Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <linux/bitfield.h>
29 #include <trace/events/power.h>
30
31 #include <asm/cpu.h>
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36 #include <asm/intel-family.h>
37 #include "../drivers/thermal/intel/thermal_interrupt.h"
38
39 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
40
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
44
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #include <acpi/cppc_acpi.h>
48 #endif
49
50 #define FRAC_BITS 8
51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
52 #define fp_toint(X) ((X) >> FRAC_BITS)
53
54 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
55
56 #define EXT_BITS 6
57 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60
61 static inline int32_t mul_fp(int32_t x, int32_t y)
62 {
63         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
64 }
65
66 static inline int32_t div_fp(s64 x, s64 y)
67 {
68         return div64_s64((int64_t)x << FRAC_BITS, y);
69 }
70
71 static inline int ceiling_fp(int32_t x)
72 {
73         int mask, ret;
74
75         ret = fp_toint(x);
76         mask = (1 << FRAC_BITS) - 1;
77         if (x & mask)
78                 ret += 1;
79         return ret;
80 }
81
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84         return (x * y) >> EXT_FRAC_BITS;
85 }
86
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89         return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91
92 /**
93  * struct sample -      Store performance sample
94  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
95  *                      performance during last sample period
96  * @busy_scaled:        Scaled busy value which is used to calculate next
97  *                      P state. This can be different than core_avg_perf
98  *                      to account for cpu idle period
99  * @aperf:              Difference of actual performance frequency clock count
100  *                      read from APERF MSR between last and current sample
101  * @mperf:              Difference of maximum performance frequency clock count
102  *                      read from MPERF MSR between last and current sample
103  * @tsc:                Difference of time stamp counter between last and
104  *                      current sample
105  * @time:               Current time from scheduler
106  *
107  * This structure is used in the cpudata structure to store performance sample
108  * data for choosing next P State.
109  */
110 struct sample {
111         int32_t core_avg_perf;
112         int32_t busy_scaled;
113         u64 aperf;
114         u64 mperf;
115         u64 tsc;
116         u64 time;
117 };
118
119 /**
120  * struct pstate_data - Store P state data
121  * @current_pstate:     Current requested P state
122  * @min_pstate:         Min P state possible for this platform
123  * @max_pstate:         Max P state possible for this platform
124  * @max_pstate_physical:This is physical Max P state for a processor
125  *                      This can be higher than the max_pstate which can
126  *                      be limited by platform thermal design power limits
127  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
128  * @scaling:            Scaling factor between performance and frequency
129  * @turbo_pstate:       Max Turbo P state possible for this platform
130  * @min_freq:           @min_pstate frequency in cpufreq units
131  * @max_freq:           @max_pstate frequency in cpufreq units
132  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
133  *
134  * Stores the per cpu model P state limits and current P state.
135  */
136 struct pstate_data {
137         int     current_pstate;
138         int     min_pstate;
139         int     max_pstate;
140         int     max_pstate_physical;
141         int     perf_ctl_scaling;
142         int     scaling;
143         int     turbo_pstate;
144         unsigned int min_freq;
145         unsigned int max_freq;
146         unsigned int turbo_freq;
147 };
148
149 /**
150  * struct vid_data -    Stores voltage information data
151  * @min:                VID data for this platform corresponding to
152  *                      the lowest P state
153  * @max:                VID data corresponding to the highest P State.
154  * @turbo:              VID data for turbo P state
155  * @ratio:              Ratio of (vid max - vid min) /
156  *                      (max P state - Min P State)
157  *
158  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
159  * This data is used in Atom platforms, where in addition to target P state,
160  * the voltage data needs to be specified to select next P State.
161  */
162 struct vid_data {
163         int min;
164         int max;
165         int turbo;
166         int32_t ratio;
167 };
168
169 /**
170  * struct global_params - Global parameters, mostly tunable via sysfs.
171  * @no_turbo:           Whether or not to use turbo P-states.
172  * @turbo_disabled:     Whether or not turbo P-states are available at all,
173  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
174  *                      not the maximum reported turbo P-state is different from
175  *                      the maximum reported non-turbo one.
176  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
177  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
178  *                      P-state capacity.
179  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
180  *                      P-state capacity.
181  */
182 struct global_params {
183         bool no_turbo;
184         bool turbo_disabled;
185         bool turbo_disabled_mf;
186         int max_perf_pct;
187         int min_perf_pct;
188 };
189
190 /**
191  * struct cpudata -     Per CPU instance data storage
192  * @cpu:                CPU number for this instance data
193  * @policy:             CPUFreq policy value
194  * @update_util:        CPUFreq utility callback information
195  * @update_util_set:    CPUFreq utility callback is set
196  * @iowait_boost:       iowait-related boost fraction
197  * @last_update:        Time of the last update.
198  * @pstate:             Stores P state limits for this CPU
199  * @vid:                Stores VID limits for this CPU
200  * @last_sample_time:   Last Sample time
201  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
202  * @prev_aperf:         Last APERF value read from APERF MSR
203  * @prev_mperf:         Last MPERF value read from MPERF MSR
204  * @prev_tsc:           Last timestamp counter (TSC) value
205  * @sample:             Storage for storing last Sample data
206  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
207  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
208  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
209  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
210  * @epp_powersave:      Last saved HWP energy performance preference
211  *                      (EPP) or energy performance bias (EPB),
212  *                      when policy switched to performance
213  * @epp_policy:         Last saved policy used to set EPP/EPB
214  * @epp_default:        Power on default HWP energy performance
215  *                      preference/bias
216  * @epp_cached          Cached HWP energy-performance preference value
217  * @hwp_req_cached:     Cached value of the last HWP Request MSR
218  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
219  * @last_io_update:     Last time when IO wake flag was set
220  * @sched_flags:        Store scheduler flags for possible cross CPU update
221  * @hwp_boost_min:      Last HWP boosted min performance
222  * @suspended:          Whether or not the driver has been suspended.
223  * @hwp_notify_work:    workqueue for HWP notifications.
224  *
225  * This structure stores per CPU instance data for all CPUs.
226  */
227 struct cpudata {
228         int cpu;
229
230         unsigned int policy;
231         struct update_util_data update_util;
232         bool   update_util_set;
233
234         struct pstate_data pstate;
235         struct vid_data vid;
236
237         u64     last_update;
238         u64     last_sample_time;
239         u64     aperf_mperf_shift;
240         u64     prev_aperf;
241         u64     prev_mperf;
242         u64     prev_tsc;
243         struct sample sample;
244         int32_t min_perf_ratio;
245         int32_t max_perf_ratio;
246 #ifdef CONFIG_ACPI
247         struct acpi_processor_performance acpi_perf_data;
248         bool valid_pss_table;
249 #endif
250         unsigned int iowait_boost;
251         s16 epp_powersave;
252         s16 epp_policy;
253         s16 epp_default;
254         s16 epp_cached;
255         u64 hwp_req_cached;
256         u64 hwp_cap_cached;
257         u64 last_io_update;
258         unsigned int sched_flags;
259         u32 hwp_boost_min;
260         bool suspended;
261         struct delayed_work hwp_notify_work;
262 };
263
264 static struct cpudata **all_cpu_data;
265
266 /**
267  * struct pstate_funcs - Per CPU model specific callbacks
268  * @get_max:            Callback to get maximum non turbo effective P state
269  * @get_max_physical:   Callback to get maximum non turbo physical P state
270  * @get_min:            Callback to get minimum P state
271  * @get_turbo:          Callback to get turbo P state
272  * @get_scaling:        Callback to get frequency scaling factor
273  * @get_cpu_scaling:    Get frequency scaling factor for a given cpu
274  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
275  * @get_val:            Callback to convert P state to actual MSR write value
276  * @get_vid:            Callback to get VID data for Atom platforms
277  *
278  * Core and Atom CPU models have different way to get P State limits. This
279  * structure is used to store those callbacks.
280  */
281 struct pstate_funcs {
282         int (*get_max)(int cpu);
283         int (*get_max_physical)(int cpu);
284         int (*get_min)(int cpu);
285         int (*get_turbo)(int cpu);
286         int (*get_scaling)(void);
287         int (*get_cpu_scaling)(int cpu);
288         int (*get_aperf_mperf_shift)(void);
289         u64 (*get_val)(struct cpudata*, int pstate);
290         void (*get_vid)(struct cpudata *);
291 };
292
293 static struct pstate_funcs pstate_funcs __read_mostly;
294
295 static int hwp_active __read_mostly;
296 static int hwp_mode_bdw __read_mostly;
297 static bool per_cpu_limits __read_mostly;
298 static bool hwp_boost __read_mostly;
299 static bool hwp_forced __read_mostly;
300
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302
303 #define HYBRID_SCALING_FACTOR           78741
304 #define HYBRID_SCALING_FACTOR_MTL       80000
305
306 static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR;
307
308 static inline int core_get_scaling(void)
309 {
310         return 100000;
311 }
312
313 #ifdef CONFIG_ACPI
314 static bool acpi_ppc;
315 #endif
316
317 static struct global_params global;
318
319 static DEFINE_MUTEX(intel_pstate_driver_lock);
320 static DEFINE_MUTEX(intel_pstate_limits_lock);
321
322 #ifdef CONFIG_ACPI
323
324 static bool intel_pstate_acpi_pm_profile_server(void)
325 {
326         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
327             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
328                 return true;
329
330         return false;
331 }
332
333 static bool intel_pstate_get_ppc_enable_status(void)
334 {
335         if (intel_pstate_acpi_pm_profile_server())
336                 return true;
337
338         return acpi_ppc;
339 }
340
341 #ifdef CONFIG_ACPI_CPPC_LIB
342
343 /* The work item is needed to avoid CPU hotplug locking issues */
344 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
345 {
346         sched_set_itmt_support();
347 }
348
349 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
350
351 #define CPPC_MAX_PERF   U8_MAX
352
353 static void intel_pstate_set_itmt_prio(int cpu)
354 {
355         struct cppc_perf_caps cppc_perf;
356         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
357         int ret;
358
359         ret = cppc_get_perf_caps(cpu, &cppc_perf);
360         if (ret)
361                 return;
362
363         /*
364          * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
365          * In this case we can't use CPPC.highest_perf to enable ITMT.
366          * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
367          */
368         if (cppc_perf.highest_perf == CPPC_MAX_PERF)
369                 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
370
371         /*
372          * The priorities can be set regardless of whether or not
373          * sched_set_itmt_support(true) has been called and it is valid to
374          * update them at any time after it has been called.
375          */
376         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
377
378         if (max_highest_perf <= min_highest_perf) {
379                 if (cppc_perf.highest_perf > max_highest_perf)
380                         max_highest_perf = cppc_perf.highest_perf;
381
382                 if (cppc_perf.highest_perf < min_highest_perf)
383                         min_highest_perf = cppc_perf.highest_perf;
384
385                 if (max_highest_perf > min_highest_perf) {
386                         /*
387                          * This code can be run during CPU online under the
388                          * CPU hotplug locks, so sched_set_itmt_support()
389                          * cannot be called from here.  Queue up a work item
390                          * to invoke it.
391                          */
392                         schedule_work(&sched_itmt_work);
393                 }
394         }
395 }
396
397 static int intel_pstate_get_cppc_guaranteed(int cpu)
398 {
399         struct cppc_perf_caps cppc_perf;
400         int ret;
401
402         ret = cppc_get_perf_caps(cpu, &cppc_perf);
403         if (ret)
404                 return ret;
405
406         if (cppc_perf.guaranteed_perf)
407                 return cppc_perf.guaranteed_perf;
408
409         return cppc_perf.nominal_perf;
410 }
411
412 static int intel_pstate_cppc_get_scaling(int cpu)
413 {
414         struct cppc_perf_caps cppc_perf;
415         int ret;
416
417         ret = cppc_get_perf_caps(cpu, &cppc_perf);
418
419         /*
420          * If the nominal frequency and the nominal performance are not
421          * zero and the ratio between them is not 100, return the hybrid
422          * scaling factor.
423          */
424         if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
425             cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
426                 return hybrid_scaling_factor;
427
428         return core_get_scaling();
429 }
430
431 #else /* CONFIG_ACPI_CPPC_LIB */
432 static inline void intel_pstate_set_itmt_prio(int cpu)
433 {
434 }
435 #endif /* CONFIG_ACPI_CPPC_LIB */
436
437 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
438 {
439         struct cpudata *cpu;
440         int ret;
441         int i;
442
443         if (hwp_active) {
444                 intel_pstate_set_itmt_prio(policy->cpu);
445                 return;
446         }
447
448         if (!intel_pstate_get_ppc_enable_status())
449                 return;
450
451         cpu = all_cpu_data[policy->cpu];
452
453         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
454                                                   policy->cpu);
455         if (ret)
456                 return;
457
458         /*
459          * Check if the control value in _PSS is for PERF_CTL MSR, which should
460          * guarantee that the states returned by it map to the states in our
461          * list directly.
