Merge tag '9p-for-5.13-rc1' of git://github.com/martinetd/linux
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/spec-ctrl.h>
37 #include <asm/cpu_device_id.h>
38 #include <asm/traps.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #include "svm.h"
44 #include "svm_ops.h"
45
46 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47
48 MODULE_AUTHOR("Qumranet");
49 MODULE_LICENSE("GPL");
50
51 #ifdef MODULE
52 static const struct x86_cpu_id svm_cpu_id[] = {
53         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
54         {}
55 };
56 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
57 #endif
58
59 #define SEG_TYPE_LDT 2
60 #define SEG_TYPE_BUSY_TSS16 3
61
62 #define SVM_FEATURE_LBRV           (1 <<  1)
63 #define SVM_FEATURE_SVML           (1 <<  2)
64 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
65 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
66 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
67 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
68 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
69
70 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
71
72 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
73 #define TSC_RATIO_MIN           0x0000000000000001ULL
74 #define TSC_RATIO_MAX           0x000000ffffffffffULL
75
76 static bool erratum_383_found __read_mostly;
77
78 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
79
80 /*
81  * Set osvw_len to higher value when updated Revision Guides
82  * are published and we know what the new status bits are
83  */
84 static uint64_t osvw_len = 4, osvw_status;
85
86 static DEFINE_PER_CPU(u64, current_tsc_ratio);
87 #define TSC_RATIO_DEFAULT       0x0100000000ULL
88
89 static const struct svm_direct_access_msrs {
90         u32 index;   /* Index of the MSR */
91         bool always; /* True if intercept is initially cleared */
92 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
93         { .index = MSR_STAR,                            .always = true  },
94         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
95         { .index = MSR_IA32_SYSENTER_EIP,               .always = false },
96         { .index = MSR_IA32_SYSENTER_ESP,               .always = false },
97 #ifdef CONFIG_X86_64
98         { .index = MSR_GS_BASE,                         .always = true  },
99         { .index = MSR_FS_BASE,                         .always = true  },
100         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
101         { .index = MSR_LSTAR,                           .always = true  },
102         { .index = MSR_CSTAR,                           .always = true  },
103         { .index = MSR_SYSCALL_MASK,                    .always = true  },
104 #endif
105         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
106         { .index = MSR_IA32_PRED_CMD,                   .always = false },
107         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
108         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
109         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
110         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
111         { .index = MSR_EFER,                            .always = false },
112         { .index = MSR_IA32_CR_PAT,                     .always = false },
113         { .index = MSR_AMD64_SEV_ES_GHCB,               .always = true  },
114         { .index = MSR_INVALID,                         .always = false },
115 };
116
117 /*
118  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119  * pause_filter_count: On processors that support Pause filtering(indicated
120  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
121  *      count value. On VMRUN this value is loaded into an internal counter.
122  *      Each time a pause instruction is executed, this counter is decremented
123  *      until it reaches zero at which time a #VMEXIT is generated if pause
124  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
125  *      Intercept Filtering for more details.
126  *      This also indicate if ple logic enabled.
127  *
128  * pause_filter_thresh: In addition, some processor families support advanced
129  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
130  *      the amount of time a guest is allowed to execute in a pause loop.
131  *      In this mode, a 16-bit pause filter threshold field is added in the
132  *      VMCB. The threshold value is a cycle count that is used to reset the
133  *      pause counter. As with simple pause filtering, VMRUN loads the pause
134  *      count value from VMCB into an internal counter. Then, on each pause
135  *      instruction the hardware checks the elapsed number of cycles since
136  *      the most recent pause instruction against the pause filter threshold.
137  *      If the elapsed cycle count is greater than the pause filter threshold,
138  *      then the internal pause count is reloaded from the VMCB and execution
139  *      continues. If the elapsed cycle count is less than the pause filter
140  *      threshold, then the internal pause count is decremented. If the count
141  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
142  *      triggered. If advanced pause filtering is supported and pause filter
143  *      threshold field is set to zero, the filter will operate in the simpler,
144  *      count only mode.
145  */
146
147 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
148 module_param(pause_filter_thresh, ushort, 0444);
149
150 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
151 module_param(pause_filter_count, ushort, 0444);
152
153 /* Default doubles per-vcpu window every exit. */
154 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
155 module_param(pause_filter_count_grow, ushort, 0444);
156
157 /* Default resets per-vcpu window every exit to pause_filter_count. */
158 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
159 module_param(pause_filter_count_shrink, ushort, 0444);
160
161 /* Default is to compute the maximum so we can never overflow. */
162 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
163 module_param(pause_filter_count_max, ushort, 0444);
164
165 /*
166  * Use nested page tables by default.  Note, NPT may get forced off by
167  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
168  */
169 bool npt_enabled = true;
170 module_param_named(npt, npt_enabled, bool, 0444);
171
172 /* allow nested virtualization in KVM/SVM */
173 static int nested = true;
174 module_param(nested, int, S_IRUGO);
175
176 /* enable/disable Next RIP Save */
177 static int nrips = true;
178 module_param(nrips, int, 0444);
179
180 /* enable/disable Virtual VMLOAD VMSAVE */
181 static int vls = true;
182 module_param(vls, int, 0444);
183
184 /* enable/disable Virtual GIF */
185 static int vgif = true;
186 module_param(vgif, int, 0444);
187
188 bool __read_mostly dump_invalid_vmcb;
189 module_param(dump_invalid_vmcb, bool, 0644);
190
191 static bool svm_gp_erratum_intercept = true;
192
193 static u8 rsm_ins_bytes[] = "\x0f\xaa";
194
195 static unsigned long iopm_base;
196
197 struct kvm_ldttss_desc {
198         u16 limit0;
199         u16 base0;
200         unsigned base1:8, type:5, dpl:2, p:1;
201         unsigned limit1:4, zero0:3, g:1, base2:8;
202         u32 base3;
203         u32 zero1;
204 } __attribute__((packed));
205
206 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
207
208 /*
209  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
210  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
211  *
212  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
213  * defer the restoration of TSC_AUX until the CPU returns to userspace.
214  */
215 #define TSC_AUX_URET_SLOT       0
216
217 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
218
219 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
220 #define MSRS_RANGE_SIZE 2048
221 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
222
223 u32 svm_msrpm_offset(u32 msr)
224 {
225         u32 offset;
226         int i;
227
228         for (i = 0; i < NUM_MSR_MAPS; i++) {
229                 if (msr < msrpm_ranges[i] ||
230                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
231                         continue;
232
233                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
234                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
235
236                 /* Now we have the u8 offset - but need the u32 offset */
237                 return offset / 4;
238         }
239
240         /* MSR not in any range */
241         return MSR_INVALID;
242 }
243
244 #define MAX_INST_SIZE 15
245
246 static int get_max_npt_level(void)
247 {
248 #ifdef CONFIG_X86_64
249         return PT64_ROOT_4LEVEL;
250 #else
251         return PT32E_ROOT_LEVEL;
252 #endif
253 }
254
255 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
256 {
257         struct vcpu_svm *svm = to_svm(vcpu);
258         u64 old_efer = vcpu->arch.efer;
259         vcpu->arch.efer = efer;
260
261         if (!npt_enabled) {
262                 /* Shadow paging assumes NX to be available.  */
263                 efer |= EFER_NX;
264
265                 if (!(efer & EFER_LMA))
266                         efer &= ~EFER_LME;
267         }
268
269         if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
270                 if (!(efer & EFER_SVME)) {
271                         svm_leave_nested(svm);
272                         svm_set_gif(svm, true);
273                         /* #GP intercept is still needed for vmware backdoor */
274                         if (!enable_vmware_backdoor)
275                                 clr_exception_intercept(svm, GP_VECTOR);
276
277                         /*
278                          * Free the nested guest state, unless we are in SMM.
279                          * In this case we will return to the nested guest
280                          * as soon as we leave SMM.
281                          */
282                         if (!is_smm(vcpu))
283                                 svm_free_nested(svm);
284
285                 } else {
286                         int ret = svm_allocate_nested(svm);
287
288                         if (ret) {
289                                 vcpu->arch.efer = old_efer;
290                                 return ret;
291                         }
292
293                         if (svm_gp_erratum_intercept)
294                                 set_exception_intercept(svm, GP_VECTOR);
295                 }
296         }
297
298         svm->vmcb->save.efer = efer | EFER_SVME;
299         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
300         return 0;
301 }
302
303 static int is_external_interrupt(u32 info)
304 {
305         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
306         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
307 }
308
309 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
310 {
311         struct vcpu_svm *svm = to_svm(vcpu);
312         u32 ret = 0;
313
314         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
315                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
316         return ret;
317 }
318
319 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
320 {
321         struct vcpu_svm *svm = to_svm(vcpu);
322
323         if (mask == 0)
324                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
325         else
326                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
327
328 }
329
330 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
331 {
332         struct vcpu_svm *svm = to_svm(vcpu);
333
334         /*
335          * SEV-ES does not expose the next RIP. The RIP update is controlled by
336          * the type of exit and the #VC handler in the guest.
337          */
338         if (sev_es_guest(vcpu->kvm))
339                 goto done;
340
341         if (nrips && svm->vmcb->control.next_rip != 0) {
342                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
343                 svm->next_rip = svm->vmcb->control.next_rip;
344         }
345
346         if (!svm->next_rip) {
347                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
348                         return 0;
349         } else {
350                 kvm_rip_write(vcpu, svm->next_rip);
351         }
352
353 done:
354         svm_set_interrupt_shadow(vcpu, 0);
355
356         return 1;
357 }
358
359 static void svm_queue_exception(struct kvm_vcpu *vcpu)
360 {
361         struct vcpu_svm *svm = to_svm(vcpu);
362         unsigned nr = vcpu->arch.exception.nr;
363         bool has_error_code = vcpu->arch.exception.has_error_code;
364         u32 error_code = vcpu->arch.exception.error_code;
365
366         kvm_deliver_exception_payload(vcpu);
367
368         if (nr == BP_VECTOR && !nrips) {
369                 unsigned long rip, old_rip = kvm_rip_read(vcpu);
370
371                 /*
372                  * For guest debugging where we have to reinject #BP if some
373                  * INT3 is guest-owned:
374                  * Emulate nRIP by moving RIP forward. Will fail if injection
375                  * raises a fault that is not intercepted. Still better than
376                  * failing in all cases.
377                  */
378                 (void)skip_emulated_instruction(vcpu);
379                 rip = kvm_rip_read(vcpu);
380                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
381                 svm->int3_injected = rip - old_rip;
382         }
383
384         svm->vmcb->control.event_inj = nr
385                 | SVM_EVTINJ_VALID
386                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
387                 | SVM_EVTINJ_TYPE_EXEPT;
388         svm->vmcb->control.event_inj_err = error_code;
389 }
390
391 static void svm_init_erratum_383(void)
392 {
393         u32 low, high;
394         int err;
395         u64 val;
396
397         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
398                 return;
399
400         /* Use _safe variants to not break nested virtualization */
401         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
402         if (err)
403                 return;
404
405         val |= (1ULL << 47);
406
407         low  = lower_32_bits(val);
408         high = upper_32_bits(val);
409
410         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
411
412         erratum_383_found = true;
413 }
414
415 static void svm_init_osvw(struct kvm_vcpu *vcpu)
416 {
417         /*
418          * Guests should see errata 400 and 415 as fixed (assuming that
419          * HLT and IO instructions are intercepted).
420          */
421         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
422         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
423
424         /*
425          * By increasing VCPU's osvw.length to 3 we are telling the guest that
426          * all osvw.status bits inside that length, including bit 0 (which is
427          * reserved for erratum 298), are valid. However, if host processor's
428          * osvw_len is 0 then osvw_status[0] carries no information. We need to
429          * be conservative here and therefore we tell the guest that erratum 298
430          * is present (because we really don't know).
431          */
432         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
433                 vcpu->arch.osvw.status |= 1;
434 }
435
436 static int has_svm(void)
437 {
438         const char *msg;
439
440         if (!cpu_has_svm(&msg)) {
441                 printk(KERN_INFO "has_svm: %s\n", msg);
442                 return 0;
443         }
444
445         if (sev_active()) {
446                 pr_info("KVM is unsupported when running as an SEV guest\n");
447                 return 0;
448         }
449
450         return 1;
451 }
452
453 static void svm_hardware_disable(void)
454 {
455         /* Make sure we clean up behind us */
456         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
457                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
458
459         cpu_svm_disable();
460
461         amd_pmu_disable_virt();
462 }
463
464 static int svm_hardware_enable(void)
465 {
466
467         struct svm_cpu_data *sd;
468         uint64_t efer;
469         struct desc_struct *gdt;
470         int me = raw_smp_processor_id();
471
472         rdmsrl(MSR_EFER, efer);
473         if (efer & EFER_SVME)
474                 return -EBUSY;
475
476         if (!has_svm()) {
477                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
478                 return -EINVAL;
479         }
480         sd = per_cpu(svm_data, me);
481         if (!sd) {
482                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
483                 return -EINVAL;
484         }
485
486         sd->asid_generation = 1;
487         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
488         sd->next_asid = sd->max_asid + 1;
489         sd->min_asid = max_sev_asid + 1;
490
491         gdt = get_current_gdt_rw();
492         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
493
494         wrmsrl(MSR_EFER, efer | EFER_SVME);
495
496         wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
497
498         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
499                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
500                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
501         }
502
503
504         /*
505          * Get OSVW bits.
506          *
507          * Note that it is possible to have a system with mixed processor
508          * revisions and therefore different OSVW bits. If bits are not the same
509          * on different processors then choose the worst case (i.e. if erratum
510          * is present on one processor and not on another then assume that the
511          * erratum is present everywhere).
512          */
513         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
514                 uint64_t len, status = 0;
515                 int err;
516
517                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
518                 if (!err)
519                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
520                                                       &err);
521
522                 if (err)
523                         osvw_status = osvw_len = 0;
524                 else {
525                         if (len < osvw_len)
526                                 osvw_len = len;
527                         osvw_status |= status;
528                         osvw_status &= (1ULL << osvw_len) - 1;
529                 }
530         } else
531                 osvw_status = osvw_len = 0;
532
533         svm_init_erratum_383();
534
535         amd_pmu_enable_virt();
536
537         return 0;
538 }
539
540 static void svm_cpu_uninit(int cpu)
541 {
542         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
543
544         if (!sd)
545                 return;
546
547         per_cpu(svm_data, cpu) = NULL;
548         kfree(sd->sev_vmcbs);
549         __free_page(sd->save_area);
550         kfree(sd);
551 }
552
553 static int svm_cpu_init(int cpu)
554 {
555         struct svm_cpu_data *sd;
556         int ret = -ENOMEM;
557
558         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
559         if (!sd)
560                 return ret;
561         sd->cpu = cpu;
562         sd->save_area = alloc_page(GFP_KERNEL);
563         if (!sd->save_area)
564                 goto free_cpu_data;
565
566         clear_page(page_address(sd->save_area));
567
568         ret = sev_cpu_init(sd);
569         if (ret)
570                 goto free_save_area;
571
572         per_cpu(svm_data, cpu) = sd;
573
574         return 0;
575
576 free_save_area:
577         __free_page(sd->save_area);
578 free_cpu_data:
579         kfree(sd);
580         return ret;
581
582 }
583
584 static int direct_access_msr_slot(u32 msr)
585 {
586         u32 i;
587
588         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
589                 if (direct_access_msrs[i].index == msr)
590                         return i;
591
592         return -ENOENT;
593 }
594
595 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
596                                      int write)
597 {
598         struct vcpu_svm *svm = to_svm(vcpu);
599         int slot = direct_access_msr_slot(msr);
600
601         if (slot == -ENOENT)
602                 return;
603
604         /* Set the shadow bitmaps to the desired intercept states */
605         if (read)
606                 set_bit(slot, svm->shadow_msr_intercept.read);
607         else
608                 clear_bit(slot, svm->shadow_msr_intercept.read);
609
610         if (write)
611                 set_bit(slot, svm->shadow_msr_intercept.write);
612         else
613                 clear_bit(slot, svm->shadow_msr_intercept.write);
614 }
615
616 static bool valid_msr_intercept(u32 index)
617 {
618         return direct_access_msr_slot(index) != -ENOENT;
619 }
620
621 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
622 {
623         u8 bit_write;
624         unsigned long tmp;
625         u32 offset;
626         u32 *msrpm;
627
628         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
629                                       to_svm(vcpu)->msrpm;
630
631         offset    = svm_msrpm_offset(msr);
632         bit_write = 2 * (msr & 0x0f) + 1;
633         tmp       = msrpm[offset];
634
635         BUG_ON(offset == MSR_INVALID);
636
637         return !!test_bit(bit_write,  &tmp);
638 }
639
640 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
641                                         u32 msr, int read, int write)
642 {
643         u8 bit_read, bit_write;
644         unsigned long tmp;
645         u32 offset;
646
647         /*
648          * If this warning triggers extend the direct_access_msrs list at the
649          * beginning of the file
650          */
651         WARN_ON(!valid_msr_intercept(msr));
652
653         /* Enforce non allowed MSRs to trap */
654         if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
655                 read = 0;
656
657         if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
658                 write = 0;
659
660         offset    = svm_msrpm_offset(msr);
661         bit_read  = 2 * (msr & 0x0f);
662         bit_write = 2 * (msr & 0x0f) + 1;
663         tmp       = msrpm[offset];
664
665         BUG_ON(offset == MSR_INVALID);
666
667         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
668         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
669
670         msrpm[offset] = tmp;
671 }
672
673 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
674                           int read, int write)
675 {
676         set_shadow_msr_intercept(vcpu, msr, read, write);
677         set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
678 }
679
680 u32 *svm_vcpu_alloc_msrpm(void)
681 {
682         unsigned int order = get_order(MSRPM_SIZE);
683         struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
684         u32 *msrpm;
685
686         if (!pages)
687                 return NULL;
688
689         msrpm = page_address(pages);
690         memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
691
692         return msrpm;
693 }
694
695 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
696 {
697         int i;
698
699         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
700                 if (!direct_access_msrs[i].always)
701                         continue;
702                 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
703         }
704 }
705
706
707 void svm_vcpu_free_msrpm(u32 *msrpm)
708 {
709         __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
710 }
711
712 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
713 {
714         struct vcpu_svm *svm = to_svm(vcpu);
715         u32 i;
716
717         /*
718          * Set intercept permissions for all direct access MSRs again. They
719          * will automatically get filtered through the MSR filter, so we are
720          * back in sync after this.
