Merge tag 'irqchip-fixes-5.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/frame.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/mce.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #include "svm.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 #ifdef MODULE
51 static const struct x86_cpu_id svm_cpu_id[] = {
52         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
53         {}
54 };
55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
56 #endif
57
58 #define IOPM_ALLOC_ORDER 2
59 #define MSRPM_ALLOC_ORDER 1
60
61 #define SEG_TYPE_LDT 2
62 #define SEG_TYPE_BUSY_TSS16 3
63
64 #define SVM_FEATURE_LBRV           (1 <<  1)
65 #define SVM_FEATURE_SVML           (1 <<  2)
66 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
67 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
68 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
69 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
70 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
71
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73
74 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
75 #define TSC_RATIO_MIN           0x0000000000000001ULL
76 #define TSC_RATIO_MAX           0x000000ffffffffffULL
77
78 static bool erratum_383_found __read_mostly;
79
80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
81
82 /*
83  * Set osvw_len to higher value when updated Revision Guides
84  * are published and we know what the new status bits are
85  */
86 static uint64_t osvw_len = 4, osvw_status;
87
88 static DEFINE_PER_CPU(u64, current_tsc_ratio);
89 #define TSC_RATIO_DEFAULT       0x0100000000ULL
90
91 static const struct svm_direct_access_msrs {
92         u32 index;   /* Index of the MSR */
93         bool always; /* True if intercept is always on */
94 } direct_access_msrs[] = {
95         { .index = MSR_STAR,                            .always = true  },
96         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
97 #ifdef CONFIG_X86_64
98         { .index = MSR_GS_BASE,                         .always = true  },
99         { .index = MSR_FS_BASE,                         .always = true  },
100         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
101         { .index = MSR_LSTAR,                           .always = true  },
102         { .index = MSR_CSTAR,                           .always = true  },
103         { .index = MSR_SYSCALL_MASK,                    .always = true  },
104 #endif
105         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
106         { .index = MSR_IA32_PRED_CMD,                   .always = false },
107         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
108         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
109         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
110         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
111         { .index = MSR_INVALID,                         .always = false },
112 };
113
114 /* enable NPT for AMD64 and X86 with PAE */
115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
116 bool npt_enabled = true;
117 #else
118 bool npt_enabled;
119 #endif
120
121 /*
122  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
123  * pause_filter_count: On processors that support Pause filtering(indicated
124  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
125  *      count value. On VMRUN this value is loaded into an internal counter.
126  *      Each time a pause instruction is executed, this counter is decremented
127  *      until it reaches zero at which time a #VMEXIT is generated if pause
128  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
129  *      Intercept Filtering for more details.
130  *      This also indicate if ple logic enabled.
131  *
132  * pause_filter_thresh: In addition, some processor families support advanced
133  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
134  *      the amount of time a guest is allowed to execute in a pause loop.
135  *      In this mode, a 16-bit pause filter threshold field is added in the
136  *      VMCB. The threshold value is a cycle count that is used to reset the
137  *      pause counter. As with simple pause filtering, VMRUN loads the pause
138  *      count value from VMCB into an internal counter. Then, on each pause
139  *      instruction the hardware checks the elapsed number of cycles since
140  *      the most recent pause instruction against the pause filter threshold.
141  *      If the elapsed cycle count is greater than the pause filter threshold,
142  *      then the internal pause count is reloaded from the VMCB and execution
143  *      continues. If the elapsed cycle count is less than the pause filter
144  *      threshold, then the internal pause count is decremented. If the count
145  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
146  *      triggered. If advanced pause filtering is supported and pause filter
147  *      threshold field is set to zero, the filter will operate in the simpler,
148  *      count only mode.
149  */
150
151 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
152 module_param(pause_filter_thresh, ushort, 0444);
153
154 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
155 module_param(pause_filter_count, ushort, 0444);
156
157 /* Default doubles per-vcpu window every exit. */
158 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
159 module_param(pause_filter_count_grow, ushort, 0444);
160
161 /* Default resets per-vcpu window every exit to pause_filter_count. */
162 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
163 module_param(pause_filter_count_shrink, ushort, 0444);
164
165 /* Default is to compute the maximum so we can never overflow. */
166 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
167 module_param(pause_filter_count_max, ushort, 0444);
168
169 /* allow nested paging (virtualized MMU) for all guests */
170 static int npt = true;
171 module_param(npt, int, S_IRUGO);
172
173 /* allow nested virtualization in KVM/SVM */
174 static int nested = true;
175 module_param(nested, int, S_IRUGO);
176
177 /* enable/disable Next RIP Save */
178 static int nrips = true;
179 module_param(nrips, int, 0444);
180
181 /* enable/disable Virtual VMLOAD VMSAVE */
182 static int vls = true;
183 module_param(vls, int, 0444);
184
185 /* enable/disable Virtual GIF */
186 static int vgif = true;
187 module_param(vgif, int, 0444);
188
189 /* enable/disable SEV support */
190 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
191 module_param(sev, int, 0444);
192
193 static bool __read_mostly dump_invalid_vmcb = 0;
194 module_param(dump_invalid_vmcb, bool, 0644);
195
196 static u8 rsm_ins_bytes[] = "\x0f\xaa";
197
198 static void svm_complete_interrupts(struct vcpu_svm *svm);
199
200 static unsigned long iopm_base;
201
202 struct kvm_ldttss_desc {
203         u16 limit0;
204         u16 base0;
205         unsigned base1:8, type:5, dpl:2, p:1;
206         unsigned limit1:4, zero0:3, g:1, base2:8;
207         u32 base3;
208         u32 zero1;
209 } __attribute__((packed));
210
211 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
212
213 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
214
215 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
216 #define MSRS_RANGE_SIZE 2048
217 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
218
219 u32 svm_msrpm_offset(u32 msr)
220 {
221         u32 offset;
222         int i;
223
224         for (i = 0; i < NUM_MSR_MAPS; i++) {
225                 if (msr < msrpm_ranges[i] ||
226                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
227                         continue;
228
229                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
230                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
231
232                 /* Now we have the u8 offset - but need the u32 offset */
233                 return offset / 4;
234         }
235
236         /* MSR not in any range */
237         return MSR_INVALID;
238 }
239
240 #define MAX_INST_SIZE 15
241
242 static inline void clgi(void)
243 {
244         asm volatile (__ex("clgi"));
245 }
246
247 static inline void stgi(void)
248 {
249         asm volatile (__ex("stgi"));
250 }
251
252 static inline void invlpga(unsigned long addr, u32 asid)
253 {
254         asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
255 }
256
257 static int get_max_npt_level(void)
258 {
259 #ifdef CONFIG_X86_64
260         return PT64_ROOT_4LEVEL;
261 #else
262         return PT32E_ROOT_LEVEL;
263 #endif
264 }
265
266 void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
267 {
268         struct vcpu_svm *svm = to_svm(vcpu);
269         vcpu->arch.efer = efer;
270
271         if (!npt_enabled) {
272                 /* Shadow paging assumes NX to be available.  */
273                 efer |= EFER_NX;
274
275                 if (!(efer & EFER_LMA))
276                         efer &= ~EFER_LME;
277         }
278
279         if (!(efer & EFER_SVME)) {
280                 svm_leave_nested(svm);
281                 svm_set_gif(svm, true);
282         }
283
284         svm->vmcb->save.efer = efer | EFER_SVME;
285         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
286 }
287
288 static int is_external_interrupt(u32 info)
289 {
290         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
291         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
292 }
293
294 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
295 {
296         struct vcpu_svm *svm = to_svm(vcpu);
297         u32 ret = 0;
298
299         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
300                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
301         return ret;
302 }
303
304 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
305 {
306         struct vcpu_svm *svm = to_svm(vcpu);
307
308         if (mask == 0)
309                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
310         else
311                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
312
313 }
314
315 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
316 {
317         struct vcpu_svm *svm = to_svm(vcpu);
318
319         if (nrips && svm->vmcb->control.next_rip != 0) {
320                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
321                 svm->next_rip = svm->vmcb->control.next_rip;
322         }
323
324         if (!svm->next_rip) {
325                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
326                         return 0;
327         } else {
328                 kvm_rip_write(vcpu, svm->next_rip);
329         }
330         svm_set_interrupt_shadow(vcpu, 0);
331
332         return 1;
333 }
334
335 static void svm_queue_exception(struct kvm_vcpu *vcpu)
336 {
337         struct vcpu_svm *svm = to_svm(vcpu);
338         unsigned nr = vcpu->arch.exception.nr;
339         bool has_error_code = vcpu->arch.exception.has_error_code;
340         u32 error_code = vcpu->arch.exception.error_code;
341
342         kvm_deliver_exception_payload(&svm->vcpu);
343
344         if (nr == BP_VECTOR && !nrips) {
345                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
346
347                 /*
348                  * For guest debugging where we have to reinject #BP if some
349                  * INT3 is guest-owned:
350                  * Emulate nRIP by moving RIP forward. Will fail if injection
351                  * raises a fault that is not intercepted. Still better than
352                  * failing in all cases.
353                  */
354                 (void)skip_emulated_instruction(&svm->vcpu);
355                 rip = kvm_rip_read(&svm->vcpu);
356                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
357                 svm->int3_injected = rip - old_rip;
358         }
359
360         svm->vmcb->control.event_inj = nr
361                 | SVM_EVTINJ_VALID
362                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
363                 | SVM_EVTINJ_TYPE_EXEPT;
364         svm->vmcb->control.event_inj_err = error_code;
365 }
366
367 static void svm_init_erratum_383(void)
368 {
369         u32 low, high;
370         int err;
371         u64 val;
372
373         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
374                 return;
375
376         /* Use _safe variants to not break nested virtualization */
377         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
378         if (err)
379                 return;
380
381         val |= (1ULL << 47);
382
383         low  = lower_32_bits(val);
384         high = upper_32_bits(val);
385
386         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
387
388         erratum_383_found = true;
389 }
390
391 static void svm_init_osvw(struct kvm_vcpu *vcpu)
392 {
393         /*
394          * Guests should see errata 400 and 415 as fixed (assuming that
395          * HLT and IO instructions are intercepted).
396          */
397         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
398         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
399
400         /*
401          * By increasing VCPU's osvw.length to 3 we are telling the guest that
402          * all osvw.status bits inside that length, including bit 0 (which is
403          * reserved for erratum 298), are valid. However, if host processor's
404          * osvw_len is 0 then osvw_status[0] carries no information. We need to
405          * be conservative here and therefore we tell the guest that erratum 298
406          * is present (because we really don't know).
407          */
408         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
409                 vcpu->arch.osvw.status |= 1;
410 }
411
412 static int has_svm(void)
413 {
414         const char *msg;
415
416         if (!cpu_has_svm(&msg)) {
417                 printk(KERN_INFO "has_svm: %s\n", msg);
418                 return 0;
419         }
420
421         return 1;
422 }
423
424 static void svm_hardware_disable(void)
425 {
426         /* Make sure we clean up behind us */
427         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
428                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
429
430         cpu_svm_disable();
431
432         amd_pmu_disable_virt();
433 }
434
435 static int svm_hardware_enable(void)
436 {
437
438         struct svm_cpu_data *sd;
439         uint64_t efer;
440         struct desc_struct *gdt;
441         int me = raw_smp_processor_id();
442
443         rdmsrl(MSR_EFER, efer);
444         if (efer & EFER_SVME)
445                 return -EBUSY;
446
447         if (!has_svm()) {
448                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
449                 return -EINVAL;
450         }
451         sd = per_cpu(svm_data, me);
452         if (!sd) {
453                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
454                 return -EINVAL;
455         }
456
457         sd->asid_generation = 1;
458         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
459         sd->next_asid = sd->max_asid + 1;
460         sd->min_asid = max_sev_asid + 1;
461
462         gdt = get_current_gdt_rw();
463         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
464
465         wrmsrl(MSR_EFER, efer | EFER_SVME);
466
467         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
468
469         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
470                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
471                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
472         }
473
474
475         /*
476          * Get OSVW bits.
477          *
478          * Note that it is possible to have a system with mixed processor
479          * revisions and therefore different OSVW bits. If bits are not the same
480          * on different processors then choose the worst case (i.e. if erratum
481          * is present on one processor and not on another then assume that the
482          * erratum is present everywhere).
483          */
484         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
485                 uint64_t len, status = 0;
486                 int err;
487
488                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
489                 if (!err)
490                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
491                                                       &err);
492
493                 if (err)
494                         osvw_status = osvw_len = 0;
495                 else {
496                         if (len < osvw_len)
497                                 osvw_len = len;
498                         osvw_status |= status;
499                         osvw_status &= (1ULL << osvw_len) - 1;
500                 }
501         } else
502                 osvw_status = osvw_len = 0;
503
504         svm_init_erratum_383();
505
506         amd_pmu_enable_virt();
507
508         return 0;
509 }
510
511 static void svm_cpu_uninit(int cpu)
512 {
513         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
514
515         if (!sd)
516                 return;
517
518         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
519         kfree(sd->sev_vmcbs);
520         __free_page(sd->save_area);
521         kfree(sd);
522 }
523
524 static int svm_cpu_init(int cpu)
525 {
526         struct svm_cpu_data *sd;
527
528         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
529         if (!sd)
530                 return -ENOMEM;
531         sd->cpu = cpu;
532         sd->save_area = alloc_page(GFP_KERNEL);
533         if (!sd->save_area)
534                 goto free_cpu_data;
535
536         if (svm_sev_enabled()) {
537                 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
538                                               sizeof(void *),
539                                               GFP_KERNEL);
540                 if (!sd->sev_vmcbs)
541                         goto free_save_area;
542         }
543
544         per_cpu(svm_data, cpu) = sd;
545
546         return 0;
547
548 free_save_area:
549         __free_page(sd->save_area);
550 free_cpu_data:
551         kfree(sd);
552         return -ENOMEM;
553
554 }
555
556 static bool valid_msr_intercept(u32 index)
557 {
558         int i;
559
560         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
561                 if (direct_access_msrs[i].index == index)
562                         return true;
563
564         return false;
565 }
566
567 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
568 {
569         u8 bit_write;
570         unsigned long tmp;
571         u32 offset;
572         u32 *msrpm;
573
574         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
575                                       to_svm(vcpu)->msrpm;
576
577         offset    = svm_msrpm_offset(msr);
578         bit_write = 2 * (msr & 0x0f) + 1;
579         tmp       = msrpm[offset];
580
581         BUG_ON(offset == MSR_INVALID);
582
583         return !!test_bit(bit_write,  &tmp);
584 }
585
586 static void set_msr_interception(u32 *msrpm, unsigned msr,
587                                  int read, int write)
588 {
589         u8 bit_read, bit_write;
590         unsigned long tmp;
591         u32 offset;
592
593         /*
594          * If this warning triggers extend the direct_access_msrs list at the
595          * beginning of the file
596          */
597         WARN_ON(!valid_msr_intercept(msr));
598
599         offset    = svm_msrpm_offset(msr);
600         bit_read  = 2 * (msr & 0x0f);
601         bit_write = 2 * (msr & 0x0f) + 1;
602         tmp       = msrpm[offset];
603
604         BUG_ON(offset == MSR_INVALID);
605
606         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
607         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
608
609         msrpm[offset] = tmp;
610 }
611
612 static void svm_vcpu_init_msrpm(u32 *msrpm)
613 {
614         int i;
615
616         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
617
618         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
619                 if (!direct_access_msrs[i].always)
620                         continue;
621
622                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
623         }
624 }
625
626 static void add_msr_offset(u32 offset)
627 {
628         int i;
629
630         for (i = 0; i < MSRPM_OFFSETS; ++i) {
631
632                 /* Offset already in list? */
633                 if (msrpm_offsets[i] == offset)
634                         return;
635
636                 /* Slot used by another offset? */
637                 if (msrpm_offsets[i] != MSR_INVALID)
638                         continue;
639
640                 /* Add offset to list */
641                 msrpm_offsets[i] = offset;
642
643                 return;
644         }
645
646         /*
647          * If this BUG triggers the msrpm_offsets table has an overflow. Just
648          * increase MSRPM_OFFSETS in this case.