462          */
463         if (cpu->acpi_perf_data.control_register.space_id !=
464                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
465                 goto err;
466
467         /*
468          * If there is only one entry _PSS, simply ignore _PSS and continue as
469          * usual without taking _PSS into account
470          */
471         if (cpu->acpi_perf_data.state_count < 2)
472                 goto err;
473
474         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
475         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
476                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
477                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
478                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
479                          (u32) cpu->acpi_perf_data.states[i].power,
480                          (u32) cpu->acpi_perf_data.states[i].control);
481         }
482
483         cpu->valid_pss_table = true;
484         pr_debug("_PPC limits will be enforced\n");
485
486         return;
487
488  err:
489         cpu->valid_pss_table = false;
490         acpi_processor_unregister_performance(policy->cpu);
491 }
492
493 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
494 {
495         struct cpudata *cpu;
496
497         cpu = all_cpu_data[policy->cpu];
498         if (!cpu->valid_pss_table)
499                 return;
500
501         acpi_processor_unregister_performance(policy->cpu);
502 }
503 #else /* CONFIG_ACPI */
504 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
505 {
506 }
507
508 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
509 {
510 }
511
512 static inline bool intel_pstate_acpi_pm_profile_server(void)
513 {
514         return false;
515 }
516 #endif /* CONFIG_ACPI */
517
518 #ifndef CONFIG_ACPI_CPPC_LIB
519 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
520 {
521         return -ENOTSUPP;
522 }
523
524 static int intel_pstate_cppc_get_scaling(int cpu)
525 {
526         return core_get_scaling();
527 }
528 #endif /* CONFIG_ACPI_CPPC_LIB */
529
530 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
531                                         unsigned int relation)
532 {
533         if (freq == cpu->pstate.turbo_freq)
534                 return cpu->pstate.turbo_pstate;
535
536         if (freq == cpu->pstate.max_freq)
537                 return cpu->pstate.max_pstate;
538
539         switch (relation) {
540         case CPUFREQ_RELATION_H:
541                 return freq / cpu->pstate.scaling;
542         case CPUFREQ_RELATION_C:
543                 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
544         }
545
546         return DIV_ROUND_UP(freq, cpu->pstate.scaling);
547 }
548
549 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
550 {
551         return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
552 }
553
554 /**
555  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
556  * @cpu: Target CPU.
557  *
558  * On hybrid processors, HWP may expose more performance levels than there are
559  * P-states accessible through the PERF_CTL interface.  If that happens, the
560  * scaling factor between HWP performance levels and CPU frequency will be less
561  * than the scaling factor between P-state values and CPU frequency.
562  *
563  * In that case, adjust the CPU parameters used in computations accordingly.
564  */
565 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
566 {
567         int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
568         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
569         int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
570         int scaling = cpu->pstate.scaling;
571         int freq;
572
573         pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
574         pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
575         pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
576         pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
577         pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
578         pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
579
580         cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
581                                            perf_ctl_scaling);
582         cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
583                                          perf_ctl_scaling);
584
585         freq = perf_ctl_max_phys * perf_ctl_scaling;
586         cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
587
588         freq = cpu->pstate.min_pstate * perf_ctl_scaling;
589         cpu->pstate.min_freq = freq;
590         /*
591          * Cast the min P-state value retrieved via pstate_funcs.get_min() to
592          * the effective range of HWP performance levels.
593          */
594         cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
595 }
596
597 static inline void update_turbo_state(void)
598 {
599         u64 misc_en;
600
601         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
602         global.turbo_disabled = misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
603 }
604
605 static int min_perf_pct_min(void)
606 {
607         struct cpudata *cpu = all_cpu_data[0];
608         int turbo_pstate = cpu->pstate.turbo_pstate;
609
610         return turbo_pstate ?
611                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
612 }
613
614 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
615 {
616         u64 epb;
617         int ret;
618
619         if (!boot_cpu_has(X86_FEATURE_EPB))
620                 return -ENXIO;
621
622         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
623         if (ret)
624                 return (s16)ret;
625
626         return (s16)(epb & 0x0f);
627 }
628
629 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
630 {
631         s16 epp;
632
633         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
634                 /*
635                  * When hwp_req_data is 0, means that caller didn't read
636                  * MSR_HWP_REQUEST, so need to read and get EPP.
637                  */
638                 if (!hwp_req_data) {
639                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
640                                             &hwp_req_data);
641                         if (epp)
642                                 return epp;
643                 }
644                 epp = (hwp_req_data >> 24) & 0xff;
645         } else {
646                 /* When there is no EPP present, HWP uses EPB settings */
647                 epp = intel_pstate_get_epb(cpu_data);
648         }
649
650         return epp;
651 }
652
653 static int intel_pstate_set_epb(int cpu, s16 pref)
654 {
655         u64 epb;
656         int ret;
657
658         if (!boot_cpu_has(X86_FEATURE_EPB))
659                 return -ENXIO;
660
661         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
662         if (ret)
663                 return ret;
664
665         epb = (epb & ~0x0f) | pref;
666         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
667
668         return 0;
669 }
670
671 /*
672  * EPP/EPB display strings corresponding to EPP index in the
673  * energy_perf_strings[]
674  *      index           String
675  *-------------------------------------
676  *      0               default
677  *      1               performance
678  *      2               balance_performance
679  *      3               balance_power
680  *      4               power
681  */
682
683 enum energy_perf_value_index {
684         EPP_INDEX_DEFAULT = 0,
685         EPP_INDEX_PERFORMANCE,
686         EPP_INDEX_BALANCE_PERFORMANCE,
687         EPP_INDEX_BALANCE_POWERSAVE,
688         EPP_INDEX_POWERSAVE,
689 };
690
691 static const char * const energy_perf_strings[] = {
692         [EPP_INDEX_DEFAULT] = "default",
693         [EPP_INDEX_PERFORMANCE] = "performance",
694         [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
695         [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
696         [EPP_INDEX_POWERSAVE] = "power",
697         NULL
698 };
699 static unsigned int epp_values[] = {
700         [EPP_INDEX_DEFAULT] = 0, /* Unused index */
701         [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
702         [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
703         [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
704         [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
705 };
706
707 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
708 {
709         s16 epp;
710         int index = -EINVAL;
711
712         *raw_epp = 0;
713         epp = intel_pstate_get_epp(cpu_data, 0);
714         if (epp < 0)
715                 return epp;
716
717         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
718                 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
719                         return EPP_INDEX_PERFORMANCE;
720                 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
721                         return EPP_INDEX_BALANCE_PERFORMANCE;
722                 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
723                         return EPP_INDEX_BALANCE_POWERSAVE;
724                 if (epp == epp_values[EPP_INDEX_POWERSAVE])
725                         return EPP_INDEX_POWERSAVE;
726                 *raw_epp = epp;
727                 return 0;
728         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
729                 /*
730                  * Range:
731                  *      0x00-0x03       :       Performance
732                  *      0x04-0x07       :       Balance performance
733                  *      0x08-0x0B       :       Balance power
734                  *      0x0C-0x0F       :       Power
735                  * The EPB is a 4 bit value, but our ranges restrict the
736                  * value which can be set. Here only using top two bits
737                  * effectively.
738                  */
739                 index = (epp >> 2) + 1;
740         }
741
742         return index;
743 }
744
745 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
746 {
747         int ret;
748
749         /*
750          * Use the cached HWP Request MSR value, because in the active mode the
751          * register itself may be updated by intel_pstate_hwp_boost_up() or
752          * intel_pstate_hwp_boost_down() at any time.
753          */
754         u64 value = READ_ONCE(cpu->hwp_req_cached);
755
756         value &= ~GENMASK_ULL(31, 24);
757         value |= (u64)epp << 24;
758         /*
759          * The only other updater of hwp_req_cached in the active mode,
760          * intel_pstate_hwp_set(), is called under the same lock as this
761          * function, so it cannot run in parallel with the update below.
762          */
763         WRITE_ONCE(cpu->hwp_req_cached, value);
764         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
765         if (!ret)
766                 cpu->epp_cached = epp;
767
768         return ret;
769 }
770
771 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
772                                               int pref_index, bool use_raw,
773                                               u32 raw_epp)
774 {
775         int epp = -EINVAL;
776         int ret;
777
778         if (!pref_index)
779                 epp = cpu_data->epp_default;
780
781         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
782                 if (use_raw)
783                         epp = raw_epp;
784                 else if (epp == -EINVAL)
785                         epp = epp_values[pref_index];
786
787                 /*
788                  * To avoid confusion, refuse to set EPP to any values different
789                  * from 0 (performance) if the current policy is "performance",
790                  * because those values would be overridden.
791                  */
792                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
793                         return -EBUSY;
794
795                 ret = intel_pstate_set_epp(cpu_data, epp);
796         } else {
797                 if (epp == -EINVAL)
798                         epp = (pref_index - 1) << 2;
799                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
800         }
801
802         return ret;
803 }
804
805 static ssize_t show_energy_performance_available_preferences(
806                                 struct cpufreq_policy *policy, char *buf)
807 {
808         int i = 0;
809         int ret = 0;
810
811         while (energy_perf_strings[i] != NULL)
812                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
813
814         ret += sprintf(&buf[ret], "\n");
815
816         return ret;
817 }
818
819 cpufreq_freq_attr_ro(energy_performance_available_preferences);
820
821 static struct cpufreq_driver intel_pstate;
822
823 static ssize_t store_energy_performance_preference(
824                 struct cpufreq_policy *policy, const char *buf, size_t count)
825 {
826         struct cpudata *cpu = all_cpu_data[policy->cpu];
827         char str_preference[21];
828         bool raw = false;
829         ssize_t ret;
830         u32 epp = 0;
831
832         ret = sscanf(buf, "%20s", str_preference);
833         if (ret != 1)
834                 return -EINVAL;
835
836         ret = match_string(energy_perf_strings, -1, str_preference);
837         if (ret < 0) {
838                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
839                         return ret;
840
841                 ret = kstrtouint(buf, 10, &epp);
842                 if (ret)
843                         return ret;
844
845                 if (epp > 255)
846                         return -EINVAL;
847
848                 raw = true;
849         }
850
851         /*
852          * This function runs with the policy R/W semaphore held, which
853          * guarantees that the driver pointer will not change while it is
854          * running.
855          */
856         if (!intel_pstate_driver)
857                 return -EAGAIN;
858
859         mutex_lock(&intel_pstate_limits_lock);
860
861         if (intel_pstate_driver == &intel_pstate) {
862                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
863         } else {
864                 /*
865                  * In the passive mode the governor needs to be stopped on the
866                  * target CPU before the EPP update and restarted after it,
867                  * which is super-heavy-weight, so make sure it is worth doing
868                  * upfront.
