disabled\n");
3099                 no_hwp = 1;
3100         }
3101         if (!strcmp(str, "force"))
3102                 force_load = 1;
3103         if (!strcmp(str, "hwp_only"))
3104                 hwp_only = 1;
3105         if (!strcmp(str, "per_cpu_perf_limits"))
3106                 per_cpu_limits = true;
3107
3108 #ifdef CONFIG_ACPI
3109         if (!strcmp(str, "support_acpi_ppc"))
3110                 acpi_ppc = true;
3111 #endif
3112
3113         return 0;
3114 }
3115 early_param("intel_pstate", intel_pstate_setup);
3116
3117 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3118 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3119 MODULE_LICENSE("GPL");