649          */
650         BUG();
651 }
652
653 static void init_msrpm_offsets(void)
654 {
655         int i;
656
657         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
658
659         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
660                 u32 offset;
661
662                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
663                 BUG_ON(offset == MSR_INVALID);
664
665                 add_msr_offset(offset);
666         }
667 }
668
669 static void svm_enable_lbrv(struct vcpu_svm *svm)
670 {
671         u32 *msrpm = svm->msrpm;
672
673         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
674         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
675         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
676         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
677         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
678 }
679
680 static void svm_disable_lbrv(struct vcpu_svm *svm)
681 {
682         u32 *msrpm = svm->msrpm;
683
684         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
685         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
686         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
687         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
688         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
689 }
690
691 void disable_nmi_singlestep(struct vcpu_svm *svm)
692 {
693         svm->nmi_singlestep = false;
694
695         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
696                 /* Clear our flags if they were not set by the guest */
697                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
698                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
699                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
700                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
701         }
702 }
703
704 static void grow_ple_window(struct kvm_vcpu *vcpu)
705 {
706         struct vcpu_svm *svm = to_svm(vcpu);
707         struct vmcb_control_area *control = &svm->vmcb->control;
708         int old = control->pause_filter_count;
709
710         control->pause_filter_count = __grow_ple_window(old,
711                                                         pause_filter_count,
712                                                         pause_filter_count_grow,
713                                                         pause_filter_count_max);
714
715         if (control->pause_filter_count != old) {
716                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
717                 trace_kvm_ple_window_update(vcpu->vcpu_id,
718                                             control->pause_filter_count, old);
719         }
720 }
721
722 static void shrink_ple_window(struct kvm_vcpu *vcpu)
723 {
724         struct vcpu_svm *svm = to_svm(vcpu);
725         struct vmcb_control_area *control = &svm->vmcb->control;
726         int old = control->pause_filter_count;
727
728         control->pause_filter_count =
729                                 __shrink_ple_window(old,
730                                                     pause_filter_count,
731                                                     pause_filter_count_shrink,
732                                                     pause_filter_count);
733         if (control->pause_filter_count != old) {
734                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
735                 trace_kvm_ple_window_update(vcpu->vcpu_id,
736                                             control->pause_filter_count, old);
737         }
738 }
739
740 /*
741  * The default MMIO mask is a single bit (excluding the present bit),
742  * which could conflict with the memory encryption bit. Check for
743  * memory encryption support and override the default MMIO mask if
744  * memory encryption is enabled.
745  */
746 static __init void svm_adjust_mmio_mask(void)
747 {
748         unsigned int enc_bit, mask_bit;
749         u64 msr, mask;
750
751         /* If there is no memory encryption support, use existing mask */
752         if (cpuid_eax(0x80000000) < 0x8000001f)
753                 return;
754
755         /* If memory encryption is not enabled, use existing mask */
756         rdmsrl(MSR_K8_SYSCFG, msr);
757         if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
758                 return;
759
760         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
761         mask_bit = boot_cpu_data.x86_phys_bits;
762
763         /* Increment the mask bit if it is the same as the encryption bit */
764         if (enc_bit == mask_bit)
765                 mask_bit++;
766
767         /*
768          * If the mask bit location is below 52, then some bits above the
769          * physical addressing limit will always be reserved, so use the
770          * rsvd_bits() function to generate the mask. This mask, along with
771          * the present bit, will be used to generate a page fault with
772          * PFER.RSV = 1.
773          *
774          * If the mask bit location is 52 (or above), then clear the mask.
775          */
776         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
777
778         kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
779 }
780
781 static void svm_hardware_teardown(void)
782 {
783         int cpu;
784
785         if (svm_sev_enabled())
786                 sev_hardware_teardown();
787
788         for_each_possible_cpu(cpu)
789                 svm_cpu_uninit(cpu);
790
791         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
792         iopm_base = 0;
793 }
794
795 static __init void svm_set_cpu_caps(void)
796 {
797         kvm_set_cpu_caps();
798
799         supported_xss = 0;
800
801         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
802         if (nested) {
803                 kvm_cpu_cap_set(X86_FEATURE_SVM);
804
805                 if (nrips)
806                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
807
808                 if (npt_enabled)
809                         kvm_cpu_cap_set(X86_FEATURE_NPT);
810         }
811
812         /* CPUID 0x80000008 */
813         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
814             boot_cpu_has(X86_FEATURE_AMD_SSBD))
815                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
816 }
817
818 static __init int svm_hardware_setup(void)
819 {
820         int cpu;
821         struct page *iopm_pages;
822         void *iopm_va;
823         int r;
824
825         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
826
827         if (!iopm_pages)
828                 return -ENOMEM;
829
830         iopm_va = page_address(iopm_pages);
831         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
832         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
833
834         init_msrpm_offsets();
835
836         supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
837
838         if (boot_cpu_has(X86_FEATURE_NX))
839                 kvm_enable_efer_bits(EFER_NX);
840
841         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
842                 kvm_enable_efer_bits(EFER_FFXSR);
843
844         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
845                 kvm_has_tsc_control = true;
846                 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
847                 kvm_tsc_scaling_ratio_frac_bits = 32;
848         }
849
850         /* Check for pause filtering support */
851         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
852                 pause_filter_count = 0;
853                 pause_filter_thresh = 0;
854         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
855                 pause_filter_thresh = 0;
856         }
857
858         if (nested) {
859                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
860                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
861         }
862
863         if (sev) {
864                 if (boot_cpu_has(X86_FEATURE_SEV) &&
865                     IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
866                         r = sev_hardware_setup();
867                         if (r)
868                                 sev = false;
869                 } else {
870                         sev = false;
871                 }
872         }
873
874         svm_adjust_mmio_mask();
875
876         for_each_possible_cpu(cpu) {
877                 r = svm_cpu_init(cpu);
878                 if (r)
879                         goto err;
880         }
881
882         if (!boot_cpu_has(X86_FEATURE_NPT))
883                 npt_enabled = false;
884
885         if (npt_enabled && !npt)
886                 npt_enabled = false;
887
888         kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
889         pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
890
891         if (nrips) {
892                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
893                         nrips = false;
894         }
895
896         if (avic) {
897                 if (!npt_enabled ||
898                     !boot_cpu_has(X86_FEATURE_AVIC) ||
899                     !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
900                         avic = false;
901                 } else {
902                         pr_info("AVIC enabled\n");
903
904                         amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
905                 }
906         }
907
908         if (vls) {
909                 if (!npt_enabled ||
910                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
911                     !IS_ENABLED(CONFIG_X86_64)) {
912                         vls = false;
913                 } else {
914                         pr_info("Virtual VMLOAD VMSAVE supported\n");
915                 }
916         }
917
918         if (vgif) {
919                 if (!boot_cpu_has(X86_FEATURE_VGIF))
920                         vgif = false;
921                 else
922                         pr_info("Virtual GIF supported\n");
923         }
924
925         svm_set_cpu_caps();
926
927         /*
928          * It seems that on AMD processors PTE's accessed bit is
929          * being set by the CPU hardware before the NPF vmexit.
930          * This is not expected behaviour and our tests fail because
931          * of it.
932          * A workaround here is to disable support for
933          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
934          * In this case userspace can know if there is support using
935          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
936          * it
937          * If future AMD CPU models change the behaviour described above,
938          * this variable can be changed accordingly
939          */
940         allow_smaller_maxphyaddr = !npt_enabled;
941
942         return 0;
943
944 err:
945         svm_hardware_teardown();
946         return r;
947 }
948
949 static void init_seg(struct vmcb_seg *seg)
950 {
951         seg->selector = 0;
952         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
953                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
954         seg->limit = 0xffff;
955         seg->base = 0;
956 }
957
958 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
959 {
960         seg->selector = 0;
961         seg->attrib = SVM_SELECTOR_P_MASK | type;
962         seg->limit = 0xffff;
963         seg->base = 0;
964 }
965
966 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
967 {
968         struct vcpu_svm *svm = to_svm(vcpu);
969         u64 g_tsc_offset = 0;
970
971         if (is_guest_mode(vcpu)) {
972                 /* Write L1's TSC offset.  */
973                 g_tsc_offset = svm->vmcb->control.tsc_offset -
974                                svm->nested.hsave->control.tsc_offset;
975                 svm->nested.hsave->control.tsc_offset = offset;
976         }
977
978         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
979                                    svm->vmcb->control.tsc_offset - g_tsc_offset,
980                                    offset);
981
982         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
983
984         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
985         return svm->vmcb->control.tsc_offset;
986 }
987
988 static void init_vmcb(struct vcpu_svm *svm)
989 {
990         struct vmcb_control_area *control = &svm->vmcb->control;
991         struct vmcb_save_area *save = &svm->vmcb->save;
992
993         svm->vcpu.arch.hflags = 0;
994
995         set_cr_intercept(svm, INTERCEPT_CR0_READ);
996         set_cr_intercept(svm, INTERCEPT_CR3_READ);
997         set_cr_intercept(svm, INTERCEPT_CR4_READ);
998         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
999         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1000         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1001         if (!kvm_vcpu_apicv_active(&svm->vcpu))
1002                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1003
1004         set_dr_intercepts(svm);
1005
1006         set_exception_intercept(svm, PF_VECTOR);
1007         set_exception_intercept(svm, UD_VECTOR);
1008         set_exception_intercept(svm, MC_VECTOR);
1009         set_exception_intercept(svm, AC_VECTOR);
1010         set_exception_intercept(svm, DB_VECTOR);
1011         /*
1012          * Guest access to VMware backdoor ports could legitimately
1013          * trigger #GP because of TSS I/O permission bitmap.
1014          * We intercept those #GP and allow access to them anyway
1015          * as VMware does.
1016          */
1017         if (enable_vmware_backdoor)
1018                 set_exception_intercept(svm, GP_VECTOR);
1019
1020         svm_set_intercept(svm, INTERCEPT_INTR);
1021         svm_set_intercept(svm, INTERCEPT_NMI);
1022         svm_set_intercept(svm, INTERCEPT_SMI);
1023         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1024         svm_set_intercept(svm, INTERCEPT_RDPMC);
1025         svm_set_intercept(svm, INTERCEPT_CPUID);
1026         svm_set_intercept(svm, INTERCEPT_INVD);
1027         svm_set_intercept(svm, INTERCEPT_INVLPG);
1028         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1029         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1030         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1031         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1032         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1033         svm_set_intercept(svm, INTERCEPT_VMRUN);
1034         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1035         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1036         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1037         svm_set_intercept(svm, INTERCEPT_STGI);
1038         svm_set_intercept(svm, INTERCEPT_CLGI);
1039         svm_set_intercept(svm, INTERCEPT_SKINIT);
1040         svm_set_intercept(svm, INTERCEPT_WBINVD);
1041         svm_set_intercept(svm, INTERCEPT_XSETBV);
1042         svm_set_intercept(svm, INTERCEPT_RDPRU);
1043         svm_set_intercept(svm, INTERCEPT_RSM);
1044
1045         if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1046                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1047                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1048         }
1049
1050         if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1051                 svm_set_intercept(svm, INTERCEPT_HLT);
1052
1053         control->iopm_base_pa = __sme_set(iopm_base);
1054         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1055         control->int_ctl = V_INTR_MASKING_MASK;
1056
1057         init_seg(&save->es);
1058         init_seg(&save->ss);
1059         init_seg(&save->ds);
1060         init_seg(&save->fs);
1061         init_seg(&save->gs);
1062
1063         save->cs.selector = 0xf000;
1064         save->cs.base = 0xffff0000;
1065         /* Executable/Readable Code Segment */
1066         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1067                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1068         save->cs.limit = 0xffff;
1069
1070         save->gdtr.limit = 0xffff;
1071         save->idtr.limit = 0xffff;
1072
1073         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1074         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1075
1076         svm_set_efer(&svm->vcpu, 0);
1077         save->dr6 = 0xffff0ff0;
1078         kvm_set_rflags(&svm->vcpu, 2);
1079         save->rip = 0x0000fff0;
1080         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1081
1082         /*
1083          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1084          * It also updates the guest-visible cr0 value.
1085          */
1086         svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1087         kvm_mmu_reset_context(&svm->vcpu);
1088
1089         save->cr4 = X86_CR4_PAE;
1090         /* rdx = ?? */
1091
1092         if (npt_enabled) {
1093                 /* Setup VMCB for Nested Paging */
1094                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1095                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1096                 clr_exception_intercept(svm, PF_VECTOR);
1097                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1098                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1099                 save->g_pat = svm->vcpu.arch.pat;
1100                 save->cr3 = 0;
1101                 save->cr4 = 0;
1102         }
1103         svm->asid_generation = 0;
1104
1105         svm->nested.vmcb = 0;
1106         svm->vcpu.arch.hflags = 0;
1107
1108         if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1109                 control->pause_filter_count = pause_filter_count;
1110                 if (pause_filter_thresh)
1111                         control->pause_filter_thresh = pause_filter_thresh;
1112                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1113         } else {
1114                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1115         }
1116
1117         if (kvm_vcpu_apicv_active(&svm->vcpu))
1118                 avic_init_vmcb(svm);
1119
1120         /*
1121          * If hardware supports Virtual VMLOAD VMSAVE then enable it
1122          * in VMCB and clear intercepts to avoid #VMEXIT.
