lkdtm/heap: Hide allocation size from -Warray-bounds
[linux-2.6-microblaze.git] / arch / x86 / kvm / svm / svm.c
1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28 #include <linux/cc_platform.h>
29
30 #include <asm/apic.h>
31 #include <asm/perf_event.h>
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/debugreg.h>
35 #include <asm/kvm_para.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39 #include <asm/traps.h>
40 #include <asm/fpu/api.h>
41
42 #include <asm/virtext.h>
43 #include "trace.h"
44
45 #include "svm.h"
46 #include "svm_ops.h"
47
48 #include "kvm_onhyperv.h"
49 #include "svm_onhyperv.h"
50
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53
54 #ifdef MODULE
55 static const struct x86_cpu_id svm_cpu_id[] = {
56         X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
57         {}
58 };
59 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
60 #endif
61
62 #define SEG_TYPE_LDT 2
63 #define SEG_TYPE_BUSY_TSS16 3
64
65 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
66
67 static bool erratum_383_found __read_mostly;
68
69 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
70
71 /*
72  * Set osvw_len to higher value when updated Revision Guides
73  * are published and we know what the new status bits are
74  */
75 static uint64_t osvw_len = 4, osvw_status;
76
77 static DEFINE_PER_CPU(u64, current_tsc_ratio);
78
79 static const struct svm_direct_access_msrs {
80         u32 index;   /* Index of the MSR */
81         bool always; /* True if intercept is initially cleared */
82 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
83         { .index = MSR_STAR,                            .always = true  },
84         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
85         { .index = MSR_IA32_SYSENTER_EIP,               .always = false },
86         { .index = MSR_IA32_SYSENTER_ESP,               .always = false },
87 #ifdef CONFIG_X86_64
88         { .index = MSR_GS_BASE,                         .always = true  },
89         { .index = MSR_FS_BASE,                         .always = true  },
90         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
91         { .index = MSR_LSTAR,                           .always = true  },
92         { .index = MSR_CSTAR,                           .always = true  },
93         { .index = MSR_SYSCALL_MASK,                    .always = true  },
94 #endif
95         { .index = MSR_IA32_SPEC_CTRL,                  .always = false },
96         { .index = MSR_IA32_PRED_CMD,                   .always = false },
97         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
98         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
99         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
100         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
101         { .index = MSR_EFER,                            .always = false },
102         { .index = MSR_IA32_CR_PAT,                     .always = false },
103         { .index = MSR_AMD64_SEV_ES_GHCB,               .always = true  },
104         { .index = MSR_INVALID,                         .always = false },
105 };
106
107 /*
108  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
109  * pause_filter_count: On processors that support Pause filtering(indicated
110  *      by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
111  *      count value. On VMRUN this value is loaded into an internal counter.
112  *      Each time a pause instruction is executed, this counter is decremented
113  *      until it reaches zero at which time a #VMEXIT is generated if pause
114  *      intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
115  *      Intercept Filtering for more details.
116  *      This also indicate if ple logic enabled.
117  *
118  * pause_filter_thresh: In addition, some processor families support advanced
119  *      pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
120  *      the amount of time a guest is allowed to execute in a pause loop.
121  *      In this mode, a 16-bit pause filter threshold field is added in the
122  *      VMCB. The threshold value is a cycle count that is used to reset the
123  *      pause counter. As with simple pause filtering, VMRUN loads the pause
124  *      count value from VMCB into an internal counter. Then, on each pause
125  *      instruction the hardware checks the elapsed number of cycles since
126  *      the most recent pause instruction against the pause filter threshold.
127  *      If the elapsed cycle count is greater than the pause filter threshold,
128  *      then the internal pause count is reloaded from the VMCB and execution
129  *      continues. If the elapsed cycle count is less than the pause filter
130  *      threshold, then the internal pause count is decremented. If the count
131  *      value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
132  *      triggered. If advanced pause filtering is supported and pause filter
133  *      threshold field is set to zero, the filter will operate in the simpler,
134  *      count only mode.
135  */
136
137 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
138 module_param(pause_filter_thresh, ushort, 0444);
139
140 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
141 module_param(pause_filter_count, ushort, 0444);
142
143 /* Default doubles per-vcpu window every exit. */
144 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
145 module_param(pause_filter_count_grow, ushort, 0444);
146
147 /* Default resets per-vcpu window every exit to pause_filter_count. */
148 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
149 module_param(pause_filter_count_shrink, ushort, 0444);
150
151 /* Default is to compute the maximum so we can never overflow. */
152 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
153 module_param(pause_filter_count_max, ushort, 0444);
154
155 /*
156  * Use nested page tables by default.  Note, NPT may get forced off by
157  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
158  */
159 bool npt_enabled = true;
160 module_param_named(npt, npt_enabled, bool, 0444);
161
162 /* allow nested virtualization in KVM/SVM */
163 static int nested = true;
164 module_param(nested, int, S_IRUGO);
165
166 /* enable/disable Next RIP Save */
167 static int nrips = true;
168 module_param(nrips, int, 0444);
169
170 /* enable/disable Virtual VMLOAD VMSAVE */
171 static int vls = true;
172 module_param(vls, int, 0444);
173
174 /* enable/disable Virtual GIF */
175 static int vgif = true;
176 module_param(vgif, int, 0444);
177
178 /* enable/disable LBR virtualization */
179 static int lbrv = true;
180 module_param(lbrv, int, 0444);
181
182 static int tsc_scaling = true;
183 module_param(tsc_scaling, int, 0444);
184
185 /*
186  * enable / disable AVIC.  Because the defaults differ for APICv
187  * support between VMX and SVM we cannot use module_param_named.
188  */
189 static bool avic;
190 module_param(avic, bool, 0444);
191
192 bool __read_mostly dump_invalid_vmcb;
193 module_param(dump_invalid_vmcb, bool, 0644);
194
195
196 bool intercept_smi = true;
197 module_param(intercept_smi, bool, 0444);
198
199
200 static bool svm_gp_erratum_intercept = true;
201
202 static u8 rsm_ins_bytes[] = "\x0f\xaa";
203
204 static unsigned long iopm_base;
205
206 struct kvm_ldttss_desc {
207         u16 limit0;
208         u16 base0;
209         unsigned base1:8, type:5, dpl:2, p:1;
210         unsigned limit1:4, zero0:3, g:1, base2:8;
211         u32 base3;
212         u32 zero1;
213 } __attribute__((packed));
214
215 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
216
217 /*
218  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
219  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
220  *
221  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
222  * defer the restoration of TSC_AUX until the CPU returns to userspace.
223  */
224 static int tsc_aux_uret_slot __read_mostly = -1;
225
226 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
227
228 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
229 #define MSRS_RANGE_SIZE 2048
230 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
231
232 u32 svm_msrpm_offset(u32 msr)
233 {
234         u32 offset;
235         int i;
236
237         for (i = 0; i < NUM_MSR_MAPS; i++) {
238                 if (msr < msrpm_ranges[i] ||
239                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
240                         continue;
241
242                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
243                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
244
245                 /* Now we have the u8 offset - but need the u32 offset */
246                 return offset / 4;
247         }
248
249         /* MSR not in any range */
250         return MSR_INVALID;
251 }
252
253 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
254
255 static int get_npt_level(void)
256 {
257 #ifdef CONFIG_X86_64
258         return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
259 #else
260         return PT32E_ROOT_LEVEL;
261 #endif
262 }
263
264 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
265 {
266         struct vcpu_svm *svm = to_svm(vcpu);
267         u64 old_efer = vcpu->arch.efer;
268         vcpu->arch.efer = efer;
269
270         if (!npt_enabled) {
271                 /* Shadow paging assumes NX to be available.  */
272                 efer |= EFER_NX;
273
274                 if (!(efer & EFER_LMA))
275                         efer &= ~EFER_LME;
276         }
277
278         if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
279                 if (!(efer & EFER_SVME)) {
280                         svm_leave_nested(vcpu);
281                         svm_set_gif(svm, true);
282                         /* #GP intercept is still needed for vmware backdoor */
283                         if (!enable_vmware_backdoor)
284                                 clr_exception_intercept(svm, GP_VECTOR);
285
286                         /*
287                          * Free the nested guest state, unless we are in SMM.
288                          * In this case we will return to the nested guest
289                          * as soon as we leave SMM.
290                          */
291                         if (!is_smm(vcpu))
292                                 svm_free_nested(svm);
293
294                 } else {
295                         int ret = svm_allocate_nested(svm);
296
297                         if (ret) {
298                                 vcpu->arch.efer = old_efer;
299                                 return ret;
300                         }
301
302                         /*
303                          * Never intercept #GP for SEV guests, KVM can't
304                          * decrypt guest memory to workaround the erratum.
305                          */
306                         if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
307                                 set_exception_intercept(svm, GP_VECTOR);
308                 }
309         }
310
311         svm->vmcb->save.efer = efer | EFER_SVME;
312         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
313         return 0;
314 }
315
316 static int is_external_interrupt(u32 info)
317 {
318         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
319         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
320 }
321
322 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
323 {
324         struct vcpu_svm *svm = to_svm(vcpu);
325         u32 ret = 0;
326
327         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
328                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
329         return ret;
330 }
331
332 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
333 {
334         struct vcpu_svm *svm = to_svm(vcpu);
335
336         if (mask == 0)
337                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
338         else
339                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
340
341 }
342
343 static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
344 {
345         struct vcpu_svm *svm = to_svm(vcpu);
346
347         /*
348          * SEV-ES does not expose the next RIP. The RIP update is controlled by
349          * the type of exit and the #VC handler in the guest.
350          */
351         if (sev_es_guest(vcpu->kvm))
352                 goto done;
353
354         if (nrips && svm->vmcb->control.next_rip != 0) {
355                 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
356                 svm->next_rip = svm->vmcb->control.next_rip;
357         }
358
359         if (!svm->next_rip) {
360                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
361                         return 0;
362         } else {
363                 kvm_rip_write(vcpu, svm->next_rip);
364         }
365
366 done:
367         svm_set_interrupt_shadow(vcpu, 0);
368
369         return 1;
370 }
371
372 static void svm_queue_exception(struct kvm_vcpu *vcpu)
373 {
374         struct vcpu_svm *svm = to_svm(vcpu);
375         unsigned nr = vcpu->arch.exception.nr;
376         bool has_error_code = vcpu->arch.exception.has_error_code;
377         u32 error_code = vcpu->arch.exception.error_code;
378
379         kvm_deliver_exception_payload(vcpu);
380
381         if (nr == BP_VECTOR && !nrips) {
382                 unsigned long rip, old_rip = kvm_rip_read(vcpu);
383
384                 /*
385                  * For guest debugging where we have to reinject #BP if some
386                  * INT3 is guest-owned:
387                  * Emulate nRIP by moving RIP forward. Will fail if injection
388                  * raises a fault that is not intercepted. Still better than
389                  * failing in all cases.
390                  */
391                 (void)svm_skip_emulated_instruction(vcpu);
392                 rip = kvm_rip_read(vcpu);
393                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
394                 svm->int3_injected = rip - old_rip;
395         }
396
397         svm->vmcb->control.event_inj = nr
398                 | SVM_EVTINJ_VALID
399                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
400                 | SVM_EVTINJ_TYPE_EXEPT;
401         svm->vmcb->control.event_inj_err = error_code;
402 }
403
404 static void svm_init_erratum_383(void)
405 {
406         u32 low, high;
407         int err;
408         u64 val;
409
410         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
411                 return;
412
413         /* Use _safe variants to not break nested virtualization */
414         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
415         if (err)
416                 return;
417
418         val |= (1ULL << 47);
419
420         low  = lower_32_bits(val);
421         high = upper_32_bits(val);
422
423         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
424
425         erratum_383_found = true;
426 }
427
428 static void svm_init_osvw(struct kvm_vcpu *vcpu)
429 {
430         /*
431          * Guests should see errata 400 and 415 as fixed (assuming that
432          * HLT and IO instructions are intercepted).
433          */
434         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
435         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
436
437         /*
438          * By increasing VCPU's osvw.length to 3 we are telling the guest that
439          * all osvw.status bits inside that length, including bit 0 (which is
440          * reserved for erratum 298), are valid. However, if host processor's
441          * osvw_len is 0 then osvw_status[0] carries no information. We need to
442          * be conservative here and therefore we tell the guest that erratum 298
443          * is present (because we really don't know).
444          */
445         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
446                 vcpu->arch.osvw.status |= 1;
447 }
448
449 static int has_svm(void)
450 {
451         const char *msg;
452
453         if (!cpu_has_svm(&msg)) {
454                 printk(KERN_INFO "has_svm: %s\n", msg);
455                 return 0;
456         }
457
458         if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
459                 pr_info("KVM is unsupported when running as an SEV guest\n");
460                 return 0;
461         }
462
463         return 1;
464 }
465
466 static void svm_hardware_disable(void)
467 {
468         /* Make sure we clean up behind us */
469         if (tsc_scaling)
470                 wrmsrl(MSR_AMD64_TSC_RATIO, SVM_TSC_RATIO_DEFAULT);
471
472         cpu_svm_disable();
473
474         amd_pmu_disable_virt();
475 }
476
477 static int svm_hardware_enable(void)
478 {
479
480         struct svm_cpu_data *sd;
481         uint64_t efer;
482         struct desc_struct *gdt;
483         int me = raw_smp_processor_id();
484
485         rdmsrl(MSR_EFER, efer);
486         if (efer & EFER_SVME)
487                 return -EBUSY;
488
489         if (!has_svm()) {
490                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
491                 return -EINVAL;
492         }
493         sd = per_cpu(svm_data, me);
494         if (!sd) {
495                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
496                 return -EINVAL;
497         }
498
499         sd->asid_generation = 1;
500         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
501         sd->next_asid = sd->max_asid + 1;
502         sd->min_asid = max_sev_asid + 1;
503
504         gdt = get_current_gdt_rw();
505         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
506
507         wrmsrl(MSR_EFER, efer | EFER_SVME);
508
509         wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
510
511         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
512                 /*
513                  * Set the default value, even if we don't use TSC scaling
514                  * to avoid having stale value in the msr
515                  */
516                 wrmsrl(MSR_AMD64_TSC_RATIO, SVM_TSC_RATIO_DEFAULT);
517                 __this_cpu_write(current_tsc_ratio, SVM_TSC_RATIO_DEFAULT);
518         }
519
520
521         /*
522          * Get OSVW bits.