721          */
722         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
723                 u32 msr = direct_access_msrs[i].index;
724                 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
725                 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
726
727                 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
728         }
729 }
730
731 static void add_msr_offset(u32 offset)
732 {
733         int i;
734
735         for (i = 0; i < MSRPM_OFFSETS; ++i) {
736
737                 /* Offset already in list? */
738                 if (msrpm_offsets[i] == offset)
739                         return;
740
741                 /* Slot used by another offset? */
742                 if (msrpm_offsets[i] != MSR_INVALID)
743                         continue;
744
745                 /* Add offset to list */
746                 msrpm_offsets[i] = offset;
747
748                 return;
749         }
750
751         /*
752          * If this BUG triggers the msrpm_offsets table has an overflow. Just
753          * increase MSRPM_OFFSETS in this case.
754          */
755         BUG();
756 }
757
758 static void init_msrpm_offsets(void)
759 {
760         int i;
761
762         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
763
764         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
765                 u32 offset;
766
767                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
768                 BUG_ON(offset == MSR_INVALID);
769
770                 add_msr_offset(offset);
771         }
772 }
773
774 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
775 {
776         struct vcpu_svm *svm = to_svm(vcpu);
777
778         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
779         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
780         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
781         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
782         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
783 }
784
785 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
786 {
787         struct vcpu_svm *svm = to_svm(vcpu);
788
789         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
790         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
791         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
792         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
793         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
794 }
795
796 void disable_nmi_singlestep(struct vcpu_svm *svm)
797 {
798         svm->nmi_singlestep = false;
799
800         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
801                 /* Clear our flags if they were not set by the guest */
802                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
803                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
804                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
805                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
806         }
807 }
808
809 static void grow_ple_window(struct kvm_vcpu *vcpu)
810 {
811         struct vcpu_svm *svm = to_svm(vcpu);
812         struct vmcb_control_area *control = &svm->vmcb->control;
813         int old = control->pause_filter_count;
814
815         control->pause_filter_count = __grow_ple_window(old,
816                                                         pause_filter_count,
817                                                         pause_filter_count_grow,
818                                                         pause_filter_count_max);
819
820         if (control->pause_filter_count != old) {
821                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
822                 trace_kvm_ple_window_update(vcpu->vcpu_id,
823                                             control->pause_filter_count, old);
824         }
825 }
826
827 static void shrink_ple_window(struct kvm_vcpu *vcpu)
828 {
829         struct vcpu_svm *svm = to_svm(vcpu);
830         struct vmcb_control_area *control = &svm->vmcb->control;
831         int old = control->pause_filter_count;
832
833         control->pause_filter_count =
834                                 __shrink_ple_window(old,
835                                                     pause_filter_count,
836                                                     pause_filter_count_shrink,
837                                                     pause_filter_count);
838         if (control->pause_filter_count != old) {
839                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
840                 trace_kvm_ple_window_update(vcpu->vcpu_id,
841                                             control->pause_filter_count, old);
842         }
843 }
844
845 /*
846  * The default MMIO mask is a single bit (excluding the present bit),
847  * which could conflict with the memory encryption bit. Check for
848  * memory encryption support and override the default MMIO mask if
849  * memory encryption is enabled.
850  */
851 static __init void svm_adjust_mmio_mask(void)
852 {
853         unsigned int enc_bit, mask_bit;
854         u64 msr, mask;
855
856         /* If there is no memory encryption support, use existing mask */
857         if (cpuid_eax(0x80000000) < 0x8000001f)
858                 return;
859
860         /* If memory encryption is not enabled, use existing mask */
861         rdmsrl(MSR_K8_SYSCFG, msr);
862         if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
863                 return;
864
865         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
866         mask_bit = boot_cpu_data.x86_phys_bits;
867
868         /* Increment the mask bit if it is the same as the encryption bit */
869         if (enc_bit == mask_bit)
870                 mask_bit++;
871
872         /*
873          * If the mask bit location is below 52, then some bits above the
874          * physical addressing limit will always be reserved, so use the
875          * rsvd_bits() function to generate the mask. This mask, along with
876          * the present bit, will be used to generate a page fault with
877          * PFER.RSV = 1.
878          *
879          * If the mask bit location is 52 (or above), then clear the mask.
880          */
881         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
882
883         kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
884 }
885
886 static void svm_hardware_teardown(void)
887 {
888         int cpu;
889
890         sev_hardware_teardown();
891
892         for_each_possible_cpu(cpu)
893                 svm_cpu_uninit(cpu);
894
895         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
896         get_order(IOPM_SIZE));
897         iopm_base = 0;
898 }
899
900 static __init void svm_set_cpu_caps(void)
901 {
902         kvm_set_cpu_caps();
903
904         supported_xss = 0;
905
906         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
907         if (nested) {
908                 kvm_cpu_cap_set(X86_FEATURE_SVM);
909
910                 if (nrips)
911                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
912
913                 if (npt_enabled)
914                         kvm_cpu_cap_set(X86_FEATURE_NPT);
915
916                 /* Nested VM can receive #VMEXIT instead of triggering #GP */
917                 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
918         }
919
920         /* CPUID 0x80000008 */
921         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
922             boot_cpu_has(X86_FEATURE_AMD_SSBD))
923                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
924
925         /* CPUID 0x8000001F (SME/SEV features) */
926         sev_set_cpu_caps();
927 }
928
929 static __init int svm_hardware_setup(void)
930 {
931         int cpu;
932         struct page *iopm_pages;
933         void *iopm_va;
934         int r;
935         unsigned int order = get_order(IOPM_SIZE);
936
937         iopm_pages = alloc_pages(GFP_KERNEL, order);
938
939         if (!iopm_pages)
940                 return -ENOMEM;
941
942         iopm_va = page_address(iopm_pages);
943         memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
944         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
945
946         init_msrpm_offsets();
947
948         supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
949
950         if (boot_cpu_has(X86_FEATURE_NX))
951                 kvm_enable_efer_bits(EFER_NX);
952
953         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
954                 kvm_enable_efer_bits(EFER_FFXSR);
955
956         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
957                 kvm_has_tsc_control = true;
958                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
959                 kvm_tsc_scaling_ratio_frac_bits = 32;
960         }
961
962         if (boot_cpu_has(X86_FEATURE_RDTSCP))
963                 kvm_define_user_return_msr(TSC_AUX_URET_SLOT, MSR_TSC_AUX);
964
965         /* Check for pause filtering support */
966         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
967                 pause_filter_count = 0;
968                 pause_filter_thresh = 0;
969         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
970                 pause_filter_thresh = 0;
971         }
972
973         if (nested) {
974                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
975                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
976         }
977
978         /*
979          * KVM's MMU doesn't support using 2-level paging for itself, and thus
980          * NPT isn't supported if the host is using 2-level paging since host
981          * CR4 is unchanged on VMRUN.
982          */
983         if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
984                 npt_enabled = false;
985
986         if (!boot_cpu_has(X86_FEATURE_NPT))
987                 npt_enabled = false;
988
989         kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
990         pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
991
992         /* Note, SEV setup consumes npt_enabled. */
993         sev_hardware_setup();
994
995         svm_adjust_mmio_mask();
996
997         for_each_possible_cpu(cpu) {
998                 r = svm_cpu_init(cpu);
999                 if (r)
1000                         goto err;
1001         }
1002
1003         if (nrips) {
1004                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
1005                         nrips = false;
1006         }
1007
1008         if (avic) {
1009                 if (!npt_enabled ||
1010                     !boot_cpu_has(X86_FEATURE_AVIC) ||
1011                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1012                         avic = false;
1013                 } else {
1014                         pr_info("AVIC enabled\n");
1015
1016                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1017                 }
1018         }
1019
1020         if (vls) {
1021                 if (!npt_enabled ||
1022                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1023                     !IS_ENABLED(CONFIG_X86_64)) {
1024                         vls = false;
1025                 } else {
1026                         pr_info("Virtual VMLOAD VMSAVE supported\n");
1027                 }
1028         }
1029
1030         if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
1031                 svm_gp_erratum_intercept = false;
1032
1033         if (vgif) {
1034                 if (!boot_cpu_has(X86_FEATURE_VGIF))
1035                         vgif = false;
1036                 else
1037                         pr_info("Virtual GIF supported\n");
1038         }
1039
1040         svm_set_cpu_caps();
1041
1042         /*
1043          * It seems that on AMD processors PTE's accessed bit is
1044          * being set by the CPU hardware before the NPF vmexit.
1045          * This is not expected behaviour and our tests fail because
1046          * of it.
1047          * A workaround here is to disable support for
1048          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1049          * In this case userspace can know if there is support using
1050          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1051          * it
1052          * If future AMD CPU models change the behaviour described above,
1053          * this variable can be changed accordingly
1054          */
1055         allow_smaller_maxphyaddr = !npt_enabled;
1056
1057         return 0;
1058
1059 err:
1060         svm_hardware_teardown();
1061         return r;
1062 }
1063
1064 static void init_seg(struct vmcb_seg *seg)
1065 {
1066         seg->selector = 0;
1067         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1068                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1069         seg->limit = 0xffff;
1070         seg->base = 0;
1071 }
1072
1073 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1074 {
1075         seg->selector = 0;
1076         seg->attrib = SVM_SELECTOR_P_MASK | type;
1077         seg->limit = 0xffff;
1078         seg->base = 0;
1079 }
1080
1081 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1082 {
1083         struct vcpu_svm *svm = to_svm(vcpu);
1084         u64 g_tsc_offset = 0;
1085
1086         if (is_guest_mode(vcpu)) {
1087                 /* Write L1's TSC offset.  */
1088                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1089                                svm->vmcb01.ptr->control.tsc_offset;
1090                 svm->vmcb01.ptr->control.tsc_offset = offset;
1091         }
1092
1093         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1094                                    svm->vmcb->control.tsc_offset - g_tsc_offset,
1095                                    offset);
1096
1097         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1098
1099         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1100         return svm->vmcb->control.tsc_offset;
1101 }
1102
1103 static void svm_check_invpcid(struct vcpu_svm *svm)
1104 {
1105         /*
1106          * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1107          * roots, or if INVPCID is disabled in the guest to inject #UD.
1108          */
1109         if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1110                 if (!npt_enabled ||
1111                     !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1112                         svm_set_intercept(svm, INTERCEPT_INVPCID);
1113                 else
1114                         svm_clr_intercept(svm, INTERCEPT_INVPCID);
1115         }
1116 }
1117
1118 static void init_vmcb(struct kvm_vcpu *vcpu)
1119 {
1120         struct vcpu_svm *svm = to_svm(vcpu);
1121         struct vmcb_control_area *control = &svm->vmcb->control;
1122         struct vmcb_save_area *save = &svm->vmcb->save;
1123
1124         vcpu->arch.hflags = 0;
1125
1126         svm_set_intercept(svm, INTERCEPT_CR0_READ);
1127         svm_set_intercept(svm, INTERCEPT_CR3_READ);
1128         svm_set_intercept(svm, INTERCEPT_CR4_READ);
1129         svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1130         svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1131         svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1132         if (!kvm_vcpu_apicv_active(vcpu))
1133                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1134
1135         set_dr_intercepts(svm);
1136
1137         set_exception_intercept(svm, PF_VECTOR);
1138         set_exception_intercept(svm, UD_VECTOR);
1139         set_exception_intercept(svm, MC_VECTOR);
1140         set_exception_intercept(svm, AC_VECTOR);
1141         set_exception_intercept(svm, DB_VECTOR);
1142         /*
1143          * Guest access to VMware backdoor ports could legitimately
1144          * trigger #GP because of TSS I/O permission bitmap.
1145          * We intercept those #GP and allow access to them anyway
1146          * as VMware does.
1147          */
1148         if (enable_vmware_backdoor)
1149                 set_exception_intercept(svm, GP_VECTOR);
1150
1151         svm_set_intercept(svm, INTERCEPT_INTR);
1152         svm_set_intercept(svm, INTERCEPT_NMI);
1153         svm_set_intercept(svm, INTERCEPT_SMI);
1154         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1155         svm_set_intercept(svm, INTERCEPT_RDPMC);
1156         svm_set_intercept(svm, INTERCEPT_CPUID);
1157         svm_set_intercept(svm, INTERCEPT_INVD);
1158         svm_set_intercept(svm, INTERCEPT_INVLPG);
1159         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1160         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1161         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1162         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1163         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1164         svm_set_intercept(svm, INTERCEPT_VMRUN);
1165         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1166         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1167         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1168         svm_set_intercept(svm, INTERCEPT_STGI);
1169         svm_set_intercept(svm, INTERCEPT_CLGI);
1170         svm_set_intercept(svm, INTERCEPT_SKINIT);
1171         svm_set_intercept(svm, INTERCEPT_WBINVD);
1172         svm_set_intercept(svm, INTERCEPT_XSETBV);
1173         svm_set_intercept(svm, INTERCEPT_RDPRU);
1174         svm_set_intercept(svm, INTERCEPT_RSM);
1175
1176         if (!kvm_mwait_in_guest(vcpu->kvm)) {
1177                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1178                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1179         }
1180
1181         if (!kvm_hlt_in_guest(vcpu->kvm))
1182                 svm_set_intercept(svm, INTERCEPT_HLT);
1183
1184         control->iopm_base_pa = __sme_set(iopm_base);
1185         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1186         control->int_ctl = V_INTR_MASKING_MASK;
1187
1188         init_seg(&save->es);
1189         init_seg(&save->ss);
1190         init_seg(&save->ds);
1191         init_seg(&save->fs);
1192         init_seg(&save->gs);
1193
1194         save->cs.selector = 0xf000;
1195         save->cs.base = 0xffff0000;
1196         /* Executable/Readable Code Segment */
1197         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1198                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1199         save->cs.limit = 0xffff;
1200
1201         save->gdtr.limit = 0xffff;
1202         save->idtr.limit = 0xffff;
1203
1204         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1205         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1206
1207         svm_set_cr4(vcpu, 0);
1208         svm_set_efer(vcpu, 0);
1209         save->dr6 = 0xffff0ff0;
1210         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
1211         save->rip = 0x0000fff0;
1212         vcpu->arch.regs[VCPU_REGS_RIP] = save->rip;
1213
1214         /*
1215          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1216          * It also updates the guest-visible cr0 value.
1217          */
1218         svm_set_cr0(vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1219         kvm_mmu_reset_context(vcpu);
1220
1221         save->cr4 = X86_CR4_PAE;
1222         /* rdx = ?? */
1223
1224         if (npt_enabled) {
1225                 /* Setup VMCB for Nested Paging */
1226                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1227                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1228                 clr_exception_intercept(svm, PF_VECTOR);
1229                 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1230                 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1231                 save->g_pat = vcpu->arch.pat;
1232                 save->cr3 = 0;
1233                 save->cr4 = 0;
1234         }
1235         svm->current_vmcb->asid_generation = 0;
1236         svm->asid = 0;
1237
1238         svm->nested.vmcb12_gpa = 0;
1239         svm->nested.last_vmcb12_gpa = 0;
1240         vcpu->arch.hflags = 0;
1241
1242         if (!kvm_pause_in_guest(vcpu->kvm)) {
1243                 control->pause_filter_count = pause_filter_count;
1244                 if (pause_filter_thresh)
1245                         control->pause_filter_thresh = pause_filter_thresh;
1246                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1247         } else {
1248                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1249         }
1250
1251         svm_check_invpcid(svm);
1252
1253         /*
1254          * If the host supports V_SPEC_CTRL then disable the interception
1255          * of MSR_IA32_SPEC_CTRL.
