Merge tag 'defconfig-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "sgx.h"
15 #include "trace.h"
16 #include "vmx.h"
17 #include "x86.h"
18
19 static bool __read_mostly enable_shadow_vmcs = 1;
20 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
21
22 static bool __read_mostly nested_early_check = 0;
23 module_param(nested_early_check, bool, S_IRUGO);
24
25 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
26
27 /*
28  * Hyper-V requires all of these, so mark them as supported even though
29  * they are just treated the same as all-context.
30  */
31 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
32         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
33         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
34         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
35         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
36
37 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
38
39 enum {
40         VMX_VMREAD_BITMAP,
41         VMX_VMWRITE_BITMAP,
42         VMX_BITMAP_NR
43 };
44 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
45
46 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
47 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
48
49 struct shadow_vmcs_field {
50         u16     encoding;
51         u16     offset;
52 };
53 static struct shadow_vmcs_field shadow_read_only_fields[] = {
54 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
55 #include "vmcs_shadow_fields.h"
56 };
57 static int max_shadow_read_only_fields =
58         ARRAY_SIZE(shadow_read_only_fields);
59
60 static struct shadow_vmcs_field shadow_read_write_fields[] = {
61 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
62 #include "vmcs_shadow_fields.h"
63 };
64 static int max_shadow_read_write_fields =
65         ARRAY_SIZE(shadow_read_write_fields);
66
67 static void init_vmcs_shadow_fields(void)
68 {
69         int i, j;
70
71         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
72         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
73
74         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
75                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
76                 u16 field = entry.encoding;
77
78                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
79                     (i + 1 == max_shadow_read_only_fields ||
80                      shadow_read_only_fields[i + 1].encoding != field + 1))
81                         pr_err("Missing field from shadow_read_only_field %x\n",
82                                field + 1);
83
84                 clear_bit(field, vmx_vmread_bitmap);
85                 if (field & 1)
86 #ifdef CONFIG_X86_64
87                         continue;
88 #else
89                         entry.offset += sizeof(u32);
90 #endif
91                 shadow_read_only_fields[j++] = entry;
92         }
93         max_shadow_read_only_fields = j;
94
95         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
96                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
97                 u16 field = entry.encoding;
98
99                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
100                     (i + 1 == max_shadow_read_write_fields ||
101                      shadow_read_write_fields[i + 1].encoding != field + 1))
102                         pr_err("Missing field from shadow_read_write_field %x\n",
103                                field + 1);
104
105                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
106                           field <= GUEST_TR_AR_BYTES,
107                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
108
109                 /*
110                  * PML and the preemption timer can be emulated, but the
111                  * processor cannot vmwrite to fields that don't exist
112                  * on bare metal.
113                  */
114                 switch (field) {
115                 case GUEST_PML_INDEX:
116                         if (!cpu_has_vmx_pml())
117                                 continue;
118                         break;
119                 case VMX_PREEMPTION_TIMER_VALUE:
120                         if (!cpu_has_vmx_preemption_timer())
121                                 continue;
122                         break;
123                 case GUEST_INTR_STATUS:
124                         if (!cpu_has_vmx_apicv())
125                                 continue;
126                         break;
127                 default:
128                         break;
129                 }
130
131                 clear_bit(field, vmx_vmwrite_bitmap);
132                 clear_bit(field, vmx_vmread_bitmap);
133                 if (field & 1)
134 #ifdef CONFIG_X86_64
135                         continue;
136 #else
137                         entry.offset += sizeof(u32);
138 #endif
139                 shadow_read_write_fields[j++] = entry;
140         }
141         max_shadow_read_write_fields = j;
142 }
143
144 /*
145  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
146  * set the success or error code of an emulated VMX instruction (as specified
147  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
148  * instruction.
149  */
150 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
151 {
152         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
153                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
154                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
155         return kvm_skip_emulated_instruction(vcpu);
156 }
157
158 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
159 {
160         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
161                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
162                             X86_EFLAGS_SF | X86_EFLAGS_OF))
163                         | X86_EFLAGS_CF);
164         return kvm_skip_emulated_instruction(vcpu);
165 }
166
167 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
168                                 u32 vm_instruction_error)
169 {
170         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
171                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
172                             X86_EFLAGS_SF | X86_EFLAGS_OF))
173                         | X86_EFLAGS_ZF);
174         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
175         /*
176          * We don't need to force sync to shadow VMCS because
177          * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
178          * fields and thus must be synced.
179          */
180         if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
181                 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
182
183         return kvm_skip_emulated_instruction(vcpu);
184 }
185
186 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
187 {
188         struct vcpu_vmx *vmx = to_vmx(vcpu);
189
190         /*
191          * failValid writes the error number to the current VMCS, which
192          * can't be done if there isn't a current VMCS.
193          */
194         if (vmx->nested.current_vmptr == -1ull &&
195             !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
196                 return nested_vmx_failInvalid(vcpu);
197
198         return nested_vmx_failValid(vcpu, vm_instruction_error);
199 }
200
201 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
202 {
203         /* TODO: not to reset guest simply here. */
204         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
205         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
206 }
207
208 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
209 {
210         return fixed_bits_valid(control, low, high);
211 }
212
213 static inline u64 vmx_control_msr(u32 low, u32 high)
214 {
215         return low | ((u64)high << 32);
216 }
217
218 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
219 {
220         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221         vmcs_write64(VMCS_LINK_POINTER, -1ull);
222         vmx->nested.need_vmcs12_to_shadow_sync = false;
223 }
224
225 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
226 {
227         struct vcpu_vmx *vmx = to_vmx(vcpu);
228
229         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
230                 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
231                 vmx->nested.hv_evmcs = NULL;
232         }
233
234         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
235 }
236
237 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
238                                      struct loaded_vmcs *prev)
239 {
240         struct vmcs_host_state *dest, *src;
241
242         if (unlikely(!vmx->guest_state_loaded))
243                 return;
244
245         src = &prev->host_state;
246         dest = &vmx->loaded_vmcs->host_state;
247
248         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
249         dest->ldt_sel = src->ldt_sel;
250 #ifdef CONFIG_X86_64
251         dest->ds_sel = src->ds_sel;
252         dest->es_sel = src->es_sel;
253 #endif
254 }
255
256 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
257 {
258         struct vcpu_vmx *vmx = to_vmx(vcpu);
259         struct loaded_vmcs *prev;
260         int cpu;
261
262         if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
263                 return;
264
265         cpu = get_cpu();
266         prev = vmx->loaded_vmcs;
267         vmx->loaded_vmcs = vmcs;
268         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
269         vmx_sync_vmcs_host_state(vmx, prev);
270         put_cpu();
271
272         vmx_register_cache_reset(vcpu);
273 }
274
275 /*
276  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
277  * just stops using VMX.
278  */
279 static void free_nested(struct kvm_vcpu *vcpu)
280 {
281         struct vcpu_vmx *vmx = to_vmx(vcpu);
282
283         if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
284                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
285
286         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
287                 return;
288
289         kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
290
291         vmx->nested.vmxon = false;
292         vmx->nested.smm.vmxon = false;
293         free_vpid(vmx->nested.vpid02);
294         vmx->nested.posted_intr_nv = -1;
295         vmx->nested.current_vmptr = -1ull;
296         if (enable_shadow_vmcs) {
297                 vmx_disable_shadow_vmcs(vmx);
298                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
299                 free_vmcs(vmx->vmcs01.shadow_vmcs);
300                 vmx->vmcs01.shadow_vmcs = NULL;
301         }
302         kfree(vmx->nested.cached_vmcs12);
303         vmx->nested.cached_vmcs12 = NULL;
304         kfree(vmx->nested.cached_shadow_vmcs12);
305         vmx->nested.cached_shadow_vmcs12 = NULL;
306         /* Unpin physical memory we referred to in the vmcs02 */
307         if (vmx->nested.apic_access_page) {
308                 kvm_release_page_clean(vmx->nested.apic_access_page);
309                 vmx->nested.apic_access_page = NULL;
310         }
311         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
312         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
313         vmx->nested.pi_desc = NULL;
314
315         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
316
317         nested_release_evmcs(vcpu);
318
319         free_loaded_vmcs(&vmx->nested.vmcs02);
320 }
321
322 /*
323  * Ensure that the current vmcs of the logical processor is the
324  * vmcs01 of the vcpu before calling free_nested().
325  */
326 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
327 {
328         vcpu_load(vcpu);
329         vmx_leave_nested(vcpu);
330         vcpu_put(vcpu);
331 }
332
333 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
334
335 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
336 {
337         return VALID_PAGE(root_hpa) &&
338                ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
339 }
340
341 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
342                                        gpa_t addr)
343 {
344         uint i;
345         struct kvm_mmu_root_info *cached_root;
346
347         WARN_ON_ONCE(!mmu_is_nested(vcpu));
348
349         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
350                 cached_root = &vcpu->arch.mmu->prev_roots[i];
351
352                 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
353                                             eptp))
354                         vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
355         }
356 }
357
358 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
359                 struct x86_exception *fault)
360 {
361         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
362         struct vcpu_vmx *vmx = to_vmx(vcpu);
363         u32 vm_exit_reason;
364         unsigned long exit_qualification = vcpu->arch.exit_qualification;
365
366         if (vmx->nested.pml_full) {
367                 vm_exit_reason = EXIT_REASON_PML_FULL;
368                 vmx->nested.pml_full = false;
369                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
370         } else {
371                 if (fault->error_code & PFERR_RSVD_MASK)
372                         vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
373                 else
374                         vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
375
376                 /*
377                  * Although the caller (kvm_inject_emulated_page_fault) would
378                  * have already synced the faulting address in the shadow EPT
379                  * tables for the current EPTP12, we also need to sync it for
380                  * any other cached EPTP02s based on the same EP4TA, since the
381                  * TLB associates mappings to the EP4TA rather than the full EPTP.
382                  */
383                 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
384                                            fault->address);
385         }
386
387         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
388         vmcs12->guest_physical_address = fault->address;
389 }
390
391 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
392 {
393         kvm_init_shadow_ept_mmu(vcpu,
394                                 to_vmx(vcpu)->nested.msrs.ept_caps &
395                                 VMX_EPT_EXECUTE_ONLY_BIT,
396                                 nested_ept_ad_enabled(vcpu),
397                                 nested_ept_get_eptp(vcpu));
398 }
399
400 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
401 {
402         WARN_ON(mmu_is_nested(vcpu));
403
404         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
405         nested_ept_new_eptp(vcpu);
406         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
407         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
408         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
409
410         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
411 }
412
413 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
414 {
415         vcpu->arch.mmu = &vcpu->arch.root_mmu;
416         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
417 }
418
419 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
420                                             u16 error_code)
421 {
422         bool inequality, bit;
423
424         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
425         inequality =
426                 (error_code & vmcs12->page_fault_error_code_mask) !=
427                  vmcs12->page_fault_error_code_match;
428         return inequality ^ bit;
429 }
430
431
432 /*
433  * KVM wants to inject page-faults which it got to the guest. This function
434  * checks whether in a nested guest, we need to inject them to L1 or L2.
435  */
436 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
437 {
438         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
439         unsigned int nr = vcpu->arch.exception.nr;
440         bool has_payload = vcpu->arch.exception.has_payload;
441         unsigned long payload = vcpu->arch.exception.payload;
442
443         if (nr == PF_VECTOR) {
444                 if (vcpu->arch.exception.nested_apf) {
445                         *exit_qual = vcpu->arch.apf.nested_apf_token;
446                         return 1;
447                 }
448                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
449                                                     vcpu->arch.exception.error_code)) {
450                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
451                         return 1;
452                 }
453         } else if (vmcs12->exception_bitmap & (1u << nr)) {
454                 if (nr == DB_VECTOR) {
455                         if (!has_payload) {
456                                 payload = vcpu->arch.dr6;
457                                 payload &= ~DR6_BT;
458                                 payload ^= DR6_ACTIVE_LOW;
459                         }
460                         *exit_qual = payload;
461                 } else
462                         *exit_qual = 0;
463                 return 1;
464         }
465
466         return 0;
467 }
468
469
470 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
471                 struct x86_exception *fault)
472 {
473         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
474
475         WARN_ON(!is_guest_mode(vcpu));
476
477         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
478                 !to_vmx(vcpu)->nested.nested_run_pending) {
479                 vmcs12->vm_exit_intr_error_code = fault->error_code;
480                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
481                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
482                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
483                                   fault->address);
484         } else {
485                 kvm_inject_page_fault(vcpu, fault);
486         }
487 }
488
489 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
490                                                struct vmcs12 *vmcs12)
491 {
492         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
493                 return 0;
494
495         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
496             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
497                 return -EINVAL;
498
499         return 0;
500 }
501
502 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
503                                                 struct vmcs12 *vmcs12)
504 {
505         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
506                 return 0;
507
508         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
509                 return -EINVAL;
510
511         return 0;
512 }
513
514 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
515                                                 struct vmcs12 *vmcs12)
516 {
517         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
518                 return 0;
519
520         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
521                 return -EINVAL;
522
523         return 0;
524 }
525
526 /*
527  * Check if MSR is intercepted for L01 MSR bitmap.
528  */
529 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
530 {
531         unsigned long *msr_bitmap;
532         int f = sizeof(unsigned long);
533
534         if (!cpu_has_vmx_msr_bitmap())
535                 return true;
536
537         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
538
539         if (msr <= 0x1fff) {
540                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
541         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
542                 msr &= 0x1fff;
543                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
544         }
545
546         return true;
547 }
548
549 /*
550  * If a msr is allowed by L0, we should check whether it is allowed by L1.
551  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
552  */
553 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
554                                                unsigned long *msr_bitmap_nested,
555                                                u32 msr, int type)
556 {
557         int f = sizeof(unsigned long);
558
559         /*
560          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
561          * have the write-low and read-high bitmap offsets the wrong way round.
562          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
563          */
564         if (msr <= 0x1fff) {
565                 if (type & MSR_TYPE_R &&
566                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
567                         /* read-low */
568                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
569
570                 if (type & MSR_TYPE_W &&
571                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
572                         /* write-low */
573                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
574
575         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
576                 msr &= 0x1fff;
577                 if (type & MSR_TYPE_R &&
578                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
579                         /* read-high */
580                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
581
582                 if (type & MSR_TYPE_W &&
583                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
584                         /* write-high */
585                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
586
587         }
588 }
589
590 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
591 {
592         int msr;
593
594         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
595                 unsigned word = msr / BITS_PER_LONG;
596
597                 msr_bitmap[word] = ~0;
598                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
599         }
600 }
601
602 /*
603  * Merge L0's and L1's MSR bitmap, return false to indicate that
604  * we do not use the hardware.
605  */
606 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
607                                                  struct vmcs12 *vmcs12)
608 {
609         int msr;
610         unsigned long *msr_bitmap_l1;
611         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
612         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
613
614         /* Nothing to do if the MSR bitmap is not in use.  */
615         if (!cpu_has_vmx_msr_bitmap() ||
616             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
617                 return false;
618
619         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
620                 return false;
621
622         msr_bitmap_l1 = (unsigned long *)map->hva;
623
624         /*
625          * To keep the control flow simple, pay eight 8-byte writes (sixteen
626          * 4-byte writes on 32-bit systems) up front to enable intercepts for
627          * the x2APIC MSR range and selectively disable them below.
628          */
629         enable_x2apic_msr_intercepts(msr_bitmap_l0);
630
631         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
632                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
633                         /*
634                          * L0 need not intercept reads for MSRs between 0x800
635                          * and 0x8ff, it just lets the processor take the value
636                          * from the virtual-APIC page; take those 256 bits
637                          * directly from the L1 bitmap.
638                          */
639                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
640                                 unsigned word = msr / BITS_PER_LONG;
641
642                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
643                         }
644                 }
645
646                 nested_vmx_disable_intercept_for_msr(
647                         msr_bitmap_l1, msr_bitmap_l0,
648                         X2APIC_MSR(APIC_TASKPRI),
649                         MSR_TYPE_R | MSR_TYPE_W);
650
651                 if (nested_cpu_has_vid(vmcs12)) {
652                         nested_vmx_disable_intercept_for_msr(
653                                 msr_bitmap_l1, msr_bitmap_l0,
654                                 X2APIC_MSR(APIC_EOI),
655                                 MSR_TYPE_W);
656                         nested_vmx_disable_intercept_for_msr(
657                                 msr_bitmap_l1, msr_bitmap_l0,
658                                 X2APIC_MSR(APIC_SELF_IPI),
659                                 MSR_TYPE_W);
660                 }
661         }
662
663         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
664 #ifdef CONFIG_X86_64
665         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
666                                              MSR_FS_BASE, MSR_TYPE_RW);
667
668         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
669                                              MSR_GS_BASE, MSR_TYPE_RW);
670
671         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
672                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
673 #endif
674
675         /*
676          * Checking the L0->L1 bitmap is trying to verify two things:
677          *
678          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
679          *    ensures that we do not accidentally generate an L02 MSR bitmap
680          *    from the L12 MSR bitmap that is too permissive.
681          * 2. That L1 or L2s have actually used the MSR. This avoids
682          *    unnecessarily merging of the bitmap if the MSR is unused. This
683          *    works properly because we only update the L01 MSR bitmap lazily.
684          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
685          *    updated to reflect this when L1 (or its L2s) actually write to
686          *    the MSR.
687          */
688         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
689                 nested_vmx_disable_intercept_for_msr(
690                                         msr_bitmap_l1, msr_bitmap_l0,
691                                         MSR_IA32_SPEC_CTRL,
692                                         MSR_TYPE_R | MSR_TYPE_W);
693
694         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
695                 nested_vmx_disable_intercept_for_msr(
696                                         msr_bitmap_l1, msr_bitmap_l0,
697                                         MSR_IA32_PRED_CMD,
698                                         MSR_TYPE_W);
699
700         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
701
702         return true;
703 }
704
705 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
706                                        struct vmcs12 *vmcs12)
707 {
708         struct kvm_host_map map;
709         struct vmcs12 *shadow;
710
711         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
712             vmcs12->vmcs_link_pointer == -1ull)
713                 return;
714
715         shadow = get_shadow_vmcs12(vcpu);
716
717         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
718                 return;
719
720         memcpy(shadow, map.hva, VMCS12_SIZE);
721         kvm_vcpu_unmap(vcpu, &map, false);
722 }
723
724 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
725                                               struct vmcs12 *vmcs12)
726 {
727         struct vcpu_vmx *vmx = to_vmx(vcpu);
728
729         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
730             vmcs12->vmcs_link_pointer == -1ull)
731                 return;
732
733         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
734                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
735 }
736
737 /*
738  * In nested virtualization, check if L1 has set
739  * VM_EXIT_ACK_INTR_ON_EXIT
740  */
741 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
742 {
743         return get_vmcs12(vcpu)->vm_exit_controls &
744                 VM_EXIT_ACK_INTR_ON_EXIT;
745 }
746
747 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
748                                           struct vmcs12 *vmcs12)
749 {
750         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
751             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
752                 return -EINVAL;
753         else
754                 return 0;
755 }
756
757 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
758                                            struct vmcs12 *vmcs12)
759 {
760         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
761             !nested_cpu_has_apic_reg_virt(vmcs12) &&
762             !nested_cpu_has_vid(vmcs12) &&
763             !nested_cpu_has_posted_intr(vmcs12))
764                 return 0;
765
766         /*
767          * If virtualize x2apic mode is enabled,
768          * virtualize apic access must be disabled.
769          */
770         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
771                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
772                 return -EINVAL;
773
774         /*
775          * If virtual interrupt delivery is enabled,
776          * we must exit on external interrupts.
777          */
778         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
779                 return -EINVAL;
780
781         /*
782          * bits 15:8 should be zero in posted_intr_nv,
783          * the descriptor address has been already checked
784          * in nested_get_vmcs12_pages.
785          *
786          * bits 5:0 of posted_intr_desc_addr should be zero.
787          */
788         if (nested_cpu_has_posted_intr(vmcs12) &&
789            (CC(!nested_cpu_has_vid(vmcs12)) ||
790             CC(!nested_exit_intr_ack_set(vcpu)) ||
791             CC((vmcs12->posted_intr_nv & 0xff00)) ||
792             CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
793                 return -EINVAL;
794
795         /* tpr shadow is needed by all apicv features. */
796         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
797                 return -EINVAL;
798
799         return 0;
800 }
801
802 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
803                                        u32 count, u64 addr)
804 {
805         if (count == 0)
806                 return 0;
807
808         if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
809             !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
810                 return -EINVAL;
811
812         return 0;
813 }
814
815 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
816                                                      struct vmcs12 *vmcs12)
817 {
818         if (CC(nested_vmx_check_msr_switch(vcpu,
819                                            vmcs12->vm_exit_msr_load_count,
820                                            vmcs12->vm_exit_msr_load_addr)) ||
821             CC(nested_vmx_check_msr_switch(vcpu,
822                                            vmcs12->vm_exit_msr_store_count,
823                                            vmcs12->vm_exit_msr_store_addr)))
824                 return -EINVAL;
825
826         return 0;
827 }
828
829 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
830                                                       struct vmcs12 *vmcs12)
831 {
832         if (CC(nested_vmx_check_msr_switch(vcpu,
833                                            vmcs12->vm_entry_msr_load_count,
834                                            vmcs12->vm_entry_msr_load_addr)))
835                 return -EINVAL;
836
837         return 0;
838 }
839
840 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
841                                          struct vmcs12 *vmcs12)
842 {
843         if (!nested_cpu_has_pml(vmcs12))
844                 return 0;
845
846         if (CC(!nested_cpu_has_ept(vmcs12)) ||
847             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
848                 return -EINVAL;
849
850         return 0;
851 }
852
853 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
854                                                         struct vmcs12 *vmcs12)
855 {
856         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
857                !nested_cpu_has_ept(vmcs12)))
858                 return -EINVAL;
859         return 0;
860 }
861
862 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
863                                                          struct vmcs12 *vmcs12)
864 {
865         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
866                !nested_cpu_has_ept(vmcs12)))
867                 return -EINVAL;
868         return 0;
869 }
870
871 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
872                                                  struct vmcs12 *vmcs12)
873 {
874         if (!nested_cpu_has_shadow_vmcs(vmcs12))
875                 return 0;
876
877         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
878             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
879                 return -EINVAL;
880
881         return 0;
882 }
883
884 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
885                                        struct vmx_msr_entry *e)
886 {
887         /* x2APIC MSR accesses are not allowed */
888         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
889                 return -EINVAL;
890         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
891             CC(e->index == MSR_IA32_UCODE_REV))
892                 return -EINVAL;
893         if (CC(e->reserved != 0))
894                 return -EINVAL;
895         return 0;
896 }
897
898 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
899                                      struct vmx_msr_entry *e)
900 {
901         if (CC(e->index == MSR_FS_BASE) ||
902             CC(e->index == MSR_GS_BASE) ||
903             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
904             nested_vmx_msr_check_common(vcpu, e))
905                 return -EINVAL;
906         return 0;
907 }
908
909 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
910                                       struct vmx_msr_entry *e)
911 {
912         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
913             nested_vmx_msr_check_common(vcpu, e))
914                 return -EINVAL;
915         return 0;
916 }
917
918 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
919 {
920         struct vcpu_vmx *vmx = to_vmx(vcpu);
921         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
922                                        vmx->nested.msrs.misc_high);
923
924         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
925 }
926
927 /*
928  * Load guest's/host's msr at nested entry/exit.