523          *
524          * Note that it is possible to have a system with mixed processor
525          * revisions and therefore different OSVW bits. If bits are not the same
526          * on different processors then choose the worst case (i.e. if erratum
527          * is present on one processor and not on another then assume that the
528          * erratum is present everywhere).
529          */
530         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
531                 uint64_t len, status = 0;
532                 int err;
533
534                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
535                 if (!err)
536                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
537                                                       &err);
538
539                 if (err)
540                         osvw_status = osvw_len = 0;
541                 else {
542                         if (len < osvw_len)
543                                 osvw_len = len;
544                         osvw_status |= status;
545                         osvw_status &= (1ULL << osvw_len) - 1;
546                 }
547         } else
548                 osvw_status = osvw_len = 0;
549
550         svm_init_erratum_383();
551
552         amd_pmu_enable_virt();
553
554         return 0;
555 }
556
557 static void svm_cpu_uninit(int cpu)
558 {
559         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
560
561         if (!sd)
562                 return;
563
564         per_cpu(svm_data, cpu) = NULL;
565         kfree(sd->sev_vmcbs);
566         __free_page(sd->save_area);
567         kfree(sd);
568 }
569
570 static int svm_cpu_init(int cpu)
571 {
572         struct svm_cpu_data *sd;
573         int ret = -ENOMEM;
574
575         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
576         if (!sd)
577                 return ret;
578         sd->cpu = cpu;
579         sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
580         if (!sd->save_area)
581                 goto free_cpu_data;
582
583         ret = sev_cpu_init(sd);
584         if (ret)
585                 goto free_save_area;
586
587         per_cpu(svm_data, cpu) = sd;
588
589         return 0;
590
591 free_save_area:
592         __free_page(sd->save_area);
593 free_cpu_data:
594         kfree(sd);
595         return ret;
596
597 }
598
599 static int direct_access_msr_slot(u32 msr)
600 {
601         u32 i;
602
603         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
604                 if (direct_access_msrs[i].index == msr)
605                         return i;
606
607         return -ENOENT;
608 }
609
610 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
611                                      int write)
612 {
613         struct vcpu_svm *svm = to_svm(vcpu);
614         int slot = direct_access_msr_slot(msr);
615
616         if (slot == -ENOENT)
617                 return;
618
619         /* Set the shadow bitmaps to the desired intercept states */
620         if (read)
621                 set_bit(slot, svm->shadow_msr_intercept.read);
622         else
623                 clear_bit(slot, svm->shadow_msr_intercept.read);
624
625         if (write)
626                 set_bit(slot, svm->shadow_msr_intercept.write);
627         else
628                 clear_bit(slot, svm->shadow_msr_intercept.write);
629 }
630
631 static bool valid_msr_intercept(u32 index)
632 {
633         return direct_access_msr_slot(index) != -ENOENT;
634 }
635
636 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
637 {
638         u8 bit_write;
639         unsigned long tmp;
640         u32 offset;
641         u32 *msrpm;
642
643         msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
644                                       to_svm(vcpu)->msrpm;
645
646         offset    = svm_msrpm_offset(msr);
647         bit_write = 2 * (msr & 0x0f) + 1;
648         tmp       = msrpm[offset];
649
650         BUG_ON(offset == MSR_INVALID);
651
652         return !!test_bit(bit_write,  &tmp);
653 }
654
655 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
656                                         u32 msr, int read, int write)
657 {
658         struct vcpu_svm *svm = to_svm(vcpu);
659         u8 bit_read, bit_write;
660         unsigned long tmp;
661         u32 offset;
662
663         /*
664          * If this warning triggers extend the direct_access_msrs list at the
665          * beginning of the file
666          */
667         WARN_ON(!valid_msr_intercept(msr));
668
669         /* Enforce non allowed MSRs to trap */
670         if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
671                 read = 0;
672
673         if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
674                 write = 0;
675
676         offset    = svm_msrpm_offset(msr);
677         bit_read  = 2 * (msr & 0x0f);
678         bit_write = 2 * (msr & 0x0f) + 1;
679         tmp       = msrpm[offset];
680
681         BUG_ON(offset == MSR_INVALID);
682
683         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
684         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
685
686         msrpm[offset] = tmp;
687
688         svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
689         svm->nested.force_msr_bitmap_recalc = true;
690 }
691
692 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
693                           int read, int write)
694 {
695         set_shadow_msr_intercept(vcpu, msr, read, write);
696         set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
697 }
698
699 u32 *svm_vcpu_alloc_msrpm(void)
700 {
701         unsigned int order = get_order(MSRPM_SIZE);
702         struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
703         u32 *msrpm;
704
705         if (!pages)
706                 return NULL;
707
708         msrpm = page_address(pages);
709         memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
710
711         return msrpm;
712 }
713
714 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
715 {
716         int i;
717
718         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
719                 if (!direct_access_msrs[i].always)
720                         continue;
721                 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
722         }
723 }
724
725
726 void svm_vcpu_free_msrpm(u32 *msrpm)
727 {
728         __free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
729 }
730
731 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
732 {
733         struct vcpu_svm *svm = to_svm(vcpu);
734         u32 i;
735
736         /*
737          * Set intercept permissions for all direct access MSRs again. They
738          * will automatically get filtered through the MSR filter, so we are
739          * back in sync after this.
740          */
741         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
742                 u32 msr = direct_access_msrs[i].index;
743                 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
744                 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
745
746                 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
747         }
748 }
749
750 static void add_msr_offset(u32 offset)
751 {
752         int i;
753
754         for (i = 0; i < MSRPM_OFFSETS; ++i) {
755
756                 /* Offset already in list? */
757                 if (msrpm_offsets[i] == offset)
758                         return;
759
760                 /* Slot used by another offset? */
761                 if (msrpm_offsets[i] != MSR_INVALID)
762                         continue;
763
764                 /* Add offset to list */
765                 msrpm_offsets[i] = offset;
766
767                 return;
768         }
769
770         /*
771          * If this BUG triggers the msrpm_offsets table has an overflow. Just
772          * increase MSRPM_OFFSETS in this case.
773          */
774         BUG();
775 }
776
777 static void init_msrpm_offsets(void)
778 {
779         int i;
780
781         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
782
783         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
784                 u32 offset;
785
786                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
787                 BUG_ON(offset == MSR_INVALID);
788
789                 add_msr_offset(offset);
790         }
791 }
792
793 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
794 {
795         struct vcpu_svm *svm = to_svm(vcpu);
796
797         svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
798         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
799         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
800         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
801         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
802 }
803
804 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
805 {
806         struct vcpu_svm *svm = to_svm(vcpu);
807
808         svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
809         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
810         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
811         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
812         set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
813 }
814
815 void disable_nmi_singlestep(struct vcpu_svm *svm)
816 {
817         svm->nmi_singlestep = false;
818
819         if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
820                 /* Clear our flags if they were not set by the guest */
821                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
822                         svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
823                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
824                         svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
825         }
826 }
827
828 static void grow_ple_window(struct kvm_vcpu *vcpu)
829 {
830         struct vcpu_svm *svm = to_svm(vcpu);
831         struct vmcb_control_area *control = &svm->vmcb->control;
832         int old = control->pause_filter_count;
833
834         control->pause_filter_count = __grow_ple_window(old,
835                                                         pause_filter_count,
836                                                         pause_filter_count_grow,
837                                                         pause_filter_count_max);
838
839         if (control->pause_filter_count != old) {
840                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
841                 trace_kvm_ple_window_update(vcpu->vcpu_id,
842                                             control->pause_filter_count, old);
843         }
844 }
845
846 static void shrink_ple_window(struct kvm_vcpu *vcpu)
847 {
848         struct vcpu_svm *svm = to_svm(vcpu);
849         struct vmcb_control_area *control = &svm->vmcb->control;
850         int old = control->pause_filter_count;
851
852         control->pause_filter_count =
853                                 __shrink_ple_window(old,
854                                                     pause_filter_count,
855                                                     pause_filter_count_shrink,
856                                                     pause_filter_count);
857         if (control->pause_filter_count != old) {
858                 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
859                 trace_kvm_ple_window_update(vcpu->vcpu_id,
860                                             control->pause_filter_count, old);
861         }
862 }
863
864 static void svm_hardware_unsetup(void)
865 {
866         int cpu;
867
868         sev_hardware_unsetup();
869
870         for_each_possible_cpu(cpu)
871                 svm_cpu_uninit(cpu);
872
873         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
874         get_order(IOPM_SIZE));
875         iopm_base = 0;
876 }
877
878 static void init_seg(struct vmcb_seg *seg)
879 {
880         seg->selector = 0;
881         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
882                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
883         seg->limit = 0xffff;
884         seg->base = 0;
885 }
886
887 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
888 {
889         seg->selector = 0;
890         seg->attrib = SVM_SELECTOR_P_MASK | type;
891         seg->limit = 0xffff;
892         seg->base = 0;
893 }
894
895 static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
896 {
897         struct vcpu_svm *svm = to_svm(vcpu);
898
899         return svm->nested.ctl.tsc_offset;
900 }
901
902 static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
903 {
904         struct vcpu_svm *svm = to_svm(vcpu);
905
906         return svm->tsc_ratio_msr;
907 }
908
909 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
910 {
911         struct vcpu_svm *svm = to_svm(vcpu);
912
913         svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
914         svm->vmcb->control.tsc_offset = offset;
915         vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
916 }
917
918 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
919 {
920         wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
921 }
922
923 /* Evaluate instruction intercepts that depend on guest CPUID features. */
924 static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
925                                               struct vcpu_svm *svm)
926 {
927         /*
928          * Intercept INVPCID if shadow paging is enabled to sync/free shadow
929          * roots, or if INVPCID is disabled in the guest to inject #UD.
930          */
931         if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
932                 if (!npt_enabled ||
933                     !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
934                         svm_set_intercept(svm, INTERCEPT_INVPCID);
935                 else
936                         svm_clr_intercept(svm, INTERCEPT_INVPCID);
937         }
938
939         if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
940                 if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
941                         svm_clr_intercept(svm, INTERCEPT_RDTSCP);
942                 else
943                         svm_set_intercept(svm, INTERCEPT_RDTSCP);
944         }
945 }
946
947 static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
948 {
949         struct vcpu_svm *svm = to_svm(vcpu);
950
951         if (guest_cpuid_is_intel(vcpu)) {
952                 /*
953                  * We must intercept SYSENTER_EIP and SYSENTER_ESP
954                  * accesses because the processor only stores 32 bits.
955                  * For the same reason we cannot use virtual VMLOAD/VMSAVE.
956                  */
957                 svm_set_intercept(svm, INTERCEPT_VMLOAD);
958                 svm_set_intercept(svm, INTERCEPT_VMSAVE);
959                 svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
960
961                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
962                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
963         } else {
964                 /*
965                  * If hardware supports Virtual VMLOAD VMSAVE then enable it
966                  * in VMCB and clear intercepts to avoid #VMEXIT.
967                  */
968                 if (vls) {
969                         svm_clr_intercept(svm, INTERCEPT_VMLOAD);
970                         svm_clr_intercept(svm, INTERCEPT_VMSAVE);
971                         svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
972                 }
973                 /* No need to intercept these MSRs */
974                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
975                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
976         }
977 }
978
979 static void init_vmcb(struct kvm_vcpu *vcpu)
980 {
981         struct vcpu_svm *svm = to_svm(vcpu);
982         struct vmcb_control_area *control = &svm->vmcb->control;
983         struct vmcb_save_area *save = &svm->vmcb->save;
984
985         svm_set_intercept(svm, INTERCEPT_CR0_READ);
986         svm_set_intercept(svm, INTERCEPT_CR3_READ);
987         svm_set_intercept(svm, INTERCEPT_CR4_READ);
988         svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
989         svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
990         svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
991         if (!kvm_vcpu_apicv_active(vcpu))
992                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
993
994         set_dr_intercepts(svm);
995
996         set_exception_intercept(svm, PF_VECTOR);
997         set_exception_intercept(svm, UD_VECTOR);
998         set_exception_intercept(svm, MC_VECTOR);
999         set_exception_intercept(svm, AC_VECTOR);
1000         set_exception_intercept(svm, DB_VECTOR);
1001         /*
1002          * Guest access to VMware backdoor ports could legitimately
1003          * trigger #GP because of TSS I/O permission bitmap.
1004          * We intercept those #GP and allow access to them anyway
1005          * as VMware does.  Don't intercept #GP for SEV guests as KVM can't
1006          * decrypt guest memory to decode the faulting instruction.