1123          */
1124         if (vls) {
1125                 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1126                 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1127                 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1128         }
1129
1130         if (vgif) {
1131                 svm_clr_intercept(svm, INTERCEPT_STGI);
1132                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1133                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1134         }
1135
1136         if (sev_guest(svm->vcpu.kvm)) {
1137                 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1138                 clr_exception_intercept(svm, UD_VECTOR);
1139         }
1140
1141         vmcb_mark_all_dirty(svm->vmcb);
1142
1143         enable_gif(svm);
1144
1145 }
1146
1147 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1148 {
1149         struct vcpu_svm *svm = to_svm(vcpu);
1150         u32 dummy;
1151         u32 eax = 1;
1152
1153         svm->spec_ctrl = 0;
1154         svm->virt_spec_ctrl = 0;
1155
1156         if (!init_event) {
1157                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1158                                            MSR_IA32_APICBASE_ENABLE;
1159                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1160                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1161         }
1162         init_vmcb(svm);
1163
1164         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1165         kvm_rdx_write(vcpu, eax);
1166
1167         if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1168                 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1169 }
1170
1171 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1172 {
1173         struct vcpu_svm *svm;
1174         struct page *page;
1175         struct page *msrpm_pages;
1176         struct page *hsave_page;
1177         struct page *nested_msrpm_pages;
1178         int err;
1179
1180         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1181         svm = to_svm(vcpu);
1182
1183         err = -ENOMEM;
1184         page = alloc_page(GFP_KERNEL_ACCOUNT);
1185         if (!page)
1186                 goto out;
1187
1188         msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
1189         if (!msrpm_pages)
1190                 goto free_page1;
1191
1192         nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
1193         if (!nested_msrpm_pages)
1194                 goto free_page2;
1195
1196         hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
1197         if (!hsave_page)
1198                 goto free_page3;
1199
1200         err = avic_init_vcpu(svm);
1201         if (err)
1202                 goto free_page4;
1203
1204         /* We initialize this flag to true to make sure that the is_running
1205          * bit would be set the first time the vcpu is loaded.
1206          */
1207         if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1208                 svm->avic_is_running = true;
1209
1210         svm->nested.hsave = page_address(hsave_page);
1211         clear_page(svm->nested.hsave);
1212
1213         svm->msrpm = page_address(msrpm_pages);
1214         svm_vcpu_init_msrpm(svm->msrpm);
1215
1216         svm->nested.msrpm = page_address(nested_msrpm_pages);
1217         svm_vcpu_init_msrpm(svm->nested.msrpm);
1218
1219         svm->vmcb = page_address(page);
1220         clear_page(svm->vmcb);
1221         svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
1222         svm->asid_generation = 0;
1223         init_vmcb(svm);
1224
1225         svm_init_osvw(vcpu);
1226         vcpu->arch.microcode_version = 0x01000065;
1227
1228         return 0;
1229
1230 free_page4:
1231         __free_page(hsave_page);
1232 free_page3:
1233         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1234 free_page2:
1235         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1236 free_page1:
1237         __free_page(page);
1238 out:
1239         return err;
1240 }
1241
1242 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1243 {
1244         int i;
1245
1246         for_each_online_cpu(i)
1247                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1248 }
1249
1250 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1251 {
1252         struct vcpu_svm *svm = to_svm(vcpu);
1253
1254         /*
1255          * The vmcb page can be recycled, causing a false negative in
1256          * svm_vcpu_load(). So, ensure that no logical CPU has this
1257          * vmcb page recorded as its current vmcb.
1258          */
1259         svm_clear_current_vmcb(svm->vmcb);
1260
1261         __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1262         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1263         __free_page(virt_to_page(svm->nested.hsave));
1264         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1265 }
1266
1267 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1268 {
1269         struct vcpu_svm *svm = to_svm(vcpu);
1270         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1271         int i;
1272
1273         if (unlikely(cpu != vcpu->cpu)) {
1274                 svm->asid_generation = 0;
1275                 vmcb_mark_all_dirty(svm->vmcb);
1276         }
1277
1278 #ifdef CONFIG_X86_64
1279         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1280 #endif
1281         savesegment(fs, svm->host.fs);
1282         savesegment(gs, svm->host.gs);
1283         svm->host.ldt = kvm_read_ldt();
1284
1285         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1286                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1287
1288         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1289                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1290                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1291                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1292                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1293                 }
1294         }
1295         /* This assumes that the kernel never uses MSR_TSC_AUX */
1296         if (static_cpu_has(X86_FEATURE_RDTSCP))
1297                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1298
1299         if (sd->current_vmcb != svm->vmcb) {
1300                 sd->current_vmcb = svm->vmcb;
1301                 indirect_branch_prediction_barrier();
1302         }
1303         avic_vcpu_load(vcpu, cpu);
1304 }
1305
1306 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1307 {
1308         struct vcpu_svm *svm = to_svm(vcpu);
1309         int i;
1310
1311         avic_vcpu_put(vcpu);
1312
1313         ++vcpu->stat.host_state_reload;
1314         kvm_load_ldt(svm->host.ldt);
1315 #ifdef CONFIG_X86_64
1316         loadsegment(fs, svm->host.fs);
1317         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1318         load_gs_index(svm->host.gs);
1319 #else
1320 #ifdef CONFIG_X86_32_LAZY_GS
1321         loadsegment(gs, svm->host.gs);
1322 #endif
1323 #endif
1324         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1325                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1326 }
1327
1328 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1329 {
1330         struct vcpu_svm *svm = to_svm(vcpu);
1331         unsigned long rflags = svm->vmcb->save.rflags;
1332
1333         if (svm->nmi_singlestep) {
1334                 /* Hide our flags if they were not set by the guest */
1335                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1336                         rflags &= ~X86_EFLAGS_TF;
1337                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1338                         rflags &= ~X86_EFLAGS_RF;
1339         }
1340         return rflags;
1341 }
1342
1343 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1344 {
1345         if (to_svm(vcpu)->nmi_singlestep)
1346                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1347
1348        /*
1349         * Any change of EFLAGS.VM is accompanied by a reload of SS
1350         * (caused by either a task switch or an inter-privilege IRET),
1351         * so we do not need to update the CPL here.
1352         */
1353         to_svm(vcpu)->vmcb->save.rflags = rflags;
1354 }
1355
1356 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1357 {
1358         switch (reg) {
1359         case VCPU_EXREG_PDPTR:
1360                 BUG_ON(!npt_enabled);
1361                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1362                 break;
1363         default:
1364                 WARN_ON_ONCE(1);
1365         }
1366 }
1367
1368 static void svm_set_vintr(struct vcpu_svm *svm)
1369 {
1370         struct vmcb_control_area *control;
1371
1372         /* The following fields are ignored when AVIC is enabled */
1373         WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1374         svm_set_intercept(svm, INTERCEPT_VINTR);
1375
1376         /*
1377          * This is just a dummy VINTR to actually cause a vmexit to happen.
1378          * Actual injection of virtual interrupts happens through EVENTINJ.
1379          */
1380         control = &svm->vmcb->control;
1381         control->int_vector = 0x0;
1382         control->int_ctl &= ~V_INTR_PRIO_MASK;
1383         control->int_ctl |= V_IRQ_MASK |
1384                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1385         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1386 }
1387
1388 static void svm_clear_vintr(struct vcpu_svm *svm)
1389 {
1390         const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1391         svm_clr_intercept(svm, INTERCEPT_VINTR);
1392
1393         /* Drop int_ctl fields related to VINTR injection.  */
1394         svm->vmcb->control.int_ctl &= mask;
1395         if (is_guest_mode(&svm->vcpu)) {
1396                 svm->nested.hsave->control.int_ctl &= mask;
1397
1398                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1399                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1400                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1401         }
1402
1403         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1404 }
1405
1406 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1407 {
1408         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1409
1410         switch (seg) {
1411         case VCPU_SREG_CS: return &save->cs;
1412         case VCPU_SREG_DS: return &save->ds;
1413         case VCPU_SREG_ES: return &save->es;
1414         case VCPU_SREG_FS: return &save->fs;
1415         case VCPU_SREG_GS: return &save->gs;
1416         case VCPU_SREG_SS: return &save->ss;
1417         case VCPU_SREG_TR: return &save->tr;
1418         case VCPU_SREG_LDTR: return &save->ldtr;
1419         }
1420         BUG();
1421         return NULL;
1422 }
1423
1424 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1425 {
1426         struct vmcb_seg *s = svm_seg(vcpu, seg);
1427
1428         return s->base;
1429 }
1430
1431 static void svm_get_segment(struct kvm_vcpu *vcpu,
1432                             struct kvm_segment *var, int seg)
1433 {
1434         struct vmcb_seg *s = svm_seg(vcpu, seg);
1435
1436         var->base = s->base;
1437         var->limit = s->limit;
1438         var->selector = s->selector;
1439         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1440         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1441         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1442         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1443         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1444         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1445         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1446
1447         /*
1448          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1449          * However, the SVM spec states that the G bit is not observed by the
1450          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1451          * So let's synthesize a legal G bit for all segments, this helps
1452          * running KVM nested. It also helps cross-vendor migration, because
1453          * Intel's vmentry has a check on the 'G' bit.
1454          */
1455         var->g = s->limit > 0xfffff;
1456
1457         /*
1458          * AMD's VMCB does not have an explicit unusable field, so emulate it
1459          * for cross vendor migration purposes by "not present"
1460          */
1461         var->unusable = !var->present;
1462
1463         switch (seg) {
1464         case VCPU_SREG_TR:
1465                 /*
1466                  * Work around a bug where the busy flag in the tr selector
1467                  * isn't exposed
1468                  */
1469                 var->type |= 0x2;
1470                 break;
1471         case VCPU_SREG_DS:
1472         case VCPU_SREG_ES:
1473         case VCPU_SREG_FS:
1474         case VCPU_SREG_GS:
1475                 /*
1476                  * The accessed bit must always be set in the segment
1477                  * descriptor cache, although it can be cleared in the
1478                  * descriptor, the cached bit always remains at 1. Since
1479                  * Intel has a check on this, set it here to support
1480                  * cross-vendor migration.
1481                  */
1482                 if (!var->unusable)
1483                         var->type |= 0x1;
1484                 break;
1485         case VCPU_SREG_SS:
1486                 /*
1487                  * On AMD CPUs sometimes the DB bit in the segment
1488                  * descriptor is left as 1, although the whole segment has
1489                  * been made unusable. Clear it here to pass an Intel VMX
1490                  * entry check when cross vendor migrating.
1491                  */
1492                 if (var->unusable)
1493                         var->db = 0;
1494                 /* This is symmetric with svm_set_segment() */
1495                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1496                 break;
1497         }
1498 }
1499
1500 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1501 {
1502         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1503
1504         return save->cpl;
1505 }
1506
1507 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1508 {
1509         struct vcpu_svm *svm = to_svm(vcpu);
1510
1511         dt->size = svm->vmcb->save.idtr.limit;
1512         dt->address = svm->vmcb->save.idtr.base;
1513 }
1514
1515 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1516 {
1517         struct vcpu_svm *svm = to_svm(vcpu);
1518
1519         svm->vmcb->save.idtr.limit = dt->size;
1520         svm->vmcb->save.idtr.base = dt->address ;
1521         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1522 }
1523
1524 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1525 {
1526         struct vcpu_svm *svm = to_svm(vcpu);
1527
1528         dt->size = svm->vmcb->save.gdtr.limit;
1529         dt->address = svm->vmcb->save.gdtr.base;
1530 }
1531
1532 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1533 {
1534         struct vcpu_svm *svm = to_svm(vcpu);
1535
1536         svm->vmcb->save.gdtr.limit = dt->size;
1537         svm->vmcb->save.gdtr.base = dt->address ;
1538         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1539 }
1540
1541 static void update_cr0_intercept(struct vcpu_svm *svm)
1542 {
1543         ulong gcr0 = svm->vcpu.arch.cr0;
1544         u64 *hcr0 = &svm->vmcb->save.cr0;
1545
1546         *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1547                 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1548
1549         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1550
1551         if (gcr0 == *hcr0) {
1552                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1553                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1554         } else {
1555                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1556                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1557         }
1558 }
1559
1560 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1561 {
1562         struct vcpu_svm *svm = to_svm(vcpu);
1563
1564 #ifdef CONFIG_X86_64
1565         if (vcpu->arch.efer & EFER_LME) {
1566                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1567                         vcpu->arch.efer |= EFER_LMA;
1568                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1569                 }
1570
1571                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1572                         vcpu->arch.efer &= ~EFER_LMA;
1573                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1574                 }
1575         }
1576 #endif
1577         vcpu->arch.cr0 = cr0;
1578
1579         if (!npt_enabled)
1580                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1581
1582         /*
1583          * re-enable caching here because the QEMU bios
1584          * does not do it - this results in some delay at
1585          * reboot
1586          */
1587         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1588                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1589         svm->vmcb->save.cr0 = cr0;
1590         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1591         update_cr0_intercept(svm);
1592 }
1593
1594 int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1595 {
1596         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1597         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1598
1599         if (cr4 & X86_CR4_VMXE)
1600                 return 1;
1601
1602         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1603                 svm_flush_tlb(vcpu);
1604
1605         vcpu->arch.cr4 = cr4;
1606         if (!npt_enabled)
1607                 cr4 |= X86_CR4_PAE;
1608         cr4 |= host_cr4_mce;
1609         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1610         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1611         return 0;
1612 }
1613
1614 static void svm_set_segment(struct kvm_vcpu *vcpu,
1615                             struct kvm_segment *var, int seg)
1616 {
1617         struct vcpu_svm *svm = to_svm(vcpu);
1618         struct vmcb_seg *s = svm_seg(vcpu, seg);
1619
1620         s->base = var->base;
1621         s->limit = var->limit;
1622         s->selector = var->selector;
1623         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1624         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1625         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1626         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1627         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1628         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1629         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1630         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1631
1632         /*
1633          * This is always accurate, except if SYSRET returned to a segment
1634          * with SS.DPL != 3.  Intel does not have this quirk, and always
1635          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1636          * would entail passing the CPL to userspace and back.
1637          */
1638         if (seg == VCPU_SREG_SS)
1639                 /* This is symmetric with svm_get_segment() */
1640                 svm->vmcb->save.cpl = (var->dpl & 3);
1641
1642         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1643 }
1644
1645 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1646 {
1647         struct vcpu_svm *svm = to_svm(vcpu);
1648
1649         clr_exception_intercept(svm, BP_VECTOR);
1650
1651         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1652                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1653                         set_exception_intercept(svm, BP_VECTOR);
1654         }
1655 }
1656
1657 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1658 {
1659         if (sd->next_asid > sd->max_asid) {
1660                 ++sd->asid_generation;
1661                 sd->next_asid = sd->min_asid;
1662                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1663         }
1664
1665         svm->asid_generation = sd->asid_generation;
1666         svm->vmcb->control.asid = sd->next_asid++;
1667
1668         vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1669 }
1670
1671 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1672 {
1673         struct vmcb *vmcb = svm->vmcb;
1674
1675         if (unlikely(value != vmcb->save.dr6)) {
1676                 vmcb->save.dr6 = value;
1677                 vmcb_mark_dirty(vmcb, VMCB_DR);
1678         }
1679 }
1680
1681 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1682 {
1683         struct vcpu_svm *svm = to_svm(vcpu);
1684
1685         get_debugreg(vcpu->arch.db[0], 0);
1686         get_debugreg(vcpu->arch.db[1], 1);
1687         get_debugreg(vcpu->arch.db[2], 2);
1688         get_debugreg(vcpu->arch.db[3], 3);
1689         /*
1690          * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1691          * because db_interception might need it.  We can do it before vmentry.