929  * return 0 for success, entry index for failure.
930  *
931  * One of the failure modes for MSR load/store is when a list exceeds the
932  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
933  * as possible, process all valid entries before failing rather than precheck
934  * for a capacity violation.
935  */
936 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
937 {
938         u32 i;
939         struct vmx_msr_entry e;
940         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
941
942         for (i = 0; i < count; i++) {
943                 if (unlikely(i >= max_msr_list_size))
944                         goto fail;
945
946                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
947                                         &e, sizeof(e))) {
948                         pr_debug_ratelimited(
949                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
950                                 __func__, i, gpa + i * sizeof(e));
951                         goto fail;
952                 }
953                 if (nested_vmx_load_msr_check(vcpu, &e)) {
954                         pr_debug_ratelimited(
955                                 "%s check failed (%u, 0x%x, 0x%x)\n",
956                                 __func__, i, e.index, e.reserved);
957                         goto fail;
958                 }
959                 if (kvm_set_msr(vcpu, e.index, e.value)) {
960                         pr_debug_ratelimited(
961                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
962                                 __func__, i, e.index, e.value);
963                         goto fail;
964                 }
965         }
966         return 0;
967 fail:
968         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
969         return i + 1;
970 }
971
972 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
973                                             u32 msr_index,
974                                             u64 *data)
975 {
976         struct vcpu_vmx *vmx = to_vmx(vcpu);
977
978         /*
979          * If the L0 hypervisor stored a more accurate value for the TSC that
980          * does not include the time taken for emulation of the L2->L1
981          * VM-exit in L0, use the more accurate value.
982          */
983         if (msr_index == MSR_IA32_TSC) {
984                 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
985                                                     MSR_IA32_TSC);
986
987                 if (i >= 0) {
988                         u64 val = vmx->msr_autostore.guest.val[i].value;
989
990                         *data = kvm_read_l1_tsc(vcpu, val);
991                         return true;
992                 }
993         }
994
995         if (kvm_get_msr(vcpu, msr_index, data)) {
996                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
997                         msr_index);
998                 return false;
999         }
1000         return true;
1001 }
1002
1003 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1004                                      struct vmx_msr_entry *e)
1005 {
1006         if (kvm_vcpu_read_guest(vcpu,
1007                                 gpa + i * sizeof(*e),
1008                                 e, 2 * sizeof(u32))) {
1009                 pr_debug_ratelimited(
1010                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
1011                         __func__, i, gpa + i * sizeof(*e));
1012                 return false;
1013         }
1014         if (nested_vmx_store_msr_check(vcpu, e)) {
1015                 pr_debug_ratelimited(
1016                         "%s check failed (%u, 0x%x, 0x%x)\n",
1017                         __func__, i, e->index, e->reserved);
1018                 return false;
1019         }
1020         return true;
1021 }
1022
1023 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1024 {
1025         u64 data;
1026         u32 i;
1027         struct vmx_msr_entry e;
1028         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1029
1030         for (i = 0; i < count; i++) {
1031                 if (unlikely(i >= max_msr_list_size))
1032                         return -EINVAL;
1033
1034                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1035                         return -EINVAL;
1036
1037                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1038                         return -EINVAL;
1039
1040                 if (kvm_vcpu_write_guest(vcpu,
1041                                          gpa + i * sizeof(e) +
1042                                              offsetof(struct vmx_msr_entry, value),
1043                                          &data, sizeof(data))) {
1044                         pr_debug_ratelimited(
1045                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1046                                 __func__, i, e.index, data);
1047                         return -EINVAL;
1048                 }
1049         }
1050         return 0;
1051 }
1052
1053 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1054 {
1055         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1056         u32 count = vmcs12->vm_exit_msr_store_count;
1057         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1058         struct vmx_msr_entry e;
1059         u32 i;
1060
1061         for (i = 0; i < count; i++) {
1062                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1063                         return false;
1064
1065                 if (e.index == msr_index)
1066                         return true;
1067         }
1068         return false;
1069 }
1070
1071 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1072                                            u32 msr_index)
1073 {
1074         struct vcpu_vmx *vmx = to_vmx(vcpu);
1075         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1076         bool in_vmcs12_store_list;
1077         int msr_autostore_slot;
1078         bool in_autostore_list;
1079         int last;
1080
1081         msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1082         in_autostore_list = msr_autostore_slot >= 0;
1083         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1084
1085         if (in_vmcs12_store_list && !in_autostore_list) {
1086                 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1087                         /*
1088                          * Emulated VMEntry does not fail here.  Instead a less
1089                          * accurate value will be returned by
1090                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1091                          * instead of reading the value from the vmcs02 VMExit
1092                          * MSR-store area.
1093                          */
1094                         pr_warn_ratelimited(
1095                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1096                                 msr_index);
1097                         return;
1098                 }
1099                 last = autostore->nr++;
1100                 autostore->val[last].index = msr_index;
1101         } else if (!in_vmcs12_store_list && in_autostore_list) {
1102                 last = --autostore->nr;
1103                 autostore->val[msr_autostore_slot] = autostore->val[last];
1104         }
1105 }
1106
1107 /*
1108  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1109  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1110  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1111  * @entry_failure_code.
1112  */
1113 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1114                                bool nested_ept, bool reload_pdptrs,
1115                                enum vm_entry_failure_code *entry_failure_code)
1116 {
1117         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1118                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1119                 return -EINVAL;
1120         }
1121
1122         /*
1123          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1124          * must not be dereferenced.
1125          */
1126         if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1127             CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1128                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1129                 return -EINVAL;
1130         }
1131
1132         if (!nested_ept)
1133                 kvm_mmu_new_pgd(vcpu, cr3);
1134
1135         vcpu->arch.cr3 = cr3;
1136         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1137
1138         /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1139         kvm_init_mmu(vcpu);
1140
1141         return 0;
1142 }
1143
1144 /*
1145  * Returns if KVM is able to config CPU to tag TLB entries
1146  * populated by L2 differently than TLB entries populated
1147  * by L1.
1148  *
1149  * If L0 uses EPT, L1 and L2 run with different EPTP because
1150  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1151  * are tagged with different EPTP.
1152  *
1153  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1154  * with different VPID (L1 entries are tagged with vmx->vpid
1155  * while L2 entries are tagged with vmx->nested.vpid02).
1156  */
1157 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1158 {
1159         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1160
1161         return enable_ept ||
1162                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1163 }
1164
1165 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1166                                             struct vmcs12 *vmcs12,
1167                                             bool is_vmenter)
1168 {
1169         struct vcpu_vmx *vmx = to_vmx(vcpu);
1170
1171         /*
1172          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1173          * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1174          * full TLB flush from the guest's perspective.  This is required even
1175          * if VPID is disabled in the host as KVM may need to synchronize the
1176          * MMU in response to the guest TLB flush.
1177          *
1178          * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1179          * EPT is a special snowflake, as guest-physical mappings aren't
1180          * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1181          * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1182          * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1183          * those mappings.
1184          */
1185         if (!nested_cpu_has_vpid(vmcs12)) {
1186                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1187                 return;
1188         }
1189
1190         /* L2 should never have a VPID if VPID is disabled. */
1191         WARN_ON(!enable_vpid);
1192
1193         /*
1194          * If VPID is enabled and used by vmc12, but L2 does not have a unique
1195          * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1196          * a VPID for L2, flush the current context as the effective ASID is
1197          * common to both L1 and L2.
1198          *
1199          * Defer the flush so that it runs after vmcs02.EPTP has been set by
1200          * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1201          * redundant flushes further down the nested pipeline.
1202          *
1203          * If a TLB flush isn't required due to any of the above, and vpid12 is
1204          * changing then the new "virtual" VPID (vpid12) will reuse the same
1205          * "real" VPID (vpid02), and so needs to be flushed.  There's no direct
1206          * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1207          * all nested vCPUs.  Remember, a flush on VM-Enter does not invalidate
1208          * guest-physical mappings, so there is no need to sync the nEPT MMU.
1209          */
1210         if (!nested_has_guest_tlb_tag(vcpu)) {
1211                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1212         } else if (is_vmenter &&
1213                    vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1214                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1215                 vpid_sync_context(nested_get_vpid02(vcpu));
1216         }
1217 }
1218
1219 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1220 {
1221         superset &= mask;
1222         subset &= mask;
1223
1224         return (superset | subset) == superset;
1225 }
1226
1227 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1228 {
1229         const u64 feature_and_reserved =
1230                 /* feature (except bit 48; see below) */
1231                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1232                 /* reserved */
1233                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1234         u64 vmx_basic = vmx->nested.msrs.basic;
1235
1236         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1237                 return -EINVAL;
1238
1239         /*
1240          * KVM does not emulate a version of VMX that constrains physical
1241          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1242          */
1243         if (data & BIT_ULL(48))
1244                 return -EINVAL;
1245
1246         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1247             vmx_basic_vmcs_revision_id(data))
1248                 return -EINVAL;
1249
1250         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1251                 return -EINVAL;
1252
1253         vmx->nested.msrs.basic = data;
1254         return 0;
1255 }
1256
1257 static int
1258 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1259 {
1260         u64 supported;
1261         u32 *lowp, *highp;
1262
1263         switch (msr_index) {
1264         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1265                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1266                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1267                 break;
1268         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1269                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1270                 highp = &vmx->nested.msrs.procbased_ctls_high;
1271                 break;
1272         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1273                 lowp = &vmx->nested.msrs.exit_ctls_low;
1274                 highp = &vmx->nested.msrs.exit_ctls_high;
1275                 break;
1276         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1277                 lowp = &vmx->nested.msrs.entry_ctls_low;
1278                 highp = &vmx->nested.msrs.entry_ctls_high;
1279                 break;
1280         case MSR_IA32_VMX_PROCBASED_CTLS2:
1281                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1282                 highp = &vmx->nested.msrs.secondary_ctls_high;
1283                 break;
1284         default:
1285                 BUG();
1286         }
1287
1288         supported = vmx_control_msr(*lowp, *highp);
1289
1290         /* Check must-be-1 bits are still 1. */
1291         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1292                 return -EINVAL;
1293
1294         /* Check must-be-0 bits are still 0. */
1295         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1296                 return -EINVAL;
1297
1298         *lowp = data;
1299         *highp = data >> 32;
1300         return 0;
1301 }
1302
1303 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1304 {
1305         const u64 feature_and_reserved_bits =
1306                 /* feature */
1307                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1308                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1309                 /* reserved */
1310                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1311         u64 vmx_misc;
1312
1313         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1314                                    vmx->nested.msrs.misc_high);
1315
1316         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1317                 return -EINVAL;
1318
1319         if ((vmx->nested.msrs.pinbased_ctls_high &
1320              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1321             vmx_misc_preemption_timer_rate(data) !=
1322             vmx_misc_preemption_timer_rate(vmx_misc))
1323                 return -EINVAL;
1324
1325         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1326                 return -EINVAL;
1327
1328         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1329                 return -EINVAL;
1330
1331         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1332                 return -EINVAL;
1333
1334         vmx->nested.msrs.misc_low = data;
1335         vmx->nested.msrs.misc_high = data >> 32;
1336
1337         return 0;
1338 }
1339
1340 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1341 {
1342         u64 vmx_ept_vpid_cap;
1343
1344         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1345                                            vmx->nested.msrs.vpid_caps);
1346
1347         /* Every bit is either reserved or a feature bit. */
1348         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1349                 return -EINVAL;
1350
1351         vmx->nested.msrs.ept_caps = data;
1352         vmx->nested.msrs.vpid_caps = data >> 32;
1353         return 0;
1354 }
1355
1356 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1357 {
1358         u64 *msr;
1359
1360         switch (msr_index) {
1361         case MSR_IA32_VMX_CR0_FIXED0:
1362                 msr = &vmx->nested.msrs.cr0_fixed0;
1363                 break;
1364         case MSR_IA32_VMX_CR4_FIXED0:
1365                 msr = &vmx->nested.msrs.cr4_fixed0;
1366                 break;
1367         default:
1368                 BUG();
1369         }
1370
1371         /*
1372          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1373          * must be 1 in the restored value.
1374          */
1375         if (!is_bitwise_subset(data, *msr, -1ULL))
1376                 return -EINVAL;
1377
1378         *msr = data;
1379         return 0;
1380 }
1381
1382 /*
1383  * Called when userspace is restoring VMX MSRs.
1384  *
1385  * Returns 0 on success, non-0 otherwise.
1386  */
1387 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1388 {
1389         struct vcpu_vmx *vmx = to_vmx(vcpu);
1390
1391         /*
1392          * Don't allow changes to the VMX capability MSRs while the vCPU
1393          * is in VMX operation.
1394          */
1395         if (vmx->nested.vmxon)
1396                 return -EBUSY;
1397
1398         switch (msr_index) {
1399         case MSR_IA32_VMX_BASIC:
1400                 return vmx_restore_vmx_basic(vmx, data);
1401         case MSR_IA32_VMX_PINBASED_CTLS:
1402         case MSR_IA32_VMX_PROCBASED_CTLS:
1403         case MSR_IA32_VMX_EXIT_CTLS:
1404         case MSR_IA32_VMX_ENTRY_CTLS:
1405                 /*
1406                  * The "non-true" VMX capability MSRs are generated from the
1407                  * "true" MSRs, so we do not support restoring them directly.
1408                  *
1409                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1410                  * should restore the "true" MSRs with the must-be-1 bits
1411                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1412                  * DEFAULT SETTINGS".
1413                  */
1414                 return -EINVAL;
1415         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1416         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1417         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1418         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1419         case MSR_IA32_VMX_PROCBASED_CTLS2:
1420                 return vmx_restore_control_msr(vmx, msr_index, data);
1421         case MSR_IA32_VMX_MISC:
1422                 return vmx_restore_vmx_misc(vmx, data);
1423         case MSR_IA32_VMX_CR0_FIXED0:
1424         case MSR_IA32_VMX_CR4_FIXED0:
1425                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1426         case MSR_IA32_VMX_CR0_FIXED1:
1427         case MSR_IA32_VMX_CR4_FIXED1:
1428                 /*
1429                  * These MSRs are generated based on the vCPU's CPUID, so we
1430                  * do not support restoring them directly.
1431                  */
1432                 return -EINVAL;
1433         case MSR_IA32_VMX_EPT_VPID_CAP:
1434                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1435         case MSR_IA32_VMX_VMCS_ENUM:
1436                 vmx->nested.msrs.vmcs_enum = data;
1437                 return 0;
1438         case MSR_IA32_VMX_VMFUNC:
1439                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1440                         return -EINVAL;
1441                 vmx->nested.msrs.vmfunc_controls = data;
1442                 return 0;
1443         default:
1444                 /*
1445                  * The rest of the VMX capability MSRs do not support restore.
1446                  */
1447                 return -EINVAL;
1448         }
1449 }
1450
1451 /* Returns 0 on success, non-0 otherwise. */
1452 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1453 {
1454         switch (msr_index) {
1455         case MSR_IA32_VMX_BASIC:
1456                 *pdata = msrs->basic;
1457                 break;
1458         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1459         case MSR_IA32_VMX_PINBASED_CTLS:
1460                 *pdata = vmx_control_msr(
1461                         msrs->pinbased_ctls_low,
1462                         msrs->pinbased_ctls_high);
1463                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1464                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1465                 break;
1466         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1467         case MSR_IA32_VMX_PROCBASED_CTLS:
1468                 *pdata = vmx_control_msr(
1469                         msrs->procbased_ctls_low,
1470                         msrs->procbased_ctls_high);
1471                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1472                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1473                 break;
1474         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1475         case MSR_IA32_VMX_EXIT_CTLS:
1476                 *pdata = vmx_control_msr(
1477                         msrs->exit_ctls_low,
1478                         msrs->exit_ctls_high);
1479                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1480                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1481                 break;
1482         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1483         case MSR_IA32_VMX_ENTRY_CTLS:
1484                 *pdata = vmx_control_msr(
1485                         msrs->entry_ctls_low,
1486                         msrs->entry_ctls_high);
1487                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1488                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1489                 break;
1490         case MSR_IA32_VMX_MISC:
1491                 *pdata = vmx_control_msr(
1492                         msrs->misc_low,
1493                         msrs->misc_high);
1494                 break;
1495         case MSR_IA32_VMX_CR0_FIXED0:
1496                 *pdata = msrs->cr0_fixed0;
1497                 break;
1498         case MSR_IA32_VMX_CR0_FIXED1:
1499                 *pdata = msrs->cr0_fixed1;
1500                 break;
1501         case MSR_IA32_VMX_CR4_FIXED0:
1502                 *pdata = msrs->cr4_fixed0;
1503                 break;
1504         case MSR_IA32_VMX_CR4_FIXED1:
1505                 *pdata = msrs->cr4_fixed1;
1506                 break;
1507         case MSR_IA32_VMX_VMCS_ENUM:
1508                 *pdata = msrs->vmcs_enum;
1509                 break;
1510         case MSR_IA32_VMX_PROCBASED_CTLS2:
1511                 *pdata = vmx_control_msr(
1512                         msrs->secondary_ctls_low,
1513                         msrs->secondary_ctls_high);
1514                 break;
1515         case MSR_IA32_VMX_EPT_VPID_CAP:
1516                 *pdata = msrs->ept_caps |
1517                         ((u64)msrs->vpid_caps << 32);
1518                 break;
1519         case MSR_IA32_VMX_VMFUNC:
1520                 *pdata = msrs->vmfunc_controls;
1521                 break;
1522         default:
1523                 return 1;
1524         }
1525
1526         return 0;
1527 }
1528
1529 /*
1530  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1531  * been modified by the L1 guest.  Note, "writable" in this context means
1532  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1533  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1534  * VM-exit information fields (which are actually writable if the vCPU is
1535  * configured to support "VMWRITE to any supported field in the VMCS").
1536  */
1537 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1538 {
1539         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1540         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1541         struct shadow_vmcs_field field;
1542         unsigned long val;
1543         int i;
1544
1545         if (WARN_ON(!shadow_vmcs))
1546                 return;
1547
1548         preempt_disable();
1549
1550         vmcs_load(shadow_vmcs);
1551
1552         for (i = 0; i < max_shadow_read_write_fields; i++) {
1553                 field = shadow_read_write_fields[i];
1554                 val = __vmcs_readl(field.encoding);
1555                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1556         }
1557
1558         vmcs_clear(shadow_vmcs);
1559         vmcs_load(vmx->loaded_vmcs->vmcs);
1560
1561         preempt_enable();
1562 }
1563
1564 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1565 {
1566         const struct shadow_vmcs_field *fields[] = {
1567                 shadow_read_write_fields,
1568                 shadow_read_only_fields
1569         };
1570         const int max_fields[] = {
1571                 max_shadow_read_write_fields,
1572                 max_shadow_read_only_fields
1573         };
1574         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1575         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1576         struct shadow_vmcs_field field;
1577         unsigned long val;
1578         int i, q;
1579
1580         if (WARN_ON(!shadow_vmcs))
1581                 return;
1582
1583         vmcs_load(shadow_vmcs);
1584
1585         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1586                 for (i = 0; i < max_fields[q]; i++) {
1587                         field = fields[q][i];
1588                         val = vmcs12_read_any(vmcs12, field.encoding,
1589                                               field.offset);
1590                         __vmcs_writel(field.encoding, val);
1591                 }
1592         }
1593
1594         vmcs_clear(shadow_vmcs);
1595         vmcs_load(vmx->loaded_vmcs->vmcs);
1596 }
1597
1598 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1599 {
1600         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1601         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1602
1603         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1604         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1605         vmcs12->guest_rip = evmcs->guest_rip;
1606
1607         if (unlikely(!(hv_clean_fields &
1608                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1609                 vmcs12->guest_rsp = evmcs->guest_rsp;
1610                 vmcs12->guest_rflags = evmcs->guest_rflags;
1611                 vmcs12->guest_interruptibility_info =
1612                         evmcs->guest_interruptibility_info;
1613         }
1614
1615         if (unlikely(!(hv_clean_fields &
1616                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1617                 vmcs12->cpu_based_vm_exec_control =
1618                         evmcs->cpu_based_vm_exec_control;
1619         }
1620
1621         if (unlikely(!(hv_clean_fields &
1622                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1623                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1624         }
1625
1626         if (unlikely(!(hv_clean_fields &
1627                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1628                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1629         }
1630
1631         if (unlikely(!(hv_clean_fields &
1632                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1633                 vmcs12->vm_entry_intr_info_field =
1634                         evmcs->vm_entry_intr_info_field;
1635                 vmcs12->vm_entry_exception_error_code =
1636                         evmcs->vm_entry_exception_error_code;
1637                 vmcs12->vm_entry_instruction_len =
1638                         evmcs->vm_entry_instruction_len;
1639         }
1640
1641         if (unlikely(!(hv_clean_fields &
1642                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1643                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1644                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1645                 vmcs12->host_cr0 = evmcs->host_cr0;
1646                 vmcs12->host_cr3 = evmcs->host_cr3;
1647                 vmcs12->host_cr4 = evmcs->host_cr4;
1648                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1649                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1650                 vmcs12->host_rip = evmcs->host_rip;
1651                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1652                 vmcs12->host_es_selector = evmcs->host_es_selector;
1653                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1654                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1655                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1656                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1657                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1658                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1659         }
1660
1661         if (unlikely(!(hv_clean_fields &
1662                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1663                 vmcs12->pin_based_vm_exec_control =
1664                         evmcs->pin_based_vm_exec_control;
1665                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1666                 vmcs12->secondary_vm_exec_control =
1667                         evmcs->secondary_vm_exec_control;
1668         }
1669
1670         if (unlikely(!(hv_clean_fields &
1671                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1672                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1673                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1674         }
1675
1676         if (unlikely(!(hv_clean_fields &
1677                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1678                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1679         }
1680
1681         if (unlikely(!(hv_clean_fields &
1682                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1683                 vmcs12->guest_es_base = evmcs->guest_es_base;
1684                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1685                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1686                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1687                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1688                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1689                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1690                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1691                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1692                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1693                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1694                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1695                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1696                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1697                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1698                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1699                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1700                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1701                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1702                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1703                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1704                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1705                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1706                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1707                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1708                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1709                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1710                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1711                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1712                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1713                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1714                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1715                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1716                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1717                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1718                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1719         }
1720
1721         if (unlikely(!(hv_clean_fields &
1722                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1723                 vmcs12->tsc_offset = evmcs->tsc_offset;
1724                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1725                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1726         }
1727
1728         if (unlikely(!(hv_clean_fields &
1729                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1730                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1731                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1732                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1733                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1734                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1735                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1736                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1737                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1738         }
1739
1740         if (unlikely(!(hv_clean_fields &
1741                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1742                 vmcs12->host_fs_base = evmcs->host_fs_base;
1743                 vmcs12->host_gs_base = evmcs->host_gs_base;
1744                 vmcs12->host_tr_base = evmcs->host_tr_base;
1745                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1746                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1747                 vmcs12->host_rsp = evmcs->host_rsp;
1748         }
1749
1750         if (unlikely(!(hv_clean_fields &
1751                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1752                 vmcs12->ept_pointer = evmcs->ept_pointer;
1753                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1754         }
1755
1756         if (unlikely(!(hv_clean_fields &
1757                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1758                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1759                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1760                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1761                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1762                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1763                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1764                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1765                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1766                 vmcs12->guest_pending_dbg_exceptions =
1767                         evmcs->guest_pending_dbg_exceptions;
1768                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1769                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1770                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1771                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1772                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1773         }
1774
1775         /*
1776          * Not used?