1256          */
1257         if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1258                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1259
1260         if (kvm_vcpu_apicv_active(vcpu))
1261                 avic_init_vmcb(svm);
1262
1263         if (vgif) {
1264                 svm_clr_intercept(svm, INTERCEPT_STGI);
1265                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1266                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1267         }
1268
1269         if (sev_guest(vcpu->kvm)) {
1270                 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1271                 clr_exception_intercept(svm, UD_VECTOR);
1272
1273                 if (sev_es_guest(vcpu->kvm)) {
1274                         /* Perform SEV-ES specific VMCB updates */
1275                         sev_es_init_vmcb(svm);
1276                 }
1277         }
1278
1279         vmcb_mark_all_dirty(svm->vmcb);
1280
1281         enable_gif(svm);
1282
1283 }
1284
1285 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1286 {
1287         struct vcpu_svm *svm = to_svm(vcpu);
1288         u32 dummy;
1289         u32 eax = 1;
1290
1291         svm->spec_ctrl = 0;
1292         svm->virt_spec_ctrl = 0;
1293
1294         if (!init_event) {
1295                 vcpu->arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1296                                        MSR_IA32_APICBASE_ENABLE;
1297                 if (kvm_vcpu_is_reset_bsp(vcpu))
1298                         vcpu->arch.apic_base |= MSR_IA32_APICBASE_BSP;
1299         }
1300         init_vmcb(vcpu);
1301
1302         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1303         kvm_rdx_write(vcpu, eax);
1304
1305         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1306                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1307 }
1308
1309 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1310 {
1311         svm->current_vmcb = target_vmcb;
1312         svm->vmcb = target_vmcb->ptr;
1313 }
1314
1315 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1316 {
1317         struct vcpu_svm *svm;
1318         struct page *vmcb01_page;
1319         struct page *vmsa_page = NULL;
1320         int err;
1321
1322         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1323         svm = to_svm(vcpu);
1324
1325         err = -ENOMEM;
1326         vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1327         if (!vmcb01_page)
1328                 goto out;
1329
1330         if (sev_es_guest(vcpu->kvm)) {
1331                 /*
1332                  * SEV-ES guests require a separate VMSA page used to contain
1333                  * the encrypted register state of the guest.
1334                  */
1335                 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1336                 if (!vmsa_page)
1337                         goto error_free_vmcb_page;
1338
1339                 /*
1340                  * SEV-ES guests maintain an encrypted version of their FPU
1341                  * state which is restored and saved on VMRUN and VMEXIT.
1342                  * Free the fpu structure to prevent KVM from attempting to
1343                  * access the FPU state.
1344                  */
1345                 kvm_free_guest_fpu(vcpu);
1346         }
1347
1348         err = avic_init_vcpu(svm);
1349         if (err)
1350                 goto error_free_vmsa_page;
1351
1352         /* We initialize this flag to true to make sure that the is_running
1353          * bit would be set the first time the vcpu is loaded.
1354          */
1355         if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1356                 svm->avic_is_running = true;
1357
1358         svm->msrpm = svm_vcpu_alloc_msrpm();
1359         if (!svm->msrpm) {
1360                 err = -ENOMEM;
1361                 goto error_free_vmsa_page;
1362         }
1363
1364         svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1365
1366         svm->vmcb01.ptr = page_address(vmcb01_page);
1367         svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1368
1369         if (vmsa_page)
1370                 svm->vmsa = page_address(vmsa_page);
1371
1372         svm->guest_state_loaded = false;
1373
1374         svm_switch_vmcb(svm, &svm->vmcb01);
1375         init_vmcb(vcpu);
1376
1377         svm_init_osvw(vcpu);
1378         vcpu->arch.microcode_version = 0x01000065;
1379
1380         if (sev_es_guest(vcpu->kvm))
1381                 /* Perform SEV-ES specific VMCB creation updates */
1382                 sev_es_create_vcpu(svm);
1383
1384         return 0;
1385
1386 error_free_vmsa_page:
1387         if (vmsa_page)
1388                 __free_page(vmsa_page);
1389 error_free_vmcb_page:
1390         __free_page(vmcb01_page);
1391 out:
1392         return err;
1393 }
1394
1395 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1396 {
1397         int i;
1398
1399         for_each_online_cpu(i)
1400                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1401 }
1402
1403 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1404 {
1405         struct vcpu_svm *svm = to_svm(vcpu);
1406
1407         /*
1408          * The vmcb page can be recycled, causing a false negative in
1409          * svm_vcpu_load(). So, ensure that no logical CPU has this
1410          * vmcb page recorded as its current vmcb.
1411          */
1412         svm_clear_current_vmcb(svm->vmcb);
1413
1414         svm_free_nested(svm);
1415
1416         sev_free_vcpu(vcpu);
1417
1418         __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1419         __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1420 }
1421
1422 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1423 {
1424         struct vcpu_svm *svm = to_svm(vcpu);
1425         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1426
1427         if (svm->guest_state_loaded)
1428                 return;
1429
1430         /*
1431          * Save additional host state that will be restored on VMEXIT (sev-es)
1432          * or subsequent vmload of host save area.
1433          */
1434         if (sev_es_guest(vcpu->kvm)) {
1435                 sev_es_prepare_guest_switch(svm, vcpu->cpu);
1436         } else {
1437                 vmsave(__sme_page_pa(sd->save_area));
1438         }
1439
1440         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1441                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1442                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1443                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1444                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1445                 }
1446         }
1447
1448         if (static_cpu_has(X86_FEATURE_RDTSCP))
1449                 kvm_set_user_return_msr(TSC_AUX_URET_SLOT, svm->tsc_aux, -1ull);
1450
1451         svm->guest_state_loaded = true;
1452 }
1453
1454 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1455 {
1456         to_svm(vcpu)->guest_state_loaded = false;
1457 }
1458
1459 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1460 {
1461         struct vcpu_svm *svm = to_svm(vcpu);
1462         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1463
1464         if (sd->current_vmcb != svm->vmcb) {
1465                 sd->current_vmcb = svm->vmcb;
1466                 indirect_branch_prediction_barrier();
1467         }
1468         avic_vcpu_load(vcpu, cpu);
1469 }
1470
1471 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1472 {
1473         avic_vcpu_put(vcpu);
1474         svm_prepare_host_switch(vcpu);
1475
1476         ++vcpu->stat.host_state_reload;
1477 }
1478
1479 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1480 {
1481         struct vcpu_svm *svm = to_svm(vcpu);
1482         unsigned long rflags = svm->vmcb->save.rflags;
1483
1484         if (svm->nmi_singlestep) {
1485                 /* Hide our flags if they were not set by the guest */
1486                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1487                         rflags &= ~X86_EFLAGS_TF;
1488                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1489                         rflags &= ~X86_EFLAGS_RF;
1490         }
1491         return rflags;
1492 }
1493
1494 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1495 {
1496         if (to_svm(vcpu)->nmi_singlestep)
1497                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1498
1499        /*
1500         * Any change of EFLAGS.VM is accompanied by a reload of SS
1501         * (caused by either a task switch or an inter-privilege IRET),
1502         * so we do not need to update the CPL here.
1503         */
1504         to_svm(vcpu)->vmcb->save.rflags = rflags;
1505 }
1506
1507 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1508 {
1509         switch (reg) {
1510         case VCPU_EXREG_PDPTR:
1511                 BUG_ON(!npt_enabled);
1512                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1513                 break;
1514         default:
1515                 WARN_ON_ONCE(1);
1516         }
1517 }
1518
1519 static void svm_set_vintr(struct vcpu_svm *svm)
1520 {
1521         struct vmcb_control_area *control;
1522
1523         /* The following fields are ignored when AVIC is enabled */
1524         WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1525         svm_set_intercept(svm, INTERCEPT_VINTR);
1526
1527         /*
1528          * This is just a dummy VINTR to actually cause a vmexit to happen.
1529          * Actual injection of virtual interrupts happens through EVENTINJ.
1530          */
1531         control = &svm->vmcb->control;
1532         control->int_vector = 0x0;
1533         control->int_ctl &= ~V_INTR_PRIO_MASK;
1534         control->int_ctl |= V_IRQ_MASK |
1535                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1536         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1537 }
1538
1539 static void svm_clear_vintr(struct vcpu_svm *svm)
1540 {
1541         const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1542         svm_clr_intercept(svm, INTERCEPT_VINTR);
1543
1544         /* Drop int_ctl fields related to VINTR injection.  */
1545         svm->vmcb->control.int_ctl &= mask;
1546         if (is_guest_mode(&svm->vcpu)) {
1547                 svm->vmcb01.ptr->control.int_ctl &= mask;
1548
1549                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1550                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1551                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1552         }
1553
1554         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1555 }
1556
1557 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1558 {
1559         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1560         struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1561
1562         switch (seg) {
1563         case VCPU_SREG_CS: return &save->cs;
1564         case VCPU_SREG_DS: return &save->ds;
1565         case VCPU_SREG_ES: return &save->es;
1566         case VCPU_SREG_FS: return &save01->fs;
1567         case VCPU_SREG_GS: return &save01->gs;
1568         case VCPU_SREG_SS: return &save->ss;
1569         case VCPU_SREG_TR: return &save01->tr;
1570         case VCPU_SREG_LDTR: return &save01->ldtr;
1571         }
1572         BUG();
1573         return NULL;
1574 }
1575
1576 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1577 {
1578         struct vmcb_seg *s = svm_seg(vcpu, seg);
1579
1580         return s->base;
1581 }
1582
1583 static void svm_get_segment(struct kvm_vcpu *vcpu,
1584                             struct kvm_segment *var, int seg)
1585 {
1586         struct vmcb_seg *s = svm_seg(vcpu, seg);
1587
1588         var->base = s->base;
1589         var->limit = s->limit;
1590         var->selector = s->selector;
1591         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1592         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1593         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1594         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1595         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1596         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1597         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1598
1599         /*
1600          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1601          * However, the SVM spec states that the G bit is not observed by the
1602          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1603          * So let's synthesize a legal G bit for all segments, this helps
1604          * running KVM nested. It also helps cross-vendor migration, because
1605          * Intel's vmentry has a check on the 'G' bit.
1606          */
1607         var->g = s->limit > 0xfffff;
1608
1609         /*
1610          * AMD's VMCB does not have an explicit unusable field, so emulate it
1611          * for cross vendor migration purposes by "not present"
1612          */
1613         var->unusable = !var->present;
1614
1615         switch (seg) {
1616         case VCPU_SREG_TR:
1617                 /*
1618                  * Work around a bug where the busy flag in the tr selector
1619                  * isn't exposed
1620                  */
1621                 var->type |= 0x2;
1622                 break;
1623         case VCPU_SREG_DS:
1624         case VCPU_SREG_ES:
1625         case VCPU_SREG_FS:
1626         case VCPU_SREG_GS:
1627                 /*
1628                  * The accessed bit must always be set in the segment
1629                  * descriptor cache, although it can be cleared in the
1630                  * descriptor, the cached bit always remains at 1. Since
1631                  * Intel has a check on this, set it here to support
1632                  * cross-vendor migration.
1633                  */
1634                 if (!var->unusable)
1635                         var->type |= 0x1;
1636                 break;
1637         case VCPU_SREG_SS:
1638                 /*
1639                  * On AMD CPUs sometimes the DB bit in the segment
1640                  * descriptor is left as 1, although the whole segment has
1641                  * been made unusable. Clear it here to pass an Intel VMX
1642                  * entry check when cross vendor migrating.
1643                  */
1644                 if (var->unusable)
1645                         var->db = 0;
1646                 /* This is symmetric with svm_set_segment() */
1647                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1648                 break;
1649         }
1650 }
1651
1652 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1653 {
1654         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1655
1656         return save->cpl;
1657 }
1658
1659 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1660 {
1661         struct vcpu_svm *svm = to_svm(vcpu);
1662
1663         dt->size = svm->vmcb->save.idtr.limit;
1664         dt->address = svm->vmcb->save.idtr.base;
1665 }
1666
1667 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1668 {
1669         struct vcpu_svm *svm = to_svm(vcpu);
1670
1671         svm->vmcb->save.idtr.limit = dt->size;
1672         svm->vmcb->save.idtr.base = dt->address ;
1673         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1674 }
1675
1676 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1677 {
1678         struct vcpu_svm *svm = to_svm(vcpu);
1679
1680         dt->size = svm->vmcb->save.gdtr.limit;
1681         dt->address = svm->vmcb->save.gdtr.base;
1682 }
1683
1684 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1685 {
1686         struct vcpu_svm *svm = to_svm(vcpu);
1687
1688         svm->vmcb->save.gdtr.limit = dt->size;
1689         svm->vmcb->save.gdtr.base = dt->address ;
1690         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1691 }
1692
1693 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1694 {
1695         struct vcpu_svm *svm = to_svm(vcpu);
1696         u64 hcr0 = cr0;
1697
1698 #ifdef CONFIG_X86_64
1699         if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1700                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1701                         vcpu->arch.efer |= EFER_LMA;
1702                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1703                 }
1704
1705                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1706                         vcpu->arch.efer &= ~EFER_LMA;
1707                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1708                 }
1709         }
1710 #endif
1711         vcpu->arch.cr0 = cr0;
1712
1713         if (!npt_enabled)
1714                 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1715
1716         /*
1717          * re-enable caching here because the QEMU bios
1718          * does not do it - this results in some delay at
1719          * reboot
1720          */
1721         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1722                 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1723
1724         svm->vmcb->save.cr0 = hcr0;
1725         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1726
1727         /*
1728          * SEV-ES guests must always keep the CR intercepts cleared. CR
1729          * tracking is done using the CR write traps.
1730          */
1731         if (sev_es_guest(vcpu->kvm))
1732                 return;
1733
1734         if (hcr0 == cr0) {
1735                 /* Selective CR0 write remains on.  */
1736                 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1737                 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1738         } else {
1739                 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1740                 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1741         }
1742 }
1743
1744 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1745 {
1746         return true;
1747 }
1748
1749 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1750 {
1751         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1752         unsigned long old_cr4 = vcpu->arch.cr4;
1753
1754         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1755                 svm_flush_tlb(vcpu);
1756
1757         vcpu->arch.cr4 = cr4;
1758         if (!npt_enabled)
1759                 cr4 |= X86_CR4_PAE;
1760         cr4 |= host_cr4_mce;
1761         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1762         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1763
1764         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1765                 kvm_update_cpuid_runtime(vcpu);
1766 }
1767
1768 static void svm_set_segment(struct kvm_vcpu *vcpu,
1769                             struct kvm_segment *var, int seg)
1770 {
1771         struct vcpu_svm *svm = to_svm(vcpu);
1772         struct vmcb_seg *s = svm_seg(vcpu, seg);
1773
1774         s->base = var->base;
1775         s->limit = var->limit;
1776         s->selector = var->selector;
1777         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1778         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1779         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1780         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1781         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1782         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1783         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1784         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1785
1786         /*
1787          * This is always accurate, except if SYSRET returned to a segment
1788          * with SS.DPL != 3.  Intel does not have this quirk, and always
1789          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1790          * would entail passing the CPL to userspace and back.
1791          */
1792         if (seg == VCPU_SREG_SS)
1793                 /* This is symmetric with svm_get_segment() */
1794                 svm->vmcb->save.cpl = (var->dpl & 3);
1795
1796         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1797 }
1798
1799 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1800 {
1801         struct vcpu_svm *svm = to_svm(vcpu);
1802
1803         clr_exception_intercept(svm, BP_VECTOR);
1804
1805         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1806                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1807                         set_exception_intercept(svm, BP_VECTOR);
1808         }
1809 }
1810
1811 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1812 {
1813         if (sd->next_asid > sd->max_asid) {
1814                 ++sd->asid_generation;
1815                 sd->next_asid = sd->min_asid;
1816                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1817                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1818         }
1819
1820         svm->current_vmcb->asid_generation = sd->asid_generation;
1821         svm->asid = sd->next_asid++;
1822 }
1823
1824 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1825 {
1826         struct vmcb *vmcb = svm->vmcb;
1827
1828         if (svm->vcpu.arch.guest_state_protected)
1829                 return;
1830
1831         if (unlikely(value != vmcb->save.dr6)) {
1832                 vmcb->save.dr6 = value;
1833                 vmcb_mark_dirty(vmcb, VMCB_DR);
1834         }
1835 }
1836
1837 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1838 {
1839         struct vcpu_svm *svm = to_svm(vcpu);
1840
1841         if (vcpu->arch.guest_state_protected)
1842                 return;
1843
1844         get_debugreg(vcpu->arch.db[0], 0);
1845         get_debugreg(vcpu->arch.db[1], 1);
1846         get_debugreg(vcpu->arch.db[2], 2);
1847         get_debugreg(vcpu->arch.db[3], 3);
1848         /*
1849          * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1850          * because db_interception might need it.  We can do it before vmentry.
