Linux 6.0-rc1
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 #include <linux/cc_platform.h>
29
30 #include <asm/apic.h>
31 #include <asm/perf_event.h>
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/debugreg.h>
35 #include <asm/kvm_para.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 #include <asm/traps.h>
40 #include <asm/fpu/api.h>
41
42 #include <asm/virtext.h>
43 #include "trace.h"
44
45 #include "svm.h"
46 #include "svm_ops.h"
47
48 #include "kvm_onhyperv.h"
49 #include "svm_onhyperv.h"
50
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53
54 #ifdef MODULE
55 static const struct x86_cpu_id svm_cpu_id[] = {
56         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
57         {}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
60 #endif
61
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64
65 static bool erratum_383_found __read_mostly;
66
67 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
68
69 /*
70  * Set osvw_len to higher value when updated Revision Guides
71  * are published and we know what the new status bits are
72  */
73 static uint64_t osvw_len = 4, osvw_status;
74
75 static DEFINE_PER_CPU(u64, current_tsc_ratio);
76
77 #define X2APIC_MSR(x)   (APIC_BASE_MSR + (x >> 4))
78
79 static const struct svm_direct_access_msrs {
80         u32 index;   /* Index of the MSR */
81         bool always; /* True if intercept is initially cleared */
82 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
83         { .index = MSR_STAR,                            .always = true  },
84         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
85         { .index = MSR_IA32_SYSENTER_EIP,               .always = false },
86         { .index = MSR_IA32_SYSENTER_ESP,               .always = false },
87 #ifdef CONFIG_X86_64
88         { .index = MSR_GS_BASE,                         .always = true  },
89         { .index = MSR_FS_BASE,                         .always = true  },
90         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
91         { .index = MSR_LSTAR,                           .always = true  },
92         { .index = MSR_CSTAR,                           .always = true  },
93         { .index = MSR_SYSCALL_MASK,                    .always = true  },
94 #endif
95         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
96         { .index = MSR_IA32_PRED_CMD,                   .always = false },
97         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
98         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
99         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
100         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
101         { .index = MSR_EFER,                            .always = false },
102         { .index = MSR_IA32_CR_PAT,                     .always = false },
103         { .index = MSR_AMD64_SEV_ES_GHCB,               .always = true  },
104         { .index = MSR_TSC_AUX,                         .always = false },
105         { .index = X2APIC_MSR(APIC_ID),                 .always = false },
106         { .index = X2APIC_MSR(APIC_LVR),                .always = false },
107         { .index = X2APIC_MSR(APIC_TASKPRI),            .always = false },
108         { .index = X2APIC_MSR(APIC_ARBPRI),             .always = false },
109         { .index = X2APIC_MSR(APIC_PROCPRI),            .always = false },
110         { .index = X2APIC_MSR(APIC_EOI),                .always = false },
111         { .index = X2APIC_MSR(APIC_RRR),                .always = false },
112         { .index = X2APIC_MSR(APIC_LDR),                .always = false },
113         { .index = X2APIC_MSR(APIC_DFR),                .always = false },
114         { .index = X2APIC_MSR(APIC_SPIV),               .always = false },
115         { .index = X2APIC_MSR(APIC_ISR),                .always = false },
116         { .index = X2APIC_MSR(APIC_TMR),                .always = false },
117         { .index = X2APIC_MSR(APIC_IRR),                .always = false },
118         { .index = X2APIC_MSR(APIC_ESR),                .always = false },
119         { .index = X2APIC_MSR(APIC_ICR),                .always = false },
120         { .index = X2APIC_MSR(APIC_ICR2),               .always = false },
121
122         /*
123          * Note:
124          * AMD does not virtualize APIC TSC-deadline timer mode, but it is
125          * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
126          * the AVIC hardware would generate GP fault. Therefore, always
127          * intercept the MSR 0x832, and do not setup direct_access_msr.
128          */
129         { .index = X2APIC_MSR(APIC_LVTTHMR),            .always = false },
130         { .index = X2APIC_MSR(APIC_LVTPC),              .always = false },
131         { .index = X2APIC_MSR(APIC_LVT0),               .always = false },
132         { .index = X2APIC_MSR(APIC_LVT1),               .always = false },
133         { .index = X2APIC_MSR(APIC_LVTERR),             .always = false },
134         { .index = X2APIC_MSR(APIC_TMICT),              .always = false },
135         { .index = X2APIC_MSR(APIC_TMCCT),              .always = false },
136         { .index = X2APIC_MSR(APIC_TDCR),               .always = false },
137         { .index = MSR_INVALID,                         .always = false },
138 };
139
140 /*
141  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
142  * pause_filter_count: On processors that support Pause filtering(indicated
143  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
144  *      count value. On VMRUN this value is loaded into an internal counter.
145  *      Each time a pause instruction is executed, this counter is decremented
146  *      until it reaches zero at which time a #VMEXIT is generated if pause
147  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
148  *      Intercept Filtering for more details.
149  *      This also indicate if ple logic enabled.
150  *
151  * pause_filter_thresh: In addition, some processor families support advanced
152  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
153  *      the amount of time a guest is allowed to execute in a pause loop.
154  *      In this mode, a 16-bit pause filter threshold field is added in the
155  *      VMCB. The threshold value is a cycle count that is used to reset the
156  *      pause counter. As with simple pause filtering, VMRUN loads the pause
157  *      count value from VMCB into an internal counter. Then, on each pause
158  *      instruction the hardware checks the elapsed number of cycles since
159  *      the most recent pause instruction against the pause filter threshold.
160  *      If the elapsed cycle count is greater than the pause filter threshold,
161  *      then the internal pause count is reloaded from the VMCB and execution
162  *      continues. If the elapsed cycle count is less than the pause filter
163  *      threshold, then the internal pause count is decremented. If the count
164  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
165  *      triggered. If advanced pause filtering is supported and pause filter
166  *      threshold field is set to zero, the filter will operate in the simpler,
167  *      count only mode.
168  */
169
170 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
171 module_param(pause_filter_thresh, ushort, 0444);
172
173 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
174 module_param(pause_filter_count, ushort, 0444);
175
176 /* Default doubles per-vcpu window every exit. */
177 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
178 module_param(pause_filter_count_grow, ushort, 0444);
179
180 /* Default resets per-vcpu window every exit to pause_filter_count. */
181 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
182 module_param(pause_filter_count_shrink, ushort, 0444);
183
184 /* Default is to compute the maximum so we can never overflow. */
185 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
186 module_param(pause_filter_count_max, ushort, 0444);
187
188 /*
189  * Use nested page tables by default.  Note, NPT may get forced off by
190  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
191  */
192 bool npt_enabled = true;
193 module_param_named(npt, npt_enabled, bool, 0444);
194
195 /* allow nested virtualization in KVM/SVM */
196 static int nested = true;
197 module_param(nested, int, S_IRUGO);
198
199 /* enable/disable Next RIP Save */
200 static int nrips = true;
201 module_param(nrips, int, 0444);
202
203 /* enable/disable Virtual VMLOAD VMSAVE */
204 static int vls = true;
205 module_param(vls, int, 0444);
206
207 /* enable/disable Virtual GIF */
208 int vgif = true;
209 module_param(vgif, int, 0444);
210
211 /* enable/disable LBR virtualization */
212 static int lbrv = true;
213 module_param(lbrv, int, 0444);
214
215 static int tsc_scaling = true;
216 module_param(tsc_scaling, int, 0444);
217
218 /*
219  * enable / disable AVIC.  Because the defaults differ for APICv
220  * support between VMX and SVM we cannot use module_param_named.
221  */
222 static bool avic;
223 module_param(avic, bool, 0444);
224
225 bool __read_mostly dump_invalid_vmcb;
226 module_param(dump_invalid_vmcb, bool, 0644);
227
228
229 bool intercept_smi = true;
230 module_param(intercept_smi, bool, 0444);
231
232
233 static bool svm_gp_erratum_intercept = true;
234
235 static u8 rsm_ins_bytes[] = "\x0f\xaa";
236
237 static unsigned long iopm_base;
238
239 struct kvm_ldttss_desc {
240         u16 limit0;
241         u16 base0;
242         unsigned base1:8, type:5, dpl:2, p:1;
243         unsigned limit1:4, zero0:3, g:1, base2:8;
244         u32 base3;
245         u32 zero1;
246 } __attribute__((packed));
247
248 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
249
250 /*
251  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
252  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
253  *
254  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
255  * defer the restoration of TSC_AUX until the CPU returns to userspace.
256  */
257 static int tsc_aux_uret_slot __read_mostly = -1;
258
259 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
260
261 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
262 #define MSRS_RANGE_SIZE 2048
263 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
264
265 u32 svm_msrpm_offset(u32 msr)
266 {
267         u32 offset;
268         int i;
269
270         for (i = 0; i < NUM_MSR_MAPS; i++) {
271                 if (msr < msrpm_ranges[i] ||
272                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
273                         continue;
274
275                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
276                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
277
278                 /* Now we have the u8 offset - but need the u32 offset */
279                 return offset / 4;
280         }
281
282         /* MSR not in any range */
283         return MSR_INVALID;
284 }
285
286 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
287
288 static int get_npt_level(void)
289 {
290 #ifdef CONFIG_X86_64
291         return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
292 #else
293         return PT32E_ROOT_LEVEL;
294 #endif
295 }
296
297 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
298 {
299         struct vcpu_svm *svm = to_svm(vcpu);
300         u64 old_efer = vcpu->arch.efer;
301         vcpu->arch.efer = efer;
302
303         if (!npt_enabled) {
304                 /* Shadow paging assumes NX to be available.  */
305                 efer |= EFER_NX;
306
307                 if (!(efer & EFER_LMA))
308                         efer &= ~EFER_LME;
309         }
310
311         if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
312                 if (!(efer & EFER_SVME)) {
313                         svm_leave_nested(vcpu);
314                         svm_set_gif(svm, true);
315                         /* #GP intercept is still needed for vmware backdoor */
316                         if (!enable_vmware_backdoor)
317                                 clr_exception_intercept(svm, GP_VECTOR);
318
319                         /*
320                          * Free the nested guest state, unless we are in SMM.
321                          * In this case we will return to the nested guest
322                          * as soon as we leave SMM.
323                          */
324                         if (!is_smm(vcpu))
325                                 svm_free_nested(svm);
326
327                 } else {
328                         int ret = svm_allocate_nested(svm);
329
330                         if (ret) {
331                                 vcpu->arch.efer = old_efer;
332                                 return ret;
333                         }
334
335                         /*
336                          * Never intercept #GP for SEV guests, KVM can't
337                          * decrypt guest memory to workaround the erratum.
338                          */
339                         if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
340                                 set_exception_intercept(svm, GP_VECTOR);
341                 }
342         }
343
344         svm->vmcb->save.efer = efer | EFER_SVME;
345         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
346         return 0;
347 }
348
349 static int is_external_interrupt(u32 info)
350 {
351         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
352         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
353 }
354
355 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
356 {
357         struct vcpu_svm *svm = to_svm(vcpu);
358         u32 ret = 0;
359
360         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
361                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
362         return ret;
363 }
364
365 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
366 {
367         struct vcpu_svm *svm = to_svm(vcpu);
368
369         if (mask == 0)
370                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
371         else
372                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
373
374 }
375
376 static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
377                                            bool commit_side_effects)
378 {
379         struct vcpu_svm *svm = to_svm(vcpu);
380         unsigned long old_rflags;
381
382         /*
383          * SEV-ES does not expose the next RIP. The RIP update is controlled by
384          * the type of exit and the #VC handler in the guest.
385          */
386         if (sev_es_guest(vcpu->kvm))
387                 goto done;
388
389         if (nrips && svm->vmcb->control.next_rip != 0) {
390                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
391                 svm->next_rip = svm->vmcb->control.next_rip;
392         }
393
394         if (!svm->next_rip) {
395                 if (unlikely(!commit_side_effects))
396                         old_rflags = svm->vmcb->save.rflags;
397
398                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
399                         return 0;
400
401                 if (unlikely(!commit_side_effects))
402                         svm->vmcb->save.rflags = old_rflags;
403         } else {
404                 kvm_rip_write(vcpu, svm->next_rip);
405         }
406
407 done:
408         if (likely(commit_side_effects))
409                 svm_set_interrupt_shadow(vcpu, 0);
410
411         return 1;
412 }
413
414 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
415 {
416         return __svm_skip_emulated_instruction(vcpu, true);
417 }
418
419 static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
420 {
421         unsigned long rip, old_rip = kvm_rip_read(vcpu);
422         struct vcpu_svm *svm = to_svm(vcpu);
423
424         /*
425          * Due to architectural shortcomings, the CPU doesn't always provide
426          * NextRIP, e.g. if KVM intercepted an exception that occurred while
427          * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
428          * the instruction even if NextRIP is supported to acquire the next
429          * RIP so that it can be shoved into the NextRIP field, otherwise
430          * hardware will fail to advance guest RIP during event injection.
431          * Drop the exception/interrupt if emulation fails and effectively
432          * retry the instruction, it's the least awful option.  If NRIPS is
433          * in use, the skip must not commit any side effects such as clearing
434          * the interrupt shadow or RFLAGS.RF.
435          */
436         if (!__svm_skip_emulated_instruction(vcpu, !nrips))
437                 return -EIO;
438
439         rip = kvm_rip_read(vcpu);
440
441         /*
442          * Save the injection information, even when using next_rip, as the
443          * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
444          * doesn't complete due to a VM-Exit occurring while the CPU is
445          * vectoring the event.   Decoding the instruction isn't guaranteed to
446          * work as there may be no backing instruction, e.g. if the event is
447          * being injected by L1 for L2, or if the guest is patching INT3 into
448          * a different instruction.
449          */
450         svm->soft_int_injected = true;
451         svm->soft_int_csbase = svm->vmcb->save.cs.base;
452         svm->soft_int_old_rip = old_rip;
453         svm->soft_int_next_rip = rip;
454
455         if (nrips)
456                 kvm_rip_write(vcpu, old_rip);
457
458         if (static_cpu_has(X86_FEATURE_NRIPS))
459                 svm->vmcb->control.next_rip = rip;
460
461         return 0;
462 }
463
464 static void svm_queue_exception(struct kvm_vcpu *vcpu)
465 {
466         struct vcpu_svm *svm = to_svm(vcpu);
467         unsigned nr = vcpu->arch.exception.nr;
468         bool has_error_code = vcpu->arch.exception.has_error_code;
469         u32 error_code = vcpu->arch.exception.error_code;
470
471         kvm_deliver_exception_payload(vcpu);
472
473         if (kvm_exception_is_soft(nr) &&
474             svm_update_soft_interrupt_rip(vcpu))
475                 return;
476
477         svm->vmcb->control.event_inj = nr
478                 | SVM_EVTINJ_VALID
479                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
480                 | SVM_EVTINJ_TYPE_EXEPT;
481         svm->vmcb->control.event_inj_err = error_code;
482 }
483
484 static void svm_init_erratum_383(void)
485 {
486         u32 low, high;
487         int err;
488         u64 val;
489
490         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
491                 return;
492
493         /* Use _safe variants to not break nested virtualization */
494         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
495         if (err)
496                 return;
497
498         val |= (1ULL << 47);
499
500         low  = lower_32_bits(val);
501         high = upper_32_bits(val);
502
503         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
504
505         erratum_383_found = true;
506 }
507
508 static void svm_init_osvw(struct kvm_vcpu *vcpu)
509 {
510         /*
511          * Guests should see errata 400 and 415 as fixed (assuming that
512          * HLT and IO instructions are intercepted).
513          */
514         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
515         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
516
517         /*
518          * By increasing VCPU's osvw.length to 3 we are telling the guest that
519          * all osvw.status bits inside that length, including bit 0 (which is
520          * reserved for erratum 298), are valid. However, if host processor's
521          * osvw_len is 0 then osvw_status[0] carries no information. We need to
522          * be conservative here and therefore we tell the guest that erratum 298
523          * is present (because we really don't know).
524          */
525         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
526                 vcpu->arch.osvw.status |= 1;
527 }
528
529 static int has_svm(void)
530 {
531         const char *msg;
532
533         if (!cpu_has_svm(&msg)) {
534                 printk(KERN_INFO "has_svm: %s\n", msg);
535                 return 0;
536         }
537
538         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
539                 pr_info("KVM is unsupported when running as an SEV guest\n");
540                 return 0;
541         }
542
543         return 1;
544 }
545
546 void __svm_write_tsc_multiplier(u64 multiplier)
547 {
548         preempt_disable();
549
550         if (multiplier == __this_cpu_read(current_tsc_ratio))
551                 goto out;
552
553         wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
554         __this_cpu_write(current_tsc_ratio, multiplier);
555 out:
556         preempt_enable();
557 }
558
559 static void svm_hardware_disable(void)
560 {
561         /* Make sure we clean up behind us */
562         if (tsc_scaling)
563                 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
564
565         cpu_svm_disable();
566
567         amd_pmu_disable_virt();
568 }
569
570 static int svm_hardware_enable(void)
571 {
572
573         struct svm_cpu_data *sd;
574         uint64_t efer;
575         struct desc_struct *gdt;
576         int me = raw_smp_processor_id();
577
578         rdmsrl(MSR_EFER, efer);
579         if (efer & EFER_SVME)
580                 return -EBUSY;
581
582         if (!has_svm()) {
583                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
584                 return -EINVAL;
585         }
586         sd = per_cpu(svm_data, me);
587         if (!sd) {
588                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
589                 return -EINVAL;
590         }
591
592         sd->asid_generation = 1;
593         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
594         sd->next_asid = sd->max_asid + 1;
595         sd->min_asid = max_sev_asid + 1;
596
597         gdt = get_current_gdt_rw();
598         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
599
600         wrmsrl(MSR_EFER, efer | EFER_SVME);
601
602         wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
603
604         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
605                 /*
606                  * Set the default value, even if we don't use TSC scaling
607                  * to avoid having stale value in the msr
608                  */
609                 __svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
610         }
611
612
613         /*
614          * Get OSVW bits.
615          *
616          * Note that it is possible to have a system with mixed processor
617          * revisions and therefore different OSVW bits. If bits are not the same
618          * on different processors then choose the worst case (i.e. if erratum
619          * is present on one processor and not on another then assume that the
620          * erratum is present everywhere).