869                  */
870                 if (!raw)
871                         epp = ret ? epp_values[ret] : cpu->epp_default;
872
873                 if (cpu->epp_cached != epp) {
874                         int err;
875
876                         cpufreq_stop_governor(policy);
877                         ret = intel_pstate_set_epp(cpu, epp);
878                         err = cpufreq_start_governor(policy);
879                         if (!ret)
880                                 ret = err;
881                 } else {
882                         ret = 0;
883                 }
884         }
885
886         mutex_unlock(&intel_pstate_limits_lock);
887
888         return ret ?: count;
889 }
890
891 static ssize_t show_energy_performance_preference(
892                                 struct cpufreq_policy *policy, char *buf)
893 {
894         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
895         int preference, raw_epp;
896
897         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
898         if (preference < 0)
899                 return preference;
900
901         if (raw_epp)
902                 return  sprintf(buf, "%d\n", raw_epp);
903         else
904                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
905 }
906
907 cpufreq_freq_attr_rw(energy_performance_preference);
908
909 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
910 {
911         struct cpudata *cpu = all_cpu_data[policy->cpu];
912         int ratio, freq;
913
914         ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
915         if (ratio <= 0) {
916                 u64 cap;
917
918                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
919                 ratio = HWP_GUARANTEED_PERF(cap);
920         }
921
922         freq = ratio * cpu->pstate.scaling;
923         if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
924                 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
925
926         return sprintf(buf, "%d\n", freq);
927 }
928
929 cpufreq_freq_attr_ro(base_frequency);
930
931 static struct freq_attr *hwp_cpufreq_attrs[] = {
932         &energy_performance_preference,
933         &energy_performance_available_preferences,
934         &base_frequency,
935         NULL,
936 };
937
938 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
939 {
940         u64 cap;
941
942         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
943         WRITE_ONCE(cpu->hwp_cap_cached, cap);
944         cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
945         cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
946 }
947
948 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
949 {
950         int scaling = cpu->pstate.scaling;
951
952         __intel_pstate_get_hwp_cap(cpu);
953
954         cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
955         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
956         if (scaling != cpu->pstate.perf_ctl_scaling) {
957                 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
958
959                 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
960                                                  perf_ctl_scaling);
961                 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
962                                                    perf_ctl_scaling);
963         }
964 }
965
966 static void intel_pstate_hwp_set(unsigned int cpu)
967 {
968         struct cpudata *cpu_data = all_cpu_data[cpu];
969         int max, min;
970         u64 value;
971         s16 epp;
972
973         max = cpu_data->max_perf_ratio;
974         min = cpu_data->min_perf_ratio;
975
976         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
977                 min = max;
978
979         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
980
981         value &= ~HWP_MIN_PERF(~0L);
982         value |= HWP_MIN_PERF(min);
983
984         value &= ~HWP_MAX_PERF(~0L);
985         value |= HWP_MAX_PERF(max);
986
987         if (cpu_data->epp_policy == cpu_data->policy)
988                 goto skip_epp;
989
990         cpu_data->epp_policy = cpu_data->policy;
991
992         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
993                 epp = intel_pstate_get_epp(cpu_data, value);
994                 cpu_data->epp_powersave = epp;
995                 /* If EPP read was failed, then don't try to write */
996                 if (epp < 0)
997                         goto skip_epp;
998
999                 epp = 0;
1000         } else {
1001                 /* skip setting EPP, when saved value is invalid */
1002                 if (cpu_data->epp_powersave < 0)
1003                         goto skip_epp;
1004
1005                 /*
1006                  * No need to restore EPP when it is not zero. This
1007                  * means:
1008                  *  - Policy is not changed
1009                  *  - user has manually changed
1010                  *  - Error reading EPB
1011                  */
1012                 epp = intel_pstate_get_epp(cpu_data, value);
1013                 if (epp)
1014                         goto skip_epp;
1015
1016                 epp = cpu_data->epp_powersave;
1017         }
1018         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1019                 value &= ~GENMASK_ULL(31, 24);
1020                 value |= (u64)epp << 24;
1021         } else {
1022                 intel_pstate_set_epb(cpu, epp);
1023         }
1024 skip_epp:
1025         WRITE_ONCE(cpu_data->hwp_req_cached, value);
1026         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1027 }
1028
1029 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1030
1031 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1032 {
1033         u64 value = READ_ONCE(cpu->hwp_req_cached);
1034         int min_perf;
1035
1036         intel_pstate_disable_hwp_interrupt(cpu);
1037
1038         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1039                 /*
1040                  * In case the EPP has been set to "performance" by the
1041                  * active mode "performance" scaling algorithm, replace that
1042                  * temporary value with the cached EPP one.
1043                  */
1044                 value &= ~GENMASK_ULL(31, 24);
1045                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1046                 /*
1047                  * However, make sure that EPP will be set to "performance" when
1048                  * the CPU is brought back online again and the "performance"
1049                  * scaling algorithm is still in effect.
1050                  */
1051                 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1052         }
1053
1054         /*
1055          * Clear the desired perf field in the cached HWP request value to
1056          * prevent nonzero desired values from being leaked into the active
1057          * mode.
1058          */
1059         value &= ~HWP_DESIRED_PERF(~0L);
1060         WRITE_ONCE(cpu->hwp_req_cached, value);
1061
1062         value &= ~GENMASK_ULL(31, 0);
1063         min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1064
1065         /* Set hwp_max = hwp_min */
1066         value |= HWP_MAX_PERF(min_perf);
1067         value |= HWP_MIN_PERF(min_perf);
1068
1069         /* Set EPP to min */
1070         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1071                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1072
1073         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1074 }
1075
1076 #define POWER_CTL_EE_ENABLE     1
1077 #define POWER_CTL_EE_DISABLE    2
1078
1079 static int power_ctl_ee_state;
1080
1081 static void set_power_ctl_ee_state(bool input)
1082 {
1083         u64 power_ctl;
1084
1085         mutex_lock(&intel_pstate_driver_lock);
1086         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1087         if (input) {
1088                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1089                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1090         } else {
1091                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1092                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1093         }
1094         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1095         mutex_unlock(&intel_pstate_driver_lock);
1096 }
1097
1098 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1099
1100 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1101 {
1102         intel_pstate_hwp_enable(cpu);
1103         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1104 }
1105
1106 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1107 {
1108         struct cpudata *cpu = all_cpu_data[policy->cpu];
1109
1110         pr_debug("CPU %d suspending\n", cpu->cpu);
1111
1112         cpu->suspended = true;
1113
1114         /* disable HWP interrupt and cancel any pending work */
1115         intel_pstate_disable_hwp_interrupt(cpu);
1116
1117         return 0;
1118 }
1119
1120 static int intel_pstate_resume(struct cpufreq_policy *policy)
1121 {
1122         struct cpudata *cpu = all_cpu_data[policy->cpu];
1123
1124         pr_debug("CPU %d resuming\n", cpu->cpu);
1125
1126         /* Only restore if the system default is changed */
1127         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1128                 set_power_ctl_ee_state(true);
1129         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1130                 set_power_ctl_ee_state(false);
1131
1132         if (cpu->suspended && hwp_active) {
1133                 mutex_lock(&intel_pstate_limits_lock);
1134
1135                 /* Re-enable HWP, because "online" has not done that. */
1136                 intel_pstate_hwp_reenable(cpu);
1137
1138                 mutex_unlock(&intel_pstate_limits_lock);
1139         }
1140
1141         cpu->suspended = false;
1142
1143         return 0;
1144 }
1145
1146 static void intel_pstate_update_policies(void)
1147 {
1148         int cpu;
1149
1150         for_each_possible_cpu(cpu)
1151                 cpufreq_update_policy(cpu);
1152 }
1153
1154 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1155                                            struct cpufreq_policy *policy)
1156 {
1157         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1158                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1159         refresh_frequency_limits(policy);
1160 }
1161
1162 static void intel_pstate_update_max_freq(unsigned int cpu)
1163 {
1164         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1165
1166         if (!policy)
1167                 return;
1168
1169         __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1170
1171         cpufreq_cpu_release(policy);
1172 }
1173
1174 static void intel_pstate_update_limits(unsigned int cpu)
1175 {
1176         mutex_lock(&intel_pstate_driver_lock);
1177
1178         update_turbo_state();
1179         /*
1180          * If turbo has been turned on or off globally, policy limits for
1181          * all CPUs need to be updated to reflect that.
1182          */
1183         if (global.turbo_disabled_mf != global.turbo_disabled) {
1184                 global.turbo_disabled_mf = global.turbo_disabled;
1185                 arch_set_max_freq_ratio(global.turbo_disabled);
1186                 for_each_possible_cpu(cpu)
1187                         intel_pstate_update_max_freq(cpu);
1188         } else {
1189                 cpufreq_update_policy(cpu);
1190         }
1191
1192         mutex_unlock(&intel_pstate_driver_lock);
1193 }
1194
1195 /************************** sysfs begin ************************/
1196 #define show_one(file_name, object)                                     \
1197         static ssize_t show_##file_name                                 \
1198         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1199         {                                                               \
1200                 return sprintf(buf, "%u\n", global.object);             \
1201         }
1202
1203 static ssize_t intel_pstate_show_status(char *buf);
1204 static int intel_pstate_update_status(const char *buf, size_t size);
1205
1206 static ssize_t show_status(struct kobject *kobj,
1207                            struct kobj_attribute *attr, char *buf)
1208 {
1209         ssize_t ret;
1210
1211         mutex_lock(&intel_pstate_driver_lock);
1212         ret = intel_pstate_show_status(buf);
1213         mutex_unlock(&intel_pstate_driver_lock);
1214
1215         return ret;
1216 }
1217
1218 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1219                             const char *buf, size_t count)
1220 {
1221         char *p = memchr(buf, '\n', count);
1222         int ret;
1223
1224         mutex_lock(&intel_pstate_driver_lock);
1225         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1226         mutex_unlock(&intel_pstate_driver_lock);
1227
1228         return ret < 0 ? ret : count;
1229 }
1230
1231 static ssize_t show_turbo_pct(struct kobject *kobj,
1232                                 struct kobj_attribute *attr, char *buf)
1233 {
1234         struct cpudata *cpu;
1235         int total, no_turbo, turbo_pct;
1236         uint32_t turbo_fp;
1237
1238         mutex_lock(&intel_pstate_driver_lock);
1239
1240         if (!intel_pstate_driver) {
1241                 mutex_unlock(&intel_pstate_driver_lock);
1242                 return -EAGAIN;
1243         }
1244
1245         cpu = all_cpu_data[0];
1246
1247         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1248         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1249         turbo_fp = div_fp(no_turbo, total);
1250         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1251
1252         mutex_unlock(&intel_pstate_driver_lock);
1253
1254         return sprintf(buf, "%u\n", turbo_pct);
1255 }
1256
1257 static ssize_t show_num_pstates(struct kobject *kobj,
1258                                 struct kobj_attribute *attr, char *buf)
1259 {
1260         struct cpudata *cpu;
1261         int total;
1262
1263         mutex_lock(&intel_pstate_driver_lock);
1264
1265         if (!intel_pstate_driver) {
1266                 mutex_unlock(&intel_pstate_driver_lock);
1267                 return -EAGAIN;
1268         }
1269
1270         cpu = all_cpu_data[0];
1271         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1272
1273         mutex_unlock(&intel_pstate_driver_lock);
1274
1275         return sprintf(buf, "%u\n", total);
1276 }
1277
1278 static ssize_t show_no_turbo(struct kobject *kobj,
1279                              struct kobj_attribute *attr, char *buf)
1280 {
1281         ssize_t ret;
1282
1283         mutex_lock(&intel_pstate_driver_lock);
1284
1285         if (!intel_pstate_driver) {
1286                 mutex_unlock(&intel_pstate_driver_lock);
1287                 return -EAGAIN;
1288         }
1289
1290         update_turbo_state();
1291         if (global.turbo_disabled)
1292                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1293         else
1294                 ret = sprintf(buf, "%u\n", global.no_turbo);
1295
1296         mutex_unlock(&intel_pstate_driver_lock);
1297
1298         return ret;
1299 }
1300
1301 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1302                               const char *buf, size_t count)
1303 {
1304         unsigned int input;
1305         int ret;
1306
1307         ret = sscanf(buf, "%u", &input);
1308         if (ret != 1)
1309                 return -EINVAL;
1310
1311         mutex_lock(&intel_pstate_driver_lock);
1312
1313         if (!intel_pstate_driver) {
1314                 mutex_unlock(&intel_pstate_driver_lock);
1315                 return -EAGAIN;
1316         }
1317
1318         mutex_lock(&intel_pstate_limits_lock);
1319
1320         update_turbo_state();
1321         if (global.turbo_disabled) {
1322                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1323                 mutex_unlock(&intel_pstate_limits_lock);
1324                 mutex_unlock(&intel_pstate_driver_lock);
1325                 return -EPERM;
1326         }
1327
1328         global.no_turbo = clamp_t(int, input, 0, 1);
1329
1330         if (global.no_turbo) {
1331                 struct cpudata *cpu = all_cpu_data[0];
1332                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1333
1334                 /* Squash the global minimum into the permitted range. */
1335                 if (global.min_perf_pct > pct)
1336                         global.min_perf_pct = pct;
1337         }
1338
1339         mutex_unlock(&intel_pstate_limits_lock);
1340
1341         intel_pstate_update_policies();
1342         arch_set_max_freq_ratio(global.no_turbo);
1343
1344         mutex_unlock(&intel_pstate_driver_lock);
1345
1346         return count;
1347 }
1348
1349 static void update_qos_request(enum freq_qos_req_type type)
1350 {
1351         struct freq_qos_request *req;
1352         struct cpufreq_policy *policy;
1353         int i;
1354
1355         for_each_possible_cpu(i) {
1356                 struct cpudata *cpu = all_cpu_data[i];
1357                 unsigned int freq, perf_pct;
1358
1359                 policy = cpufreq_cpu_get(i);
1360                 if (!policy)
1361                         continue;
1362
1363                 req = policy->driver_data;
1364                 cpufreq_cpu_put(policy);
1365
1366                 if (!req)
1367                         continue;
1368
1369                 if (hwp_active)
1370                         intel_pstate_get_hwp_cap(cpu);
1371
1372                 if (type == FREQ_QOS_MIN) {
1373                         perf_pct = global.min_perf_pct;
1374                 } else {
1375                         req++;
1376                         perf_pct = global.max_perf_pct;
1377                 }
1378
1379                 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1380
1381                 if (freq_qos_update_request(req, freq) < 0)
1382                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1383         }
1384 }
1385
1386 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1387                                   const char *buf, size_t count)
1388 {
1389         unsigned int input;
1390         int ret;
1391
1392         ret = sscanf(buf, "%u", &input);
1393         if (ret != 1)
1394                 return -EINVAL;
1395
1396         mutex_lock(&intel_pstate_driver_lock);
1397
1398         if (!intel_pstate_driver) {
1399                 mutex_unlock(&intel_pstate_driver_lock);
1400                 return -EAGAIN;
1401         }
1402
1403         mutex_lock(&intel_pstate_limits_lock);
1404
1405         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1406
1407         mutex_unlock(&intel_pstate_limits_lock);
1408
1409         if (intel_pstate_driver == &intel_pstate)
1410                 intel_pstate_update_policies();
1411         else
1412                 update_qos_request(FREQ_QOS_MAX);
1413
1414         mutex_unlock(&intel_pstate_driver_lock);
1415
1416         return count;
1417 }
1418
1419 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1420                                   const char *buf, size_t count)
1421 {