1692          */
1693         vcpu->arch.dr6 = svm->vmcb->save.dr6;
1694         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1695         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1696         set_dr_intercepts(svm);
1697 }
1698
1699 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1700 {
1701         struct vcpu_svm *svm = to_svm(vcpu);
1702
1703         svm->vmcb->save.dr7 = value;
1704         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1705 }
1706
1707 static int pf_interception(struct vcpu_svm *svm)
1708 {
1709         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1710         u64 error_code = svm->vmcb->control.exit_info_1;
1711
1712         return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1713                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1714                         svm->vmcb->control.insn_bytes : NULL,
1715                         svm->vmcb->control.insn_len);
1716 }
1717
1718 static int npf_interception(struct vcpu_svm *svm)
1719 {
1720         u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1721         u64 error_code = svm->vmcb->control.exit_info_1;
1722
1723         trace_kvm_page_fault(fault_address, error_code);
1724         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1725                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1726                         svm->vmcb->control.insn_bytes : NULL,
1727                         svm->vmcb->control.insn_len);
1728 }
1729
1730 static int db_interception(struct vcpu_svm *svm)
1731 {
1732         struct kvm_run *kvm_run = svm->vcpu.run;
1733         struct kvm_vcpu *vcpu = &svm->vcpu;
1734
1735         if (!(svm->vcpu.guest_debug &
1736               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1737                 !svm->nmi_singlestep) {
1738                 u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
1739                 kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1740                 return 1;
1741         }
1742
1743         if (svm->nmi_singlestep) {
1744                 disable_nmi_singlestep(svm);
1745                 /* Make sure we check for pending NMIs upon entry */
1746                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1747         }
1748
1749         if (svm->vcpu.guest_debug &
1750             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1751                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1752                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1753                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1754                 kvm_run->debug.arch.pc =
1755                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1756                 kvm_run->debug.arch.exception = DB_VECTOR;
1757                 return 0;
1758         }
1759
1760         return 1;
1761 }
1762
1763 static int bp_interception(struct vcpu_svm *svm)
1764 {
1765         struct kvm_run *kvm_run = svm->vcpu.run;
1766
1767         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1768         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1769         kvm_run->debug.arch.exception = BP_VECTOR;
1770         return 0;
1771 }
1772
1773 static int ud_interception(struct vcpu_svm *svm)
1774 {
1775         return handle_ud(&svm->vcpu);
1776 }
1777
1778 static int ac_interception(struct vcpu_svm *svm)
1779 {
1780         kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1781         return 1;
1782 }
1783
1784 static int gp_interception(struct vcpu_svm *svm)
1785 {
1786         struct kvm_vcpu *vcpu = &svm->vcpu;
1787         u32 error_code = svm->vmcb->control.exit_info_1;
1788
1789         WARN_ON_ONCE(!enable_vmware_backdoor);
1790
1791         /*
1792          * VMware backdoor emulation on #GP interception only handles IN{S},
1793          * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1794          */
1795         if (error_code) {
1796                 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1797                 return 1;
1798         }
1799         return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1800 }
1801
1802 static bool is_erratum_383(void)
1803 {
1804         int err, i;
1805         u64 value;
1806
1807         if (!erratum_383_found)
1808                 return false;
1809
1810         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1811         if (err)
1812                 return false;
1813
1814         /* Bit 62 may or may not be set for this mce */
1815         value &= ~(1ULL << 62);
1816
1817         if (value != 0xb600000000010015ULL)
1818                 return false;
1819
1820         /* Clear MCi_STATUS registers */
1821         for (i = 0; i < 6; ++i)
1822                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1823
1824         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1825         if (!err) {
1826                 u32 low, high;
1827
1828                 value &= ~(1ULL << 2);
1829                 low    = lower_32_bits(value);
1830                 high   = upper_32_bits(value);
1831
1832                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1833         }
1834
1835         /* Flush tlb to evict multi-match entries */
1836         __flush_tlb_all();
1837
1838         return true;
1839 }
1840
1841 /*
1842  * Trigger machine check on the host. We assume all the MSRs are already set up
1843  * by the CPU and that we still run on the same CPU as the MCE occurred on.
1844  * We pass a fake environment to the machine check handler because we want
1845  * the guest to be always treated like user space, no matter what context
1846  * it used internally.
1847  */
1848 static void kvm_machine_check(void)
1849 {
1850 #if defined(CONFIG_X86_MCE)
1851         struct pt_regs regs = {
1852                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
1853                 .flags = X86_EFLAGS_IF,
1854         };
1855
1856         do_machine_check(&regs);
1857 #endif
1858 }
1859
1860 static void svm_handle_mce(struct vcpu_svm *svm)
1861 {
1862         if (is_erratum_383()) {
1863                 /*
1864                  * Erratum 383 triggered. Guest state is corrupt so kill the
1865                  * guest.
1866                  */
1867                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1868
1869                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1870
1871                 return;
1872         }
1873
1874         /*
1875          * On an #MC intercept the MCE handler is not called automatically in
1876          * the host. So do it by hand here.
1877          */
1878         kvm_machine_check();
1879 }
1880
1881 static int mc_interception(struct vcpu_svm *svm)
1882 {
1883         return 1;
1884 }
1885
1886 static int shutdown_interception(struct vcpu_svm *svm)
1887 {
1888         struct kvm_run *kvm_run = svm->vcpu.run;
1889
1890         /*
1891          * VMCB is undefined after a SHUTDOWN intercept
1892          * so reinitialize it.
1893          */
1894         clear_page(svm->vmcb);
1895         init_vmcb(svm);
1896
1897         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1898         return 0;
1899 }
1900
1901 static int io_interception(struct vcpu_svm *svm)
1902 {
1903         struct kvm_vcpu *vcpu = &svm->vcpu;
1904         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1905         int size, in, string;
1906         unsigned port;
1907
1908         ++svm->vcpu.stat.io_exits;
1909         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1910         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1911         if (string)
1912                 return kvm_emulate_instruction(vcpu, 0);
1913
1914         port = io_info >> 16;
1915         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1916         svm->next_rip = svm->vmcb->control.exit_info_2;
1917
1918         return kvm_fast_pio(&svm->vcpu, size, port, in);
1919 }
1920
1921 static int nmi_interception(struct vcpu_svm *svm)
1922 {
1923         return 1;
1924 }
1925
1926 static int intr_interception(struct vcpu_svm *svm)
1927 {
1928         ++svm->vcpu.stat.irq_exits;
1929         return 1;
1930 }
1931
1932 static int nop_on_interception(struct vcpu_svm *svm)
1933 {
1934         return 1;
1935 }
1936
1937 static int halt_interception(struct vcpu_svm *svm)
1938 {
1939         return kvm_emulate_halt(&svm->vcpu);
1940 }
1941
1942 static int vmmcall_interception(struct vcpu_svm *svm)
1943 {
1944         return kvm_emulate_hypercall(&svm->vcpu);
1945 }
1946
1947 static int vmload_interception(struct vcpu_svm *svm)
1948 {
1949         struct vmcb *nested_vmcb;
1950         struct kvm_host_map map;
1951         int ret;
1952
1953         if (nested_svm_check_permissions(svm))
1954                 return 1;
1955
1956         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1957         if (ret) {
1958                 if (ret == -EINVAL)
1959                         kvm_inject_gp(&svm->vcpu, 0);
1960                 return 1;
1961         }
1962
1963         nested_vmcb = map.hva;
1964
1965         ret = kvm_skip_emulated_instruction(&svm->vcpu);
1966
1967         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1968         kvm_vcpu_unmap(&svm->vcpu, &map, true);
1969
1970         return ret;
1971 }
1972
1973 static int vmsave_interception(struct vcpu_svm *svm)
1974 {
1975         struct vmcb *nested_vmcb;
1976         struct kvm_host_map map;
1977         int ret;
1978
1979         if (nested_svm_check_permissions(svm))
1980                 return 1;
1981
1982         ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1983         if (ret) {
1984                 if (ret == -EINVAL)
1985                         kvm_inject_gp(&svm->vcpu, 0);
1986                 return 1;
1987         }
1988
1989         nested_vmcb = map.hva;
1990
1991         ret = kvm_skip_emulated_instruction(&svm->vcpu);
1992
1993         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1994         kvm_vcpu_unmap(&svm->vcpu, &map, true);
1995
1996         return ret;
1997 }
1998
1999 static int vmrun_interception(struct vcpu_svm *svm)
2000 {
2001         if (nested_svm_check_permissions(svm))
2002                 return 1;
2003
2004         return nested_svm_vmrun(svm);
2005 }
2006
2007 void svm_set_gif(struct vcpu_svm *svm, bool value)
2008 {
2009         if (value) {
2010                 /*
2011                  * If VGIF is enabled, the STGI intercept is only added to
2012                  * detect the opening of the SMI/NMI window; remove it now.
2013                  * Likewise, clear the VINTR intercept, we will set it
2014                  * again while processing KVM_REQ_EVENT if needed.
2015                  */
2016                 if (vgif_enabled(svm))
2017                         svm_clr_intercept(svm, INTERCEPT_STGI);
2018                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2019                         svm_clear_vintr(svm);
2020
2021                 enable_gif(svm);
2022                 if (svm->vcpu.arch.smi_pending ||
2023                     svm->vcpu.arch.nmi_pending ||
2024                     kvm_cpu_has_injectable_intr(&svm->vcpu))
2025                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2026         } else {
2027                 disable_gif(svm);
2028
2029                 /*
2030                  * After a CLGI no interrupts should come.  But if vGIF is
2031                  * in use, we still rely on the VINTR intercept (rather than
2032                  * STGI) to detect an open interrupt window.
2033                 */
2034                 if (!vgif_enabled(svm))
2035                         svm_clear_vintr(svm);
2036         }
2037 }
2038
2039 static int stgi_interception(struct vcpu_svm *svm)
2040 {
2041         int ret;
2042
2043         if (nested_svm_check_permissions(svm))
2044                 return 1;
2045
2046         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2047         svm_set_gif(svm, true);
2048         return ret;
2049 }
2050
2051 static int clgi_interception(struct vcpu_svm *svm)
2052 {
2053         int ret;
2054
2055         if (nested_svm_check_permissions(svm))
2056                 return 1;
2057
2058         ret = kvm_skip_emulated_instruction(&svm->vcpu);
2059         svm_set_gif(svm, false);
2060         return ret;
2061 }
2062
2063 static int invlpga_interception(struct vcpu_svm *svm)
2064 {
2065         struct kvm_vcpu *vcpu = &svm->vcpu;
2066
2067         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2068                           kvm_rax_read(&svm->vcpu));
2069
2070         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2071         kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2072
2073         return kvm_skip_emulated_instruction(&svm->vcpu);
2074 }
2075
2076 static int skinit_interception(struct vcpu_svm *svm)
2077 {
2078         trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2079
2080         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2081         return 1;
2082 }
2083
2084 static int wbinvd_interception(struct vcpu_svm *svm)
2085 {
2086         return kvm_emulate_wbinvd(&svm->vcpu);
2087 }
2088
2089 static int xsetbv_interception(struct vcpu_svm *svm)
2090 {
2091         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2092         u32 index = kvm_rcx_read(&svm->vcpu);
2093
2094         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2095                 return kvm_skip_emulated_instruction(&svm->vcpu);
2096         }
2097
2098         return 1;
2099 }
2100
2101 static int rdpru_interception(struct vcpu_svm *svm)
2102 {
2103         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2104         return 1;
2105 }
2106
2107 static int task_switch_interception(struct vcpu_svm *svm)
2108 {
2109         u16 tss_selector;
2110         int reason;
2111         int int_type = svm->vmcb->control.exit_int_info &
2112                 SVM_EXITINTINFO_TYPE_MASK;
2113         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2114         uint32_t type =
2115                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2116         uint32_t idt_v =
2117                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2118         bool has_error_code = false;
2119         u32 error_code = 0;
2120
2121         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2122
2123         if (svm->vmcb->control.exit_info_2 &
2124             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2125                 reason = TASK_SWITCH_IRET;
2126         else if (svm->vmcb->control.exit_info_2 &
2127                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2128                 reason = TASK_SWITCH_JMP;
2129         else if (idt_v)
2130                 reason = TASK_SWITCH_GATE;
2131         else
2132                 reason = TASK_SWITCH_CALL;
2133
2134         if (reason == TASK_SWITCH_GATE) {
2135                 switch (type) {
2136                 case SVM_EXITINTINFO_TYPE_NMI:
2137                         svm->vcpu.arch.nmi_injected = false;
2138                         break;
2139                 case SVM_EXITINTINFO_TYPE_EXEPT:
2140                         if (svm->vmcb->control.exit_info_2 &
2141                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2142                                 has_error_code = true;
2143                                 error_code =
2144                                         (u32)svm->vmcb->control.exit_info_2;
2145                         }
2146                         kvm_clear_exception_queue(&svm->vcpu);
2147                         break;
2148                 case SVM_EXITINTINFO_TYPE_INTR:
2149                         kvm_clear_interrupt_queue(&svm->vcpu);
2150                         break;
2151                 default:
2152                         break;
2153                 }
2154         }
2155
2156         if (reason != TASK_SWITCH_GATE ||
2157             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2158             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2159              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2160                 if (!skip_emulated_instruction(&svm->vcpu))
2161                         return 0;
2162         }
2163
2164         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2165                 int_vec = -1;
2166
2167         return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2168                                has_error_code, error_code);
2169 }
2170
2171 static int cpuid_interception(struct vcpu_svm *svm)
2172 {
2173         return kvm_emulate_cpuid(&svm->vcpu);
2174 }
2175
2176 static int iret_interception(struct vcpu_svm *svm)
2177 {
2178         ++svm->vcpu.stat.nmi_window_exits;
2179         svm_clr_intercept(svm, INTERCEPT_IRET);
2180         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2181         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2182         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2183         return 1;
2184 }
2185
2186 static int invlpg_interception(struct vcpu_svm *svm)
2187 {
2188         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2189                 return kvm_emulate_instruction(&svm->vcpu, 0);
2190
2191         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2192         return kvm_skip_emulated_instruction(&svm->vcpu);
2193 }
2194
2195 static int emulate_on_interception(struct vcpu_svm *svm)
2196 {
2197         return kvm_emulate_instruction(&svm->vcpu, 0);
2198 }
2199
2200 static int rsm_interception(struct vcpu_svm *svm)
2201 {
2202         return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2203 }
2204
2205 static int rdpmc_interception(struct vcpu_svm *svm)
2206 {
2207         int err;
2208
2209         if (!nrips)
2210                 return emulate_on_interception(svm);
2211
2212         err = kvm_rdpmc(&svm->vcpu);
2213         return kvm_complete_insn_gp(&svm->vcpu, err);
2214 }
2215
2216 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2217                                             unsigned long val)
2218 {
2219         unsigned long cr0 = svm->vcpu.arch.cr0;
2220         bool ret = false;
2221         u64 intercept;
2222
2223         intercept = svm->nested.ctl.intercept;
2224
2225         if (!is_guest_mode(&svm->vcpu) ||
2226             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2227                 return false;
2228
2229         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2230         val &= ~SVM_CR0_SELECTIVE_MASK;
2231
2232         if (cr0 ^ val) {
2233                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2234                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2235         }
2236
2237         return ret;
2238 }
2239
2240 #define CR_VALID (1ULL << 63)
2241
2242 static int cr_interception(struct vcpu_svm *svm)
2243 {
2244         int reg, cr;
2245         unsigned long val;
2246         int err;
2247
2248         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2249                 return emulate_on_interception(svm);
2250
2251         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2252                 return emulate_on_interception(svm);
2253
2254         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2255         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2256                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2257         else
2258                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2259
2260         err = 0;
2261         if (cr >= 16) { /* mov to cr */
2262                 cr -= 16;
2263                 val = kvm_register_read(&svm->vcpu, reg);
2264                 switch (cr) {
2265                 case 0:
2266                         if (!check_selective_cr0_intercepted(svm, val))
2267                                 err = kvm_set_cr0(&svm->vcpu, val);
2268                         else
2269                                 return 1;
2270
2271                         break;
2272                 case 3:
2273                         err = kvm_set_cr3(&svm->vcpu, val);
2274                         break;
2275                 case 4:
2276                         err = kvm_set_cr4(&svm->vcpu, val);
2277                         break;
2278                 case 8:
2279                         err = kvm_set_cr8(&svm->vcpu, val);
2280                         break;
2281                 default:
2282                         WARN(1, "unhandled write to CR%d", cr);
2283                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2284                         return 1;
2285                 }
2286         } else { /* mov from cr */
2287                 switch (cr) {
2288                 case 0:
2289                         val = kvm_read_cr0(&svm->vcpu);
2290                         break;
2291                 case 2:
2292                         val = svm->vcpu.arch.cr2;
2293                         break;
2294                 case 3:
2295                         val = kvm_read_cr3(&svm->vcpu);
2296                         break;
2297                 case 4:
2298                         val = kvm_read_cr4(&svm->vcpu);
2299                         break;
2300                 case 8:
2301                         val = kvm_get_cr8(&svm->vcpu);
2302                         break;
2303                 default:
2304                         WARN(1, "unhandled read from CR%d", cr);
2305                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2306                         return 1;
2307                 }
2308                 kvm_register_write(&svm->vcpu, reg, val);
2309         }
2310         return kvm_complete_insn_gp(&svm->vcpu, err);
2311 }
2312
2313 static int dr_interception(struct vcpu_svm *svm)
2314 {
2315         int reg, dr;
2316         unsigned long val;
2317
2318         if (svm->vcpu.guest_debug == 0) {
2319                 /*
2320                  * No more DR vmexits; force a reload of the debug registers
2321                  * and reenter on this instruction.  The next vmexit will
2322                  * retrieve the full state of the debug registers.