1007          */
1008         if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
1009                 set_exception_intercept(svm, GP_VECTOR);
1010
1011         svm_set_intercept(svm, INTERCEPT_INTR);
1012         svm_set_intercept(svm, INTERCEPT_NMI);
1013
1014         if (intercept_smi)
1015                 svm_set_intercept(svm, INTERCEPT_SMI);
1016
1017         svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1018         svm_set_intercept(svm, INTERCEPT_RDPMC);
1019         svm_set_intercept(svm, INTERCEPT_CPUID);
1020         svm_set_intercept(svm, INTERCEPT_INVD);
1021         svm_set_intercept(svm, INTERCEPT_INVLPG);
1022         svm_set_intercept(svm, INTERCEPT_INVLPGA);
1023         svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1024         svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1025         svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1026         svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1027         svm_set_intercept(svm, INTERCEPT_VMRUN);
1028         svm_set_intercept(svm, INTERCEPT_VMMCALL);
1029         svm_set_intercept(svm, INTERCEPT_VMLOAD);
1030         svm_set_intercept(svm, INTERCEPT_VMSAVE);
1031         svm_set_intercept(svm, INTERCEPT_STGI);
1032         svm_set_intercept(svm, INTERCEPT_CLGI);
1033         svm_set_intercept(svm, INTERCEPT_SKINIT);
1034         svm_set_intercept(svm, INTERCEPT_WBINVD);
1035         svm_set_intercept(svm, INTERCEPT_XSETBV);
1036         svm_set_intercept(svm, INTERCEPT_RDPRU);
1037         svm_set_intercept(svm, INTERCEPT_RSM);
1038
1039         if (!kvm_mwait_in_guest(vcpu->kvm)) {
1040                 svm_set_intercept(svm, INTERCEPT_MONITOR);
1041                 svm_set_intercept(svm, INTERCEPT_MWAIT);
1042         }
1043
1044         if (!kvm_hlt_in_guest(vcpu->kvm))
1045                 svm_set_intercept(svm, INTERCEPT_HLT);
1046
1047         control->iopm_base_pa = __sme_set(iopm_base);
1048         control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1049         control->int_ctl = V_INTR_MASKING_MASK;
1050
1051         init_seg(&save->es);
1052         init_seg(&save->ss);
1053         init_seg(&save->ds);
1054         init_seg(&save->fs);
1055         init_seg(&save->gs);
1056
1057         save->cs.selector = 0xf000;
1058         save->cs.base = 0xffff0000;
1059         /* Executable/Readable Code Segment */
1060         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1061                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1062         save->cs.limit = 0xffff;
1063
1064         save->gdtr.base = 0;
1065         save->gdtr.limit = 0xffff;
1066         save->idtr.base = 0;
1067         save->idtr.limit = 0xffff;
1068
1069         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1070         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1071
1072         if (npt_enabled) {
1073                 /* Setup VMCB for Nested Paging */
1074                 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1075                 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1076                 clr_exception_intercept(svm, PF_VECTOR);
1077                 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1078                 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1079                 save->g_pat = vcpu->arch.pat;
1080                 save->cr3 = 0;
1081         }
1082         svm->current_vmcb->asid_generation = 0;
1083         svm->asid = 0;
1084
1085         svm->nested.vmcb12_gpa = INVALID_GPA;
1086         svm->nested.last_vmcb12_gpa = INVALID_GPA;
1087
1088         if (!kvm_pause_in_guest(vcpu->kvm)) {
1089                 control->pause_filter_count = pause_filter_count;
1090                 if (pause_filter_thresh)
1091                         control->pause_filter_thresh = pause_filter_thresh;
1092                 svm_set_intercept(svm, INTERCEPT_PAUSE);
1093         } else {
1094                 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1095         }
1096
1097         svm_recalc_instruction_intercepts(vcpu, svm);
1098
1099         /*
1100          * If the host supports V_SPEC_CTRL then disable the interception
1101          * of MSR_IA32_SPEC_CTRL.
1102          */
1103         if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1104                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1105
1106         if (kvm_vcpu_apicv_active(vcpu))
1107                 avic_init_vmcb(svm);
1108
1109         if (vgif) {
1110                 svm_clr_intercept(svm, INTERCEPT_STGI);
1111                 svm_clr_intercept(svm, INTERCEPT_CLGI);
1112                 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1113         }
1114
1115         if (sev_guest(vcpu->kvm)) {
1116                 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1117                 clr_exception_intercept(svm, UD_VECTOR);
1118
1119                 if (sev_es_guest(vcpu->kvm)) {
1120                         /* Perform SEV-ES specific VMCB updates */
1121                         sev_es_init_vmcb(svm);
1122                 }
1123         }
1124
1125         svm_hv_init_vmcb(svm->vmcb);
1126         init_vmcb_after_set_cpuid(vcpu);
1127
1128         vmcb_mark_all_dirty(svm->vmcb);
1129
1130         enable_gif(svm);
1131 }
1132
1133 static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1134 {
1135         struct vcpu_svm *svm = to_svm(vcpu);
1136
1137         svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1138
1139         svm_init_osvw(vcpu);
1140         vcpu->arch.microcode_version = 0x01000065;
1141         svm->tsc_ratio_msr = kvm_default_tsc_scaling_ratio;
1142
1143         if (sev_es_guest(vcpu->kvm))
1144                 sev_es_vcpu_reset(svm);
1145 }
1146
1147 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1148 {
1149         struct vcpu_svm *svm = to_svm(vcpu);
1150
1151         svm->spec_ctrl = 0;
1152         svm->virt_spec_ctrl = 0;
1153
1154         init_vmcb(vcpu);
1155
1156         if (!init_event)
1157                 __svm_vcpu_reset(vcpu);
1158 }
1159
1160 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1161 {
1162         svm->current_vmcb = target_vmcb;
1163         svm->vmcb = target_vmcb->ptr;
1164 }
1165
1166 static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1167 {
1168         struct vcpu_svm *svm;
1169         struct page *vmcb01_page;
1170         struct page *vmsa_page = NULL;
1171         int err;
1172
1173         BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1174         svm = to_svm(vcpu);
1175
1176         err = -ENOMEM;
1177         vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1178         if (!vmcb01_page)
1179                 goto out;
1180
1181         if (sev_es_guest(vcpu->kvm)) {
1182                 /*
1183                  * SEV-ES guests require a separate VMSA page used to contain
1184                  * the encrypted register state of the guest.
1185                  */
1186                 vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1187                 if (!vmsa_page)
1188                         goto error_free_vmcb_page;
1189
1190                 /*
1191                  * SEV-ES guests maintain an encrypted version of their FPU
1192                  * state which is restored and saved on VMRUN and VMEXIT.
1193                  * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1194                  * do xsave/xrstor on it.
1195                  */
1196                 fpstate_set_confidential(&vcpu->arch.guest_fpu);
1197         }
1198
1199         err = avic_init_vcpu(svm);
1200         if (err)
1201                 goto error_free_vmsa_page;
1202
1203         svm->msrpm = svm_vcpu_alloc_msrpm();
1204         if (!svm->msrpm) {
1205                 err = -ENOMEM;
1206                 goto error_free_vmsa_page;
1207         }
1208
1209         svm->vmcb01.ptr = page_address(vmcb01_page);
1210         svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1211         svm_switch_vmcb(svm, &svm->vmcb01);
1212
1213         if (vmsa_page)
1214                 svm->sev_es.vmsa = page_address(vmsa_page);
1215
1216         svm->guest_state_loaded = false;
1217
1218         return 0;
1219
1220 error_free_vmsa_page:
1221         if (vmsa_page)
1222                 __free_page(vmsa_page);
1223 error_free_vmcb_page:
1224         __free_page(vmcb01_page);
1225 out:
1226         return err;
1227 }
1228
1229 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1230 {
1231         int i;
1232
1233         for_each_online_cpu(i)
1234                 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1235 }
1236
1237 static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1238 {
1239         struct vcpu_svm *svm = to_svm(vcpu);
1240
1241         /*
1242          * The vmcb page can be recycled, causing a false negative in
1243          * svm_vcpu_load(). So, ensure that no logical CPU has this
1244          * vmcb page recorded as its current vmcb.
1245          */
1246         svm_clear_current_vmcb(svm->vmcb);
1247
1248         svm_free_nested(svm);
1249
1250         sev_free_vcpu(vcpu);
1251
1252         __free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1253         __free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1254 }
1255
1256 static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1257 {
1258         struct vcpu_svm *svm = to_svm(vcpu);
1259         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
1260
1261         if (sev_es_guest(vcpu->kvm))
1262                 sev_es_unmap_ghcb(svm);
1263
1264         if (svm->guest_state_loaded)
1265                 return;
1266
1267         /*
1268          * Save additional host state that will be restored on VMEXIT (sev-es)
1269          * or subsequent vmload of host save area.
1270          */
1271         vmsave(__sme_page_pa(sd->save_area));
1272         if (sev_es_guest(vcpu->kvm)) {
1273                 struct vmcb_save_area *hostsa;
1274                 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
1275
1276                 sev_es_prepare_switch_to_guest(hostsa);
1277         }
1278
1279         if (tsc_scaling) {
1280                 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1281                 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1282                         __this_cpu_write(current_tsc_ratio, tsc_ratio);
1283                         wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1284                 }
1285         }
1286
1287         if (likely(tsc_aux_uret_slot >= 0))
1288                 kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1289
1290         svm->guest_state_loaded = true;
1291 }
1292
1293 static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1294 {
1295         to_svm(vcpu)->guest_state_loaded = false;
1296 }
1297
1298 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1299 {
1300         struct vcpu_svm *svm = to_svm(vcpu);
1301         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1302
1303         if (sd->current_vmcb != svm->vmcb) {
1304                 sd->current_vmcb = svm->vmcb;
1305                 indirect_branch_prediction_barrier();
1306         }
1307         if (kvm_vcpu_apicv_active(vcpu))
1308                 __avic_vcpu_load(vcpu, cpu);
1309 }
1310
1311 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1312 {
1313         if (kvm_vcpu_apicv_active(vcpu))
1314                 __avic_vcpu_put(vcpu);
1315
1316         svm_prepare_host_switch(vcpu);
1317
1318         ++vcpu->stat.host_state_reload;
1319 }
1320
1321 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1322 {
1323         struct vcpu_svm *svm = to_svm(vcpu);
1324         unsigned long rflags = svm->vmcb->save.rflags;
1325
1326         if (svm->nmi_singlestep) {
1327                 /* Hide our flags if they were not set by the guest */
1328                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1329                         rflags &= ~X86_EFLAGS_TF;
1330                 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1331                         rflags &= ~X86_EFLAGS_RF;
1332         }
1333         return rflags;
1334 }
1335
1336 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1337 {
1338         if (to_svm(vcpu)->nmi_singlestep)
1339                 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1340
1341        /*
1342         * Any change of EFLAGS.VM is accompanied by a reload of SS
1343         * (caused by either a task switch or an inter-privilege IRET),
1344         * so we do not need to update the CPL here.
1345         */
1346         to_svm(vcpu)->vmcb->save.rflags = rflags;
1347 }
1348
1349 static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1350 {
1351         struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1352
1353         return sev_es_guest(vcpu->kvm)
1354                 ? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1355                 : kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1356 }
1357
1358 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1359 {
1360         kvm_register_mark_available(vcpu, reg);
1361
1362         switch (reg) {
1363         case VCPU_EXREG_PDPTR:
1364                 /*
1365                  * When !npt_enabled, mmu->pdptrs[] is already available since
1366                  * it is always updated per SDM when moving to CRs.
1367                  */
1368                 if (npt_enabled)
1369                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1370                 break;
1371         default:
1372                 KVM_BUG_ON(1, vcpu->kvm);
1373         }
1374 }
1375
1376 static void svm_set_vintr(struct vcpu_svm *svm)
1377 {
1378         struct vmcb_control_area *control;
1379
1380         /*
1381          * The following fields are ignored when AVIC is enabled
1382          */
1383         WARN_ON(kvm_apicv_activated(svm->vcpu.kvm));
1384
1385         svm_set_intercept(svm, INTERCEPT_VINTR);
1386
1387         /*
1388          * This is just a dummy VINTR to actually cause a vmexit to happen.
1389          * Actual injection of virtual interrupts happens through EVENTINJ.
1390          */
1391         control = &svm->vmcb->control;
1392         control->int_vector = 0x0;
1393         control->int_ctl &= ~V_INTR_PRIO_MASK;
1394         control->int_ctl |= V_IRQ_MASK |
1395                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1396         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1397 }
1398
1399 static void svm_clear_vintr(struct vcpu_svm *svm)
1400 {
1401         svm_clr_intercept(svm, INTERCEPT_VINTR);
1402
1403         /* Drop int_ctl fields related to VINTR injection.  */
1404         svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1405         if (is_guest_mode(&svm->vcpu)) {
1406                 svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1407
1408                 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1409                         (svm->nested.ctl.int_ctl & V_TPR_MASK));
1410
1411                 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1412                         V_IRQ_INJECTION_BITS_MASK;
1413
1414                 svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1415         }
1416
1417         vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1418 }
1419
1420 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1421 {
1422         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1423         struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1424
1425         switch (seg) {
1426         case VCPU_SREG_CS: return &save->cs;
1427         case VCPU_SREG_DS: return &save->ds;
1428         case VCPU_SREG_ES: return &save->es;
1429         case VCPU_SREG_FS: return &save01->fs;
1430         case VCPU_SREG_GS: return &save01->gs;
1431         case VCPU_SREG_SS: return &save->ss;
1432         case VCPU_SREG_TR: return &save01->tr;
1433         case VCPU_SREG_LDTR: return &save01->ldtr;
1434         }
1435         BUG();
1436         return NULL;
1437 }
1438
1439 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1440 {
1441         struct vmcb_seg *s = svm_seg(vcpu, seg);
1442
1443         return s->base;
1444 }
1445
1446 static void svm_get_segment(struct kvm_vcpu *vcpu,
1447                             struct kvm_segment *var, int seg)
1448 {
1449         struct vmcb_seg *s = svm_seg(vcpu, seg);
1450
1451         var->base = s->base;
1452         var->limit = s->limit;
1453         var->selector = s->selector;
1454         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1455         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1456         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1457         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1458         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1459         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1460         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1461
1462         /*
1463          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1464          * However, the SVM spec states that the G bit is not observed by the
1465          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1466          * So let's synthesize a legal G bit for all segments, this helps
1467          * running KVM nested. It also helps cross-vendor migration, because
1468          * Intel's vmentry has a check on the 'G' bit.
1469          */
1470         var->g = s->limit > 0xfffff;
1471
1472         /*
1473          * AMD's VMCB does not have an explicit unusable field, so emulate it
1474          * for cross vendor migration purposes by "not present"
1475          */
1476         var->unusable = !var->present;
1477
1478         switch (seg) {
1479         case VCPU_SREG_TR:
1480                 /*
1481                  * Work around a bug where the busy flag in the tr selector
1482                  * isn't exposed
1483                  */
1484                 var->type |= 0x2;
1485                 break;
1486         case VCPU_SREG_DS:
1487         case VCPU_SREG_ES:
1488         case VCPU_SREG_FS:
1489         case VCPU_SREG_GS:
1490                 /*
1491                  * The accessed bit must always be set in the segment
1492                  * descriptor cache, although it can be cleared in the
1493                  * descriptor, the cached bit always remains at 1. Since
1494                  * Intel has a check on this, set it here to support
1495                  * cross-vendor migration.
1496                  */
1497                 if (!var->unusable)
1498                         var->type |= 0x1;
1499                 break;
1500         case VCPU_SREG_SS:
1501                 /*
1502                  * On AMD CPUs sometimes the DB bit in the segment
1503                  * descriptor is left as 1, although the whole segment has
1504                  * been made unusable. Clear it here to pass an Intel VMX
1505                  * entry check when cross vendor migrating.