1422         unsigned int input;
1423         int ret;
1424
1425         ret = sscanf(buf, "%u", &input);
1426         if (ret != 1)
1427                 return -EINVAL;
1428
1429         mutex_lock(&intel_pstate_driver_lock);
1430
1431         if (!intel_pstate_driver) {
1432                 mutex_unlock(&intel_pstate_driver_lock);
1433                 return -EAGAIN;
1434         }
1435
1436         mutex_lock(&intel_pstate_limits_lock);
1437
1438         global.min_perf_pct = clamp_t(int, input,
1439                                       min_perf_pct_min(), global.max_perf_pct);
1440
1441         mutex_unlock(&intel_pstate_limits_lock);
1442
1443         if (intel_pstate_driver == &intel_pstate)
1444                 intel_pstate_update_policies();
1445         else
1446                 update_qos_request(FREQ_QOS_MIN);
1447
1448         mutex_unlock(&intel_pstate_driver_lock);
1449
1450         return count;
1451 }
1452
1453 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1454                                 struct kobj_attribute *attr, char *buf)
1455 {
1456         return sprintf(buf, "%u\n", hwp_boost);
1457 }
1458
1459 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1460                                        struct kobj_attribute *b,
1461                                        const char *buf, size_t count)
1462 {
1463         unsigned int input;
1464         int ret;
1465
1466         ret = kstrtouint(buf, 10, &input);
1467         if (ret)
1468                 return ret;
1469
1470         mutex_lock(&intel_pstate_driver_lock);
1471         hwp_boost = !!input;
1472         intel_pstate_update_policies();
1473         mutex_unlock(&intel_pstate_driver_lock);
1474
1475         return count;
1476 }
1477
1478 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1479                                       char *buf)
1480 {
1481         u64 power_ctl;
1482         int enable;
1483
1484         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1485         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1486         return sprintf(buf, "%d\n", !enable);
1487 }
1488
1489 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1490                                        const char *buf, size_t count)
1491 {
1492         bool input;
1493         int ret;
1494
1495         ret = kstrtobool(buf, &input);
1496         if (ret)
1497                 return ret;
1498
1499         set_power_ctl_ee_state(input);
1500
1501         return count;
1502 }
1503
1504 show_one(max_perf_pct, max_perf_pct);
1505 show_one(min_perf_pct, min_perf_pct);
1506
1507 define_one_global_rw(status);
1508 define_one_global_rw(no_turbo);
1509 define_one_global_rw(max_perf_pct);
1510 define_one_global_rw(min_perf_pct);
1511 define_one_global_ro(turbo_pct);
1512 define_one_global_ro(num_pstates);
1513 define_one_global_rw(hwp_dynamic_boost);
1514 define_one_global_rw(energy_efficiency);
1515
1516 static struct attribute *intel_pstate_attributes[] = {
1517         &status.attr,
1518         &no_turbo.attr,
1519         NULL
1520 };
1521
1522 static const struct attribute_group intel_pstate_attr_group = {
1523         .attrs = intel_pstate_attributes,
1524 };
1525
1526 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1527
1528 static struct kobject *intel_pstate_kobject;
1529
1530 static void __init intel_pstate_sysfs_expose_params(void)
1531 {
1532         struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1533         int rc;
1534
1535         if (dev_root) {
1536                 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1537                 put_device(dev_root);
1538         }
1539         if (WARN_ON(!intel_pstate_kobject))
1540                 return;
1541
1542         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1543         if (WARN_ON(rc))
1544                 return;
1545
1546         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1547                 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1548                 WARN_ON(rc);
1549
1550                 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1551                 WARN_ON(rc);
1552         }
1553
1554         /*
1555          * If per cpu limits are enforced there are no global limits, so
1556          * return without creating max/min_perf_pct attributes
1557          */
1558         if (per_cpu_limits)
1559                 return;
1560
1561         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1562         WARN_ON(rc);
1563
1564         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1565         WARN_ON(rc);
1566
1567         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1568                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1569                 WARN_ON(rc);
1570         }
1571 }
1572
1573 static void __init intel_pstate_sysfs_remove(void)
1574 {
1575         if (!intel_pstate_kobject)
1576                 return;
1577
1578         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1579
1580         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1581                 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1582                 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1583         }
1584
1585         if (!per_cpu_limits) {
1586                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1587                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1588
1589                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1590                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1591         }
1592
1593         kobject_put(intel_pstate_kobject);
1594 }
1595
1596 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1597 {
1598         int rc;
1599
1600         if (!hwp_active)
1601                 return;
1602
1603         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1604         WARN_ON_ONCE(rc);
1605 }
1606
1607 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1608 {
1609         if (!hwp_active)
1610                 return;
1611
1612         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1613 }
1614
1615 /************************** sysfs end ************************/
1616
1617 static void intel_pstate_notify_work(struct work_struct *work)
1618 {
1619         struct cpudata *cpudata =
1620                 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1621         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1622
1623         if (policy) {
1624                 intel_pstate_get_hwp_cap(cpudata);
1625                 __intel_pstate_update_max_freq(cpudata, policy);
1626
1627                 cpufreq_cpu_release(policy);
1628         }
1629
1630         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1631 }
1632
1633 static DEFINE_SPINLOCK(hwp_notify_lock);
1634 static cpumask_t hwp_intr_enable_mask;
1635
1636 void notify_hwp_interrupt(void)
1637 {
1638         unsigned int this_cpu = smp_processor_id();
1639         struct cpudata *cpudata;
1640         unsigned long flags;
1641         u64 value;
1642
1643         if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1644                 return;
1645
1646         rdmsrl_safe(MSR_HWP_STATUS, &value);
1647         if (!(value & 0x01))
1648                 return;
1649
1650         spin_lock_irqsave(&hwp_notify_lock, flags);
1651
1652         if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1653                 goto ack_intr;
1654
1655         /*
1656          * Currently we never free all_cpu_data. And we can't reach here
1657          * without this allocated. But for safety for future changes, added
1658          * check.
1659          */
1660         if (unlikely(!READ_ONCE(all_cpu_data)))
1661                 goto ack_intr;
1662
1663         /*
1664          * The free is done during cleanup, when cpufreq registry is failed.
1665          * We wouldn't be here if it fails on init or switch status. But for
1666          * future changes, added check.
1667          */
1668         cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1669         if (unlikely(!cpudata))
1670                 goto ack_intr;
1671
1672         schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1673
1674         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1675
1676         return;
1677
1678 ack_intr:
1679         wrmsrl_safe(MSR_HWP_STATUS, 0);
1680         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1681 }
1682
1683 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1684 {
1685         unsigned long flags;
1686
1687         if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1688                 return;
1689
1690         /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1691         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1692
1693         spin_lock_irqsave(&hwp_notify_lock, flags);
1694         if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1695                 cancel_delayed_work(&cpudata->hwp_notify_work);
1696         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1697 }
1698
1699 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1700 {
1701         /* Enable HWP notification interrupt for guaranteed performance change */
1702         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1703                 unsigned long flags;
1704
1705                 spin_lock_irqsave(&hwp_notify_lock, flags);
1706                 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1707                 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1708                 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1709
1710                 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1711                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1712                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1713         }
1714 }
1715
1716 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1717 {
1718         cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1719
1720         /*
1721          * If the EPP is set by firmware, which means that firmware enabled HWP
1722          * - Is equal or less than 0x80 (default balance_perf EPP)
1723          * - But less performance oriented than performance EPP
1724          *   then use this as new balance_perf EPP.
1725          */
1726         if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1727             cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1728                 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1729                 return;
1730         }
1731
1732         /*
1733          * If this CPU gen doesn't call for change in balance_perf
1734          * EPP return.
1735          */
1736         if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1737                 return;
1738
1739         /*
1740          * Use hard coded value per gen to update the balance_perf
1741          * and default EPP.
1742          */
1743         cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1744         intel_pstate_set_epp(cpudata, cpudata->epp_default);
1745 }
1746
1747 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1748 {
1749         /* First disable HWP notification interrupt till we activate again */
1750         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1751                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1752
1753         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1754
1755         intel_pstate_enable_hwp_interrupt(cpudata);
1756
1757         if (cpudata->epp_default >= 0)
1758                 return;
1759
1760         intel_pstate_update_epp_defaults(cpudata);
1761 }
1762
1763 static int atom_get_min_pstate(int not_used)
1764 {
1765         u64 value;
1766
1767         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1768         return (value >> 8) & 0x7F;
1769 }
1770
1771 static int atom_get_max_pstate(int not_used)
1772 {
1773         u64 value;
1774
1775         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1776         return (value >> 16) & 0x7F;
1777 }
1778
1779 static int atom_get_turbo_pstate(int not_used)
1780 {
1781         u64 value;
1782
1783         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1784         return value & 0x7F;
1785 }
1786
1787 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1788 {
1789         u64 val;
1790         int32_t vid_fp;
1791         u32 vid;
1792
1793         val = (u64)pstate << 8;
1794         if (global.no_turbo && !global.turbo_disabled)
1795                 val |= (u64)1 << 32;
1796
1797         vid_fp = cpudata->vid.min + mul_fp(
1798                 int_tofp(pstate - cpudata->pstate.min_pstate),
1799                 cpudata->vid.ratio);
1800
1801         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1802         vid = ceiling_fp(vid_fp);
1803
1804         if (pstate > cpudata->pstate.max_pstate)
1805                 vid = cpudata->vid.turbo;
1806
1807         return val | vid;
1808 }
1809
1810 static int silvermont_get_scaling(void)
1811 {
1812         u64 value;
1813         int i;
1814         /* Defined in Table 35-6 from SDM (Sept 2015) */
1815         static int silvermont_freq_table[] = {
1816                 83300, 100000, 133300, 116700, 80000};
1817
1818         rdmsrl(MSR_FSB_FREQ, value);
1819         i = value & 0x7;
1820         WARN_ON(i > 4);
1821
1822         return silvermont_freq_table[i];
1823 }
1824
1825 static int airmont_get_scaling(void)
1826 {
1827         u64 value;
1828         int i;
1829         /* Defined in Table 35-10 from SDM (Sept 2015) */
1830         static int airmont_freq_table[] = {
1831                 83300, 100000, 133300, 116700, 80000,
1832                 93300, 90000, 88900, 87500};
1833
1834         rdmsrl(MSR_FSB_FREQ, value);
1835         i = value & 0xF;
1836         WARN_ON(i > 8);
1837
1838         return airmont_freq_table[i];
1839 }
1840
1841 static void atom_get_vid(struct cpudata *cpudata)
1842 {
1843         u64 value;
1844
1845         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1846         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1847         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1848         cpudata->vid.ratio = div_fp(
1849                 cpudata->vid.max - cpudata->vid.min,
1850                 int_tofp(cpudata->pstate.max_pstate -
1851                         cpudata->pstate.min_pstate));
1852
1853         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1854         cpudata->vid.turbo = value & 0x7f;
1855 }
1856
1857 static int core_get_min_pstate(int cpu)
1858 {
1859         u64 value;
1860
1861         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1862         return (value >> 40) & 0xFF;
1863 }
1864
1865 static int core_get_max_pstate_physical(int cpu)
1866 {
1867         u64 value;
1868
1869         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1870         return (value >> 8) & 0xFF;
1871 }
1872
1873 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1874 {
1875         /* Check how many TDP levels present */
1876         if (plat_info & 0x600000000) {
1877                 u64 tdp_ctrl;
1878                 u64 tdp_ratio;
1879                 int tdp_msr;
1880                 int err;
1881
1882                 /* Get the TDP level (0, 1, 2) to get ratios */
1883                 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1884                 if (err)
1885                         return err;
1886
1887                 /* TDP MSR are continuous starting at 0x648 */
1888                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1889                 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1890                 if (err)
1891                         return err;
1892
1893                 /* For level 1 and 2, bits[23:16] contain the ratio */
1894                 if (tdp_ctrl & 0x03)
1895                         tdp_ratio >>= 16;
1896
1897                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1898                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1899
1900                 return (int)tdp_ratio;
1901         }
1902
1903         return -ENXIO;
1904 }
1905
1906 static int core_get_max_pstate(int cpu)
1907 {
1908         u64 tar;
1909         u64 plat_info;
1910         int max_pstate;
1911         int tdp_ratio;
1912         int err;
1913
1914         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1915         max_pstate = (plat_info >> 8) & 0xFF;
1916
1917         tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1918         if (tdp_ratio <= 0)
1919                 return max_pstate;
1920
1921         if (hwp_active) {
1922                 /* Turbo activation ratio is not used on HWP platforms */
1923                 return tdp_ratio;
1924         }
1925
1926         err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1927         if (!err) {
1928                 int tar_levels;
1929
1930                 /* Do some sanity checking for safety */
1931                 tar_levels = tar & 0xff;
1932                 if (tdp_ratio - 1 == tar_levels) {
1933                         max_pstate = tar_levels;
1934                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1935                 }
1936         }
1937
1938         return max_pstate;
1939 }
1940
1941 static int core_get_turbo_pstate(int cpu)
1942 {
1943         u64 value;
1944         int nont, ret;
1945
1946         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1947         nont = core_get_max_pstate(cpu);
1948         ret = (value) & 255;
1949         if (ret <= nont)
1950                 ret = nont;
1951         return ret;
1952 }
1953
1954 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1955 {
1956         u64 val;
1957
1958         val = (u64)pstate << 8;
1959         if (global.no_turbo && !global.turbo_disabled)
1960                 val |= (u64)1 << 32;
1961
1962         return val;
1963 }
1964
1965 static int knl_get_aperf_mperf_shift(void)
1966 {
1967         return 10;
1968 }
1969
1970 static int knl_get_turbo_pstate(int cpu)
1971 {
1972         u64 value;
1973         int nont, ret;
1974
1975         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1976         nont = core_get_max_pstate(cpu);
1977         ret = (((value) >> 8) & 0xFF);
1978         if (ret <= nont)
1979                 ret = nont;
1980         return ret;
1981 }
1982
1983 static void hybrid_get_type(void *data)
1984 {
1985         u8 *cpu_type = data;
1986
1987         *cpu_type = get_this_hybrid_cpu_type();
1988 }
1989
1990 static int hwp_get_cpu_scaling(int cpu)
1991 {
1992         u8 cpu_type = 0;
1993
1994         smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1995         /* P-cores have a smaller perf level-to-freqency scaling factor. */
1996         if (cpu_type == 0x40)
1997                 return hybrid_scaling_factor;
1998
1999         /* Use default core scaling for E-cores */
2000         if (cpu_type == 0x20)
2001                 return core_get_scaling();
2002
2003         /*
2004          * If reached here, this system is either non-hybrid (like Tiger
2005          * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
2006          * no E cores (in which case CPUID for hybrid support is 0).