1777          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1778          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1779          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1780          * vmcs12->page_fault_error_code_mask =
1781          *              evmcs->page_fault_error_code_mask;
1782          * vmcs12->page_fault_error_code_match =
1783          *              evmcs->page_fault_error_code_match;
1784          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1785          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1786          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1787          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1788          */
1789
1790         /*
1791          * Read only fields:
1792          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1793          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1794          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1795          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1796          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1797          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1798          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1799          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1800          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1801          * vmcs12->exit_qualification = evmcs->exit_qualification;
1802          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1803          *
1804          * Not present in struct vmcs12:
1805          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1806          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1807          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1808          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1809          */
1810
1811         return;
1812 }
1813
1814 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1815 {
1816         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1817         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1818
1819         /*
1820          * Should not be changed by KVM:
1821          *
1822          * evmcs->host_es_selector = vmcs12->host_es_selector;
1823          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1824          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1825          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1826          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1827          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1828          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1829          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1830          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1831          * evmcs->host_cr0 = vmcs12->host_cr0;
1832          * evmcs->host_cr3 = vmcs12->host_cr3;
1833          * evmcs->host_cr4 = vmcs12->host_cr4;
1834          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1835          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1836          * evmcs->host_rip = vmcs12->host_rip;
1837          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1838          * evmcs->host_fs_base = vmcs12->host_fs_base;
1839          * evmcs->host_gs_base = vmcs12->host_gs_base;
1840          * evmcs->host_tr_base = vmcs12->host_tr_base;
1841          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1842          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1843          * evmcs->host_rsp = vmcs12->host_rsp;
1844          * sync_vmcs02_to_vmcs12() doesn't read these:
1845          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1846          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1847          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1848          * evmcs->ept_pointer = vmcs12->ept_pointer;
1849          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1850          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1851          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1852          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1853          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1854          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1855          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1856          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1857          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1858          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1859          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1860          * evmcs->page_fault_error_code_mask =
1861          *              vmcs12->page_fault_error_code_mask;
1862          * evmcs->page_fault_error_code_match =
1863          *              vmcs12->page_fault_error_code_match;
1864          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1865          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1866          * evmcs->tsc_offset = vmcs12->tsc_offset;
1867          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1868          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1869          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1870          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1871          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1872          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1873          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1874          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1875          *
1876          * Not present in struct vmcs12:
1877          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1878          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1879          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1880          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1881          */
1882
1883         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1884         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1885         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1886         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1887         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1888         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1889         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1890         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1891
1892         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1893         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1894         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1895         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1896         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1897         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1898         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1899         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1900         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1901         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1902
1903         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1904         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1905         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1906         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1907         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1908         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1909         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1910         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1911
1912         evmcs->guest_es_base = vmcs12->guest_es_base;
1913         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1914         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1915         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1916         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1917         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1918         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1919         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1920         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1921         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1922
1923         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1924         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1925
1926         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1927         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1928         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1929         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1930
1931         evmcs->guest_pending_dbg_exceptions =
1932                 vmcs12->guest_pending_dbg_exceptions;
1933         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1934         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1935
1936         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1937         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1938
1939         evmcs->guest_cr0 = vmcs12->guest_cr0;
1940         evmcs->guest_cr3 = vmcs12->guest_cr3;
1941         evmcs->guest_cr4 = vmcs12->guest_cr4;
1942         evmcs->guest_dr7 = vmcs12->guest_dr7;
1943
1944         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1945
1946         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1947         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1948         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1949         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1950         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1951         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1952         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1953         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1954
1955         evmcs->exit_qualification = vmcs12->exit_qualification;
1956
1957         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1958         evmcs->guest_rsp = vmcs12->guest_rsp;
1959         evmcs->guest_rflags = vmcs12->guest_rflags;
1960
1961         evmcs->guest_interruptibility_info =
1962                 vmcs12->guest_interruptibility_info;
1963         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1964         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1965         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1966         evmcs->vm_entry_exception_error_code =
1967                 vmcs12->vm_entry_exception_error_code;
1968         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1969
1970         evmcs->guest_rip = vmcs12->guest_rip;
1971
1972         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1973
1974         return;
1975 }
1976
1977 /*
1978  * This is an equivalent of the nested hypervisor executing the vmptrld
1979  * instruction.
1980  */
1981 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1982         struct kvm_vcpu *vcpu, bool from_launch)
1983 {
1984         struct vcpu_vmx *vmx = to_vmx(vcpu);
1985         bool evmcs_gpa_changed = false;
1986         u64 evmcs_gpa;
1987
1988         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1989                 return EVMPTRLD_DISABLED;
1990
1991         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1992                 nested_release_evmcs(vcpu);
1993                 return EVMPTRLD_DISABLED;
1994         }
1995
1996         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1997                 vmx->nested.current_vmptr = -1ull;
1998
1999                 nested_release_evmcs(vcpu);
2000
2001                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2002                                  &vmx->nested.hv_evmcs_map))
2003                         return EVMPTRLD_ERROR;
2004
2005                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2006
2007                 /*
2008                  * Currently, KVM only supports eVMCS version 1
2009                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2010                  * value to first u32 field of eVMCS which should specify eVMCS
2011                  * VersionNumber.
2012                  *
2013                  * Guest should be aware of supported eVMCS versions by host by
2014                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2015                  * expected to set this CPUID leaf according to the value
2016                  * returned in vmcs_version from nested_enable_evmcs().
2017                  *
2018                  * However, it turns out that Microsoft Hyper-V fails to comply
2019                  * to their own invented interface: When Hyper-V use eVMCS, it
2020                  * just sets first u32 field of eVMCS to revision_id specified
2021                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2022                  * which is one of the supported versions specified in
2023                  * CPUID.0x4000000A.EAX[0:15].
2024                  *
2025                  * To overcome Hyper-V bug, we accept here either a supported
2026                  * eVMCS version or VMCS12 revision_id as valid values for first
2027                  * u32 field of eVMCS.
2028                  */
2029                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2030                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2031                         nested_release_evmcs(vcpu);
2032                         return EVMPTRLD_VMFAIL;
2033                 }
2034
2035                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2036
2037                 evmcs_gpa_changed = true;
2038                 /*
2039                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2040                  * reloaded from guest's memory (read only fields, fields not
2041                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2042                  * are no leftovers.
2043                  */
2044                 if (from_launch) {
2045                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2046                         memset(vmcs12, 0, sizeof(*vmcs12));
2047                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2048                 }
2049
2050         }
2051
2052         /*
2053          * Clean fields data can't be used on VMLAUNCH and when we switch
2054          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2055          */
2056         if (from_launch || evmcs_gpa_changed)
2057                 vmx->nested.hv_evmcs->hv_clean_fields &=
2058                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2059
2060         return EVMPTRLD_SUCCEEDED;
2061 }
2062
2063 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2064 {
2065         struct vcpu_vmx *vmx = to_vmx(vcpu);
2066
2067         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2068                 copy_vmcs12_to_enlightened(vmx);
2069         else
2070                 copy_vmcs12_to_shadow(vmx);
2071
2072         vmx->nested.need_vmcs12_to_shadow_sync = false;
2073 }
2074
2075 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2076 {
2077         struct vcpu_vmx *vmx =
2078                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2079
2080         vmx->nested.preemption_timer_expired = true;
2081         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2082         kvm_vcpu_kick(&vmx->vcpu);
2083
2084         return HRTIMER_NORESTART;
2085 }
2086
2087 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2088 {
2089         struct vcpu_vmx *vmx = to_vmx(vcpu);
2090         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2091
2092         u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2093                             VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2094
2095         if (!vmx->nested.has_preemption_timer_deadline) {
2096                 vmx->nested.preemption_timer_deadline =
2097                         vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2098                 vmx->nested.has_preemption_timer_deadline = true;
2099         }
2100         return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2101 }
2102
2103 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2104                                         u64 preemption_timeout)
2105 {
2106         struct vcpu_vmx *vmx = to_vmx(vcpu);
2107
2108         /*
2109          * A timer value of zero is architecturally guaranteed to cause
2110          * a VMExit prior to executing any instructions in the guest.
2111          */
2112         if (preemption_timeout == 0) {
2113                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2114                 return;
2115         }
2116
2117         if (vcpu->arch.virtual_tsc_khz == 0)
2118                 return;
2119
2120         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2121         preemption_timeout *= 1000000;
2122         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2123         hrtimer_start(&vmx->nested.preemption_timer,
2124                       ktime_add_ns(ktime_get(), preemption_timeout),
2125                       HRTIMER_MODE_ABS_PINNED);
2126 }
2127
2128 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2129 {
2130         if (vmx->nested.nested_run_pending &&
2131             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2132                 return vmcs12->guest_ia32_efer;
2133         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2134                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2135         else
2136                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2137 }
2138
2139 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2140 {
2141         /*
2142          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2143          * according to L0's settings (vmcs12 is irrelevant here).  Host
2144          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2145          * will be set as needed prior to VMLAUNCH/VMRESUME.
2146          */
2147         if (vmx->nested.vmcs02_initialized)
2148                 return;
2149         vmx->nested.vmcs02_initialized = true;
2150
2151         /*
2152          * We don't care what the EPTP value is we just need to guarantee
2153          * it's valid so we don't get a false positive when doing early
2154          * consistency checks.
2155          */
2156         if (enable_ept && nested_early_check)
2157                 vmcs_write64(EPT_POINTER,
2158                              construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2159
2160         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2161         if (cpu_has_vmx_vmfunc())
2162                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2163
2164         if (cpu_has_vmx_posted_intr())
2165                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2166
2167         if (cpu_has_vmx_msr_bitmap())
2168                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2169
2170         /*
2171          * PML is emulated for L2, but never enabled in hardware as the MMU
2172          * handles A/D emulation.  Disabling PML for L2 also avoids having to
2173          * deal with filtering out L2 GPAs from the buffer.
2174          */
2175         if (enable_pml) {
2176                 vmcs_write64(PML_ADDRESS, 0);
2177                 vmcs_write16(GUEST_PML_INDEX, -1);
2178         }
2179
2180         if (cpu_has_vmx_encls_vmexit())
2181                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2182
2183         /*
2184          * Set the MSR load/store lists to match L0's settings.  Only the
2185          * addresses are constant (for vmcs02), the counts can change based
2186          * on L2's behavior, e.g. switching to/from long mode.
2187          */
2188         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2189         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2190         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2191
2192         vmx_set_constant_host_state(vmx);
2193 }
2194
2195 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2196                                       struct vmcs12 *vmcs12)
2197 {
2198         prepare_vmcs02_constant_state(vmx);
2199
2200         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2201
2202         if (enable_vpid) {
2203                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2204                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2205                 else
2206                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2207         }
2208 }
2209
2210 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2211 {
2212         u32 exec_control;
2213         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2214
2215         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2216                 prepare_vmcs02_early_rare(vmx, vmcs12);
2217
2218         /*
2219          * PIN CONTROLS
2220          */
2221         exec_control = vmx_pin_based_exec_ctrl(vmx);
2222         exec_control |= (vmcs12->pin_based_vm_exec_control &
2223                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2224
2225         /* Posted interrupts setting is only taken from vmcs12.  */
2226         if (nested_cpu_has_posted_intr(vmcs12)) {
2227                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2228                 vmx->nested.pi_pending = false;
2229         } else {
2230                 exec_control &= ~PIN_BASED_POSTED_INTR;
2231         }
2232         pin_controls_set(vmx, exec_control);
2233
2234         /*
2235          * EXEC CONTROLS
2236          */
2237         exec_control = vmx_exec_control(vmx); /* L0's desires */
2238         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2239         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2240         exec_control &= ~CPU_BASED_TPR_SHADOW;
2241         exec_control |= vmcs12->cpu_based_vm_exec_control;
2242
2243         vmx->nested.l1_tpr_threshold = -1;
2244         if (exec_control & CPU_BASED_TPR_SHADOW)
2245                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2246 #ifdef CONFIG_X86_64
2247         else
2248                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2249                                 CPU_BASED_CR8_STORE_EXITING;
2250 #endif
2251
2252         /*
2253          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2254          * for I/O port accesses.
2255          */
2256         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2257         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2258
2259         /*
2260          * This bit will be computed in nested_get_vmcs12_pages, because
2261          * we do not have access to L1's MSR bitmap yet.  For now, keep
2262          * the same bit as before, hoping to avoid multiple VMWRITEs that
2263          * only set/clear this bit.
2264          */
2265         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2266         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2267
2268         exec_controls_set(vmx, exec_control);
2269
2270         /*
2271          * SECONDARY EXEC CONTROLS
2272          */
2273         if (cpu_has_secondary_exec_ctrls()) {
2274                 exec_control = vmx->secondary_exec_control;
2275
2276                 /* Take the following fields only from vmcs12 */
2277                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2278                                   SECONDARY_EXEC_ENABLE_INVPCID |
2279                                   SECONDARY_EXEC_ENABLE_RDTSCP |
2280                                   SECONDARY_EXEC_XSAVES |
2281                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2282                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2283                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2284                                   SECONDARY_EXEC_ENABLE_VMFUNC |
2285                                   SECONDARY_EXEC_TSC_SCALING);
2286                 if (nested_cpu_has(vmcs12,
2287                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2288                         exec_control |= vmcs12->secondary_vm_exec_control;
2289
2290                 /* PML is emulated and never enabled in hardware for L2. */
2291                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2292
2293                 /* VMCS shadowing for L2 is emulated for now */
2294                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2295
2296                 /*
2297                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2298                  * will not have to rewrite the controls just for this bit.
2299                  */
2300                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2301                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2302                         exec_control |= SECONDARY_EXEC_DESC;
2303
2304                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2305                         vmcs_write16(GUEST_INTR_STATUS,
2306                                 vmcs12->guest_intr_status);
2307
2308                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2309                     exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2310
2311                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2312                         vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2313
2314                 secondary_exec_controls_set(vmx, exec_control);
2315         }
2316
2317         /*
2318          * ENTRY CONTROLS
2319          *
2320          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2321          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2322          * on the related bits (if supported by the CPU) in the hope that
2323          * we can avoid VMWrites during vmx_set_efer().
2324          */
2325         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2326                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2327         if (cpu_has_load_ia32_efer()) {
2328                 if (guest_efer & EFER_LMA)
2329                         exec_control |= VM_ENTRY_IA32E_MODE;
2330                 if (guest_efer != host_efer)
2331                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2332         }
2333         vm_entry_controls_set(vmx, exec_control);
2334
2335         /*
2336          * EXIT CONTROLS
2337          *
2338          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2339          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2340          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2341          */
2342         exec_control = vmx_vmexit_ctrl();
2343         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2344                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2345         vm_exit_controls_set(vmx, exec_control);
2346
2347         /*
2348          * Interrupt/Exception Fields
2349          */
2350         if (vmx->nested.nested_run_pending) {
2351                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2352                              vmcs12->vm_entry_intr_info_field);
2353                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2354                              vmcs12->vm_entry_exception_error_code);
2355                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2356                              vmcs12->vm_entry_instruction_len);
2357                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2358                              vmcs12->guest_interruptibility_info);
2359                 vmx->loaded_vmcs->nmi_known_unmasked =
2360                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2361         } else {
2362                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2363         }
2364 }
2365
2366 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2367 {
2368         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2369
2370         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2371                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2372                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2373                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2374                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2375                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2376                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2377                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2378                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2379                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2380                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2381                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2382                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2383                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2384                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2385                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2386                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2387                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2388                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2389                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2390                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2391                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2392                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2393                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2394                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2395                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2396                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2397                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2398                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2399                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2400                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2401                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2402                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2403                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2404                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2405                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2406                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2407                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2408
2409                 vmx->segment_cache.bitmask = 0;
2410         }
2411
2412         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2413                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2414                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2415                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2416                             vmcs12->guest_pending_dbg_exceptions);
2417                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2418                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2419
2420                 /*
2421                  * L1 may access the L2's PDPTR, so save them to construct
2422                  * vmcs12
2423                  */
2424                 if (enable_ept) {
2425                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2426                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2427                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2428                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2429                 }
2430
2431                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2432                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2433                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2434         }
2435
2436         if (nested_cpu_has_xsaves(vmcs12))
2437                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2438
2439         /*
2440          * Whether page-faults are trapped is determined by a combination of
2441          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2442          * doesn't care about page faults then we should set all of these to
2443          * L1's desires. However, if L0 does care about (some) page faults, it
2444          * is not easy (if at all possible?) to merge L0 and L1's desires, we
2445          * simply ask to exit on each and every L2 page fault. This is done by
2446          * setting MASK=MATCH=0 and (see below) EB.PF=1.
2447          * Note that below we don't need special code to set EB.PF beyond the
2448          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2449          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2450          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2451          */
2452         if (vmx_need_pf_intercept(&vmx->vcpu)) {
2453                 /*
2454                  * TODO: if both L0 and L1 need the same MASK and MATCH,
2455                  * go ahead and use it?
2456                  */
2457                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2458                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2459         } else {
2460                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2461                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2462         }
2463
2464         if (cpu_has_vmx_apicv()) {
2465                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2466                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2467                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2468                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2469         }
2470
2471         /*
2472          * Make sure the msr_autostore list is up to date before we set the
2473          * count in the vmcs02.
2474          */
2475         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2476
2477         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2478         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2479         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2480
2481         set_cr4_guest_host_mask(vmx);
2482 }
2483
2484 /*
2485  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2486  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2487  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2488  * guest in a way that will both be appropriate to L1's requests, and our
2489  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2490  * function also has additional necessary side-effects, like setting various
2491  * vcpu->arch fields.
2492  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2493  * is assigned to entry_failure_code on failure.
2494  */
2495 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2496                           bool from_vmentry,
2497                           enum vm_entry_failure_code *entry_failure_code)
2498 {
2499         struct vcpu_vmx *vmx = to_vmx(vcpu);
2500         bool load_guest_pdptrs_vmcs12 = false;
2501
2502         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2503                 prepare_vmcs02_rare(vmx, vmcs12);
2504                 vmx->nested.dirty_vmcs12 = false;
2505
2506                 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2507                         !(vmx->nested.hv_evmcs->hv_clean_fields &
2508                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2509         }
2510
2511         if (vmx->nested.nested_run_pending &&
2512             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2513                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2514                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2515         } else {
2516                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2517                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2518         }
2519         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2520             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2521                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2522         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2523
2524         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2525          * bitwise-or of what L1 wants to trap for L2, and what we want to
2526          * trap. Note that CR0.TS also needs updating - we do this later.
2527          */
2528         vmx_update_exception_bitmap(vcpu);
2529         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2530         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2531
2532         if (vmx->nested.nested_run_pending &&
2533             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2534                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2535                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2536         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2537                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2538         }
2539
2540         vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2541                         vcpu->arch.l1_tsc_offset,
2542                         vmx_get_l2_tsc_offset(vcpu),
2543                         vmx_get_l2_tsc_multiplier(vcpu));
2544
2545         vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2546                         vcpu->arch.l1_tsc_scaling_ratio,
2547                         vmx_get_l2_tsc_multiplier(vcpu));
2548
2549         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2550         if (kvm_has_tsc_control)
2551                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2552
2553         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2554
2555         if (nested_cpu_has_ept(vmcs12))
2556                 nested_ept_init_mmu_context(vcpu);
2557
2558         /*
2559          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2560          * bits which we consider mandatory enabled.
2561          * The CR0_READ_SHADOW is what L2 should have expected to read given
2562          * the specifications by L1; It's not enough to take
2563          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2564          * have more bits than L1 expected.
2565          */
2566         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2567         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2568
2569         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2570         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2571
2572         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2573         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2574         vmx_set_efer(vcpu, vcpu->arch.efer);
2575
2576         /*
2577          * Guest state is invalid and unrestricted guest is disabled,
2578          * which means L1 attempted VMEntry to L2 with invalid state.
2579          * Fail the VMEntry.
2580          */
2581         if (CC(!vmx_guest_state_valid(vcpu))) {
2582                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2583                 return -EINVAL;
2584         }
2585
2586         /* Shadow page tables on either EPT or shadow page tables. */
2587         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2588                                 from_vmentry, entry_failure_code))
2589                 return -EINVAL;
2590
2591         /*
2592          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2593          * on nested VM-Exit, which can occur without actually running L2 and
2594          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2595          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2596          * transition to HLT instead of running L2.
2597          */
2598         if (enable_ept)
2599                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2600
2601         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2602         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2603             is_pae_paging(vcpu)) {
2604                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2605                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2606                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2607                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2608         }
2609
2610         if (!enable_ept)
2611                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2612
2613         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2614             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2615                                      vmcs12->guest_ia32_perf_global_ctrl)))
2616                 return -EINVAL;
2617
2618         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2619         kvm_rip_write(vcpu, vmcs12->guest_rip);
2620
2621         /*
2622          * It was observed that genuine Hyper-V running in L1 doesn't reset
2623          * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2624          * bits when it changes a field in eVMCS. Mark all fields as clean
2625          * here.