1851          */
1852         vcpu->arch.dr6 = svm->vmcb->save.dr6;
1853         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1854         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1855         set_dr_intercepts(svm);
1856 }
1857
1858 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1859 {
1860         struct vcpu_svm *svm = to_svm(vcpu);
1861
1862         if (vcpu->arch.guest_state_protected)
1863                 return;
1864
1865         svm->vmcb->save.dr7 = value;
1866         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1867 }
1868
1869 static int pf_interception(struct kvm_vcpu *vcpu)
1870 {
1871         struct vcpu_svm *svm = to_svm(vcpu);
1872
1873         u64 fault_address = svm->vmcb->control.exit_info_2;
1874         u64 error_code = svm->vmcb->control.exit_info_1;
1875
1876         return kvm_handle_page_fault(vcpu, error_code, fault_address,
1877                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1878                         svm->vmcb->control.insn_bytes : NULL,
1879                         svm->vmcb->control.insn_len);
1880 }
1881
1882 static int npf_interception(struct kvm_vcpu *vcpu)
1883 {
1884         struct vcpu_svm *svm = to_svm(vcpu);
1885
1886         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1887         u64 error_code = svm->vmcb->control.exit_info_1;
1888
1889         trace_kvm_page_fault(fault_address, error_code);
1890         return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1891                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1892                         svm->vmcb->control.insn_bytes : NULL,
1893                         svm->vmcb->control.insn_len);
1894 }
1895
1896 static int db_interception(struct kvm_vcpu *vcpu)
1897 {
1898         struct kvm_run *kvm_run = vcpu->run;
1899         struct vcpu_svm *svm = to_svm(vcpu);
1900
1901         if (!(vcpu->guest_debug &
1902               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1903                 !svm->nmi_singlestep) {
1904                 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1905                 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1906                 return 1;
1907         }
1908
1909         if (svm->nmi_singlestep) {
1910                 disable_nmi_singlestep(svm);
1911                 /* Make sure we check for pending NMIs upon entry */
1912                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1913         }
1914
1915         if (vcpu->guest_debug &
1916             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1917                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1918                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1919                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1920                 kvm_run->debug.arch.pc =
1921                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1922                 kvm_run->debug.arch.exception = DB_VECTOR;
1923                 return 0;
1924         }
1925
1926         return 1;
1927 }
1928
1929 static int bp_interception(struct kvm_vcpu *vcpu)
1930 {
1931         struct vcpu_svm *svm = to_svm(vcpu);
1932         struct kvm_run *kvm_run = vcpu->run;
1933
1934         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1935         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1936         kvm_run->debug.arch.exception = BP_VECTOR;
1937         return 0;
1938 }
1939
1940 static int ud_interception(struct kvm_vcpu *vcpu)
1941 {
1942         return handle_ud(vcpu);
1943 }
1944
1945 static int ac_interception(struct kvm_vcpu *vcpu)
1946 {
1947         kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1948         return 1;
1949 }
1950
1951 static bool is_erratum_383(void)
1952 {
1953         int err, i;
1954         u64 value;
1955
1956         if (!erratum_383_found)
1957                 return false;
1958
1959         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1960         if (err)
1961                 return false;
1962
1963         /* Bit 62 may or may not be set for this mce */
1964         value &= ~(1ULL << 62);
1965
1966         if (value != 0xb600000000010015ULL)
1967                 return false;
1968
1969         /* Clear MCi_STATUS registers */
1970         for (i = 0; i < 6; ++i)
1971                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1972
1973         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1974         if (!err) {
1975                 u32 low, high;
1976
1977                 value &= ~(1ULL << 2);
1978                 low    = lower_32_bits(value);
1979                 high   = upper_32_bits(value);
1980
1981                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1982         }
1983
1984         /* Flush tlb to evict multi-match entries */
1985         __flush_tlb_all();
1986
1987         return true;
1988 }
1989
1990 static void svm_handle_mce(struct kvm_vcpu *vcpu)
1991 {
1992         if (is_erratum_383()) {
1993                 /*
1994                  * Erratum 383 triggered. Guest state is corrupt so kill the
1995                  * guest.
1996                  */
1997                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1998
1999                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2000
2001                 return;
2002         }
2003
2004         /*
2005          * On an #MC intercept the MCE handler is not called automatically in
2006          * the host. So do it by hand here.
2007          */
2008         kvm_machine_check();
2009 }
2010
2011 static int mc_interception(struct kvm_vcpu *vcpu)
2012 {
2013         return 1;
2014 }
2015
2016 static int shutdown_interception(struct kvm_vcpu *vcpu)
2017 {
2018         struct kvm_run *kvm_run = vcpu->run;
2019         struct vcpu_svm *svm = to_svm(vcpu);
2020
2021         /*
2022          * The VM save area has already been encrypted so it
2023          * cannot be reinitialized - just terminate.
2024          */
2025         if (sev_es_guest(vcpu->kvm))
2026                 return -EINVAL;
2027
2028         /*
2029          * VMCB is undefined after a SHUTDOWN intercept
2030          * so reinitialize it.
2031          */
2032         clear_page(svm->vmcb);
2033         init_vmcb(vcpu);
2034
2035         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2036         return 0;
2037 }
2038
2039 static int io_interception(struct kvm_vcpu *vcpu)
2040 {
2041         struct vcpu_svm *svm = to_svm(vcpu);
2042         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2043         int size, in, string;
2044         unsigned port;
2045
2046         ++vcpu->stat.io_exits;
2047         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2048         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2049         port = io_info >> 16;
2050         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2051
2052         if (string) {
2053                 if (sev_es_guest(vcpu->kvm))
2054                         return sev_es_string_io(svm, size, port, in);
2055                 else
2056                         return kvm_emulate_instruction(vcpu, 0);
2057         }
2058
2059         svm->next_rip = svm->vmcb->control.exit_info_2;
2060
2061         return kvm_fast_pio(vcpu, size, port, in);
2062 }
2063
2064 static int nmi_interception(struct kvm_vcpu *vcpu)
2065 {
2066         return 1;
2067 }
2068
2069 static int intr_interception(struct kvm_vcpu *vcpu)
2070 {
2071         ++vcpu->stat.irq_exits;
2072         return 1;
2073 }
2074
2075 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2076 {
2077         struct vcpu_svm *svm = to_svm(vcpu);
2078         struct vmcb *vmcb12;
2079         struct kvm_host_map map;
2080         int ret;
2081
2082         if (nested_svm_check_permissions(vcpu))
2083                 return 1;
2084
2085         ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2086         if (ret) {
2087                 if (ret == -EINVAL)
2088                         kvm_inject_gp(vcpu, 0);
2089                 return 1;
2090         }
2091
2092         vmcb12 = map.hva;
2093
2094         ret = kvm_skip_emulated_instruction(vcpu);
2095
2096         if (vmload) {
2097                 nested_svm_vmloadsave(vmcb12, svm->vmcb);
2098                 svm->sysenter_eip_hi = 0;
2099                 svm->sysenter_esp_hi = 0;
2100         } else
2101                 nested_svm_vmloadsave(svm->vmcb, vmcb12);
2102
2103         kvm_vcpu_unmap(vcpu, &map, true);
2104
2105         return ret;
2106 }
2107
2108 static int vmload_interception(struct kvm_vcpu *vcpu)
2109 {
2110         return vmload_vmsave_interception(vcpu, true);
2111 }
2112
2113 static int vmsave_interception(struct kvm_vcpu *vcpu)
2114 {
2115         return vmload_vmsave_interception(vcpu, false);
2116 }
2117
2118 static int vmrun_interception(struct kvm_vcpu *vcpu)
2119 {
2120         if (nested_svm_check_permissions(vcpu))
2121                 return 1;
2122
2123         return nested_svm_vmrun(vcpu);
2124 }
2125
2126 enum {
2127         NONE_SVM_INSTR,
2128         SVM_INSTR_VMRUN,
2129         SVM_INSTR_VMLOAD,
2130         SVM_INSTR_VMSAVE,
2131 };
2132
2133 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2134 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2135 {
2136         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2137
2138         if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2139                 return NONE_SVM_INSTR;
2140
2141         switch (ctxt->modrm) {
2142         case 0xd8: /* VMRUN */
2143                 return SVM_INSTR_VMRUN;
2144         case 0xda: /* VMLOAD */
2145                 return SVM_INSTR_VMLOAD;
2146         case 0xdb: /* VMSAVE */
2147                 return SVM_INSTR_VMSAVE;
2148         default:
2149                 break;
2150         }
2151
2152         return NONE_SVM_INSTR;
2153 }
2154
2155 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2156 {
2157         const int guest_mode_exit_codes[] = {
2158                 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2159                 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2160                 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2161         };
2162         int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2163                 [SVM_INSTR_VMRUN] = vmrun_interception,
2164                 [SVM_INSTR_VMLOAD] = vmload_interception,
2165                 [SVM_INSTR_VMSAVE] = vmsave_interception,
2166         };
2167         struct vcpu_svm *svm = to_svm(vcpu);
2168         int ret;
2169
2170         if (is_guest_mode(vcpu)) {
2171                 /* Returns '1' or -errno on failure, '0' on success. */
2172                 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2173                 if (ret)
2174                         return ret;
2175                 return 1;
2176         }
2177         return svm_instr_handlers[opcode](vcpu);
2178 }
2179
2180 /*
2181  * #GP handling code. Note that #GP can be triggered under the following two
2182  * cases:
2183  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2184  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2185  *      regions (e.g. SMM memory on host).
2186  *   2) VMware backdoor
2187  */
2188 static int gp_interception(struct kvm_vcpu *vcpu)
2189 {
2190         struct vcpu_svm *svm = to_svm(vcpu);
2191         u32 error_code = svm->vmcb->control.exit_info_1;
2192         int opcode;
2193
2194         /* Both #GP cases have zero error_code */
2195         if (error_code)
2196                 goto reinject;
2197
2198         /* Decode the instruction for usage later */
2199         if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2200                 goto reinject;
2201
2202         opcode = svm_instr_opcode(vcpu);
2203
2204         if (opcode == NONE_SVM_INSTR) {
2205                 if (!enable_vmware_backdoor)
2206                         goto reinject;
2207
2208                 /*
2209                  * VMware backdoor emulation on #GP interception only handles
2210                  * IN{S}, OUT{S}, and RDPMC.
2211                  */
2212                 if (!is_guest_mode(vcpu))
2213                         return kvm_emulate_instruction(vcpu,
2214                                 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2215         } else
2216                 return emulate_svm_instr(vcpu, opcode);
2217
2218 reinject:
2219         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2220         return 1;
2221 }
2222
2223 void svm_set_gif(struct vcpu_svm *svm, bool value)
2224 {
2225         if (value) {
2226                 /*
2227                  * If VGIF is enabled, the STGI intercept is only added to
2228                  * detect the opening of the SMI/NMI window; remove it now.
2229                  * Likewise, clear the VINTR intercept, we will set it
2230                  * again while processing KVM_REQ_EVENT if needed.
2231                  */
2232                 if (vgif_enabled(svm))
2233                         svm_clr_intercept(svm, INTERCEPT_STGI);
2234                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2235                         svm_clear_vintr(svm);
2236
2237                 enable_gif(svm);
2238                 if (svm->vcpu.arch.smi_pending ||
2239                     svm->vcpu.arch.nmi_pending ||
2240                     kvm_cpu_has_injectable_intr(&svm->vcpu))
2241                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2242         } else {
2243                 disable_gif(svm);
2244
2245                 /*
2246                  * After a CLGI no interrupts should come.  But if vGIF is
2247                  * in use, we still rely on the VINTR intercept (rather than
2248                  * STGI) to detect an open interrupt window.
2249                 */
2250                 if (!vgif_enabled(svm))
2251                         svm_clear_vintr(svm);
2252         }
2253 }
2254
2255 static int stgi_interception(struct kvm_vcpu *vcpu)
2256 {
2257         int ret;
2258
2259         if (nested_svm_check_permissions(vcpu))
2260                 return 1;
2261
2262         ret = kvm_skip_emulated_instruction(vcpu);
2263         svm_set_gif(to_svm(vcpu), true);
2264         return ret;
2265 }
2266
2267 static int clgi_interception(struct kvm_vcpu *vcpu)
2268 {
2269         int ret;
2270
2271         if (nested_svm_check_permissions(vcpu))
2272                 return 1;
2273
2274         ret = kvm_skip_emulated_instruction(vcpu);
2275         svm_set_gif(to_svm(vcpu), false);
2276         return ret;
2277 }
2278
2279 static int invlpga_interception(struct kvm_vcpu *vcpu)
2280 {
2281         gva_t gva = kvm_rax_read(vcpu);
2282         u32 asid = kvm_rcx_read(vcpu);
2283
2284         /* FIXME: Handle an address size prefix. */
2285         if (!is_long_mode(vcpu))
2286                 gva = (u32)gva;
2287
2288         trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2289
2290         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2291         kvm_mmu_invlpg(vcpu, gva);
2292
2293         return kvm_skip_emulated_instruction(vcpu);
2294 }
2295
2296 static int skinit_interception(struct kvm_vcpu *vcpu)
2297 {
2298         trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2299
2300         kvm_queue_exception(vcpu, UD_VECTOR);
2301         return 1;
2302 }
2303
2304 static int task_switch_interception(struct kvm_vcpu *vcpu)
2305 {
2306         struct vcpu_svm *svm = to_svm(vcpu);
2307         u16 tss_selector;
2308         int reason;
2309         int int_type = svm->vmcb->control.exit_int_info &
2310                 SVM_EXITINTINFO_TYPE_MASK;
2311         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2312         uint32_t type =
2313                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2314         uint32_t idt_v =
2315                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2316         bool has_error_code = false;
2317         u32 error_code = 0;
2318
2319         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2320
2321         if (svm->vmcb->control.exit_info_2 &
2322             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2323                 reason = TASK_SWITCH_IRET;
2324         else if (svm->vmcb->control.exit_info_2 &
2325                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2326                 reason = TASK_SWITCH_JMP;
2327         else if (idt_v)
2328                 reason = TASK_SWITCH_GATE;
2329         else
2330                 reason = TASK_SWITCH_CALL;
2331
2332         if (reason == TASK_SWITCH_GATE) {
2333                 switch (type) {
2334                 case SVM_EXITINTINFO_TYPE_NMI:
2335                         vcpu->arch.nmi_injected = false;
2336                         break;
2337                 case SVM_EXITINTINFO_TYPE_EXEPT:
2338                         if (svm->vmcb->control.exit_info_2 &
2339                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2340                                 has_error_code = true;
2341                                 error_code =
2342                                         (u32)svm->vmcb->control.exit_info_2;
2343                         }
2344                         kvm_clear_exception_queue(vcpu);
2345                         break;
2346                 case SVM_EXITINTINFO_TYPE_INTR:
2347                         kvm_clear_interrupt_queue(vcpu);
2348                         break;
2349                 default:
2350                         break;
2351                 }
2352         }
2353
2354         if (reason != TASK_SWITCH_GATE ||
2355             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2356             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2357              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2358                 if (!skip_emulated_instruction(vcpu))
2359                         return 0;
2360         }
2361
2362         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2363                 int_vec = -1;
2364
2365         return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2366                                has_error_code, error_code);
2367 }
2368
2369 static int iret_interception(struct kvm_vcpu *vcpu)
2370 {
2371         struct vcpu_svm *svm = to_svm(vcpu);
2372
2373         ++vcpu->stat.nmi_window_exits;
2374         vcpu->arch.hflags |= HF_IRET_MASK;
2375         if (!sev_es_guest(vcpu->kvm)) {
2376                 svm_clr_intercept(svm, INTERCEPT_IRET);
2377                 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2378         }
2379         kvm_make_request(KVM_REQ_EVENT, vcpu);
2380         return 1;
2381 }
2382
2383 static int invlpg_interception(struct kvm_vcpu *vcpu)
2384 {
2385         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2386                 return kvm_emulate_instruction(vcpu, 0);
2387
2388         kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2389         return kvm_skip_emulated_instruction(vcpu);
2390 }
2391
2392 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2393 {
2394         return kvm_emulate_instruction(vcpu, 0);
2395 }
2396
2397 static int rsm_interception(struct kvm_vcpu *vcpu)
2398 {
2399         return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2400 }
2401
2402 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2403                                             unsigned long val)
2404 {
2405         struct vcpu_svm *svm = to_svm(vcpu);
2406         unsigned long cr0 = vcpu->arch.cr0;
2407         bool ret = false;
2408
2409         if (!is_guest_mode(vcpu) ||
2410             (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2411                 return false;
2412
2413         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2414         val &= ~SVM_CR0_SELECTIVE_MASK;
2415
2416         if (cr0 ^ val) {
2417                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2418                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2419         }
2420
2421         return ret;
2422 }
2423
2424 #define CR_VALID (1ULL << 63)
2425
2426 static int cr_interception(struct kvm_vcpu *vcpu)
2427 {
2428         struct vcpu_svm *svm = to_svm(vcpu);
2429         int reg, cr;
2430         unsigned long val;
2431         int err;
2432
2433         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2434                 return emulate_on_interception(vcpu);
2435
2436         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2437                 return emulate_on_interception(vcpu);
2438
2439         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2440         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2441                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2442         else
2443                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2444
2445         err = 0;
2446         if (cr >= 16) { /* mov to cr */
2447                 cr -= 16;
2448                 val = kvm_register_read(vcpu, reg);
2449                 trace_kvm_cr_write(cr, val);
2450                 switch (cr) {
2451                 case 0:
2452                         if (!check_selective_cr0_intercepted(vcpu, val))
2453                                 err = kvm_set_cr0(vcpu, val);
2454                         else
2455                                 return 1;
2456
2457                         break;
2458                 case 3:
2459                         err = kvm_set_cr3(vcpu, val);
2460                         break;
2461                 case 4:
2462                         err = kvm_set_cr4(vcpu, val);
2463                         break;
2464                 case 8:
2465                         err = kvm_set_cr8(vcpu, val);
2466                         break;
2467                 default:
2468                         WARN(1, "unhandled write to CR%d", cr);
2469                         kvm_queue_exception(vcpu, UD_VECTOR);
2470                         return 1;
2471                 }
2472         } else { /* mov from cr */
2473                 switch (cr) {
2474                 case 0:
2475                         val = kvm_read_cr0(vcpu);
2476                         break;
2477                 case 2:
2478                         val = vcpu->arch.cr2;
2479                         break;
2480                 case 3:
2481                         val = kvm_read_cr3(vcpu);
2482                         break;
2483                 case 4:
2484                         val = kvm_read_cr4(vcpu);
2485                         break;
2486                 case 8:
2487                         val = kvm_get_cr8(vcpu);
2488                         break;
2489                 default:
2490                         WARN(1, "unhandled read from CR%d", cr);
2491                         kvm_queue_exception(vcpu, UD_VECTOR);
2492                         return 1;
2493                 }
2494                 kvm_register_write(vcpu, reg, val);
2495                 trace_kvm_cr_read(cr, val);
2496         }
2497         return kvm_complete_insn_gp(vcpu, err);
2498 }
2499
2500 static int cr_trap(struct kvm_vcpu *vcpu)
2501 {
2502         struct vcpu_svm *svm = to_svm(vcpu);
2503         unsigned long old_value, new_value;
2504         unsigned int cr;
2505         int ret = 0;
2506
2507         new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2508
2509         cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2510         switch (cr) {
2511         case 0:
2512                 old_value = kvm_read_cr0(vcpu);
2513                 svm_set_cr0(vcpu, new_value);
2514
2515                 kvm_post_set_cr0(vcpu, old_value, new_value);
2516                 break;
2517         case 4:
2518                 old_value = kvm_read_cr4(vcpu);
2519                 svm_set_cr4(vcpu, new_value);
2520
2521                 kvm_post_set_cr4(vcpu, old_value, new_value);
2522                 break;
2523         case 8:
2524                 ret = kvm_set_cr8(vcpu, new_value);
2525                 break;
2526         default:
2527                 WARN(1, "unhandled CR%d write trap", cr);
2528                 kvm_queue_exception(vcpu, UD_VECTOR);
2529                 return 1;
2530         }
2531
2532         return kvm_complete_insn_gp(vcpu, ret);
2533 }
2534
2535 static int dr_interception(struct kvm_vcpu *vcpu)
2536 {
2537         struct vcpu_svm *svm = to_svm(vcpu);
2538         int reg, dr;
2539         unsigned long val;
2540         int err = 0;
2541
2542         if (vcpu->guest_debug == 0) {
2543                 /*
2544                  * No more DR vmexits; force a reload of the debug registers
2545                  * and reenter on this instruction.  The next vmexit will
2546                  * retrieve the full state of the debug registers.