621          */
622         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
623                 uint64_t len, status = 0;
624                 int err;
625
626                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
627                 if (!err)
628                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
629                                                       &err);
630
631                 if (err)
632                         osvw_status = osvw_len = 0;
633                 else {
634                         if (len < osvw_len)
635                                 osvw_len = len;
636                         osvw_status |= status;
637                         osvw_status &= (1ULL << osvw_len) - 1;
638                 }
639         } else
640                 osvw_status = osvw_len = 0;
641
642         svm_init_erratum_383();
643
644         amd_pmu_enable_virt();
645
646         return 0;
647 }
648
649 static void svm_cpu_uninit(int cpu)
650 {
651         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
652
653         if (!sd)
654                 return;
655
656         per_cpu(svm_data, cpu) = NULL;
657         kfree(sd->sev_vmcbs);
658         __free_page(sd->save_area);
659         kfree(sd);
660 }
661
662 static int svm_cpu_init(int cpu)
663 {
664         struct svm_cpu_data *sd;
665         int ret = -ENOMEM;
666
667         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
668         if (!sd)
669                 return ret;
670         sd->cpu = cpu;
671         sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
672         if (!sd->save_area)
673                 goto free_cpu_data;
674
675         ret = sev_cpu_init(sd);
676         if (ret)
677                 goto free_save_area;
678
679         per_cpu(svm_data, cpu) = sd;
680
681         return 0;
682
683 free_save_area:
684         __free_page(sd->save_area);
685 free_cpu_data:
686         kfree(sd);
687         return ret;
688
689 }
690
691 static int direct_access_msr_slot(u32 msr)
692 {
693         u32 i;
694
695         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
696                 if (direct_access_msrs[i].index == msr)
697                         return i;
698
699         return -ENOENT;
700 }
701
702 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
703                                      int write)
704 {
705         struct vcpu_svm *svm = to_svm(vcpu);
706         int slot = direct_access_msr_slot(msr);
707
708         if (slot == -ENOENT)
709                 return;
710
711         /* Set the shadow bitmaps to the desired intercept states */
712         if (read)
713                 set_bit(slot, svm->shadow_msr_intercept.read);
714         else
715                 clear_bit(slot, svm->shadow_msr_intercept.read);
716
717         if (write)
718                 set_bit(slot, svm->shadow_msr_intercept.write);
719         else
720                 clear_bit(slot, svm->shadow_msr_intercept.write);
721 }
722
723 static bool valid_msr_intercept(u32 index)
724 {
725         return direct_access_msr_slot(index) != -ENOENT;
726 }
727
728 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
729 {
730         u8 bit_write;
731         unsigned long tmp;
732         u32 offset;
733         u32 *msrpm;
734
735         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
736                                       to_svm(vcpu)->msrpm;
737
738         offset    = svm_msrpm_offset(msr);
739         bit_write = 2 * (msr & 0x0f) + 1;
740         tmp       = msrpm[offset];
741
742         BUG_ON(offset == MSR_INVALID);
743
744         return !!test_bit(bit_write,  &tmp);
745 }
746
747 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
748                                         u32 msr, int read, int write)
749 {
750         struct vcpu_svm *svm = to_svm(vcpu);
751         u8 bit_read, bit_write;
752         unsigned long tmp;
753         u32 offset;
754
755         /*
756          * If this warning triggers extend the direct_access_msrs list at the
757          * beginning of the file
758          */
759         WARN_ON(!valid_msr_intercept(msr));
760
761         /* Enforce non allowed MSRs to trap */
762         if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
763                 read = 0;
764
765         if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
766                 write = 0;
767
768         offset    = svm_msrpm_offset(msr);
769         bit_read  = 2 * (msr & 0x0f);
770         bit_write = 2 * (msr & 0x0f) + 1;
771         tmp       = msrpm[offset];
772
773         BUG_ON(offset == MSR_INVALID);
774
775         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
776         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
777
778         msrpm[offset] = tmp;
779
780         svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
781         svm->nested.force_msr_bitmap_recalc = true;
782 }
783
784 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
785                           int read, int write)
786 {
787         set_shadow_msr_intercept(vcpu, msr, read, write);
788         set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
789 }
790
791 u32 *svm_vcpu_alloc_msrpm(void)
792 {
793         unsigned int order = get_order(MSRPM_SIZE);
794         struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
795         u32 *msrpm;
796
797         if (!pages)
798                 return NULL;
799
800         msrpm = page_address(pages);
801         memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
802
803         return msrpm;
804 }
805
806 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
807 {
808         int i;
809
810         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
811                 if (!direct_access_msrs[i].always)
812                         continue;
813                 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
814         }
815 }
816
817 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
818 {
819         int i;
820
821         if (intercept == svm->x2avic_msrs_intercepted)
822                 return;
823
824         if (avic_mode != AVIC_MODE_X2 ||
825             !apic_x2apic_mode(svm->vcpu.arch.apic))
826                 return;
827
828         for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
829                 int index = direct_access_msrs[i].index;
830
831                 if ((index < APIC_BASE_MSR) ||
832                     (index > APIC_BASE_MSR + 0xff))
833                         continue;
834                 set_msr_interception(&svm->vcpu, svm->msrpm, index,
835                                      !intercept, !intercept);
836         }
837
838         svm->x2avic_msrs_intercepted = intercept;
839 }
840
841 void svm_vcpu_free_msrpm(u32 *msrpm)
842 {
843         __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
844 }
845
846 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
847 {
848         struct vcpu_svm *svm = to_svm(vcpu);
849         u32 i;
850
851         /*
852          * Set intercept permissions for all direct access MSRs again. They
853          * will automatically get filtered through the MSR filter, so we are
854          * back in sync after this.
855          */
856         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
857                 u32 msr = direct_access_msrs[i].index;
858                 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
859                 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
860
861                 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
862         }
863 }
864
865 static void add_msr_offset(u32 offset)
866 {
867         int i;
868
869         for (i = 0; i < MSRPM_OFFSETS; ++i) {
870
871                 /* Offset already in list? */
872                 if (msrpm_offsets[i] == offset)
873                         return;
874
875                 /* Slot used by another offset? */
876                 if (msrpm_offsets[i] != MSR_INVALID)
877                         continue;
878
879                 /* Add offset to list */
880                 msrpm_offsets[i] = offset;
881
882                 return;
883         }
884
885         /*
886          * If this BUG triggers the msrpm_offsets table has an overflow. Just
887          * increase MSRPM_OFFSETS in this case.
888          */
889         BUG();
890 }
891
892 static void init_msrpm_offsets(void)
893 {
894         int i;
895
896         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
897
898         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
899                 u32 offset;
900
901                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
902                 BUG_ON(offset == MSR_INVALID);
903
904                 add_msr_offset(offset);
905         }
906 }
907
908 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
909 {
910         to_vmcb->save.dbgctl            = from_vmcb->save.dbgctl;
911         to_vmcb->save.br_from           = from_vmcb->save.br_from;
912         to_vmcb->save.br_to             = from_vmcb->save.br_to;
913         to_vmcb->save.last_excp_from    = from_vmcb->save.last_excp_from;
914         to_vmcb->save.last_excp_to      = from_vmcb->save.last_excp_to;
915
916         vmcb_mark_dirty(to_vmcb, VMCB_LBR);
917 }
918
919 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
920 {
921         struct vcpu_svm *svm = to_svm(vcpu);
922
923         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
924         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
925         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
926         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
927         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
928
929         /* Move the LBR msrs to the vmcb02 so that the guest can see them. */
930         if (is_guest_mode(vcpu))
931                 svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
932 }
933
934 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
935 {
936         struct vcpu_svm *svm = to_svm(vcpu);
937
938         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
939         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
940         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
941         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
942         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
943
944         /*
945          * Move the LBR msrs back to the vmcb01 to avoid copying them
946          * on nested guest entries.
947          */
948         if (is_guest_mode(vcpu))
949                 svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
950 }
951
952 static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index)
953 {
954         /*
955          * If the LBR virtualization is disabled, the LBR msrs are always
956          * kept in the vmcb01 to avoid copying them on nested guest entries.
957          *
958          * If nested, and the LBR virtualization is enabled/disabled, the msrs
959          * are moved between the vmcb01 and vmcb02 as needed.
960          */
961         struct vmcb *vmcb =
962                 (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ?
963                         svm->vmcb : svm->vmcb01.ptr;
964
965         switch (index) {
966         case MSR_IA32_DEBUGCTLMSR:
967                 return vmcb->save.dbgctl;
968         case MSR_IA32_LASTBRANCHFROMIP:
969                 return vmcb->save.br_from;
970         case MSR_IA32_LASTBRANCHTOIP:
971                 return vmcb->save.br_to;
972         case MSR_IA32_LASTINTFROMIP:
973                 return vmcb->save.last_excp_from;
974         case MSR_IA32_LASTINTTOIP:
975                 return vmcb->save.last_excp_to;
976         default:
977                 KVM_BUG(false, svm->vcpu.kvm,
978                         "%s: Unknown MSR 0x%x", __func__, index);
979                 return 0;
980         }
981 }
982
983 void svm_update_lbrv(struct kvm_vcpu *vcpu)
984 {
985         struct vcpu_svm *svm = to_svm(vcpu);
986
987         bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) &
988                                            DEBUGCTLMSR_LBR;
989
990         bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext &
991                                       LBR_CTL_ENABLE_MASK);
992
993         if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled))
994                 if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))
995                         enable_lbrv = true;
996
997         if (enable_lbrv == current_enable_lbrv)
998                 return;
999
1000         if (enable_lbrv)
1001                 svm_enable_lbrv(vcpu);
1002         else
1003                 svm_disable_lbrv(vcpu);
1004 }
1005
1006 void disable_nmi_singlestep(struct vcpu_svm *svm)
1007 {
1008         svm->nmi_singlestep = false;
1009
1010         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1011                 /* Clear our flags if they were not set by the guest */
1012                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1013                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1014                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1015                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1016         }
1017 }
1018
1019 static void grow_ple_window(struct kvm_vcpu *vcpu)
1020 {
1021         struct vcpu_svm *svm = to_svm(vcpu);
1022         struct vmcb_control_area *control = &svm->vmcb->control;
1023         int old = control->pause_filter_count;
1024
1025         if (kvm_pause_in_guest(vcpu->kvm))
1026                 return;
1027
1028         control->pause_filter_count = __grow_ple_window(old,
1029                                                         pause_filter_count,
1030                                                         pause_filter_count_grow,
1031                                                         pause_filter_count_max);
1032
1033         if (control->pause_filter_count != old) {
1034                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1035                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1036                                             control->pause_filter_count, old);
1037         }
1038 }
1039
1040 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1041 {
1042         struct vcpu_svm *svm = to_svm(vcpu);
1043         struct vmcb_control_area *control = &svm->vmcb->control;
1044         int old = control->pause_filter_count;
1045
1046         if (kvm_pause_in_guest(vcpu->kvm))
1047                 return;
1048
1049         control->pause_filter_count =
1050                                 __shrink_ple_window(old,
1051                                                     pause_filter_count,
1052                                                     pause_filter_count_shrink,
1053                                                     pause_filter_count);
1054         if (control->pause_filter_count != old) {
1055                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1056                 trace_kvm_ple_window_update(vcpu->vcpu_id,
1057                                             control->pause_filter_count, old);
1058         }
1059 }
1060
1061 static void svm_hardware_unsetup(void)
1062 {
1063         int cpu;
1064
1065         sev_hardware_unsetup();
1066
1067         for_each_possible_cpu(cpu)
1068                 svm_cpu_uninit(cpu);
1069
1070         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1071         get_order(IOPM_SIZE));
1072         iopm_base = 0;
1073 }
1074
1075 static void init_seg(struct vmcb_seg *seg)
1076 {
1077         seg->selector = 0;
1078         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1079                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1080         seg->limit = 0xffff;
1081         seg->base = 0;
1082 }
1083
1084 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1085 {
1086         seg->selector = 0;
1087         seg->attrib = SVM_SELECTOR_P_MASK | type;
1088         seg->limit = 0xffff;
1089         seg->base = 0;
1090 }
1091
1092 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1093 {
1094         struct vcpu_svm *svm = to_svm(vcpu);
1095
1096         return svm->nested.ctl.tsc_offset;
1097 }
1098
1099 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1100 {
1101         struct vcpu_svm *svm = to_svm(vcpu);
1102
1103         return svm->tsc_ratio_msr;
1104 }
1105
1106 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1107 {
1108         struct vcpu_svm *svm = to_svm(vcpu);
1109
1110         svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1111         svm->vmcb->control.tsc_offset = offset;
1112         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1113 }
1114
1115 static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1116 {
1117         __svm_write_tsc_multiplier(multiplier);
1118 }
1119
1120
1121 /* Evaluate instruction intercepts that depend on guest CPUID features. */
1122 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1123                                               struct vcpu_svm *svm)
1124 {
1125         /*
1126          * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1127          * roots, or if INVPCID is disabled in the guest to inject #UD.
1128          */
1129         if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1130                 if (!npt_enabled ||
1131                     !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1132                         svm_set_intercept(svm, INTERCEPT_INVPCID);
1133                 else
1134                         svm_clr_intercept(svm, INTERCEPT_INVPCID);
1135         }
1136
1137         if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1138                 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1139                         svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1140                 else
1141                         svm_set_intercept(svm, INTERCEPT_RDTSCP);
1142         }
1143 }
1144
1145 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1146 {
1147         struct vcpu_svm *svm = to_svm(vcpu);
1148
1149         if (guest_cpuid_is_intel(vcpu)) {
1150                 /*
1151                  * We must intercept SYSENTER_EIP and SYSENTER_ESP
1152                  * accesses because the processor only stores 32 bits.
1153                  * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1154                  */
1155                 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1156                 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1157                 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1158
1159                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1160                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1161
1162                 svm->v_vmload_vmsave_enabled = false;
1163         } else {
1164                 /*
1165                  * If hardware supports Virtual VMLOAD VMSAVE then enable it
1166                  * in VMCB and clear intercepts to avoid #VMEXIT.
1167                  */
1168                 if (vls) {
1169                         svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1170                         svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1171                         svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1172                 }
1173                 /* No need to intercept these MSRs */
1174                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1175                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1176         }
1177 }
1178
1179 static void init_vmcb(struct kvm_vcpu *vcpu)
1180 {
1181         struct vcpu_svm *svm = to_svm(vcpu);
1182         struct vmcb *vmcb = svm->vmcb01.ptr;
1183         struct vmcb_control_area *control = &vmcb->control;
1184         struct vmcb_save_area *save = &vmcb->save;
1185
1186         svm_set_intercept(svm, INTERCEPT_CR0_READ);
1187         svm_set_intercept(svm, INTERCEPT_CR3_READ);
1188         svm_set_intercept(svm, INTERCEPT_CR4_READ);
1189         svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1190         svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1191         svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1192         if (!kvm_vcpu_apicv_active(vcpu))
1193                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1194
1195         set_dr_intercepts(svm);
1196
1197         set_exception_intercept(svm, PF_VECTOR);
1198         set_exception_intercept(svm, UD_VECTOR);
1199         set_exception_intercept(svm, MC_VECTOR);
1200         set_exception_intercept(svm, AC_VECTOR);
1201         set_exception_intercept(svm, DB_VECTOR);
1202         /*
1203          * Guest access to VMware backdoor ports could legitimately
1204          * trigger #GP because of TSS I/O permission bitmap.
1205          * We intercept those #GP and allow access to them anyway
1206          * as VMware does.  Don't intercept #GP for SEV guests as KVM can't
1207          * decrypt guest memory to decode the faulting instruction.
1208          */
1209         if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1210                 set_exception_intercept(svm, GP_VECTOR);
1211
1212         svm_set_intercept(svm, INTERCEPT_INTR);
1213         svm_set_intercept(svm, INTERCEPT_NMI);
1214
1215         if (intercept_smi)
1216                 svm_set_intercept(svm, INTERCEPT_SMI);
1217
1218         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1219         svm_set_intercept(svm, INTERCEPT_RDPMC);
1220         svm_set_intercept(svm, INTERCEPT_CPUID);
1221         svm_set_intercept(svm, INTERCEPT_INVD);
1222         svm_set_intercept(svm, INTERCEPT_INVLPG);
1223         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1224         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1225         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1226         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1227         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1228         svm_set_intercept(svm, INTERCEPT_VMRUN);
1229         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1230         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1231         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1232         svm_set_intercept(svm, INTERCEPT_STGI);
1233         svm_set_intercept(svm, INTERCEPT_CLGI);
1234         svm_set_intercept(svm, INTERCEPT_SKINIT);
1235         svm_set_intercept(svm, INTERCEPT_WBINVD);
1236         svm_set_intercept(svm, INTERCEPT_XSETBV);
1237         svm_set_intercept(svm, INTERCEPT_RDPRU);
1238         svm_set_intercept(svm, INTERCEPT_RSM);
1239
1240         if (!kvm_mwait_in_guest(vcpu->kvm)) {
1241                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1242                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1243         }
1244
1245         if (!kvm_hlt_in_guest(vcpu->kvm))
1246                 svm_set_intercept(svm, INTERCEPT_HLT);
1247
1248         control->iopm_base_pa = __sme_set(iopm_base);
1249         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1250         control->int_ctl = V_INTR_MASKING_MASK;
1251
1252         init_seg(&save->es);
1253         init_seg(&save->ss);
1254         init_seg(&save->ds);
1255         init_seg(&save->fs);
1256         init_seg(&save->gs);
1257
1258         save->cs.selector = 0xf000;
1259         save->cs.base = 0xffff0000;
1260         /* Executable/Readable Code Segment */
1261         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1262                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1263         save->cs.limit = 0xffff;
1264
1265         save->gdtr.base = 0;
1266         save->gdtr.limit = 0xffff;
1267         save->idtr.base = 0;
1268         save->idtr.limit = 0xffff;
1269
1270         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1271         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1272
1273         if (npt_enabled) {
1274                 /* Setup VMCB for Nested Paging */
1275                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1276                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1277                 clr_exception_intercept(svm, PF_VECTOR);
1278                 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1279                 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1280                 save->g_pat = vcpu->arch.pat;
1281                 save->cr3 = 0;
1282         }
1283         svm->current_vmcb->asid_generation = 0;
1284         svm->asid = 0;
1285
1286         svm->nested.vmcb12_gpa = INVALID_GPA;
1287         svm->nested.last_vmcb12_gpa = INVALID_GPA;
1288
1289         if (!kvm_pause_in_guest(vcpu->kvm)) {
1290                 control->pause_filter_count = pause_filter_count;
1291                 if (pause_filter_thresh)
1292                         control->pause_filter_thresh = pause_filter_thresh;
1293                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1294         } else {
1295                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1296         }
1297
1298         svm_recalc_instruction_intercepts(vcpu, svm);
1299
1300         /*
1301          * If the host supports V_SPEC_CTRL then disable the interception
1302          * of MSR_IA32_SPEC_CTRL.
1303          */
1304         if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1305                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1306
1307         if (kvm_vcpu_apicv_active(vcpu))
1308                 avic_init_vmcb(svm, vmcb);
1309
1310         if (vgif) {
1311                 svm_clr_intercept(svm, INTERCEPT_STGI);
1312                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1313                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1314         }
1315
1316         if (sev_guest(vcpu->kvm))
1317                 sev_init_vmcb(svm);
1318
1319         svm_hv_init_vmcb(vmcb);
1320         init_vmcb_after_set_cpuid(vcpu);
1321
1322         vmcb_mark_all_dirty(vmcb);
1323
1324         enable_gif(svm);
1325 }
1326
1327 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1328 {
1329         struct vcpu_svm *svm = to_svm(vcpu);
1330
1331         svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1332
1333         svm_init_osvw(vcpu);
1334         vcpu->arch.microcode_version = 0x01000065;
1335         svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1336
1337         if (sev_es_guest(vcpu->kvm))
1338                 sev_es_vcpu_reset(svm);
1339 }
1340
1341 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1342 {
1343         struct vcpu_svm *svm = to_svm(vcpu);
1344
1345         svm->spec_ctrl = 0;
1346         svm->virt_spec_ctrl = 0;
1347
1348         init_vmcb(vcpu);
1349
1350         if (!init_event)
1351                 __svm_vcpu_reset(vcpu);
1352 }
1353
1354 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1355 {
1356         svm->current_vmcb = target_vmcb;
1357         svm->vmcb = target_vmcb->ptr;
1358 }
1359
1360 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1361 {
1362         struct vcpu_svm *svm;
1363         struct page *vmcb01_page;
1364         struct page *vmsa_page = NULL;
1365         int err;
1366
1367         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1368         svm = to_svm(vcpu);
1369
1370         err = -ENOMEM;
1371         vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1372         if (!vmcb01_page)
1373                 goto out;
1374
1375         if (sev_es_guest(vcpu->kvm)) {
1376                 /*
1377                  * SEV-ES guests require a separate VMSA page used to contain
1378                  * the encrypted register state of the guest.