2626          */
2627         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2628                 vmx->nested.hv_evmcs->hv_clean_fields |=
2629                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2630
2631         return 0;
2632 }
2633
2634 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2635 {
2636         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2637                nested_cpu_has_virtual_nmis(vmcs12)))
2638                 return -EINVAL;
2639
2640         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2641                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2642                 return -EINVAL;
2643
2644         return 0;
2645 }
2646
2647 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2648 {
2649         struct vcpu_vmx *vmx = to_vmx(vcpu);
2650
2651         /* Check for memory type validity */
2652         switch (new_eptp & VMX_EPTP_MT_MASK) {
2653         case VMX_EPTP_MT_UC:
2654                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2655                         return false;
2656                 break;
2657         case VMX_EPTP_MT_WB:
2658                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2659                         return false;
2660                 break;
2661         default:
2662                 return false;
2663         }
2664
2665         /* Page-walk levels validity. */
2666         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2667         case VMX_EPTP_PWL_5:
2668                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2669                         return false;
2670                 break;
2671         case VMX_EPTP_PWL_4:
2672                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2673                         return false;
2674                 break;
2675         default:
2676                 return false;
2677         }
2678
2679         /* Reserved bits should not be set */
2680         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2681                 return false;
2682
2683         /* AD, if set, should be supported */
2684         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2685                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2686                         return false;
2687         }
2688
2689         return true;
2690 }
2691
2692 /*
2693  * Checks related to VM-Execution Control Fields
2694  */
2695 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2696                                               struct vmcs12 *vmcs12)
2697 {
2698         struct vcpu_vmx *vmx = to_vmx(vcpu);
2699
2700         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2701                                    vmx->nested.msrs.pinbased_ctls_low,
2702                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2703             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2704                                    vmx->nested.msrs.procbased_ctls_low,
2705                                    vmx->nested.msrs.procbased_ctls_high)))
2706                 return -EINVAL;
2707
2708         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2709             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2710                                    vmx->nested.msrs.secondary_ctls_low,
2711                                    vmx->nested.msrs.secondary_ctls_high)))
2712                 return -EINVAL;
2713
2714         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2715             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2716             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2717             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2718             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2719             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2720             nested_vmx_check_nmi_controls(vmcs12) ||
2721             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2722             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2723             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2724             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2725             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2726                 return -EINVAL;
2727
2728         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2729             nested_cpu_has_save_preemption_timer(vmcs12))
2730                 return -EINVAL;
2731
2732         if (nested_cpu_has_ept(vmcs12) &&
2733             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2734                 return -EINVAL;
2735
2736         if (nested_cpu_has_vmfunc(vmcs12)) {
2737                 if (CC(vmcs12->vm_function_control &
2738                        ~vmx->nested.msrs.vmfunc_controls))
2739                         return -EINVAL;
2740
2741                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2742                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2743                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2744                                 return -EINVAL;
2745                 }
2746         }
2747
2748         return 0;
2749 }
2750
2751 /*
2752  * Checks related to VM-Exit Control Fields
2753  */
2754 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2755                                          struct vmcs12 *vmcs12)
2756 {
2757         struct vcpu_vmx *vmx = to_vmx(vcpu);
2758
2759         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2760                                     vmx->nested.msrs.exit_ctls_low,
2761                                     vmx->nested.msrs.exit_ctls_high)) ||
2762             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2763                 return -EINVAL;
2764
2765         return 0;
2766 }
2767
2768 /*
2769  * Checks related to VM-Entry Control Fields
2770  */
2771 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2772                                           struct vmcs12 *vmcs12)
2773 {
2774         struct vcpu_vmx *vmx = to_vmx(vcpu);
2775
2776         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2777                                     vmx->nested.msrs.entry_ctls_low,
2778                                     vmx->nested.msrs.entry_ctls_high)))
2779                 return -EINVAL;
2780
2781         /*
2782          * From the Intel SDM, volume 3:
2783          * Fields relevant to VM-entry event injection must be set properly.
2784          * These fields are the VM-entry interruption-information field, the
2785          * VM-entry exception error code, and the VM-entry instruction length.
2786          */
2787         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2788                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2789                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2790                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2791                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2792                 bool should_have_error_code;
2793                 bool urg = nested_cpu_has2(vmcs12,
2794                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2795                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2796
2797                 /* VM-entry interruption-info field: interruption type */
2798                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2799                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2800                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2801                         return -EINVAL;
2802
2803                 /* VM-entry interruption-info field: vector */
2804                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2805                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2806                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2807                         return -EINVAL;
2808
2809                 /* VM-entry interruption-info field: deliver error code */
2810                 should_have_error_code =
2811                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2812                         x86_exception_has_error_code(vector);
2813                 if (CC(has_error_code != should_have_error_code))
2814                         return -EINVAL;
2815
2816                 /* VM-entry exception error code */
2817                 if (CC(has_error_code &&
2818                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2819                         return -EINVAL;
2820
2821                 /* VM-entry interruption-info field: reserved bits */
2822                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2823                         return -EINVAL;
2824
2825                 /* VM-entry instruction length */
2826                 switch (intr_type) {
2827                 case INTR_TYPE_SOFT_EXCEPTION:
2828                 case INTR_TYPE_SOFT_INTR:
2829                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2830                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2831                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2832                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2833                                 return -EINVAL;
2834                 }
2835         }
2836
2837         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2838                 return -EINVAL;
2839
2840         return 0;
2841 }
2842
2843 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2844                                      struct vmcs12 *vmcs12)
2845 {
2846         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2847             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2848             nested_check_vm_entry_controls(vcpu, vmcs12))
2849                 return -EINVAL;
2850
2851         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2852                 return nested_evmcs_check_controls(vmcs12);
2853
2854         return 0;
2855 }
2856
2857 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2858                                        struct vmcs12 *vmcs12)
2859 {
2860         bool ia32e;
2861
2862         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2863             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2864             CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2865                 return -EINVAL;
2866
2867         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2868             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2869                 return -EINVAL;
2870
2871         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2872             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2873                 return -EINVAL;
2874
2875         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2876             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2877                                            vmcs12->host_ia32_perf_global_ctrl)))
2878                 return -EINVAL;
2879
2880 #ifdef CONFIG_X86_64
2881         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2882 #else
2883         ia32e = false;
2884 #endif
2885
2886         if (ia32e) {
2887                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2888                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2889                         return -EINVAL;
2890         } else {
2891                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2892                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2893                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2894                     CC((vmcs12->host_rip) >> 32))
2895                         return -EINVAL;
2896         }
2897
2898         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2899             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2900             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2901             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2902             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2903             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2904             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2905             CC(vmcs12->host_cs_selector == 0) ||
2906             CC(vmcs12->host_tr_selector == 0) ||
2907             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2908                 return -EINVAL;
2909
2910         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2911             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2912             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2913             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2914             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2915             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2916                 return -EINVAL;
2917
2918         /*
2919          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2920          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2921          * the values of the LMA and LME bits in the field must each be that of
2922          * the host address-space size VM-exit control.
2923          */
2924         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2925                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2926                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2927                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2928                         return -EINVAL;
2929         }
2930
2931         return 0;
2932 }
2933
2934 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2935                                           struct vmcs12 *vmcs12)
2936 {
2937         int r = 0;
2938         struct vmcs12 *shadow;
2939         struct kvm_host_map map;
2940
2941         if (vmcs12->vmcs_link_pointer == -1ull)
2942                 return 0;
2943
2944         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2945                 return -EINVAL;
2946
2947         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2948                 return -EINVAL;
2949
2950         shadow = map.hva;
2951
2952         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2953             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2954                 r = -EINVAL;
2955
2956         kvm_vcpu_unmap(vcpu, &map, false);
2957         return r;
2958 }
2959
2960 /*
2961  * Checks related to Guest Non-register State
2962  */
2963 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2964 {
2965         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2966                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2967                vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2968                 return -EINVAL;
2969
2970         return 0;
2971 }
2972
2973 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2974                                         struct vmcs12 *vmcs12,
2975                                         enum vm_entry_failure_code *entry_failure_code)
2976 {
2977         bool ia32e;
2978
2979         *entry_failure_code = ENTRY_FAIL_DEFAULT;
2980
2981         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2982             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2983                 return -EINVAL;
2984
2985         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2986             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2987                 return -EINVAL;
2988
2989         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2990             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2991                 return -EINVAL;
2992
2993         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2994                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2995                 return -EINVAL;
2996         }
2997
2998         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2999             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3000                                            vmcs12->guest_ia32_perf_global_ctrl)))
3001                 return -EINVAL;
3002
3003         /*
3004          * If the load IA32_EFER VM-entry control is 1, the following checks
3005          * are performed on the field for the IA32_EFER MSR:
3006          * - Bits reserved in the IA32_EFER MSR must be 0.
3007          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3008          *   the IA-32e mode guest VM-exit control. It must also be identical
3009          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3010          *   CR0.PG) is 1.
3011          */
3012         if (to_vmx(vcpu)->nested.nested_run_pending &&
3013             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3014                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3015                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3016                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3017                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3018                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3019                         return -EINVAL;
3020         }
3021
3022         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3023             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3024              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3025                 return -EINVAL;
3026
3027         if (nested_check_guest_non_reg_state(vmcs12))
3028                 return -EINVAL;
3029
3030         return 0;
3031 }
3032
3033 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3034 {
3035         struct vcpu_vmx *vmx = to_vmx(vcpu);
3036         unsigned long cr3, cr4;
3037         bool vm_fail;
3038
3039         if (!nested_early_check)
3040                 return 0;
3041
3042         if (vmx->msr_autoload.host.nr)
3043                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3044         if (vmx->msr_autoload.guest.nr)
3045                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3046
3047         preempt_disable();
3048
3049         vmx_prepare_switch_to_guest(vcpu);
3050
3051         /*
3052          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3053          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3054          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3055          * there is no need to preserve other bits or save/restore the field.
3056          */
3057         vmcs_writel(GUEST_RFLAGS, 0);
3058
3059         cr3 = __get_current_cr3_fast();
3060         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3061                 vmcs_writel(HOST_CR3, cr3);
3062                 vmx->loaded_vmcs->host_state.cr3 = cr3;
3063         }
3064
3065         cr4 = cr4_read_shadow();
3066         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3067                 vmcs_writel(HOST_CR4, cr4);
3068                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3069         }
3070
3071         vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3072                                  vmx->loaded_vmcs->launched);
3073
3074         if (vmx->msr_autoload.host.nr)
3075                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3076         if (vmx->msr_autoload.guest.nr)
3077                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3078
3079         if (vm_fail) {
3080                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3081
3082                 preempt_enable();
3083
3084                 trace_kvm_nested_vmenter_failed(
3085                         "early hardware check VM-instruction error: ", error);
3086                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3087                 return 1;
3088         }
3089
3090         /*
3091          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3092          */
3093         if (hw_breakpoint_active())
3094                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3095         local_irq_enable();
3096         preempt_enable();
3097
3098         /*
3099          * A non-failing VMEntry means we somehow entered guest mode with
3100          * an illegal RIP, and that's just the tip of the iceberg.  There
3101          * is no telling what memory has been modified or what state has
3102          * been exposed to unknown code.  Hitting this all but guarantees
3103          * a (very critical) hardware issue.
3104          */
3105         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3106                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3107
3108         return 0;
3109 }
3110
3111 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3112 {
3113         struct vcpu_vmx *vmx = to_vmx(vcpu);
3114
3115         /*
3116          * hv_evmcs may end up being not mapped after migration (when
3117          * L2 was running), map it here to make sure vmcs12 changes are
3118          * properly reflected.
3119          */
3120         if (vmx->nested.enlightened_vmcs_enabled &&
3121             vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3122                 enum nested_evmptrld_status evmptrld_status =
3123                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3124
3125                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3126                     evmptrld_status == EVMPTRLD_ERROR)
3127                         return false;
3128
3129                 /*
3130                  * Post migration VMCS12 always provides the most actual
3131                  * information, copy it to eVMCS upon entry.
3132                  */
3133                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3134         }
3135
3136         return true;
3137 }
3138
3139 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3140 {
3141         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3142         struct vcpu_vmx *vmx = to_vmx(vcpu);
3143         struct kvm_host_map *map;
3144         struct page *page;
3145         u64 hpa;
3146
3147         if (!vcpu->arch.pdptrs_from_userspace &&
3148             !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3149                 /*
3150                  * Reload the guest's PDPTRs since after a migration
3151                  * the guest CR3 might be restored prior to setting the nested
3152                  * state which can lead to a load of wrong PDPTRs.
3153                  */
3154                 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)))
3155                         return false;
3156         }
3157
3158
3159         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3160                 /*
3161                  * Translate L1 physical address to host physical
3162                  * address for vmcs02. Keep the page pinned, so this
3163                  * physical address remains valid. We keep a reference
3164                  * to it so we can release it later.
3165                  */
3166                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3167                         kvm_release_page_clean(vmx->nested.apic_access_page);
3168                         vmx->nested.apic_access_page = NULL;
3169                 }
3170                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3171                 if (!is_error_page(page)) {
3172                         vmx->nested.apic_access_page = page;
3173                         hpa = page_to_phys(vmx->nested.apic_access_page);
3174                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3175                 } else {
3176                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3177                                              __func__);
3178                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3179                         vcpu->run->internal.suberror =
3180                                 KVM_INTERNAL_ERROR_EMULATION;
3181                         vcpu->run->internal.ndata = 0;
3182                         return false;
3183                 }
3184         }
3185
3186         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3187                 map = &vmx->nested.virtual_apic_map;
3188
3189                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3190                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3191                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3192                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3193                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3194                         /*
3195                          * The processor will never use the TPR shadow, simply
3196                          * clear the bit from the execution control.  Such a
3197                          * configuration is useless, but it happens in tests.
3198                          * For any other configuration, failing the vm entry is
3199                          * _not_ what the processor does but it's basically the
3200                          * only possibility we have.
3201                          */
3202                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3203                 } else {
3204                         /*
3205                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3206                          * force VM-Entry to fail.
3207                          */
3208                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3209                 }
3210         }
3211
3212         if (nested_cpu_has_posted_intr(vmcs12)) {
3213                 map = &vmx->nested.pi_desc_map;
3214
3215                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3216                         vmx->nested.pi_desc =
3217                                 (struct pi_desc *)(((void *)map->hva) +
3218                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3219                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3220                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3221                 } else {
3222                         /*
3223                          * Defer the KVM_INTERNAL_EXIT until KVM tries to
3224                          * access the contents of the VMCS12 posted interrupt
3225                          * descriptor. (Note that KVM may do this when it
3226                          * should not, per the architectural specification.)
3227                          */
3228                         vmx->nested.pi_desc = NULL;
3229                         pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3230                 }
3231         }
3232         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3233                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3234         else
3235                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3236
3237         return true;
3238 }
3239
3240 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3241 {
3242         if (!nested_get_evmcs_page(vcpu)) {
3243                 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3244                                      __func__);
3245                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3246                 vcpu->run->internal.suberror =
3247                         KVM_INTERNAL_ERROR_EMULATION;
3248                 vcpu->run->internal.ndata = 0;
3249
3250                 return false;
3251         }
3252
3253         if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3254                 return false;
3255
3256         return true;
3257 }
3258
3259 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3260 {
3261         struct vmcs12 *vmcs12;
3262         struct vcpu_vmx *vmx = to_vmx(vcpu);
3263         gpa_t dst;
3264
3265         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3266                 return 0;
3267
3268         if (WARN_ON_ONCE(vmx->nested.pml_full))
3269                 return 1;
3270
3271         /*
3272          * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3273          * set is already checked as part of A/D emulation.
3274          */
3275         vmcs12 = get_vmcs12(vcpu);
3276         if (!nested_cpu_has_pml(vmcs12))
3277                 return 0;
3278
3279         if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3280                 vmx->nested.pml_full = true;
3281                 return 1;
3282         }
3283
3284         gpa &= ~0xFFFull;
3285         dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3286
3287         if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3288                                  offset_in_page(dst), sizeof(gpa)))
3289                 return 0;
3290
3291         vmcs12->guest_pml_index--;
3292
3293         return 0;
3294 }
3295
3296 /*
3297  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3298  * for running VMX instructions (except VMXON, whose prerequisites are
3299  * slightly different). It also specifies what exception to inject otherwise.
3300  * Note that many of these exceptions have priority over VM exits, so they
3301  * don't have to be checked again here.
3302  */
3303 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3304 {
3305         if (!to_vmx(vcpu)->nested.vmxon) {
3306                 kvm_queue_exception(vcpu, UD_VECTOR);
3307                 return 0;
3308         }
3309
3310         if (vmx_get_cpl(vcpu)) {
3311                 kvm_inject_gp(vcpu, 0);
3312                 return 0;
3313         }
3314
3315         return 1;
3316 }
3317
3318 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3319 {
3320         u8 rvi = vmx_get_rvi();
3321         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3322
3323         return ((rvi & 0xf0) > (vppr & 0xf0));
3324 }
3325
3326 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3327                                    struct vmcs12 *vmcs12);
3328
3329 /*
3330  * If from_vmentry is false, this is being called from state restore (either RSM
3331  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3332  *
3333  * Returns:
3334  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3335  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3336  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3337  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3338  */
3339 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3340                                                         bool from_vmentry)
3341 {
3342         struct vcpu_vmx *vmx = to_vmx(vcpu);
3343         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3344         enum vm_entry_failure_code entry_failure_code;
3345         bool evaluate_pending_interrupts;
3346         union vmx_exit_reason exit_reason = {
3347                 .basic = EXIT_REASON_INVALID_STATE,
3348                 .failed_vmentry = 1,
3349         };
3350         u32 failed_index;
3351
3352         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3353                 kvm_vcpu_flush_tlb_current(vcpu);
3354
3355         evaluate_pending_interrupts = exec_controls_get(vmx) &
3356                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3357         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3358                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3359
3360         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3361                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3362         if (kvm_mpx_supported() &&
3363                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3364                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3365
3366         /*
3367          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3368          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3369          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3370          * software model to the pre-VMEntry host state.  When EPT is disabled,
3371          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3372          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3373          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3374          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3375          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3376          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3377          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3378          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3379          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3380          * path would need to manually save/restore vmcs01.GUEST_CR3.
3381          */
3382         if (!enable_ept && !nested_early_check)
3383                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3384
3385         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3386
3387         prepare_vmcs02_early(vmx, vmcs12);
3388
3389         if (from_vmentry) {
3390                 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3391                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3392                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3393                 }
3394
3395                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3396                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3397                         return NVMX_VMENTRY_VMFAIL;
3398                 }
3399
3400                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3401                                                  &entry_failure_code)) {
3402                         exit_reason.basic = EXIT_REASON_INVALID_STATE;
3403                         vmcs12->exit_qualification = entry_failure_code;
3404                         goto vmentry_fail_vmexit;
3405                 }
3406         }
3407
3408         enter_guest_mode(vcpu);
3409
3410         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3411                 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3412                 vmcs12->exit_qualification = entry_failure_code;
3413                 goto vmentry_fail_vmexit_guest_mode;
3414         }
3415
3416         if (from_vmentry) {
3417                 failed_index = nested_vmx_load_msr(vcpu,
3418                                                    vmcs12->vm_entry_msr_load_addr,
3419                                                    vmcs12->vm_entry_msr_load_count);
3420                 if (failed_index) {
3421                         exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3422                         vmcs12->exit_qualification = failed_index;
3423                         goto vmentry_fail_vmexit_guest_mode;
3424                 }
3425         } else {
3426                 /*
3427                  * The MMU is not initialized to point at the right entities yet and
3428                  * "get pages" would need to read data from the guest (i.e. we will
3429                  * need to perform gpa to hpa translation). Request a call
3430                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3431                  * have already been set at vmentry time and should not be reset.
3432                  */
3433                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3434         }
3435
3436         /*
3437          * If L1 had a pending IRQ/NMI until it executed
3438          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3439          * disallowed (e.g. interrupts disabled), L0 needs to
3440          * evaluate if this pending event should cause an exit from L2
3441          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3442          * intercept EXTERNAL_INTERRUPT).
3443          *
3444          * Usually this would be handled by the processor noticing an
3445          * IRQ/NMI window request, or checking RVI during evaluation of
3446          * pending virtual interrupts.  However, this setting was done
3447          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3448          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3449          */
3450         if (unlikely(evaluate_pending_interrupts))
3451                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3452
3453         /*
3454          * Do not start the preemption timer hrtimer until after we know
3455          * we are successful, so that only nested_vmx_vmexit needs to cancel
3456          * the timer.
3457          */
3458         vmx->nested.preemption_timer_expired = false;
3459         if (nested_cpu_has_preemption_timer(vmcs12)) {
3460                 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3461                 vmx_start_preemption_timer(vcpu, timer_value);
3462         }
3463
3464         /*
3465          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3466          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3467          * returned as far as L1 is concerned. It will only return (and set
3468          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3469          */
3470         return NVMX_VMENTRY_SUCCESS;
3471
3472         /*
3473          * A failed consistency check that leads to a VMExit during L1's
3474          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3475          * 26.7 "VM-entry failures during or after loading guest state".
3476          */
3477 vmentry_fail_vmexit_guest_mode:
3478         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3479                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3480         leave_guest_mode(vcpu);
3481
3482 vmentry_fail_vmexit:
3483         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3484
3485         if (!from_vmentry)
3486                 return NVMX_VMENTRY_VMEXIT;
3487
3488         load_vmcs12_host_state(vcpu, vmcs12);
3489         vmcs12->vm_exit_reason = exit_reason.full;
3490         if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3491                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3492         return NVMX_VMENTRY_VMEXIT;
3493 }
3494
3495 /*
3496  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3497  * for running an L2 nested guest.
3498  */
3499 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3500 {
3501         struct vmcs12 *vmcs12;
3502         enum nvmx_vmentry_status status;
3503         struct vcpu_vmx *vmx = to_vmx(vcpu);
3504         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3505         enum nested_evmptrld_status evmptrld_status;
3506
3507         if (!nested_vmx_check_permission(vcpu))
3508                 return 1;
3509
3510         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3511         if (evmptrld_status == EVMPTRLD_ERROR) {
3512                 kvm_queue_exception(vcpu, UD_VECTOR);
3513                 return 1;
3514         } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3515                 return nested_vmx_failInvalid(vcpu);
3516         }
3517
3518         if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3519                vmx->nested.current_vmptr == -1ull))
3520                 return nested_vmx_failInvalid(vcpu);
3521
3522         vmcs12 = get_vmcs12(vcpu);
3523
3524         /*
3525          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3526          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3527          * rather than RFLAGS.ZF, and no error number is stored to the
3528          * VM-instruction error field.