2323                  */
2324                 clr_dr_intercepts(svm);
2325                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2326                 return 1;
2327         }
2328
2329         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2330                 return emulate_on_interception(svm);
2331
2332         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2333         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2334
2335         if (dr >= 16) { /* mov to DRn */
2336                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
2337                         return 1;
2338                 val = kvm_register_read(&svm->vcpu, reg);
2339                 kvm_set_dr(&svm->vcpu, dr - 16, val);
2340         } else {
2341                 if (!kvm_require_dr(&svm->vcpu, dr))
2342                         return 1;
2343                 kvm_get_dr(&svm->vcpu, dr, &val);
2344                 kvm_register_write(&svm->vcpu, reg, val);
2345         }
2346
2347         return kvm_skip_emulated_instruction(&svm->vcpu);
2348 }
2349
2350 static int cr8_write_interception(struct vcpu_svm *svm)
2351 {
2352         struct kvm_run *kvm_run = svm->vcpu.run;
2353         int r;
2354
2355         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2356         /* instruction emulation calls kvm_set_cr8() */
2357         r = cr_interception(svm);
2358         if (lapic_in_kernel(&svm->vcpu))
2359                 return r;
2360         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2361                 return r;
2362         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2363         return 0;
2364 }
2365
2366 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2367 {
2368         msr->data = 0;
2369
2370         switch (msr->index) {
2371         case MSR_F10H_DECFG:
2372                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2373                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2374                 break;
2375         case MSR_IA32_PERF_CAPABILITIES:
2376                 return 0;
2377         default:
2378                 return KVM_MSR_RET_INVALID;
2379         }
2380
2381         return 0;
2382 }
2383
2384 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2385 {
2386         struct vcpu_svm *svm = to_svm(vcpu);
2387
2388         switch (msr_info->index) {
2389         case MSR_STAR:
2390                 msr_info->data = svm->vmcb->save.star;
2391                 break;
2392 #ifdef CONFIG_X86_64
2393         case MSR_LSTAR:
2394                 msr_info->data = svm->vmcb->save.lstar;
2395                 break;
2396         case MSR_CSTAR:
2397                 msr_info->data = svm->vmcb->save.cstar;
2398                 break;
2399         case MSR_KERNEL_GS_BASE:
2400                 msr_info->data = svm->vmcb->save.kernel_gs_base;
2401                 break;
2402         case MSR_SYSCALL_MASK:
2403                 msr_info->data = svm->vmcb->save.sfmask;
2404                 break;
2405 #endif
2406         case MSR_IA32_SYSENTER_CS:
2407                 msr_info->data = svm->vmcb->save.sysenter_cs;
2408                 break;
2409         case MSR_IA32_SYSENTER_EIP:
2410                 msr_info->data = svm->sysenter_eip;
2411                 break;
2412         case MSR_IA32_SYSENTER_ESP:
2413                 msr_info->data = svm->sysenter_esp;
2414                 break;
2415         case MSR_TSC_AUX:
2416                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2417                         return 1;
2418                 msr_info->data = svm->tsc_aux;
2419                 break;
2420         /*
2421          * Nobody will change the following 5 values in the VMCB so we can
2422          * safely return them on rdmsr. They will always be 0 until LBRV is
2423          * implemented.
2424          */
2425         case MSR_IA32_DEBUGCTLMSR:
2426                 msr_info->data = svm->vmcb->save.dbgctl;
2427                 break;
2428         case MSR_IA32_LASTBRANCHFROMIP:
2429                 msr_info->data = svm->vmcb->save.br_from;
2430                 break;
2431         case MSR_IA32_LASTBRANCHTOIP:
2432                 msr_info->data = svm->vmcb->save.br_to;
2433                 break;
2434         case MSR_IA32_LASTINTFROMIP:
2435                 msr_info->data = svm->vmcb->save.last_excp_from;
2436                 break;
2437         case MSR_IA32_LASTINTTOIP:
2438                 msr_info->data = svm->vmcb->save.last_excp_to;
2439                 break;
2440         case MSR_VM_HSAVE_PA:
2441                 msr_info->data = svm->nested.hsave_msr;
2442                 break;
2443         case MSR_VM_CR:
2444                 msr_info->data = svm->nested.vm_cr_msr;
2445                 break;
2446         case MSR_IA32_SPEC_CTRL:
2447                 if (!msr_info->host_initiated &&
2448                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2449                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2450                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2451                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2452                         return 1;
2453
2454                 msr_info->data = svm->spec_ctrl;
2455                 break;
2456         case MSR_AMD64_VIRT_SPEC_CTRL:
2457                 if (!msr_info->host_initiated &&
2458                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2459                         return 1;
2460
2461                 msr_info->data = svm->virt_spec_ctrl;
2462                 break;
2463         case MSR_F15H_IC_CFG: {
2464
2465                 int family, model;
2466
2467                 family = guest_cpuid_family(vcpu);
2468                 model  = guest_cpuid_model(vcpu);
2469
2470                 if (family < 0 || model < 0)
2471                         return kvm_get_msr_common(vcpu, msr_info);
2472
2473                 msr_info->data = 0;
2474
2475                 if (family == 0x15 &&
2476                     (model >= 0x2 && model < 0x20))
2477                         msr_info->data = 0x1E;
2478                 }
2479                 break;
2480         case MSR_F10H_DECFG:
2481                 msr_info->data = svm->msr_decfg;
2482                 break;
2483         default:
2484                 return kvm_get_msr_common(vcpu, msr_info);
2485         }
2486         return 0;
2487 }
2488
2489 static int rdmsr_interception(struct vcpu_svm *svm)
2490 {
2491         return kvm_emulate_rdmsr(&svm->vcpu);
2492 }
2493
2494 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2495 {
2496         struct vcpu_svm *svm = to_svm(vcpu);
2497         int svm_dis, chg_mask;
2498
2499         if (data & ~SVM_VM_CR_VALID_MASK)
2500                 return 1;
2501
2502         chg_mask = SVM_VM_CR_VALID_MASK;
2503
2504         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2505                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2506
2507         svm->nested.vm_cr_msr &= ~chg_mask;
2508         svm->nested.vm_cr_msr |= (data & chg_mask);
2509
2510         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2511
2512         /* check for svm_disable while efer.svme is set */
2513         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2514                 return 1;
2515
2516         return 0;
2517 }
2518
2519 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2520 {
2521         struct vcpu_svm *svm = to_svm(vcpu);
2522
2523         u32 ecx = msr->index;
2524         u64 data = msr->data;
2525         switch (ecx) {
2526         case MSR_IA32_CR_PAT:
2527                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2528                         return 1;
2529                 vcpu->arch.pat = data;
2530                 svm->vmcb->save.g_pat = data;
2531                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2532                 break;
2533         case MSR_IA32_SPEC_CTRL:
2534                 if (!msr->host_initiated &&
2535                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2536                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2537                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2538                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2539                         return 1;
2540
2541                 if (kvm_spec_ctrl_test_value(data))
2542                         return 1;
2543
2544                 svm->spec_ctrl = data;
2545                 if (!data)
2546                         break;
2547
2548                 /*
2549                  * For non-nested:
2550                  * When it's written (to non-zero) for the first time, pass
2551                  * it through.
2552                  *
2553                  * For nested:
2554                  * The handling of the MSR bitmap for L2 guests is done in
2555                  * nested_svm_vmrun_msrpm.
2556                  * We update the L1 MSR bit as well since it will end up
2557                  * touching the MSR anyway now.
2558                  */
2559                 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2560                 break;
2561         case MSR_IA32_PRED_CMD:
2562                 if (!msr->host_initiated &&
2563                     !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
2564                         return 1;
2565
2566                 if (data & ~PRED_CMD_IBPB)
2567                         return 1;
2568                 if (!boot_cpu_has(X86_FEATURE_AMD_IBPB))
2569                         return 1;
2570                 if (!data)
2571                         break;
2572
2573                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2574                 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2575                 break;
2576         case MSR_AMD64_VIRT_SPEC_CTRL:
2577                 if (!msr->host_initiated &&
2578                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2579                         return 1;
2580
2581                 if (data & ~SPEC_CTRL_SSBD)
2582                         return 1;
2583
2584                 svm->virt_spec_ctrl = data;
2585                 break;
2586         case MSR_STAR:
2587                 svm->vmcb->save.star = data;
2588                 break;
2589 #ifdef CONFIG_X86_64
2590         case MSR_LSTAR:
2591                 svm->vmcb->save.lstar = data;
2592                 break;
2593         case MSR_CSTAR:
2594                 svm->vmcb->save.cstar = data;
2595                 break;
2596         case MSR_KERNEL_GS_BASE:
2597                 svm->vmcb->save.kernel_gs_base = data;
2598                 break;
2599         case MSR_SYSCALL_MASK:
2600                 svm->vmcb->save.sfmask = data;
2601                 break;
2602 #endif
2603         case MSR_IA32_SYSENTER_CS:
2604                 svm->vmcb->save.sysenter_cs = data;
2605                 break;
2606         case MSR_IA32_SYSENTER_EIP:
2607                 svm->sysenter_eip = data;
2608                 svm->vmcb->save.sysenter_eip = data;
2609                 break;
2610         case MSR_IA32_SYSENTER_ESP:
2611                 svm->sysenter_esp = data;
2612                 svm->vmcb->save.sysenter_esp = data;
2613                 break;
2614         case MSR_TSC_AUX:
2615                 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2616                         return 1;
2617
2618                 /*
2619                  * This is rare, so we update the MSR here instead of using
2620                  * direct_access_msrs.  Doing that would require a rdmsr in
2621                  * svm_vcpu_put.
2622                  */
2623                 svm->tsc_aux = data;
2624                 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2625                 break;
2626         case MSR_IA32_DEBUGCTLMSR:
2627                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2628                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2629                                     __func__, data);
2630                         break;
2631                 }
2632                 if (data & DEBUGCTL_RESERVED_BITS)
2633                         return 1;
2634
2635                 svm->vmcb->save.dbgctl = data;
2636                 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2637                 if (data & (1ULL<<0))
2638                         svm_enable_lbrv(svm);
2639                 else
2640                         svm_disable_lbrv(svm);
2641                 break;
2642         case MSR_VM_HSAVE_PA:
2643                 svm->nested.hsave_msr = data;
2644                 break;
2645         case MSR_VM_CR:
2646                 return svm_set_vm_cr(vcpu, data);
2647         case MSR_VM_IGNNE:
2648                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2649                 break;
2650         case MSR_F10H_DECFG: {
2651                 struct kvm_msr_entry msr_entry;
2652
2653                 msr_entry.index = msr->index;
2654                 if (svm_get_msr_feature(&msr_entry))
2655                         return 1;
2656
2657                 /* Check the supported bits */
2658                 if (data & ~msr_entry.data)
2659                         return 1;
2660
2661                 /* Don't allow the guest to change a bit, #GP */
2662                 if (!msr->host_initiated && (data ^ msr_entry.data))
2663                         return 1;
2664
2665                 svm->msr_decfg = data;
2666                 break;
2667         }
2668         case MSR_IA32_APICBASE:
2669                 if (kvm_vcpu_apicv_active(vcpu))
2670                         avic_update_vapic_bar(to_svm(vcpu), data);
2671                 fallthrough;
2672         default:
2673                 return kvm_set_msr_common(vcpu, msr);
2674         }
2675         return 0;
2676 }
2677
2678 static int wrmsr_interception(struct vcpu_svm *svm)
2679 {
2680         return kvm_emulate_wrmsr(&svm->vcpu);
2681 }
2682
2683 static int msr_interception(struct vcpu_svm *svm)
2684 {
2685         if (svm->vmcb->control.exit_info_1)
2686                 return wrmsr_interception(svm);
2687         else
2688                 return rdmsr_interception(svm);
2689 }
2690
2691 static int interrupt_window_interception(struct vcpu_svm *svm)
2692 {
2693         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2694         svm_clear_vintr(svm);
2695
2696         /*
2697          * For AVIC, the only reason to end up here is ExtINTs.
2698          * In this case AVIC was temporarily disabled for
2699          * requesting the IRQ window and we have to re-enable it.