1379                  */
1380                 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1381                 if (!vmsa_page)
1382                         goto error_free_vmcb_page;
1383
1384                 /*
1385                  * SEV-ES guests maintain an encrypted version of their FPU
1386                  * state which is restored and saved on VMRUN and VMEXIT.
1387                  * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1388                  * do xsave/xrstor on it.
1389                  */
1390                 fpstate_set_confidential(&vcpu->arch.guest_fpu);
1391         }
1392
1393         err = avic_init_vcpu(svm);
1394         if (err)
1395                 goto error_free_vmsa_page;
1396
1397         svm->msrpm = svm_vcpu_alloc_msrpm();
1398         if (!svm->msrpm) {
1399                 err = -ENOMEM;
1400                 goto error_free_vmsa_page;
1401         }
1402
1403         svm->x2avic_msrs_intercepted = true;
1404
1405         svm->vmcb01.ptr = page_address(vmcb01_page);
1406         svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1407         svm_switch_vmcb(svm, &svm->vmcb01);
1408
1409         if (vmsa_page)
1410                 svm->sev_es.vmsa = page_address(vmsa_page);
1411
1412         svm->guest_state_loaded = false;
1413
1414         return 0;
1415
1416 error_free_vmsa_page:
1417         if (vmsa_page)
1418                 __free_page(vmsa_page);
1419 error_free_vmcb_page:
1420         __free_page(vmcb01_page);
1421 out:
1422         return err;
1423 }
1424
1425 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1426 {
1427         int i;
1428
1429         for_each_online_cpu(i)
1430                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1431 }
1432
1433 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1434 {
1435         struct vcpu_svm *svm = to_svm(vcpu);
1436
1437         /*
1438          * The vmcb page can be recycled, causing a false negative in
1439          * svm_vcpu_load(). So, ensure that no logical CPU has this
1440          * vmcb page recorded as its current vmcb.
1441          */
1442         svm_clear_current_vmcb(svm->vmcb);
1443
1444         svm_free_nested(svm);
1445
1446         sev_free_vcpu(vcpu);
1447
1448         __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1449         __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1450 }
1451
1452 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1453 {
1454         struct vcpu_svm *svm = to_svm(vcpu);
1455         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1456
1457         if (sev_es_guest(vcpu->kvm))
1458                 sev_es_unmap_ghcb(svm);
1459
1460         if (svm->guest_state_loaded)
1461                 return;
1462
1463         /*
1464          * Save additional host state that will be restored on VMEXIT (sev-es)
1465          * or subsequent vmload of host save area.
1466          */
1467         vmsave(__sme_page_pa(sd->save_area));
1468         if (sev_es_guest(vcpu->kvm)) {
1469                 struct sev_es_save_area *hostsa;
1470                 hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1471
1472                 sev_es_prepare_switch_to_guest(hostsa);
1473         }
1474
1475         if (tsc_scaling)
1476                 __svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1477
1478         if (likely(tsc_aux_uret_slot >= 0))
1479                 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1480
1481         svm->guest_state_loaded = true;
1482 }
1483
1484 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1485 {
1486         to_svm(vcpu)->guest_state_loaded = false;
1487 }
1488
1489 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1490 {
1491         struct vcpu_svm *svm = to_svm(vcpu);
1492         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1493
1494         if (sd->current_vmcb != svm->vmcb) {
1495                 sd->current_vmcb = svm->vmcb;
1496                 indirect_branch_prediction_barrier();
1497         }
1498         if (kvm_vcpu_apicv_active(vcpu))
1499                 avic_vcpu_load(vcpu, cpu);
1500 }
1501
1502 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1503 {
1504         if (kvm_vcpu_apicv_active(vcpu))
1505                 avic_vcpu_put(vcpu);
1506
1507         svm_prepare_host_switch(vcpu);
1508
1509         ++vcpu->stat.host_state_reload;
1510 }
1511
1512 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1513 {
1514         struct vcpu_svm *svm = to_svm(vcpu);
1515         unsigned long rflags = svm->vmcb->save.rflags;
1516
1517         if (svm->nmi_singlestep) {
1518                 /* Hide our flags if they were not set by the guest */
1519                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1520                         rflags &= ~X86_EFLAGS_TF;
1521                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1522                         rflags &= ~X86_EFLAGS_RF;
1523         }
1524         return rflags;
1525 }
1526
1527 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1528 {
1529         if (to_svm(vcpu)->nmi_singlestep)
1530                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1531
1532        /*
1533         * Any change of EFLAGS.VM is accompanied by a reload of SS
1534         * (caused by either a task switch or an inter-privilege IRET),
1535         * so we do not need to update the CPL here.
1536         */
1537         to_svm(vcpu)->vmcb->save.rflags = rflags;
1538 }
1539
1540 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1541 {
1542         struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1543
1544         return sev_es_guest(vcpu->kvm)
1545                 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1546                 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1547 }
1548
1549 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1550 {
1551         kvm_register_mark_available(vcpu, reg);
1552
1553         switch (reg) {
1554         case VCPU_EXREG_PDPTR:
1555                 /*
1556                  * When !npt_enabled, mmu->pdptrs[] is already available since
1557                  * it is always updated per SDM when moving to CRs.
1558                  */
1559                 if (npt_enabled)
1560                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1561                 break;
1562         default:
1563                 KVM_BUG_ON(1, vcpu->kvm);
1564         }
1565 }
1566
1567 static void svm_set_vintr(struct vcpu_svm *svm)
1568 {
1569         struct vmcb_control_area *control;
1570
1571         /*
1572          * The following fields are ignored when AVIC is enabled
1573          */
1574         WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1575
1576         svm_set_intercept(svm, INTERCEPT_VINTR);
1577
1578         /*
1579          * This is just a dummy VINTR to actually cause a vmexit to happen.
1580          * Actual injection of virtual interrupts happens through EVENTINJ.
1581          */
1582         control = &svm->vmcb->control;
1583         control->int_vector = 0x0;
1584         control->int_ctl &= ~V_INTR_PRIO_MASK;
1585         control->int_ctl |= V_IRQ_MASK |
1586                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1587         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1588 }
1589
1590 static void svm_clear_vintr(struct vcpu_svm *svm)
1591 {
1592         svm_clr_intercept(svm, INTERCEPT_VINTR);
1593
1594         /* Drop int_ctl fields related to VINTR injection.  */
1595         svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1596         if (is_guest_mode(&svm->vcpu)) {
1597                 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1598
1599                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1600                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1601
1602                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1603                         V_IRQ_INJECTION_BITS_MASK;
1604
1605                 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1606         }
1607
1608         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1609 }
1610
1611 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1612 {
1613         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1614         struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1615
1616         switch (seg) {
1617         case VCPU_SREG_CS: return &save->cs;
1618         case VCPU_SREG_DS: return &save->ds;
1619         case VCPU_SREG_ES: return &save->es;
1620         case VCPU_SREG_FS: return &save01->fs;
1621         case VCPU_SREG_GS: return &save01->gs;
1622         case VCPU_SREG_SS: return &save->ss;
1623         case VCPU_SREG_TR: return &save01->tr;
1624         case VCPU_SREG_LDTR: return &save01->ldtr;
1625         }
1626         BUG();
1627         return NULL;
1628 }
1629
1630 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1631 {
1632         struct vmcb_seg *s = svm_seg(vcpu, seg);
1633
1634         return s->base;
1635 }
1636
1637 static void svm_get_segment(struct kvm_vcpu *vcpu,
1638                             struct kvm_segment *var, int seg)
1639 {
1640         struct vmcb_seg *s = svm_seg(vcpu, seg);
1641
1642         var->base = s->base;
1643         var->limit = s->limit;
1644         var->selector = s->selector;
1645         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1646         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1647         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1648         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1649         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1650         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1651         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1652
1653         /*
1654          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1655          * However, the SVM spec states that the G bit is not observed by the
1656          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1657          * So let's synthesize a legal G bit for all segments, this helps
1658          * running KVM nested. It also helps cross-vendor migration, because
1659          * Intel's vmentry has a check on the 'G' bit.
1660          */
1661         var->g = s->limit > 0xfffff;
1662
1663         /*
1664          * AMD's VMCB does not have an explicit unusable field, so emulate it
1665          * for cross vendor migration purposes by "not present"
1666          */
1667         var->unusable = !var->present;
1668
1669         switch (seg) {
1670         case VCPU_SREG_TR:
1671                 /*
1672                  * Work around a bug where the busy flag in the tr selector
1673                  * isn't exposed
1674                  */
1675                 var->type |= 0x2;
1676                 break;
1677         case VCPU_SREG_DS:
1678         case VCPU_SREG_ES:
1679         case VCPU_SREG_FS:
1680         case VCPU_SREG_GS:
1681                 /*
1682                  * The accessed bit must always be set in the segment
1683                  * descriptor cache, although it can be cleared in the
1684                  * descriptor, the cached bit always remains at 1. Since
1685                  * Intel has a check on this, set it here to support
1686                  * cross-vendor migration.
1687                  */
1688                 if (!var->unusable)
1689                         var->type |= 0x1;
1690                 break;
1691         case VCPU_SREG_SS:
1692                 /*
1693                  * On AMD CPUs sometimes the DB bit in the segment
1694                  * descriptor is left as 1, although the whole segment has
1695                  * been made unusable. Clear it here to pass an Intel VMX
1696                  * entry check when cross vendor migrating.
1697                  */
1698                 if (var->unusable)
1699                         var->db = 0;
1700                 /* This is symmetric with svm_set_segment() */
1701                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1702                 break;
1703         }
1704 }
1705
1706 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1707 {
1708         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1709
1710         return save->cpl;
1711 }
1712
1713 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1714 {
1715         struct kvm_segment cs;
1716
1717         svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1718         *db = cs.db;
1719         *l = cs.l;
1720 }
1721
1722 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1723 {
1724         struct vcpu_svm *svm = to_svm(vcpu);
1725
1726         dt->size = svm->vmcb->save.idtr.limit;
1727         dt->address = svm->vmcb->save.idtr.base;
1728 }
1729
1730 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1731 {
1732         struct vcpu_svm *svm = to_svm(vcpu);
1733
1734         svm->vmcb->save.idtr.limit = dt->size;
1735         svm->vmcb->save.idtr.base = dt->address ;
1736         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1737 }
1738
1739 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1740 {
1741         struct vcpu_svm *svm = to_svm(vcpu);
1742
1743         dt->size = svm->vmcb->save.gdtr.limit;
1744         dt->address = svm->vmcb->save.gdtr.base;
1745 }
1746
1747 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1748 {
1749         struct vcpu_svm *svm = to_svm(vcpu);
1750
1751         svm->vmcb->save.gdtr.limit = dt->size;
1752         svm->vmcb->save.gdtr.base = dt->address ;
1753         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1754 }
1755
1756 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1757 {
1758         struct vcpu_svm *svm = to_svm(vcpu);
1759
1760         /*
1761          * For guests that don't set guest_state_protected, the cr3 update is
1762          * handled via kvm_mmu_load() while entering the guest. For guests
1763          * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1764          * VMCB save area now, since the save area will become the initial
1765          * contents of the VMSA, and future VMCB save area updates won't be
1766          * seen.
1767          */
1768         if (sev_es_guest(vcpu->kvm)) {
1769                 svm->vmcb->save.cr3 = cr3;
1770                 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1771         }
1772 }
1773
1774 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1775 {
1776         struct vcpu_svm *svm = to_svm(vcpu);
1777         u64 hcr0 = cr0;
1778         bool old_paging = is_paging(vcpu);
1779
1780 #ifdef CONFIG_X86_64
1781         if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1782                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1783                         vcpu->arch.efer |= EFER_LMA;
1784                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1785                 }
1786
1787                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1788                         vcpu->arch.efer &= ~EFER_LMA;
1789                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1790                 }
1791         }
1792 #endif
1793         vcpu->arch.cr0 = cr0;
1794
1795         if (!npt_enabled) {
1796                 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1797                 if (old_paging != is_paging(vcpu))
1798                         svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1799         }
1800
1801         /*
1802          * re-enable caching here because the QEMU bios
1803          * does not do it - this results in some delay at
1804          * reboot
1805          */
1806         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1807                 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1808
1809         svm->vmcb->save.cr0 = hcr0;
1810         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1811
1812         /*
1813          * SEV-ES guests must always keep the CR intercepts cleared. CR
1814          * tracking is done using the CR write traps.
1815          */
1816         if (sev_es_guest(vcpu->kvm))
1817                 return;
1818
1819         if (hcr0 == cr0) {
1820                 /* Selective CR0 write remains on.  */
1821                 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1822                 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1823         } else {
1824                 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1825                 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1826         }
1827 }
1828
1829 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1830 {
1831         return true;
1832 }
1833
1834 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1835 {
1836         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1837         unsigned long old_cr4 = vcpu->arch.cr4;
1838
1839         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1840                 svm_flush_tlb_current(vcpu);
1841
1842         vcpu->arch.cr4 = cr4;
1843         if (!npt_enabled) {
1844                 cr4 |= X86_CR4_PAE;
1845
1846                 if (!is_paging(vcpu))
1847                         cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1848         }
1849         cr4 |= host_cr4_mce;
1850         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1851         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1852
1853         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1854                 kvm_update_cpuid_runtime(vcpu);
1855 }
1856
1857 static void svm_set_segment(struct kvm_vcpu *vcpu,
1858                             struct kvm_segment *var, int seg)
1859 {
1860         struct vcpu_svm *svm = to_svm(vcpu);
1861         struct vmcb_seg *s = svm_seg(vcpu, seg);
1862
1863         s->base = var->base;
1864         s->limit = var->limit;
1865         s->selector = var->selector;
1866         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1867         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1868         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1869         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1870         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1871         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1872         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1873         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1874
1875         /*
1876          * This is always accurate, except if SYSRET returned to a segment
1877          * with SS.DPL != 3.  Intel does not have this quirk, and always
1878          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1879          * would entail passing the CPL to userspace and back.
1880          */
1881         if (seg == VCPU_SREG_SS)
1882                 /* This is symmetric with svm_get_segment() */
1883                 svm->vmcb->save.cpl = (var->dpl & 3);
1884
1885         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1886 }
1887
1888 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1889 {
1890         struct vcpu_svm *svm = to_svm(vcpu);
1891
1892         clr_exception_intercept(svm, BP_VECTOR);
1893
1894         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1895                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1896                         set_exception_intercept(svm, BP_VECTOR);
1897         }
1898 }
1899
1900 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1901 {
1902         if (sd->next_asid > sd->max_asid) {
1903                 ++sd->asid_generation;
1904                 sd->next_asid = sd->min_asid;
1905                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1906                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1907         }
1908
1909         svm->current_vmcb->asid_generation = sd->asid_generation;
1910         svm->asid = sd->next_asid++;
1911 }
1912
1913 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1914 {
1915         struct vmcb *vmcb = svm->vmcb;
1916
1917         if (svm->vcpu.arch.guest_state_protected)
1918                 return;
1919
1920         if (unlikely(value != vmcb->save.dr6)) {
1921                 vmcb->save.dr6 = value;
1922                 vmcb_mark_dirty(vmcb, VMCB_DR);
1923         }
1924 }
1925
1926 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1927 {
1928         struct vcpu_svm *svm = to_svm(vcpu);
1929
1930         if (vcpu->arch.guest_state_protected)
1931                 return;
1932
1933         get_debugreg(vcpu->arch.db[0], 0);
1934         get_debugreg(vcpu->arch.db[1], 1);
1935         get_debugreg(vcpu->arch.db[2], 2);
1936         get_debugreg(vcpu->arch.db[3], 3);
1937         /*
1938          * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1939          * because db_interception might need it.  We can do it before vmentry.
1940          */
1941         vcpu->arch.dr6 = svm->vmcb->save.dr6;
1942         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1943         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1944         set_dr_intercepts(svm);
1945 }
1946
1947 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1948 {
1949         struct vcpu_svm *svm = to_svm(vcpu);
1950
1951         if (vcpu->arch.guest_state_protected)
1952                 return;
1953
1954         svm->vmcb->save.dr7 = value;
1955         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1956 }
1957
1958 static int pf_interception(struct kvm_vcpu *vcpu)
1959 {
1960         struct vcpu_svm *svm = to_svm(vcpu);
1961
1962         u64 fault_address = svm->vmcb->control.exit_info_2;
1963         u64 error_code = svm->vmcb->control.exit_info_1;
1964
1965         return kvm_handle_page_fault(vcpu, error_code, fault_address,
1966                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1967                         svm->vmcb->control.insn_bytes : NULL,
1968                         svm->vmcb->control.insn_len);
1969 }
1970
1971 static int npf_interception(struct kvm_vcpu *vcpu)
1972 {
1973         struct vcpu_svm *svm = to_svm(vcpu);
1974
1975         u64 fault_address = svm->vmcb->control.exit_info_2;
1976         u64 error_code = svm->vmcb->control.exit_info_1;
1977
1978         trace_kvm_page_fault(fault_address, error_code);
1979         return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1980                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1981                         svm->vmcb->control.insn_bytes : NULL,
1982                         svm->vmcb->control.insn_len);
1983 }
1984
1985 static int db_interception(struct kvm_vcpu *vcpu)
1986 {
1987         struct kvm_run *kvm_run = vcpu->run;
1988         struct vcpu_svm *svm = to_svm(vcpu);
1989
1990         if (!(vcpu->guest_debug &
1991               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1992                 !svm->nmi_singlestep) {
1993                 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1994                 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1995                 return 1;
1996         }
1997
1998         if (svm->nmi_singlestep) {
1999                 disable_nmi_singlestep(svm);
2000                 /* Make sure we check for pending NMIs upon entry */
2001                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2002         }
2003
2004         if (vcpu->guest_debug &
2005             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2006                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2007                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2008                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2009                 kvm_run->debug.arch.pc =
2010                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2011                 kvm_run->debug.arch.exception = DB_VECTOR;
2012                 return 0;
2013         }
2014
2015         return 1;
2016 }
2017
2018 static int bp_interception(struct kvm_vcpu *vcpu)
2019 {
2020         struct vcpu_svm *svm = to_svm(vcpu);
2021         struct kvm_run *kvm_run = vcpu->run;
2022
2023         kvm_run->exit_reason = KVM_EXIT_DEBUG;
2024         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2025         kvm_run->debug.arch.exception = BP_VECTOR;
2026         return 0;
2027 }
2028
2029 static int ud_interception(struct kvm_vcpu *vcpu)
2030 {
2031         return handle_ud(vcpu);
2032 }
2033
2034 static int ac_interception(struct kvm_vcpu *vcpu)
2035 {
2036         kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2037         return 1;
2038 }
2039
2040 static bool is_erratum_383(void)
2041 {
2042         int err, i;
2043         u64 value;
2044
2045         if (!erratum_383_found)
2046                 return false;
2047
2048         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2049         if (err)
2050                 return false;
2051
2052         /* Bit 62 may or may not be set for this mce */
2053         value &= ~(1ULL << 62);
2054
2055         if (value != 0xb600000000010015ULL)
2056                 return false;
2057
2058         /* Clear MCi_STATUS registers */
2059         for (i = 0; i < 6; ++i)
2060                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2061
2062         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2063         if (!err) {
2064                 u32 low, high;
2065
2066                 value &= ~(1ULL << 2);
2067                 low    = lower_32_bits(value);
2068                 high   = upper_32_bits(value);
2069
2070                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2071         }
2072
2073         /* Flush tlb to evict multi-match entries */
2074         __flush_tlb_all();
2075
2076         return true;
2077 }
2078
2079 static void svm_handle_mce(struct kvm_vcpu *vcpu)
2080 {
2081         if (is_erratum_383()) {
2082                 /*
2083                  * Erratum 383 triggered. Guest state is corrupt so kill the
2084                  * guest.