3529          */
3530         if (CC(vmcs12->hdr.shadow_vmcs))
3531                 return nested_vmx_failInvalid(vcpu);
3532
3533         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3534                 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3535                 /* Enlightened VMCS doesn't have launch state */
3536                 vmcs12->launch_state = !launch;
3537         } else if (enable_shadow_vmcs) {
3538                 copy_shadow_to_vmcs12(vmx);
3539         }
3540
3541         /*
3542          * The nested entry process starts with enforcing various prerequisites
3543          * on vmcs12 as required by the Intel SDM, and act appropriately when
3544          * they fail: As the SDM explains, some conditions should cause the
3545          * instruction to fail, while others will cause the instruction to seem
3546          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3547          * To speed up the normal (success) code path, we should avoid checking
3548          * for misconfigurations which will anyway be caught by the processor
3549          * when using the merged vmcs02.
3550          */
3551         if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3552                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3553
3554         if (CC(vmcs12->launch_state == launch))
3555                 return nested_vmx_fail(vcpu,
3556                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3557                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3558
3559         if (nested_vmx_check_controls(vcpu, vmcs12))
3560                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3561
3562         if (nested_vmx_check_host_state(vcpu, vmcs12))
3563                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3564
3565         /*
3566          * We're finally done with prerequisite checking, and can start with
3567          * the nested entry.
3568          */
3569         vmx->nested.nested_run_pending = 1;
3570         vmx->nested.has_preemption_timer_deadline = false;
3571         status = nested_vmx_enter_non_root_mode(vcpu, true);
3572         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3573                 goto vmentry_failed;
3574
3575         /* Emulate processing of posted interrupts on VM-Enter. */
3576         if (nested_cpu_has_posted_intr(vmcs12) &&
3577             kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3578                 vmx->nested.pi_pending = true;
3579                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3580                 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3581         }
3582
3583         /* Hide L1D cache contents from the nested guest.  */
3584         vmx->vcpu.arch.l1tf_flush_l1d = true;
3585
3586         /*
3587          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3588          * also be used as part of restoring nVMX state for
3589          * snapshot restore (migration).
3590          *
3591          * In this flow, it is assumed that vmcs12 cache was
3592          * transferred as part of captured nVMX state and should
3593          * therefore not be read from guest memory (which may not
3594          * exist on destination host yet).
3595          */
3596         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3597
3598         switch (vmcs12->guest_activity_state) {
3599         case GUEST_ACTIVITY_HLT:
3600                 /*
3601                  * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3602                  * awakened by event injection or by an NMI-window VM-exit or
3603                  * by an interrupt-window VM-exit, halt the vcpu.
3604                  */
3605                 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3606                     !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3607                     !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3608                       (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3609                         vmx->nested.nested_run_pending = 0;
3610                         return kvm_vcpu_halt(vcpu);
3611                 }
3612                 break;
3613         case GUEST_ACTIVITY_WAIT_SIPI:
3614                 vmx->nested.nested_run_pending = 0;
3615                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3616                 break;
3617         default:
3618                 break;
3619         }
3620
3621         return 1;
3622
3623 vmentry_failed:
3624         vmx->nested.nested_run_pending = 0;
3625         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3626                 return 0;
3627         if (status == NVMX_VMENTRY_VMEXIT)
3628                 return 1;
3629         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3630         return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3631 }
3632
3633 /*
3634  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3635  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3636  * This function returns the new value we should put in vmcs12.guest_cr0.
3637  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3638  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3639  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3640  *     didn't trap the bit, because if L1 did, so would L0).
3641  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3642  *     been modified by L2, and L1 knows it. So just leave the old value of
3643  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3644  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3645  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3646  *     changed these bits, and therefore they need to be updated, but L0
3647  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3648  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3649  */
3650 static inline unsigned long
3651 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3652 {
3653         return
3654         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3655         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3656         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3657                         vcpu->arch.cr0_guest_owned_bits));
3658 }
3659
3660 static inline unsigned long
3661 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3662 {
3663         return
3664         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3665         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3666         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3667                         vcpu->arch.cr4_guest_owned_bits));
3668 }
3669
3670 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3671                                       struct vmcs12 *vmcs12)
3672 {
3673         u32 idt_vectoring;
3674         unsigned int nr;
3675
3676         if (vcpu->arch.exception.injected) {
3677                 nr = vcpu->arch.exception.nr;
3678                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3679
3680                 if (kvm_exception_is_soft(nr)) {
3681                         vmcs12->vm_exit_instruction_len =
3682                                 vcpu->arch.event_exit_inst_len;
3683                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3684                 } else
3685                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3686
3687                 if (vcpu->arch.exception.has_error_code) {
3688                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3689                         vmcs12->idt_vectoring_error_code =
3690                                 vcpu->arch.exception.error_code;
3691                 }
3692
3693                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3694         } else if (vcpu->arch.nmi_injected) {
3695                 vmcs12->idt_vectoring_info_field =
3696                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3697         } else if (vcpu->arch.interrupt.injected) {
3698                 nr = vcpu->arch.interrupt.nr;
3699                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3700
3701                 if (vcpu->arch.interrupt.soft) {
3702                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3703                         vmcs12->vm_entry_instruction_len =
3704                                 vcpu->arch.event_exit_inst_len;
3705                 } else
3706                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3707
3708                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3709         }
3710 }
3711
3712
3713 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3714 {
3715         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3716         gfn_t gfn;
3717
3718         /*
3719          * Don't need to mark the APIC access page dirty; it is never
3720          * written to by the CPU during APIC virtualization.
3721          */
3722
3723         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3724                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3725                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3726         }
3727
3728         if (nested_cpu_has_posted_intr(vmcs12)) {
3729                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3730                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3731         }
3732 }
3733
3734 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3735 {
3736         struct vcpu_vmx *vmx = to_vmx(vcpu);
3737         int max_irr;
3738         void *vapic_page;
3739         u16 status;
3740
3741         if (!vmx->nested.pi_pending)
3742                 return 0;
3743
3744         if (!vmx->nested.pi_desc)
3745                 goto mmio_needed;
3746
3747         vmx->nested.pi_pending = false;
3748
3749         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3750                 return 0;
3751
3752         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3753         if (max_irr != 256) {
3754                 vapic_page = vmx->nested.virtual_apic_map.hva;
3755                 if (!vapic_page)
3756                         goto mmio_needed;
3757
3758                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3759                         vapic_page, &max_irr);
3760                 status = vmcs_read16(GUEST_INTR_STATUS);
3761                 if ((u8)max_irr > ((u8)status & 0xff)) {
3762                         status &= ~0xff;
3763                         status |= (u8)max_irr;
3764                         vmcs_write16(GUEST_INTR_STATUS, status);
3765                 }
3766         }
3767
3768         nested_mark_vmcs12_pages_dirty(vcpu);
3769         return 0;
3770
3771 mmio_needed:
3772         kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3773         return -ENXIO;
3774 }
3775
3776 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3777                                                unsigned long exit_qual)
3778 {
3779         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3780         unsigned int nr = vcpu->arch.exception.nr;
3781         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3782
3783         if (vcpu->arch.exception.has_error_code) {
3784                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3785                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3786         }
3787
3788         if (kvm_exception_is_soft(nr))
3789                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3790         else
3791                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3792
3793         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3794             vmx_get_nmi_mask(vcpu))
3795                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3796
3797         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3798 }
3799
3800 /*
3801  * Returns true if a debug trap is pending delivery.
3802  *
3803  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3804  * exception may be inferred from the presence of an exception payload.
3805  */
3806 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3807 {
3808         return vcpu->arch.exception.pending &&
3809                         vcpu->arch.exception.nr == DB_VECTOR &&
3810                         vcpu->arch.exception.payload;
3811 }
3812
3813 /*
3814  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3815  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3816  * represents these debug traps with a payload that is said to be compatible
3817  * with the 'pending debug exceptions' field, write the payload to the VMCS
3818  * field if a VM-exit is delivered before the debug trap.
3819  */
3820 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3821 {
3822         if (vmx_pending_dbg_trap(vcpu))
3823                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3824                             vcpu->arch.exception.payload);
3825 }
3826
3827 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3828 {
3829         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3830                to_vmx(vcpu)->nested.preemption_timer_expired;
3831 }
3832
3833 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3834 {
3835         struct vcpu_vmx *vmx = to_vmx(vcpu);
3836         unsigned long exit_qual;
3837         bool block_nested_events =
3838             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3839         bool mtf_pending = vmx->nested.mtf_pending;
3840         struct kvm_lapic *apic = vcpu->arch.apic;
3841
3842         /*
3843          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3844          * this state is discarded.
3845          */
3846         if (!block_nested_events)
3847                 vmx->nested.mtf_pending = false;
3848
3849         if (lapic_in_kernel(vcpu) &&
3850                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3851                 if (block_nested_events)
3852                         return -EBUSY;
3853                 nested_vmx_update_pending_dbg(vcpu);
3854                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3855                 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3856                         nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3857                 return 0;
3858         }
3859
3860         if (lapic_in_kernel(vcpu) &&
3861             test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3862                 if (block_nested_events)
3863                         return -EBUSY;
3864
3865                 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3866                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3867                         nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3868                                                 apic->sipi_vector & 0xFFUL);
3869                 return 0;
3870         }
3871
3872         /*
3873          * Process any exceptions that are not debug traps before MTF.
3874          *
3875          * Note that only a pending nested run can block a pending exception.
3876          * Otherwise an injected NMI/interrupt should either be
3877          * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3878          * while delivering the pending exception.
3879          */
3880
3881         if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3882                 if (vmx->nested.nested_run_pending)
3883                         return -EBUSY;
3884                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3885                         goto no_vmexit;
3886                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3887                 return 0;
3888         }
3889
3890         if (mtf_pending) {
3891                 if (block_nested_events)
3892                         return -EBUSY;
3893                 nested_vmx_update_pending_dbg(vcpu);
3894                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3895                 return 0;
3896         }
3897
3898         if (vcpu->arch.exception.pending) {
3899                 if (vmx->nested.nested_run_pending)
3900                         return -EBUSY;
3901                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3902                         goto no_vmexit;
3903                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3904                 return 0;
3905         }
3906
3907         if (nested_vmx_preemption_timer_pending(vcpu)) {
3908                 if (block_nested_events)
3909                         return -EBUSY;
3910                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3911                 return 0;
3912         }
3913
3914         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3915                 if (block_nested_events)
3916                         return -EBUSY;
3917                 goto no_vmexit;
3918         }
3919
3920         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3921                 if (block_nested_events)
3922                         return -EBUSY;
3923                 if (!nested_exit_on_nmi(vcpu))
3924                         goto no_vmexit;
3925
3926                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3927                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3928                                   INTR_INFO_VALID_MASK, 0);
3929                 /*
3930                  * The NMI-triggered VM exit counts as injection:
3931                  * clear this one and block further NMIs.
3932                  */
3933                 vcpu->arch.nmi_pending = 0;
3934                 vmx_set_nmi_mask(vcpu, true);
3935                 return 0;
3936         }
3937
3938         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3939                 if (block_nested_events)
3940                         return -EBUSY;
3941                 if (!nested_exit_on_intr(vcpu))
3942                         goto no_vmexit;
3943                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3944                 return 0;
3945         }
3946
3947 no_vmexit:
3948         return vmx_complete_nested_posted_interrupt(vcpu);
3949 }
3950
3951 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3952 {
3953         ktime_t remaining =
3954                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3955         u64 value;
3956
3957         if (ktime_to_ns(remaining) <= 0)
3958                 return 0;
3959
3960         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3961         do_div(value, 1000000);
3962         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3963 }
3964
3965 static bool is_vmcs12_ext_field(unsigned long field)
3966 {
3967         switch (field) {
3968         case GUEST_ES_SELECTOR:
3969         case GUEST_CS_SELECTOR:
3970         case GUEST_SS_SELECTOR:
3971         case GUEST_DS_SELECTOR:
3972         case GUEST_FS_SELECTOR:
3973         case GUEST_GS_SELECTOR:
3974         case GUEST_LDTR_SELECTOR:
3975         case GUEST_TR_SELECTOR:
3976         case GUEST_ES_LIMIT:
3977         case GUEST_CS_LIMIT:
3978         case GUEST_SS_LIMIT:
3979         case GUEST_DS_LIMIT:
3980         case GUEST_FS_LIMIT:
3981         case GUEST_GS_LIMIT:
3982         case GUEST_LDTR_LIMIT:
3983         case GUEST_TR_LIMIT:
3984         case GUEST_GDTR_LIMIT:
3985         case GUEST_IDTR_LIMIT:
3986         case GUEST_ES_AR_BYTES:
3987         case GUEST_DS_AR_BYTES:
3988         case GUEST_FS_AR_BYTES:
3989         case GUEST_GS_AR_BYTES:
3990         case GUEST_LDTR_AR_BYTES:
3991         case GUEST_TR_AR_BYTES:
3992         case GUEST_ES_BASE:
3993         case GUEST_CS_BASE:
3994         case GUEST_SS_BASE:
3995         case GUEST_DS_BASE:
3996         case GUEST_FS_BASE:
3997         case GUEST_GS_BASE:
3998         case GUEST_LDTR_BASE:
3999         case GUEST_TR_BASE:
4000         case GUEST_GDTR_BASE:
4001         case GUEST_IDTR_BASE:
4002         case GUEST_PENDING_DBG_EXCEPTIONS:
4003         case GUEST_BNDCFGS:
4004                 return true;
4005         default:
4006                 break;
4007         }
4008
4009         return false;
4010 }
4011
4012 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4013                                        struct vmcs12 *vmcs12)
4014 {
4015         struct vcpu_vmx *vmx = to_vmx(vcpu);
4016
4017         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4018         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4019         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4020         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4021         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4022         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4023         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4024         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4025         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4026         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4027         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4028         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4029         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4030         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4031         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4032         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4033         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4034         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4035         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4036         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4037         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4038         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4039         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4040         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4041         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4042         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4043         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4044         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4045         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4046         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4047         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4048         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4049         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4050         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4051         vmcs12->guest_pending_dbg_exceptions =
4052                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4053         if (kvm_mpx_supported())
4054                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4055
4056         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4057 }
4058
4059 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4060                                        struct vmcs12 *vmcs12)
4061 {
4062         struct vcpu_vmx *vmx = to_vmx(vcpu);
4063         int cpu;
4064
4065         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4066                 return;
4067
4068
4069         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4070
4071         cpu = get_cpu();
4072         vmx->loaded_vmcs = &vmx->nested.vmcs02;
4073         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4074
4075         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4076
4077         vmx->loaded_vmcs = &vmx->vmcs01;
4078         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4079         put_cpu();
4080 }
4081
4082 /*
4083  * Update the guest state fields of vmcs12 to reflect changes that
4084  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4085  * VM-entry controls is also updated, since this is really a guest
4086  * state bit.)
4087  */
4088 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4089 {
4090         struct vcpu_vmx *vmx = to_vmx(vcpu);
4091
4092         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4093                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4094
4095         vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4096                 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4097
4098         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4099         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4100
4101         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4102         vmcs12->guest_rip = kvm_rip_read(vcpu);
4103         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4104
4105         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4106         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4107
4108         vmcs12->guest_interruptibility_info =
4109                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4110
4111         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4112                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4113         else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4114                 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4115         else
4116                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4117
4118         if (nested_cpu_has_preemption_timer(vmcs12) &&
4119             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4120             !vmx->nested.nested_run_pending)
4121                 vmcs12->vmx_preemption_timer_value =
4122                         vmx_get_preemption_timer_value(vcpu);
4123
4124         /*
4125          * In some cases (usually, nested EPT), L2 is allowed to change its
4126          * own CR3 without exiting. If it has changed it, we must keep it.
4127          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4128          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4129          *
4130          * Additionally, restore L2's PDPTR to vmcs12.
4131          */
4132         if (enable_ept) {
4133                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4134                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4135                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4136                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4137                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4138                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4139                 }
4140         }
4141
4142         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4143
4144         if (nested_cpu_has_vid(vmcs12))
4145                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4146
4147         vmcs12->vm_entry_controls =
4148                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4149                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4150
4151         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4152                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4153
4154         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4155                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4156 }
4157
4158 /*
4159  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4160  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4161  * and this function updates it to reflect the changes to the guest state while
4162  * L2 was running (and perhaps made some exits which were handled directly by L0
4163  * without going back to L1), and to reflect the exit reason.
4164  * Note that we do not have to copy here all VMCS fields, just those that
4165  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4166  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4167  * which already writes to vmcs12 directly.
4168  */
4169 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4170                            u32 vm_exit_reason, u32 exit_intr_info,
4171                            unsigned long exit_qualification)
4172 {
4173         /* update exit information fields: */
4174         vmcs12->vm_exit_reason = vm_exit_reason;
4175         if (to_vmx(vcpu)->exit_reason.enclave_mode)
4176                 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4177         vmcs12->exit_qualification = exit_qualification;
4178         vmcs12->vm_exit_intr_info = exit_intr_info;
4179
4180         vmcs12->idt_vectoring_info_field = 0;
4181         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4182         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4183
4184         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4185                 vmcs12->launch_state = 1;
4186
4187                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4188                  * instead of reading the real value. */
4189                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4190
4191                 /*
4192                  * Transfer the event that L0 or L1 may wanted to inject into
4193                  * L2 to IDT_VECTORING_INFO_FIELD.
4194                  */
4195                 vmcs12_save_pending_event(vcpu, vmcs12);
4196
4197                 /*
4198                  * According to spec, there's no need to store the guest's
4199                  * MSRs if the exit is due to a VM-entry failure that occurs
4200                  * during or after loading the guest state. Since this exit
4201                  * does not fall in that category, we need to save the MSRs.
4202                  */
4203                 if (nested_vmx_store_msr(vcpu,
4204                                          vmcs12->vm_exit_msr_store_addr,
4205                                          vmcs12->vm_exit_msr_store_count))
4206                         nested_vmx_abort(vcpu,
4207                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4208         }
4209
4210         /*
4211          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4212          * preserved above and would only end up incorrectly in L1.
4213          */
4214         vcpu->arch.nmi_injected = false;
4215         kvm_clear_exception_queue(vcpu);
4216         kvm_clear_interrupt_queue(vcpu);
4217 }
4218
4219 /*
4220  * A part of what we need to when the nested L2 guest exits and we want to
4221  * run its L1 parent, is to reset L1's guest state to the host state specified
4222  * in vmcs12.
4223  * This function is to be called not only on normal nested exit, but also on
4224  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4225  * Failures During or After Loading Guest State").
4226  * This function should be called when the active VMCS is L1's (vmcs01).
4227  */
4228 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4229                                    struct vmcs12 *vmcs12)
4230 {
4231         enum vm_entry_failure_code ignored;
4232         struct kvm_segment seg;
4233
4234         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4235                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4236         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4237                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4238         else
4239                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4240         vmx_set_efer(vcpu, vcpu->arch.efer);
4241
4242         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4243         kvm_rip_write(vcpu, vmcs12->host_rip);
4244         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4245         vmx_set_interrupt_shadow(vcpu, 0);
4246
4247         /*
4248          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4249          * actually changed, because vmx_set_cr0 refers to efer set above.
4250          *
4251          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4252          * (KVM doesn't change it);
4253          */
4254         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4255         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4256
4257         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4258         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4259         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4260
4261         nested_ept_uninit_mmu_context(vcpu);
4262
4263         /*
4264          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4265          * couldn't have changed.
4266          */
4267         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4268                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4269
4270         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4271
4272         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4273         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4274         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4275         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4276         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4277         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4278         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4279
4280         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4281         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4282                 vmcs_write64(GUEST_BNDCFGS, 0);
4283
4284         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4285                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4286                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4287         }
4288         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4289                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4290                                          vmcs12->host_ia32_perf_global_ctrl));
4291
4292         /* Set L1 segment info according to Intel SDM
4293             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4294         seg = (struct kvm_segment) {
4295                 .base = 0,
4296                 .limit = 0xFFFFFFFF,
4297                 .selector = vmcs12->host_cs_selector,
4298                 .type = 11,
4299                 .present = 1,
4300                 .s = 1,
4301                 .g = 1
4302         };
4303         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4304                 seg.l = 1;
4305         else
4306                 seg.db = 1;
4307         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4308         seg = (struct kvm_segment) {
4309                 .base = 0,
4310                 .limit = 0xFFFFFFFF,
4311                 .type = 3,
4312                 .present = 1,
4313                 .s = 1,
4314                 .db = 1,
4315                 .g = 1
4316         };
4317         seg.selector = vmcs12->host_ds_selector;
4318         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4319         seg.selector = vmcs12->host_es_selector;
4320         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4321         seg.selector = vmcs12->host_ss_selector;
4322         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4323         seg.selector = vmcs12->host_fs_selector;
4324         seg.base = vmcs12->host_fs_base;
4325         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4326         seg.selector = vmcs12->host_gs_selector;
4327         seg.base = vmcs12->host_gs_base;
4328         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4329         seg = (struct kvm_segment) {
4330                 .base = vmcs12->host_tr_base,
4331                 .limit = 0x67,
4332                 .selector = vmcs12->host_tr_selector,
4333                 .type = 11,
4334                 .present = 1
4335         };
4336         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4337
4338         kvm_set_dr(vcpu, 7, 0x400);
4339         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4340
4341         if (cpu_has_vmx_msr_bitmap())
4342                 vmx_update_msr_bitmap(vcpu);
4343
4344         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4345                                 vmcs12->vm_exit_msr_load_count))
4346                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4347 }
4348
4349 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4350 {
4351         struct vmx_uret_msr *efer_msr;
4352         unsigned int i;
4353
4354         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4355                 return vmcs_read64(GUEST_IA32_EFER);
4356
4357         if (cpu_has_load_ia32_efer())
4358                 return host_efer;
4359
4360         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4361                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4362                         return vmx->msr_autoload.guest.val[i].value;
4363         }
4364
4365         efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4366         if (efer_msr)
4367                 return efer_msr->data;
4368
4369         return host_efer;
4370 }
4371
4372 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4373 {
4374         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4375         struct vcpu_vmx *vmx = to_vmx(vcpu);
4376         struct vmx_msr_entry g, h;
4377         gpa_t gpa;
4378         u32 i, j;
4379
4380         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4381
4382         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4383                 /*
4384                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4385                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4386                  * and vcpu->arch.dr7 is not squirreled away before the
4387                  * nested VMENTER (not worth adding a variable in nested_vmx).
4388                  */
4389                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4390                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4391                 else
4392                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4393         }
4394
4395         /*
4396          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4397          * handle a variety of side effects to KVM's software model.
4398          */
4399         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4400
4401         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4402         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4403
4404         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4405         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4406
4407         nested_ept_uninit_mmu_context(vcpu);
4408         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4409         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4410
4411         /*
4412          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4413          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4414          * VMFail, like everything else we just need to ensure our
4415          * software model is up-to-date.