2007          *
2008          * The CPPC nominal_frequency field is 0 for non-hybrid systems,
2009          * so the default core scaling will be used for them.
2010          */
2011         return intel_pstate_cppc_get_scaling(cpu);
2012 }
2013
2014 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2015 {
2016         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2017         cpu->pstate.current_pstate = pstate;
2018         /*
2019          * Generally, there is no guarantee that this code will always run on
2020          * the CPU being updated, so force the register update to run on the
2021          * right CPU.
2022          */
2023         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2024                       pstate_funcs.get_val(cpu, pstate));
2025 }
2026
2027 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2028 {
2029         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2030 }
2031
2032 static void intel_pstate_max_within_limits(struct cpudata *cpu)
2033 {
2034         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2035
2036         update_turbo_state();
2037         intel_pstate_set_pstate(cpu, pstate);
2038 }
2039
2040 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2041 {
2042         int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2043         int perf_ctl_scaling = pstate_funcs.get_scaling();
2044
2045         cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2046         cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2047         cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2048
2049         if (hwp_active && !hwp_mode_bdw) {
2050                 __intel_pstate_get_hwp_cap(cpu);
2051
2052                 if (pstate_funcs.get_cpu_scaling) {
2053                         cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2054                         if (cpu->pstate.scaling != perf_ctl_scaling)
2055                                 intel_pstate_hybrid_hwp_adjust(cpu);
2056                 } else {
2057                         cpu->pstate.scaling = perf_ctl_scaling;
2058                 }
2059         } else {
2060                 cpu->pstate.scaling = perf_ctl_scaling;
2061                 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2062                 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2063         }
2064
2065         if (cpu->pstate.scaling == perf_ctl_scaling) {
2066                 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2067                 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2068                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2069         }
2070
2071         if (pstate_funcs.get_aperf_mperf_shift)
2072                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2073
2074         if (pstate_funcs.get_vid)
2075                 pstate_funcs.get_vid(cpu);
2076
2077         intel_pstate_set_min_pstate(cpu);
2078 }
2079
2080 /*
2081  * Long hold time will keep high perf limits for long time,
2082  * which negatively impacts perf/watt for some workloads,
2083  * like specpower. 3ms is based on experiements on some
2084  * workoads.
2085  */
2086 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2087
2088 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2089 {
2090         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2091         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2092         u32 max_limit = (hwp_req & 0xff00) >> 8;
2093         u32 min_limit = (hwp_req & 0xff);
2094         u32 boost_level1;
2095
2096         /*
2097          * Cases to consider (User changes via sysfs or boot time):
2098          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2099          *      No boost, return.
2100          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2101          *     Should result in one level boost only for P0.
2102          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2103          *     Should result in two level boost:
2104          *         (min + p1)/2 and P1.
2105          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2106          *     Should result in three level boost:
2107          *        (min + p1)/2, P1 and P0.
2108          */
2109
2110         /* If max and min are equal or already at max, nothing to boost */
2111         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2112                 return;
2113
2114         if (!cpu->hwp_boost_min)
2115                 cpu->hwp_boost_min = min_limit;
2116
2117         /* level at half way mark between min and guranteed */
2118         boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2119
2120         if (cpu->hwp_boost_min < boost_level1)
2121                 cpu->hwp_boost_min = boost_level1;
2122         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2123                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2124         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2125                  max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2126                 cpu->hwp_boost_min = max_limit;
2127         else
2128                 return;
2129
2130         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2131         wrmsrl(MSR_HWP_REQUEST, hwp_req);
2132         cpu->last_update = cpu->sample.time;
2133 }
2134
2135 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2136 {
2137         if (cpu->hwp_boost_min) {
2138                 bool expired;
2139
2140                 /* Check if we are idle for hold time to boost down */
2141                 expired = time_after64(cpu->sample.time, cpu->last_update +
2142                                        hwp_boost_hold_time_ns);
2143                 if (expired) {
2144                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2145                         cpu->hwp_boost_min = 0;
2146                 }
2147         }
2148         cpu->last_update = cpu->sample.time;
2149 }
2150
2151 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2152                                                       u64 time)
2153 {
2154         cpu->sample.time = time;
2155
2156         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2157                 bool do_io = false;
2158
2159                 cpu->sched_flags = 0;
2160                 /*
2161                  * Set iowait_boost flag and update time. Since IO WAIT flag
2162                  * is set all the time, we can't just conclude that there is
2163                  * some IO bound activity is scheduled on this CPU with just
2164                  * one occurrence. If we receive at least two in two
2165                  * consecutive ticks, then we treat as boost candidate.
2166                  */
2167                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2168                         do_io = true;
2169
2170                 cpu->last_io_update = time;
2171
2172                 if (do_io)
2173                         intel_pstate_hwp_boost_up(cpu);
2174
2175         } else {
2176                 intel_pstate_hwp_boost_down(cpu);
2177         }
2178 }
2179
2180 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2181                                                 u64 time, unsigned int flags)
2182 {
2183         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2184
2185         cpu->sched_flags |= flags;
2186
2187         if (smp_processor_id() == cpu->cpu)
2188                 intel_pstate_update_util_hwp_local(cpu, time);
2189 }
2190
2191 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2192 {
2193         struct sample *sample = &cpu->sample;
2194
2195         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2196 }
2197
2198 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2199 {
2200         u64 aperf, mperf;
2201         unsigned long flags;
2202         u64 tsc;
2203
2204         local_irq_save(flags);
2205         rdmsrl(MSR_IA32_APERF, aperf);
2206         rdmsrl(MSR_IA32_MPERF, mperf);
2207         tsc = rdtsc();
2208         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2209                 local_irq_restore(flags);
2210                 return false;
2211         }
2212         local_irq_restore(flags);
2213
2214         cpu->last_sample_time = cpu->sample.time;
2215         cpu->sample.time = time;
2216         cpu->sample.aperf = aperf;
2217         cpu->sample.mperf = mperf;
2218         cpu->sample.tsc =  tsc;
2219         cpu->sample.aperf -= cpu->prev_aperf;
2220         cpu->sample.mperf -= cpu->prev_mperf;
2221         cpu->sample.tsc -= cpu->prev_tsc;
2222
2223         cpu->prev_aperf = aperf;
2224         cpu->prev_mperf = mperf;
2225         cpu->prev_tsc = tsc;
2226         /*
2227          * First time this function is invoked in a given cycle, all of the
2228          * previous sample data fields are equal to zero or stale and they must
2229          * be populated with meaningful numbers for things to work, so assume
2230          * that sample.time will always be reset before setting the utilization
2231          * update hook and make the caller skip the sample then.
2232          */
2233         if (cpu->last_sample_time) {
2234                 intel_pstate_calc_avg_perf(cpu);
2235                 return true;
2236         }
2237         return false;
2238 }
2239
2240 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2241 {
2242         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2243 }
2244
2245 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2246 {
2247         return mul_ext_fp(cpu->pstate.max_pstate_physical,
2248                           cpu->sample.core_avg_perf);
2249 }
2250
2251 static inline int32_t get_target_pstate(struct cpudata *cpu)
2252 {
2253         struct sample *sample = &cpu->sample;
2254         int32_t busy_frac;
2255         int target, avg_pstate;
2256
2257         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2258                            sample->tsc);
2259
2260         if (busy_frac < cpu->iowait_boost)
2261                 busy_frac = cpu->iowait_boost;
2262
2263         sample->busy_scaled = busy_frac * 100;
2264
2265         target = global.no_turbo || global.turbo_disabled ?
2266                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2267         target += target >> 2;
2268         target = mul_fp(target, busy_frac);
2269         if (target < cpu->pstate.min_pstate)
2270                 target = cpu->pstate.min_pstate;
2271
2272         /*
2273          * If the average P-state during the previous cycle was higher than the
2274          * current target, add 50% of the difference to the target to reduce
2275          * possible performance oscillations and offset possible performance
2276          * loss related to moving the workload from one CPU to another within
2277          * a package/module.