2085                  */
2086                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2087
2088                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2089
2090                 return;
2091         }
2092
2093         /*
2094          * On an #MC intercept the MCE handler is not called automatically in
2095          * the host. So do it by hand here.
2096          */
2097         kvm_machine_check();
2098 }
2099
2100 static int mc_interception(struct kvm_vcpu *vcpu)
2101 {
2102         return 1;
2103 }
2104
2105 static int shutdown_interception(struct kvm_vcpu *vcpu)
2106 {
2107         struct kvm_run *kvm_run = vcpu->run;
2108         struct vcpu_svm *svm = to_svm(vcpu);
2109
2110         /*
2111          * The VM save area has already been encrypted so it
2112          * cannot be reinitialized - just terminate.
2113          */
2114         if (sev_es_guest(vcpu->kvm))
2115                 return -EINVAL;
2116
2117         /*
2118          * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2119          * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2120          * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2121          * userspace.  At a platform view, INIT is acceptable behavior as
2122          * there exist bare metal platforms that automatically INIT the CPU
2123          * in response to shutdown.
2124          */
2125         clear_page(svm->vmcb);
2126         kvm_vcpu_reset(vcpu, true);
2127
2128         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2129         return 0;
2130 }
2131
2132 static int io_interception(struct kvm_vcpu *vcpu)
2133 {
2134         struct vcpu_svm *svm = to_svm(vcpu);
2135         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2136         int size, in, string;
2137         unsigned port;
2138
2139         ++vcpu->stat.io_exits;
2140         string = (io_info & SVM_IOIO_STR_MASK) != 0;
2141         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2142         port = io_info >> 16;
2143         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2144
2145         if (string) {
2146                 if (sev_es_guest(vcpu->kvm))
2147                         return sev_es_string_io(svm, size, port, in);
2148                 else
2149                         return kvm_emulate_instruction(vcpu, 0);
2150         }
2151
2152         svm->next_rip = svm->vmcb->control.exit_info_2;
2153
2154         return kvm_fast_pio(vcpu, size, port, in);
2155 }
2156
2157 static int nmi_interception(struct kvm_vcpu *vcpu)
2158 {
2159         return 1;
2160 }
2161
2162 static int smi_interception(struct kvm_vcpu *vcpu)
2163 {
2164         return 1;
2165 }
2166
2167 static int intr_interception(struct kvm_vcpu *vcpu)
2168 {
2169         ++vcpu->stat.irq_exits;
2170         return 1;
2171 }
2172
2173 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2174 {
2175         struct vcpu_svm *svm = to_svm(vcpu);
2176         struct vmcb *vmcb12;
2177         struct kvm_host_map map;
2178         int ret;
2179
2180         if (nested_svm_check_permissions(vcpu))
2181                 return 1;
2182
2183         ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2184         if (ret) {
2185                 if (ret == -EINVAL)
2186                         kvm_inject_gp(vcpu, 0);
2187                 return 1;
2188         }
2189
2190         vmcb12 = map.hva;
2191
2192         ret = kvm_skip_emulated_instruction(vcpu);
2193
2194         if (vmload) {
2195                 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2196                 svm->sysenter_eip_hi = 0;
2197                 svm->sysenter_esp_hi = 0;
2198         } else {
2199                 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2200         }
2201
2202         kvm_vcpu_unmap(vcpu, &map, true);
2203
2204         return ret;
2205 }
2206
2207 static int vmload_interception(struct kvm_vcpu *vcpu)
2208 {
2209         return vmload_vmsave_interception(vcpu, true);
2210 }
2211
2212 static int vmsave_interception(struct kvm_vcpu *vcpu)
2213 {
2214         return vmload_vmsave_interception(vcpu, false);
2215 }
2216
2217 static int vmrun_interception(struct kvm_vcpu *vcpu)
2218 {
2219         if (nested_svm_check_permissions(vcpu))
2220                 return 1;
2221
2222         return nested_svm_vmrun(vcpu);
2223 }
2224
2225 enum {
2226         NONE_SVM_INSTR,
2227         SVM_INSTR_VMRUN,
2228         SVM_INSTR_VMLOAD,
2229         SVM_INSTR_VMSAVE,
2230 };
2231
2232 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2233 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2234 {
2235         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2236
2237         if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2238                 return NONE_SVM_INSTR;
2239
2240         switch (ctxt->modrm) {
2241         case 0xd8: /* VMRUN */
2242                 return SVM_INSTR_VMRUN;
2243         case 0xda: /* VMLOAD */
2244                 return SVM_INSTR_VMLOAD;
2245         case 0xdb: /* VMSAVE */
2246                 return SVM_INSTR_VMSAVE;
2247         default:
2248                 break;
2249         }
2250
2251         return NONE_SVM_INSTR;
2252 }
2253
2254 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2255 {
2256         const int guest_mode_exit_codes[] = {
2257                 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2258                 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2259                 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2260         };
2261         int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2262                 [SVM_INSTR_VMRUN] = vmrun_interception,
2263                 [SVM_INSTR_VMLOAD] = vmload_interception,
2264                 [SVM_INSTR_VMSAVE] = vmsave_interception,
2265         };
2266         struct vcpu_svm *svm = to_svm(vcpu);
2267         int ret;
2268
2269         if (is_guest_mode(vcpu)) {
2270                 /* Returns '1' or -errno on failure, '0' on success. */
2271                 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2272                 if (ret)
2273                         return ret;
2274                 return 1;
2275         }
2276         return svm_instr_handlers[opcode](vcpu);
2277 }
2278
2279 /*
2280  * #GP handling code. Note that #GP can be triggered under the following two
2281  * cases:
2282  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2283  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2284  *      regions (e.g. SMM memory on host).
2285  *   2) VMware backdoor
2286  */
2287 static int gp_interception(struct kvm_vcpu *vcpu)
2288 {
2289         struct vcpu_svm *svm = to_svm(vcpu);
2290         u32 error_code = svm->vmcb->control.exit_info_1;
2291         int opcode;
2292
2293         /* Both #GP cases have zero error_code */
2294         if (error_code)
2295                 goto reinject;
2296
2297         /* Decode the instruction for usage later */
2298         if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2299                 goto reinject;
2300
2301         opcode = svm_instr_opcode(vcpu);
2302
2303         if (opcode == NONE_SVM_INSTR) {
2304                 if (!enable_vmware_backdoor)
2305                         goto reinject;
2306
2307                 /*
2308                  * VMware backdoor emulation on #GP interception only handles
2309                  * IN{S}, OUT{S}, and RDPMC.
2310                  */
2311                 if (!is_guest_mode(vcpu))
2312                         return kvm_emulate_instruction(vcpu,
2313                                 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2314         } else {
2315                 /* All SVM instructions expect page aligned RAX */
2316                 if (svm->vmcb->save.rax & ~PAGE_MASK)
2317                         goto reinject;
2318
2319                 return emulate_svm_instr(vcpu, opcode);
2320         }
2321
2322 reinject:
2323         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2324         return 1;
2325 }
2326
2327 void svm_set_gif(struct vcpu_svm *svm, bool value)
2328 {
2329         if (value) {
2330                 /*
2331                  * If VGIF is enabled, the STGI intercept is only added to
2332                  * detect the opening of the SMI/NMI window; remove it now.
2333                  * Likewise, clear the VINTR intercept, we will set it
2334                  * again while processing KVM_REQ_EVENT if needed.
2335                  */
2336                 if (vgif)
2337                         svm_clr_intercept(svm, INTERCEPT_STGI);
2338                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2339                         svm_clear_vintr(svm);
2340
2341                 enable_gif(svm);
2342                 if (svm->vcpu.arch.smi_pending ||
2343                     svm->vcpu.arch.nmi_pending ||
2344                     kvm_cpu_has_injectable_intr(&svm->vcpu))
2345                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2346         } else {
2347                 disable_gif(svm);
2348
2349                 /*
2350                  * After a CLGI no interrupts should come.  But if vGIF is
2351                  * in use, we still rely on the VINTR intercept (rather than
2352                  * STGI) to detect an open interrupt window.
2353                 */
2354                 if (!vgif)
2355                         svm_clear_vintr(svm);
2356         }
2357 }
2358
2359 static int stgi_interception(struct kvm_vcpu *vcpu)
2360 {
2361         int ret;
2362
2363         if (nested_svm_check_permissions(vcpu))
2364                 return 1;
2365
2366         ret = kvm_skip_emulated_instruction(vcpu);
2367         svm_set_gif(to_svm(vcpu), true);
2368         return ret;
2369 }
2370
2371 static int clgi_interception(struct kvm_vcpu *vcpu)
2372 {
2373         int ret;
2374
2375         if (nested_svm_check_permissions(vcpu))
2376                 return 1;
2377
2378         ret = kvm_skip_emulated_instruction(vcpu);
2379         svm_set_gif(to_svm(vcpu), false);
2380         return ret;
2381 }
2382
2383 static int invlpga_interception(struct kvm_vcpu *vcpu)
2384 {
2385         gva_t gva = kvm_rax_read(vcpu);
2386         u32 asid = kvm_rcx_read(vcpu);
2387
2388         /* FIXME: Handle an address size prefix. */
2389         if (!is_long_mode(vcpu))
2390                 gva = (u32)gva;
2391
2392         trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2393
2394         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2395         kvm_mmu_invlpg(vcpu, gva);
2396
2397         return kvm_skip_emulated_instruction(vcpu);
2398 }
2399
2400 static int skinit_interception(struct kvm_vcpu *vcpu)
2401 {
2402         trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2403
2404         kvm_queue_exception(vcpu, UD_VECTOR);
2405         return 1;
2406 }
2407
2408 static int task_switch_interception(struct kvm_vcpu *vcpu)
2409 {
2410         struct vcpu_svm *svm = to_svm(vcpu);
2411         u16 tss_selector;
2412         int reason;
2413         int int_type = svm->vmcb->control.exit_int_info &
2414                 SVM_EXITINTINFO_TYPE_MASK;
2415         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2416         uint32_t type =
2417                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2418         uint32_t idt_v =
2419                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2420         bool has_error_code = false;
2421         u32 error_code = 0;
2422
2423         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2424
2425         if (svm->vmcb->control.exit_info_2 &
2426             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2427                 reason = TASK_SWITCH_IRET;
2428         else if (svm->vmcb->control.exit_info_2 &
2429                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2430                 reason = TASK_SWITCH_JMP;
2431         else if (idt_v)
2432                 reason = TASK_SWITCH_GATE;
2433         else
2434                 reason = TASK_SWITCH_CALL;
2435
2436         if (reason == TASK_SWITCH_GATE) {
2437                 switch (type) {
2438                 case SVM_EXITINTINFO_TYPE_NMI:
2439                         vcpu->arch.nmi_injected = false;
2440                         break;
2441                 case SVM_EXITINTINFO_TYPE_EXEPT:
2442                         if (svm->vmcb->control.exit_info_2 &
2443                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2444                                 has_error_code = true;
2445                                 error_code =
2446                                         (u32)svm->vmcb->control.exit_info_2;
2447                         }
2448                         kvm_clear_exception_queue(vcpu);
2449                         break;
2450                 case SVM_EXITINTINFO_TYPE_INTR:
2451                 case SVM_EXITINTINFO_TYPE_SOFT:
2452                         kvm_clear_interrupt_queue(vcpu);
2453                         break;
2454                 default:
2455                         break;
2456                 }
2457         }
2458
2459         if (reason != TASK_SWITCH_GATE ||
2460             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2461             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2462              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2463                 if (!svm_skip_emulated_instruction(vcpu))
2464                         return 0;
2465         }
2466
2467         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2468                 int_vec = -1;
2469
2470         return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2471                                has_error_code, error_code);
2472 }
2473
2474 static int iret_interception(struct kvm_vcpu *vcpu)
2475 {
2476         struct vcpu_svm *svm = to_svm(vcpu);
2477
2478         ++vcpu->stat.nmi_window_exits;
2479         vcpu->arch.hflags |= HF_IRET_MASK;
2480         if (!sev_es_guest(vcpu->kvm)) {
2481                 svm_clr_intercept(svm, INTERCEPT_IRET);
2482                 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2483         }
2484         kvm_make_request(KVM_REQ_EVENT, vcpu);
2485         return 1;
2486 }
2487
2488 static int invlpg_interception(struct kvm_vcpu *vcpu)
2489 {
2490         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2491                 return kvm_emulate_instruction(vcpu, 0);
2492
2493         kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2494         return kvm_skip_emulated_instruction(vcpu);
2495 }
2496
2497 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2498 {
2499         return kvm_emulate_instruction(vcpu, 0);
2500 }
2501
2502 static int rsm_interception(struct kvm_vcpu *vcpu)
2503 {
2504         return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2505 }
2506
2507 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2508                                             unsigned long val)
2509 {
2510         struct vcpu_svm *svm = to_svm(vcpu);
2511         unsigned long cr0 = vcpu->arch.cr0;
2512         bool ret = false;
2513
2514         if (!is_guest_mode(vcpu) ||
2515             (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2516                 return false;
2517
2518         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2519         val &= ~SVM_CR0_SELECTIVE_MASK;
2520
2521         if (cr0 ^ val) {
2522                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2523                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2524         }
2525
2526         return ret;
2527 }
2528
2529 #define CR_VALID (1ULL << 63)
2530
2531 static int cr_interception(struct kvm_vcpu *vcpu)
2532 {
2533         struct vcpu_svm *svm = to_svm(vcpu);
2534         int reg, cr;
2535         unsigned long val;
2536         int err;
2537
2538         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2539                 return emulate_on_interception(vcpu);
2540
2541         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2542                 return emulate_on_interception(vcpu);
2543
2544         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2545         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2546                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2547         else
2548                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2549
2550         err = 0;
2551         if (cr >= 16) { /* mov to cr */
2552                 cr -= 16;
2553                 val = kvm_register_read(vcpu, reg);
2554                 trace_kvm_cr_write(cr, val);
2555                 switch (cr) {
2556                 case 0:
2557                         if (!check_selective_cr0_intercepted(vcpu, val))
2558                                 err = kvm_set_cr0(vcpu, val);
2559                         else
2560                                 return 1;
2561
2562                         break;
2563                 case 3:
2564                         err = kvm_set_cr3(vcpu, val);
2565                         break;
2566                 case 4:
2567                         err = kvm_set_cr4(vcpu, val);
2568                         break;
2569                 case 8:
2570                         err = kvm_set_cr8(vcpu, val);
2571                         break;
2572                 default:
2573                         WARN(1, "unhandled write to CR%d", cr);
2574                         kvm_queue_exception(vcpu, UD_VECTOR);
2575                         return 1;
2576                 }
2577         } else { /* mov from cr */
2578                 switch (cr) {
2579                 case 0:
2580                         val = kvm_read_cr0(vcpu);
2581                         break;
2582                 case 2:
2583                         val = vcpu->arch.cr2;
2584                         break;
2585                 case 3:
2586                         val = kvm_read_cr3(vcpu);
2587                         break;
2588                 case 4:
2589                         val = kvm_read_cr4(vcpu);
2590                         break;
2591                 case 8:
2592                         val = kvm_get_cr8(vcpu);
2593                         break;
2594                 default:
2595                         WARN(1, "unhandled read from CR%d", cr);
2596                         kvm_queue_exception(vcpu, UD_VECTOR);
2597                         return 1;
2598                 }
2599                 kvm_register_write(vcpu, reg, val);
2600                 trace_kvm_cr_read(cr, val);
2601         }
2602         return kvm_complete_insn_gp(vcpu, err);
2603 }
2604
2605 static int cr_trap(struct kvm_vcpu *vcpu)
2606 {
2607         struct vcpu_svm *svm = to_svm(vcpu);
2608         unsigned long old_value, new_value;
2609         unsigned int cr;
2610         int ret = 0;
2611
2612         new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2613
2614         cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2615         switch (cr) {
2616         case 0:
2617                 old_value = kvm_read_cr0(vcpu);
2618                 svm_set_cr0(vcpu, new_value);
2619
2620                 kvm_post_set_cr0(vcpu, old_value, new_value);
2621                 break;
2622         case 4:
2623                 old_value = kvm_read_cr4(vcpu);
2624                 svm_set_cr4(vcpu, new_value);
2625
2626                 kvm_post_set_cr4(vcpu, old_value, new_value);
2627                 break;
2628         case 8:
2629                 ret = kvm_set_cr8(vcpu, new_value);
2630                 break;
2631         default:
2632                 WARN(1, "unhandled CR%d write trap", cr);
2633                 kvm_queue_exception(vcpu, UD_VECTOR);
2634                 return 1;
2635         }
2636
2637         return kvm_complete_insn_gp(vcpu, ret);
2638 }
2639
2640 static int dr_interception(struct kvm_vcpu *vcpu)
2641 {
2642         struct vcpu_svm *svm = to_svm(vcpu);
2643         int reg, dr;
2644         unsigned long val;
2645         int err = 0;
2646
2647         if (vcpu->guest_debug == 0) {
2648                 /*
2649                  * No more DR vmexits; force a reload of the debug registers
2650                  * and reenter on this instruction.  The next vmexit will
2651                  * retrieve the full state of the debug registers.
2652                  */
2653                 clr_dr_intercepts(svm);
2654                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2655                 return 1;
2656         }
2657
2658         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2659                 return emulate_on_interception(vcpu);
2660
2661         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2662         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2663         if (dr >= 16) { /* mov to DRn  */
2664                 dr -= 16;
2665                 val = kvm_register_read(vcpu, reg);
2666                 err = kvm_set_dr(vcpu, dr, val);
2667         } else {
2668                 kvm_get_dr(vcpu, dr, &val);
2669                 kvm_register_write(vcpu, reg, val);
2670         }
2671
2672         return kvm_complete_insn_gp(vcpu, err);
2673 }
2674
2675 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2676 {
2677         int r;
2678
2679         u8 cr8_prev = kvm_get_cr8(vcpu);
2680         /* instruction emulation calls kvm_set_cr8() */
2681         r = cr_interception(vcpu);
2682         if (lapic_in_kernel(vcpu))
2683                 return r;
2684         if (cr8_prev <= kvm_get_cr8(vcpu))
2685                 return r;
2686         vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2687         return 0;
2688 }
2689
2690 static int efer_trap(struct kvm_vcpu *vcpu)
2691 {
2692         struct msr_data msr_info;
2693         int ret;
2694
2695         /*
2696          * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2697          * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2698          * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2699          * the guest doesn't have X86_FEATURE_SVM.