2700          */
2701         svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2702
2703         ++svm->vcpu.stat.irq_window_exits;
2704         return 1;
2705 }
2706
2707 static int pause_interception(struct vcpu_svm *svm)
2708 {
2709         struct kvm_vcpu *vcpu = &svm->vcpu;
2710         bool in_kernel = (svm_get_cpl(vcpu) == 0);
2711
2712         if (!kvm_pause_in_guest(vcpu->kvm))
2713                 grow_ple_window(vcpu);
2714
2715         kvm_vcpu_on_spin(vcpu, in_kernel);
2716         return 1;
2717 }
2718
2719 static int nop_interception(struct vcpu_svm *svm)
2720 {
2721         return kvm_skip_emulated_instruction(&(svm->vcpu));
2722 }
2723
2724 static int monitor_interception(struct vcpu_svm *svm)
2725 {
2726         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2727         return nop_interception(svm);
2728 }
2729
2730 static int mwait_interception(struct vcpu_svm *svm)
2731 {
2732         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2733         return nop_interception(svm);
2734 }
2735
2736 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
2737         [SVM_EXIT_READ_CR0]                     = cr_interception,
2738         [SVM_EXIT_READ_CR3]                     = cr_interception,
2739         [SVM_EXIT_READ_CR4]                     = cr_interception,
2740         [SVM_EXIT_READ_CR8]                     = cr_interception,
2741         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
2742         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
2743         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
2744         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
2745         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2746         [SVM_EXIT_READ_DR0]                     = dr_interception,
2747         [SVM_EXIT_READ_DR1]                     = dr_interception,
2748         [SVM_EXIT_READ_DR2]                     = dr_interception,
2749         [SVM_EXIT_READ_DR3]                     = dr_interception,
2750         [SVM_EXIT_READ_DR4]                     = dr_interception,
2751         [SVM_EXIT_READ_DR5]                     = dr_interception,
2752         [SVM_EXIT_READ_DR6]                     = dr_interception,
2753         [SVM_EXIT_READ_DR7]                     = dr_interception,
2754         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
2755         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
2756         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
2757         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
2758         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
2759         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
2760         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
2761         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
2762         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2763         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2764         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2765         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2766         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2767         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
2768         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
2769         [SVM_EXIT_INTR]                         = intr_interception,
2770         [SVM_EXIT_NMI]                          = nmi_interception,
2771         [SVM_EXIT_SMI]                          = nop_on_interception,
2772         [SVM_EXIT_INIT]                         = nop_on_interception,
2773         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2774         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
2775         [SVM_EXIT_CPUID]                        = cpuid_interception,
2776         [SVM_EXIT_IRET]                         = iret_interception,
2777         [SVM_EXIT_INVD]                         = emulate_on_interception,
2778         [SVM_EXIT_PAUSE]                        = pause_interception,
2779         [SVM_EXIT_HLT]                          = halt_interception,
2780         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2781         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2782         [SVM_EXIT_IOIO]                         = io_interception,
2783         [SVM_EXIT_MSR]                          = msr_interception,
2784         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2785         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2786         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2787         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2788         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2789         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2790         [SVM_EXIT_STGI]                         = stgi_interception,
2791         [SVM_EXIT_CLGI]                         = clgi_interception,
2792         [SVM_EXIT_SKINIT]                       = skinit_interception,
2793         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
2794         [SVM_EXIT_MONITOR]                      = monitor_interception,
2795         [SVM_EXIT_MWAIT]                        = mwait_interception,
2796         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
2797         [SVM_EXIT_RDPRU]                        = rdpru_interception,
2798         [SVM_EXIT_NPF]                          = npf_interception,
2799         [SVM_EXIT_RSM]                          = rsm_interception,
2800         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
2801         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
2802 };
2803
2804 static void dump_vmcb(struct kvm_vcpu *vcpu)
2805 {
2806         struct vcpu_svm *svm = to_svm(vcpu);
2807         struct vmcb_control_area *control = &svm->vmcb->control;
2808         struct vmcb_save_area *save = &svm->vmcb->save;
2809
2810         if (!dump_invalid_vmcb) {
2811                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2812                 return;
2813         }
2814
2815         pr_err("VMCB Control Area:\n");
2816         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
2817         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
2818         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
2819         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
2820         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
2821         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
2822         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
2823         pr_err("%-20s%d\n", "pause filter threshold:",
2824                control->pause_filter_thresh);
2825         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
2826         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
2827         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
2828         pr_err("%-20s%d\n", "asid:", control->asid);
2829         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
2830         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
2831         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
2832         pr_err("%-20s%08x\n", "int_state:", control->int_state);
2833         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
2834         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
2835         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
2836         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
2837         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
2838         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
2839         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
2840         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
2841         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
2842         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
2843         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
2844         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
2845         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
2846         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
2847         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
2848         pr_err("VMCB State Save Area:\n");
2849         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2850                "es:",
2851                save->es.selector, save->es.attrib,
2852                save->es.limit, save->es.base);
2853         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2854                "cs:",
2855                save->cs.selector, save->cs.attrib,
2856                save->cs.limit, save->cs.base);
2857         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2858                "ss:",
2859                save->ss.selector, save->ss.attrib,
2860                save->ss.limit, save->ss.base);
2861         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2862                "ds:",
2863                save->ds.selector, save->ds.attrib,
2864                save->ds.limit, save->ds.base);
2865         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2866                "fs:",
2867                save->fs.selector, save->fs.attrib,
2868                save->fs.limit, save->fs.base);
2869         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2870                "gs:",
2871                save->gs.selector, save->gs.attrib,
2872                save->gs.limit, save->gs.base);
2873         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2874                "gdtr:",
2875                save->gdtr.selector, save->gdtr.attrib,
2876                save->gdtr.limit, save->gdtr.base);
2877         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2878                "ldtr:",
2879                save->ldtr.selector, save->ldtr.attrib,
2880                save->ldtr.limit, save->ldtr.base);
2881         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2882                "idtr:",
2883                save->idtr.selector, save->idtr.attrib,
2884                save->idtr.limit, save->idtr.base);
2885         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2886                "tr:",
2887                save->tr.selector, save->tr.attrib,
2888                save->tr.limit, save->tr.base);
2889         pr_err("cpl:            %d                efer:         %016llx\n",
2890                 save->cpl, save->efer);
2891         pr_err("%-15s %016llx %-13s %016llx\n",
2892                "cr0:", save->cr0, "cr2:", save->cr2);
2893         pr_err("%-15s %016llx %-13s %016llx\n",
2894                "cr3:", save->cr3, "cr4:", save->cr4);
2895         pr_err("%-15s %016llx %-13s %016llx\n",
2896                "dr6:", save->dr6, "dr7:", save->dr7);
2897         pr_err("%-15s %016llx %-13s %016llx\n",
2898                "rip:", save->rip, "rflags:", save->rflags);
2899         pr_err("%-15s %016llx %-13s %016llx\n",
2900                "rsp:", save->rsp, "rax:", save->rax);
2901         pr_err("%-15s %016llx %-13s %016llx\n",
2902                "star:", save->star, "lstar:", save->lstar);
2903         pr_err("%-15s %016llx %-13s %016llx\n",
2904                "cstar:", save->cstar, "sfmask:", save->sfmask);
2905         pr_err("%-15s %016llx %-13s %016llx\n",
2906                "kernel_gs_base:", save->kernel_gs_base,
2907                "sysenter_cs:", save->sysenter_cs);
2908         pr_err("%-15s %016llx %-13s %016llx\n",
2909                "sysenter_esp:", save->sysenter_esp,
2910                "sysenter_eip:", save->sysenter_eip);
2911         pr_err("%-15s %016llx %-13s %016llx\n",
2912                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
2913         pr_err("%-15s %016llx %-13s %016llx\n",
2914                "br_from:", save->br_from, "br_to:", save->br_to);
2915         pr_err("%-15s %016llx %-13s %016llx\n",
2916                "excp_from:", save->last_excp_from,
2917                "excp_to:", save->last_excp_to);
2918 }
2919
2920 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
2921 {
2922         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
2923
2924         *info1 = control->exit_info_1;
2925         *info2 = control->exit_info_2;
2926 }
2927
2928 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
2929 {
2930         struct vcpu_svm *svm = to_svm(vcpu);
2931         struct kvm_run *kvm_run = vcpu->run;
2932         u32 exit_code = svm->vmcb->control.exit_code;
2933
2934         trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
2935
2936         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
2937                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2938         if (npt_enabled)
2939                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2940
2941         svm_complete_interrupts(svm);
2942
2943         if (is_guest_mode(vcpu)) {
2944                 int vmexit;
2945
2946                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2947                                         svm->vmcb->control.exit_info_1,
2948                                         svm->vmcb->control.exit_info_2,
2949                                         svm->vmcb->control.exit_int_info,
2950                                         svm->vmcb->control.exit_int_info_err,
2951                                         KVM_ISA_SVM);
2952
2953                 vmexit = nested_svm_exit_special(svm);
2954
2955                 if (vmexit == NESTED_EXIT_CONTINUE)
2956                         vmexit = nested_svm_exit_handled(svm);
2957
2958                 if (vmexit == NESTED_EXIT_DONE)
2959                         return 1;
2960         }
2961
2962         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2963                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2964                 kvm_run->fail_entry.hardware_entry_failure_reason
2965                         = svm->vmcb->control.exit_code;
2966                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
2967                 dump_vmcb(vcpu);
2968                 return 0;
2969         }
2970
2971         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2972             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2973             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
2974             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
2975                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
2976                        "exit_code 0x%x\n",
2977                        __func__, svm->vmcb->control.exit_int_info,
2978                        exit_code);
2979
2980         if (exit_fastpath != EXIT_FASTPATH_NONE)
2981                 return 1;
2982
2983         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2984             || !svm_exit_handlers[exit_code]) {
2985                 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
2986                 dump_vmcb(vcpu);
2987                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2988                 vcpu->run->internal.suberror =
2989                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2990                 vcpu->run->internal.ndata = 2;
2991                 vcpu->run->internal.data[0] = exit_code;
2992                 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2993                 return 0;
2994         }
2995
2996 #ifdef CONFIG_RETPOLINE
2997         if (exit_code == SVM_EXIT_MSR)
2998                 return msr_interception(svm);
2999         else if (exit_code == SVM_EXIT_VINTR)
3000                 return interrupt_window_interception(svm);
3001         else if (exit_code == SVM_EXIT_INTR)
3002                 return intr_interception(svm);
3003         else if (exit_code == SVM_EXIT_HLT)
3004                 return halt_interception(svm);
3005         else if (exit_code == SVM_EXIT_NPF)
3006                 return npf_interception(svm);
3007 #endif
3008         return svm_exit_handlers[exit_code](svm);
3009 }
3010
3011 static void reload_tss(struct kvm_vcpu *vcpu)
3012 {
3013         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3014
3015         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3016         load_TR_desc();
3017 }
3018
3019 static void pre_svm_run(struct vcpu_svm *svm)
3020 {
3021         struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3022
3023         if (sev_guest(svm->vcpu.kvm))
3024                 return pre_sev_run(svm, svm->vcpu.cpu);
3025
3026         /* FIXME: handle wraparound of asid_generation */
3027         if (svm->asid_generation != sd->asid_generation)
3028                 new_asid(svm, sd);
3029 }
3030
3031 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3032 {
3033         struct vcpu_svm *svm = to_svm(vcpu);
3034
3035         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3036         vcpu->arch.hflags |= HF_NMI_MASK;
3037         svm_set_intercept(svm, INTERCEPT_IRET);
3038         ++vcpu->stat.nmi_injections;
3039 }
3040
3041 static void svm_set_irq(struct kvm_vcpu *vcpu)
3042 {
3043         struct vcpu_svm *svm = to_svm(vcpu);
3044
3045         BUG_ON(!(gif_set(svm)));
3046
3047         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3048         ++vcpu->stat.irq_injections;
3049
3050         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3051                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3052 }
3053
3054 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3055 {
3056         struct vcpu_svm *svm = to_svm(vcpu);
3057
3058         if (nested_svm_virtualize_tpr(vcpu))
3059                 return;
3060
3061         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3062
3063         if (irr == -1)
3064                 return;
3065
3066         if (tpr >= irr)
3067                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3068 }
3069
3070 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3071 {
3072         struct vcpu_svm *svm = to_svm(vcpu);
3073         struct vmcb *vmcb = svm->vmcb;
3074         bool ret;
3075
3076         if (!gif_set(svm))
3077                 return true;
3078
3079         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3080                 return false;
3081
3082         ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3083               (svm->vcpu.arch.hflags & HF_NMI_MASK);
3084
3085         return ret;
3086 }
3087
3088 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3089 {
3090         struct vcpu_svm *svm = to_svm(vcpu);
3091         if (svm->nested.nested_run_pending)
3092                 return -EBUSY;
3093
3094         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3095         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3096                 return -EBUSY;
3097
3098         return !svm_nmi_blocked(vcpu);
3099 }
3100
3101 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3102 {
3103         struct vcpu_svm *svm = to_svm(vcpu);
3104
3105         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3106 }
3107
3108 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3109 {
3110         struct vcpu_svm *svm = to_svm(vcpu);
3111
3112         if (masked) {
3113                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3114                 svm_set_intercept(svm, INTERCEPT_IRET);
3115         } else {
3116                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3117                 svm_clr_intercept(svm, INTERCEPT_IRET);
3118         }
3119 }
3120
3121 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3122 {
3123         struct vcpu_svm *svm = to_svm(vcpu);
3124         struct vmcb *vmcb = svm->vmcb;
3125
3126         if (!gif_set(svm))
3127                 return true;
3128
3129         if (is_guest_mode(vcpu)) {
3130                 /* As long as interrupts are being delivered...  */
3131                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3132                     ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3133                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3134                         return true;
3135
3136                 /* ... vmexits aren't blocked by the interrupt shadow  */
3137                 if (nested_exit_on_intr(svm))
3138                         return false;
3139         } else {
3140                 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3141                         return true;
3142         }
3143
3144         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3145 }
3146
3147 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3148 {
3149         struct vcpu_svm *svm = to_svm(vcpu);
3150         if (svm->nested.nested_run_pending)
3151                 return -EBUSY;
3152
3153         /*
3154          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3155          * e.g. if the IRQ arrived asynchronously after checking nested events.
3156          */
3157         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3158                 return -EBUSY;
3159
3160         return !svm_interrupt_blocked(vcpu);
3161 }
3162
3163 static void enable_irq_window(struct kvm_vcpu *vcpu)
3164 {
3165         struct vcpu_svm *svm = to_svm(vcpu);
3166
3167         /*
3168          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3169          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3170          * get that intercept, this function will be called again though and
3171          * we'll get the vintr intercept. However, if the vGIF feature is
3172          * enabled, the STGI interception will not occur. Enable the irq
3173          * window under the assumption that the hardware will set the GIF.
3174          */
3175         if (vgif_enabled(svm) || gif_set(svm)) {
3176                 /*
3177                  * IRQ window is not needed when AVIC is enabled,
3178                  * unless we have pending ExtINT since it cannot be injected
3179                  * via AVIC. In such case, we need to temporarily disable AVIC,
3180                  * and fallback to injecting IRQ via V_IRQ.