1506                  */
1507                 if (var->unusable)
1508                         var->db = 0;
1509                 /* This is symmetric with svm_set_segment() */
1510                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1511                 break;
1512         }
1513 }
1514
1515 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1516 {
1517         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1518
1519         return save->cpl;
1520 }
1521
1522 static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1523 {
1524         struct kvm_segment cs;
1525
1526         svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1527         *db = cs.db;
1528         *l = cs.l;
1529 }
1530
1531 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1532 {
1533         struct vcpu_svm *svm = to_svm(vcpu);
1534
1535         dt->size = svm->vmcb->save.idtr.limit;
1536         dt->address = svm->vmcb->save.idtr.base;
1537 }
1538
1539 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1540 {
1541         struct vcpu_svm *svm = to_svm(vcpu);
1542
1543         svm->vmcb->save.idtr.limit = dt->size;
1544         svm->vmcb->save.idtr.base = dt->address ;
1545         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1546 }
1547
1548 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1549 {
1550         struct vcpu_svm *svm = to_svm(vcpu);
1551
1552         dt->size = svm->vmcb->save.gdtr.limit;
1553         dt->address = svm->vmcb->save.gdtr.base;
1554 }
1555
1556 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1557 {
1558         struct vcpu_svm *svm = to_svm(vcpu);
1559
1560         svm->vmcb->save.gdtr.limit = dt->size;
1561         svm->vmcb->save.gdtr.base = dt->address ;
1562         vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1563 }
1564
1565 static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1566 {
1567         struct vcpu_svm *svm = to_svm(vcpu);
1568
1569         /*
1570          * For guests that don't set guest_state_protected, the cr3 update is
1571          * handled via kvm_mmu_load() while entering the guest. For guests
1572          * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1573          * VMCB save area now, since the save area will become the initial
1574          * contents of the VMSA, and future VMCB save area updates won't be
1575          * seen.
1576          */
1577         if (sev_es_guest(vcpu->kvm)) {
1578                 svm->vmcb->save.cr3 = cr3;
1579                 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1580         }
1581 }
1582
1583 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1584 {
1585         struct vcpu_svm *svm = to_svm(vcpu);
1586         u64 hcr0 = cr0;
1587         bool old_paging = is_paging(vcpu);
1588
1589 #ifdef CONFIG_X86_64
1590         if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
1591                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1592                         vcpu->arch.efer |= EFER_LMA;
1593                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1594                 }
1595
1596                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1597                         vcpu->arch.efer &= ~EFER_LMA;
1598                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1599                 }
1600         }
1601 #endif
1602         vcpu->arch.cr0 = cr0;
1603
1604         if (!npt_enabled) {
1605                 hcr0 |= X86_CR0_PG | X86_CR0_WP;
1606                 if (old_paging != is_paging(vcpu))
1607                         svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1608         }
1609
1610         /*
1611          * re-enable caching here because the QEMU bios
1612          * does not do it - this results in some delay at
1613          * reboot
1614          */
1615         if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1616                 hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1617
1618         svm->vmcb->save.cr0 = hcr0;
1619         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1620
1621         /*
1622          * SEV-ES guests must always keep the CR intercepts cleared. CR
1623          * tracking is done using the CR write traps.
1624          */
1625         if (sev_es_guest(vcpu->kvm))
1626                 return;
1627
1628         if (hcr0 == cr0) {
1629                 /* Selective CR0 write remains on.  */
1630                 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1631                 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1632         } else {
1633                 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1634                 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1635         }
1636 }
1637
1638 static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1639 {
1640         return true;
1641 }
1642
1643 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1644 {
1645         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1646         unsigned long old_cr4 = vcpu->arch.cr4;
1647
1648         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1649                 svm_flush_tlb_current(vcpu);
1650
1651         vcpu->arch.cr4 = cr4;
1652         if (!npt_enabled) {
1653                 cr4 |= X86_CR4_PAE;
1654
1655                 if (!is_paging(vcpu))
1656                         cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1657         }
1658         cr4 |= host_cr4_mce;
1659         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1660         vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1661
1662         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1663                 kvm_update_cpuid_runtime(vcpu);
1664 }
1665
1666 static void svm_set_segment(struct kvm_vcpu *vcpu,
1667                             struct kvm_segment *var, int seg)
1668 {
1669         struct vcpu_svm *svm = to_svm(vcpu);
1670         struct vmcb_seg *s = svm_seg(vcpu, seg);
1671
1672         s->base = var->base;
1673         s->limit = var->limit;
1674         s->selector = var->selector;
1675         s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1676         s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1677         s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1678         s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1679         s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1680         s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1681         s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1682         s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1683
1684         /*
1685          * This is always accurate, except if SYSRET returned to a segment
1686          * with SS.DPL != 3.  Intel does not have this quirk, and always
1687          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1688          * would entail passing the CPL to userspace and back.
1689          */
1690         if (seg == VCPU_SREG_SS)
1691                 /* This is symmetric with svm_get_segment() */
1692                 svm->vmcb->save.cpl = (var->dpl & 3);
1693
1694         vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1695 }
1696
1697 static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1698 {
1699         struct vcpu_svm *svm = to_svm(vcpu);
1700
1701         clr_exception_intercept(svm, BP_VECTOR);
1702
1703         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1704                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1705                         set_exception_intercept(svm, BP_VECTOR);
1706         }
1707 }
1708
1709 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1710 {
1711         if (sd->next_asid > sd->max_asid) {
1712                 ++sd->asid_generation;
1713                 sd->next_asid = sd->min_asid;
1714                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1715                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1716         }
1717
1718         svm->current_vmcb->asid_generation = sd->asid_generation;
1719         svm->asid = sd->next_asid++;
1720 }
1721
1722 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1723 {
1724         struct vmcb *vmcb = svm->vmcb;
1725
1726         if (svm->vcpu.arch.guest_state_protected)
1727                 return;
1728
1729         if (unlikely(value != vmcb->save.dr6)) {
1730                 vmcb->save.dr6 = value;
1731                 vmcb_mark_dirty(vmcb, VMCB_DR);
1732         }
1733 }
1734
1735 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1736 {
1737         struct vcpu_svm *svm = to_svm(vcpu);
1738
1739         if (vcpu->arch.guest_state_protected)
1740                 return;
1741
1742         get_debugreg(vcpu->arch.db[0], 0);
1743         get_debugreg(vcpu->arch.db[1], 1);
1744         get_debugreg(vcpu->arch.db[2], 2);
1745         get_debugreg(vcpu->arch.db[3], 3);
1746         /*
1747          * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
1748          * because db_interception might need it.  We can do it before vmentry.
1749          */
1750         vcpu->arch.dr6 = svm->vmcb->save.dr6;
1751         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1752         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1753         set_dr_intercepts(svm);
1754 }
1755
1756 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1757 {
1758         struct vcpu_svm *svm = to_svm(vcpu);
1759
1760         if (vcpu->arch.guest_state_protected)
1761                 return;
1762
1763         svm->vmcb->save.dr7 = value;
1764         vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1765 }
1766
1767 static int pf_interception(struct kvm_vcpu *vcpu)
1768 {
1769         struct vcpu_svm *svm = to_svm(vcpu);
1770
1771         u64 fault_address = svm->vmcb->control.exit_info_2;
1772         u64 error_code = svm->vmcb->control.exit_info_1;
1773
1774         return kvm_handle_page_fault(vcpu, error_code, fault_address,
1775                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1776                         svm->vmcb->control.insn_bytes : NULL,
1777                         svm->vmcb->control.insn_len);
1778 }
1779
1780 static int npf_interception(struct kvm_vcpu *vcpu)
1781 {
1782         struct vcpu_svm *svm = to_svm(vcpu);
1783
1784         u64 fault_address = svm->vmcb->control.exit_info_2;
1785         u64 error_code = svm->vmcb->control.exit_info_1;
1786
1787         trace_kvm_page_fault(fault_address, error_code);
1788         return kvm_mmu_page_fault(vcpu, fault_address, error_code,
1789                         static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1790                         svm->vmcb->control.insn_bytes : NULL,
1791                         svm->vmcb->control.insn_len);
1792 }
1793
1794 static int db_interception(struct kvm_vcpu *vcpu)
1795 {
1796         struct kvm_run *kvm_run = vcpu->run;
1797         struct vcpu_svm *svm = to_svm(vcpu);
1798
1799         if (!(vcpu->guest_debug &
1800               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1801                 !svm->nmi_singlestep) {
1802                 u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
1803                 kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
1804                 return 1;
1805         }
1806
1807         if (svm->nmi_singlestep) {
1808                 disable_nmi_singlestep(svm);
1809                 /* Make sure we check for pending NMIs upon entry */
1810                 kvm_make_request(KVM_REQ_EVENT, vcpu);
1811         }
1812
1813         if (vcpu->guest_debug &
1814             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1815                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1816                 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1817                 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1818                 kvm_run->debug.arch.pc =
1819                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1820                 kvm_run->debug.arch.exception = DB_VECTOR;
1821                 return 0;
1822         }
1823
1824         return 1;
1825 }
1826
1827 static int bp_interception(struct kvm_vcpu *vcpu)
1828 {
1829         struct vcpu_svm *svm = to_svm(vcpu);
1830         struct kvm_run *kvm_run = vcpu->run;
1831
1832         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1833         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1834         kvm_run->debug.arch.exception = BP_VECTOR;
1835         return 0;
1836 }
1837
1838 static int ud_interception(struct kvm_vcpu *vcpu)
1839 {
1840         return handle_ud(vcpu);
1841 }
1842
1843 static int ac_interception(struct kvm_vcpu *vcpu)
1844 {
1845         kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
1846         return 1;
1847 }
1848
1849 static bool is_erratum_383(void)
1850 {
1851         int err, i;
1852         u64 value;
1853
1854         if (!erratum_383_found)
1855                 return false;
1856
1857         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1858         if (err)
1859                 return false;
1860
1861         /* Bit 62 may or may not be set for this mce */
1862         value &= ~(1ULL << 62);
1863
1864         if (value != 0xb600000000010015ULL)
1865                 return false;
1866
1867         /* Clear MCi_STATUS registers */
1868         for (i = 0; i < 6; ++i)
1869                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1870
1871         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1872         if (!err) {
1873                 u32 low, high;
1874
1875                 value &= ~(1ULL << 2);
1876                 low    = lower_32_bits(value);
1877                 high   = upper_32_bits(value);
1878
1879                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1880         }
1881
1882         /* Flush tlb to evict multi-match entries */
1883         __flush_tlb_all();
1884
1885         return true;
1886 }
1887
1888 static void svm_handle_mce(struct kvm_vcpu *vcpu)
1889 {
1890         if (is_erratum_383()) {
1891                 /*
1892                  * Erratum 383 triggered. Guest state is corrupt so kill the
1893                  * guest.
1894                  */
1895                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1896
1897                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1898
1899                 return;
1900         }
1901
1902         /*
1903          * On an #MC intercept the MCE handler is not called automatically in
1904          * the host. So do it by hand here.
1905          */
1906         kvm_machine_check();
1907 }
1908
1909 static int mc_interception(struct kvm_vcpu *vcpu)
1910 {
1911         return 1;
1912 }
1913
1914 static int shutdown_interception(struct kvm_vcpu *vcpu)
1915 {
1916         struct kvm_run *kvm_run = vcpu->run;
1917         struct vcpu_svm *svm = to_svm(vcpu);
1918
1919         /*
1920          * The VM save area has already been encrypted so it
1921          * cannot be reinitialized - just terminate.
1922          */
1923         if (sev_es_guest(vcpu->kvm))
1924                 return -EINVAL;
1925
1926         /*
1927          * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
1928          * the VMCB in a known good state.  Unfortuately, KVM doesn't have
1929          * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
1930          * userspace.  At a platform view, INIT is acceptable behavior as
1931          * there exist bare metal platforms that automatically INIT the CPU
1932          * in response to shutdown.
1933          */
1934         clear_page(svm->vmcb);
1935         kvm_vcpu_reset(vcpu, true);
1936
1937         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1938         return 0;
1939 }
1940
1941 static int io_interception(struct kvm_vcpu *vcpu)
1942 {
1943         struct vcpu_svm *svm = to_svm(vcpu);
1944         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1945         int size, in, string;
1946         unsigned port;
1947
1948         ++vcpu->stat.io_exits;
1949         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1950         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1951         port = io_info >> 16;
1952         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1953
1954         if (string) {
1955                 if (sev_es_guest(vcpu->kvm))
1956                         return sev_es_string_io(svm, size, port, in);
1957                 else
1958                         return kvm_emulate_instruction(vcpu, 0);
1959         }
1960
1961         svm->next_rip = svm->vmcb->control.exit_info_2;
1962
1963         return kvm_fast_pio(vcpu, size, port, in);
1964 }
1965
1966 static int nmi_interception(struct kvm_vcpu *vcpu)
1967 {
1968         return 1;
1969 }
1970
1971 static int smi_interception(struct kvm_vcpu *vcpu)
1972 {
1973         return 1;
1974 }
1975
1976 static int intr_interception(struct kvm_vcpu *vcpu)
1977 {
1978         ++vcpu->stat.irq_exits;
1979         return 1;
1980 }
1981
1982 static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
1983 {
1984         struct vcpu_svm *svm = to_svm(vcpu);
1985         struct vmcb *vmcb12;
1986         struct kvm_host_map map;
1987         int ret;
1988
1989         if (nested_svm_check_permissions(vcpu))
1990                 return 1;
1991
1992         ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
1993         if (ret) {
1994                 if (ret == -EINVAL)
1995                         kvm_inject_gp(vcpu, 0);
1996                 return 1;
1997         }
1998
1999         vmcb12 = map.hva;
2000
2001         ret = kvm_skip_emulated_instruction(vcpu);
2002
2003         if (vmload) {
2004                 svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2005                 svm->sysenter_eip_hi = 0;
2006                 svm->sysenter_esp_hi = 0;
2007         } else {
2008                 svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2009         }
2010
2011         kvm_vcpu_unmap(vcpu, &map, true);
2012
2013         return ret;
2014 }
2015
2016 static int vmload_interception(struct kvm_vcpu *vcpu)
2017 {
2018         return vmload_vmsave_interception(vcpu, true);
2019 }
2020
2021 static int vmsave_interception(struct kvm_vcpu *vcpu)
2022 {
2023         return vmload_vmsave_interception(vcpu, false);
2024 }
2025
2026 static int vmrun_interception(struct kvm_vcpu *vcpu)
2027 {
2028         if (nested_svm_check_permissions(vcpu))
2029                 return 1;
2030
2031         return nested_svm_vmrun(vcpu);
2032 }
2033
2034 enum {
2035         NONE_SVM_INSTR,
2036         SVM_INSTR_VMRUN,
2037         SVM_INSTR_VMLOAD,
2038         SVM_INSTR_VMSAVE,
2039 };
2040
2041 /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2042 static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2043 {
2044         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2045
2046         if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2047                 return NONE_SVM_INSTR;
2048
2049         switch (ctxt->modrm) {
2050         case 0xd8: /* VMRUN */
2051                 return SVM_INSTR_VMRUN;
2052         case 0xda: /* VMLOAD */
2053                 return SVM_INSTR_VMLOAD;
2054         case 0xdb: /* VMSAVE */
2055                 return SVM_INSTR_VMSAVE;
2056         default:
2057                 break;
2058         }
2059
2060         return NONE_SVM_INSTR;
2061 }
2062
2063 static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2064 {
2065         const int guest_mode_exit_codes[] = {
2066                 [SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2067                 [SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2068                 [SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2069         };
2070         int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2071                 [SVM_INSTR_VMRUN] = vmrun_interception,
2072                 [SVM_INSTR_VMLOAD] = vmload_interception,
2073                 [SVM_INSTR_VMSAVE] = vmsave_interception,
2074         };
2075         struct vcpu_svm *svm = to_svm(vcpu);
2076         int ret;
2077
2078         if (is_guest_mode(vcpu)) {
2079                 /* Returns '1' or -errno on failure, '0' on success. */
2080                 ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2081                 if (ret)
2082                         return ret;
2083                 return 1;
2084         }
2085         return svm_instr_handlers[opcode](vcpu);
2086 }
2087
2088 /*
2089  * #GP handling code. Note that #GP can be triggered under the following two
2090  * cases:
2091  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2092  *      some AMD CPUs when EAX of these instructions are in the reserved memory
2093  *      regions (e.g. SMM memory on host).