2700          */
2701         msr_info.host_initiated = false;
2702         msr_info.index = MSR_EFER;
2703         msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2704         ret = kvm_set_msr_common(vcpu, &msr_info);
2705
2706         return kvm_complete_insn_gp(vcpu, ret);
2707 }
2708
2709 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2710 {
2711         msr->data = 0;
2712
2713         switch (msr->index) {
2714         case MSR_F10H_DECFG:
2715                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2716                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2717                 break;
2718         case MSR_IA32_PERF_CAPABILITIES:
2719                 return 0;
2720         default:
2721                 return KVM_MSR_RET_INVALID;
2722         }
2723
2724         return 0;
2725 }
2726
2727 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2728 {
2729         struct vcpu_svm *svm = to_svm(vcpu);
2730
2731         switch (msr_info->index) {
2732         case MSR_AMD64_TSC_RATIO:
2733                 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2734                         return 1;
2735                 msr_info->data = svm->tsc_ratio_msr;
2736                 break;
2737         case MSR_STAR:
2738                 msr_info->data = svm->vmcb01.ptr->save.star;
2739                 break;
2740 #ifdef CONFIG_X86_64
2741         case MSR_LSTAR:
2742                 msr_info->data = svm->vmcb01.ptr->save.lstar;
2743                 break;
2744         case MSR_CSTAR:
2745                 msr_info->data = svm->vmcb01.ptr->save.cstar;
2746                 break;
2747         case MSR_KERNEL_GS_BASE:
2748                 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2749                 break;
2750         case MSR_SYSCALL_MASK:
2751                 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2752                 break;
2753 #endif
2754         case MSR_IA32_SYSENTER_CS:
2755                 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2756                 break;
2757         case MSR_IA32_SYSENTER_EIP:
2758                 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2759                 if (guest_cpuid_is_intel(vcpu))
2760                         msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2761                 break;
2762         case MSR_IA32_SYSENTER_ESP:
2763                 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2764                 if (guest_cpuid_is_intel(vcpu))
2765                         msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2766                 break;
2767         case MSR_TSC_AUX:
2768                 msr_info->data = svm->tsc_aux;
2769                 break;
2770         case MSR_IA32_DEBUGCTLMSR:
2771         case MSR_IA32_LASTBRANCHFROMIP:
2772         case MSR_IA32_LASTBRANCHTOIP:
2773         case MSR_IA32_LASTINTFROMIP:
2774         case MSR_IA32_LASTINTTOIP:
2775                 msr_info->data = svm_get_lbr_msr(svm, msr_info->index);
2776                 break;
2777         case MSR_VM_HSAVE_PA:
2778                 msr_info->data = svm->nested.hsave_msr;
2779                 break;
2780         case MSR_VM_CR:
2781                 msr_info->data = svm->nested.vm_cr_msr;
2782                 break;
2783         case MSR_IA32_SPEC_CTRL:
2784                 if (!msr_info->host_initiated &&
2785                     !guest_has_spec_ctrl_msr(vcpu))
2786                         return 1;
2787
2788                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2789                         msr_info->data = svm->vmcb->save.spec_ctrl;
2790                 else
2791                         msr_info->data = svm->spec_ctrl;
2792                 break;
2793         case MSR_AMD64_VIRT_SPEC_CTRL:
2794                 if (!msr_info->host_initiated &&
2795                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2796                         return 1;
2797
2798                 msr_info->data = svm->virt_spec_ctrl;
2799                 break;
2800         case MSR_F15H_IC_CFG: {
2801
2802                 int family, model;
2803
2804                 family = guest_cpuid_family(vcpu);
2805                 model  = guest_cpuid_model(vcpu);
2806
2807                 if (family < 0 || model < 0)
2808                         return kvm_get_msr_common(vcpu, msr_info);
2809
2810                 msr_info->data = 0;
2811
2812                 if (family == 0x15 &&
2813                     (model >= 0x2 && model < 0x20))
2814                         msr_info->data = 0x1E;
2815                 }
2816                 break;
2817         case MSR_F10H_DECFG:
2818                 msr_info->data = svm->msr_decfg;
2819                 break;
2820         default:
2821                 return kvm_get_msr_common(vcpu, msr_info);
2822         }
2823         return 0;
2824 }
2825
2826 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2827 {
2828         struct vcpu_svm *svm = to_svm(vcpu);
2829         if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2830                 return kvm_complete_insn_gp(vcpu, err);
2831
2832         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2833         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2834                                 X86_TRAP_GP |
2835                                 SVM_EVTINJ_TYPE_EXEPT |
2836                                 SVM_EVTINJ_VALID);
2837         return 1;
2838 }
2839
2840 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2841 {
2842         struct vcpu_svm *svm = to_svm(vcpu);
2843         int svm_dis, chg_mask;
2844
2845         if (data & ~SVM_VM_CR_VALID_MASK)
2846                 return 1;
2847
2848         chg_mask = SVM_VM_CR_VALID_MASK;
2849
2850         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2851                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2852
2853         svm->nested.vm_cr_msr &= ~chg_mask;
2854         svm->nested.vm_cr_msr |= (data & chg_mask);
2855
2856         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2857
2858         /* check for svm_disable while efer.svme is set */
2859         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2860                 return 1;
2861
2862         return 0;
2863 }
2864
2865 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2866 {
2867         struct vcpu_svm *svm = to_svm(vcpu);
2868         int r;
2869
2870         u32 ecx = msr->index;
2871         u64 data = msr->data;
2872         switch (ecx) {
2873         case MSR_AMD64_TSC_RATIO:
2874
2875                 if (!svm->tsc_scaling_enabled) {
2876
2877                         if (!msr->host_initiated)
2878                                 return 1;
2879                         /*
2880                          * In case TSC scaling is not enabled, always
2881                          * leave this MSR at the default value.
2882                          *
2883                          * Due to bug in qemu 6.2.0, it would try to set
2884                          * this msr to 0 if tsc scaling is not enabled.
2885                          * Ignore this value as well.
2886                          */
2887                         if (data != 0 && data != svm->tsc_ratio_msr)
2888                                 return 1;
2889                         break;
2890                 }
2891
2892                 if (data & SVM_TSC_RATIO_RSVD)
2893                         return 1;
2894
2895                 svm->tsc_ratio_msr = data;
2896
2897                 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2898                         nested_svm_update_tsc_ratio_msr(vcpu);
2899
2900                 break;
2901         case MSR_IA32_CR_PAT:
2902                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2903                         return 1;
2904                 vcpu->arch.pat = data;
2905                 svm->vmcb01.ptr->save.g_pat = data;
2906                 if (is_guest_mode(vcpu))
2907                         nested_vmcb02_compute_g_pat(svm);
2908                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2909                 break;
2910         case MSR_IA32_SPEC_CTRL:
2911                 if (!msr->host_initiated &&
2912                     !guest_has_spec_ctrl_msr(vcpu))
2913                         return 1;
2914
2915                 if (kvm_spec_ctrl_test_value(data))
2916                         return 1;
2917
2918                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2919                         svm->vmcb->save.spec_ctrl = data;
2920                 else
2921                         svm->spec_ctrl = data;
2922                 if (!data)
2923                         break;
2924
2925                 /*
2926                  * For non-nested:
2927                  * When it's written (to non-zero) for the first time, pass
2928                  * it through.
2929                  *
2930                  * For nested:
2931                  * The handling of the MSR bitmap for L2 guests is done in
2932                  * nested_svm_vmrun_msrpm.
2933                  * We update the L1 MSR bit as well since it will end up
2934                  * touching the MSR anyway now.
2935                  */
2936                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2937                 break;
2938         case MSR_IA32_PRED_CMD:
2939                 if (!msr->host_initiated &&
2940                     !guest_has_pred_cmd_msr(vcpu))
2941                         return 1;
2942
2943                 if (data & ~PRED_CMD_IBPB)
2944                         return 1;
2945                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2946                         return 1;
2947                 if (!data)
2948                         break;
2949
2950                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2951                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2952                 break;
2953         case MSR_AMD64_VIRT_SPEC_CTRL:
2954                 if (!msr->host_initiated &&
2955                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2956                         return 1;
2957
2958                 if (data & ~SPEC_CTRL_SSBD)
2959                         return 1;
2960
2961                 svm->virt_spec_ctrl = data;
2962                 break;
2963         case MSR_STAR:
2964                 svm->vmcb01.ptr->save.star = data;
2965                 break;
2966 #ifdef CONFIG_X86_64
2967         case MSR_LSTAR:
2968                 svm->vmcb01.ptr->save.lstar = data;
2969                 break;
2970         case MSR_CSTAR:
2971                 svm->vmcb01.ptr->save.cstar = data;
2972                 break;
2973         case MSR_KERNEL_GS_BASE:
2974                 svm->vmcb01.ptr->save.kernel_gs_base = data;
2975                 break;
2976         case MSR_SYSCALL_MASK:
2977                 svm->vmcb01.ptr->save.sfmask = data;
2978                 break;
2979 #endif
2980         case MSR_IA32_SYSENTER_CS:
2981                 svm->vmcb01.ptr->save.sysenter_cs = data;
2982                 break;
2983         case MSR_IA32_SYSENTER_EIP:
2984                 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2985                 /*
2986                  * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2987                  * when we spoof an Intel vendor ID (for cross vendor migration).
2988                  * In this case we use this intercept to track the high
2989                  * 32 bit part of these msrs to support Intel's
2990                  * implementation of SYSENTER/SYSEXIT.
2991                  */
2992                 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2993                 break;
2994         case MSR_IA32_SYSENTER_ESP:
2995                 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2996                 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2997                 break;
2998         case MSR_TSC_AUX:
2999                 /*
3000                  * TSC_AUX is usually changed only during boot and never read
3001                  * directly.  Intercept TSC_AUX instead of exposing it to the
3002                  * guest via direct_access_msrs, and switch it via user return.
3003                  */
3004                 preempt_disable();
3005                 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3006                 preempt_enable();
3007                 if (r)
3008                         return 1;
3009
3010                 svm->tsc_aux = data;
3011                 break;
3012         case MSR_IA32_DEBUGCTLMSR:
3013                 if (!lbrv) {
3014                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3015                                     __func__, data);
3016                         break;
3017                 }
3018                 if (data & DEBUGCTL_RESERVED_BITS)
3019                         return 1;
3020
3021                 if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK)
3022                         svm->vmcb->save.dbgctl = data;
3023                 else
3024                         svm->vmcb01.ptr->save.dbgctl = data;
3025
3026                 svm_update_lbrv(vcpu);
3027
3028                 break;
3029         case MSR_VM_HSAVE_PA:
3030                 /*
3031                  * Old kernels did not validate the value written to
3032                  * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3033                  * value to allow live migrating buggy or malicious guests
3034                  * originating from those kernels.
3035                  */
3036                 if (!msr->host_initiated && !page_address_valid(vcpu, data))
3037                         return 1;
3038
3039                 svm->nested.hsave_msr = data & PAGE_MASK;
3040                 break;
3041         case MSR_VM_CR:
3042                 return svm_set_vm_cr(vcpu, data);
3043         case MSR_VM_IGNNE:
3044                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3045                 break;
3046         case MSR_F10H_DECFG: {
3047                 struct kvm_msr_entry msr_entry;
3048
3049                 msr_entry.index = msr->index;
3050                 if (svm_get_msr_feature(&msr_entry))
3051                         return 1;
3052
3053                 /* Check the supported bits */
3054                 if (data & ~msr_entry.data)
3055                         return 1;
3056
3057                 /* Don't allow the guest to change a bit, #GP */
3058                 if (!msr->host_initiated && (data ^ msr_entry.data))
3059                         return 1;
3060
3061                 svm->msr_decfg = data;
3062                 break;
3063         }
3064         default:
3065                 return kvm_set_msr_common(vcpu, msr);
3066         }
3067         return 0;
3068 }
3069
3070 static int msr_interception(struct kvm_vcpu *vcpu)
3071 {
3072         if (to_svm(vcpu)->vmcb->control.exit_info_1)
3073                 return kvm_emulate_wrmsr(vcpu);
3074         else
3075                 return kvm_emulate_rdmsr(vcpu);
3076 }
3077
3078 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3079 {
3080         kvm_make_request(KVM_REQ_EVENT, vcpu);
3081         svm_clear_vintr(to_svm(vcpu));
3082
3083         /*
3084          * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3085          * In this case AVIC was temporarily disabled for
3086          * requesting the IRQ window and we have to re-enable it.
3087          *
3088          * If running nested, still remove the VM wide AVIC inhibit to
3089          * support case in which the interrupt window was requested when the
3090          * vCPU was not running nested.
3091
3092          * All vCPUs which run still run nested, will remain to have their
3093          * AVIC still inhibited due to per-cpu AVIC inhibition.
3094          */
3095         kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3096
3097         ++vcpu->stat.irq_window_exits;
3098         return 1;
3099 }
3100
3101 static int pause_interception(struct kvm_vcpu *vcpu)
3102 {
3103         bool in_kernel;
3104         /*
3105          * CPL is not made available for an SEV-ES guest, therefore
3106          * vcpu->arch.preempted_in_kernel can never be true.  Just
3107          * set in_kernel to false as well.
3108          */
3109         in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3110
3111         grow_ple_window(vcpu);
3112
3113         kvm_vcpu_on_spin(vcpu, in_kernel);
3114         return kvm_skip_emulated_instruction(vcpu);
3115 }
3116
3117 static int invpcid_interception(struct kvm_vcpu *vcpu)
3118 {
3119         struct vcpu_svm *svm = to_svm(vcpu);
3120         unsigned long type;
3121         gva_t gva;
3122
3123         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3124                 kvm_queue_exception(vcpu, UD_VECTOR);
3125                 return 1;
3126         }
3127
3128         /*
3129          * For an INVPCID intercept:
3130          * EXITINFO1 provides the linear address of the memory operand.
3131          * EXITINFO2 provides the contents of the register operand.