3181                  */
3182                 svm_toggle_avic_for_irq_window(vcpu, false);
3183                 svm_set_vintr(svm);
3184         }
3185 }
3186
3187 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3188 {
3189         struct vcpu_svm *svm = to_svm(vcpu);
3190
3191         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3192             == HF_NMI_MASK)
3193                 return; /* IRET will cause a vm exit */
3194
3195         if (!gif_set(svm)) {
3196                 if (vgif_enabled(svm))
3197                         svm_set_intercept(svm, INTERCEPT_STGI);
3198                 return; /* STGI will cause a vm exit */
3199         }
3200
3201         /*
3202          * Something prevents NMI from been injected. Single step over possible
3203          * problem (IRET or exception injection or interrupt shadow)
3204          */
3205         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3206         svm->nmi_singlestep = true;
3207         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3208 }
3209
3210 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3211 {
3212         return 0;
3213 }
3214
3215 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3216 {
3217         return 0;
3218 }
3219
3220 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3221 {
3222         struct vcpu_svm *svm = to_svm(vcpu);
3223
3224         /*
3225          * Flush only the current ASID even if the TLB flush was invoked via
3226          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3227          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3228          * unconditionally does a TLB flush on both nested VM-Enter and nested
3229          * VM-Exit (via kvm_mmu_reset_context()).
3230          */
3231         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3232                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3233         else
3234                 svm->asid_generation--;
3235 }
3236
3237 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3238 {
3239         struct vcpu_svm *svm = to_svm(vcpu);
3240
3241         invlpga(gva, svm->vmcb->control.asid);
3242 }
3243
3244 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3245 {
3246 }
3247
3248 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3249 {
3250         struct vcpu_svm *svm = to_svm(vcpu);
3251
3252         if (nested_svm_virtualize_tpr(vcpu))
3253                 return;
3254
3255         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3256                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3257                 kvm_set_cr8(vcpu, cr8);
3258         }
3259 }
3260
3261 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3262 {
3263         struct vcpu_svm *svm = to_svm(vcpu);
3264         u64 cr8;
3265
3266         if (nested_svm_virtualize_tpr(vcpu) ||
3267             kvm_vcpu_apicv_active(vcpu))
3268                 return;
3269
3270         cr8 = kvm_get_cr8(vcpu);
3271         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3272         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3273 }
3274
3275 static void svm_complete_interrupts(struct vcpu_svm *svm)
3276 {
3277         u8 vector;
3278         int type;
3279         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3280         unsigned int3_injected = svm->int3_injected;
3281
3282         svm->int3_injected = 0;
3283
3284         /*
3285          * If we've made progress since setting HF_IRET_MASK, we've
3286          * executed an IRET and can allow NMI injection.
3287          */
3288         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3289             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3290                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3291                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3292         }
3293
3294         svm->vcpu.arch.nmi_injected = false;
3295         kvm_clear_exception_queue(&svm->vcpu);
3296         kvm_clear_interrupt_queue(&svm->vcpu);
3297
3298         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3299                 return;
3300
3301         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3302
3303         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3304         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3305
3306         switch (type) {
3307         case SVM_EXITINTINFO_TYPE_NMI:
3308                 svm->vcpu.arch.nmi_injected = true;
3309                 break;
3310         case SVM_EXITINTINFO_TYPE_EXEPT:
3311                 /*
3312                  * In case of software exceptions, do not reinject the vector,
3313                  * but re-execute the instruction instead. Rewind RIP first
3314                  * if we emulated INT3 before.
3315                  */
3316                 if (kvm_exception_is_soft(vector)) {
3317                         if (vector == BP_VECTOR && int3_injected &&
3318                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3319                                 kvm_rip_write(&svm->vcpu,
3320                                               kvm_rip_read(&svm->vcpu) -
3321                                               int3_injected);
3322                         break;
3323                 }
3324                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3325                         u32 err = svm->vmcb->control.exit_int_info_err;
3326                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3327
3328                 } else
3329                         kvm_requeue_exception(&svm->vcpu, vector);
3330                 break;
3331         case SVM_EXITINTINFO_TYPE_INTR:
3332                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3333                 break;
3334         default:
3335                 break;
3336         }
3337 }
3338
3339 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3340 {
3341         struct vcpu_svm *svm = to_svm(vcpu);
3342         struct vmcb_control_area *control = &svm->vmcb->control;
3343
3344         control->exit_int_info = control->event_inj;
3345         control->exit_int_info_err = control->event_inj_err;
3346         control->event_inj = 0;
3347         svm_complete_interrupts(svm);
3348 }
3349
3350 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3351 {
3352         if (!is_guest_mode(vcpu) &&
3353             to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3354             to_svm(vcpu)->vmcb->control.exit_info_1)
3355                 return handle_fastpath_set_msr_irqoff(vcpu);
3356
3357         return EXIT_FASTPATH_NONE;
3358 }
3359
3360 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3361
3362 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3363                                         struct vcpu_svm *svm)
3364 {
3365         /*
3366          * VMENTER enables interrupts (host state), but the kernel state is
3367          * interrupts disabled when this is invoked. Also tell RCU about
3368          * it. This is the same logic as for exit_to_user_mode().
3369          *
3370          * This ensures that e.g. latency analysis on the host observes
3371          * guest mode as interrupt enabled.
3372          *
3373          * guest_enter_irqoff() informs context tracking about the
3374          * transition to guest mode and if enabled adjusts RCU state
3375          * accordingly.
3376          */
3377         instrumentation_begin();
3378         trace_hardirqs_on_prepare();
3379         lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3380         instrumentation_end();
3381
3382         guest_enter_irqoff();
3383         lockdep_hardirqs_on(CALLER_ADDR0);
3384
3385         __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3386
3387 #ifdef CONFIG_X86_64
3388         native_wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3389 #else
3390         loadsegment(fs, svm->host.fs);
3391 #ifndef CONFIG_X86_32_LAZY_GS
3392         loadsegment(gs, svm->host.gs);
3393 #endif
3394 #endif
3395
3396         /*
3397          * VMEXIT disables interrupts (host state), but tracing and lockdep
3398          * have them in state 'on' as recorded before entering guest mode.
3399          * Same as enter_from_user_mode().
3400          *
3401          * guest_exit_irqoff() restores host context and reinstates RCU if
3402          * enabled and required.
3403          *
3404          * This needs to be done before the below as native_read_msr()
3405          * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3406          * into world and some more.
3407          */
3408         lockdep_hardirqs_off(CALLER_ADDR0);
3409         guest_exit_irqoff();
3410
3411         instrumentation_begin();
3412         trace_hardirqs_off_finish();
3413         instrumentation_end();
3414 }
3415
3416 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3417 {
3418         fastpath_t exit_fastpath;
3419         struct vcpu_svm *svm = to_svm(vcpu);
3420
3421         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3422         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3423         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3424
3425         /*
3426          * Disable singlestep if we're injecting an interrupt/exception.
3427          * We don't want our modified rflags to be pushed on the stack where
3428          * we might not be able to easily reset them if we disabled NMI
3429          * singlestep later.
3430          */
3431         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3432                 /*
3433                  * Event injection happens before external interrupts cause a
3434                  * vmexit and interrupts are disabled here, so smp_send_reschedule
3435                  * is enough to force an immediate vmexit.
3436                  */
3437                 disable_nmi_singlestep(svm);
3438                 smp_send_reschedule(vcpu->cpu);
3439         }
3440
3441         pre_svm_run(svm);
3442
3443         sync_lapic_to_cr8(vcpu);
3444
3445         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3446
3447         /*
3448          * Run with all-zero DR6 unless needed, so that we can get the exact cause
3449          * of a #DB.
3450          */
3451         if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3452                 svm_set_dr6(svm, vcpu->arch.dr6);
3453         else
3454                 svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
3455
3456         clgi();
3457         kvm_load_guest_xsave_state(vcpu);
3458
3459         if (lapic_in_kernel(vcpu) &&
3460                 vcpu->arch.apic->lapic_timer.timer_advance_ns)
3461                 kvm_wait_lapic_expire(vcpu);
3462
3463         /*
3464          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3465          * it's non-zero. Since vmentry is serialising on affected CPUs, there
3466          * is no need to worry about the conditional branch over the wrmsr
3467          * being speculatively taken.
3468          */
3469         x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3470
3471         svm_vcpu_enter_exit(vcpu, svm);
3472
3473         /*
3474          * We do not use IBRS in the kernel. If this vCPU has used the
3475          * SPEC_CTRL MSR it may have left it on; save the value and
3476          * turn it off. This is much more efficient than blindly adding
3477          * it to the atomic save/restore list. Especially as the former
3478          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3479          *
3480          * For non-nested case:
3481          * If the L01 MSR bitmap does not intercept the MSR, then we need to
3482          * save it.
3483          *
3484          * For nested case:
3485          * If the L02 MSR bitmap does not intercept the MSR, then we need to
3486          * save it.
3487          */
3488         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3489                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3490
3491         reload_tss(vcpu);
3492
3493         x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3494
3495         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3496         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3497         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3498         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3499
3500         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3501                 kvm_before_interrupt(&svm->vcpu);
3502
3503         kvm_load_host_xsave_state(vcpu);
3504         stgi();
3505
3506         /* Any pending NMI will happen here */
3507         exit_fastpath = svm_exit_handlers_fastpath(vcpu);
3508
3509         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3510                 kvm_after_interrupt(&svm->vcpu);
3511
3512         sync_cr8_to_lapic(vcpu);
3513
3514         svm->next_rip = 0;
3515         if (is_guest_mode(&svm->vcpu)) {
3516                 sync_nested_vmcb_control(svm);
3517                 svm->nested.nested_run_pending = 0;
3518         }
3519
3520         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3521
3522         /* if exit due to PF check for async PF */
3523         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3524                 svm->vcpu.arch.apf.host_apf_flags =
3525                         kvm_read_and_reset_apf_flags();
3526
3527         if (npt_enabled) {
3528                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3529                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3530         }
3531
3532         /*
3533          * We need to handle MC intercepts here before the vcpu has a chance to
3534          * change the physical cpu
3535          */
3536         if (unlikely(svm->vmcb->control.exit_code ==
3537                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3538                 svm_handle_mce(svm);
3539
3540         vmcb_mark_all_clean(svm->vmcb);
3541         return exit_fastpath;
3542 }
3543
3544 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3545                              int root_level)
3546 {
3547         struct vcpu_svm *svm = to_svm(vcpu);
3548         unsigned long cr3;
3549
3550         cr3 = __sme_set(root);
3551         if (npt_enabled) {
3552                 svm->vmcb->control.nested_cr3 = cr3;
3553                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3554
3555                 /* Loading L2's CR3 is handled by enter_svm_guest_mode.  */
3556                 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3557                         return;
3558                 cr3 = vcpu->arch.cr3;
3559         }
3560
3561         svm->vmcb->save.cr3 = cr3;
3562         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3563 }
3564
3565 static int is_disabled(void)
3566 {
3567         u64 vm_cr;
3568
3569         rdmsrl(MSR_VM_CR, vm_cr);
3570         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3571                 return 1;
3572
3573         return 0;
3574 }
3575
3576 static void
3577 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3578 {
3579         /*
3580          * Patch in the VMMCALL instruction:
3581          */
3582         hypercall[0] = 0x0f;
3583         hypercall[1] = 0x01;
3584         hypercall[2] = 0xd9;
3585 }
3586
3587 static int __init svm_check_processor_compat(void)
3588 {
3589         return 0;
3590 }
3591
3592 static bool svm_cpu_has_accelerated_tpr(void)
3593 {
3594         return false;
3595 }
3596
3597 static bool svm_has_emulated_msr(u32 index)
3598 {
3599         switch (index) {
3600         case MSR_IA32_MCG_EXT_CTL:
3601         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3602                 return false;
3603         default:
3604                 break;
3605         }
3606
3607         return true;
3608 }
3609
3610 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3611 {
3612         return 0;
3613 }
3614
3615 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3616 {
3617         struct vcpu_svm *svm = to_svm(vcpu);
3618
3619         vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3620                                     boot_cpu_has(X86_FEATURE_XSAVE) &&
3621                                     boot_cpu_has(X86_FEATURE_XSAVES);
3622
3623         /* Update nrips enabled cache */
3624         svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3625                              guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3626
3627         if (!kvm_vcpu_apicv_active(vcpu))
3628                 return;
3629
3630         /*
3631          * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3632          * is exposed to the guest, disable AVIC.
3633          */
3634         if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3635                 kvm_request_apicv_update(vcpu->kvm, false,
3636                                          APICV_INHIBIT_REASON_X2APIC);
3637
3638         /*
3639          * Currently, AVIC does not work with nested virtualization.