2547                  */
2548                 clr_dr_intercepts(svm);
2549                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2550                 return 1;
2551         }
2552
2553         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2554                 return emulate_on_interception(vcpu);
2555
2556         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2557         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2558         if (dr >= 16) { /* mov to DRn  */
2559                 dr -= 16;
2560                 val = kvm_register_read(vcpu, reg);
2561                 err = kvm_set_dr(vcpu, dr, val);
2562         } else {
2563                 kvm_get_dr(vcpu, dr, &val);
2564                 kvm_register_write(vcpu, reg, val);
2565         }
2566
2567         return kvm_complete_insn_gp(vcpu, err);
2568 }
2569
2570 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2571 {
2572         int r;
2573
2574         u8 cr8_prev = kvm_get_cr8(vcpu);
2575         /* instruction emulation calls kvm_set_cr8() */
2576         r = cr_interception(vcpu);
2577         if (lapic_in_kernel(vcpu))
2578                 return r;
2579         if (cr8_prev <= kvm_get_cr8(vcpu))
2580                 return r;
2581         vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2582         return 0;
2583 }
2584
2585 static int efer_trap(struct kvm_vcpu *vcpu)
2586 {
2587         struct msr_data msr_info;
2588         int ret;
2589
2590         /*
2591          * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2592          * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2593          * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2594          * the guest doesn't have X86_FEATURE_SVM.
2595          */
2596         msr_info.host_initiated = false;
2597         msr_info.index = MSR_EFER;
2598         msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2599         ret = kvm_set_msr_common(vcpu, &msr_info);
2600
2601         return kvm_complete_insn_gp(vcpu, ret);
2602 }
2603
2604 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2605 {
2606         msr->data = 0;
2607
2608         switch (msr->index) {
2609         case MSR_F10H_DECFG:
2610                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2611                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2612                 break;
2613         case MSR_IA32_PERF_CAPABILITIES:
2614                 return 0;
2615         default:
2616                 return KVM_MSR_RET_INVALID;
2617         }
2618
2619         return 0;
2620 }
2621
2622 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2623 {
2624         struct vcpu_svm *svm = to_svm(vcpu);
2625
2626         switch (msr_info->index) {
2627         case MSR_STAR:
2628                 msr_info->data = svm->vmcb01.ptr->save.star;
2629                 break;
2630 #ifdef CONFIG_X86_64
2631         case MSR_LSTAR:
2632                 msr_info->data = svm->vmcb01.ptr->save.lstar;
2633                 break;
2634         case MSR_CSTAR:
2635                 msr_info->data = svm->vmcb01.ptr->save.cstar;
2636                 break;
2637         case MSR_KERNEL_GS_BASE:
2638                 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2639                 break;
2640         case MSR_SYSCALL_MASK:
2641                 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2642                 break;
2643 #endif
2644         case MSR_IA32_SYSENTER_CS:
2645                 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2646                 break;
2647         case MSR_IA32_SYSENTER_EIP:
2648                 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2649                 if (guest_cpuid_is_intel(vcpu))
2650                         msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2651                 break;
2652         case MSR_IA32_SYSENTER_ESP:
2653                 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2654                 if (guest_cpuid_is_intel(vcpu))
2655                         msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2656                 break;
2657         case MSR_TSC_AUX:
2658                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2659                         return 1;
2660                 if (!msr_info->host_initiated &&
2661                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2662                         return 1;
2663                 msr_info->data = svm->tsc_aux;
2664                 break;
2665         /*
2666          * Nobody will change the following 5 values in the VMCB so we can
2667          * safely return them on rdmsr. They will always be 0 until LBRV is
2668          * implemented.
2669          */
2670         case MSR_IA32_DEBUGCTLMSR:
2671                 msr_info->data = svm->vmcb->save.dbgctl;
2672                 break;
2673         case MSR_IA32_LASTBRANCHFROMIP:
2674                 msr_info->data = svm->vmcb->save.br_from;
2675                 break;
2676         case MSR_IA32_LASTBRANCHTOIP:
2677                 msr_info->data = svm->vmcb->save.br_to;
2678                 break;
2679         case MSR_IA32_LASTINTFROMIP:
2680                 msr_info->data = svm->vmcb->save.last_excp_from;
2681                 break;
2682         case MSR_IA32_LASTINTTOIP:
2683                 msr_info->data = svm->vmcb->save.last_excp_to;
2684                 break;
2685         case MSR_VM_HSAVE_PA:
2686                 msr_info->data = svm->nested.hsave_msr;
2687                 break;
2688         case MSR_VM_CR:
2689                 msr_info->data = svm->nested.vm_cr_msr;
2690                 break;
2691         case MSR_IA32_SPEC_CTRL:
2692                 if (!msr_info->host_initiated &&
2693                     !guest_has_spec_ctrl_msr(vcpu))
2694                         return 1;
2695
2696                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2697                         msr_info->data = svm->vmcb->save.spec_ctrl;
2698                 else
2699                         msr_info->data = svm->spec_ctrl;
2700                 break;
2701         case MSR_AMD64_VIRT_SPEC_CTRL:
2702                 if (!msr_info->host_initiated &&
2703                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2704                         return 1;
2705
2706                 msr_info->data = svm->virt_spec_ctrl;
2707                 break;
2708         case MSR_F15H_IC_CFG: {
2709
2710                 int family, model;
2711
2712                 family = guest_cpuid_family(vcpu);
2713                 model  = guest_cpuid_model(vcpu);
2714
2715                 if (family < 0 || model < 0)
2716                         return kvm_get_msr_common(vcpu, msr_info);
2717
2718                 msr_info->data = 0;
2719
2720                 if (family == 0x15 &&
2721                     (model >= 0x2 && model < 0x20))
2722                         msr_info->data = 0x1E;
2723                 }
2724                 break;
2725         case MSR_F10H_DECFG:
2726                 msr_info->data = svm->msr_decfg;
2727                 break;
2728         default:
2729                 return kvm_get_msr_common(vcpu, msr_info);
2730         }
2731         return 0;
2732 }
2733
2734 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2735 {
2736         struct vcpu_svm *svm = to_svm(vcpu);
2737         if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->ghcb))
2738                 return kvm_complete_insn_gp(vcpu, err);
2739
2740         ghcb_set_sw_exit_info_1(svm->ghcb, 1);
2741         ghcb_set_sw_exit_info_2(svm->ghcb,
2742                                 X86_TRAP_GP |
2743                                 SVM_EVTINJ_TYPE_EXEPT |
2744                                 SVM_EVTINJ_VALID);
2745         return 1;
2746 }
2747
2748 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2749 {
2750         struct vcpu_svm *svm = to_svm(vcpu);
2751         int svm_dis, chg_mask;
2752
2753         if (data & ~SVM_VM_CR_VALID_MASK)
2754                 return 1;
2755
2756         chg_mask = SVM_VM_CR_VALID_MASK;
2757
2758         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2759                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2760
2761         svm->nested.vm_cr_msr &= ~chg_mask;
2762         svm->nested.vm_cr_msr |= (data & chg_mask);
2763
2764         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2765
2766         /* check for svm_disable while efer.svme is set */
2767         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2768                 return 1;
2769
2770         return 0;
2771 }
2772
2773 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2774 {
2775         struct vcpu_svm *svm = to_svm(vcpu);
2776         int r;
2777
2778         u32 ecx = msr->index;
2779         u64 data = msr->data;
2780         switch (ecx) {
2781         case MSR_IA32_CR_PAT:
2782                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2783                         return 1;
2784                 vcpu->arch.pat = data;
2785                 svm->vmcb01.ptr->save.g_pat = data;
2786                 if (is_guest_mode(vcpu))
2787                         nested_vmcb02_compute_g_pat(svm);
2788                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2789                 break;
2790         case MSR_IA32_SPEC_CTRL:
2791                 if (!msr->host_initiated &&
2792                     !guest_has_spec_ctrl_msr(vcpu))
2793                         return 1;
2794
2795                 if (kvm_spec_ctrl_test_value(data))
2796                         return 1;
2797
2798                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2799                         svm->vmcb->save.spec_ctrl = data;
2800                 else
2801                         svm->spec_ctrl = data;
2802                 if (!data)
2803                         break;
2804
2805                 /*
2806                  * For non-nested:
2807                  * When it's written (to non-zero) for the first time, pass
2808                  * it through.
2809                  *
2810                  * For nested:
2811                  * The handling of the MSR bitmap for L2 guests is done in
2812                  * nested_svm_vmrun_msrpm.
2813                  * We update the L1 MSR bit as well since it will end up
2814                  * touching the MSR anyway now.
2815                  */
2816                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2817                 break;
2818         case MSR_IA32_PRED_CMD:
2819                 if (!msr->host_initiated &&
2820                     !guest_has_pred_cmd_msr(vcpu))
2821                         return 1;
2822
2823                 if (data & ~PRED_CMD_IBPB)
2824                         return 1;
2825                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2826                         return 1;
2827                 if (!data)
2828                         break;
2829
2830                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2831                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2832                 break;
2833         case MSR_AMD64_VIRT_SPEC_CTRL:
2834                 if (!msr->host_initiated &&
2835                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2836                         return 1;
2837
2838                 if (data & ~SPEC_CTRL_SSBD)
2839                         return 1;
2840
2841                 svm->virt_spec_ctrl = data;
2842                 break;
2843         case MSR_STAR:
2844                 svm->vmcb01.ptr->save.star = data;
2845                 break;
2846 #ifdef CONFIG_X86_64
2847         case MSR_LSTAR:
2848                 svm->vmcb01.ptr->save.lstar = data;
2849                 break;
2850         case MSR_CSTAR:
2851                 svm->vmcb01.ptr->save.cstar = data;
2852                 break;
2853         case MSR_KERNEL_GS_BASE:
2854                 svm->vmcb01.ptr->save.kernel_gs_base = data;
2855                 break;
2856         case MSR_SYSCALL_MASK:
2857                 svm->vmcb01.ptr->save.sfmask = data;
2858                 break;
2859 #endif
2860         case MSR_IA32_SYSENTER_CS:
2861                 svm->vmcb01.ptr->save.sysenter_cs = data;
2862                 break;
2863         case MSR_IA32_SYSENTER_EIP:
2864                 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2865                 /*
2866                  * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2867                  * when we spoof an Intel vendor ID (for cross vendor migration).
2868                  * In this case we use this intercept to track the high
2869                  * 32 bit part of these msrs to support Intel's
2870                  * implementation of SYSENTER/SYSEXIT.
2871                  */
2872                 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2873                 break;
2874         case MSR_IA32_SYSENTER_ESP:
2875                 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2876                 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2877                 break;
2878         case MSR_TSC_AUX:
2879                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2880                         return 1;
2881
2882                 if (!msr->host_initiated &&
2883                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2884                         return 1;
2885
2886                 /*
2887                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
2888                  * incomplete and conflicting architectural behavior.  Current
2889                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
2890                  * reserved and always read as zeros.  Emulate AMD CPU behavior
2891                  * to avoid explosions if the vCPU is migrated from an AMD host
2892                  * to an Intel host.
2893                  */
2894                 data = (u32)data;
2895
2896                 /*
2897                  * TSC_AUX is usually changed only during boot and never read
2898                  * directly.  Intercept TSC_AUX instead of exposing it to the
2899                  * guest via direct_access_msrs, and switch it via user return.
2900                  */
2901                 preempt_disable();
2902                 r = kvm_set_user_return_msr(TSC_AUX_URET_SLOT, data, -1ull);
2903                 preempt_enable();
2904                 if (r)
2905                         return 1;
2906
2907                 svm->tsc_aux = data;
2908                 break;
2909         case MSR_IA32_DEBUGCTLMSR:
2910                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2911                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2912                                     __func__, data);
2913                         break;
2914                 }
2915                 if (data & DEBUGCTL_RESERVED_BITS)
2916                         return 1;
2917
2918                 svm->vmcb->save.dbgctl = data;
2919                 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2920                 if (data & (1ULL<<0))
2921                         svm_enable_lbrv(vcpu);
2922                 else
2923                         svm_disable_lbrv(vcpu);
2924                 break;
2925         case MSR_VM_HSAVE_PA:
2926                 svm->nested.hsave_msr = data;
2927                 break;
2928         case MSR_VM_CR:
2929                 return svm_set_vm_cr(vcpu, data);
2930         case MSR_VM_IGNNE:
2931                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2932                 break;
2933         case MSR_F10H_DECFG: {
2934                 struct kvm_msr_entry msr_entry;
2935
2936                 msr_entry.index = msr->index;
2937                 if (svm_get_msr_feature(&msr_entry))
2938                         return 1;
2939
2940                 /* Check the supported bits */
2941                 if (data & ~msr_entry.data)
2942                         return 1;
2943
2944                 /* Don't allow the guest to change a bit, #GP */
2945                 if (!msr->host_initiated && (data ^ msr_entry.data))
2946                         return 1;
2947
2948                 svm->msr_decfg = data;
2949                 break;
2950         }
2951         case MSR_IA32_APICBASE:
2952                 if (kvm_vcpu_apicv_active(vcpu))
2953                         avic_update_vapic_bar(to_svm(vcpu), data);
2954                 fallthrough;
2955         default:
2956                 return kvm_set_msr_common(vcpu, msr);
2957         }
2958         return 0;
2959 }
2960
2961 static int msr_interception(struct kvm_vcpu *vcpu)
2962 {
2963         if (to_svm(vcpu)->vmcb->control.exit_info_1)
2964                 return kvm_emulate_wrmsr(vcpu);
2965         else
2966                 return kvm_emulate_rdmsr(vcpu);
2967 }
2968
2969 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
2970 {
2971         kvm_make_request(KVM_REQ_EVENT, vcpu);
2972         svm_clear_vintr(to_svm(vcpu));
2973
2974         /*
2975          * For AVIC, the only reason to end up here is ExtINTs.
2976          * In this case AVIC was temporarily disabled for
2977          * requesting the IRQ window and we have to re-enable it.
2978          */
2979         svm_toggle_avic_for_irq_window(vcpu, true);
2980
2981         ++vcpu->stat.irq_window_exits;
2982         return 1;
2983 }
2984
2985 static int pause_interception(struct kvm_vcpu *vcpu)
2986 {
2987         bool in_kernel;
2988
2989         /*
2990          * CPL is not made available for an SEV-ES guest, therefore
2991          * vcpu->arch.preempted_in_kernel can never be true.  Just
2992          * set in_kernel to false as well.