2094  *   2) VMware backdoor
2095  */
2096 static int gp_interception(struct kvm_vcpu *vcpu)
2097 {
2098         struct vcpu_svm *svm = to_svm(vcpu);
2099         u32 error_code = svm->vmcb->control.exit_info_1;
2100         int opcode;
2101
2102         /* Both #GP cases have zero error_code */
2103         if (error_code)
2104                 goto reinject;
2105
2106         /* Decode the instruction for usage later */
2107         if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2108                 goto reinject;
2109
2110         opcode = svm_instr_opcode(vcpu);
2111
2112         if (opcode == NONE_SVM_INSTR) {
2113                 if (!enable_vmware_backdoor)
2114                         goto reinject;
2115
2116                 /*
2117                  * VMware backdoor emulation on #GP interception only handles
2118                  * IN{S}, OUT{S}, and RDPMC.
2119                  */
2120                 if (!is_guest_mode(vcpu))
2121                         return kvm_emulate_instruction(vcpu,
2122                                 EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2123         } else {
2124                 /* All SVM instructions expect page aligned RAX */
2125                 if (svm->vmcb->save.rax & ~PAGE_MASK)
2126                         goto reinject;
2127
2128                 return emulate_svm_instr(vcpu, opcode);
2129         }
2130
2131 reinject:
2132         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2133         return 1;
2134 }
2135
2136 void svm_set_gif(struct vcpu_svm *svm, bool value)
2137 {
2138         if (value) {
2139                 /*
2140                  * If VGIF is enabled, the STGI intercept is only added to
2141                  * detect the opening of the SMI/NMI window; remove it now.
2142                  * Likewise, clear the VINTR intercept, we will set it
2143                  * again while processing KVM_REQ_EVENT if needed.
2144                  */
2145                 if (vgif_enabled(svm))
2146                         svm_clr_intercept(svm, INTERCEPT_STGI);
2147                 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2148                         svm_clear_vintr(svm);
2149
2150                 enable_gif(svm);
2151                 if (svm->vcpu.arch.smi_pending ||
2152                     svm->vcpu.arch.nmi_pending ||
2153                     kvm_cpu_has_injectable_intr(&svm->vcpu))
2154                         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2155         } else {
2156                 disable_gif(svm);
2157
2158                 /*
2159                  * After a CLGI no interrupts should come.  But if vGIF is
2160                  * in use, we still rely on the VINTR intercept (rather than
2161                  * STGI) to detect an open interrupt window.
2162                 */
2163                 if (!vgif_enabled(svm))
2164                         svm_clear_vintr(svm);
2165         }
2166 }
2167
2168 static int stgi_interception(struct kvm_vcpu *vcpu)
2169 {
2170         int ret;
2171
2172         if (nested_svm_check_permissions(vcpu))
2173                 return 1;
2174
2175         ret = kvm_skip_emulated_instruction(vcpu);
2176         svm_set_gif(to_svm(vcpu), true);
2177         return ret;
2178 }
2179
2180 static int clgi_interception(struct kvm_vcpu *vcpu)
2181 {
2182         int ret;
2183
2184         if (nested_svm_check_permissions(vcpu))
2185                 return 1;
2186
2187         ret = kvm_skip_emulated_instruction(vcpu);
2188         svm_set_gif(to_svm(vcpu), false);
2189         return ret;
2190 }
2191
2192 static int invlpga_interception(struct kvm_vcpu *vcpu)
2193 {
2194         gva_t gva = kvm_rax_read(vcpu);
2195         u32 asid = kvm_rcx_read(vcpu);
2196
2197         /* FIXME: Handle an address size prefix. */
2198         if (!is_long_mode(vcpu))
2199                 gva = (u32)gva;
2200
2201         trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2202
2203         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2204         kvm_mmu_invlpg(vcpu, gva);
2205
2206         return kvm_skip_emulated_instruction(vcpu);
2207 }
2208
2209 static int skinit_interception(struct kvm_vcpu *vcpu)
2210 {
2211         trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2212
2213         kvm_queue_exception(vcpu, UD_VECTOR);
2214         return 1;
2215 }
2216
2217 static int task_switch_interception(struct kvm_vcpu *vcpu)
2218 {
2219         struct vcpu_svm *svm = to_svm(vcpu);
2220         u16 tss_selector;
2221         int reason;
2222         int int_type = svm->vmcb->control.exit_int_info &
2223                 SVM_EXITINTINFO_TYPE_MASK;
2224         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2225         uint32_t type =
2226                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2227         uint32_t idt_v =
2228                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2229         bool has_error_code = false;
2230         u32 error_code = 0;
2231
2232         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2233
2234         if (svm->vmcb->control.exit_info_2 &
2235             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2236                 reason = TASK_SWITCH_IRET;
2237         else if (svm->vmcb->control.exit_info_2 &
2238                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2239                 reason = TASK_SWITCH_JMP;
2240         else if (idt_v)
2241                 reason = TASK_SWITCH_GATE;
2242         else
2243                 reason = TASK_SWITCH_CALL;
2244
2245         if (reason == TASK_SWITCH_GATE) {
2246                 switch (type) {
2247                 case SVM_EXITINTINFO_TYPE_NMI:
2248                         vcpu->arch.nmi_injected = false;
2249                         break;
2250                 case SVM_EXITINTINFO_TYPE_EXEPT:
2251                         if (svm->vmcb->control.exit_info_2 &
2252                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2253                                 has_error_code = true;
2254                                 error_code =
2255                                         (u32)svm->vmcb->control.exit_info_2;
2256                         }
2257                         kvm_clear_exception_queue(vcpu);
2258                         break;
2259                 case SVM_EXITINTINFO_TYPE_INTR:
2260                         kvm_clear_interrupt_queue(vcpu);
2261                         break;
2262                 default:
2263                         break;
2264                 }
2265         }
2266
2267         if (reason != TASK_SWITCH_GATE ||
2268             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2269             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2270              (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2271                 if (!svm_skip_emulated_instruction(vcpu))
2272                         return 0;
2273         }
2274
2275         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2276                 int_vec = -1;
2277
2278         return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2279                                has_error_code, error_code);
2280 }
2281
2282 static int iret_interception(struct kvm_vcpu *vcpu)
2283 {
2284         struct vcpu_svm *svm = to_svm(vcpu);
2285
2286         ++vcpu->stat.nmi_window_exits;
2287         vcpu->arch.hflags |= HF_IRET_MASK;
2288         if (!sev_es_guest(vcpu->kvm)) {
2289                 svm_clr_intercept(svm, INTERCEPT_IRET);
2290                 svm->nmi_iret_rip = kvm_rip_read(vcpu);
2291         }
2292         kvm_make_request(KVM_REQ_EVENT, vcpu);
2293         return 1;
2294 }
2295
2296 static int invlpg_interception(struct kvm_vcpu *vcpu)
2297 {
2298         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2299                 return kvm_emulate_instruction(vcpu, 0);
2300
2301         kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2302         return kvm_skip_emulated_instruction(vcpu);
2303 }
2304
2305 static int emulate_on_interception(struct kvm_vcpu *vcpu)
2306 {
2307         return kvm_emulate_instruction(vcpu, 0);
2308 }
2309
2310 static int rsm_interception(struct kvm_vcpu *vcpu)
2311 {
2312         return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2313 }
2314
2315 static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2316                                             unsigned long val)
2317 {
2318         struct vcpu_svm *svm = to_svm(vcpu);
2319         unsigned long cr0 = vcpu->arch.cr0;
2320         bool ret = false;
2321
2322         if (!is_guest_mode(vcpu) ||
2323             (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2324                 return false;
2325
2326         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2327         val &= ~SVM_CR0_SELECTIVE_MASK;
2328
2329         if (cr0 ^ val) {
2330                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2331                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2332         }
2333
2334         return ret;
2335 }
2336
2337 #define CR_VALID (1ULL << 63)
2338
2339 static int cr_interception(struct kvm_vcpu *vcpu)
2340 {
2341         struct vcpu_svm *svm = to_svm(vcpu);
2342         int reg, cr;
2343         unsigned long val;
2344         int err;
2345
2346         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2347                 return emulate_on_interception(vcpu);
2348
2349         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2350                 return emulate_on_interception(vcpu);
2351
2352         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2353         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2354                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2355         else
2356                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2357
2358         err = 0;
2359         if (cr >= 16) { /* mov to cr */
2360                 cr -= 16;
2361                 val = kvm_register_read(vcpu, reg);
2362                 trace_kvm_cr_write(cr, val);
2363                 switch (cr) {
2364                 case 0:
2365                         if (!check_selective_cr0_intercepted(vcpu, val))
2366                                 err = kvm_set_cr0(vcpu, val);
2367                         else
2368                                 return 1;
2369
2370                         break;
2371                 case 3:
2372                         err = kvm_set_cr3(vcpu, val);
2373                         break;
2374                 case 4:
2375                         err = kvm_set_cr4(vcpu, val);
2376                         break;
2377                 case 8:
2378                         err = kvm_set_cr8(vcpu, val);
2379                         break;
2380                 default:
2381                         WARN(1, "unhandled write to CR%d", cr);
2382                         kvm_queue_exception(vcpu, UD_VECTOR);
2383                         return 1;
2384                 }
2385         } else { /* mov from cr */
2386                 switch (cr) {
2387                 case 0:
2388                         val = kvm_read_cr0(vcpu);
2389                         break;
2390                 case 2:
2391                         val = vcpu->arch.cr2;
2392                         break;
2393                 case 3:
2394                         val = kvm_read_cr3(vcpu);
2395                         break;
2396                 case 4:
2397                         val = kvm_read_cr4(vcpu);
2398                         break;
2399                 case 8:
2400                         val = kvm_get_cr8(vcpu);
2401                         break;
2402                 default:
2403                         WARN(1, "unhandled read from CR%d", cr);
2404                         kvm_queue_exception(vcpu, UD_VECTOR);
2405                         return 1;
2406                 }
2407                 kvm_register_write(vcpu, reg, val);
2408                 trace_kvm_cr_read(cr, val);
2409         }
2410         return kvm_complete_insn_gp(vcpu, err);
2411 }
2412
2413 static int cr_trap(struct kvm_vcpu *vcpu)
2414 {
2415         struct vcpu_svm *svm = to_svm(vcpu);
2416         unsigned long old_value, new_value;
2417         unsigned int cr;
2418         int ret = 0;
2419
2420         new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2421
2422         cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2423         switch (cr) {
2424         case 0:
2425                 old_value = kvm_read_cr0(vcpu);
2426                 svm_set_cr0(vcpu, new_value);
2427
2428                 kvm_post_set_cr0(vcpu, old_value, new_value);
2429                 break;
2430         case 4:
2431                 old_value = kvm_read_cr4(vcpu);
2432                 svm_set_cr4(vcpu, new_value);
2433
2434                 kvm_post_set_cr4(vcpu, old_value, new_value);
2435                 break;
2436         case 8:
2437                 ret = kvm_set_cr8(vcpu, new_value);
2438                 break;
2439         default:
2440                 WARN(1, "unhandled CR%d write trap", cr);
2441                 kvm_queue_exception(vcpu, UD_VECTOR);
2442                 return 1;
2443         }
2444
2445         return kvm_complete_insn_gp(vcpu, ret);
2446 }
2447
2448 static int dr_interception(struct kvm_vcpu *vcpu)
2449 {
2450         struct vcpu_svm *svm = to_svm(vcpu);
2451         int reg, dr;
2452         unsigned long val;
2453         int err = 0;
2454
2455         if (vcpu->guest_debug == 0) {
2456                 /*
2457                  * No more DR vmexits; force a reload of the debug registers
2458                  * and reenter on this instruction.  The next vmexit will
2459                  * retrieve the full state of the debug registers.
2460                  */
2461                 clr_dr_intercepts(svm);
2462                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2463                 return 1;
2464         }
2465
2466         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2467                 return emulate_on_interception(vcpu);
2468
2469         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2470         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2471         if (dr >= 16) { /* mov to DRn  */
2472                 dr -= 16;
2473                 val = kvm_register_read(vcpu, reg);
2474                 err = kvm_set_dr(vcpu, dr, val);
2475         } else {
2476                 kvm_get_dr(vcpu, dr, &val);
2477                 kvm_register_write(vcpu, reg, val);
2478         }
2479
2480         return kvm_complete_insn_gp(vcpu, err);
2481 }
2482
2483 static int cr8_write_interception(struct kvm_vcpu *vcpu)
2484 {
2485         int r;
2486
2487         u8 cr8_prev = kvm_get_cr8(vcpu);
2488         /* instruction emulation calls kvm_set_cr8() */
2489         r = cr_interception(vcpu);
2490         if (lapic_in_kernel(vcpu))
2491                 return r;
2492         if (cr8_prev <= kvm_get_cr8(vcpu))
2493                 return r;
2494         vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2495         return 0;
2496 }
2497
2498 static int efer_trap(struct kvm_vcpu *vcpu)
2499 {
2500         struct msr_data msr_info;
2501         int ret;
2502
2503         /*
2504          * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2505          * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2506          * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2507          * the guest doesn't have X86_FEATURE_SVM.