2278          */
2279         avg_pstate = get_avg_pstate(cpu);
2280         if (avg_pstate > target)
2281                 target += (avg_pstate - target) >> 1;
2282
2283         return target;
2284 }
2285
2286 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2287 {
2288         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2289         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2290
2291         return clamp_t(int, pstate, min_pstate, max_pstate);
2292 }
2293
2294 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2295 {
2296         if (pstate == cpu->pstate.current_pstate)
2297                 return;
2298
2299         cpu->pstate.current_pstate = pstate;
2300         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2301 }
2302
2303 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2304 {
2305         int from = cpu->pstate.current_pstate;
2306         struct sample *sample;
2307         int target_pstate;
2308
2309         update_turbo_state();
2310
2311         target_pstate = get_target_pstate(cpu);
2312         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2313         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2314         intel_pstate_update_pstate(cpu, target_pstate);
2315
2316         sample = &cpu->sample;
2317         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2318                 fp_toint(sample->busy_scaled),
2319                 from,
2320                 cpu->pstate.current_pstate,
2321                 sample->mperf,
2322                 sample->aperf,
2323                 sample->tsc,
2324                 get_avg_frequency(cpu),
2325                 fp_toint(cpu->iowait_boost * 100));
2326 }
2327
2328 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2329                                      unsigned int flags)
2330 {
2331         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2332         u64 delta_ns;
2333
2334         /* Don't allow remote callbacks */
2335         if (smp_processor_id() != cpu->cpu)
2336                 return;
2337
2338         delta_ns = time - cpu->last_update;
2339         if (flags & SCHED_CPUFREQ_IOWAIT) {
2340                 /* Start over if the CPU may have been idle. */
2341                 if (delta_ns > TICK_NSEC) {
2342                         cpu->iowait_boost = ONE_EIGHTH_FP;
2343                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2344                         cpu->iowait_boost <<= 1;
2345                         if (cpu->iowait_boost > int_tofp(1))
2346                                 cpu->iowait_boost = int_tofp(1);
2347                 } else {
2348                         cpu->iowait_boost = ONE_EIGHTH_FP;
2349                 }
2350         } else if (cpu->iowait_boost) {
2351                 /* Clear iowait_boost if the CPU may have been idle. */
2352                 if (delta_ns > TICK_NSEC)
2353                         cpu->iowait_boost = 0;
2354                 else
2355                         cpu->iowait_boost >>= 1;
2356         }
2357         cpu->last_update = time;
2358         delta_ns = time - cpu->sample.time;
2359         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2360                 return;
2361
2362         if (intel_pstate_sample(cpu, time))
2363                 intel_pstate_adjust_pstate(cpu);
2364 }
2365
2366 static struct pstate_funcs core_funcs = {
2367         .get_max = core_get_max_pstate,
2368         .get_max_physical = core_get_max_pstate_physical,
2369         .get_min = core_get_min_pstate,
2370         .get_turbo = core_get_turbo_pstate,
2371         .get_scaling = core_get_scaling,
2372         .get_val = core_get_val,
2373 };
2374
2375 static const struct pstate_funcs silvermont_funcs = {
2376         .get_max = atom_get_max_pstate,
2377         .get_max_physical = atom_get_max_pstate,
2378         .get_min = atom_get_min_pstate,
2379         .get_turbo = atom_get_turbo_pstate,
2380         .get_val = atom_get_val,
2381         .get_scaling = silvermont_get_scaling,
2382         .get_vid = atom_get_vid,
2383 };
2384
2385 static const struct pstate_funcs airmont_funcs = {
2386         .get_max = atom_get_max_pstate,
2387         .get_max_physical = atom_get_max_pstate,
2388         .get_min = atom_get_min_pstate,
2389         .get_turbo = atom_get_turbo_pstate,
2390         .get_val = atom_get_val,
2391         .get_scaling = airmont_get_scaling,
2392         .get_vid = atom_get_vid,
2393 };
2394
2395 static const struct pstate_funcs knl_funcs = {
2396         .get_max = core_get_max_pstate,
2397         .get_max_physical = core_get_max_pstate_physical,
2398         .get_min = core_get_min_pstate,
2399         .get_turbo = knl_get_turbo_pstate,
2400         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2401         .get_scaling = core_get_scaling,
2402         .get_val = core_get_val,
2403 };
2404
2405 #define X86_MATCH(model, policy)                                         \
2406         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2407                                            X86_FEATURE_APERFMPERF, &policy)
2408
2409 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2410         X86_MATCH(SANDYBRIDGE,          core_funcs),
2411         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2412         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2413         X86_MATCH(IVYBRIDGE,            core_funcs),
2414         X86_MATCH(HASWELL,              core_funcs),
2415         X86_MATCH(BROADWELL,            core_funcs),
2416         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2417         X86_MATCH(HASWELL_X,            core_funcs),
2418         X86_MATCH(HASWELL_L,            core_funcs),
2419         X86_MATCH(HASWELL_G,            core_funcs),
2420         X86_MATCH(BROADWELL_G,          core_funcs),
2421         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2422         X86_MATCH(SKYLAKE_L,            core_funcs),
2423         X86_MATCH(BROADWELL_X,          core_funcs),
2424         X86_MATCH(SKYLAKE,              core_funcs),
2425         X86_MATCH(BROADWELL_D,          core_funcs),
2426         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2427         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2428         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2429         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2430         X86_MATCH(SKYLAKE_X,            core_funcs),
2431         X86_MATCH(COMETLAKE,            core_funcs),
2432         X86_MATCH(ICELAKE_X,            core_funcs),
2433         X86_MATCH(TIGERLAKE,            core_funcs),
2434         X86_MATCH(SAPPHIRERAPIDS_X,     core_funcs),
2435         X86_MATCH(EMERALDRAPIDS_X,      core_funcs),
2436         {}
2437 };
2438 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2439
2440 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2441         X86_MATCH(BROADWELL_D,          core_funcs),
2442         X86_MATCH(BROADWELL_X,          core_funcs),
2443         X86_MATCH(SKYLAKE_X,            core_funcs),
2444         X86_MATCH(ICELAKE_X,            core_funcs),
2445         X86_MATCH(SAPPHIRERAPIDS_X,     core_funcs),
2446         {}
2447 };
2448
2449 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2450         X86_MATCH(KABYLAKE,             core_funcs),
2451         {}
2452 };
2453
2454 static int intel_pstate_init_cpu(unsigned int cpunum)
2455 {
2456         struct cpudata *cpu;
2457
2458         cpu = all_cpu_data[cpunum];
2459
2460         if (!cpu) {
2461                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2462                 if (!cpu)
2463                         return -ENOMEM;
2464
2465                 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2466
2467                 cpu->cpu = cpunum;
2468
2469                 cpu->epp_default = -EINVAL;
2470
2471                 if (hwp_active) {
2472                         intel_pstate_hwp_enable(cpu);
2473
2474                         if (intel_pstate_acpi_pm_profile_server())
2475                                 hwp_boost = true;
2476                 }
2477         } else if (hwp_active) {
2478                 /*
2479                  * Re-enable HWP in case this happens after a resume from ACPI
2480                  * S3 if the CPU was offline during the whole system/resume
2481                  * cycle.
2482                  */
2483                 intel_pstate_hwp_reenable(cpu);
2484         }
2485
2486         cpu->epp_powersave = -EINVAL;
2487         cpu->epp_policy = 0;
2488
2489         intel_pstate_get_cpu_pstates(cpu);
2490
2491         pr_debug("controlling: cpu %d\n", cpunum);
2492
2493         return 0;
2494 }
2495
2496 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2497 {
2498         struct cpudata *cpu = all_cpu_data[cpu_num];
2499
2500         if (hwp_active && !hwp_boost)
2501                 return;
2502
2503         if (cpu->update_util_set)
2504                 return;
2505
2506         /* Prevent intel_pstate_update_util() from using stale data. */
2507         cpu->sample.time = 0;
2508         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2509                                      (hwp_active ?
2510                                       intel_pstate_update_util_hwp :
2511                                       intel_pstate_update_util));
2512         cpu->update_util_set = true;
2513 }
2514
2515 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2516 {
2517         struct cpudata *cpu_data = all_cpu_data[cpu];
2518
2519         if (!cpu_data->update_util_set)
2520                 return;
2521
2522         cpufreq_remove_update_util_hook(cpu);
2523         cpu_data->update_util_set = false;
2524         synchronize_rcu();
2525 }
2526
2527 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2528 {
2529         return global.turbo_disabled || global.no_turbo ?
2530                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2531 }
2532
2533 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2534                                             unsigned int policy_min,
2535                                             unsigned int policy_max)
2536 {
2537         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2538         int32_t max_policy_perf, min_policy_perf;
2539
2540         max_policy_perf = policy_max / perf_ctl_scaling;
2541         if (policy_max == policy_min) {
2542                 min_policy_perf = max_policy_perf;
2543         } else {
2544                 min_policy_perf = policy_min / perf_ctl_scaling;
2545                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2546                                           0, max_policy_perf);
2547         }
2548
2549         /*
2550          * HWP needs some special consideration, because HWP_REQUEST uses
2551          * abstract values to represent performance rather than pure ratios.
2552          */
2553         if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2554                 int freq;
2555
2556                 freq = max_policy_perf * perf_ctl_scaling;
2557                 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2558                 freq = min_policy_perf * perf_ctl_scaling;
2559                 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2560         }
2561
2562         pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2563                  cpu->cpu, min_policy_perf, max_policy_perf);
2564
2565         /* Normalize user input to [min_perf, max_perf] */
2566         if (per_cpu_limits) {
2567                 cpu->min_perf_ratio = min_policy_perf;
2568                 cpu->max_perf_ratio = max_policy_perf;
2569         } else {
2570                 int turbo_max = cpu->pstate.turbo_pstate;
2571                 int32_t global_min, global_max;
2572
2573                 /* Global limits are in percent of the maximum turbo P-state. */
2574                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2575                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2576                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2577
2578                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2579                          global_min, global_max);
2580
2581                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2582                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2583                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2584                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2585
2586                 /* Make sure min_perf <= max_perf */
2587                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2588                                           cpu->max_perf_ratio);
2589
2590         }
2591         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2592                  cpu->max_perf_ratio,
2593                  cpu->min_perf_ratio);
2594 }
2595
2596 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2597 {
2598         struct cpudata *cpu;
2599
2600         if (!policy->cpuinfo.max_freq)
2601                 return -ENODEV;
2602
2603         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2604                  policy->cpuinfo.max_freq, policy->max);
2605
2606         cpu = all_cpu_data[policy->cpu];
2607         cpu->policy = policy->policy;
2608
2609         mutex_lock(&intel_pstate_limits_lock);
2610
2611         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2612
2613         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2614                 /*
2615                  * NOHZ_FULL CPUs need this as the governor callback may not
2616                  * be invoked on them.
2617                  */
2618                 intel_pstate_clear_update_util_hook(policy->cpu);
2619                 intel_pstate_max_within_limits(cpu);
2620         } else {
2621                 intel_pstate_set_update_util_hook(policy->cpu);
2622         }
2623
2624         if (hwp_active) {
2625                 /*
2626                  * When hwp_boost was active before and dynamically it
2627                  * was turned off, in that case we need to clear the
2628                  * update util hook.
2629                  */
2630                 if (!hwp_boost)
2631                         intel_pstate_clear_update_util_hook(policy->cpu);
2632                 intel_pstate_hwp_set(policy->cpu);
2633         }
2634         /*
2635          * policy->cur is never updated with the intel_pstate driver, but it
2636          * is used as a stale frequency value. So, keep it within limits.
2637          */
2638         policy->cur = policy->min;
2639
2640         mutex_unlock(&intel_pstate_limits_lock);
2641
2642         return 0;
2643 }
2644
2645 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2646                                            struct cpufreq_policy_data *policy)
2647 {
2648         if (!hwp_active &&
2649             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2650             policy->max < policy->cpuinfo.max_freq &&
2651             policy->max > cpu->pstate.max_freq) {
2652                 pr_debug("policy->max > max non turbo frequency\n");
2653                 policy->max = policy->cpuinfo.max_freq;
2654         }
2655 }
2656
2657 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2658                                            struct cpufreq_policy_data *policy)
2659 {
2660         int max_freq;
2661
2662         update_turbo_state();
2663         if (hwp_active) {
2664                 intel_pstate_get_hwp_cap(cpu);
2665                 max_freq = global.no_turbo || global.turbo_disabled ?
2666                                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2667         } else {
2668                 max_freq = intel_pstate_get_max_freq(cpu);
2669         }
2670         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2671
2672         intel_pstate_adjust_policy_max(cpu, policy);
2673 }
2674
2675 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2676 {
2677         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2678
2679         return 0;
2680 }
2681
2682 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2683 {
2684         struct cpudata *cpu = all_cpu_data[policy->cpu];
2685
2686         pr_debug("CPU %d going offline\n", cpu->cpu);
2687
2688         if (cpu->suspended)
2689                 return 0;
2690
2691         /*
2692          * If the CPU is an SMT thread and it goes offline with the performance
2693          * settings different from the minimum, it will prevent its sibling
2694          * from getting to lower performance levels, so force the minimum
2695          * performance on CPU offline to prevent that from happening.
2696          */
2697         if (hwp_active)
2698                 intel_pstate_hwp_offline(cpu);
2699         else
2700                 intel_pstate_set_min_pstate(cpu);
2701
2702         intel_pstate_exit_perf_limits(policy);
2703
2704         return 0;
2705 }
2706
2707 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2708 {
2709         struct cpudata *cpu = all_cpu_data[policy->cpu];
2710
2711         pr_debug("CPU %d going online\n", cpu->cpu);
2712
2713         intel_pstate_init_acpi_perf_limits(policy);
2714
2715         if (hwp_active) {
2716                 /*
2717                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2718                  * know that it need not do that.
2719                  */
2720                 intel_pstate_hwp_reenable(cpu);
2721                 cpu->suspended = false;
2722         }
2723
2724         return 0;
2725 }
2726
2727 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2728 {
2729         intel_pstate_clear_update_util_hook(policy->cpu);
2730
2731         return intel_cpufreq_cpu_offline(policy);
2732 }
2733
2734 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2735 {
2736         pr_debug("CPU %d exiting\n", policy->cpu);
2737
2738         policy->fast_switch_possible = false;
2739
2740         return 0;
2741 }
2742
2743 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2744 {
2745         struct cpudata *cpu;
2746         int rc;
2747
2748         rc = intel_pstate_init_cpu(policy->cpu);
2749         if (rc)
2750                 return rc;
2751
2752         cpu = all_cpu_data[policy->cpu];
2753
2754         cpu->max_perf_ratio = 0xFF;
2755         cpu->min_perf_ratio = 0;
2756
2757         /* cpuinfo and default policy values */
2758         policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2759         update_turbo_state();
2760         global.turbo_disabled_mf = global.turbo_disabled;
2761         policy->cpuinfo.max_freq = global.turbo_disabled ?