2993          */
2994         in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
2995
2996         if (!kvm_pause_in_guest(vcpu->kvm))
2997                 grow_ple_window(vcpu);
2998
2999         kvm_vcpu_on_spin(vcpu, in_kernel);
3000         return kvm_skip_emulated_instruction(vcpu);
3001 }
3002
3003 static int invpcid_interception(struct kvm_vcpu *vcpu)
3004 {
3005         struct vcpu_svm *svm = to_svm(vcpu);
3006         unsigned long type;
3007         gva_t gva;
3008
3009         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3010                 kvm_queue_exception(vcpu, UD_VECTOR);
3011                 return 1;
3012         }
3013
3014         /*
3015          * For an INVPCID intercept:
3016          * EXITINFO1 provides the linear address of the memory operand.
3017          * EXITINFO2 provides the contents of the register operand.
3018          */
3019         type = svm->vmcb->control.exit_info_2;
3020         gva = svm->vmcb->control.exit_info_1;
3021
3022         if (type > 3) {
3023                 kvm_inject_gp(vcpu, 0);
3024                 return 1;
3025         }
3026
3027         return kvm_handle_invpcid(vcpu, type, gva);
3028 }
3029
3030 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3031         [SVM_EXIT_READ_CR0]                     = cr_interception,
3032         [SVM_EXIT_READ_CR3]                     = cr_interception,
3033         [SVM_EXIT_READ_CR4]                     = cr_interception,
3034         [SVM_EXIT_READ_CR8]                     = cr_interception,
3035         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3036         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3037         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3038         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3039         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3040         [SVM_EXIT_READ_DR0]                     = dr_interception,
3041         [SVM_EXIT_READ_DR1]                     = dr_interception,
3042         [SVM_EXIT_READ_DR2]                     = dr_interception,
3043         [SVM_EXIT_READ_DR3]                     = dr_interception,
3044         [SVM_EXIT_READ_DR4]                     = dr_interception,
3045         [SVM_EXIT_READ_DR5]                     = dr_interception,
3046         [SVM_EXIT_READ_DR6]                     = dr_interception,
3047         [SVM_EXIT_READ_DR7]                     = dr_interception,
3048         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3049         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3050         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3051         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3052         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3053         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3054         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3055         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3056         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3057         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3058         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3059         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3060         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3061         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3062         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
3063         [SVM_EXIT_INTR]                         = intr_interception,
3064         [SVM_EXIT_NMI]                          = nmi_interception,
3065         [SVM_EXIT_SMI]                          = kvm_emulate_as_nop,
3066         [SVM_EXIT_INIT]                         = kvm_emulate_as_nop,
3067         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3068         [SVM_EXIT_RDPMC]                        = kvm_emulate_rdpmc,
3069         [SVM_EXIT_CPUID]                        = kvm_emulate_cpuid,
3070         [SVM_EXIT_IRET]                         = iret_interception,
3071         [SVM_EXIT_INVD]                         = kvm_emulate_invd,
3072         [SVM_EXIT_PAUSE]                        = pause_interception,
3073         [SVM_EXIT_HLT]                          = kvm_emulate_halt,
3074         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3075         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3076         [SVM_EXIT_IOIO]                         = io_interception,
3077         [SVM_EXIT_MSR]                          = msr_interception,
3078         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3079         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3080         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3081         [SVM_EXIT_VMMCALL]                      = kvm_emulate_hypercall,
3082         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3083         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3084         [SVM_EXIT_STGI]                         = stgi_interception,
3085         [SVM_EXIT_CLGI]                         = clgi_interception,
3086         [SVM_EXIT_SKINIT]                       = skinit_interception,
3087         [SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3088         [SVM_EXIT_MONITOR]                      = kvm_emulate_monitor,
3089         [SVM_EXIT_MWAIT]                        = kvm_emulate_mwait,
3090         [SVM_EXIT_XSETBV]                       = kvm_emulate_xsetbv,
3091         [SVM_EXIT_RDPRU]                        = kvm_handle_invalid_op,
3092         [SVM_EXIT_EFER_WRITE_TRAP]              = efer_trap,
3093         [SVM_EXIT_CR0_WRITE_TRAP]               = cr_trap,
3094         [SVM_EXIT_CR4_WRITE_TRAP]               = cr_trap,
3095         [SVM_EXIT_CR8_WRITE_TRAP]               = cr_trap,
3096         [SVM_EXIT_INVPCID]                      = invpcid_interception,
3097         [SVM_EXIT_NPF]                          = npf_interception,
3098         [SVM_EXIT_RSM]                          = rsm_interception,
3099         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
3100         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
3101         [SVM_EXIT_VMGEXIT]                      = sev_handle_vmgexit,
3102 };
3103
3104 static void dump_vmcb(struct kvm_vcpu *vcpu)
3105 {
3106         struct vcpu_svm *svm = to_svm(vcpu);
3107         struct vmcb_control_area *control = &svm->vmcb->control;
3108         struct vmcb_save_area *save = &svm->vmcb->save;
3109         struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3110
3111         if (!dump_invalid_vmcb) {
3112                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3113                 return;
3114         }
3115
3116         pr_err("VMCB Control Area:\n");
3117         pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3118         pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3119         pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3120         pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3121         pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3122         pr_err("%-20s%08x %08x\n", "intercepts:",
3123               control->intercepts[INTERCEPT_WORD3],
3124                control->intercepts[INTERCEPT_WORD4]);
3125         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3126         pr_err("%-20s%d\n", "pause filter threshold:",
3127                control->pause_filter_thresh);
3128         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3129         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3130         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3131         pr_err("%-20s%d\n", "asid:", control->asid);
3132         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3133         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3134         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3135         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3136         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3137         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3138         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3139         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3140         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3141         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3142         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3143         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3144         pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3145         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3146         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3147         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3148         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3149         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3150         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3151         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3152         pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3153         pr_err("VMCB State Save Area:\n");
3154         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3155                "es:",
3156                save->es.selector, save->es.attrib,
3157                save->es.limit, save->es.base);
3158         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3159                "cs:",
3160                save->cs.selector, save->cs.attrib,
3161                save->cs.limit, save->cs.base);
3162         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3163                "ss:",
3164                save->ss.selector, save->ss.attrib,
3165                save->ss.limit, save->ss.base);
3166         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3167                "ds:",
3168                save->ds.selector, save->ds.attrib,
3169                save->ds.limit, save->ds.base);
3170         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3171                "fs:",
3172                save01->fs.selector, save01->fs.attrib,
3173                save01->fs.limit, save01->fs.base);
3174         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3175                "gs:",
3176                save01->gs.selector, save01->gs.attrib,
3177                save01->gs.limit, save01->gs.base);
3178         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3179                "gdtr:",
3180                save->gdtr.selector, save->gdtr.attrib,
3181                save->gdtr.limit, save->gdtr.base);
3182         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3183                "ldtr:",
3184                save01->ldtr.selector, save01->ldtr.attrib,
3185                save01->ldtr.limit, save01->ldtr.base);
3186         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3187                "idtr:",
3188                save->idtr.selector, save->idtr.attrib,
3189                save->idtr.limit, save->idtr.base);
3190         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3191                "tr:",
3192                save01->tr.selector, save01->tr.attrib,
3193                save01->tr.limit, save01->tr.base);
3194         pr_err("cpl:            %d                efer:         %016llx\n",
3195                 save->cpl, save->efer);
3196         pr_err("%-15s %016llx %-13s %016llx\n",
3197                "cr0:", save->cr0, "cr2:", save->cr2);
3198         pr_err("%-15s %016llx %-13s %016llx\n",
3199                "cr3:", save->cr3, "cr4:", save->cr4);
3200         pr_err("%-15s %016llx %-13s %016llx\n",
3201                "dr6:", save->dr6, "dr7:", save->dr7);
3202         pr_err("%-15s %016llx %-13s %016llx\n",
3203                "rip:", save->rip, "rflags:", save->rflags);
3204         pr_err("%-15s %016llx %-13s %016llx\n",
3205                "rsp:", save->rsp, "rax:", save->rax);
3206         pr_err("%-15s %016llx %-13s %016llx\n",
3207                "star:", save01->star, "lstar:", save01->lstar);
3208         pr_err("%-15s %016llx %-13s %016llx\n",
3209                "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3210         pr_err("%-15s %016llx %-13s %016llx\n",
3211                "kernel_gs_base:", save01->kernel_gs_base,
3212                "sysenter_cs:", save01->sysenter_cs);
3213         pr_err("%-15s %016llx %-13s %016llx\n",
3214                "sysenter_esp:", save01->sysenter_esp,
3215                "sysenter_eip:", save01->sysenter_eip);
3216         pr_err("%-15s %016llx %-13s %016llx\n",
3217                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3218         pr_err("%-15s %016llx %-13s %016llx\n",
3219                "br_from:", save->br_from, "br_to:", save->br_to);
3220         pr_err("%-15s %016llx %-13s %016llx\n",
3221                "excp_from:", save->last_excp_from,
3222                "excp_to:", save->last_excp_to);
3223 }
3224
3225 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3226 {
3227         if (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3228             svm_exit_handlers[exit_code])
3229                 return 0;
3230
3231         vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3232         dump_vmcb(vcpu);
3233         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3234         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3235         vcpu->run->internal.ndata = 2;
3236         vcpu->run->internal.data[0] = exit_code;
3237         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3238
3239         return -EINVAL;
3240 }
3241
3242 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3243 {
3244         if (svm_handle_invalid_exit(vcpu, exit_code))
3245                 return 0;
3246
3247 #ifdef CONFIG_RETPOLINE
3248         if (exit_code == SVM_EXIT_MSR)
3249                 return msr_interception(vcpu);
3250         else if (exit_code == SVM_EXIT_VINTR)
3251                 return interrupt_window_interception(vcpu);
3252         else if (exit_code == SVM_EXIT_INTR)
3253                 return intr_interception(vcpu);
3254         else if (exit_code == SVM_EXIT_HLT)
3255                 return kvm_emulate_halt(vcpu);
3256         else if (exit_code == SVM_EXIT_NPF)
3257                 return npf_interception(vcpu);
3258 #endif
3259         return svm_exit_handlers[exit_code](vcpu);
3260 }
3261
3262 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3263                               u32 *intr_info, u32 *error_code)
3264 {
3265         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3266
3267         *info1 = control->exit_info_1;
3268         *info2 = control->exit_info_2;
3269         *intr_info = control->exit_int_info;
3270         if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3271             (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3272                 *error_code = control->exit_int_info_err;
3273         else
3274                 *error_code = 0;
3275 }
3276
3277 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3278 {
3279         struct vcpu_svm *svm = to_svm(vcpu);
3280         struct kvm_run *kvm_run = vcpu->run;
3281         u32 exit_code = svm->vmcb->control.exit_code;
3282
3283         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3284
3285         /* SEV-ES guests must use the CR write traps to track CR registers. */
3286         if (!sev_es_guest(vcpu->kvm)) {
3287                 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3288                         vcpu->arch.cr0 = svm->vmcb->save.cr0;
3289                 if (npt_enabled)
3290                         vcpu->arch.cr3 = svm->vmcb->save.cr3;
3291         }
3292
3293         if (is_guest_mode(vcpu)) {
3294                 int vmexit;
3295
3296                 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3297
3298                 vmexit = nested_svm_exit_special(svm);
3299
3300                 if (vmexit == NESTED_EXIT_CONTINUE)
3301                         vmexit = nested_svm_exit_handled(svm);
3302
3303                 if (vmexit == NESTED_EXIT_DONE)
3304                         return 1;
3305         }
3306
3307         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3308                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3309                 kvm_run->fail_entry.hardware_entry_failure_reason
3310                         = svm->vmcb->control.exit_code;
3311                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3312                 dump_vmcb(vcpu);
3313                 return 0;
3314         }
3315
3316         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3317             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3318             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3319             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3320                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3321                        "exit_code 0x%x\n",
3322                        __func__, svm->vmcb->control.exit_int_info,
3323                        exit_code);
3324
3325         if (exit_fastpath != EXIT_FASTPATH_NONE)
3326                 return 1;
3327
3328         return svm_invoke_exit_handler(vcpu, exit_code);
3329 }
3330
3331 static void reload_tss(struct kvm_vcpu *vcpu)
3332 {
3333         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3334
3335         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3336         load_TR_desc();
3337 }
3338
3339 static void pre_svm_run(struct kvm_vcpu *vcpu)
3340 {
3341         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3342         struct vcpu_svm *svm = to_svm(vcpu);
3343
3344         /*
3345          * If the previous vmrun of the vmcb occurred on a different physical
3346          * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3347          * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3348          */
3349         if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3350                 svm->current_vmcb->asid_generation = 0;
3351                 vmcb_mark_all_dirty(svm->vmcb);
3352                 svm->current_vmcb->cpu = vcpu->cpu;
3353         }
3354
3355         if (sev_guest(vcpu->kvm))
3356                 return pre_sev_run(svm, vcpu->cpu);
3357
3358         /* FIXME: handle wraparound of asid_generation */
3359         if (svm->current_vmcb->asid_generation != sd->asid_generation)
3360                 new_asid(svm, sd);
3361 }
3362
3363 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3364 {
3365         struct vcpu_svm *svm = to_svm(vcpu);
3366
3367         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3368         vcpu->arch.hflags |= HF_NMI_MASK;
3369         if (!sev_es_guest(vcpu->kvm))
3370                 svm_set_intercept(svm, INTERCEPT_IRET);
3371         ++vcpu->stat.nmi_injections;
3372 }
3373
3374 static void svm_set_irq(struct kvm_vcpu *vcpu)
3375 {
3376         struct vcpu_svm *svm = to_svm(vcpu);
3377
3378         BUG_ON(!(gif_set(svm)));
3379
3380         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3381         ++vcpu->stat.irq_injections;
3382
3383         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3384                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3385 }
3386
3387 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3388 {
3389         struct vcpu_svm *svm = to_svm(vcpu);
3390
3391         /*
3392          * SEV-ES guests must always keep the CR intercepts cleared. CR
3393          * tracking is done using the CR write traps.
3394          */
3395         if (sev_es_guest(vcpu->kvm))
3396                 return;
3397
3398         if (nested_svm_virtualize_tpr(vcpu))
3399                 return;
3400
3401         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3402
3403         if (irr == -1)
3404                 return;
3405
3406         if (tpr >= irr)
3407                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3408 }
3409
3410 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3411 {
3412         struct vcpu_svm *svm = to_svm(vcpu);
3413         struct vmcb *vmcb = svm->vmcb;
3414         bool ret;
3415
3416         if (!gif_set(svm))
3417                 return true;
3418
3419         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3420                 return false;
3421
3422         ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3423               (vcpu->arch.hflags & HF_NMI_MASK);
3424
3425         return ret;
3426 }
3427
3428 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3429 {
3430         struct vcpu_svm *svm = to_svm(vcpu);
3431         if (svm->nested.nested_run_pending)
3432                 return -EBUSY;
3433
3434         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3435         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3436                 return -EBUSY;
3437
3438         return !svm_nmi_blocked(vcpu);
3439 }
3440
3441 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3442 {
3443         return !!(vcpu->arch.hflags & HF_NMI_MASK);
3444 }
3445
3446 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3447 {
3448         struct vcpu_svm *svm = to_svm(vcpu);
3449
3450         if (masked) {
3451                 vcpu->arch.hflags |= HF_NMI_MASK;
3452                 if (!sev_es_guest(vcpu->kvm))
3453                         svm_set_intercept(svm, INTERCEPT_IRET);
3454         } else {
3455                 vcpu->arch.hflags &= ~HF_NMI_MASK;
3456                 if (!sev_es_guest(vcpu->kvm))
3457                         svm_clr_intercept(svm, INTERCEPT_IRET);
3458         }
3459 }
3460
3461 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3462 {
3463         struct vcpu_svm *svm = to_svm(vcpu);
3464         struct vmcb *vmcb = svm->vmcb;
3465
3466         if (!gif_set(svm))
3467                 return true;
3468
3469         if (sev_es_guest(vcpu->kvm)) {
3470                 /*
3471                  * SEV-ES guests to not expose RFLAGS. Use the VMCB interrupt mask
3472                  * bit to determine the state of the IF flag.
3473                  */
3474                 if (!(vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK))
3475                         return true;
3476         } else if (is_guest_mode(vcpu)) {
3477                 /* As long as interrupts are being delivered...  */
3478                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3479                     ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3480                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3481                         return true;
3482
3483                 /* ... vmexits aren't blocked by the interrupt shadow  */
3484                 if (nested_exit_on_intr(svm))
3485                         return false;
3486         } else {
3487                 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3488                         return true;
3489         }
3490
3491         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3492 }
3493
3494 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3495 {
3496         struct vcpu_svm *svm = to_svm(vcpu);
3497         if (svm->nested.nested_run_pending)
3498                 return -EBUSY;
3499
3500         /*
3501          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3502          * e.g. if the IRQ arrived asynchronously after checking nested events.