3132          */
3133         type = svm->vmcb->control.exit_info_2;
3134         gva = svm->vmcb->control.exit_info_1;
3135
3136         return kvm_handle_invpcid(vcpu, type, gva);
3137 }
3138
3139 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3140         [SVM_EXIT_READ_CR0]                     = cr_interception,
3141         [SVM_EXIT_READ_CR3]                     = cr_interception,
3142         [SVM_EXIT_READ_CR4]                     = cr_interception,
3143         [SVM_EXIT_READ_CR8]                     = cr_interception,
3144         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3145         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3146         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3147         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3148         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3149         [SVM_EXIT_READ_DR0]                     = dr_interception,
3150         [SVM_EXIT_READ_DR1]                     = dr_interception,
3151         [SVM_EXIT_READ_DR2]                     = dr_interception,
3152         [SVM_EXIT_READ_DR3]                     = dr_interception,
3153         [SVM_EXIT_READ_DR4]                     = dr_interception,
3154         [SVM_EXIT_READ_DR5]                     = dr_interception,
3155         [SVM_EXIT_READ_DR6]                     = dr_interception,
3156         [SVM_EXIT_READ_DR7]                     = dr_interception,
3157         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3158         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3159         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3160         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3161         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3162         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3163         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3164         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3165         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3166         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3167         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3168         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3169         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3170         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
3171         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
3172         [SVM_EXIT_INTR]                         = intr_interception,
3173         [SVM_EXIT_NMI]                          = nmi_interception,
3174         [SVM_EXIT_SMI]                          = smi_interception,
3175         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3176         [SVM_EXIT_RDPMC]                        = kvm_emulate_rdpmc,
3177         [SVM_EXIT_CPUID]                        = kvm_emulate_cpuid,
3178         [SVM_EXIT_IRET]                         = iret_interception,
3179         [SVM_EXIT_INVD]                         = kvm_emulate_invd,
3180         [SVM_EXIT_PAUSE]                        = pause_interception,
3181         [SVM_EXIT_HLT]                          = kvm_emulate_halt,
3182         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3183         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3184         [SVM_EXIT_IOIO]                         = io_interception,
3185         [SVM_EXIT_MSR]                          = msr_interception,
3186         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3187         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3188         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3189         [SVM_EXIT_VMMCALL]                      = kvm_emulate_hypercall,
3190         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3191         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3192         [SVM_EXIT_STGI]                         = stgi_interception,
3193         [SVM_EXIT_CLGI]                         = clgi_interception,
3194         [SVM_EXIT_SKINIT]                       = skinit_interception,
3195         [SVM_EXIT_RDTSCP]                       = kvm_handle_invalid_op,
3196         [SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3197         [SVM_EXIT_MONITOR]                      = kvm_emulate_monitor,
3198         [SVM_EXIT_MWAIT]                        = kvm_emulate_mwait,
3199         [SVM_EXIT_XSETBV]                       = kvm_emulate_xsetbv,
3200         [SVM_EXIT_RDPRU]                        = kvm_handle_invalid_op,
3201         [SVM_EXIT_EFER_WRITE_TRAP]              = efer_trap,
3202         [SVM_EXIT_CR0_WRITE_TRAP]               = cr_trap,
3203         [SVM_EXIT_CR4_WRITE_TRAP]               = cr_trap,
3204         [SVM_EXIT_CR8_WRITE_TRAP]               = cr_trap,
3205         [SVM_EXIT_INVPCID]                      = invpcid_interception,
3206         [SVM_EXIT_NPF]                          = npf_interception,
3207         [SVM_EXIT_RSM]                          = rsm_interception,
3208         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
3209         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
3210         [SVM_EXIT_VMGEXIT]                      = sev_handle_vmgexit,
3211 };
3212
3213 static void dump_vmcb(struct kvm_vcpu *vcpu)
3214 {
3215         struct vcpu_svm *svm = to_svm(vcpu);
3216         struct vmcb_control_area *control = &svm->vmcb->control;
3217         struct vmcb_save_area *save = &svm->vmcb->save;
3218         struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3219
3220         if (!dump_invalid_vmcb) {
3221                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3222                 return;
3223         }
3224
3225         pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3226                svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3227         pr_err("VMCB Control Area:\n");
3228         pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3229         pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3230         pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3231         pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3232         pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3233         pr_err("%-20s%08x %08x\n", "intercepts:",
3234               control->intercepts[INTERCEPT_WORD3],
3235                control->intercepts[INTERCEPT_WORD4]);
3236         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3237         pr_err("%-20s%d\n", "pause filter threshold:",
3238                control->pause_filter_thresh);
3239         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3240         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3241         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3242         pr_err("%-20s%d\n", "asid:", control->asid);
3243         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3244         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3245         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3246         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3247         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3248         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3249         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3250         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3251         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3252         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3253         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3254         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3255         pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3256         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3257         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3258         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3259         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3260         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3261         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3262         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3263         pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3264         pr_err("VMCB State Save Area:\n");
3265         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3266                "es:",
3267                save->es.selector, save->es.attrib,
3268                save->es.limit, save->es.base);
3269         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3270                "cs:",
3271                save->cs.selector, save->cs.attrib,
3272                save->cs.limit, save->cs.base);
3273         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3274                "ss:",
3275                save->ss.selector, save->ss.attrib,
3276                save->ss.limit, save->ss.base);
3277         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3278                "ds:",
3279                save->ds.selector, save->ds.attrib,
3280                save->ds.limit, save->ds.base);
3281         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3282                "fs:",
3283                save01->fs.selector, save01->fs.attrib,
3284                save01->fs.limit, save01->fs.base);
3285         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3286                "gs:",
3287                save01->gs.selector, save01->gs.attrib,
3288                save01->gs.limit, save01->gs.base);
3289         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3290                "gdtr:",
3291                save->gdtr.selector, save->gdtr.attrib,
3292                save->gdtr.limit, save->gdtr.base);
3293         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3294                "ldtr:",
3295                save01->ldtr.selector, save01->ldtr.attrib,
3296                save01->ldtr.limit, save01->ldtr.base);
3297         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3298                "idtr:",
3299                save->idtr.selector, save->idtr.attrib,
3300                save->idtr.limit, save->idtr.base);
3301         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3302                "tr:",
3303                save01->tr.selector, save01->tr.attrib,
3304                save01->tr.limit, save01->tr.base);
3305         pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3306                save->vmpl, save->cpl, save->efer);
3307         pr_err("%-15s %016llx %-13s %016llx\n",
3308                "cr0:", save->cr0, "cr2:", save->cr2);
3309         pr_err("%-15s %016llx %-13s %016llx\n",
3310                "cr3:", save->cr3, "cr4:", save->cr4);
3311         pr_err("%-15s %016llx %-13s %016llx\n",
3312                "dr6:", save->dr6, "dr7:", save->dr7);
3313         pr_err("%-15s %016llx %-13s %016llx\n",
3314                "rip:", save->rip, "rflags:", save->rflags);
3315         pr_err("%-15s %016llx %-13s %016llx\n",
3316                "rsp:", save->rsp, "rax:", save->rax);
3317         pr_err("%-15s %016llx %-13s %016llx\n",
3318                "star:", save01->star, "lstar:", save01->lstar);
3319         pr_err("%-15s %016llx %-13s %016llx\n",
3320                "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3321         pr_err("%-15s %016llx %-13s %016llx\n",
3322                "kernel_gs_base:", save01->kernel_gs_base,
3323                "sysenter_cs:", save01->sysenter_cs);
3324         pr_err("%-15s %016llx %-13s %016llx\n",
3325                "sysenter_esp:", save01->sysenter_esp,
3326                "sysenter_eip:", save01->sysenter_eip);
3327         pr_err("%-15s %016llx %-13s %016llx\n",
3328                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3329         pr_err("%-15s %016llx %-13s %016llx\n",
3330                "br_from:", save->br_from, "br_to:", save->br_to);
3331         pr_err("%-15s %016llx %-13s %016llx\n",
3332                "excp_from:", save->last_excp_from,
3333                "excp_to:", save->last_excp_to);
3334 }
3335
3336 static bool svm_check_exit_valid(u64 exit_code)
3337 {
3338         return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3339                 svm_exit_handlers[exit_code]);
3340 }
3341
3342 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3343 {
3344         vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3345         dump_vmcb(vcpu);
3346         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3347         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3348         vcpu->run->internal.ndata = 2;
3349         vcpu->run->internal.data[0] = exit_code;
3350         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3351         return 0;
3352 }
3353
3354 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3355 {
3356         if (!svm_check_exit_valid(exit_code))
3357                 return svm_handle_invalid_exit(vcpu, exit_code);
3358
3359 #ifdef CONFIG_RETPOLINE
3360         if (exit_code == SVM_EXIT_MSR)
3361                 return msr_interception(vcpu);
3362         else if (exit_code == SVM_EXIT_VINTR)
3363                 return interrupt_window_interception(vcpu);
3364         else if (exit_code == SVM_EXIT_INTR)
3365                 return intr_interception(vcpu);
3366         else if (exit_code == SVM_EXIT_HLT)
3367                 return kvm_emulate_halt(vcpu);
3368         else if (exit_code == SVM_EXIT_NPF)
3369                 return npf_interception(vcpu);
3370 #endif
3371         return svm_exit_handlers[exit_code](vcpu);
3372 }
3373
3374 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3375                               u64 *info1, u64 *info2,
3376                               u32 *intr_info, u32 *error_code)
3377 {
3378         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3379
3380         *reason = control->exit_code;
3381         *info1 = control->exit_info_1;
3382         *info2 = control->exit_info_2;
3383         *intr_info = control->exit_int_info;
3384         if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3385             (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3386                 *error_code = control->exit_int_info_err;
3387         else
3388                 *error_code = 0;
3389 }
3390
3391 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3392 {
3393         struct vcpu_svm *svm = to_svm(vcpu);
3394         struct kvm_run *kvm_run = vcpu->run;
3395         u32 exit_code = svm->vmcb->control.exit_code;
3396
3397         trace_kvm_exit(vcpu, KVM_ISA_SVM);
3398
3399         /* SEV-ES guests must use the CR write traps to track CR registers. */
3400         if (!sev_es_guest(vcpu->kvm)) {
3401                 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3402                         vcpu->arch.cr0 = svm->vmcb->save.cr0;
3403                 if (npt_enabled)
3404                         vcpu->arch.cr3 = svm->vmcb->save.cr3;
3405         }
3406
3407         if (is_guest_mode(vcpu)) {
3408                 int vmexit;
3409
3410                 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3411
3412                 vmexit = nested_svm_exit_special(svm);
3413
3414                 if (vmexit == NESTED_EXIT_CONTINUE)
3415                         vmexit = nested_svm_exit_handled(svm);
3416
3417                 if (vmexit == NESTED_EXIT_DONE)
3418                         return 1;
3419         }
3420
3421         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3422                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3423                 kvm_run->fail_entry.hardware_entry_failure_reason
3424                         = svm->vmcb->control.exit_code;
3425                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3426                 dump_vmcb(vcpu);
3427                 return 0;
3428         }
3429
3430         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3431             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3432             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3433             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3434                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3435                        "exit_code 0x%x\n",
3436                        __func__, svm->vmcb->control.exit_int_info,
3437                        exit_code);
3438
3439         if (exit_fastpath != EXIT_FASTPATH_NONE)
3440                 return 1;
3441
3442         return svm_invoke_exit_handler(vcpu, exit_code);
3443 }
3444
3445 static void reload_tss(struct kvm_vcpu *vcpu)
3446 {
3447         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3448
3449         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3450         load_TR_desc();
3451 }
3452
3453 static void pre_svm_run(struct kvm_vcpu *vcpu)
3454 {
3455         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3456         struct vcpu_svm *svm = to_svm(vcpu);
3457
3458         /*
3459          * If the previous vmrun of the vmcb occurred on a different physical
3460          * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3461          * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3462          */
3463         if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3464                 svm->current_vmcb->asid_generation = 0;
3465                 vmcb_mark_all_dirty(svm->vmcb);
3466                 svm->current_vmcb->cpu = vcpu->cpu;
3467         }
3468
3469         if (sev_guest(vcpu->kvm))
3470                 return pre_sev_run(svm, vcpu->cpu);
3471
3472         /* FIXME: handle wraparound of asid_generation */
3473         if (svm->current_vmcb->asid_generation != sd->asid_generation)
3474                 new_asid(svm, sd);
3475 }
3476
3477 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3478 {
3479         struct vcpu_svm *svm = to_svm(vcpu);
3480
3481         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3482
3483         if (svm->nmi_l1_to_l2)
3484                 return;
3485
3486         vcpu->arch.hflags |= HF_NMI_MASK;
3487         if (!sev_es_guest(vcpu->kvm))
3488                 svm_set_intercept(svm, INTERCEPT_IRET);
3489         ++vcpu->stat.nmi_injections;
3490 }
3491
3492 static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3493 {
3494         struct vcpu_svm *svm = to_svm(vcpu);
3495         u32 type;
3496
3497         if (vcpu->arch.interrupt.soft) {
3498                 if (svm_update_soft_interrupt_rip(vcpu))
3499                         return;
3500
3501                 type = SVM_EVTINJ_TYPE_SOFT;
3502         } else {
3503                 type = SVM_EVTINJ_TYPE_INTR;
3504         }
3505
3506         trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3507                            vcpu->arch.interrupt.soft, reinjected);
3508         ++vcpu->stat.irq_injections;
3509
3510         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3511                                        SVM_EVTINJ_VALID | type;
3512 }
3513
3514 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3515                                      int trig_mode, int vector)
3516 {
3517         /*
3518          * apic->apicv_active must be read after vcpu->mode.
3519          * Pairs with smp_store_release in vcpu_enter_guest.
3520          */
3521         bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3522
3523         /* Note, this is called iff the local APIC is in-kernel. */
3524         if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3525                 /* Process the interrupt via inject_pending_event */
3526                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3527                 kvm_vcpu_kick(vcpu);
3528                 return;
3529         }
3530
3531         trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3532         if (in_guest_mode) {
3533                 /*
3534                  * Signal the doorbell to tell hardware to inject the IRQ.  If
3535                  * the vCPU exits the guest before the doorbell chimes, hardware
3536                  * will automatically process AVIC interrupts at the next VMRUN.
3537                  */
3538                 avic_ring_doorbell(vcpu);
3539         } else {
3540                 /*
3541                  * Wake the vCPU if it was blocking.  KVM will then detect the
3542                  * pending IRQ when checking if the vCPU has a wake event.
3543                  */
3544                 kvm_vcpu_wake_up(vcpu);
3545         }
3546 }
3547
3548 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3549                                   int trig_mode, int vector)
3550 {
3551         kvm_lapic_set_irr(vector, apic);
3552
3553         /*
3554          * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3555          * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3556          * the read of guest_mode.  This guarantees that either VMRUN will see
3557          * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3558          * will signal the doorbell if the CPU has already entered the guest.
3559          */
3560         smp_mb__after_atomic();
3561         svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3562 }
3563
3564 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3565 {
3566         struct vcpu_svm *svm = to_svm(vcpu);
3567
3568         /*
3569          * SEV-ES guests must always keep the CR intercepts cleared. CR
3570          * tracking is done using the CR write traps.
3571          */
3572         if (sev_es_guest(vcpu->kvm))
3573                 return;
3574
3575         if (nested_svm_virtualize_tpr(vcpu))
3576                 return;
3577
3578         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3579
3580         if (irr == -1)
3581                 return;
3582
3583         if (tpr >= irr)
3584                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3585 }
3586
3587 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3588 {
3589         struct vcpu_svm *svm = to_svm(vcpu);
3590         struct vmcb *vmcb = svm->vmcb;
3591         bool ret;
3592
3593         if (!gif_set(svm))
3594                 return true;
3595
3596         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3597                 return false;
3598
3599         ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3600               (vcpu->arch.hflags & HF_NMI_MASK);
3601
3602         return ret;
3603 }
3604
3605 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3606 {
3607         struct vcpu_svm *svm = to_svm(vcpu);
3608         if (svm->nested.nested_run_pending)
3609                 return -EBUSY;
3610
3611         if (svm_nmi_blocked(vcpu))
3612                 return 0;
3613
3614         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3615         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3616                 return -EBUSY;
3617         return 1;
3618 }
3619
3620 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3621 {
3622         return !!(vcpu->arch.hflags & HF_NMI_MASK);
3623 }
3624
3625 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3626 {
3627         struct vcpu_svm *svm = to_svm(vcpu);
3628
3629         if (masked) {
3630                 vcpu->arch.hflags |= HF_NMI_MASK;
3631                 if (!sev_es_guest(vcpu->kvm))
3632                         svm_set_intercept(svm, INTERCEPT_IRET);
3633         } else {
3634                 vcpu->arch.hflags &= ~HF_NMI_MASK;
3635                 if (!sev_es_guest(vcpu->kvm))
3636                         svm_clr_intercept(svm, INTERCEPT_IRET);
3637         }
3638 }
3639
3640 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3641 {
3642         struct vcpu_svm *svm = to_svm(vcpu);
3643         struct vmcb *vmcb = svm->vmcb;
3644
3645         if (!gif_set(svm))
3646                 return true;
3647
3648         if (is_guest_mode(vcpu)) {
3649                 /* As long as interrupts are being delivered...  */
3650                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3651                     ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3652                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3653                         return true;
3654
3655                 /* ... vmexits aren't blocked by the interrupt shadow  */
3656                 if (nested_exit_on_intr(svm))
3657                         return false;
3658         } else {
3659                 if (!svm_get_if_flag(vcpu))
3660                         return true;
3661         }
3662
3663         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3664 }
3665
3666 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3667 {
3668         struct vcpu_svm *svm = to_svm(vcpu);
3669
3670         if (svm->nested.nested_run_pending)
3671                 return -EBUSY;
3672
3673         if (svm_interrupt_blocked(vcpu))
3674                 return 0;
3675
3676         /*
3677          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3678          * e.g. if the IRQ arrived asynchronously after checking nested events.
3679          */
3680         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3681                 return -EBUSY;
3682
3683         return 1;
3684 }
3685
3686 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3687 {
3688         struct vcpu_svm *svm = to_svm(vcpu);
3689
3690         /*
3691          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3692          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3693          * get that intercept, this function will be called again though and
3694          * we'll get the vintr intercept. However, if the vGIF feature is
3695          * enabled, the STGI interception will not occur. Enable the irq
3696          * window under the assumption that the hardware will set the GIF.
3697          */
3698         if (vgif || gif_set(svm)) {
3699                 /*
3700                  * IRQ window is not needed when AVIC is enabled,
3701                  * unless we have pending ExtINT since it cannot be injected
3702                  * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3703                  * and fallback to injecting IRQ via V_IRQ.
3704                  *
3705                  * If running nested, AVIC is already locally inhibited
3706                  * on this vCPU, therefore there is no need to request
3707                  * the VM wide AVIC inhibition.
3708                  */
3709                 if (!is_guest_mode(vcpu))
3710                         kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3711
3712                 svm_set_vintr(svm);
3713         }
3714 }
3715
3716 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3717 {
3718         struct vcpu_svm *svm = to_svm(vcpu);
3719
3720         if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3721                 return; /* IRET will cause a vm exit */
3722
3723         if (!gif_set(svm)) {
3724                 if (vgif)
3725                         svm_set_intercept(svm, INTERCEPT_STGI);
3726                 return; /* STGI will cause a vm exit */
3727         }
3728
3729         /*
3730          * Something prevents NMI from been injected. Single step over possible
3731          * problem (IRET or exception injection or interrupt shadow)
3732          */
3733         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3734         svm->nmi_singlestep = true;
3735         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3736 }
3737
3738 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3739 {
3740         struct vcpu_svm *svm = to_svm(vcpu);
3741
3742         /*
3743          * Flush only the current ASID even if the TLB flush was invoked via
3744          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3745          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3746          * unconditionally does a TLB flush on both nested VM-Enter and nested
3747          * VM-Exit (via kvm_mmu_reset_context()).
3748          */
3749         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3750                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3751         else
3752                 svm->current_vmcb->asid_generation--;
3753 }
3754
3755 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3756 {
3757         struct vcpu_svm *svm = to_svm(vcpu);
3758
3759         invlpga(gva, svm->vmcb->control.asid);
3760 }
3761
3762 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3763 {
3764         struct vcpu_svm *svm = to_svm(vcpu);
3765
3766         if (nested_svm_virtualize_tpr(vcpu))
3767                 return;
3768
3769         if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3770                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3771                 kvm_set_cr8(vcpu, cr8);
3772         }
3773 }
3774
3775 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3776 {
3777         struct vcpu_svm *svm = to_svm(vcpu);
3778         u64 cr8;
3779
3780         if (nested_svm_virtualize_tpr(vcpu) ||
3781             kvm_vcpu_apicv_active(vcpu))
3782                 return;
3783
3784         cr8 = kvm_get_cr8(vcpu);
3785         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3786         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3787 }
3788
3789 static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3790                                         int type)
3791 {
3792         bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3793         bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3794         struct vcpu_svm *svm = to_svm(vcpu);
3795
3796         /*
3797          * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3798          * associated with the original soft exception/interrupt.  next_rip is
3799          * cleared on all exits that can occur while vectoring an event, so KVM
3800          * needs to manually set next_rip for re-injection.  Unlike the !nrips
3801          * case below, this needs to be done if and only if KVM is re-injecting
3802          * the same event, i.e. if the event is a soft exception/interrupt,
3803          * otherwise next_rip is unused on VMRUN.
3804          */
3805         if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
3806             kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
3807                 svm->vmcb->control.next_rip = svm->soft_int_next_rip;
3808         /*
3809          * If NRIPS isn't enabled, KVM must manually advance RIP prior to
3810          * injecting the soft exception/interrupt.  That advancement needs to
3811          * be unwound if vectoring didn't complete.  Note, the new event may
3812          * not be the injected event, e.g. if KVM injected an INTn, the INTn
3813          * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
3814          * be the reported vectored event, but RIP still needs to be unwound.
3815          */
3816         else if (!nrips && (is_soft || is_exception) &&
3817                  kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
3818                 kvm_rip_write(vcpu, svm->soft_int_old_rip);
3819 }
3820
3821 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3822 {
3823         struct vcpu_svm *svm = to_svm(vcpu);
3824         u8 vector;
3825         int type;
3826         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3827         bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
3828         bool soft_int_injected = svm->soft_int_injected;
3829
3830         svm->nmi_l1_to_l2 = false;
3831         svm->soft_int_injected = false;
3832
3833         /*
3834          * If we've made progress since setting HF_IRET_MASK, we've
3835          * executed an IRET and can allow NMI injection.
3836          */
3837         if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3838             (sev_es_guest(vcpu->kvm) ||
3839              kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3840                 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3841                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842         }
3843
3844         vcpu->arch.nmi_injected = false;
3845         kvm_clear_exception_queue(vcpu);
3846         kvm_clear_interrupt_queue(vcpu);
3847
3848         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3849                 return;
3850
3851         kvm_make_request(KVM_REQ_EVENT, vcpu);
3852
3853         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3854         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3855
3856         if (soft_int_injected)
3857                 svm_complete_soft_interrupt(vcpu, vector, type);
3858
3859         switch (type) {
3860         case SVM_EXITINTINFO_TYPE_NMI:
3861                 vcpu->arch.nmi_injected = true;
3862                 svm->nmi_l1_to_l2 = nmi_l1_to_l2;
3863                 break;
3864         case SVM_EXITINTINFO_TYPE_EXEPT:
3865                 /*
3866                  * Never re-inject a #VC exception.