2762                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2763
2764         policy->min = policy->cpuinfo.min_freq;
2765         policy->max = policy->cpuinfo.max_freq;
2766
2767         intel_pstate_init_acpi_perf_limits(policy);
2768
2769         policy->fast_switch_possible = true;
2770
2771         return 0;
2772 }
2773
2774 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2775 {
2776         int ret = __intel_pstate_cpu_init(policy);
2777
2778         if (ret)
2779                 return ret;
2780
2781         /*
2782          * Set the policy to powersave to provide a valid fallback value in case
2783          * the default cpufreq governor is neither powersave nor performance.
2784          */
2785         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2786
2787         if (hwp_active) {
2788                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2789
2790                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2791         }
2792
2793         return 0;
2794 }
2795
2796 static struct cpufreq_driver intel_pstate = {
2797         .flags          = CPUFREQ_CONST_LOOPS,
2798         .verify         = intel_pstate_verify_policy,
2799         .setpolicy      = intel_pstate_set_policy,
2800         .suspend        = intel_pstate_suspend,
2801         .resume         = intel_pstate_resume,
2802         .init           = intel_pstate_cpu_init,
2803         .exit           = intel_pstate_cpu_exit,
2804         .offline        = intel_pstate_cpu_offline,
2805         .online         = intel_pstate_cpu_online,
2806         .update_limits  = intel_pstate_update_limits,
2807         .name           = "intel_pstate",
2808 };
2809
2810 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2811 {
2812         struct cpudata *cpu = all_cpu_data[policy->cpu];
2813
2814         intel_pstate_verify_cpu_policy(cpu, policy);
2815         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2816
2817         return 0;
2818 }
2819
2820 /* Use of trace in passive mode:
2821  *
2822  * In passive mode the trace core_busy field (also known as the
2823  * performance field, and lablelled as such on the graphs; also known as
2824  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2825  * driver call was via the normal or fast switch path. Various graphs
2826  * output from the intel_pstate_tracer.py utility that include core_busy
2827  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2828  * so we use 10 to indicate the normal path through the driver, and
2829  * 90 to indicate the fast switch path through the driver.
2830  * The scaled_busy field is not used, and is set to 0.
2831  */
2832
2833 #define INTEL_PSTATE_TRACE_TARGET 10
2834 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2835
2836 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2837 {
2838         struct sample *sample;
2839
2840         if (!trace_pstate_sample_enabled())
2841                 return;
2842
2843         if (!intel_pstate_sample(cpu, ktime_get()))
2844                 return;
2845
2846         sample = &cpu->sample;
2847         trace_pstate_sample(trace_type,
2848                 0,
2849                 old_pstate,
2850                 cpu->pstate.current_pstate,
2851                 sample->mperf,
2852                 sample->aperf,
2853                 sample->tsc,
2854                 get_avg_frequency(cpu),
2855                 fp_toint(cpu->iowait_boost * 100));
2856 }
2857
2858 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2859                                      u32 desired, bool fast_switch)
2860 {
2861         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2862
2863         value &= ~HWP_MIN_PERF(~0L);
2864         value |= HWP_MIN_PERF(min);
2865
2866         value &= ~HWP_MAX_PERF(~0L);
2867         value |= HWP_MAX_PERF(max);
2868
2869         value &= ~HWP_DESIRED_PERF(~0L);
2870         value |= HWP_DESIRED_PERF(desired);
2871
2872         if (value == prev)
2873                 return;
2874
2875         WRITE_ONCE(cpu->hwp_req_cached, value);
2876         if (fast_switch)
2877                 wrmsrl(MSR_HWP_REQUEST, value);
2878         else
2879                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2880 }
2881
2882 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2883                                           u32 target_pstate, bool fast_switch)
2884 {
2885         if (fast_switch)
2886                 wrmsrl(MSR_IA32_PERF_CTL,
2887                        pstate_funcs.get_val(cpu, target_pstate));
2888         else
2889                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2890                               pstate_funcs.get_val(cpu, target_pstate));
2891 }
2892
2893 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2894                                        int target_pstate, bool fast_switch)
2895 {
2896         struct cpudata *cpu = all_cpu_data[policy->cpu];
2897         int old_pstate = cpu->pstate.current_pstate;
2898
2899         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2900         if (hwp_active) {
2901                 int max_pstate = policy->strict_target ?
2902                                         target_pstate : cpu->max_perf_ratio;
2903
2904                 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2905                                          fast_switch);
2906         } else if (target_pstate != old_pstate) {
2907                 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2908         }
2909
2910         cpu->pstate.current_pstate = target_pstate;
2911
2912         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2913                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2914
2915         return target_pstate;
2916 }
2917
2918 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2919                                 unsigned int target_freq,
2920                                 unsigned int relation)
2921 {
2922         struct cpudata *cpu = all_cpu_data[policy->cpu];
2923         struct cpufreq_freqs freqs;
2924         int target_pstate;
2925
2926         update_turbo_state();
2927
2928         freqs.old = policy->cur;
2929         freqs.new = target_freq;
2930
2931         cpufreq_freq_transition_begin(policy, &freqs);
2932
2933         target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
2934         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2935
2936         freqs.new = target_pstate * cpu->pstate.scaling;
2937
2938         cpufreq_freq_transition_end(policy, &freqs, false);
2939
2940         return 0;
2941 }
2942
2943 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2944                                               unsigned int target_freq)
2945 {
2946         struct cpudata *cpu = all_cpu_data[policy->cpu];
2947         int target_pstate;
2948
2949         update_turbo_state();
2950
2951         target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
2952
2953         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2954
2955         return target_pstate * cpu->pstate.scaling;
2956 }
2957
2958 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2959                                       unsigned long min_perf,
2960                                       unsigned long target_perf,
2961                                       unsigned long capacity)
2962 {
2963         struct cpudata *cpu = all_cpu_data[cpunum];
2964         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2965         int old_pstate = cpu->pstate.current_pstate;
2966         int cap_pstate, min_pstate, max_pstate, target_pstate;
2967
2968         update_turbo_state();
2969         cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2970                                              HWP_HIGHEST_PERF(hwp_cap);
2971
2972         /* Optimization: Avoid unnecessary divisions. */
2973
2974         target_pstate = cap_pstate;
2975         if (target_perf < capacity)
2976                 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2977
2978         min_pstate = cap_pstate;
2979         if (min_perf < capacity)
2980                 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2981
2982         if (min_pstate < cpu->pstate.min_pstate)
2983                 min_pstate = cpu->pstate.min_pstate;
2984
2985         if (min_pstate < cpu->min_perf_ratio)
2986                 min_pstate = cpu->min_perf_ratio;
2987
2988         if (min_pstate > cpu->max_perf_ratio)
2989                 min_pstate = cpu->max_perf_ratio;
2990
2991         max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2992         if (max_pstate < min_pstate)
2993                 max_pstate = min_pstate;
2994
2995         target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2996
2997         intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2998
2999         cpu->pstate.current_pstate = target_pstate;
3000         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
3001 }
3002
3003 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3004 {
3005         struct freq_qos_request *req;
3006         struct cpudata *cpu;
3007         struct device *dev;
3008         int ret, freq;
3009
3010         dev = get_cpu_device(policy->cpu);
3011         if (!dev)
3012                 return -ENODEV;
3013
3014         ret = __intel_pstate_cpu_init(policy);
3015         if (ret)
3016                 return ret;
3017
3018         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3019         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
3020         policy->cur = policy->cpuinfo.min_freq;
3021
3022         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3023         if (!req) {
3024                 ret = -ENOMEM;
3025                 goto pstate_exit;
3026         }
3027
3028         cpu = all_cpu_data[policy->cpu];
3029
3030         if (hwp_active) {
3031                 u64 value;
3032
3033                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3034
3035                 intel_pstate_get_hwp_cap(cpu);
3036
3037                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3038                 WRITE_ONCE(cpu->hwp_req_cached, value);
3039
3040                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3041         } else {
3042                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3043         }
3044
3045         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3046
3047         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3048                                    freq);
3049         if (ret < 0) {
3050                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3051                 goto free_req;
3052         }
3053
3054         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3055
3056         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3057                                    freq);
3058         if (ret < 0) {
3059                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3060                 goto remove_min_req;
3061         }
3062
3063         policy->driver_data = req;
3064
3065         return 0;
3066
3067 remove_min_req:
3068         freq_qos_remove_request(req);
3069 free_req:
3070         kfree(req);
3071 pstate_exit:
3072         intel_pstate_exit_perf_limits(policy);
3073
3074         return ret;
3075 }
3076
3077 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3078 {
3079         struct freq_qos_request *req;
3080
3081         req = policy->driver_data;
3082
3083         freq_qos_remove_request(req + 1);
3084         freq_qos_remove_request(req);
3085         kfree(req);
3086
3087         return intel_pstate_cpu_exit(policy);
3088 }
3089
3090 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3091 {
3092         intel_pstate_suspend(policy);
3093
3094         if (hwp_active) {
3095                 struct cpudata *cpu = all_cpu_data[policy->cpu];
3096                 u64 value = READ_ONCE(cpu->hwp_req_cached);
3097
3098                 /*
3099                  * Clear the desired perf field in MSR_HWP_REQUEST in case
3100                  * intel_cpufreq_adjust_perf() is in use and the last value
3101                  * written by it may not be suitable.