3503          */
3504         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3505                 return -EBUSY;
3506
3507         return !svm_interrupt_blocked(vcpu);
3508 }
3509
3510 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3511 {
3512         struct vcpu_svm *svm = to_svm(vcpu);
3513
3514         /*
3515          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3516          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3517          * get that intercept, this function will be called again though and
3518          * we'll get the vintr intercept. However, if the vGIF feature is
3519          * enabled, the STGI interception will not occur. Enable the irq
3520          * window under the assumption that the hardware will set the GIF.
3521          */
3522         if (vgif_enabled(svm) || gif_set(svm)) {
3523                 /*
3524                  * IRQ window is not needed when AVIC is enabled,
3525                  * unless we have pending ExtINT since it cannot be injected
3526                  * via AVIC. In such case, we need to temporarily disable AVIC,
3527                  * and fallback to injecting IRQ via V_IRQ.
3528                  */
3529                 svm_toggle_avic_for_irq_window(vcpu, false);
3530                 svm_set_vintr(svm);
3531         }
3532 }
3533
3534 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3535 {
3536         struct vcpu_svm *svm = to_svm(vcpu);
3537
3538         if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3539                 return; /* IRET will cause a vm exit */
3540
3541         if (!gif_set(svm)) {
3542                 if (vgif_enabled(svm))
3543                         svm_set_intercept(svm, INTERCEPT_STGI);
3544                 return; /* STGI will cause a vm exit */
3545         }
3546
3547         /*
3548          * Something prevents NMI from been injected. Single step over possible
3549          * problem (IRET or exception injection or interrupt shadow)
3550          */
3551         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3552         svm->nmi_singlestep = true;
3553         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3554 }
3555
3556 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3557 {
3558         return 0;
3559 }
3560
3561 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3562 {
3563         return 0;
3564 }
3565
3566 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3567 {
3568         struct vcpu_svm *svm = to_svm(vcpu);
3569
3570         /*
3571          * Flush only the current ASID even if the TLB flush was invoked via
3572          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3573          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3574          * unconditionally does a TLB flush on both nested VM-Enter and nested
3575          * VM-Exit (via kvm_mmu_reset_context()).
3576          */
3577         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3578                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3579         else
3580                 svm->current_vmcb->asid_generation--;
3581 }
3582
3583 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3584 {
3585         struct vcpu_svm *svm = to_svm(vcpu);
3586
3587         invlpga(gva, svm->vmcb->control.asid);
3588 }
3589
3590 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3591 {
3592         struct vcpu_svm *svm = to_svm(vcpu);
3593
3594         if (nested_svm_virtualize_tpr(vcpu))
3595                 return;
3596
3597         if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3598                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3599                 kvm_set_cr8(vcpu, cr8);
3600         }
3601 }
3602
3603 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3604 {
3605         struct vcpu_svm *svm = to_svm(vcpu);
3606         u64 cr8;
3607
3608         if (nested_svm_virtualize_tpr(vcpu) ||
3609             kvm_vcpu_apicv_active(vcpu))
3610                 return;
3611
3612         cr8 = kvm_get_cr8(vcpu);
3613         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3614         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3615 }
3616
3617 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3618 {
3619         struct vcpu_svm *svm = to_svm(vcpu);
3620         u8 vector;
3621         int type;
3622         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3623         unsigned int3_injected = svm->int3_injected;
3624
3625         svm->int3_injected = 0;
3626
3627         /*
3628          * If we've made progress since setting HF_IRET_MASK, we've
3629          * executed an IRET and can allow NMI injection.
3630          */
3631         if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3632             (sev_es_guest(vcpu->kvm) ||
3633              kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3634                 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3635                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3636         }
3637
3638         vcpu->arch.nmi_injected = false;
3639         kvm_clear_exception_queue(vcpu);
3640         kvm_clear_interrupt_queue(vcpu);
3641
3642         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3643                 return;
3644
3645         kvm_make_request(KVM_REQ_EVENT, vcpu);
3646
3647         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3648         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3649
3650         switch (type) {
3651         case SVM_EXITINTINFO_TYPE_NMI:
3652                 vcpu->arch.nmi_injected = true;
3653                 break;
3654         case SVM_EXITINTINFO_TYPE_EXEPT:
3655                 /*
3656                  * Never re-inject a #VC exception.
3657                  */
3658                 if (vector == X86_TRAP_VC)
3659                         break;
3660
3661                 /*
3662                  * In case of software exceptions, do not reinject the vector,
3663                  * but re-execute the instruction instead. Rewind RIP first
3664                  * if we emulated INT3 before.
3665                  */
3666                 if (kvm_exception_is_soft(vector)) {
3667                         if (vector == BP_VECTOR && int3_injected &&
3668                             kvm_is_linear_rip(vcpu, svm->int3_rip))
3669                                 kvm_rip_write(vcpu,
3670                                               kvm_rip_read(vcpu) - int3_injected);
3671                         break;
3672                 }
3673                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3674                         u32 err = svm->vmcb->control.exit_int_info_err;
3675                         kvm_requeue_exception_e(vcpu, vector, err);
3676
3677                 } else
3678                         kvm_requeue_exception(vcpu, vector);
3679                 break;
3680         case SVM_EXITINTINFO_TYPE_INTR:
3681                 kvm_queue_interrupt(vcpu, vector, false);
3682                 break;
3683         default:
3684                 break;
3685         }
3686 }
3687
3688 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3689 {
3690         struct vcpu_svm *svm = to_svm(vcpu);
3691         struct vmcb_control_area *control = &svm->vmcb->control;
3692
3693         control->exit_int_info = control->event_inj;
3694         control->exit_int_info_err = control->event_inj_err;
3695         control->event_inj = 0;
3696         svm_complete_interrupts(vcpu);
3697 }
3698
3699 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3700 {
3701         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3702             to_svm(vcpu)->vmcb->control.exit_info_1)
3703                 return handle_fastpath_set_msr_irqoff(vcpu);
3704
3705         return EXIT_FASTPATH_NONE;
3706 }
3707
3708 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3709 {
3710         struct vcpu_svm *svm = to_svm(vcpu);
3711         unsigned long vmcb_pa = svm->current_vmcb->pa;
3712
3713         /*
3714          * VMENTER enables interrupts (host state), but the kernel state is
3715          * interrupts disabled when this is invoked. Also tell RCU about
3716          * it. This is the same logic as for exit_to_user_mode().
3717          *
3718          * This ensures that e.g. latency analysis on the host observes
3719          * guest mode as interrupt enabled.
3720          *
3721          * guest_enter_irqoff() informs context tracking about the
3722          * transition to guest mode and if enabled adjusts RCU state
3723          * accordingly.
3724          */
3725         instrumentation_begin();
3726         trace_hardirqs_on_prepare();
3727         lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3728         instrumentation_end();
3729
3730         guest_enter_irqoff();
3731         lockdep_hardirqs_on(CALLER_ADDR0);
3732
3733         if (sev_es_guest(vcpu->kvm)) {
3734                 __svm_sev_es_vcpu_run(vmcb_pa);
3735         } else {
3736                 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3737
3738                 /*
3739                  * Use a single vmcb (vmcb01 because it's always valid) for
3740                  * context switching guest state via VMLOAD/VMSAVE, that way
3741                  * the state doesn't need to be copied between vmcb01 and
3742                  * vmcb02 when switching vmcbs for nested virtualization.
3743                  */
3744                 vmload(svm->vmcb01.pa);
3745                 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3746                 vmsave(svm->vmcb01.pa);
3747
3748                 vmload(__sme_page_pa(sd->save_area));
3749         }
3750
3751         /*
3752          * VMEXIT disables interrupts (host state), but tracing and lockdep
3753          * have them in state 'on' as recorded before entering guest mode.
3754          * Same as enter_from_user_mode().
3755          *
3756          * guest_exit_irqoff() restores host context and reinstates RCU if
3757          * enabled and required.
3758          *
3759          * This needs to be done before the below as native_read_msr()
3760          * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3761          * into world and some more.
3762          */
3763         lockdep_hardirqs_off(CALLER_ADDR0);
3764         guest_exit_irqoff();
3765
3766         instrumentation_begin();
3767         trace_hardirqs_off_finish();
3768         instrumentation_end();
3769 }
3770
3771 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3772 {
3773         struct vcpu_svm *svm = to_svm(vcpu);
3774
3775         trace_kvm_entry(vcpu);
3776
3777         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3778         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3779         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3780
3781         /*
3782          * Disable singlestep if we're injecting an interrupt/exception.
3783          * We don't want our modified rflags to be pushed on the stack where
3784          * we might not be able to easily reset them if we disabled NMI
3785          * singlestep later.
3786          */
3787         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3788                 /*
3789                  * Event injection happens before external interrupts cause a
3790                  * vmexit and interrupts are disabled here, so smp_send_reschedule
3791                  * is enough to force an immediate vmexit.
3792                  */
3793                 disable_nmi_singlestep(svm);
3794                 smp_send_reschedule(vcpu->cpu);
3795         }
3796
3797         pre_svm_run(vcpu);
3798
3799         sync_lapic_to_cr8(vcpu);
3800
3801         if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3802                 svm->vmcb->control.asid = svm->asid;
3803                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3804         }
3805         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3806
3807         /*
3808          * Run with all-zero DR6 unless needed, so that we can get the exact cause
3809          * of a #DB.
3810          */
3811         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3812                 svm_set_dr6(svm, vcpu->arch.dr6);
3813         else
3814                 svm_set_dr6(svm, DR6_ACTIVE_LOW);
3815
3816         clgi();
3817         kvm_load_guest_xsave_state(vcpu);
3818
3819         kvm_wait_lapic_expire(vcpu);
3820
3821         /*
3822          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3823          * it's non-zero. Since vmentry is serialising on affected CPUs, there
3824          * is no need to worry about the conditional branch over the wrmsr
3825          * being speculatively taken.
3826          */
3827         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3828                 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3829
3830         svm_vcpu_enter_exit(vcpu);
3831
3832         /*
3833          * We do not use IBRS in the kernel. If this vCPU has used the
3834          * SPEC_CTRL MSR it may have left it on; save the value and
3835          * turn it off. This is much more efficient than blindly adding
3836          * it to the atomic save/restore list. Especially as the former
3837          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3838          *
3839          * For non-nested case:
3840          * If the L01 MSR bitmap does not intercept the MSR, then we need to
3841          * save it.
3842          *
3843          * For nested case:
3844          * If the L02 MSR bitmap does not intercept the MSR, then we need to
3845          * save it.
3846          */
3847         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
3848             unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3849                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3850
3851         if (!sev_es_guest(vcpu->kvm))
3852                 reload_tss(vcpu);
3853
3854         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3855                 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3856
3857         if (!sev_es_guest(vcpu->kvm)) {
3858                 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3859                 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3860                 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3861                 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3862         }
3863
3864         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3865                 kvm_before_interrupt(vcpu);
3866
3867         kvm_load_host_xsave_state(vcpu);
3868         stgi();
3869
3870         /* Any pending NMI will happen here */
3871
3872         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3873                 kvm_after_interrupt(vcpu);
3874
3875         sync_cr8_to_lapic(vcpu);
3876
3877         svm->next_rip = 0;
3878         if (is_guest_mode(vcpu)) {
3879                 nested_sync_control_from_vmcb02(svm);
3880                 svm->nested.nested_run_pending = 0;
3881         }
3882
3883         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3884         vmcb_mark_all_clean(svm->vmcb);
3885
3886         /* if exit due to PF check for async PF */
3887         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3888                 vcpu->arch.apf.host_apf_flags =
3889                         kvm_read_and_reset_apf_flags();
3890
3891         if (npt_enabled) {
3892                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3893                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3894         }
3895
3896         /*
3897          * We need to handle MC intercepts here before the vcpu has a chance to
3898          * change the physical cpu
3899          */
3900         if (unlikely(svm->vmcb->control.exit_code ==
3901                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3902                 svm_handle_mce(vcpu);
3903
3904         svm_complete_interrupts(vcpu);
3905
3906         if (is_guest_mode(vcpu))
3907                 return EXIT_FASTPATH_NONE;
3908
3909         return svm_exit_handlers_fastpath(vcpu);
3910 }
3911
3912 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3913                              int root_level)
3914 {
3915         struct vcpu_svm *svm = to_svm(vcpu);
3916         unsigned long cr3;
3917
3918         if (npt_enabled) {
3919                 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
3920                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3921
3922                 /* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3923                 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3924                         return;
3925                 cr3 = vcpu->arch.cr3;
3926         } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3927                 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
3928         } else {
3929                 /* PCID in the guest should be impossible with a 32-bit MMU. */
3930                 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
3931                 cr3 = root_hpa;
3932         }
3933
3934         svm->vmcb->save.cr3 = cr3;
3935         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3936 }
3937
3938 static int is_disabled(void)
3939 {
3940         u64 vm_cr;
3941
3942         rdmsrl(MSR_VM_CR, vm_cr);
3943         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3944                 return 1;
3945
3946         return 0;
3947 }
3948
3949 static void
3950 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3951 {
3952         /*
3953          * Patch in the VMMCALL instruction:
3954          */
3955         hypercall[0] = 0x0f;
3956         hypercall[1] = 0x01;
3957         hypercall[2] = 0xd9;
3958 }
3959
3960 static int __init svm_check_processor_compat(void)
3961 {
3962         return 0;
3963 }
3964
3965 static bool svm_cpu_has_accelerated_tpr(void)
3966 {
3967         return false;
3968 }
3969
3970 /*
3971  * The kvm parameter can be NULL (module initialization, or invocation before
3972  * VM creation). Be sure to check the kvm parameter before using it.
3973  */
3974 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
3975 {
3976         switch (index) {
3977         case MSR_IA32_MCG_EXT_CTL:
3978         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3979                 return false;
3980         case MSR_IA32_SMBASE:
3981                 /* SEV-ES guests do not support SMM, so report false */
3982                 if (kvm && sev_es_guest(kvm))
3983                         return false;
3984                 break;
3985         default:
3986                 break;
3987         }
3988
3989         return true;
3990 }
3991
3992 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3993 {
3994         return 0;
3995 }
3996
3997 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3998 {
3999         struct vcpu_svm *svm = to_svm(vcpu);
4000         struct kvm_cpuid_entry2 *best;
4001
4002         vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4003                                     boot_cpu_has(X86_FEATURE_XSAVE) &&
4004                                     boot_cpu_has(X86_FEATURE_XSAVES);
4005
4006         /* Update nrips enabled cache */
4007         svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4008                              guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4009
4010         /* Check again if INVPCID interception if required */
4011         svm_check_invpcid(svm);
4012
4013         /* For sev guests, the memory encryption bit is not reserved in CR3.  */
4014         if (sev_guest(vcpu->kvm)) {
4015                 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
4016                 if (best)
4017                         vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4018         }
4019
4020         if (kvm_vcpu_apicv_active(vcpu)) {
4021                 /*
4022                  * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
4023                  * is exposed to the guest, disable AVIC.
4024                  */
4025                 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
4026                         kvm_request_apicv_update(vcpu->kvm, false,
4027                                                  APICV_INHIBIT_REASON_X2APIC);
4028
4029                 /*
4030                  * Currently, AVIC does not work with nested virtualization.
4031                  * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
4032                  */
4033                 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4034                         kvm_request_apicv_update(vcpu->kvm, false,
4035                                                  APICV_INHIBIT_REASON_NESTED);
4036         }
4037
4038         if (guest_cpuid_is_intel(vcpu)) {
4039                 /*
4040                  * We must intercept SYSENTER_EIP and SYSENTER_ESP
4041                  * accesses because the processor only stores 32 bits.
4042                  * For the same reason we cannot use virtual VMLOAD/VMSAVE.
4043                  */
4044                 svm_set_intercept(svm, INTERCEPT_VMLOAD);
4045                 svm_set_intercept(svm, INTERCEPT_VMSAVE);
4046                 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
4047
4048                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
4049                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
4050         } else {
4051                 /*
4052                  * If hardware supports Virtual VMLOAD VMSAVE then enable it
4053                  * in VMCB and clear intercepts to avoid #VMEXIT.