3867                  */
3868                 if (vector == X86_TRAP_VC)
3869                         break;
3870
3871                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3872                         u32 err = svm->vmcb->control.exit_int_info_err;
3873                         kvm_requeue_exception_e(vcpu, vector, err);
3874
3875                 } else
3876                         kvm_requeue_exception(vcpu, vector);
3877                 break;
3878         case SVM_EXITINTINFO_TYPE_INTR:
3879                 kvm_queue_interrupt(vcpu, vector, false);
3880                 break;
3881         case SVM_EXITINTINFO_TYPE_SOFT:
3882                 kvm_queue_interrupt(vcpu, vector, true);
3883                 break;
3884         default:
3885                 break;
3886         }
3887
3888 }
3889
3890 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3891 {
3892         struct vcpu_svm *svm = to_svm(vcpu);
3893         struct vmcb_control_area *control = &svm->vmcb->control;
3894
3895         control->exit_int_info = control->event_inj;
3896         control->exit_int_info_err = control->event_inj_err;
3897         control->event_inj = 0;
3898         svm_complete_interrupts(vcpu);
3899 }
3900
3901 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3902 {
3903         return 1;
3904 }
3905
3906 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3907 {
3908         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3909             to_svm(vcpu)->vmcb->control.exit_info_1)
3910                 return handle_fastpath_set_msr_irqoff(vcpu);
3911
3912         return EXIT_FASTPATH_NONE;
3913 }
3914
3915 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3916 {
3917         struct vcpu_svm *svm = to_svm(vcpu);
3918         unsigned long vmcb_pa = svm->current_vmcb->pa;
3919
3920         guest_state_enter_irqoff();
3921
3922         if (sev_es_guest(vcpu->kvm)) {
3923                 __svm_sev_es_vcpu_run(vmcb_pa);
3924         } else {
3925                 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3926
3927                 /*
3928                  * Use a single vmcb (vmcb01 because it's always valid) for
3929                  * context switching guest state via VMLOAD/VMSAVE, that way
3930                  * the state doesn't need to be copied between vmcb01 and
3931                  * vmcb02 when switching vmcbs for nested virtualization.
3932                  */
3933                 vmload(svm->vmcb01.pa);
3934                 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3935                 vmsave(svm->vmcb01.pa);
3936
3937                 vmload(__sme_page_pa(sd->save_area));
3938         }
3939
3940         guest_state_exit_irqoff();
3941 }
3942
3943 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3944 {
3945         struct vcpu_svm *svm = to_svm(vcpu);
3946
3947         trace_kvm_entry(vcpu);
3948
3949         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3950         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3951         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3952
3953         /*
3954          * Disable singlestep if we're injecting an interrupt/exception.
3955          * We don't want our modified rflags to be pushed on the stack where
3956          * we might not be able to easily reset them if we disabled NMI
3957          * singlestep later.
3958          */
3959         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3960                 /*
3961                  * Event injection happens before external interrupts cause a
3962                  * vmexit and interrupts are disabled here, so smp_send_reschedule
3963                  * is enough to force an immediate vmexit.
3964                  */
3965                 disable_nmi_singlestep(svm);
3966                 smp_send_reschedule(vcpu->cpu);
3967         }
3968
3969         pre_svm_run(vcpu);
3970
3971         sync_lapic_to_cr8(vcpu);
3972
3973         if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3974                 svm->vmcb->control.asid = svm->asid;
3975                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3976         }
3977         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3978
3979         svm_hv_update_vp_id(svm->vmcb, vcpu);
3980
3981         /*
3982          * Run with all-zero DR6 unless needed, so that we can get the exact cause
3983          * of a #DB.
3984          */
3985         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3986                 svm_set_dr6(svm, vcpu->arch.dr6);
3987         else
3988                 svm_set_dr6(svm, DR6_ACTIVE_LOW);
3989
3990         clgi();
3991         kvm_load_guest_xsave_state(vcpu);
3992
3993         kvm_wait_lapic_expire(vcpu);
3994
3995         /*
3996          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3997          * it's non-zero. Since vmentry is serialising on affected CPUs, there
3998          * is no need to worry about the conditional branch over the wrmsr
3999          * being speculatively taken.
4000          */
4001         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4002                 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
4003
4004         svm_vcpu_enter_exit(vcpu);
4005
4006         /*
4007          * We do not use IBRS in the kernel. If this vCPU has used the
4008          * SPEC_CTRL MSR it may have left it on; save the value and
4009          * turn it off. This is much more efficient than blindly adding
4010          * it to the atomic save/restore list. Especially as the former
4011          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
4012          *
4013          * For non-nested case:
4014          * If the L01 MSR bitmap does not intercept the MSR, then we need to
4015          * save it.
4016          *
4017          * For nested case:
4018          * If the L02 MSR bitmap does not intercept the MSR, then we need to
4019          * save it.
4020          */
4021         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
4022             unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
4023                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
4024
4025         if (!sev_es_guest(vcpu->kvm))
4026                 reload_tss(vcpu);
4027
4028         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4029                 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
4030
4031         if (!sev_es_guest(vcpu->kvm)) {
4032                 vcpu->arch.cr2 = svm->vmcb->save.cr2;
4033                 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4034                 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4035                 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4036         }
4037         vcpu->arch.regs_dirty = 0;
4038
4039         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4040                 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4041
4042         kvm_load_host_xsave_state(vcpu);
4043         stgi();
4044
4045         /* Any pending NMI will happen here */
4046
4047         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4048                 kvm_after_interrupt(vcpu);
4049
4050         sync_cr8_to_lapic(vcpu);
4051
4052         svm->next_rip = 0;
4053         if (is_guest_mode(vcpu)) {
4054                 nested_sync_control_from_vmcb02(svm);
4055
4056                 /* Track VMRUNs that have made past consistency checking */
4057                 if (svm->nested.nested_run_pending &&
4058                     svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4059                         ++vcpu->stat.nested_run;
4060
4061                 svm->nested.nested_run_pending = 0;
4062         }
4063
4064         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4065         vmcb_mark_all_clean(svm->vmcb);
4066
4067         /* if exit due to PF check for async PF */
4068         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4069                 vcpu->arch.apf.host_apf_flags =
4070                         kvm_read_and_reset_apf_flags();
4071
4072         vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4073
4074         /*
4075          * We need to handle MC intercepts here before the vcpu has a chance to
4076          * change the physical cpu
4077          */
4078         if (unlikely(svm->vmcb->control.exit_code ==
4079                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4080                 svm_handle_mce(vcpu);
4081
4082         svm_complete_interrupts(vcpu);
4083
4084         if (is_guest_mode(vcpu))
4085                 return EXIT_FASTPATH_NONE;
4086
4087         return svm_exit_handlers_fastpath(vcpu);
4088 }
4089
4090 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4091                              int root_level)
4092 {
4093         struct vcpu_svm *svm = to_svm(vcpu);
4094         unsigned long cr3;
4095
4096         if (npt_enabled) {
4097                 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4098                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4099
4100                 hv_track_root_tdp(vcpu, root_hpa);
4101
4102                 cr3 = vcpu->arch.cr3;
4103         } else if (root_level >= PT64_ROOT_4LEVEL) {
4104                 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4105         } else {
4106                 /* PCID in the guest should be impossible with a 32-bit MMU. */
4107                 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4108                 cr3 = root_hpa;
4109         }
4110
4111         svm->vmcb->save.cr3 = cr3;
4112         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4113 }
4114
4115 static int is_disabled(void)
4116 {
4117         u64 vm_cr;
4118
4119         rdmsrl(MSR_VM_CR, vm_cr);
4120         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4121                 return 1;
4122
4123         return 0;
4124 }
4125
4126 static void
4127 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4128 {
4129         /*
4130          * Patch in the VMMCALL instruction:
4131          */
4132         hypercall[0] = 0x0f;
4133         hypercall[1] = 0x01;
4134         hypercall[2] = 0xd9;
4135 }
4136
4137 static int __init svm_check_processor_compat(void)
4138 {
4139         return 0;
4140 }
4141
4142 /*
4143  * The kvm parameter can be NULL (module initialization, or invocation before
4144  * VM creation). Be sure to check the kvm parameter before using it.
4145  */
4146 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4147 {
4148         switch (index) {
4149         case MSR_IA32_MCG_EXT_CTL:
4150         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
4151                 return false;
4152         case MSR_IA32_SMBASE:
4153                 /* SEV-ES guests do not support SMM, so report false */
4154                 if (kvm && sev_es_guest(kvm))
4155                         return false;
4156                 break;
4157         default:
4158                 break;
4159         }
4160
4161         return true;
4162 }
4163
4164 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4165 {
4166         struct vcpu_svm *svm = to_svm(vcpu);
4167         struct kvm_cpuid_entry2 *best;
4168
4169         vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4170                                     boot_cpu_has(X86_FEATURE_XSAVE) &&
4171                                     boot_cpu_has(X86_FEATURE_XSAVES);
4172
4173         /* Update nrips enabled cache */
4174         svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
4175                              guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
4176
4177         svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
4178         svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV);
4179
4180         svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4181
4182         svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) &&
4183                         guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER);
4184
4185         svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) &&
4186                         guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD);
4187
4188         svm->vgif_enabled = vgif && guest_cpuid_has(vcpu, X86_FEATURE_VGIF);
4189
4190         svm_recalc_instruction_intercepts(vcpu, svm);
4191
4192         /* For sev guests, the memory encryption bit is not reserved in CR3.  */
4193         if (sev_guest(vcpu->kvm)) {
4194                 best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4195                 if (best)
4196                         vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4197         }
4198
4199         init_vmcb_after_set_cpuid(vcpu);
4200 }
4201
4202 static bool svm_has_wbinvd_exit(void)
4203 {
4204         return true;
4205 }
4206
4207 #define PRE_EX(exit)  { .exit_code = (exit), \
4208                         .stage = X86_ICPT_PRE_EXCEPT, }
4209 #define POST_EX(exit) { .exit_code = (exit), \
4210                         .stage = X86_ICPT_POST_EXCEPT, }
4211 #define POST_MEM(exit) { .exit_code = (exit), \
4212                         .stage = X86_ICPT_POST_MEMACCESS, }
4213
4214 static const struct __x86_intercept {
4215         u32 exit_code;
4216         enum x86_intercept_stage stage;
4217 } x86_intercept_map[] = {
4218         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4219         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4220         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4221         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4222         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4223         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4224         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4225         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4226         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4227         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4228         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4229         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4230         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4231         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4232         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4233         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4234         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4235         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4236         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4237         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4238         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4239         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4240         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4241         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4242         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4243         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4244         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4245         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4246         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4247         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4248         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4249         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4250         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4251         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4252         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4253         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4254         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4255         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4256         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4257         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4258         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4259         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4260         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4261         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4262         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4263         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4264         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
4265 };
4266
4267 #undef PRE_EX
4268 #undef POST_EX
4269 #undef POST_MEM
4270
4271 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4272                                struct x86_instruction_info *info,
4273                                enum x86_intercept_stage stage,
4274                                struct x86_exception *exception)
4275 {
4276         struct vcpu_svm *svm = to_svm(vcpu);
4277         int vmexit, ret = X86EMUL_CONTINUE;
4278         struct __x86_intercept icpt_info;
4279         struct vmcb *vmcb = svm->vmcb;
4280
4281         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4282                 goto out;
4283
4284         icpt_info = x86_intercept_map[info->intercept];
4285
4286         if (stage != icpt_info.stage)
4287                 goto out;
4288
4289         switch (icpt_info.exit_code) {
4290         case SVM_EXIT_READ_CR0:
4291                 if (info->intercept == x86_intercept_cr_read)
4292                         icpt_info.exit_code += info->modrm_reg;
4293                 break;
4294         case SVM_EXIT_WRITE_CR0: {
4295                 unsigned long cr0, val;
4296
4297                 if (info->intercept == x86_intercept_cr_write)
4298                         icpt_info.exit_code += info->modrm_reg;
4299
4300                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4301                     info->intercept == x86_intercept_clts)
4302                         break;
4303
4304                 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4305                                         INTERCEPT_SELECTIVE_CR0)))
4306                         break;
4307
4308                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4309                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4310
4311                 if (info->intercept == x86_intercept_lmsw) {
4312                         cr0 &= 0xfUL;
4313                         val &= 0xfUL;
4314                         /* lmsw can't clear PE - catch this here */
4315                         if (cr0 & X86_CR0_PE)
4316                                 val |= X86_CR0_PE;
4317                 }
4318
4319                 if (cr0 ^ val)
4320                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4321
4322                 break;
4323         }
4324         case SVM_EXIT_READ_DR0:
4325         case SVM_EXIT_WRITE_DR0:
4326                 icpt_info.exit_code += info->modrm_reg;
4327                 break;
4328         case SVM_EXIT_MSR:
4329                 if (info->intercept == x86_intercept_wrmsr)
4330                         vmcb->control.exit_info_1 = 1;
4331                 else
4332                         vmcb->control.exit_info_1 = 0;
4333                 break;
4334         case SVM_EXIT_PAUSE:
4335                 /*
4336                  * We get this for NOP only, but pause
4337                  * is rep not, check this here
4338                  */
4339                 if (info->rep_prefix != REPE_PREFIX)
4340                         goto out;
4341                 break;
4342         case SVM_EXIT_IOIO: {
4343                 u64 exit_info;
4344                 u32 bytes;
4345
4346                 if (info->intercept == x86_intercept_in ||
4347                     info->intercept == x86_intercept_ins) {
4348                         exit_info = ((info->src_val & 0xffff) << 16) |
4349                                 SVM_IOIO_TYPE_MASK;
4350                         bytes = info->dst_bytes;
4351                 } else {
4352                         exit_info = (info->dst_val & 0xffff) << 16;
4353                         bytes = info->src_bytes;
4354                 }
4355
4356                 if (info->intercept == x86_intercept_outs ||
4357                     info->intercept == x86_intercept_ins)
4358                         exit_info |= SVM_IOIO_STR_MASK;
4359
4360                 if (info->rep_prefix)
4361                         exit_info |= SVM_IOIO_REP_MASK;
4362
4363                 bytes = min(bytes, 4u);
4364
4365                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4366
4367                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4368
4369                 vmcb->control.exit_info_1 = exit_info;
4370                 vmcb->control.exit_info_2 = info->next_rip;
4371
4372                 break;
4373         }
4374         default:
4375                 break;
4376         }
4377
4378         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4379         if (static_cpu_has(X86_FEATURE_NRIPS))
4380                 vmcb->control.next_rip  = info->next_rip;
4381         vmcb->control.exit_code = icpt_info.exit_code;
4382         vmexit = nested_svm_exit_handled(svm);
4383
4384         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4385                                            : X86EMUL_CONTINUE;
4386
4387 out:
4388         return ret;
4389 }
4390
4391 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4392 {
4393         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4394                 vcpu->arch.at_instruction_boundary = true;
4395 }
4396
4397 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4398 {
4399         if (!kvm_pause_in_guest(vcpu->kvm))
4400                 shrink_ple_window(vcpu);
4401 }
4402
4403 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4404 {
4405         /* [63:9] are reserved. */
4406         vcpu->arch.mcg_cap &= 0x1ff;
4407 }
4408
4409 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4410 {
4411         struct vcpu_svm *svm = to_svm(vcpu);
4412
4413         /* Per APM Vol.2 15.22.2 "Response to SMI" */
4414         if (!gif_set(svm))
4415                 return true;
4416
4417         return is_smm(vcpu);
4418 }
4419
4420 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4421 {
4422         struct vcpu_svm *svm = to_svm(vcpu);
4423         if (svm->nested.nested_run_pending)
4424                 return -EBUSY;
4425
4426         if (svm_smi_blocked(vcpu))
4427                 return 0;
4428
4429         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4430         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4431                 return -EBUSY;
4432
4433         return 1;
4434 }
4435
4436 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4437 {
4438         struct vcpu_svm *svm = to_svm(vcpu);
4439         struct kvm_host_map map_save;
4440         int ret;
4441
4442         if (!is_guest_mode(vcpu))
4443                 return 0;
4444
4445         /* FED8h - SVM Guest */
4446         put_smstate(u64, smstate, 0x7ed8, 1);
4447         /* FEE0h - SVM Guest VMCB Physical Address */
4448         put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4449
4450         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4451         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4452         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4453
4454         ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4455         if (ret)
4456                 return ret;
4457
4458         /*
4459          * KVM uses VMCB01 to store L1 host state while L2 runs but
4460          * VMCB01 is going to be used during SMM and thus the state will
4461          * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4462          * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4463          * format of the area is identical to guest save area offsetted
4464          * by 0x400 (matches the offset of 'struct vmcb_save_area'
4465          * within 'struct vmcb'). Note: HSAVE area may also be used by
4466          * L1 hypervisor to save additional host context (e.g. KVM does
4467          * that, see svm_prepare_switch_to_guest()) which must be
4468          * preserved.
4469          */
4470         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4471                          &map_save) == -EINVAL)
4472                 return 1;
4473
4474         BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4475
4476         svm_copy_vmrun_state(map_save.hva + 0x400,
4477                              &svm->vmcb01.ptr->save);
4478
4479         kvm_vcpu_unmap(vcpu, &map_save, true);
4480         return 0;
4481 }
4482
4483 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4484 {
4485         struct vcpu_svm *svm = to_svm(vcpu);
4486         struct kvm_host_map map, map_save;
4487         u64 saved_efer, vmcb12_gpa;
4488         struct vmcb *vmcb12;
4489         int ret;
4490
4491         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4492                 return 0;
4493
4494         /* Non-zero if SMI arrived while vCPU was in guest mode. */
4495         if (!GET_SMSTATE(u64, smstate, 0x7ed8))
4496                 return 0;
4497
4498         if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4499                 return 1;
4500
4501         saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4502         if (!(saved_efer & EFER_SVME))
4503                 return 1;
4504
4505         vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4506         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4507                 return 1;
4508
4509         ret = 1;
4510         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL)
4511                 goto unmap_map;
4512
4513         if (svm_allocate_nested(svm))
4514                 goto unmap_save;
4515
4516         /*
4517          * Restore L1 host state from L1 HSAVE area as VMCB01 was
4518          * used during SMM (see svm_enter_smm())
4519          */
4520
4521         svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4522
4523         /*
4524          * Enter the nested guest now
4525          */
4526
4527         vmcb_mark_all_dirty(svm->vmcb01.ptr);
4528
4529         vmcb12 = map.hva;
4530         nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4531         nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4532         ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false);
4533
4534         if (ret)
4535                 goto unmap_save;
4536
4537         svm->nested.nested_run_pending = 1;
4538
4539 unmap_save:
4540         kvm_vcpu_unmap(vcpu, &map_save, true);
4541 unmap_map:
4542         kvm_vcpu_unmap(vcpu, &map, true);
4543         return ret;
4544 }
4545
4546 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4547 {
4548         struct vcpu_svm *svm = to_svm(vcpu);
4549
4550         if (!gif_set(svm)) {
4551                 if (vgif)
4552                         svm_set_intercept(svm, INTERCEPT_STGI);
4553                 /* STGI will cause a vm exit */
4554         } else {
4555                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
4556         }
4557 }
4558
4559 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4560                                         void *insn, int insn_len)
4561 {
4562         bool smep, smap, is_user;
4563         unsigned long cr4;
4564         u64 error_code;
4565
4566         /* Emulation is always possible when KVM has access to all guest state. */
4567         if (!sev_guest(vcpu->kvm))
4568                 return true;
4569
4570         /* #UD and #GP should never be intercepted for SEV guests. */
4571         WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4572                                   EMULTYPE_TRAP_UD_FORCED |
4573                                   EMULTYPE_VMWARE_GP));
4574
4575         /*
4576          * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4577          * to guest register state.
4578          */
4579         if (sev_es_guest(vcpu->kvm))
4580                 return false;
4581
4582         /*
4583          * Emulation is possible if the instruction is already decoded, e.g.