3102                  */
3103                 value &= ~HWP_DESIRED_PERF(~0L);
3104                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3105                 WRITE_ONCE(cpu->hwp_req_cached, value);
3106         }
3107
3108         return 0;
3109 }
3110
3111 static struct cpufreq_driver intel_cpufreq = {
3112         .flags          = CPUFREQ_CONST_LOOPS,
3113         .verify         = intel_cpufreq_verify_policy,
3114         .target         = intel_cpufreq_target,
3115         .fast_switch    = intel_cpufreq_fast_switch,
3116         .init           = intel_cpufreq_cpu_init,
3117         .exit           = intel_cpufreq_cpu_exit,
3118         .offline        = intel_cpufreq_cpu_offline,
3119         .online         = intel_pstate_cpu_online,
3120         .suspend        = intel_cpufreq_suspend,
3121         .resume         = intel_pstate_resume,
3122         .update_limits  = intel_pstate_update_limits,
3123         .name           = "intel_cpufreq",
3124 };
3125
3126 static struct cpufreq_driver *default_driver;
3127
3128 static void intel_pstate_driver_cleanup(void)
3129 {
3130         unsigned int cpu;
3131
3132         cpus_read_lock();
3133         for_each_online_cpu(cpu) {
3134                 if (all_cpu_data[cpu]) {
3135                         if (intel_pstate_driver == &intel_pstate)
3136                                 intel_pstate_clear_update_util_hook(cpu);
3137
3138                         spin_lock(&hwp_notify_lock);
3139                         kfree(all_cpu_data[cpu]);
3140                         WRITE_ONCE(all_cpu_data[cpu], NULL);
3141                         spin_unlock(&hwp_notify_lock);
3142                 }
3143         }
3144         cpus_read_unlock();
3145
3146         intel_pstate_driver = NULL;
3147 }
3148
3149 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3150 {
3151         int ret;
3152
3153         if (driver == &intel_pstate)
3154                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3155
3156         memset(&global, 0, sizeof(global));
3157         global.max_perf_pct = 100;
3158
3159         intel_pstate_driver = driver;
3160         ret = cpufreq_register_driver(intel_pstate_driver);
3161         if (ret) {
3162                 intel_pstate_driver_cleanup();
3163                 return ret;
3164         }
3165
3166         global.min_perf_pct = min_perf_pct_min();
3167
3168         return 0;
3169 }
3170
3171 static ssize_t intel_pstate_show_status(char *buf)
3172 {
3173         if (!intel_pstate_driver)
3174                 return sprintf(buf, "off\n");
3175
3176         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3177                                         "active" : "passive");
3178 }
3179
3180 static int intel_pstate_update_status(const char *buf, size_t size)
3181 {
3182         if (size == 3 && !strncmp(buf, "off", size)) {
3183                 if (!intel_pstate_driver)
3184                         return -EINVAL;
3185
3186                 if (hwp_active)
3187                         return -EBUSY;
3188
3189                 cpufreq_unregister_driver(intel_pstate_driver);
3190                 intel_pstate_driver_cleanup();
3191                 return 0;
3192         }
3193
3194         if (size == 6 && !strncmp(buf, "active", size)) {
3195                 if (intel_pstate_driver) {
3196                         if (intel_pstate_driver == &intel_pstate)
3197                                 return 0;
3198
3199                         cpufreq_unregister_driver(intel_pstate_driver);
3200                 }
3201
3202                 return intel_pstate_register_driver(&intel_pstate);
3203         }
3204
3205         if (size == 7 && !strncmp(buf, "passive", size)) {
3206                 if (intel_pstate_driver) {
3207                         if (intel_pstate_driver == &intel_cpufreq)
3208                                 return 0;
3209
3210                         cpufreq_unregister_driver(intel_pstate_driver);
3211                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
3212                 }
3213
3214                 return intel_pstate_register_driver(&intel_cpufreq);
3215         }
3216
3217         return -EINVAL;
3218 }
3219
3220 static int no_load __initdata;
3221 static int no_hwp __initdata;
3222 static int hwp_only __initdata;
3223 static unsigned int force_load __initdata;
3224
3225 static int __init intel_pstate_msrs_not_valid(void)
3226 {
3227         if (!pstate_funcs.get_max(0) ||
3228             !pstate_funcs.get_min(0) ||
3229             !pstate_funcs.get_turbo(0))
3230                 return -ENODEV;
3231
3232         return 0;
3233 }
3234
3235 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3236 {
3237         pstate_funcs.get_max   = funcs->get_max;
3238         pstate_funcs.get_max_physical = funcs->get_max_physical;
3239         pstate_funcs.get_min   = funcs->get_min;
3240         pstate_funcs.get_turbo = funcs->get_turbo;
3241         pstate_funcs.get_scaling = funcs->get_scaling;
3242         pstate_funcs.get_val   = funcs->get_val;
3243         pstate_funcs.get_vid   = funcs->get_vid;
3244         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3245 }
3246
3247 #ifdef CONFIG_ACPI
3248
3249 static bool __init intel_pstate_no_acpi_pss(void)
3250 {
3251         int i;
3252
3253         for_each_possible_cpu(i) {
3254                 acpi_status status;
3255                 union acpi_object *pss;
3256                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3257                 struct acpi_processor *pr = per_cpu(processors, i);
3258
3259                 if (!pr)
3260                         continue;
3261
3262                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3263                 if (ACPI_FAILURE(status))
3264                         continue;
3265
3266                 pss = buffer.pointer;
3267                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3268                         kfree(pss);
3269                         return false;
3270                 }
3271
3272                 kfree(pss);
3273         }
3274
3275         pr_debug("ACPI _PSS not found\n");
3276         return true;
3277 }
3278
3279 static bool __init intel_pstate_no_acpi_pcch(void)
3280 {
3281         acpi_status status;
3282         acpi_handle handle;
3283
3284         status = acpi_get_handle(NULL, "\\_SB", &handle);
3285         if (ACPI_FAILURE(status))
3286                 goto not_found;
3287
3288         if (acpi_has_method(handle, "PCCH"))
3289                 return false;
3290
3291 not_found:
3292         pr_debug("ACPI PCCH not found\n");
3293         return true;
3294 }
3295
3296 static bool __init intel_pstate_has_acpi_ppc(void)
3297 {
3298         int i;
3299
3300         for_each_possible_cpu(i) {
3301                 struct acpi_processor *pr = per_cpu(processors, i);
3302
3303                 if (!pr)
3304                         continue;
3305                 if (acpi_has_method(pr->handle, "_PPC"))
3306                         return true;
3307         }
3308         pr_debug("ACPI _PPC not found\n");
3309         return false;
3310 }
3311
3312 enum {
3313         PSS,
3314         PPC,
3315 };
3316
3317 /* Hardware vendor-specific info that has its own power management modes */
3318 static struct acpi_platform_list plat_info[] __initdata = {
3319         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3320         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3321         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3322         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3323         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3324         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3325         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3326         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3327         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3328         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3329         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3330         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3331         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3332         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3333         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3334         { } /* End */
3335 };
3336
3337 #define BITMASK_OOB     (BIT(8) | BIT(18))
3338
3339 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3340 {
3341         const struct x86_cpu_id *id;
3342         u64 misc_pwr;
3343         int idx;
3344
3345         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3346         if (id) {
3347                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3348                 if (misc_pwr & BITMASK_OOB) {
3349                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3350                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3351                         return true;
3352                 }
3353         }
3354
3355         idx = acpi_match_platform_list(plat_info);
3356         if (idx < 0)
3357                 return false;
3358
3359         switch (plat_info[idx].data) {
3360         case PSS:
3361                 if (!intel_pstate_no_acpi_pss())
3362                         return false;
3363
3364                 return intel_pstate_no_acpi_pcch();
3365         case PPC:
3366                 return intel_pstate_has_acpi_ppc() && !force_load;
3367         }
3368
3369         return false;
3370 }
3371
3372 static void intel_pstate_request_control_from_smm(void)
3373 {
3374         /*
3375          * It may be unsafe to request P-states control from SMM if _PPC support
3376          * has not been enabled.
3377          */
3378         if (acpi_ppc)
3379                 acpi_processor_pstate_control();
3380 }
3381 #else /* CONFIG_ACPI not enabled */
3382 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3383 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3384 static inline void intel_pstate_request_control_from_smm(void) {}
3385 #endif /* CONFIG_ACPI */
3386
3387 #define INTEL_PSTATE_HWP_BROADWELL      0x01
3388
3389 #define X86_MATCH_HWP(model, hwp_mode)                                  \
3390         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3391                                            X86_FEATURE_HWP, hwp_mode)
3392
3393 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3394         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
3395         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
3396         X86_MATCH_HWP(ANY,              0),
3397         {}
3398 };
3399
3400 static bool intel_pstate_hwp_is_enabled(void)
3401 {
3402         u64 value;
3403
3404         rdmsrl(MSR_PM_ENABLE, value);
3405         return !!(value & 0x1);
3406 }
3407
3408 #define POWERSAVE_MASK                  GENMASK(7, 0)
3409 #define BALANCE_POWER_MASK              GENMASK(15, 8)
3410 #define BALANCE_PERFORMANCE_MASK        GENMASK(23, 16)
3411 #define PERFORMANCE_MASK                GENMASK(31, 24)
3412
3413 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \
3414         (FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\
3415          FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\
3416          FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\
3417          FIELD_PREP_CONST(PERFORMANCE_MASK, performance))
3418
3419 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \
3420         (HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\
3421          balance_perf, HWP_EPP_PERFORMANCE))
3422
3423 static const struct x86_cpu_id intel_epp_default[] = {
3424         /*
3425          * Set EPP value as 102, this is the max suggested EPP
3426          * which can result in one core turbo frequency for
3427          * AlderLake Mobile CPUs.
3428          */
3429         X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)),
3430         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3431         X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3432                                                         HWP_EPP_BALANCE_POWERSAVE, 115, 16)),
3433         {}
3434 };
3435
3436 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3437         X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3438         {}
3439 };
3440
3441 static int __init intel_pstate_init(void)
3442 {
3443         static struct cpudata **_all_cpu_data;
3444         const struct x86_cpu_id *id;
3445         int rc;
3446
3447         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3448                 return -ENODEV;
3449
3450         id = x86_match_cpu(hwp_support_ids);
3451         if (id) {
3452                 hwp_forced = intel_pstate_hwp_is_enabled();
3453
3454                 if (hwp_forced)
3455                         pr_info("HWP enabled by BIOS\n");
3456                 else if (no_load)
3457                         return -ENODEV;
3458
3459                 copy_cpu_funcs(&core_funcs);
3460                 /*
3461                  * Avoid enabling HWP for processors without EPP support,
3462                  * because that means incomplete HWP implementation which is a
3463                  * corner case and supporting it is generally problematic.
3464                  *
3465                  * If HWP is enabled already, though, there is no choice but to
3466                  * deal with it.
3467                  */
3468                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3469                         WRITE_ONCE(hwp_active, 1);
3470                         hwp_mode_bdw = id->driver_data;
3471                         intel_pstate.attr = hwp_cpufreq_attrs;
3472                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3473                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3474                         intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3475                         if (!default_driver)
3476                                 default_driver = &intel_pstate;
3477
3478                         pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3479
3480                         goto hwp_cpu_matched;
3481                 }
3482                 pr_info("HWP not enabled\n");
3483         } else {
3484                 if (no_load)
3485                         return -ENODEV;
3486
3487                 id = x86_match_cpu(intel_pstate_cpu_ids);
3488                 if (!id) {
3489                         pr_info("CPU model not supported\n");
3490                         return -ENODEV;
3491                 }
3492
3493                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3494         }
3495
3496         if (intel_pstate_msrs_not_valid()) {
3497                 pr_info("Invalid MSRs\n");
3498                 return -ENODEV;
3499         }
3500         /* Without HWP start in the passive mode. */
3501         if (!default_driver)
3502                 default_driver = &intel_cpufreq;
3503
3504 hwp_cpu_matched:
3505         /*
3506          * The Intel pstate driver will be ignored if the platform
3507          * firmware has its own power management modes.
3508          */
3509         if (intel_pstate_platform_pwr_mgmt_exists()) {
3510                 pr_info("P-states controlled by the platform\n");
3511                 return -ENODEV;
3512         }
3513
3514         if (!hwp_active && hwp_only)
3515                 return -ENOTSUPP;
3516
3517         pr_info("Intel P-state driver initializing\n");
3518
3519         _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3520         if (!_all_cpu_data)
3521                 return -ENOMEM;
3522
3523         WRITE_ONCE(all_cpu_data, _all_cpu_data);
3524
3525         intel_pstate_request_control_from_smm();
3526
3527         intel_pstate_sysfs_expose_params();
3528
3529         if (hwp_active) {
3530                 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default);
3531                 const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3532
3533                 if (id) {
3534                         epp_values[EPP_INDEX_POWERSAVE] =
3535                                         FIELD_GET(POWERSAVE_MASK, id->driver_data);
3536                         epp_values[EPP_INDEX_BALANCE_POWERSAVE] =
3537                                         FIELD_GET(BALANCE_POWER_MASK, id->driver_data);
3538                         epp_values[EPP_INDEX_BALANCE_PERFORMANCE] =
3539                                         FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data);
3540                         epp_values[EPP_INDEX_PERFORMANCE] =
3541                                         FIELD_GET(PERFORMANCE_MASK, id->driver_data);
3542                         pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n",
3543                                  epp_values[EPP_INDEX_POWERSAVE],
3544                                  epp_values[EPP_INDEX_BALANCE_POWERSAVE],
3545                                  epp_values[EPP_INDEX_BALANCE_PERFORMANCE],
3546                                  epp_values[EPP_INDEX_PERFORMANCE]);
3547                 }
3548
3549                 if (hybrid_id) {
3550                         hybrid_scaling_factor = hybrid_id->driver_data;
3551                         pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3552                 }
3553
3554         }
3555
3556         mutex_lock(&intel_pstate_driver_lock);
3557         rc = intel_pstate_register_driver(default_driver);
3558         mutex_unlock(&intel_pstate_driver_lock);
3559         if (rc) {
3560                 intel_pstate_sysfs_remove();
3561                 return rc;
3562         }
3563
3564         if (hwp_active) {
3565                 const struct x86_cpu_id *id;
3566
3567                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3568                 if (id) {
3569                         set_power_ctl_ee_state(false);
3570                         pr_info("Disabling energy efficiency optimization\n");
3571                 }
3572
3573                 pr_info("HWP enabled\n");
3574         } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3575                 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3576         }
3577
3578         return 0;
3579 }
3580 device_initcall(intel_pstate_init);
3581
3582 static int __init intel_pstate_setup(char *str)
3583 {
3584         if (!str)
3585                 return -EINVAL;
3586
3587         if (!strcmp(str, "disable"))
3588                 no_load = 1;
3589         else if (!strcmp(str, "active"))
3590                 default_driver = &intel_pstate;
3591         else if (!strcmp(str, "passive"))
3592                 default_driver = &intel_cpufreq;
3593
3594         if (!strcmp(str, "no_hwp"))
3595                 no_hwp = 1;
3596
3597         if (!strcmp(str, "force"))
3598                 force_load = 1;
3599         if (!strcmp(str, "hwp_only"))
3600                 hwp_only = 1;
3601         if (!strcmp(str, "per_cpu_perf_limits"))
3602                 per_cpu_limits = true;
3603
3604 #ifdef CONFIG_ACPI
3605         if (!strcmp(str, "support_acpi_ppc"))
3606                 acpi_ppc = true;
3607 #endif
3608
3609         return 0;
3610 }
3611 early_param("intel_pstate", intel_pstate_setup);
3612
3613 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3614 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");