2508          */
2509         msr_info.host_initiated = false;
2510         msr_info.index = MSR_EFER;
2511         msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2512         ret = kvm_set_msr_common(vcpu, &msr_info);
2513
2514         return kvm_complete_insn_gp(vcpu, ret);
2515 }
2516
2517 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2518 {
2519         msr->data = 0;
2520
2521         switch (msr->index) {
2522         case MSR_F10H_DECFG:
2523                 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2524                         msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2525                 break;
2526         case MSR_IA32_PERF_CAPABILITIES:
2527                 return 0;
2528         default:
2529                 return KVM_MSR_RET_INVALID;
2530         }
2531
2532         return 0;
2533 }
2534
2535 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2536 {
2537         struct vcpu_svm *svm = to_svm(vcpu);
2538
2539         switch (msr_info->index) {
2540         case MSR_AMD64_TSC_RATIO:
2541                 if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
2542                         return 1;
2543                 msr_info->data = svm->tsc_ratio_msr;
2544                 break;
2545         case MSR_STAR:
2546                 msr_info->data = svm->vmcb01.ptr->save.star;
2547                 break;
2548 #ifdef CONFIG_X86_64
2549         case MSR_LSTAR:
2550                 msr_info->data = svm->vmcb01.ptr->save.lstar;
2551                 break;
2552         case MSR_CSTAR:
2553                 msr_info->data = svm->vmcb01.ptr->save.cstar;
2554                 break;
2555         case MSR_KERNEL_GS_BASE:
2556                 msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2557                 break;
2558         case MSR_SYSCALL_MASK:
2559                 msr_info->data = svm->vmcb01.ptr->save.sfmask;
2560                 break;
2561 #endif
2562         case MSR_IA32_SYSENTER_CS:
2563                 msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2564                 break;
2565         case MSR_IA32_SYSENTER_EIP:
2566                 msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2567                 if (guest_cpuid_is_intel(vcpu))
2568                         msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2569                 break;
2570         case MSR_IA32_SYSENTER_ESP:
2571                 msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2572                 if (guest_cpuid_is_intel(vcpu))
2573                         msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2574                 break;
2575         case MSR_TSC_AUX:
2576                 msr_info->data = svm->tsc_aux;
2577                 break;
2578         /*
2579          * Nobody will change the following 5 values in the VMCB so we can
2580          * safely return them on rdmsr. They will always be 0 until LBRV is
2581          * implemented.
2582          */
2583         case MSR_IA32_DEBUGCTLMSR:
2584                 msr_info->data = svm->vmcb->save.dbgctl;
2585                 break;
2586         case MSR_IA32_LASTBRANCHFROMIP:
2587                 msr_info->data = svm->vmcb->save.br_from;
2588                 break;
2589         case MSR_IA32_LASTBRANCHTOIP:
2590                 msr_info->data = svm->vmcb->save.br_to;
2591                 break;
2592         case MSR_IA32_LASTINTFROMIP:
2593                 msr_info->data = svm->vmcb->save.last_excp_from;
2594                 break;
2595         case MSR_IA32_LASTINTTOIP:
2596                 msr_info->data = svm->vmcb->save.last_excp_to;
2597                 break;
2598         case MSR_VM_HSAVE_PA:
2599                 msr_info->data = svm->nested.hsave_msr;
2600                 break;
2601         case MSR_VM_CR:
2602                 msr_info->data = svm->nested.vm_cr_msr;
2603                 break;
2604         case MSR_IA32_SPEC_CTRL:
2605                 if (!msr_info->host_initiated &&
2606                     !guest_has_spec_ctrl_msr(vcpu))
2607                         return 1;
2608
2609                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2610                         msr_info->data = svm->vmcb->save.spec_ctrl;
2611                 else
2612                         msr_info->data = svm->spec_ctrl;
2613                 break;
2614         case MSR_AMD64_VIRT_SPEC_CTRL:
2615                 if (!msr_info->host_initiated &&
2616                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2617                         return 1;
2618
2619                 msr_info->data = svm->virt_spec_ctrl;
2620                 break;
2621         case MSR_F15H_IC_CFG: {
2622
2623                 int family, model;
2624
2625                 family = guest_cpuid_family(vcpu);
2626                 model  = guest_cpuid_model(vcpu);
2627
2628                 if (family < 0 || model < 0)
2629                         return kvm_get_msr_common(vcpu, msr_info);
2630
2631                 msr_info->data = 0;
2632
2633                 if (family == 0x15 &&
2634                     (model >= 0x2 && model < 0x20))
2635                         msr_info->data = 0x1E;
2636                 }
2637                 break;
2638         case MSR_F10H_DECFG:
2639                 msr_info->data = svm->msr_decfg;
2640                 break;
2641         default:
2642                 return kvm_get_msr_common(vcpu, msr_info);
2643         }
2644         return 0;
2645 }
2646
2647 static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2648 {
2649         struct vcpu_svm *svm = to_svm(vcpu);
2650         if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2651                 return kvm_complete_insn_gp(vcpu, err);
2652
2653         ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2654         ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2655                                 X86_TRAP_GP |
2656                                 SVM_EVTINJ_TYPE_EXEPT |
2657                                 SVM_EVTINJ_VALID);
2658         return 1;
2659 }
2660
2661 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2662 {
2663         struct vcpu_svm *svm = to_svm(vcpu);
2664         int svm_dis, chg_mask;
2665
2666         if (data & ~SVM_VM_CR_VALID_MASK)
2667                 return 1;
2668
2669         chg_mask = SVM_VM_CR_VALID_MASK;
2670
2671         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2672                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2673
2674         svm->nested.vm_cr_msr &= ~chg_mask;
2675         svm->nested.vm_cr_msr |= (data & chg_mask);
2676
2677         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2678
2679         /* check for svm_disable while efer.svme is set */
2680         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2681                 return 1;
2682
2683         return 0;
2684 }
2685
2686 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2687 {
2688         struct vcpu_svm *svm = to_svm(vcpu);
2689         int r;
2690
2691         u32 ecx = msr->index;
2692         u64 data = msr->data;
2693         switch (ecx) {
2694         case MSR_AMD64_TSC_RATIO:
2695
2696                 if (!svm->tsc_scaling_enabled) {
2697
2698                         if (!msr->host_initiated)
2699                                 return 1;
2700                         /*
2701                          * In case TSC scaling is not enabled, always
2702                          * leave this MSR at the default value.
2703                          *
2704                          * Due to bug in qemu 6.2.0, it would try to set
2705                          * this msr to 0 if tsc scaling is not enabled.
2706                          * Ignore this value as well.
2707                          */
2708                         if (data != 0 && data != svm->tsc_ratio_msr)
2709                                 return 1;
2710                         break;
2711                 }
2712
2713                 if (data & SVM_TSC_RATIO_RSVD)
2714                         return 1;
2715
2716                 svm->tsc_ratio_msr = data;
2717
2718                 if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
2719                         nested_svm_update_tsc_ratio_msr(vcpu);
2720
2721                 break;
2722         case MSR_IA32_CR_PAT:
2723                 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2724                         return 1;
2725                 vcpu->arch.pat = data;
2726                 svm->vmcb01.ptr->save.g_pat = data;
2727                 if (is_guest_mode(vcpu))
2728                         nested_vmcb02_compute_g_pat(svm);
2729                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2730                 break;
2731         case MSR_IA32_SPEC_CTRL:
2732                 if (!msr->host_initiated &&
2733                     !guest_has_spec_ctrl_msr(vcpu))
2734                         return 1;
2735
2736                 if (kvm_spec_ctrl_test_value(data))
2737                         return 1;
2738
2739                 if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2740                         svm->vmcb->save.spec_ctrl = data;
2741                 else
2742                         svm->spec_ctrl = data;
2743                 if (!data)
2744                         break;
2745
2746                 /*
2747                  * For non-nested:
2748                  * When it's written (to non-zero) for the first time, pass
2749                  * it through.
2750                  *
2751                  * For nested:
2752                  * The handling of the MSR bitmap for L2 guests is done in
2753                  * nested_svm_vmrun_msrpm.
2754                  * We update the L1 MSR bit as well since it will end up
2755                  * touching the MSR anyway now.
2756                  */
2757                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2758                 break;
2759         case MSR_IA32_PRED_CMD:
2760                 if (!msr->host_initiated &&
2761                     !guest_has_pred_cmd_msr(vcpu))
2762                         return 1;
2763
2764                 if (data & ~PRED_CMD_IBPB)
2765                         return 1;
2766                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2767                         return 1;
2768                 if (!data)
2769                         break;
2770
2771                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2772                 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2773                 break;
2774         case MSR_AMD64_VIRT_SPEC_CTRL:
2775                 if (!msr->host_initiated &&
2776                     !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2777                         return 1;
2778
2779                 if (data & ~SPEC_CTRL_SSBD)
2780                         return 1;
2781
2782                 svm->virt_spec_ctrl = data;
2783                 break;
2784         case MSR_STAR:
2785                 svm->vmcb01.ptr->save.star = data;
2786                 break;
2787 #ifdef CONFIG_X86_64
2788         case MSR_LSTAR:
2789                 svm->vmcb01.ptr->save.lstar = data;
2790                 break;
2791         case MSR_CSTAR:
2792                 svm->vmcb01.ptr->save.cstar = data;
2793                 break;
2794         case MSR_KERNEL_GS_BASE:
2795                 svm->vmcb01.ptr->save.kernel_gs_base = data;
2796                 break;
2797         case MSR_SYSCALL_MASK:
2798                 svm->vmcb01.ptr->save.sfmask = data;
2799                 break;
2800 #endif
2801         case MSR_IA32_SYSENTER_CS:
2802                 svm->vmcb01.ptr->save.sysenter_cs = data;
2803                 break;
2804         case MSR_IA32_SYSENTER_EIP:
2805                 svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
2806                 /*
2807                  * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
2808                  * when we spoof an Intel vendor ID (for cross vendor migration).
2809                  * In this case we use this intercept to track the high
2810                  * 32 bit part of these msrs to support Intel's
2811                  * implementation of SYSENTER/SYSEXIT.
2812                  */
2813                 svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2814                 break;
2815         case MSR_IA32_SYSENTER_ESP:
2816                 svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
2817                 svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
2818                 break;
2819         case MSR_TSC_AUX:
2820                 /*
2821                  * TSC_AUX is usually changed only during boot and never read
2822                  * directly.  Intercept TSC_AUX instead of exposing it to the
2823                  * guest via direct_access_msrs, and switch it via user return.
2824                  */
2825                 preempt_disable();
2826                 r = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
2827                 preempt_enable();
2828                 if (r)
2829                         return 1;
2830
2831                 svm->tsc_aux = data;
2832                 break;
2833         case MSR_IA32_DEBUGCTLMSR:
2834                 if (!lbrv) {
2835                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2836                                     __func__, data);
2837                         break;
2838                 }
2839                 if (data & DEBUGCTL_RESERVED_BITS)
2840                         return 1;
2841
2842                 svm->vmcb->save.dbgctl = data;
2843                 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2844                 if (data & (1ULL<<0))
2845                         svm_enable_lbrv(vcpu);
2846                 else
2847                         svm_disable_lbrv(vcpu);
2848                 break;
2849         case MSR_VM_HSAVE_PA:
2850                 /*
2851                  * Old kernels did not validate the value written to
2852                  * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
2853                  * value to allow live migrating buggy or malicious guests
2854                  * originating from those kernels.
2855                  */
2856                 if (!msr->host_initiated && !page_address_valid(vcpu, data))
2857                         return 1;
2858
2859                 svm->nested.hsave_msr = data & PAGE_MASK;
2860                 break;
2861         case MSR_VM_CR:
2862                 return svm_set_vm_cr(vcpu, data);
2863         case MSR_VM_IGNNE:
2864                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2865                 break;
2866         case MSR_F10H_DECFG: {
2867                 struct kvm_msr_entry msr_entry;
2868
2869                 msr_entry.index = msr->index;
2870                 if (svm_get_msr_feature(&msr_entry))
2871                         return 1;
2872
2873                 /* Check the supported bits */
2874                 if (data & ~msr_entry.data)
2875                         return 1;
2876
2877                 /* Don't allow the guest to change a bit, #GP */
2878                 if (!msr->host_initiated && (data ^ msr_entry.data))
2879                         return 1;
2880
2881                 svm->msr_decfg = data;
2882                 break;
2883         }
2884         default:
2885                 return kvm_set_msr_common(vcpu, msr);
2886         }
2887         return 0;
2888 }
2889
2890 static int msr_interception(struct kvm_vcpu *vcpu)
2891 {
2892         if (to_svm(vcpu)->vmcb->control.exit_info_1)
2893                 return kvm_emulate_wrmsr(vcpu);
2894         else
2895                 return kvm_emulate_rdmsr(vcpu);
2896 }
2897
2898 static int interrupt_window_interception(struct kvm_vcpu *vcpu)
2899 {
2900         kvm_make_request(KVM_REQ_EVENT, vcpu);
2901         svm_clear_vintr(to_svm(vcpu));
2902
2903         /*
2904          * For AVIC, the only reason to end up here is ExtINTs.
2905          * In this case AVIC was temporarily disabled for
2906          * requesting the IRQ window and we have to re-enable it.
2907          */
2908         kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
2909
2910         ++vcpu->stat.irq_window_exits;
2911         return 1;
2912 }
2913
2914 static int pause_interception(struct kvm_vcpu *vcpu)
2915 {
2916         bool in_kernel;
2917
2918         /*
2919          * CPL is not made available for an SEV-ES guest, therefore
2920          * vcpu->arch.preempted_in_kernel can never be true.  Just
2921          * set in_kernel to false as well.