4416          */
4417         if (enable_ept && is_pae_paging(vcpu))
4418                 ept_save_pdptrs(vcpu);
4419
4420         kvm_mmu_reset_context(vcpu);
4421
4422         if (cpu_has_vmx_msr_bitmap())
4423                 vmx_update_msr_bitmap(vcpu);
4424
4425         /*
4426          * This nasty bit of open coding is a compromise between blindly
4427          * loading L1's MSRs using the exit load lists (incorrect emulation
4428          * of VMFail), leaving the nested VM's MSRs in the software model
4429          * (incorrect behavior) and snapshotting the modified MSRs (too
4430          * expensive since the lists are unbound by hardware).  For each
4431          * MSR that was (prematurely) loaded from the nested VMEntry load
4432          * list, reload it from the exit load list if it exists and differs
4433          * from the guest value.  The intent is to stuff host state as
4434          * silently as possible, not to fully process the exit load list.
4435          */
4436         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4437                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4438                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4439                         pr_debug_ratelimited(
4440                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4441                                 __func__, i, gpa);
4442                         goto vmabort;
4443                 }
4444
4445                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4446                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4447                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4448                                 pr_debug_ratelimited(
4449                                         "%s read MSR failed (%u, 0x%08llx)\n",
4450                                         __func__, j, gpa);
4451                                 goto vmabort;
4452                         }
4453                         if (h.index != g.index)
4454                                 continue;
4455                         if (h.value == g.value)
4456                                 break;
4457
4458                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4459                                 pr_debug_ratelimited(
4460                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4461                                         __func__, j, h.index, h.reserved);
4462                                 goto vmabort;
4463                         }
4464
4465                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4466                                 pr_debug_ratelimited(
4467                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4468                                         __func__, j, h.index, h.value);
4469                                 goto vmabort;
4470                         }
4471                 }
4472         }
4473
4474         return;
4475
4476 vmabort:
4477         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4478 }
4479
4480 /*
4481  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4482  * and modify vmcs12 to make it see what it would expect to see there if
4483  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4484  */
4485 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4486                        u32 exit_intr_info, unsigned long exit_qualification)
4487 {
4488         struct vcpu_vmx *vmx = to_vmx(vcpu);
4489         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4490
4491         /* trying to cancel vmlaunch/vmresume is a bug */
4492         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4493
4494         /* Similarly, triple faults in L2 should never escape. */
4495         WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
4496
4497         if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4498                 /*
4499                  * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4500                  * Enlightened VMCS after migration and we still need to
4501                  * do that when something is forcing L2->L1 exit prior to
4502                  * the first L2 run.
4503                  */
4504                 (void)nested_get_evmcs_page(vcpu);
4505         }
4506
4507         /* Service the TLB flush request for L2 before switching to L1. */
4508         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4509                 kvm_vcpu_flush_tlb_current(vcpu);
4510
4511         /*
4512          * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4513          * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4514          * up-to-date before switching to L1.
4515          */
4516         if (enable_ept && is_pae_paging(vcpu))
4517                 vmx_ept_load_pdptrs(vcpu);
4518
4519         leave_guest_mode(vcpu);
4520
4521         if (nested_cpu_has_preemption_timer(vmcs12))
4522                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4523
4524         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4525                 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4526                 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4527                         vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4528         }
4529
4530         if (likely(!vmx->fail)) {
4531                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4532
4533                 if (vm_exit_reason != -1)
4534                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4535                                        exit_intr_info, exit_qualification);
4536
4537                 /*
4538                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4539                  * also be used to capture vmcs12 cache as part of
4540                  * capturing nVMX state for snapshot (migration).
4541                  *
4542                  * Otherwise, this flush will dirty guest memory at a
4543                  * point it is already assumed by user-space to be
4544                  * immutable.
4545                  */
4546                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4547         } else {
4548                 /*
4549                  * The only expected VM-instruction error is "VM entry with
4550                  * invalid control field(s)." Anything else indicates a
4551                  * problem with L0.  And we should never get here with a
4552                  * VMFail of any type if early consistency checks are enabled.
4553                  */
4554                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4555                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4556                 WARN_ON_ONCE(nested_early_check);
4557         }
4558
4559         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4560
4561         /* Update any VMCS fields that might have changed while L2 ran */
4562         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4563         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4564         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4565         if (kvm_has_tsc_control)
4566                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4567
4568         if (vmx->nested.l1_tpr_threshold != -1)
4569                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4570
4571         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4572                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4573                 vmx_set_virtual_apic_mode(vcpu);
4574         }
4575
4576         if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4577                 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4578                 vmx_update_cpu_dirty_logging(vcpu);
4579         }
4580
4581         /* Unpin physical memory we referred to in vmcs02 */
4582         if (vmx->nested.apic_access_page) {
4583                 kvm_release_page_clean(vmx->nested.apic_access_page);
4584                 vmx->nested.apic_access_page = NULL;
4585         }
4586         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4587         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4588         vmx->nested.pi_desc = NULL;
4589
4590         if (vmx->nested.reload_vmcs01_apic_access_page) {
4591                 vmx->nested.reload_vmcs01_apic_access_page = false;
4592                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4593         }
4594
4595         if ((vm_exit_reason != -1) &&
4596             (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4597                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4598
4599         /* in case we halted in L2 */
4600         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4601
4602         if (likely(!vmx->fail)) {
4603                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4604                     nested_exit_intr_ack_set(vcpu)) {
4605                         int irq = kvm_cpu_get_interrupt(vcpu);
4606                         WARN_ON(irq < 0);
4607                         vmcs12->vm_exit_intr_info = irq |
4608                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4609                 }
4610
4611                 if (vm_exit_reason != -1)
4612                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4613                                                        vmcs12->exit_qualification,
4614                                                        vmcs12->idt_vectoring_info_field,
4615                                                        vmcs12->vm_exit_intr_info,
4616                                                        vmcs12->vm_exit_intr_error_code,
4617                                                        KVM_ISA_VMX);
4618
4619                 load_vmcs12_host_state(vcpu, vmcs12);
4620
4621                 return;
4622         }
4623
4624         /*
4625          * After an early L2 VM-entry failure, we're now back
4626          * in L1 which thinks it just finished a VMLAUNCH or
4627          * VMRESUME instruction, so we need to set the failure
4628          * flag and the VM-instruction error field of the VMCS
4629          * accordingly, and skip the emulated instruction.
4630          */
4631         (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4632
4633         /*
4634          * Restore L1's host state to KVM's software model.  We're here
4635          * because a consistency check was caught by hardware, which
4636          * means some amount of guest state has been propagated to KVM's
4637          * model and needs to be unwound to the host's state.
4638          */
4639         nested_vmx_restore_host_state(vcpu);
4640
4641         vmx->fail = 0;
4642 }
4643
4644 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4645 {
4646         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4647 }
4648
4649 /*
4650  * Decode the memory-address operand of a vmx instruction, as recorded on an
4651  * exit caused by such an instruction (run by a guest hypervisor).
4652  * On success, returns 0. When the operand is invalid, returns 1 and throws
4653  * #UD, #GP, or #SS.
4654  */
4655 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4656                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4657 {
4658         gva_t off;
4659         bool exn;
4660         struct kvm_segment s;
4661
4662         /*
4663          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4664          * Execution", on an exit, vmx_instruction_info holds most of the
4665          * addressing components of the operand. Only the displacement part
4666          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4667          * For how an actual address is calculated from all these components,
4668          * refer to Vol. 1, "Operand Addressing".
4669          */
4670         int  scaling = vmx_instruction_info & 3;
4671         int  addr_size = (vmx_instruction_info >> 7) & 7;
4672         bool is_reg = vmx_instruction_info & (1u << 10);
4673         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4674         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4675         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4676         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4677         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4678
4679         if (is_reg) {
4680                 kvm_queue_exception(vcpu, UD_VECTOR);
4681                 return 1;
4682         }
4683
4684         /* Addr = segment_base + offset */
4685         /* offset = base + [index * scale] + displacement */
4686         off = exit_qualification; /* holds the displacement */
4687         if (addr_size == 1)
4688                 off = (gva_t)sign_extend64(off, 31);
4689         else if (addr_size == 0)
4690                 off = (gva_t)sign_extend64(off, 15);
4691         if (base_is_valid)
4692                 off += kvm_register_read(vcpu, base_reg);
4693         if (index_is_valid)
4694                 off += kvm_register_read(vcpu, index_reg) << scaling;
4695         vmx_get_segment(vcpu, &s, seg_reg);
4696
4697         /*
4698          * The effective address, i.e. @off, of a memory operand is truncated
4699          * based on the address size of the instruction.  Note that this is
4700          * the *effective address*, i.e. the address prior to accounting for
4701          * the segment's base.
4702          */
4703         if (addr_size == 1) /* 32 bit */
4704                 off &= 0xffffffff;
4705         else if (addr_size == 0) /* 16 bit */
4706                 off &= 0xffff;
4707
4708         /* Checks for #GP/#SS exceptions. */
4709         exn = false;
4710         if (is_long_mode(vcpu)) {
4711                 /*
4712                  * The virtual/linear address is never truncated in 64-bit
4713                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4714                  * address when using FS/GS with a non-zero base.
4715                  */
4716                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4717                         *ret = s.base + off;
4718                 else
4719                         *ret = off;
4720
4721                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4722                  * non-canonical form. This is the only check on the memory
4723                  * destination for long mode!
4724                  */
4725                 exn = is_noncanonical_address(*ret, vcpu);
4726         } else {
4727                 /*
4728                  * When not in long mode, the virtual/linear address is
4729                  * unconditionally truncated to 32 bits regardless of the
4730                  * address size.
4731                  */
4732                 *ret = (s.base + off) & 0xffffffff;
4733
4734                 /* Protected mode: apply checks for segment validity in the
4735                  * following order:
4736                  * - segment type check (#GP(0) may be thrown)
4737                  * - usability check (#GP(0)/#SS(0))
4738                  * - limit check (#GP(0)/#SS(0))
4739                  */
4740                 if (wr)
4741                         /* #GP(0) if the destination operand is located in a
4742                          * read-only data segment or any code segment.
4743                          */
4744                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4745                 else
4746                         /* #GP(0) if the source operand is located in an
4747                          * execute-only code segment
4748                          */
4749                         exn = ((s.type & 0xa) == 8);
4750                 if (exn) {
4751                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4752                         return 1;
4753                 }
4754                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4755                  */
4756                 exn = (s.unusable != 0);
4757
4758                 /*
4759                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4760                  * outside the segment limit.  All CPUs that support VMX ignore
4761                  * limit checks for flat segments, i.e. segments with base==0,
4762                  * limit==0xffffffff and of type expand-up data or code.
4763                  */
4764                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4765                      ((s.type & 8) || !(s.type & 4))))
4766                         exn = exn || ((u64)off + len - 1 > s.limit);
4767         }
4768         if (exn) {
4769                 kvm_queue_exception_e(vcpu,
4770                                       seg_reg == VCPU_SREG_SS ?
4771                                                 SS_VECTOR : GP_VECTOR,
4772                                       0);
4773                 return 1;
4774         }
4775
4776         return 0;
4777 }
4778
4779 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4780 {
4781         struct vcpu_vmx *vmx;
4782
4783         if (!nested_vmx_allowed(vcpu))
4784                 return;
4785
4786         vmx = to_vmx(vcpu);
4787         if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4788                 vmx->nested.msrs.entry_ctls_high |=
4789                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4790                 vmx->nested.msrs.exit_ctls_high |=
4791                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4792         } else {
4793                 vmx->nested.msrs.entry_ctls_high &=
4794                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4795                 vmx->nested.msrs.exit_ctls_high &=
4796                                 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4797         }
4798 }
4799
4800 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4801                                 int *ret)
4802 {
4803         gva_t gva;
4804         struct x86_exception e;
4805         int r;
4806
4807         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4808                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4809                                 sizeof(*vmpointer), &gva)) {
4810                 *ret = 1;
4811                 return -EINVAL;
4812         }
4813
4814         r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4815         if (r != X86EMUL_CONTINUE) {
4816                 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4817                 return -EINVAL;
4818         }
4819
4820         return 0;
4821 }
4822
4823 /*
4824  * Allocate a shadow VMCS and associate it with the currently loaded
4825  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4826  * VMCS is also VMCLEARed, so that it is ready for use.
4827  */
4828 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4829 {
4830         struct vcpu_vmx *vmx = to_vmx(vcpu);
4831         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4832
4833         /*
4834          * We should allocate a shadow vmcs for vmcs01 only when L1
4835          * executes VMXON and free it when L1 executes VMXOFF.
4836          * As it is invalid to execute VMXON twice, we shouldn't reach
4837          * here when vmcs01 already have an allocated shadow vmcs.
4838          */
4839         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4840
4841         if (!loaded_vmcs->shadow_vmcs) {
4842                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4843                 if (loaded_vmcs->shadow_vmcs)
4844                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4845         }
4846         return loaded_vmcs->shadow_vmcs;
4847 }
4848
4849 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4850 {
4851         struct vcpu_vmx *vmx = to_vmx(vcpu);
4852         int r;
4853
4854         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4855         if (r < 0)
4856                 goto out_vmcs02;
4857
4858         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4859         if (!vmx->nested.cached_vmcs12)
4860                 goto out_cached_vmcs12;
4861
4862         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4863         if (!vmx->nested.cached_shadow_vmcs12)
4864                 goto out_cached_shadow_vmcs12;
4865
4866         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4867                 goto out_shadow_vmcs;
4868
4869         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4870                      HRTIMER_MODE_ABS_PINNED);
4871         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4872
4873         vmx->nested.vpid02 = allocate_vpid();
4874
4875         vmx->nested.vmcs02_initialized = false;
4876         vmx->nested.vmxon = true;
4877
4878         if (vmx_pt_mode_is_host_guest()) {
4879                 vmx->pt_desc.guest.ctl = 0;
4880                 pt_update_intercept_for_msr(vcpu);
4881         }
4882
4883         return 0;
4884
4885 out_shadow_vmcs:
4886         kfree(vmx->nested.cached_shadow_vmcs12);
4887
4888 out_cached_shadow_vmcs12:
4889         kfree(vmx->nested.cached_vmcs12);
4890
4891 out_cached_vmcs12:
4892         free_loaded_vmcs(&vmx->nested.vmcs02);
4893
4894 out_vmcs02:
4895         return -ENOMEM;
4896 }
4897
4898 /*
4899  * Emulate the VMXON instruction.
4900  * Currently, we just remember that VMX is active, and do not save or even
4901  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4902  * do not currently need to store anything in that guest-allocated memory
4903  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4904  * argument is different from the VMXON pointer (which the spec says they do).
4905  */
4906 static int handle_vmon(struct kvm_vcpu *vcpu)
4907 {
4908         int ret;
4909         gpa_t vmptr;
4910         uint32_t revision;
4911         struct vcpu_vmx *vmx = to_vmx(vcpu);
4912         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4913                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4914
4915         /*
4916          * The Intel VMX Instruction Reference lists a bunch of bits that are
4917          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4918          * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4919          * Otherwise, we should fail with #UD.  But most faulting conditions
4920          * have already been checked by hardware, prior to the VM-exit for
4921          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4922          * that bit set to 1 in non-root mode.
4923          */
4924         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4925                 kvm_queue_exception(vcpu, UD_VECTOR);
4926                 return 1;
4927         }
4928
4929         /* CPL=0 must be checked manually. */
4930         if (vmx_get_cpl(vcpu)) {
4931                 kvm_inject_gp(vcpu, 0);
4932                 return 1;
4933         }
4934
4935         if (vmx->nested.vmxon)
4936                 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4937
4938         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4939                         != VMXON_NEEDED_FEATURES) {
4940                 kvm_inject_gp(vcpu, 0);
4941                 return 1;
4942         }
4943
4944         if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4945                 return ret;
4946
4947         /*
4948          * SDM 3: 24.11.5
4949          * The first 4 bytes of VMXON region contain the supported
4950          * VMCS revision identifier
4951          *
4952          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4953          * which replaces physical address width with 32
4954          */
4955         if (!page_address_valid(vcpu, vmptr))
4956                 return nested_vmx_failInvalid(vcpu);
4957
4958         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4959             revision != VMCS12_REVISION)
4960                 return nested_vmx_failInvalid(vcpu);
4961
4962         vmx->nested.vmxon_ptr = vmptr;
4963         ret = enter_vmx_operation(vcpu);
4964         if (ret)
4965                 return ret;
4966
4967         return nested_vmx_succeed(vcpu);
4968 }
4969
4970 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4971 {
4972         struct vcpu_vmx *vmx = to_vmx(vcpu);
4973
4974         if (vmx->nested.current_vmptr == -1ull)
4975                 return;
4976
4977         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4978
4979         if (enable_shadow_vmcs) {
4980                 /* copy to memory all shadowed fields in case
4981                    they were modified */
4982                 copy_shadow_to_vmcs12(vmx);
4983                 vmx_disable_shadow_vmcs(vmx);
4984         }
4985         vmx->nested.posted_intr_nv = -1;
4986
4987         /* Flush VMCS12 to guest memory */
4988         kvm_vcpu_write_guest_page(vcpu,
4989                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4990                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4991
4992         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4993
4994         vmx->nested.current_vmptr = -1ull;
4995 }
4996
4997 /* Emulate the VMXOFF instruction */
4998 static int handle_vmoff(struct kvm_vcpu *vcpu)
4999 {
5000         if (!nested_vmx_check_permission(vcpu))
5001                 return 1;
5002
5003         free_nested(vcpu);
5004
5005         /* Process a latched INIT during time CPU was in VMX operation */
5006         kvm_make_request(KVM_REQ_EVENT, vcpu);
5007
5008         return nested_vmx_succeed(vcpu);
5009 }
5010
5011 /* Emulate the VMCLEAR instruction */
5012 static int handle_vmclear(struct kvm_vcpu *vcpu)
5013 {
5014         struct vcpu_vmx *vmx = to_vmx(vcpu);
5015         u32 zero = 0;
5016         gpa_t vmptr;
5017         u64 evmcs_gpa;
5018         int r;
5019
5020         if (!nested_vmx_check_permission(vcpu))
5021                 return 1;
5022
5023         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5024                 return r;
5025
5026         if (!page_address_valid(vcpu, vmptr))
5027                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5028
5029         if (vmptr == vmx->nested.vmxon_ptr)
5030                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5031
5032         /*
5033          * When Enlightened VMEntry is enabled on the calling CPU we treat
5034          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5035          * way to distinguish it from VMCS12) and we must not corrupt it by
5036          * writing to the non-existent 'launch_state' field. The area doesn't
5037          * have to be the currently active EVMCS on the calling CPU and there's
5038          * nothing KVM has to do to transition it from 'active' to 'non-active'
5039          * state. It is possible that the area will stay mapped as
5040          * vmx->nested.hv_evmcs but this shouldn't be a problem.
5041          */
5042         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5043                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5044                 if (vmptr == vmx->nested.current_vmptr)
5045                         nested_release_vmcs12(vcpu);
5046
5047                 kvm_vcpu_write_guest(vcpu,
5048                                      vmptr + offsetof(struct vmcs12,
5049                                                       launch_state),
5050                                      &zero, sizeof(zero));
5051         } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5052                 nested_release_evmcs(vcpu);
5053         }
5054
5055         return nested_vmx_succeed(vcpu);
5056 }
5057
5058 /* Emulate the VMLAUNCH instruction */
5059 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5060 {
5061         return nested_vmx_run(vcpu, true);
5062 }
5063
5064 /* Emulate the VMRESUME instruction */
5065 static int handle_vmresume(struct kvm_vcpu *vcpu)
5066 {
5067
5068         return nested_vmx_run(vcpu, false);
5069 }
5070
5071 static int handle_vmread(struct kvm_vcpu *vcpu)
5072 {
5073         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5074                                                     : get_vmcs12(vcpu);
5075         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5076         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5077         struct vcpu_vmx *vmx = to_vmx(vcpu);
5078         struct x86_exception e;
5079         unsigned long field;
5080         u64 value;
5081         gva_t gva = 0;
5082         short offset;
5083         int len, r;
5084
5085         if (!nested_vmx_check_permission(vcpu))
5086                 return 1;
5087
5088         /*
5089          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5090          * any VMREAD sets the ALU flags for VMfailInvalid.
5091          */
5092         if (vmx->nested.current_vmptr == -1ull ||
5093             (is_guest_mode(vcpu) &&
5094              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5095                 return nested_vmx_failInvalid(vcpu);
5096
5097         /* Decode instruction info and find the field to read */
5098         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5099
5100         offset = vmcs_field_to_offset(field);
5101         if (offset < 0)
5102                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5103
5104         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5105                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5106
5107         /* Read the field, zero-extended to a u64 value */
5108         value = vmcs12_read_any(vmcs12, field, offset);
5109
5110         /*
5111          * Now copy part of this value to register or memory, as requested.
5112          * Note that the number of bits actually copied is 32 or 64 depending
5113          * on the guest's mode (32 or 64 bit), not on the given field's length.
5114          */
5115         if (instr_info & BIT(10)) {
5116                 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5117         } else {
5118                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5119                 if (get_vmx_mem_address(vcpu, exit_qualification,
5120                                         instr_info, true, len, &gva))
5121                         return 1;
5122                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5123                 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5124                 if (r != X86EMUL_CONTINUE)
5125                         return kvm_handle_memory_failure(vcpu, r, &e);
5126         }
5127
5128         return nested_vmx_succeed(vcpu);
5129 }
5130
5131 static bool is_shadow_field_rw(unsigned long field)
5132 {
5133         switch (field) {
5134 #define SHADOW_FIELD_RW(x, y) case x:
5135 #include "vmcs_shadow_fields.h"
5136                 return true;
5137         default:
5138                 break;
5139         }
5140         return false;
5141 }
5142
5143 static bool is_shadow_field_ro(unsigned long field)
5144 {
5145         switch (field) {
5146 #define SHADOW_FIELD_RO(x, y) case x:
5147 #include "vmcs_shadow_fields.h"
5148                 return true;
5149         default:
5150                 break;
5151         }
5152         return false;
5153 }
5154
5155 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5156 {
5157         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5158                                                     : get_vmcs12(vcpu);
5159         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5160         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5161         struct vcpu_vmx *vmx = to_vmx(vcpu);
5162         struct x86_exception e;
5163         unsigned long field;
5164         short offset;
5165         gva_t gva;
5166         int len, r;
5167
5168         /*
5169          * The value to write might be 32 or 64 bits, depending on L1's long
5170          * mode, and eventually we need to write that into a field of several
5171          * possible lengths. The code below first zero-extends the value to 64
5172          * bit (value), and then copies only the appropriate number of
5173          * bits into the vmcs12 field.