4584          * when completing I/O after returning from userspace.
4585          */
4586         if (emul_type & EMULTYPE_NO_DECODE)
4587                 return true;
4588
4589         /*
4590          * Emulation is possible for SEV guests if and only if a prefilled
4591          * buffer containing the bytes of the intercepted instruction is
4592          * available. SEV guest memory is encrypted with a guest specific key
4593          * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4594          * decode garbage.
4595          *
4596          * Inject #UD if KVM reached this point without an instruction buffer.
4597          * In practice, this path should never be hit by a well-behaved guest,
4598          * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4599          * is still theoretically reachable, e.g. via unaccelerated fault-like
4600          * AVIC access, and needs to be handled by KVM to avoid putting the
4601          * guest into an infinite loop.   Injecting #UD is somewhat arbitrary,
4602          * but its the least awful option given lack of insight into the guest.
4603          */
4604         if (unlikely(!insn)) {
4605                 kvm_queue_exception(vcpu, UD_VECTOR);
4606                 return false;
4607         }
4608
4609         /*
4610          * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4611          * will be empty if the DecodeAssist microcode cannot fetch bytes for
4612          * the faulting instruction because the code fetch itself faulted, e.g.
4613          * the guest attempted to fetch from emulated MMIO or a guest page
4614          * table used to translate CS:RIP resides in emulated MMIO.
4615          */
4616         if (likely(insn_len))
4617                 return true;
4618
4619         /*
4620          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4621          *
4622          * Errata:
4623          * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4624          * possible that CPU microcode implementing DecodeAssist will fail to
4625          * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4626          * be '0'.  This happens because microcode reads CS:RIP using a _data_
4627          * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4628          * gives up and does not fill the instruction bytes buffer.
4629          *
4630          * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4631          * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4632          * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4633          * GuestIntrBytes field of the VMCB.
4634          *
4635          * This does _not_ mean that the erratum has been encountered, as the
4636          * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4637          * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4638          * encountered a reserved/not-present #PF.
4639          *
4640          * To hit the erratum, the following conditions must be true:
4641          *    1. CR4.SMAP=1 (obviously).
4642          *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4643          *       have been hit as the guest would have encountered a SMEP
4644          *       violation #PF, not a #NPF.
4645          *    3. The #NPF is not due to a code fetch, in which case failure to
4646          *       retrieve the instruction bytes is legitimate (see abvoe).
4647          *
4648          * In addition, don't apply the erratum workaround if the #NPF occurred
4649          * while translating guest page tables (see below).
4650          */
4651         error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4652         if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4653                 goto resume_guest;
4654
4655         cr4 = kvm_read_cr4(vcpu);
4656         smep = cr4 & X86_CR4_SMEP;
4657         smap = cr4 & X86_CR4_SMAP;
4658         is_user = svm_get_cpl(vcpu) == 3;
4659         if (smap && (!smep || is_user)) {
4660                 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4661
4662                 /*
4663                  * If the fault occurred in userspace, arbitrarily inject #GP
4664                  * to avoid killing the guest and to hopefully avoid confusing
4665                  * the guest kernel too much, e.g. injecting #PF would not be
4666                  * coherent with respect to the guest's page tables.  Request
4667                  * triple fault if the fault occurred in the kernel as there's
4668                  * no fault that KVM can inject without confusing the guest.
4669                  * In practice, the triple fault is moot as no sane SEV kernel
4670                  * will execute from user memory while also running with SMAP=1.
4671                  */
4672                 if (is_user)
4673                         kvm_inject_gp(vcpu, 0);
4674                 else
4675                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4676         }
4677
4678 resume_guest:
4679         /*
4680          * If the erratum was not hit, simply resume the guest and let it fault
4681          * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4682          * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4683          * userspace will kill the guest, and letting the emulator read garbage
4684          * will yield random behavior and potentially corrupt the guest.
4685          *
4686          * Simply resuming the guest is technically not a violation of the SEV
4687          * architecture.  AMD's APM states that all code fetches and page table
4688          * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4689          * APM also states that encrypted accesses to MMIO are "ignored", but
4690          * doesn't explicitly define "ignored", i.e. doing nothing and letting
4691          * the guest spin is technically "ignoring" the access.
4692          */
4693         return false;
4694 }
4695
4696 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4697 {
4698         struct vcpu_svm *svm = to_svm(vcpu);
4699
4700         /*
4701          * TODO: Last condition latch INIT signals on vCPU when
4702          * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4703          * To properly emulate the INIT intercept,
4704          * svm_check_nested_events() should call nested_svm_vmexit()
4705          * if an INIT signal is pending.
4706          */
4707         return !gif_set(svm) ||
4708                    (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4709 }
4710
4711 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4712 {
4713         if (!sev_es_guest(vcpu->kvm))
4714                 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4715
4716         sev_vcpu_deliver_sipi_vector(vcpu, vector);
4717 }
4718
4719 static void svm_vm_destroy(struct kvm *kvm)
4720 {
4721         avic_vm_destroy(kvm);
4722         sev_vm_destroy(kvm);
4723 }
4724
4725 static int svm_vm_init(struct kvm *kvm)
4726 {
4727         if (!pause_filter_count || !pause_filter_thresh)
4728                 kvm->arch.pause_in_guest = true;
4729
4730         if (enable_apicv) {
4731                 int ret = avic_vm_init(kvm);
4732                 if (ret)
4733                         return ret;
4734         }
4735
4736         return 0;
4737 }
4738
4739 static struct kvm_x86_ops svm_x86_ops __initdata = {
4740         .name = "kvm_amd",
4741
4742         .hardware_unsetup = svm_hardware_unsetup,
4743         .hardware_enable = svm_hardware_enable,
4744         .hardware_disable = svm_hardware_disable,
4745         .has_emulated_msr = svm_has_emulated_msr,
4746
4747         .vcpu_create = svm_vcpu_create,
4748         .vcpu_free = svm_vcpu_free,
4749         .vcpu_reset = svm_vcpu_reset,
4750
4751         .vm_size = sizeof(struct kvm_svm),
4752         .vm_init = svm_vm_init,
4753         .vm_destroy = svm_vm_destroy,
4754
4755         .prepare_switch_to_guest = svm_prepare_switch_to_guest,
4756         .vcpu_load = svm_vcpu_load,
4757         .vcpu_put = svm_vcpu_put,
4758         .vcpu_blocking = avic_vcpu_blocking,
4759         .vcpu_unblocking = avic_vcpu_unblocking,
4760
4761         .update_exception_bitmap = svm_update_exception_bitmap,
4762         .get_msr_feature = svm_get_msr_feature,
4763         .get_msr = svm_get_msr,
4764         .set_msr = svm_set_msr,
4765         .get_segment_base = svm_get_segment_base,
4766         .get_segment = svm_get_segment,
4767         .set_segment = svm_set_segment,
4768         .get_cpl = svm_get_cpl,
4769         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
4770         .set_cr0 = svm_set_cr0,
4771         .post_set_cr3 = sev_post_set_cr3,
4772         .is_valid_cr4 = svm_is_valid_cr4,
4773         .set_cr4 = svm_set_cr4,
4774         .set_efer = svm_set_efer,
4775         .get_idt = svm_get_idt,
4776         .set_idt = svm_set_idt,
4777         .get_gdt = svm_get_gdt,
4778         .set_gdt = svm_set_gdt,
4779         .set_dr7 = svm_set_dr7,
4780         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4781         .cache_reg = svm_cache_reg,
4782         .get_rflags = svm_get_rflags,
4783         .set_rflags = svm_set_rflags,
4784         .get_if_flag = svm_get_if_flag,
4785
4786         .flush_tlb_all = svm_flush_tlb_current,
4787         .flush_tlb_current = svm_flush_tlb_current,
4788         .flush_tlb_gva = svm_flush_tlb_gva,
4789         .flush_tlb_guest = svm_flush_tlb_current,
4790
4791         .vcpu_pre_run = svm_vcpu_pre_run,
4792         .vcpu_run = svm_vcpu_run,
4793         .handle_exit = svm_handle_exit,
4794         .skip_emulated_instruction = svm_skip_emulated_instruction,
4795         .update_emulated_instruction = NULL,
4796         .set_interrupt_shadow = svm_set_interrupt_shadow,
4797         .get_interrupt_shadow = svm_get_interrupt_shadow,
4798         .patch_hypercall = svm_patch_hypercall,
4799         .inject_irq = svm_inject_irq,
4800         .inject_nmi = svm_inject_nmi,
4801         .queue_exception = svm_queue_exception,
4802         .cancel_injection = svm_cancel_injection,
4803         .interrupt_allowed = svm_interrupt_allowed,
4804         .nmi_allowed = svm_nmi_allowed,
4805         .get_nmi_mask = svm_get_nmi_mask,
4806         .set_nmi_mask = svm_set_nmi_mask,
4807         .enable_nmi_window = svm_enable_nmi_window,
4808         .enable_irq_window = svm_enable_irq_window,
4809         .update_cr8_intercept = svm_update_cr8_intercept,
4810         .set_virtual_apic_mode = avic_set_virtual_apic_mode,
4811         .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4812         .check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons,
4813         .apicv_post_state_restore = avic_apicv_post_state_restore,
4814
4815         .get_exit_info = svm_get_exit_info,
4816
4817         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4818
4819         .has_wbinvd_exit = svm_has_wbinvd_exit,
4820
4821         .get_l2_tsc_offset = svm_get_l2_tsc_offset,
4822         .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4823         .write_tsc_offset = svm_write_tsc_offset,
4824         .write_tsc_multiplier = svm_write_tsc_multiplier,
4825
4826         .load_mmu_pgd = svm_load_mmu_pgd,
4827
4828         .check_intercept = svm_check_intercept,
4829         .handle_exit_irqoff = svm_handle_exit_irqoff,
4830
4831         .request_immediate_exit = __kvm_request_immediate_exit,
4832
4833         .sched_in = svm_sched_in,
4834
4835         .nested_ops = &svm_nested_ops,
4836
4837         .deliver_interrupt = svm_deliver_interrupt,
4838         .pi_update_irte = avic_pi_update_irte,
4839         .setup_mce = svm_setup_mce,
4840
4841         .smi_allowed = svm_smi_allowed,
4842         .enter_smm = svm_enter_smm,
4843         .leave_smm = svm_leave_smm,
4844         .enable_smi_window = svm_enable_smi_window,
4845
4846         .mem_enc_ioctl = sev_mem_enc_ioctl,
4847         .mem_enc_register_region = sev_mem_enc_register_region,
4848         .mem_enc_unregister_region = sev_mem_enc_unregister_region,
4849         .guest_memory_reclaimed = sev_guest_memory_reclaimed,
4850
4851         .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4852         .vm_move_enc_context_from = sev_vm_move_enc_context_from,
4853
4854         .can_emulate_instruction = svm_can_emulate_instruction,
4855
4856         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4857
4858         .msr_filter_changed = svm_msr_filter_changed,
4859         .complete_emulated_msr = svm_complete_emulated_msr,
4860
4861         .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4862         .vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
4863 };
4864
4865 /*
4866  * The default MMIO mask is a single bit (excluding the present bit),
4867  * which could conflict with the memory encryption bit. Check for
4868  * memory encryption support and override the default MMIO mask if
4869  * memory encryption is enabled.
4870  */
4871 static __init void svm_adjust_mmio_mask(void)
4872 {
4873         unsigned int enc_bit, mask_bit;
4874         u64 msr, mask;
4875
4876         /* If there is no memory encryption support, use existing mask */
4877         if (cpuid_eax(0x80000000) < 0x8000001f)
4878                 return;
4879
4880         /* If memory encryption is not enabled, use existing mask */
4881         rdmsrl(MSR_AMD64_SYSCFG, msr);
4882         if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4883                 return;
4884
4885         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4886         mask_bit = boot_cpu_data.x86_phys_bits;
4887
4888         /* Increment the mask bit if it is the same as the encryption bit */
4889         if (enc_bit == mask_bit)
4890                 mask_bit++;
4891
4892         /*
4893          * If the mask bit location is below 52, then some bits above the
4894          * physical addressing limit will always be reserved, so use the
4895          * rsvd_bits() function to generate the mask. This mask, along with
4896          * the present bit, will be used to generate a page fault with
4897          * PFER.RSV = 1.
4898          *
4899          * If the mask bit location is 52 (or above), then clear the mask.
4900          */
4901         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4902
4903         kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4904 }
4905
4906 static __init void svm_set_cpu_caps(void)
4907 {
4908         kvm_set_cpu_caps();
4909
4910         kvm_caps.supported_xss = 0;
4911
4912         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
4913         if (nested) {
4914                 kvm_cpu_cap_set(X86_FEATURE_SVM);
4915                 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4916
4917                 if (nrips)
4918                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4919
4920                 if (npt_enabled)
4921                         kvm_cpu_cap_set(X86_FEATURE_NPT);
4922
4923                 if (tsc_scaling)
4924                         kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4925
4926                 if (vls)
4927                         kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
4928                 if (lbrv)
4929                         kvm_cpu_cap_set(X86_FEATURE_LBRV);
4930
4931                 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
4932                         kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
4933
4934                 if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
4935                         kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
4936
4937                 if (vgif)
4938                         kvm_cpu_cap_set(X86_FEATURE_VGIF);
4939
4940                 /* Nested VM can receive #VMEXIT instead of triggering #GP */
4941                 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4942         }
4943
4944         /* CPUID 0x80000008 */
4945         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
4946             boot_cpu_has(X86_FEATURE_AMD_SSBD))
4947                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
4948
4949         /* AMD PMU PERFCTR_CORE CPUID */
4950         if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
4951                 kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
4952
4953         /* CPUID 0x8000001F (SME/SEV features) */
4954         sev_set_cpu_caps();
4955 }
4956
4957 static __init int svm_hardware_setup(void)
4958 {
4959         int cpu;
4960         struct page *iopm_pages;
4961         void *iopm_va;
4962         int r;
4963         unsigned int order = get_order(IOPM_SIZE);
4964
4965         /*
4966          * NX is required for shadow paging and for NPT if the NX huge pages
4967          * mitigation is enabled.
4968          */
4969         if (!boot_cpu_has(X86_FEATURE_NX)) {
4970                 pr_err_ratelimited("NX (Execute Disable) not supported\n");
4971                 return -EOPNOTSUPP;
4972         }
4973         kvm_enable_efer_bits(EFER_NX);
4974
4975         iopm_pages = alloc_pages(GFP_KERNEL, order);
4976
4977         if (!iopm_pages)
4978                 return -ENOMEM;
4979
4980         iopm_va = page_address(iopm_pages);
4981         memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
4982         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
4983
4984         init_msrpm_offsets();
4985
4986         kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
4987                                      XFEATURE_MASK_BNDCSR);
4988
4989         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
4990                 kvm_enable_efer_bits(EFER_FFXSR);
4991
4992         if (tsc_scaling) {
4993                 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
4994                         tsc_scaling = false;
4995                 } else {
4996                         pr_info("TSC scaling supported\n");
4997                         kvm_caps.has_tsc_control = true;
4998                 }
4999         }
5000         kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5001         kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5002
5003         tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5004
5005         /* Check for pause filtering support */
5006         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5007                 pause_filter_count = 0;
5008                 pause_filter_thresh = 0;
5009         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5010                 pause_filter_thresh = 0;
5011         }
5012
5013         if (nested) {
5014                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
5015                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5016         }
5017
5018         /*
5019          * KVM's MMU doesn't support using 2-level paging for itself, and thus
5020          * NPT isn't supported if the host is using 2-level paging since host
5021          * CR4 is unchanged on VMRUN.
5022          */
5023         if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5024                 npt_enabled = false;
5025
5026         if (!boot_cpu_has(X86_FEATURE_NPT))
5027                 npt_enabled = false;
5028
5029         /* Force VM NPT level equal to the host's paging level */
5030         kvm_configure_mmu(npt_enabled, get_npt_level(),
5031                           get_npt_level(), PG_LEVEL_1G);
5032         pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5033
5034         /* Setup shadow_me_value and shadow_me_mask */
5035         kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5036
5037         svm_adjust_mmio_mask();
5038
5039         /*
5040          * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5041          * may be modified by svm_adjust_mmio_mask()).
5042          */
5043         sev_hardware_setup();
5044
5045         svm_hv_hardware_setup();
5046
5047         for_each_possible_cpu(cpu) {
5048                 r = svm_cpu_init(cpu);
5049                 if (r)
5050                         goto err;
5051         }
5052
5053         if (nrips) {
5054                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
5055                         nrips = false;
5056         }
5057
5058         enable_apicv = avic = avic && avic_hardware_setup(&svm_x86_ops);
5059
5060         if (!enable_apicv) {
5061                 svm_x86_ops.vcpu_blocking = NULL;
5062                 svm_x86_ops.vcpu_unblocking = NULL;
5063                 svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5064         }
5065
5066         if (vls) {
5067                 if (!npt_enabled ||
5068                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5069                     !IS_ENABLED(CONFIG_X86_64)) {
5070                         vls = false;
5071                 } else {
5072                         pr_info("Virtual VMLOAD VMSAVE supported\n");
5073                 }
5074         }
5075
5076         if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5077                 svm_gp_erratum_intercept = false;
5078
5079         if (vgif) {
5080                 if (!boot_cpu_has(X86_FEATURE_VGIF))
5081                         vgif = false;
5082                 else
5083                         pr_info("Virtual GIF supported\n");
5084         }
5085
5086         if (lbrv) {
5087                 if (!boot_cpu_has(X86_FEATURE_LBRV))
5088                         lbrv = false;
5089                 else
5090                         pr_info("LBR virtualization supported\n");
5091         }
5092
5093         if (!enable_pmu)
5094                 pr_info("PMU virtualization is disabled\n");
5095
5096         svm_set_cpu_caps();
5097
5098         /*
5099          * It seems that on AMD processors PTE's accessed bit is
5100          * being set by the CPU hardware before the NPF vmexit.
5101          * This is not expected behaviour and our tests fail because
5102          * of it.
5103          * A workaround here is to disable support for
5104          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5105          * In this case userspace can know if there is support using
5106          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5107          * it
5108          * If future AMD CPU models change the behaviour described above,
5109          * this variable can be changed accordingly
5110          */
5111         allow_smaller_maxphyaddr = !npt_enabled;
5112
5113         return 0;
5114
5115 err:
5116         svm_hardware_unsetup();
5117         return r;
5118 }
5119
5120
5121 static struct kvm_x86_init_ops svm_init_ops __initdata = {
5122         .cpu_has_kvm_support = has_svm,
5123         .disabled_by_bios = is_disabled,
5124         .hardware_setup = svm_hardware_setup,
5125         .check_processor_compatibility = svm_check_processor_compat,
5126
5127         .runtime_ops = &svm_x86_ops,
5128         .pmu_ops = &amd_pmu_ops,
5129 };
5130
5131 static int __init svm_init(void)
5132 {
5133         __unused_size_checks();
5134
5135         return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
5136                         __alignof__(struct vcpu_svm), THIS_MODULE);
5137 }
5138
5139 static void __exit svm_exit(void)
5140 {
5141         kvm_exit();
5142 }
5143
5144 module_init(svm_init)
5145 module_exit(svm_exit)