4054                  */
4055                 if (vls) {
4056                         svm_clr_intercept(svm, INTERCEPT_VMLOAD);
4057                         svm_clr_intercept(svm, INTERCEPT_VMSAVE);
4058                         svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
4059                 }
4060                 /* No need to intercept these MSRs */
4061                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
4062                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
4063         }
4064 }
4065
4066 static bool svm_has_wbinvd_exit(void)
4067 {
4068         return true;
4069 }
4070
4071 #define PRE_EX(exit)  { .exit_code = (exit), \
4072                         .stage = X86_ICPT_PRE_EXCEPT, }
4073 #define POST_EX(exit) { .exit_code = (exit), \
4074                         .stage = X86_ICPT_POST_EXCEPT, }
4075 #define POST_MEM(exit) { .exit_code = (exit), \
4076                         .stage = X86_ICPT_POST_MEMACCESS, }
4077
4078 static const struct __x86_intercept {
4079         u32 exit_code;
4080         enum x86_intercept_stage stage;
4081 } x86_intercept_map[] = {
4082         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4083         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4084         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4085         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4086         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4087         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4088         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4089         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4090         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4091         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4092         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4093         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4094         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4095         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4096         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4097         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4098         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4099         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4100         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4101         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4102         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4103         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4104         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4105         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4106         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4107         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4108         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4109         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4110         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4111         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4112         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4113         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4114         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4115         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4116         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4117         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4118         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4119         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4120         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4121         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4122         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4123         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4124         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4125         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4126         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4127         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4128         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
4129 };
4130
4131 #undef PRE_EX
4132 #undef POST_EX
4133 #undef POST_MEM
4134
4135 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4136                                struct x86_instruction_info *info,
4137                                enum x86_intercept_stage stage,
4138                                struct x86_exception *exception)
4139 {
4140         struct vcpu_svm *svm = to_svm(vcpu);
4141         int vmexit, ret = X86EMUL_CONTINUE;
4142         struct __x86_intercept icpt_info;
4143         struct vmcb *vmcb = svm->vmcb;
4144
4145         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4146                 goto out;
4147
4148         icpt_info = x86_intercept_map[info->intercept];
4149
4150         if (stage != icpt_info.stage)
4151                 goto out;
4152
4153         switch (icpt_info.exit_code) {
4154         case SVM_EXIT_READ_CR0:
4155                 if (info->intercept == x86_intercept_cr_read)
4156                         icpt_info.exit_code += info->modrm_reg;
4157                 break;
4158         case SVM_EXIT_WRITE_CR0: {
4159                 unsigned long cr0, val;
4160
4161                 if (info->intercept == x86_intercept_cr_write)
4162                         icpt_info.exit_code += info->modrm_reg;
4163
4164                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4165                     info->intercept == x86_intercept_clts)
4166                         break;
4167
4168                 if (!(vmcb_is_intercept(&svm->nested.ctl,
4169                                         INTERCEPT_SELECTIVE_CR0)))
4170                         break;
4171
4172                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4173                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4174
4175                 if (info->intercept == x86_intercept_lmsw) {
4176                         cr0 &= 0xfUL;
4177                         val &= 0xfUL;
4178                         /* lmsw can't clear PE - catch this here */
4179                         if (cr0 & X86_CR0_PE)
4180                                 val |= X86_CR0_PE;
4181                 }
4182
4183                 if (cr0 ^ val)
4184                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4185
4186                 break;
4187         }
4188         case SVM_EXIT_READ_DR0:
4189         case SVM_EXIT_WRITE_DR0:
4190                 icpt_info.exit_code += info->modrm_reg;
4191                 break;
4192         case SVM_EXIT_MSR:
4193                 if (info->intercept == x86_intercept_wrmsr)
4194                         vmcb->control.exit_info_1 = 1;
4195                 else
4196                         vmcb->control.exit_info_1 = 0;
4197                 break;
4198         case SVM_EXIT_PAUSE:
4199                 /*
4200                  * We get this for NOP only, but pause
4201                  * is rep not, check this here
4202                  */
4203                 if (info->rep_prefix != REPE_PREFIX)
4204                         goto out;
4205                 break;
4206         case SVM_EXIT_IOIO: {
4207                 u64 exit_info;
4208                 u32 bytes;
4209
4210                 if (info->intercept == x86_intercept_in ||
4211                     info->intercept == x86_intercept_ins) {
4212                         exit_info = ((info->src_val & 0xffff) << 16) |
4213                                 SVM_IOIO_TYPE_MASK;
4214                         bytes = info->dst_bytes;
4215                 } else {
4216                         exit_info = (info->dst_val & 0xffff) << 16;
4217                         bytes = info->src_bytes;
4218                 }
4219
4220                 if (info->intercept == x86_intercept_outs ||
4221                     info->intercept == x86_intercept_ins)
4222                         exit_info |= SVM_IOIO_STR_MASK;
4223
4224                 if (info->rep_prefix)
4225                         exit_info |= SVM_IOIO_REP_MASK;
4226
4227                 bytes = min(bytes, 4u);
4228
4229                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4230
4231                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4232
4233                 vmcb->control.exit_info_1 = exit_info;
4234                 vmcb->control.exit_info_2 = info->next_rip;
4235
4236                 break;
4237         }
4238         default:
4239                 break;
4240         }
4241
4242         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4243         if (static_cpu_has(X86_FEATURE_NRIPS))
4244                 vmcb->control.next_rip  = info->next_rip;
4245         vmcb->control.exit_code = icpt_info.exit_code;
4246         vmexit = nested_svm_exit_handled(svm);
4247
4248         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4249                                            : X86EMUL_CONTINUE;
4250
4251 out:
4252         return ret;
4253 }
4254
4255 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4256 {
4257 }
4258
4259 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4260 {
4261         if (!kvm_pause_in_guest(vcpu->kvm))
4262                 shrink_ple_window(vcpu);
4263 }
4264
4265 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4266 {
4267         /* [63:9] are reserved. */
4268         vcpu->arch.mcg_cap &= 0x1ff;
4269 }
4270
4271 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4272 {
4273         struct vcpu_svm *svm = to_svm(vcpu);
4274
4275         /* Per APM Vol.2 15.22.2 "Response to SMI" */
4276         if (!gif_set(svm))
4277                 return true;
4278
4279         return is_smm(vcpu);
4280 }
4281
4282 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4283 {
4284         struct vcpu_svm *svm = to_svm(vcpu);
4285         if (svm->nested.nested_run_pending)
4286                 return -EBUSY;
4287
4288         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4289         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4290                 return -EBUSY;
4291
4292         return !svm_smi_blocked(vcpu);
4293 }
4294
4295 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4296 {
4297         struct vcpu_svm *svm = to_svm(vcpu);
4298         int ret;
4299
4300         if (is_guest_mode(vcpu)) {
4301                 /* FED8h - SVM Guest */
4302                 put_smstate(u64, smstate, 0x7ed8, 1);
4303                 /* FEE0h - SVM Guest VMCB Physical Address */
4304                 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4305
4306                 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4307                 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4308                 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4309
4310                 ret = nested_svm_vmexit(svm);
4311                 if (ret)
4312                         return ret;
4313         }
4314         return 0;
4315 }
4316
4317 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4318 {
4319         struct vcpu_svm *svm = to_svm(vcpu);
4320         struct kvm_host_map map;
4321         int ret = 0;
4322
4323         if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4324                 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4325                 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4326                 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4327
4328                 if (guest) {
4329                         if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4330                                 return 1;
4331
4332                         if (!(saved_efer & EFER_SVME))
4333                                 return 1;
4334
4335                         if (kvm_vcpu_map(vcpu,
4336                                          gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4337                                 return 1;
4338
4339                         if (svm_allocate_nested(svm))
4340                                 return 1;
4341
4342                         ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, map.hva);
4343                         kvm_vcpu_unmap(vcpu, &map, true);
4344                 }
4345         }
4346
4347         return ret;
4348 }
4349
4350 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4351 {
4352         struct vcpu_svm *svm = to_svm(vcpu);
4353
4354         if (!gif_set(svm)) {
4355                 if (vgif_enabled(svm))
4356                         svm_set_intercept(svm, INTERCEPT_STGI);
4357                 /* STGI will cause a vm exit */
4358         } else {
4359                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
4360         }
4361 }
4362
4363 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4364 {
4365         bool smep, smap, is_user;
4366         unsigned long cr4;
4367
4368         /*
4369          * When the guest is an SEV-ES guest, emulation is not possible.
4370          */
4371         if (sev_es_guest(vcpu->kvm))
4372                 return false;
4373
4374         /*
4375          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4376          *
4377          * Errata:
4378          * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4379          * possible that CPU microcode implementing DecodeAssist will fail
4380          * to read bytes of instruction which caused #NPF. In this case,
4381          * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4382          * return 0 instead of the correct guest instruction bytes.
4383          *
4384          * This happens because CPU microcode reading instruction bytes
4385          * uses a special opcode which attempts to read data using CPL=0
4386          * privileges. The microcode reads CS:RIP and if it hits a SMAP
4387          * fault, it gives up and returns no instruction bytes.
4388          *
4389          * Detection:
4390          * We reach here in case CPU supports DecodeAssist, raised #NPF and
4391          * returned 0 in GuestIntrBytes field of the VMCB.
4392          * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4393          * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4394          * in case vCPU CPL==3 (Because otherwise guest would have triggered
4395          * a SMEP fault instead of #NPF).
4396          * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4397          * As most guests enable SMAP if they have also enabled SMEP, use above
4398          * logic in order to attempt minimize false-positive of detecting errata
4399          * while still preserving all cases semantic correctness.
4400          *
4401          * Workaround:
4402          * To determine what instruction the guest was executing, the hypervisor
4403          * will have to decode the instruction at the instruction pointer.
4404          *
4405          * In non SEV guest, hypervisor will be able to read the guest
4406          * memory to decode the instruction pointer when insn_len is zero
4407          * so we return true to indicate that decoding is possible.
4408          *
4409          * But in the SEV guest, the guest memory is encrypted with the
4410          * guest specific key and hypervisor will not be able to decode the
4411          * instruction pointer so we will not able to workaround it. Lets
4412          * print the error and request to kill the guest.
4413          */
4414         if (likely(!insn || insn_len))
4415                 return true;
4416
4417         /*
4418          * If RIP is invalid, go ahead with emulation which will cause an
4419          * internal error exit.
4420          */
4421         if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4422                 return true;
4423
4424         cr4 = kvm_read_cr4(vcpu);
4425         smep = cr4 & X86_CR4_SMEP;
4426         smap = cr4 & X86_CR4_SMAP;
4427         is_user = svm_get_cpl(vcpu) == 3;
4428         if (smap && (!smep || is_user)) {
4429                 if (!sev_guest(vcpu->kvm))
4430                         return true;
4431
4432                 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4433                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4434         }
4435
4436         return false;
4437 }
4438
4439 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4440 {
4441         struct vcpu_svm *svm = to_svm(vcpu);
4442
4443         /*
4444          * TODO: Last condition latch INIT signals on vCPU when
4445          * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4446          * To properly emulate the INIT intercept,
4447          * svm_check_nested_events() should call nested_svm_vmexit()
4448          * if an INIT signal is pending.
4449          */
4450         return !gif_set(svm) ||
4451                    (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4452 }
4453
4454 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4455 {
4456         if (!sev_es_guest(vcpu->kvm))
4457                 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4458
4459         sev_vcpu_deliver_sipi_vector(vcpu, vector);
4460 }
4461
4462 static void svm_vm_destroy(struct kvm *kvm)
4463 {
4464         avic_vm_destroy(kvm);
4465         sev_vm_destroy(kvm);
4466 }
4467
4468 static int svm_vm_init(struct kvm *kvm)
4469 {
4470         if (!pause_filter_count || !pause_filter_thresh)
4471                 kvm->arch.pause_in_guest = true;
4472
4473         if (avic) {
4474                 int ret = avic_vm_init(kvm);
4475                 if (ret)
4476                         return ret;
4477         }
4478
4479         kvm_apicv_init(kvm, avic);
4480         return 0;
4481 }
4482
4483 static struct kvm_x86_ops svm_x86_ops __initdata = {
4484         .hardware_unsetup = svm_hardware_teardown,
4485         .hardware_enable = svm_hardware_enable,
4486         .hardware_disable = svm_hardware_disable,
4487         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4488         .has_emulated_msr = svm_has_emulated_msr,
4489
4490         .vcpu_create = svm_create_vcpu,
4491         .vcpu_free = svm_free_vcpu,
4492         .vcpu_reset = svm_vcpu_reset,
4493
4494         .vm_size = sizeof(struct kvm_svm),
4495         .vm_init = svm_vm_init,
4496         .vm_destroy = svm_vm_destroy,
4497
4498         .prepare_guest_switch = svm_prepare_guest_switch,
4499         .vcpu_load = svm_vcpu_load,
4500         .vcpu_put = svm_vcpu_put,
4501         .vcpu_blocking = svm_vcpu_blocking,
4502         .vcpu_unblocking = svm_vcpu_unblocking,
4503
4504         .update_exception_bitmap = svm_update_exception_bitmap,
4505         .get_msr_feature = svm_get_msr_feature,
4506         .get_msr = svm_get_msr,
4507         .set_msr = svm_set_msr,
4508         .get_segment_base = svm_get_segment_base,
4509         .get_segment = svm_get_segment,
4510         .set_segment = svm_set_segment,
4511         .get_cpl = svm_get_cpl,
4512         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4513         .set_cr0 = svm_set_cr0,
4514         .is_valid_cr4 = svm_is_valid_cr4,
4515         .set_cr4 = svm_set_cr4,
4516         .set_efer = svm_set_efer,
4517         .get_idt = svm_get_idt,
4518         .set_idt = svm_set_idt,
4519         .get_gdt = svm_get_gdt,
4520         .set_gdt = svm_set_gdt,
4521         .set_dr7 = svm_set_dr7,
4522         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4523         .cache_reg = svm_cache_reg,
4524         .get_rflags = svm_get_rflags,
4525         .set_rflags = svm_set_rflags,
4526
4527         .tlb_flush_all = svm_flush_tlb,
4528         .tlb_flush_current = svm_flush_tlb,
4529         .tlb_flush_gva = svm_flush_tlb_gva,
4530         .tlb_flush_guest = svm_flush_tlb,
4531
4532         .run = svm_vcpu_run,
4533         .handle_exit = handle_exit,
4534         .skip_emulated_instruction = skip_emulated_instruction,
4535         .update_emulated_instruction = NULL,
4536         .set_interrupt_shadow = svm_set_interrupt_shadow,
4537         .get_interrupt_shadow = svm_get_interrupt_shadow,
4538         .patch_hypercall = svm_patch_hypercall,
4539         .set_irq = svm_set_irq,
4540         .set_nmi = svm_inject_nmi,
4541         .queue_exception = svm_queue_exception,
4542         .cancel_injection = svm_cancel_injection,
4543         .interrupt_allowed = svm_interrupt_allowed,
4544         .nmi_allowed = svm_nmi_allowed,
4545         .get_nmi_mask = svm_get_nmi_mask,
4546         .set_nmi_mask = svm_set_nmi_mask,
4547         .enable_nmi_window = svm_enable_nmi_window,
4548         .enable_irq_window = svm_enable_irq_window,
4549         .update_cr8_intercept = svm_update_cr8_intercept,
4550         .set_virtual_apic_mode = svm_set_virtual_apic_mode,
4551         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4552         .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4553         .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4554         .load_eoi_exitmap = svm_load_eoi_exitmap,
4555         .hwapic_irr_update = svm_hwapic_irr_update,
4556         .hwapic_isr_update = svm_hwapic_isr_update,
4557         .sync_pir_to_irr = kvm_lapic_find_highest_irr,
4558         .apicv_post_state_restore = avic_post_state_restore,
4559
4560         .set_tss_addr = svm_set_tss_addr,
4561         .set_identity_map_addr = svm_set_identity_map_addr,
4562         .get_mt_mask = svm_get_mt_mask,
4563
4564         .get_exit_info = svm_get_exit_info,
4565
4566         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4567
4568         .has_wbinvd_exit = svm_has_wbinvd_exit,
4569
4570         .write_l1_tsc_offset = svm_write_l1_tsc_offset,
4571
4572         .load_mmu_pgd = svm_load_mmu_pgd,
4573
4574         .check_intercept = svm_check_intercept,
4575         .handle_exit_irqoff = svm_handle_exit_irqoff,
4576
4577         .request_immediate_exit = __kvm_request_immediate_exit,
4578
4579         .sched_in = svm_sched_in,
4580
4581         .pmu_ops = &amd_pmu_ops,
4582         .nested_ops = &svm_nested_ops,
4583
4584         .deliver_posted_interrupt = svm_deliver_avic_intr,
4585         .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4586         .update_pi_irte = svm_update_pi_irte,
4587         .setup_mce = svm_setup_mce,
4588
4589         .smi_allowed = svm_smi_allowed,
4590         .pre_enter_smm = svm_pre_enter_smm,
4591         .pre_leave_smm = svm_pre_leave_smm,
4592         .enable_smi_window = svm_enable_smi_window,
4593
4594         .mem_enc_op = svm_mem_enc_op,
4595         .mem_enc_reg_region = svm_register_enc_region,
4596         .mem_enc_unreg_region = svm_unregister_enc_region,
4597
4598         .vm_copy_enc_context_from = svm_vm_copy_asid_from,
4599
4600         .can_emulate_instruction = svm_can_emulate_instruction,
4601
4602         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4603
4604         .msr_filter_changed = svm_msr_filter_changed,
4605         .complete_emulated_msr = svm_complete_emulated_msr,
4606
4607         .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4608 };
4609
4610 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4611         .cpu_has_kvm_support = has_svm,
4612         .disabled_by_bios = is_disabled,
4613         .hardware_setup = svm_hardware_setup,
4614         .check_processor_compatibility = svm_check_processor_compat,
4615
4616         .runtime_ops = &svm_x86_ops,
4617 };
4618
4619 static int __init svm_init(void)
4620 {
4621         __unused_size_checks();
4622
4623         return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4624                         __alignof__(struct vcpu_svm), THIS_MODULE);
4625 }
4626
4627 static void __exit svm_exit(void)
4628 {
4629         kvm_exit();
4630 }
4631
4632 module_init(svm_init)
4633 module_exit(svm_exit)