3640          * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3641          */
3642         if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3643                 kvm_request_apicv_update(vcpu->kvm, false,
3644                                          APICV_INHIBIT_REASON_NESTED);
3645 }
3646
3647 static bool svm_has_wbinvd_exit(void)
3648 {
3649         return true;
3650 }
3651
3652 #define PRE_EX(exit)  { .exit_code = (exit), \
3653                         .stage = X86_ICPT_PRE_EXCEPT, }
3654 #define POST_EX(exit) { .exit_code = (exit), \
3655                         .stage = X86_ICPT_POST_EXCEPT, }
3656 #define POST_MEM(exit) { .exit_code = (exit), \
3657                         .stage = X86_ICPT_POST_MEMACCESS, }
3658
3659 static const struct __x86_intercept {
3660         u32 exit_code;
3661         enum x86_intercept_stage stage;
3662 } x86_intercept_map[] = {
3663         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
3664         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
3665         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
3666         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
3667         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
3668         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
3669         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
3670         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
3671         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
3672         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
3673         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
3674         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
3675         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
3676         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
3677         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
3678         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
3679         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
3680         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
3681         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
3682         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
3683         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
3684         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
3685         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
3686         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
3687         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
3688         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
3689         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
3690         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
3691         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
3692         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
3693         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
3694         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
3695         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
3696         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
3697         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
3698         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
3699         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
3700         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
3701         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
3702         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
3703         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
3704         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
3705         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
3706         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
3707         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
3708         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
3709         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
3710 };
3711
3712 #undef PRE_EX
3713 #undef POST_EX
3714 #undef POST_MEM
3715
3716 static int svm_check_intercept(struct kvm_vcpu *vcpu,
3717                                struct x86_instruction_info *info,
3718                                enum x86_intercept_stage stage,
3719                                struct x86_exception *exception)
3720 {
3721         struct vcpu_svm *svm = to_svm(vcpu);
3722         int vmexit, ret = X86EMUL_CONTINUE;
3723         struct __x86_intercept icpt_info;
3724         struct vmcb *vmcb = svm->vmcb;
3725
3726         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3727                 goto out;
3728
3729         icpt_info = x86_intercept_map[info->intercept];
3730
3731         if (stage != icpt_info.stage)
3732                 goto out;
3733
3734         switch (icpt_info.exit_code) {
3735         case SVM_EXIT_READ_CR0:
3736                 if (info->intercept == x86_intercept_cr_read)
3737                         icpt_info.exit_code += info->modrm_reg;
3738                 break;
3739         case SVM_EXIT_WRITE_CR0: {
3740                 unsigned long cr0, val;
3741                 u64 intercept;
3742
3743                 if (info->intercept == x86_intercept_cr_write)
3744                         icpt_info.exit_code += info->modrm_reg;
3745
3746                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
3747                     info->intercept == x86_intercept_clts)
3748                         break;
3749
3750                 intercept = svm->nested.ctl.intercept;
3751
3752                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
3753                         break;
3754
3755                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
3756                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
3757
3758                 if (info->intercept == x86_intercept_lmsw) {
3759                         cr0 &= 0xfUL;
3760                         val &= 0xfUL;
3761                         /* lmsw can't clear PE - catch this here */
3762                         if (cr0 & X86_CR0_PE)
3763                                 val |= X86_CR0_PE;
3764                 }
3765
3766                 if (cr0 ^ val)
3767                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3768
3769                 break;
3770         }
3771         case SVM_EXIT_READ_DR0:
3772         case SVM_EXIT_WRITE_DR0:
3773                 icpt_info.exit_code += info->modrm_reg;
3774                 break;
3775         case SVM_EXIT_MSR:
3776                 if (info->intercept == x86_intercept_wrmsr)
3777                         vmcb->control.exit_info_1 = 1;
3778                 else
3779                         vmcb->control.exit_info_1 = 0;
3780                 break;
3781         case SVM_EXIT_PAUSE:
3782                 /*
3783                  * We get this for NOP only, but pause
3784                  * is rep not, check this here
3785                  */
3786                 if (info->rep_prefix != REPE_PREFIX)
3787                         goto out;
3788                 break;
3789         case SVM_EXIT_IOIO: {
3790                 u64 exit_info;
3791                 u32 bytes;
3792
3793                 if (info->intercept == x86_intercept_in ||
3794                     info->intercept == x86_intercept_ins) {
3795                         exit_info = ((info->src_val & 0xffff) << 16) |
3796                                 SVM_IOIO_TYPE_MASK;
3797                         bytes = info->dst_bytes;
3798                 } else {
3799                         exit_info = (info->dst_val & 0xffff) << 16;
3800                         bytes = info->src_bytes;
3801                 }
3802
3803                 if (info->intercept == x86_intercept_outs ||
3804                     info->intercept == x86_intercept_ins)
3805                         exit_info |= SVM_IOIO_STR_MASK;
3806
3807                 if (info->rep_prefix)
3808                         exit_info |= SVM_IOIO_REP_MASK;
3809
3810                 bytes = min(bytes, 4u);
3811
3812                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
3813
3814                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
3815
3816                 vmcb->control.exit_info_1 = exit_info;
3817                 vmcb->control.exit_info_2 = info->next_rip;
3818
3819                 break;
3820         }
3821         default:
3822                 break;
3823         }
3824
3825         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
3826         if (static_cpu_has(X86_FEATURE_NRIPS))
3827                 vmcb->control.next_rip  = info->next_rip;
3828         vmcb->control.exit_code = icpt_info.exit_code;
3829         vmexit = nested_svm_exit_handled(svm);
3830
3831         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
3832                                            : X86EMUL_CONTINUE;
3833
3834 out:
3835         return ret;
3836 }
3837
3838 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
3839 {
3840 }
3841
3842 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
3843 {
3844         if (!kvm_pause_in_guest(vcpu->kvm))
3845                 shrink_ple_window(vcpu);
3846 }
3847
3848 static void svm_setup_mce(struct kvm_vcpu *vcpu)
3849 {
3850         /* [63:9] are reserved. */
3851         vcpu->arch.mcg_cap &= 0x1ff;
3852 }
3853
3854 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
3855 {
3856         struct vcpu_svm *svm = to_svm(vcpu);
3857
3858         /* Per APM Vol.2 15.22.2 "Response to SMI" */
3859         if (!gif_set(svm))
3860                 return true;
3861
3862         return is_smm(vcpu);
3863 }
3864
3865 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3866 {
3867         struct vcpu_svm *svm = to_svm(vcpu);
3868         if (svm->nested.nested_run_pending)
3869                 return -EBUSY;
3870
3871         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
3872         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
3873                 return -EBUSY;
3874
3875         return !svm_smi_blocked(vcpu);
3876 }
3877
3878 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
3879 {
3880         struct vcpu_svm *svm = to_svm(vcpu);
3881         int ret;
3882
3883         if (is_guest_mode(vcpu)) {
3884                 /* FED8h - SVM Guest */
3885                 put_smstate(u64, smstate, 0x7ed8, 1);
3886                 /* FEE0h - SVM Guest VMCB Physical Address */
3887                 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
3888
3889                 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3890                 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3891                 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3892
3893                 ret = nested_svm_vmexit(svm);
3894                 if (ret)
3895                         return ret;
3896         }
3897         return 0;
3898 }
3899
3900 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
3901 {
3902         struct vcpu_svm *svm = to_svm(vcpu);
3903         struct vmcb *nested_vmcb;
3904         struct kvm_host_map map;
3905         u64 guest;
3906         u64 vmcb;
3907         int ret = 0;
3908
3909         guest = GET_SMSTATE(u64, smstate, 0x7ed8);
3910         vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
3911
3912         if (guest) {
3913                 if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
3914                         return 1;
3915                 nested_vmcb = map.hva;
3916                 ret = enter_svm_guest_mode(svm, vmcb, nested_vmcb);
3917                 kvm_vcpu_unmap(&svm->vcpu, &map, true);
3918         }
3919
3920         return ret;
3921 }
3922
3923 static void enable_smi_window(struct kvm_vcpu *vcpu)
3924 {
3925         struct vcpu_svm *svm = to_svm(vcpu);
3926
3927         if (!gif_set(svm)) {
3928                 if (vgif_enabled(svm))
3929                         svm_set_intercept(svm, INTERCEPT_STGI);
3930                 /* STGI will cause a vm exit */
3931         } else {
3932                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
3933         }
3934 }
3935
3936 static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
3937 {
3938         unsigned long cr4 = kvm_read_cr4(vcpu);
3939         bool smep = cr4 & X86_CR4_SMEP;
3940         bool smap = cr4 & X86_CR4_SMAP;
3941         bool is_user = svm_get_cpl(vcpu) == 3;
3942
3943         /*
3944          * If RIP is invalid, go ahead with emulation which will cause an
3945          * internal error exit.
3946          */
3947         if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
3948                 return true;
3949
3950         /*
3951          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
3952          *
3953          * Errata:
3954          * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
3955          * possible that CPU microcode implementing DecodeAssist will fail
3956          * to read bytes of instruction which caused #NPF. In this case,
3957          * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
3958          * return 0 instead of the correct guest instruction bytes.
3959          *
3960          * This happens because CPU microcode reading instruction bytes
3961          * uses a special opcode which attempts to read data using CPL=0
3962          * priviledges. The microcode reads CS:RIP and if it hits a SMAP
3963          * fault, it gives up and returns no instruction bytes.
3964          *
3965          * Detection:
3966          * We reach here in case CPU supports DecodeAssist, raised #NPF and
3967          * returned 0 in GuestIntrBytes field of the VMCB.
3968          * First, errata can only be triggered in case vCPU CR4.SMAP=1.
3969          * Second, if vCPU CR4.SMEP=1, errata could only be triggered
3970          * in case vCPU CPL==3 (Because otherwise guest would have triggered
3971          * a SMEP fault instead of #NPF).
3972          * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
3973          * As most guests enable SMAP if they have also enabled SMEP, use above
3974          * logic in order to attempt minimize false-positive of detecting errata
3975          * while still preserving all cases semantic correctness.
3976          *
3977          * Workaround:
3978          * To determine what instruction the guest was executing, the hypervisor
3979          * will have to decode the instruction at the instruction pointer.
3980          *
3981          * In non SEV guest, hypervisor will be able to read the guest
3982          * memory to decode the instruction pointer when insn_len is zero
3983          * so we return true to indicate that decoding is possible.
3984          *
3985          * But in the SEV guest, the guest memory is encrypted with the
3986          * guest specific key and hypervisor will not be able to decode the
3987          * instruction pointer so we will not able to workaround it. Lets
3988          * print the error and request to kill the guest.
3989          */
3990         if (smap && (!smep || is_user)) {
3991                 if (!sev_guest(vcpu->kvm))
3992                         return true;
3993
3994                 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
3995                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3996         }
3997
3998         return false;
3999 }
4000
4001 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4002 {
4003         struct vcpu_svm *svm = to_svm(vcpu);
4004
4005         /*
4006          * TODO: Last condition latch INIT signals on vCPU when
4007          * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4008          * To properly emulate the INIT intercept,
4009          * svm_check_nested_events() should call nested_svm_vmexit()
4010          * if an INIT signal is pending.
4011          */
4012         return !gif_set(svm) ||
4013                    (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
4014 }
4015
4016 static void svm_vm_destroy(struct kvm *kvm)
4017 {
4018         avic_vm_destroy(kvm);
4019         sev_vm_destroy(kvm);
4020 }
4021
4022 static int svm_vm_init(struct kvm *kvm)
4023 {
4024         if (!pause_filter_count || !pause_filter_thresh)
4025                 kvm->arch.pause_in_guest = true;
4026
4027         if (avic) {
4028                 int ret = avic_vm_init(kvm);
4029                 if (ret)
4030                         return ret;
4031         }
4032
4033         kvm_apicv_init(kvm, avic);
4034         return 0;
4035 }
4036
4037 static struct kvm_x86_ops svm_x86_ops __initdata = {
4038         .hardware_unsetup = svm_hardware_teardown,
4039         .hardware_enable = svm_hardware_enable,
4040         .hardware_disable = svm_hardware_disable,
4041         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4042         .has_emulated_msr = svm_has_emulated_msr,
4043
4044         .vcpu_create = svm_create_vcpu,
4045         .vcpu_free = svm_free_vcpu,
4046         .vcpu_reset = svm_vcpu_reset,
4047
4048         .vm_size = sizeof(struct kvm_svm),
4049         .vm_init = svm_vm_init,
4050         .vm_destroy = svm_vm_destroy,
4051
4052         .prepare_guest_switch = svm_prepare_guest_switch,
4053         .vcpu_load = svm_vcpu_load,
4054         .vcpu_put = svm_vcpu_put,
4055         .vcpu_blocking = svm_vcpu_blocking,
4056         .vcpu_unblocking = svm_vcpu_unblocking,
4057
4058         .update_exception_bitmap = update_exception_bitmap,
4059         .get_msr_feature = svm_get_msr_feature,
4060         .get_msr = svm_get_msr,
4061         .set_msr = svm_set_msr,
4062         .get_segment_base = svm_get_segment_base,
4063         .get_segment = svm_get_segment,
4064         .set_segment = svm_set_segment,
4065         .get_cpl = svm_get_cpl,
4066         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4067         .set_cr0 = svm_set_cr0,
4068         .set_cr4 = svm_set_cr4,
4069         .set_efer = svm_set_efer,
4070         .get_idt = svm_get_idt,
4071         .set_idt = svm_set_idt,
4072         .get_gdt = svm_get_gdt,
4073         .set_gdt = svm_set_gdt,
4074         .set_dr7 = svm_set_dr7,
4075         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4076         .cache_reg = svm_cache_reg,
4077         .get_rflags = svm_get_rflags,
4078         .set_rflags = svm_set_rflags,
4079
4080         .tlb_flush_all = svm_flush_tlb,
4081         .tlb_flush_current = svm_flush_tlb,
4082         .tlb_flush_gva = svm_flush_tlb_gva,
4083         .tlb_flush_guest = svm_flush_tlb,
4084
4085         .run = svm_vcpu_run,
4086         .handle_exit = handle_exit,
4087         .skip_emulated_instruction = skip_emulated_instruction,
4088         .update_emulated_instruction = NULL,
4089         .set_interrupt_shadow = svm_set_interrupt_shadow,
4090         .get_interrupt_shadow = svm_get_interrupt_shadow,
4091         .patch_hypercall = svm_patch_hypercall,
4092         .set_irq = svm_set_irq,
4093         .set_nmi = svm_inject_nmi,
4094         .queue_exception = svm_queue_exception,
4095         .cancel_injection = svm_cancel_injection,
4096         .interrupt_allowed = svm_interrupt_allowed,
4097         .nmi_allowed = svm_nmi_allowed,
4098         .get_nmi_mask = svm_get_nmi_mask,
4099         .set_nmi_mask = svm_set_nmi_mask,
4100         .enable_nmi_window = enable_nmi_window,
4101         .enable_irq_window = enable_irq_window,
4102         .update_cr8_intercept = update_cr8_intercept,
4103         .set_virtual_apic_mode = svm_set_virtual_apic_mode,
4104         .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4105         .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4106         .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4107         .load_eoi_exitmap = svm_load_eoi_exitmap,
4108         .hwapic_irr_update = svm_hwapic_irr_update,
4109         .hwapic_isr_update = svm_hwapic_isr_update,
4110         .sync_pir_to_irr = kvm_lapic_find_highest_irr,
4111         .apicv_post_state_restore = avic_post_state_restore,
4112
4113         .set_tss_addr = svm_set_tss_addr,
4114         .set_identity_map_addr = svm_set_identity_map_addr,
4115         .get_mt_mask = svm_get_mt_mask,
4116
4117         .get_exit_info = svm_get_exit_info,
4118
4119         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4120
4121         .has_wbinvd_exit = svm_has_wbinvd_exit,
4122
4123         .write_l1_tsc_offset = svm_write_l1_tsc_offset,
4124
4125         .load_mmu_pgd = svm_load_mmu_pgd,
4126
4127         .check_intercept = svm_check_intercept,
4128         .handle_exit_irqoff = svm_handle_exit_irqoff,
4129
4130         .request_immediate_exit = __kvm_request_immediate_exit,
4131
4132         .sched_in = svm_sched_in,
4133
4134         .pmu_ops = &amd_pmu_ops,
4135         .nested_ops = &svm_nested_ops,
4136
4137         .deliver_posted_interrupt = svm_deliver_avic_intr,
4138         .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4139         .update_pi_irte = svm_update_pi_irte,
4140         .setup_mce = svm_setup_mce,
4141
4142         .smi_allowed = svm_smi_allowed,
4143         .pre_enter_smm = svm_pre_enter_smm,
4144         .pre_leave_smm = svm_pre_leave_smm,
4145         .enable_smi_window = enable_smi_window,
4146
4147         .mem_enc_op = svm_mem_enc_op,
4148         .mem_enc_reg_region = svm_register_enc_region,
4149         .mem_enc_unreg_region = svm_unregister_enc_region,
4150
4151         .need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
4152
4153         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4154 };
4155
4156 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4157         .cpu_has_kvm_support = has_svm,
4158         .disabled_by_bios = is_disabled,
4159         .hardware_setup = svm_hardware_setup,
4160         .check_processor_compatibility = svm_check_processor_compat,
4161
4162         .runtime_ops = &svm_x86_ops,
4163 };
4164
4165 static int __init svm_init(void)
4166 {
4167         return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4168                         __alignof__(struct vcpu_svm), THIS_MODULE);
4169 }
4170
4171 static void __exit svm_exit(void)
4172 {
4173         kvm_exit();
4174 }
4175
4176 module_init(svm_init)
4177 module_exit(svm_exit)