2922          */
2923         in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
2924
2925         if (!kvm_pause_in_guest(vcpu->kvm))
2926                 grow_ple_window(vcpu);
2927
2928         kvm_vcpu_on_spin(vcpu, in_kernel);
2929         return kvm_skip_emulated_instruction(vcpu);
2930 }
2931
2932 static int invpcid_interception(struct kvm_vcpu *vcpu)
2933 {
2934         struct vcpu_svm *svm = to_svm(vcpu);
2935         unsigned long type;
2936         gva_t gva;
2937
2938         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
2939                 kvm_queue_exception(vcpu, UD_VECTOR);
2940                 return 1;
2941         }
2942
2943         /*
2944          * For an INVPCID intercept:
2945          * EXITINFO1 provides the linear address of the memory operand.
2946          * EXITINFO2 provides the contents of the register operand.
2947          */
2948         type = svm->vmcb->control.exit_info_2;
2949         gva = svm->vmcb->control.exit_info_1;
2950
2951         return kvm_handle_invpcid(vcpu, type, gva);
2952 }
2953
2954 static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
2955         [SVM_EXIT_READ_CR0]                     = cr_interception,
2956         [SVM_EXIT_READ_CR3]                     = cr_interception,
2957         [SVM_EXIT_READ_CR4]                     = cr_interception,
2958         [SVM_EXIT_READ_CR8]                     = cr_interception,
2959         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
2960         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
2961         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
2962         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
2963         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2964         [SVM_EXIT_READ_DR0]                     = dr_interception,
2965         [SVM_EXIT_READ_DR1]                     = dr_interception,
2966         [SVM_EXIT_READ_DR2]                     = dr_interception,
2967         [SVM_EXIT_READ_DR3]                     = dr_interception,
2968         [SVM_EXIT_READ_DR4]                     = dr_interception,
2969         [SVM_EXIT_READ_DR5]                     = dr_interception,
2970         [SVM_EXIT_READ_DR6]                     = dr_interception,
2971         [SVM_EXIT_READ_DR7]                     = dr_interception,
2972         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
2973         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
2974         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
2975         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
2976         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
2977         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
2978         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
2979         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
2980         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2981         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2982         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2983         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2984         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2985         [SVM_EXIT_EXCP_BASE + AC_VECTOR]        = ac_interception,
2986         [SVM_EXIT_EXCP_BASE + GP_VECTOR]        = gp_interception,
2987         [SVM_EXIT_INTR]                         = intr_interception,
2988         [SVM_EXIT_NMI]                          = nmi_interception,
2989         [SVM_EXIT_SMI]                          = smi_interception,
2990         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2991         [SVM_EXIT_RDPMC]                        = kvm_emulate_rdpmc,
2992         [SVM_EXIT_CPUID]                        = kvm_emulate_cpuid,
2993         [SVM_EXIT_IRET]                         = iret_interception,
2994         [SVM_EXIT_INVD]                         = kvm_emulate_invd,
2995         [SVM_EXIT_PAUSE]                        = pause_interception,
2996         [SVM_EXIT_HLT]                          = kvm_emulate_halt,
2997         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2998         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2999         [SVM_EXIT_IOIO]                         = io_interception,
3000         [SVM_EXIT_MSR]                          = msr_interception,
3001         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3002         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3003         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3004         [SVM_EXIT_VMMCALL]                      = kvm_emulate_hypercall,
3005         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3006         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3007         [SVM_EXIT_STGI]                         = stgi_interception,
3008         [SVM_EXIT_CLGI]                         = clgi_interception,
3009         [SVM_EXIT_SKINIT]                       = skinit_interception,
3010         [SVM_EXIT_RDTSCP]                       = kvm_handle_invalid_op,
3011         [SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3012         [SVM_EXIT_MONITOR]                      = kvm_emulate_monitor,
3013         [SVM_EXIT_MWAIT]                        = kvm_emulate_mwait,
3014         [SVM_EXIT_XSETBV]                       = kvm_emulate_xsetbv,
3015         [SVM_EXIT_RDPRU]                        = kvm_handle_invalid_op,
3016         [SVM_EXIT_EFER_WRITE_TRAP]              = efer_trap,
3017         [SVM_EXIT_CR0_WRITE_TRAP]               = cr_trap,
3018         [SVM_EXIT_CR4_WRITE_TRAP]               = cr_trap,
3019         [SVM_EXIT_CR8_WRITE_TRAP]               = cr_trap,
3020         [SVM_EXIT_INVPCID]                      = invpcid_interception,
3021         [SVM_EXIT_NPF]                          = npf_interception,
3022         [SVM_EXIT_RSM]                          = rsm_interception,
3023         [SVM_EXIT_AVIC_INCOMPLETE_IPI]          = avic_incomplete_ipi_interception,
3024         [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]    = avic_unaccelerated_access_interception,
3025         [SVM_EXIT_VMGEXIT]                      = sev_handle_vmgexit,
3026 };
3027
3028 static void dump_vmcb(struct kvm_vcpu *vcpu)
3029 {
3030         struct vcpu_svm *svm = to_svm(vcpu);
3031         struct vmcb_control_area *control = &svm->vmcb->control;
3032         struct vmcb_save_area *save = &svm->vmcb->save;
3033         struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3034
3035         if (!dump_invalid_vmcb) {
3036                 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3037                 return;
3038         }
3039
3040         pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3041                svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3042         pr_err("VMCB Control Area:\n");
3043         pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3044         pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3045         pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3046         pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3047         pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3048         pr_err("%-20s%08x %08x\n", "intercepts:",
3049               control->intercepts[INTERCEPT_WORD3],
3050                control->intercepts[INTERCEPT_WORD4]);
3051         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3052         pr_err("%-20s%d\n", "pause filter threshold:",
3053                control->pause_filter_thresh);
3054         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3055         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3056         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3057         pr_err("%-20s%d\n", "asid:", control->asid);
3058         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3059         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3060         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3061         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3062         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3063         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3064         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3065         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3066         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3067         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3068         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3069         pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3070         pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3071         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3072         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3073         pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3074         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3075         pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3076         pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3077         pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3078         pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3079         pr_err("VMCB State Save Area:\n");
3080         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3081                "es:",
3082                save->es.selector, save->es.attrib,
3083                save->es.limit, save->es.base);
3084         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3085                "cs:",
3086                save->cs.selector, save->cs.attrib,
3087                save->cs.limit, save->cs.base);
3088         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3089                "ss:",
3090                save->ss.selector, save->ss.attrib,
3091                save->ss.limit, save->ss.base);
3092         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3093                "ds:",
3094                save->ds.selector, save->ds.attrib,
3095                save->ds.limit, save->ds.base);
3096         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3097                "fs:",
3098                save01->fs.selector, save01->fs.attrib,
3099                save01->fs.limit, save01->fs.base);
3100         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3101                "gs:",
3102                save01->gs.selector, save01->gs.attrib,
3103                save01->gs.limit, save01->gs.base);
3104         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3105                "gdtr:",
3106                save->gdtr.selector, save->gdtr.attrib,
3107                save->gdtr.limit, save->gdtr.base);
3108         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3109                "ldtr:",
3110                save01->ldtr.selector, save01->ldtr.attrib,
3111                save01->ldtr.limit, save01->ldtr.base);
3112         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3113                "idtr:",
3114                save->idtr.selector, save->idtr.attrib,
3115                save->idtr.limit, save->idtr.base);
3116         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3117                "tr:",
3118                save01->tr.selector, save01->tr.attrib,
3119                save01->tr.limit, save01->tr.base);
3120         pr_err("cpl:            %d                efer:         %016llx\n",
3121                 save->cpl, save->efer);
3122         pr_err("%-15s %016llx %-13s %016llx\n",
3123                "cr0:", save->cr0, "cr2:", save->cr2);
3124         pr_err("%-15s %016llx %-13s %016llx\n",
3125                "cr3:", save->cr3, "cr4:", save->cr4);
3126         pr_err("%-15s %016llx %-13s %016llx\n",
3127                "dr6:", save->dr6, "dr7:", save->dr7);
3128         pr_err("%-15s %016llx %-13s %016llx\n",
3129                "rip:", save->rip, "rflags:", save->rflags);
3130         pr_err("%-15s %016llx %-13s %016llx\n",
3131                "rsp:", save->rsp, "rax:", save->rax);
3132         pr_err("%-15s %016llx %-13s %016llx\n",
3133                "star:", save01->star, "lstar:", save01->lstar);
3134         pr_err("%-15s %016llx %-13s %016llx\n",
3135                "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3136         pr_err("%-15s %016llx %-13s %016llx\n",
3137                "kernel_gs_base:", save01->kernel_gs_base,
3138                "sysenter_cs:", save01->sysenter_cs);
3139         pr_err("%-15s %016llx %-13s %016llx\n",
3140                "sysenter_esp:", save01->sysenter_esp,
3141                "sysenter_eip:", save01->sysenter_eip);
3142         pr_err("%-15s %016llx %-13s %016llx\n",
3143                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3144         pr_err("%-15s %016llx %-13s %016llx\n",
3145                "br_from:", save->br_from, "br_to:", save->br_to);
3146         pr_err("%-15s %016llx %-13s %016llx\n",
3147                "excp_from:", save->last_excp_from,
3148                "excp_to:", save->last_excp_to);
3149 }
3150
3151 static bool svm_check_exit_valid(u64 exit_code)
3152 {
3153         return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3154                 svm_exit_handlers[exit_code]);
3155 }
3156
3157 static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3158 {
3159         vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3160         dump_vmcb(vcpu);
3161         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3162         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3163         vcpu->run->internal.ndata = 2;
3164         vcpu->run->internal.data[0] = exit_code;
3165         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3166         return 0;
3167 }
3168
3169 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3170 {
3171         if (!svm_check_exit_valid(exit_code))
3172                 return svm_handle_invalid_exit(vcpu, exit_code);
3173
3174 #ifdef CONFIG_RETPOLINE
3175         if (exit_code == SVM_EXIT_MSR)
3176                 return msr_interception(vcpu);
3177         else if (exit_code == SVM_EXIT_VINTR)
3178                 return interrupt_window_interception(vcpu);
3179         else if (exit_code == SVM_EXIT_INTR)
3180                 return intr_interception(vcpu);
3181         else if (exit_code == SVM_EXIT_HLT)
3182                 return kvm_emulate_halt(vcpu);
3183         else if (exit_code == SVM_EXIT_NPF)
3184                 return npf_interception(vcpu);
3185 #endif
3186         return svm_exit_handlers[exit_code](vcpu);
3187 }
3188
3189 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3190                               u64 *info1, u64 *info2,
3191                               u32 *intr_info, u32 *error_code)
3192 {
3193         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3194
3195         *reason = control->exit_code;
3196         *info1 = control->exit_info_1;
3197         *info2 = control->exit_info_2;
3198         *intr_info = control->exit_int_info;
3199         if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3200             (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3201                 *error_code = control->exit_int_info_err;
3202         else
3203                 *error_code = 0;
3204 }
3205
3206 static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3207 {
3208         struct vcpu_svm *svm = to_svm(vcpu);
3209         struct kvm_run *kvm_run = vcpu->run;
3210         u32 exit_code = svm->vmcb->control.exit_code;
3211
3212         trace_kvm_exit(vcpu, KVM_ISA_SVM);
3213
3214         /* SEV-ES guests must use the CR write traps to track CR registers. */
3215         if (!sev_es_guest(vcpu->kvm)) {
3216                 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3217                         vcpu->arch.cr0 = svm->vmcb->save.cr0;
3218                 if (npt_enabled)
3219                         vcpu->arch.cr3 = svm->vmcb->save.cr3;
3220         }
3221
3222         if (is_guest_mode(vcpu)) {
3223                 int vmexit;
3224
3225                 trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3226
3227                 vmexit = nested_svm_exit_special(svm);
3228
3229                 if (vmexit == NESTED_EXIT_CONTINUE)
3230                         vmexit = nested_svm_exit_handled(svm);
3231
3232                 if (vmexit == NESTED_EXIT_DONE)
3233                         return 1;
3234         }
3235
3236         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3237                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3238                 kvm_run->fail_entry.hardware_entry_failure_reason
3239                         = svm->vmcb->control.exit_code;
3240                 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3241                 dump_vmcb(vcpu);
3242                 return 0;
3243         }
3244
3245         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3246             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3247             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3248             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3249                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3250                        "exit_code 0x%x\n",
3251                        __func__, svm->vmcb->control.exit_int_info,
3252                        exit_code);
3253
3254         if (exit_fastpath != EXIT_FASTPATH_NONE)
3255                 return 1;
3256
3257         return svm_invoke_exit_handler(vcpu, exit_code);
3258 }
3259
3260 static void reload_tss(struct kvm_vcpu *vcpu)
3261 {
3262         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3263
3264         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3265         load_TR_desc();
3266 }
3267
3268 static void pre_svm_run(struct kvm_vcpu *vcpu)
3269 {
3270         struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3271         struct vcpu_svm *svm = to_svm(vcpu);
3272
3273         /*
3274          * If the previous vmrun of the vmcb occurred on a different physical
3275          * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3276          * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3277          */
3278         if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3279                 svm->current_vmcb->asid_generation = 0;
3280                 vmcb_mark_all_dirty(svm->vmcb);
3281                 svm->current_vmcb->cpu = vcpu->cpu;
3282         }
3283
3284         if (sev_guest(vcpu->kvm))
3285                 return pre_sev_run(svm, vcpu->cpu);
3286
3287         /* FIXME: handle wraparound of asid_generation */
3288         if (svm->current_vmcb->asid_generation != sd->asid_generation)
3289                 new_asid(svm, sd);
3290 }
3291
3292 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3293 {
3294         struct vcpu_svm *svm = to_svm(vcpu);
3295
3296         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3297         vcpu->arch.hflags |= HF_NMI_MASK;
3298         if (!sev_es_guest(vcpu->kvm))
3299                 svm_set_intercept(svm, INTERCEPT_IRET);
3300         ++vcpu->stat.nmi_injections;
3301 }
3302
3303 static void svm_inject_irq(struct kvm_vcpu *vcpu)
3304 {
3305         struct vcpu_svm *svm = to_svm(vcpu);
3306
3307         BUG_ON(!(gif_set(svm)));
3308
3309         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3310         ++vcpu->stat.irq_injections;
3311
3312         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3313                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3314 }
3315
3316 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3317                                      int trig_mode, int vector)
3318 {
3319         /*
3320          * vcpu->arch.apicv_active must be read after vcpu->mode.