5174          */
5175         u64 value = 0;
5176
5177         if (!nested_vmx_check_permission(vcpu))
5178                 return 1;
5179
5180         /*
5181          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5182          * any VMWRITE sets the ALU flags for VMfailInvalid.
5183          */
5184         if (vmx->nested.current_vmptr == -1ull ||
5185             (is_guest_mode(vcpu) &&
5186              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5187                 return nested_vmx_failInvalid(vcpu);
5188
5189         if (instr_info & BIT(10))
5190                 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5191         else {
5192                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5193                 if (get_vmx_mem_address(vcpu, exit_qualification,
5194                                         instr_info, false, len, &gva))
5195                         return 1;
5196                 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5197                 if (r != X86EMUL_CONTINUE)
5198                         return kvm_handle_memory_failure(vcpu, r, &e);
5199         }
5200
5201         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5202
5203         offset = vmcs_field_to_offset(field);
5204         if (offset < 0)
5205                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5206
5207         /*
5208          * If the vCPU supports "VMWRITE to any supported field in the
5209          * VMCS," then the "read-only" fields are actually read/write.
5210          */
5211         if (vmcs_field_readonly(field) &&
5212             !nested_cpu_has_vmwrite_any_field(vcpu))
5213                 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5214
5215         /*
5216          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5217          * vmcs12, else we may crush a field or consume a stale value.
5218          */
5219         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5220                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5221
5222         /*
5223          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5224          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5225          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5226          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5227          * from L1 will return a different value than VMREAD from L2 (L1 sees
5228          * the stripped down value, L2 sees the full value as stored by KVM).
5229          */
5230         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5231                 value &= 0x1f0ff;
5232
5233         vmcs12_write_any(vmcs12, field, offset, value);
5234
5235         /*
5236          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5237          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5238          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5239          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5240          */
5241         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5242                 /*
5243                  * L1 can read these fields without exiting, ensure the
5244                  * shadow VMCS is up-to-date.
5245                  */
5246                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5247                         preempt_disable();
5248                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5249
5250                         __vmcs_writel(field, value);
5251
5252                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5253                         vmcs_load(vmx->loaded_vmcs->vmcs);
5254                         preempt_enable();
5255                 }
5256                 vmx->nested.dirty_vmcs12 = true;
5257         }
5258
5259         return nested_vmx_succeed(vcpu);
5260 }
5261
5262 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5263 {
5264         vmx->nested.current_vmptr = vmptr;
5265         if (enable_shadow_vmcs) {
5266                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5267                 vmcs_write64(VMCS_LINK_POINTER,
5268                              __pa(vmx->vmcs01.shadow_vmcs));
5269                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5270         }
5271         vmx->nested.dirty_vmcs12 = true;
5272 }
5273
5274 /* Emulate the VMPTRLD instruction */
5275 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5276 {
5277         struct vcpu_vmx *vmx = to_vmx(vcpu);
5278         gpa_t vmptr;
5279         int r;
5280
5281         if (!nested_vmx_check_permission(vcpu))
5282                 return 1;
5283
5284         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5285                 return r;
5286
5287         if (!page_address_valid(vcpu, vmptr))
5288                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5289
5290         if (vmptr == vmx->nested.vmxon_ptr)
5291                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5292
5293         /* Forbid normal VMPTRLD if Enlightened version was used */
5294         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5295                 return 1;
5296
5297         if (vmx->nested.current_vmptr != vmptr) {
5298                 struct kvm_host_map map;
5299                 struct vmcs12 *new_vmcs12;
5300
5301                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5302                         /*
5303                          * Reads from an unbacked page return all 1s,
5304                          * which means that the 32 bits located at the
5305                          * given physical address won't match the required
5306                          * VMCS12_REVISION identifier.
5307                          */
5308                         return nested_vmx_fail(vcpu,
5309                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5310                 }
5311
5312                 new_vmcs12 = map.hva;
5313
5314                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5315                     (new_vmcs12->hdr.shadow_vmcs &&
5316                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5317                         kvm_vcpu_unmap(vcpu, &map, false);
5318                         return nested_vmx_fail(vcpu,
5319                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5320                 }
5321
5322                 nested_release_vmcs12(vcpu);
5323
5324                 /*
5325                  * Load VMCS12 from guest memory since it is not already
5326                  * cached.
5327                  */
5328                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5329                 kvm_vcpu_unmap(vcpu, &map, false);
5330
5331                 set_current_vmptr(vmx, vmptr);
5332         }
5333
5334         return nested_vmx_succeed(vcpu);
5335 }
5336
5337 /* Emulate the VMPTRST instruction */
5338 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5339 {
5340         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5341         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5342         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5343         struct x86_exception e;
5344         gva_t gva;
5345         int r;
5346
5347         if (!nested_vmx_check_permission(vcpu))
5348                 return 1;
5349
5350         if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5351                 return 1;
5352
5353         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5354                                 true, sizeof(gpa_t), &gva))
5355                 return 1;
5356         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5357         r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5358                                         sizeof(gpa_t), &e);
5359         if (r != X86EMUL_CONTINUE)
5360                 return kvm_handle_memory_failure(vcpu, r, &e);
5361
5362         return nested_vmx_succeed(vcpu);
5363 }
5364
5365 /* Emulate the INVEPT instruction */
5366 static int handle_invept(struct kvm_vcpu *vcpu)
5367 {
5368         struct vcpu_vmx *vmx = to_vmx(vcpu);
5369         u32 vmx_instruction_info, types;
5370         unsigned long type, roots_to_free;
5371         struct kvm_mmu *mmu;
5372         gva_t gva;
5373         struct x86_exception e;
5374         struct {
5375                 u64 eptp, gpa;
5376         } operand;
5377         int i, r;
5378
5379         if (!(vmx->nested.msrs.secondary_ctls_high &
5380               SECONDARY_EXEC_ENABLE_EPT) ||
5381             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5382                 kvm_queue_exception(vcpu, UD_VECTOR);
5383                 return 1;
5384         }
5385
5386         if (!nested_vmx_check_permission(vcpu))
5387                 return 1;
5388
5389         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5390         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5391
5392         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5393
5394         if (type >= 32 || !(types & (1 << type)))
5395                 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5396
5397         /* According to the Intel VMX instruction reference, the memory
5398          * operand is read even if it isn't needed (e.g., for type==global)
5399          */
5400         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5401                         vmx_instruction_info, false, sizeof(operand), &gva))
5402                 return 1;
5403         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5404         if (r != X86EMUL_CONTINUE)
5405                 return kvm_handle_memory_failure(vcpu, r, &e);
5406
5407         /*
5408          * Nested EPT roots are always held through guest_mmu,
5409          * not root_mmu.
5410          */
5411         mmu = &vcpu->arch.guest_mmu;
5412
5413         switch (type) {
5414         case VMX_EPT_EXTENT_CONTEXT:
5415                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5416                         return nested_vmx_fail(vcpu,
5417                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5418
5419                 roots_to_free = 0;
5420                 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5421                                             operand.eptp))
5422                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5423
5424                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5425                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5426                                                     mmu->prev_roots[i].pgd,
5427                                                     operand.eptp))
5428                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5429                 }
5430                 break;
5431         case VMX_EPT_EXTENT_GLOBAL:
5432                 roots_to_free = KVM_MMU_ROOTS_ALL;
5433                 break;
5434         default:
5435                 BUG();
5436                 break;
5437         }
5438
5439         if (roots_to_free)
5440                 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5441
5442         return nested_vmx_succeed(vcpu);
5443 }
5444
5445 static int handle_invvpid(struct kvm_vcpu *vcpu)
5446 {
5447         struct vcpu_vmx *vmx = to_vmx(vcpu);
5448         u32 vmx_instruction_info;
5449         unsigned long type, types;
5450         gva_t gva;
5451         struct x86_exception e;
5452         struct {
5453                 u64 vpid;
5454                 u64 gla;
5455         } operand;
5456         u16 vpid02;
5457         int r;
5458
5459         if (!(vmx->nested.msrs.secondary_ctls_high &
5460               SECONDARY_EXEC_ENABLE_VPID) ||
5461                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5462                 kvm_queue_exception(vcpu, UD_VECTOR);
5463                 return 1;
5464         }
5465
5466         if (!nested_vmx_check_permission(vcpu))
5467                 return 1;
5468
5469         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5470         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5471
5472         types = (vmx->nested.msrs.vpid_caps &
5473                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5474
5475         if (type >= 32 || !(types & (1 << type)))
5476                 return nested_vmx_fail(vcpu,
5477                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5478
5479         /* according to the intel vmx instruction reference, the memory
5480          * operand is read even if it isn't needed (e.g., for type==global)
5481          */
5482         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5483                         vmx_instruction_info, false, sizeof(operand), &gva))
5484                 return 1;
5485         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5486         if (r != X86EMUL_CONTINUE)
5487                 return kvm_handle_memory_failure(vcpu, r, &e);
5488
5489         if (operand.vpid >> 16)
5490                 return nested_vmx_fail(vcpu,
5491                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5492
5493         vpid02 = nested_get_vpid02(vcpu);
5494         switch (type) {
5495         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5496                 if (!operand.vpid ||
5497                     is_noncanonical_address(operand.gla, vcpu))
5498                         return nested_vmx_fail(vcpu,
5499                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5500                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5501                 break;
5502         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5503         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5504                 if (!operand.vpid)
5505                         return nested_vmx_fail(vcpu,
5506                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5507                 vpid_sync_context(vpid02);
5508                 break;
5509         case VMX_VPID_EXTENT_ALL_CONTEXT:
5510                 vpid_sync_context(vpid02);
5511                 break;
5512         default:
5513                 WARN_ON_ONCE(1);
5514                 return kvm_skip_emulated_instruction(vcpu);
5515         }
5516
5517         /*
5518          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5519          * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5520          * roots as VPIDs are not tracked in the MMU role.
5521          *
5522          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5523          * an MMU when EPT is disabled.
5524          *
5525          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5526          */
5527         if (!enable_ept)
5528                 kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5529
5530         return nested_vmx_succeed(vcpu);
5531 }
5532
5533 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5534                                      struct vmcs12 *vmcs12)
5535 {
5536         u32 index = kvm_rcx_read(vcpu);
5537         u64 new_eptp;
5538
5539         if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5540                 return 1;
5541         if (index >= VMFUNC_EPTP_ENTRIES)
5542                 return 1;
5543
5544         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5545                                      &new_eptp, index * 8, 8))
5546                 return 1;
5547
5548         /*
5549          * If the (L2) guest does a vmfunc to the currently
5550          * active ept pointer, we don't have to do anything else
5551          */
5552         if (vmcs12->ept_pointer != new_eptp) {
5553                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5554                         return 1;
5555
5556                 vmcs12->ept_pointer = new_eptp;
5557                 nested_ept_new_eptp(vcpu);
5558
5559                 if (!nested_cpu_has_vpid(vmcs12))
5560                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5561         }
5562
5563         return 0;
5564 }
5565
5566 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5567 {
5568         struct vcpu_vmx *vmx = to_vmx(vcpu);
5569         struct vmcs12 *vmcs12;
5570         u32 function = kvm_rax_read(vcpu);
5571
5572         /*
5573          * VMFUNC is only supported for nested guests, but we always enable the
5574          * secondary control for simplicity; for non-nested mode, fake that we
5575          * didn't by injecting #UD.
5576          */
5577         if (!is_guest_mode(vcpu)) {
5578                 kvm_queue_exception(vcpu, UD_VECTOR);
5579                 return 1;
5580         }
5581
5582         vmcs12 = get_vmcs12(vcpu);
5583
5584         /*
5585          * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5586          * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5587          */
5588         if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5589                 kvm_queue_exception(vcpu, UD_VECTOR);
5590                 return 1;
5591         }
5592
5593         if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5594                 goto fail;
5595
5596         switch (function) {
5597         case 0:
5598                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5599                         goto fail;
5600                 break;
5601         default:
5602                 goto fail;
5603         }
5604         return kvm_skip_emulated_instruction(vcpu);
5605
5606 fail:
5607         /*
5608          * This is effectively a reflected VM-Exit, as opposed to a synthesized
5609          * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5610          * EXIT_REASON_VMFUNC as the exit reason.
5611          */
5612         nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5613                           vmx_get_intr_info(vcpu),
5614                           vmx_get_exit_qual(vcpu));
5615         return 1;
5616 }
5617
5618 /*
5619  * Return true if an IO instruction with the specified port and size should cause
5620  * a VM-exit into L1.
5621  */
5622 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5623                                  int size)
5624 {
5625         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5626         gpa_t bitmap, last_bitmap;
5627         u8 b;
5628
5629         last_bitmap = (gpa_t)-1;
5630         b = -1;
5631
5632         while (size > 0) {
5633                 if (port < 0x8000)
5634                         bitmap = vmcs12->io_bitmap_a;
5635                 else if (port < 0x10000)
5636                         bitmap = vmcs12->io_bitmap_b;
5637                 else
5638                         return true;
5639                 bitmap += (port & 0x7fff) / 8;
5640
5641                 if (last_bitmap != bitmap)
5642                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5643                                 return true;
5644                 if (b & (1 << (port & 7)))
5645                         return true;
5646
5647                 port++;
5648                 size--;
5649                 last_bitmap = bitmap;
5650         }
5651
5652         return false;
5653 }
5654
5655 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5656                                        struct vmcs12 *vmcs12)
5657 {
5658         unsigned long exit_qualification;
5659         unsigned short port;
5660         int size;
5661
5662         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5663                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5664
5665         exit_qualification = vmx_get_exit_qual(vcpu);
5666
5667         port = exit_qualification >> 16;
5668         size = (exit_qualification & 7) + 1;
5669
5670         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5671 }
5672
5673 /*
5674  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5675  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5676  * disinterest in the current event (read or write a specific MSR) by using an
5677  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5678  */
5679 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5680                                         struct vmcs12 *vmcs12,
5681                                         union vmx_exit_reason exit_reason)
5682 {
5683         u32 msr_index = kvm_rcx_read(vcpu);
5684         gpa_t bitmap;
5685
5686         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5687                 return true;
5688
5689         /*
5690          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5691          * for the four combinations of read/write and low/high MSR numbers.
5692          * First we need to figure out which of the four to use:
5693          */
5694         bitmap = vmcs12->msr_bitmap;
5695         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5696                 bitmap += 2048;
5697         if (msr_index >= 0xc0000000) {
5698                 msr_index -= 0xc0000000;
5699                 bitmap += 1024;
5700         }
5701
5702         /* Then read the msr_index'th bit from this bitmap: */
5703         if (msr_index < 1024*8) {
5704                 unsigned char b;
5705                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5706                         return true;
5707                 return 1 & (b >> (msr_index & 7));
5708         } else
5709                 return true; /* let L1 handle the wrong parameter */
5710 }
5711
5712 /*
5713  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5714  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5715  * intercept (via guest_host_mask etc.) the current event.
5716  */
5717 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5718         struct vmcs12 *vmcs12)
5719 {
5720         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5721         int cr = exit_qualification & 15;
5722         int reg;
5723         unsigned long val;
5724
5725         switch ((exit_qualification >> 4) & 3) {
5726         case 0: /* mov to cr */
5727                 reg = (exit_qualification >> 8) & 15;
5728                 val = kvm_register_read(vcpu, reg);
5729                 switch (cr) {
5730                 case 0:
5731                         if (vmcs12->cr0_guest_host_mask &
5732                             (val ^ vmcs12->cr0_read_shadow))
5733                                 return true;
5734                         break;
5735                 case 3:
5736                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5737                                 return true;
5738                         break;
5739                 case 4:
5740                         if (vmcs12->cr4_guest_host_mask &
5741                             (vmcs12->cr4_read_shadow ^ val))
5742                                 return true;
5743                         break;
5744                 case 8:
5745                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5746                                 return true;
5747                         break;
5748                 }
5749                 break;
5750         case 2: /* clts */
5751                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5752                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5753                         return true;
5754                 break;
5755         case 1: /* mov from cr */
5756                 switch (cr) {
5757                 case 3:
5758                         if (vmcs12->cpu_based_vm_exec_control &
5759                             CPU_BASED_CR3_STORE_EXITING)
5760                                 return true;
5761                         break;
5762                 case 8:
5763                         if (vmcs12->cpu_based_vm_exec_control &
5764                             CPU_BASED_CR8_STORE_EXITING)
5765                                 return true;
5766                         break;
5767                 }
5768                 break;
5769         case 3: /* lmsw */
5770                 /*
5771                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5772                  * cr0. Other attempted changes are ignored, with no exit.
5773                  */
5774                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5775                 if (vmcs12->cr0_guest_host_mask & 0xe &
5776                     (val ^ vmcs12->cr0_read_shadow))
5777                         return true;
5778                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5779                     !(vmcs12->cr0_read_shadow & 0x1) &&
5780                     (val & 0x1))
5781                         return true;
5782                 break;
5783         }
5784         return false;
5785 }
5786
5787 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5788                                           struct vmcs12 *vmcs12)
5789 {
5790         u32 encls_leaf;
5791
5792         if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5793             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5794                 return false;
5795
5796         encls_leaf = kvm_rax_read(vcpu);
5797         if (encls_leaf > 62)
5798                 encls_leaf = 63;
5799         return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5800 }
5801
5802 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5803         struct vmcs12 *vmcs12, gpa_t bitmap)
5804 {
5805         u32 vmx_instruction_info;
5806         unsigned long field;
5807         u8 b;
5808
5809         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5810                 return true;
5811
5812         /* Decode instruction info and find the field to access */
5813         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5814         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5815
5816         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5817         if (field >> 15)
5818                 return true;
5819
5820         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5821                 return true;
5822
5823         return 1 & (b >> (field & 7));
5824 }
5825
5826 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5827 {
5828         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5829
5830         if (nested_cpu_has_mtf(vmcs12))
5831                 return true;
5832
5833         /*
5834          * An MTF VM-exit may be injected into the guest by setting the
5835          * interruption-type to 7 (other event) and the vector field to 0. Such
5836          * is the case regardless of the 'monitor trap flag' VM-execution
5837          * control.
5838          */
5839         return entry_intr_info == (INTR_INFO_VALID_MASK
5840                                    | INTR_TYPE_OTHER_EVENT);
5841 }
5842
5843 /*
5844  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5845  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5846  */
5847 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5848                                      union vmx_exit_reason exit_reason)
5849 {
5850         u32 intr_info;
5851
5852         switch ((u16)exit_reason.basic) {
5853         case EXIT_REASON_EXCEPTION_NMI:
5854                 intr_info = vmx_get_intr_info(vcpu);
5855                 if (is_nmi(intr_info))
5856                         return true;
5857                 else if (is_page_fault(intr_info))
5858                         return vcpu->arch.apf.host_apf_flags ||
5859                                vmx_need_pf_intercept(vcpu);
5860                 else if (is_debug(intr_info) &&
5861                          vcpu->guest_debug &
5862                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5863                         return true;
5864                 else if (is_breakpoint(intr_info) &&
5865                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5866                         return true;
5867                 else if (is_alignment_check(intr_info) &&
5868                          !vmx_guest_inject_ac(vcpu))
5869                         return true;
5870                 return false;
5871         case EXIT_REASON_EXTERNAL_INTERRUPT:
5872                 return true;
5873         case EXIT_REASON_MCE_DURING_VMENTRY:
5874                 return true;
5875         case EXIT_REASON_EPT_VIOLATION:
5876                 /*
5877                  * L0 always deals with the EPT violation. If nested EPT is
5878                  * used, and the nested mmu code discovers that the address is
5879                  * missing in the guest EPT table (EPT12), the EPT violation
5880                  * will be injected with nested_ept_inject_page_fault()
5881                  */
5882                 return true;
5883         case EXIT_REASON_EPT_MISCONFIG:
5884                 /*
5885                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5886                  * table (shadow on EPT) or a merged EPT table that L0 built
5887                  * (EPT on EPT). So any problems with the structure of the
5888                  * table is L0's fault.
5889                  */
5890                 return true;
5891         case EXIT_REASON_PREEMPTION_TIMER:
5892                 return true;
5893         case EXIT_REASON_PML_FULL:
5894                 /*
5895                  * PML is emulated for an L1 VMM and should never be enabled in
5896                  * vmcs02, always "handle" PML_FULL by exiting to userspace.
5897                  */
5898                 return true;
5899         case EXIT_REASON_VMFUNC:
5900                 /* VM functions are emulated through L2->L0 vmexits. */
5901                 return true;
5902         default:
5903                 break;
5904         }
5905         return false;
5906 }
5907
5908 /*
5909  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5910  * is_guest_mode (L2).
5911  */
5912 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5913                                      union vmx_exit_reason exit_reason)
5914 {
5915         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5916         u32 intr_info;
5917
5918         switch ((u16)exit_reason.basic) {
5919         case EXIT_REASON_EXCEPTION_NMI:
5920                 intr_info = vmx_get_intr_info(vcpu);
5921                 if (is_nmi(intr_info))
5922                         return true;
5923                 else if (is_page_fault(intr_info))
5924                         return true;
5925                 return vmcs12->exception_bitmap &
5926                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5927         case EXIT_REASON_EXTERNAL_INTERRUPT:
5928                 return nested_exit_on_intr(vcpu);
5929         case EXIT_REASON_TRIPLE_FAULT:
5930                 return true;
5931         case EXIT_REASON_INTERRUPT_WINDOW:
5932                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5933         case EXIT_REASON_NMI_WINDOW:
5934                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5935         case EXIT_REASON_TASK_SWITCH:
5936                 return true;
5937         case EXIT_REASON_CPUID:
5938                 return true;
5939         case EXIT_REASON_HLT:
5940                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5941         case EXIT_REASON_INVD:
5942                 return true;
5943         case EXIT_REASON_INVLPG:
5944                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5945         case EXIT_REASON_RDPMC:
5946                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5947         case EXIT_REASON_RDRAND:
5948                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5949         case EXIT_REASON_RDSEED:
5950                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5951         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5952                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5953         case EXIT_REASON_VMREAD:
5954                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5955                         vmcs12->vmread_bitmap);
5956         case EXIT_REASON_VMWRITE:
5957                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5958                         vmcs12->vmwrite_bitmap);
5959         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5960         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5961         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5962         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5963         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5964                 /*
5965                  * VMX instructions trap unconditionally. This allows L1 to
5966                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5967                  */
5968                 return true;
5969         case EXIT_REASON_CR_ACCESS:
5970                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5971         case EXIT_REASON_DR_ACCESS:
5972                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5973         case EXIT_REASON_IO_INSTRUCTION:
5974                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5975         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5976                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5977         case EXIT_REASON_MSR_READ:
5978         case EXIT_REASON_MSR_WRITE:
5979                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5980         case EXIT_REASON_INVALID_STATE:
5981                 return true;
5982         case EXIT_REASON_MWAIT_INSTRUCTION:
5983                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5984         case EXIT_REASON_MONITOR_TRAP_FLAG:
5985                 return nested_vmx_exit_handled_mtf(vmcs12);
5986         case EXIT_REASON_MONITOR_INSTRUCTION:
5987                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5988         case EXIT_REASON_PAUSE_INSTRUCTION:
5989                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5990                         nested_cpu_has2(vmcs12,
5991                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5992         case EXIT_REASON_MCE_DURING_VMENTRY:
5993                 return true;
5994         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5995                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5996         case EXIT_REASON_APIC_ACCESS:
5997         case EXIT_REASON_APIC_WRITE:
5998         case EXIT_REASON_EOI_INDUCED:
5999                 /*
6000                  * The controls for "virtualize APIC accesses," "APIC-
6001                  * register virtualization," and "virtual-interrupt
6002                  * delivery" only come from vmcs12.
6003                  */
6004                 return true;
6005         case EXIT_REASON_INVPCID:
6006                 return
6007                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6008                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6009         case EXIT_REASON_WBINVD:
6010                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6011         case EXIT_REASON_XSETBV:
6012                 return true;
6013         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6014                 /*
6015                  * This should never happen, since it is not possible to
6016                  * set XSS to a non-zero value---neither in L1 nor in L2.
6017                  * If if it were, XSS would have to be checked against
6018                  * the XSS exit bitmap in vmcs12.
6019                  */
6020                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6021         case EXIT_REASON_UMWAIT:
6022         case EXIT_REASON_TPAUSE:
6023                 return nested_cpu_has2(vmcs12,
6024                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6025         case EXIT_REASON_ENCLS:
6026                 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6027         default:
6028                 return true;
6029         }
6030 }
6031
6032 /*
6033  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6034  * reflected into L1.
6035  */
6036 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6037 {
6038         struct vcpu_vmx *vmx = to_vmx(vcpu);
6039         union vmx_exit_reason exit_reason = vmx->exit_reason;
6040         unsigned long exit_qual;
6041         u32 exit_intr_info;
6042
6043         WARN_ON_ONCE(vmx->nested.nested_run_pending);
6044
6045         /*
6046          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6047          * has already loaded L2's state.
6048          */
6049         if (unlikely(vmx->fail)) {
6050                 trace_kvm_nested_vmenter_failed(
6051                         "hardware VM-instruction error: ",
6052                         vmcs_read32(VM_INSTRUCTION_ERROR));
6053                 exit_intr_info = 0;
6054                 exit_qual = 0;
6055                 goto reflect_vmexit;
6056         }
6057
6058         trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
6059
6060         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6061         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6062                 return false;
6063
6064         /* If L1 doesn't want the exit, handle it in L0. */
6065         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6066                 return false;
6067
6068         /*
6069          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6070          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6071          * need to be synthesized by querying the in-kernel LAPIC, but external
6072          * interrupts are never reflected to L1 so it's a non-issue.
6073          */
6074         exit_intr_info = vmx_get_intr_info(vcpu);
6075         if (is_exception_with_error_code(exit_intr_info)) {
6076                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6077
6078                 vmcs12->vm_exit_intr_error_code =
6079                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6080         }
6081         exit_qual = vmx_get_exit_qual(vcpu);
6082
6083 reflect_vmexit:
6084         nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6085         return true;
6086 }
6087
6088 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6089                                 struct kvm_nested_state __user *user_kvm_nested_state,
6090                                 u32 user_data_size)
6091 {
6092         struct vcpu_vmx *vmx;
6093         struct vmcs12 *vmcs12;
6094         struct kvm_nested_state kvm_state = {
6095                 .flags = 0,
6096                 .format = KVM_STATE_NESTED_FORMAT_VMX,
6097                 .size = sizeof(kvm_state),
6098                 .hdr.vmx.flags = 0,
6099                 .hdr.vmx.vmxon_pa = -1ull,
6100                 .hdr.vmx.vmcs12_pa = -1ull,
6101                 .hdr.vmx.preemption_timer_deadline = 0,
6102         };
6103         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6104                 &user_kvm_nested_state->data.vmx[0];
6105
6106         if (!vcpu)
6107                 return kvm_state.size + sizeof(*user_vmx_nested_state);
6108
6109         vmx = to_vmx(vcpu);
6110         vmcs12 = get_vmcs12(vcpu);
6111
6112         if (nested_vmx_allowed(vcpu) &&
6113             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6114                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6115                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6116
6117                 if (vmx_has_valid_vmcs12(vcpu)) {
6118                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6119
6120                         /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6121                         if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6122                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6123
6124                         if (is_guest_mode(vcpu) &&
6125                             nested_cpu_has_shadow_vmcs(vmcs12) &&
6126                             vmcs12->vmcs_link_pointer != -1ull)
6127                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6128                 }
6129
6130                 if (vmx->nested.smm.vmxon)
6131                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6132
6133                 if (vmx->nested.smm.guest_mode)
6134                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6135
6136                 if (is_guest_mode(vcpu)) {
6137                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6138
6139                         if (vmx->nested.nested_run_pending)
6140                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6141
6142                         if (vmx->nested.mtf_pending)
6143                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6144
6145                         if (nested_cpu_has_preemption_timer(vmcs12) &&
6146                             vmx->nested.has_preemption_timer_deadline) {
6147                                 kvm_state.hdr.vmx.flags |=
6148                                         KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6149                                 kvm_state.hdr.vmx.preemption_timer_deadline =
6150                                         vmx->nested.preemption_timer_deadline;
6151                         }
6152                 }
6153         }
6154
6155         if (user_data_size < kvm_state.size)
6156                 goto out;
6157
6158         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6159                 return -EFAULT;
6160
6161         if (!vmx_has_valid_vmcs12(vcpu))
6162                 goto out;
6163
6164         /*
6165          * When running L2, the authoritative vmcs12 state is in the
6166          * vmcs02. When running L1, the authoritative vmcs12 state is
6167          * in the shadow or enlightened vmcs linked to vmcs01, unless
6168          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6169          * vmcs12 state is in the vmcs12 already.
6170          */
6171         if (is_guest_mode(vcpu)) {
6172                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6173                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6174         } else  {
6175                 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6176                 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6177                         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6178                                 /*
6179                                  * L1 hypervisor is not obliged to keep eVMCS
6180                                  * clean fields data always up-to-date while
6181                                  * not in guest mode, 'hv_clean_fields' is only
6182                                  * supposed to be actual upon vmentry so we need
6183                                  * to ignore it here and do full copy.
6184                                  */
6185                                 copy_enlightened_to_vmcs12(vmx, 0);
6186                         else if (enable_shadow_vmcs)
6187                                 copy_shadow_to_vmcs12(vmx);
6188                 }
6189         }
6190
6191         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6192         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6193
6194         /*
6195          * Copy over the full allocated size of vmcs12 rather than just the size
6196          * of the struct.
6197          */
6198         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6199                 return -EFAULT;
6200
6201         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6202             vmcs12->vmcs_link_pointer != -1ull) {
6203                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6204                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6205                         return -EFAULT;
6206         }
6207 out:
6208         return kvm_state.size;
6209 }
6210
6211 /*
6212  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6213  */
6214 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6215 {
6216         if (is_guest_mode(vcpu)) {
6217                 to_vmx(vcpu)->nested.nested_run_pending = 0;
6218                 nested_vmx_vmexit(vcpu, -1, 0, 0);
6219         }
6220         free_nested(vcpu);
6221 }
6222
6223 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6224                                 struct kvm_nested_state __user *user_kvm_nested_state,
6225                                 struct kvm_nested_state *kvm_state)
6226 {
6227         struct vcpu_vmx *vmx = to_vmx(vcpu);
6228         struct vmcs12 *vmcs12;
6229         enum vm_entry_failure_code ignored;
6230         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6231                 &user_kvm_nested_state->data.vmx[0];
6232         int ret;
6233
6234         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6235                 return -EINVAL;
6236
6237         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6238                 if (kvm_state->hdr.vmx.smm.flags)
6239                         return -EINVAL;
6240
6241                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6242                         return -EINVAL;
6243
6244                 /*
6245                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6246                  * enable eVMCS capability on vCPU. However, since then
6247                  * code was changed such that flag signals vmcs12 should
6248                  * be copied into eVMCS in guest memory.
6249                  *
6250                  * To preserve backwards compatability, allow user
6251                  * to set this flag even when there is no VMXON region.
6252                  */
6253                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6254                         return -EINVAL;
6255         } else {
6256                 if (!nested_vmx_allowed(vcpu))
6257                         return -EINVAL;
6258
6259                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6260                         return -EINVAL;
6261         }
6262
6263         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6264             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6265                 return -EINVAL;
6266
6267         if (kvm_state->hdr.vmx.smm.flags &
6268             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6269                 return -EINVAL;
6270
6271         if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6272                 return -EINVAL;
6273
6274         /*
6275          * SMM temporarily disables VMX, so we cannot be in guest mode,
6276          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6277          * must be zero.
6278          */
6279         if (is_smm(vcpu) ?
6280                 (kvm_state->flags &
6281                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6282                 : kvm_state->hdr.vmx.smm.flags)
6283                 return -EINVAL;
6284
6285         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6286             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6287                 return -EINVAL;
6288
6289         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6290                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6291                         return -EINVAL;
6292
6293         vmx_leave_nested(vcpu);
6294
6295         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6296                 return 0;
6297
6298         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6299         ret = enter_vmx_operation(vcpu);
6300         if (ret)
6301                 return ret;
6302
6303         /* Empty 'VMXON' state is permitted if no VMCS loaded */
6304         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6305                 /* See vmx_has_valid_vmcs12.  */
6306                 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6307                     (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6308                     (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6309                         return -EINVAL;
6310                 else
6311                         return 0;
6312         }
6313
6314         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6315                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6316                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6317                         return -EINVAL;
6318
6319                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6320         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6321                 /*
6322                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6323                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6324                  * restored yet. EVMCS will be mapped from
6325                  * nested_get_vmcs12_pages().
6326                  */
6327                 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6328                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6329         } else {
6330                 return -EINVAL;
6331         }
6332
6333         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6334                 vmx->nested.smm.vmxon = true;
6335                 vmx->nested.vmxon = false;
6336
6337                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6338                         vmx->nested.smm.guest_mode = true;
6339         }
6340
6341         vmcs12 = get_vmcs12(vcpu);
6342         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6343                 return -EFAULT;
6344
6345         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6346                 return -EINVAL;
6347
6348         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6349                 return 0;
6350
6351         vmx->nested.nested_run_pending =
6352                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6353
6354         vmx->nested.mtf_pending =
6355                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6356
6357         ret = -EINVAL;
6358         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6359             vmcs12->vmcs_link_pointer != -1ull) {
6360                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6361
6362                 if (kvm_state->size <
6363                     sizeof(*kvm_state) +
6364                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6365                         goto error_guest_mode;
6366
6367                 if (copy_from_user(shadow_vmcs12,
6368                                    user_vmx_nested_state->shadow_vmcs12,
6369                                    sizeof(*shadow_vmcs12))) {
6370                         ret = -EFAULT;
6371                         goto error_guest_mode;
6372                 }
6373
6374                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6375                     !shadow_vmcs12->hdr.shadow_vmcs)
6376                         goto error_guest_mode;
6377         }
6378
6379         vmx->nested.has_preemption_timer_deadline = false;
6380         if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6381                 vmx->nested.has_preemption_timer_deadline = true;
6382                 vmx->nested.preemption_timer_deadline =
6383                         kvm_state->hdr.vmx.preemption_timer_deadline;
6384         }
6385
6386         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6387             nested_vmx_check_host_state(vcpu, vmcs12) ||
6388             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6389                 goto error_guest_mode;
6390
6391         vmx->nested.dirty_vmcs12 = true;
6392         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6393         if (ret)
6394                 goto error_guest_mode;
6395
6396         return 0;
6397
6398 error_guest_mode:
6399         vmx->nested.nested_run_pending = 0;
6400         return ret;
6401 }
6402
6403 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6404 {
6405         if (enable_shadow_vmcs) {
6406                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6407                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6408         }
6409 }
6410
6411 /*
6412  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6413  * that madness to get the encoding for comparison.
6414  */
6415 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6416
6417 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6418 {
6419         /*
6420          * Note these are the so called "index" of the VMCS field encoding, not
6421          * the index into vmcs12.
6422          */
6423         unsigned int max_idx, idx;
6424         int i;
6425
6426         /*
6427          * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6428          * vmcs12, regardless of whether or not the associated feature is
6429          * exposed to L1.  Simply find the field with the highest index.
6430          */
6431         max_idx = 0;
6432         for (i = 0; i < nr_vmcs12_fields; i++) {
6433                 /* The vmcs12 table is very, very sparsely populated. */
6434                 if (!vmcs_field_to_offset_table[i])
6435                         continue;
6436
6437                 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6438                 if (idx > max_idx)
6439                         max_idx = idx;
6440         }
6441
6442         return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6443 }
6444
6445 /*
6446  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6447  * returned for the various VMX controls MSRs when nested VMX is enabled.
6448  * The same values should also be used to verify that vmcs12 control fields are
6449  * valid during nested entry from L1 to L2.
6450  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6451  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6452  * bit in the high half is on if the corresponding bit in the control field
6453  * may be on. See also vmx_control_verify().
6454  */
6455 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6456 {
6457         /*
6458          * Note that as a general rule, the high half of the MSRs (bits in
6459          * the control fields which may be 1) should be initialized by the
6460          * intersection of the underlying hardware's MSR (i.e., features which
6461          * can be supported) and the list of features we want to expose -
6462          * because they are known to be properly supported in our code.
6463          * Also, usually, the low half of the MSRs (bits which must be 1) can
6464          * be set to 0, meaning that L1 may turn off any of these bits. The
6465          * reason is that if one of these bits is necessary, it will appear
6466          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6467          * fields of vmcs01 and vmcs02, will turn these bits off - and
6468          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6469          * These rules have exceptions below.
6470          */
6471
6472         /* pin-based controls */
6473         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6474                 msrs->pinbased_ctls_low,
6475                 msrs->pinbased_ctls_high);
6476         msrs->pinbased_ctls_low |=
6477                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6478         msrs->pinbased_ctls_high &=
6479                 PIN_BASED_EXT_INTR_MASK |
6480                 PIN_BASED_NMI_EXITING |
6481                 PIN_BASED_VIRTUAL_NMIS |
6482                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6483         msrs->pinbased_ctls_high |=
6484                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6485                 PIN_BASED_VMX_PREEMPTION_TIMER;
6486
6487         /* exit controls */
6488         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6489                 msrs->exit_ctls_low,
6490                 msrs->exit_ctls_high);
6491         msrs->exit_ctls_low =
6492                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6493
6494         msrs->exit_ctls_high &=
6495 #ifdef CONFIG_X86_64
6496                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6497 #endif
6498                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6499                 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6500         msrs->exit_ctls_high |=
6501                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6502                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6503                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6504
6505         /* We support free control of debug control saving. */
6506         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6507
6508         /* entry controls */
6509         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6510                 msrs->entry_ctls_low,
6511                 msrs->entry_ctls_high);
6512         msrs->entry_ctls_low =
6513                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6514         msrs->entry_ctls_high &=
6515 #ifdef CONFIG_X86_64
6516                 VM_ENTRY_IA32E_MODE |
6517 #endif
6518                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6519                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6520         msrs->entry_ctls_high |=
6521                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6522
6523         /* We support free control of debug control loading. */
6524         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6525
6526         /* cpu-based controls */
6527         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6528                 msrs->procbased_ctls_low,
6529                 msrs->procbased_ctls_high);
6530         msrs->procbased_ctls_low =
6531                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6532         msrs->procbased_ctls_high &=
6533                 CPU_BASED_INTR_WINDOW_EXITING |
6534                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6535                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6536                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6537                 CPU_BASED_CR3_STORE_EXITING |
6538 #ifdef CONFIG_X86_64
6539                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6540 #endif
6541                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6542                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6543                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6544                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6545                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6546         /*
6547          * We can allow some features even when not supported by the
6548          * hardware. For example, L1 can specify an MSR bitmap - and we
6549          * can use it to avoid exits to L1 - even when L0 runs L2
6550          * without MSR bitmaps.
6551          */
6552         msrs->procbased_ctls_high |=
6553                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6554                 CPU_BASED_USE_MSR_BITMAPS;
6555
6556         /* We support free control of CR3 access interception. */
6557         msrs->procbased_ctls_low &=
6558                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6559
6560         /*
6561          * secondary cpu-based controls.  Do not include those that
6562          * depend on CPUID bits, they are added later by
6563          * vmx_vcpu_after_set_cpuid.
6564          */
6565         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6566                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6567                       msrs->secondary_ctls_low,
6568                       msrs->secondary_ctls_high);
6569
6570         msrs->secondary_ctls_low = 0;
6571         msrs->secondary_ctls_high &=
6572                 SECONDARY_EXEC_DESC |
6573                 SECONDARY_EXEC_ENABLE_RDTSCP |
6574                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6575                 SECONDARY_EXEC_WBINVD_EXITING |
6576                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6577                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6578                 SECONDARY_EXEC_RDRAND_EXITING |
6579                 SECONDARY_EXEC_ENABLE_INVPCID |
6580                 SECONDARY_EXEC_RDSEED_EXITING |
6581                 SECONDARY_EXEC_XSAVES |
6582                 SECONDARY_EXEC_TSC_SCALING;
6583
6584         /*
6585          * We can emulate "VMCS shadowing," even if the hardware
6586          * doesn't support it.
6587          */
6588         msrs->secondary_ctls_high |=
6589                 SECONDARY_EXEC_SHADOW_VMCS;
6590
6591         if (enable_ept) {
6592                 /* nested EPT: emulate EPT also to L1 */
6593                 msrs->secondary_ctls_high |=
6594                         SECONDARY_EXEC_ENABLE_EPT;
6595                 msrs->ept_caps =
6596                         VMX_EPT_PAGE_WALK_4_BIT |
6597                         VMX_EPT_PAGE_WALK_5_BIT |
6598                         VMX_EPTP_WB_BIT |
6599                         VMX_EPT_INVEPT_BIT |
6600                         VMX_EPT_EXECUTE_ONLY_BIT;
6601
6602                 msrs->ept_caps &= ept_caps;
6603                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6604                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6605                         VMX_EPT_1GB_PAGE_BIT;
6606                 if (enable_ept_ad_bits) {
6607                         msrs->secondary_ctls_high |=
6608                                 SECONDARY_EXEC_ENABLE_PML;
6609                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6610                 }
6611         }
6612
6613         if (cpu_has_vmx_vmfunc()) {
6614                 msrs->secondary_ctls_high |=
6615                         SECONDARY_EXEC_ENABLE_VMFUNC;
6616                 /*
6617                  * Advertise EPTP switching unconditionally
6618                  * since we emulate it
6619                  */
6620                 if (enable_ept)
6621                         msrs->vmfunc_controls =
6622                                 VMX_VMFUNC_EPTP_SWITCHING;
6623         }
6624
6625         /*
6626          * Old versions of KVM use the single-context version without
6627          * checking for support, so declare that it is supported even
6628          * though it is treated as global context.  The alternative is
6629          * not failing the single-context invvpid, and it is worse.
6630          */
6631         if (enable_vpid) {
6632                 msrs->secondary_ctls_high |=
6633                         SECONDARY_EXEC_ENABLE_VPID;
6634                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6635                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6636         }
6637
6638         if (enable_unrestricted_guest)
6639                 msrs->secondary_ctls_high |=
6640                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6641
6642         if (flexpriority_enabled)
6643                 msrs->secondary_ctls_high |=
6644                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6645
6646         if (enable_sgx)
6647                 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6648
6649         /* miscellaneous data */
6650         rdmsr(MSR_IA32_VMX_MISC,
6651                 msrs->misc_low,
6652                 msrs->misc_high);
6653         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6654         msrs->misc_low |=
6655                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6656                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6657                 VMX_MISC_ACTIVITY_HLT |
6658                 VMX_MISC_ACTIVITY_WAIT_SIPI;
6659         msrs->misc_high = 0;
6660
6661         /*
6662          * This MSR reports some information about VMX support. We
6663          * should return information about the VMX we emulate for the
6664          * guest, and the VMCS structure we give it - not about the
6665          * VMX support of the underlying hardware.
6666          */
6667         msrs->basic =
6668                 VMCS12_REVISION |
6669                 VMX_BASIC_TRUE_CTLS |
6670                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6671                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6672
6673         if (cpu_has_vmx_basic_inout())
6674                 msrs->basic |= VMX_BASIC_INOUT;
6675
6676         /*
6677          * These MSRs specify bits which the guest must keep fixed on
6678          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6679          * We picked the standard core2 setting.
6680          */
6681 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6682 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6683         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6684         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6685
6686         /* These MSRs specify bits which the guest must keep fixed off. */
6687         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6688         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6689
6690         msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6691 }
6692
6693 void nested_vmx_hardware_unsetup(void)
6694 {
6695         int i;
6696
6697         if (enable_shadow_vmcs) {
6698                 for (i = 0; i < VMX_BITMAP_NR; i++)
6699                         free_page((unsigned long)vmx_bitmap[i]);
6700         }
6701 }
6702
6703 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6704 {
6705         int i;
6706
6707         if (!cpu_has_vmx_shadow_vmcs())
6708                 enable_shadow_vmcs = 0;
6709         if (enable_shadow_vmcs) {
6710                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6711                         /*
6712                          * The vmx_bitmap is not tied to a VM and so should
6713                          * not be charged to a memcg.
6714                          */
6715                         vmx_bitmap[i] = (unsigned long *)
6716                                 __get_free_page(GFP_KERNEL);
6717                         if (!vmx_bitmap[i]) {
6718                                 nested_vmx_hardware_unsetup();
6719                                 return -ENOMEM;
6720                         }
6721                 }
6722
6723                 init_vmcs_shadow_fields();
6724         }
6725
6726         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6727         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6728         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6729         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6730         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6731         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6732         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6733         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6734         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6735         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6736         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6737         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6738
6739         return 0;
6740 }
6741
6742 struct kvm_x86_nested_ops vmx_nested_ops = {
6743         .check_events = vmx_check_nested_events,
6744         .hv_timer_pending = nested_vmx_preemption_timer_pending,
6745         .triple_fault = nested_vmx_triple_fault,
6746         .get_state = vmx_get_nested_state,
6747         .set_state = vmx_set_nested_state,
6748         .get_nested_state_pages = vmx_get_nested_state_pages,
6749         .write_log_dirty = nested_vmx_write_pml_buffer,
6750         .enable_evmcs = nested_enable_evmcs,
6751         .get_evmcs_version = nested_get_evmcs_version,
6752 };