3321          * Pairs with smp_store_release in vcpu_enter_guest.
3322          */
3323         bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3324
3325         if (!READ_ONCE(vcpu->arch.apicv_active)) {
3326                 /* Process the interrupt via inject_pending_event */
3327                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3328                 kvm_vcpu_kick(vcpu);
3329                 return;
3330         }
3331
3332         trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3333         if (in_guest_mode) {
3334                 /*
3335                  * Signal the doorbell to tell hardware to inject the IRQ.  If
3336                  * the vCPU exits the guest before the doorbell chimes, hardware
3337                  * will automatically process AVIC interrupts at the next VMRUN.
3338                  */
3339                 avic_ring_doorbell(vcpu);
3340         } else {
3341                 /*
3342                  * Wake the vCPU if it was blocking.  KVM will then detect the
3343                  * pending IRQ when checking if the vCPU has a wake event.
3344                  */
3345                 kvm_vcpu_wake_up(vcpu);
3346         }
3347 }
3348
3349 static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3350                                   int trig_mode, int vector)
3351 {
3352         kvm_lapic_set_irr(vector, apic);
3353
3354         /*
3355          * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3356          * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3357          * the read of guest_mode.  This guarantees that either VMRUN will see
3358          * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3359          * will signal the doorbell if the CPU has already entered the guest.
3360          */
3361         smp_mb__after_atomic();
3362         svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3363 }
3364
3365 static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3366 {
3367         struct vcpu_svm *svm = to_svm(vcpu);
3368
3369         /*
3370          * SEV-ES guests must always keep the CR intercepts cleared. CR
3371          * tracking is done using the CR write traps.
3372          */
3373         if (sev_es_guest(vcpu->kvm))
3374                 return;
3375
3376         if (nested_svm_virtualize_tpr(vcpu))
3377                 return;
3378
3379         svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3380
3381         if (irr == -1)
3382                 return;
3383
3384         if (tpr >= irr)
3385                 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3386 }
3387
3388 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3389 {
3390         struct vcpu_svm *svm = to_svm(vcpu);
3391         struct vmcb *vmcb = svm->vmcb;
3392         bool ret;
3393
3394         if (!gif_set(svm))
3395                 return true;
3396
3397         if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3398                 return false;
3399
3400         ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3401               (vcpu->arch.hflags & HF_NMI_MASK);
3402
3403         return ret;
3404 }
3405
3406 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3407 {
3408         struct vcpu_svm *svm = to_svm(vcpu);
3409         if (svm->nested.nested_run_pending)
3410                 return -EBUSY;
3411
3412         if (svm_nmi_blocked(vcpu))
3413                 return 0;
3414
3415         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3416         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3417                 return -EBUSY;
3418         return 1;
3419 }
3420
3421 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3422 {
3423         return !!(vcpu->arch.hflags & HF_NMI_MASK);
3424 }
3425
3426 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3427 {
3428         struct vcpu_svm *svm = to_svm(vcpu);
3429
3430         if (masked) {
3431                 vcpu->arch.hflags |= HF_NMI_MASK;
3432                 if (!sev_es_guest(vcpu->kvm))
3433                         svm_set_intercept(svm, INTERCEPT_IRET);
3434         } else {
3435                 vcpu->arch.hflags &= ~HF_NMI_MASK;
3436                 if (!sev_es_guest(vcpu->kvm))
3437                         svm_clr_intercept(svm, INTERCEPT_IRET);
3438         }
3439 }
3440
3441 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3442 {
3443         struct vcpu_svm *svm = to_svm(vcpu);
3444         struct vmcb *vmcb = svm->vmcb;
3445
3446         if (!gif_set(svm))
3447                 return true;
3448
3449         if (is_guest_mode(vcpu)) {
3450                 /* As long as interrupts are being delivered...  */
3451                 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3452                     ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3453                     : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3454                         return true;
3455
3456                 /* ... vmexits aren't blocked by the interrupt shadow  */
3457                 if (nested_exit_on_intr(svm))
3458                         return false;
3459         } else {
3460                 if (!svm_get_if_flag(vcpu))
3461                         return true;
3462         }
3463
3464         return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3465 }
3466
3467 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3468 {
3469         struct vcpu_svm *svm = to_svm(vcpu);
3470
3471         if (svm->nested.nested_run_pending)
3472                 return -EBUSY;
3473
3474         if (svm_interrupt_blocked(vcpu))
3475                 return 0;
3476
3477         /*
3478          * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3479          * e.g. if the IRQ arrived asynchronously after checking nested events.
3480          */
3481         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3482                 return -EBUSY;
3483
3484         return 1;
3485 }
3486
3487 static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3488 {
3489         struct vcpu_svm *svm = to_svm(vcpu);
3490
3491         /*
3492          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3493          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3494          * get that intercept, this function will be called again though and
3495          * we'll get the vintr intercept. However, if the vGIF feature is
3496          * enabled, the STGI interception will not occur. Enable the irq
3497          * window under the assumption that the hardware will set the GIF.
3498          */
3499         if (vgif_enabled(svm) || gif_set(svm)) {
3500                 /*
3501                  * IRQ window is not needed when AVIC is enabled,
3502                  * unless we have pending ExtINT since it cannot be injected
3503                  * via AVIC. In such case, we need to temporarily disable AVIC,
3504                  * and fallback to injecting IRQ via V_IRQ.
3505                  */
3506                 kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3507                 svm_set_vintr(svm);
3508         }
3509 }
3510
3511 static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3512 {
3513         struct vcpu_svm *svm = to_svm(vcpu);
3514
3515         if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
3516                 return; /* IRET will cause a vm exit */
3517
3518         if (!gif_set(svm)) {
3519                 if (vgif_enabled(svm))
3520                         svm_set_intercept(svm, INTERCEPT_STGI);
3521                 return; /* STGI will cause a vm exit */
3522         }
3523
3524         /*
3525          * Something prevents NMI from been injected. Single step over possible
3526          * problem (IRET or exception injection or interrupt shadow)
3527          */
3528         svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3529         svm->nmi_singlestep = true;
3530         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3531 }
3532
3533 static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3534 {
3535         struct vcpu_svm *svm = to_svm(vcpu);
3536
3537         /*
3538          * Flush only the current ASID even if the TLB flush was invoked via
3539          * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3540          * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3541          * unconditionally does a TLB flush on both nested VM-Enter and nested
3542          * VM-Exit (via kvm_mmu_reset_context()).
3543          */
3544         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3545                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3546         else
3547                 svm->current_vmcb->asid_generation--;
3548 }
3549
3550 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3551 {
3552         struct vcpu_svm *svm = to_svm(vcpu);
3553
3554         invlpga(gva, svm->vmcb->control.asid);
3555 }
3556
3557 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3558 {
3559         struct vcpu_svm *svm = to_svm(vcpu);
3560
3561         if (nested_svm_virtualize_tpr(vcpu))
3562                 return;
3563
3564         if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3565                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3566                 kvm_set_cr8(vcpu, cr8);
3567         }
3568 }
3569
3570 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3571 {
3572         struct vcpu_svm *svm = to_svm(vcpu);
3573         u64 cr8;
3574
3575         if (nested_svm_virtualize_tpr(vcpu) ||
3576             kvm_vcpu_apicv_active(vcpu))
3577                 return;
3578
3579         cr8 = kvm_get_cr8(vcpu);
3580         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3581         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3582 }
3583
3584 static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
3585 {
3586         struct vcpu_svm *svm = to_svm(vcpu);
3587         u8 vector;
3588         int type;
3589         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3590         unsigned int3_injected = svm->int3_injected;
3591
3592         svm->int3_injected = 0;
3593
3594         /*
3595          * If we've made progress since setting HF_IRET_MASK, we've
3596          * executed an IRET and can allow NMI injection.
3597          */
3598         if ((vcpu->arch.hflags & HF_IRET_MASK) &&
3599             (sev_es_guest(vcpu->kvm) ||
3600              kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
3601                 vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3602                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3603         }
3604
3605         vcpu->arch.nmi_injected = false;
3606         kvm_clear_exception_queue(vcpu);
3607         kvm_clear_interrupt_queue(vcpu);
3608
3609         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3610                 return;
3611
3612         kvm_make_request(KVM_REQ_EVENT, vcpu);
3613
3614         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3615         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3616
3617         switch (type) {
3618         case SVM_EXITINTINFO_TYPE_NMI:
3619                 vcpu->arch.nmi_injected = true;
3620                 break;
3621         case SVM_EXITINTINFO_TYPE_EXEPT:
3622                 /*
3623                  * Never re-inject a #VC exception.
3624                  */
3625                 if (vector == X86_TRAP_VC)
3626                         break;
3627
3628                 /*
3629                  * In case of software exceptions, do not reinject the vector,
3630                  * but re-execute the instruction instead. Rewind RIP first
3631                  * if we emulated INT3 before.
3632                  */
3633                 if (kvm_exception_is_soft(vector)) {
3634                         if (vector == BP_VECTOR && int3_injected &&
3635                             kvm_is_linear_rip(vcpu, svm->int3_rip))
3636                                 kvm_rip_write(vcpu,
3637                                               kvm_rip_read(vcpu) - int3_injected);
3638                         break;
3639                 }
3640                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3641                         u32 err = svm->vmcb->control.exit_int_info_err;
3642                         kvm_requeue_exception_e(vcpu, vector, err);
3643
3644                 } else
3645                         kvm_requeue_exception(vcpu, vector);
3646                 break;
3647         case SVM_EXITINTINFO_TYPE_INTR:
3648                 kvm_queue_interrupt(vcpu, vector, false);
3649                 break;
3650         default:
3651                 break;
3652         }
3653 }
3654
3655 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3656 {
3657         struct vcpu_svm *svm = to_svm(vcpu);
3658         struct vmcb_control_area *control = &svm->vmcb->control;
3659
3660         control->exit_int_info = control->event_inj;
3661         control->exit_int_info_err = control->event_inj_err;
3662         control->event_inj = 0;
3663         svm_complete_interrupts(vcpu);
3664 }
3665
3666 static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
3667 {
3668         return 1;
3669 }
3670
3671 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3672 {
3673         if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3674             to_svm(vcpu)->vmcb->control.exit_info_1)
3675                 return handle_fastpath_set_msr_irqoff(vcpu);
3676
3677         return EXIT_FASTPATH_NONE;
3678 }
3679
3680 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
3681 {
3682         struct vcpu_svm *svm = to_svm(vcpu);
3683         unsigned long vmcb_pa = svm->current_vmcb->pa;
3684
3685         guest_state_enter_irqoff();
3686
3687         if (sev_es_guest(vcpu->kvm)) {
3688                 __svm_sev_es_vcpu_run(vmcb_pa);
3689         } else {
3690                 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3691
3692                 /*
3693                  * Use a single vmcb (vmcb01 because it's always valid) for
3694                  * context switching guest state via VMLOAD/VMSAVE, that way
3695                  * the state doesn't need to be copied between vmcb01 and
3696                  * vmcb02 when switching vmcbs for nested virtualization.
3697                  */
3698                 vmload(svm->vmcb01.pa);
3699                 __svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
3700                 vmsave(svm->vmcb01.pa);
3701
3702                 vmload(__sme_page_pa(sd->save_area));
3703         }
3704
3705         guest_state_exit_irqoff();
3706 }
3707
3708 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3709 {
3710         struct vcpu_svm *svm = to_svm(vcpu);
3711
3712         trace_kvm_entry(vcpu);
3713
3714         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3715         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3716         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3717
3718         /*
3719          * Disable singlestep if we're injecting an interrupt/exception.
3720          * We don't want our modified rflags to be pushed on the stack where
3721          * we might not be able to easily reset them if we disabled NMI
3722          * singlestep later.
3723          */
3724         if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3725                 /*
3726                  * Event injection happens before external interrupts cause a
3727                  * vmexit and interrupts are disabled here, so smp_send_reschedule
3728                  * is enough to force an immediate vmexit.
3729                  */
3730                 disable_nmi_singlestep(svm);
3731                 smp_send_reschedule(vcpu->cpu);
3732         }
3733
3734         pre_svm_run(vcpu);
3735
3736         sync_lapic_to_cr8(vcpu);
3737
3738         if (unlikely(svm->asid != svm->vmcb->control.asid)) {
3739                 svm->vmcb->control.asid = svm->asid;
3740                 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3741         }
3742         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3743
3744         svm_hv_update_vp_id(svm->vmcb, vcpu);
3745
3746         /*
3747          * Run with all-zero DR6 unless needed, so that we can get the exact cause
3748          * of a #DB.
3749          */
3750         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3751                 svm_set_dr6(svm, vcpu->arch.dr6);
3752         else
3753                 svm_set_dr6(svm, DR6_ACTIVE_LOW);
3754
3755         clgi();
3756         kvm_load_guest_xsave_state(vcpu);
3757
3758         kvm_wait_lapic_expire(vcpu);
3759
3760         /*
3761          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3762          * it's non-zero. Since vmentry is serialising on affected CPUs, there
3763          * is no need to worry about the conditional branch over the wrmsr
3764          * being speculatively taken.
3765          */
3766         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3767                 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3768
3769         svm_vcpu_enter_exit(vcpu);
3770
3771         /*
3772          * We do not use IBRS in the kernel. If this vCPU has used the
3773          * SPEC_CTRL MSR it may have left it on; save the value and
3774          * turn it off. This is much more efficient than blindly adding
3775          * it to the atomic save/restore list. Especially as the former
3776          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3777          *
3778          * For non-nested case:
3779          * If the L01 MSR bitmap does not intercept the MSR, then we need to
3780          * save it.
3781          *
3782          * For nested case:
3783          * If the L02 MSR bitmap does not intercept the MSR, then we need to
3784          * save it.
3785          */
3786         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
3787             unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3788                 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3789
3790         if (!sev_es_guest(vcpu->kvm))
3791                 reload_tss(vcpu);
3792
3793         if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3794                 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3795
3796         if (!sev_es_guest(vcpu->kvm)) {
3797                 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3798                 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3799                 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3800                 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3801         }
3802         vcpu->arch.regs_dirty = 0;
3803
3804         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3805                 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
3806
3807         kvm_load_host_xsave_state(vcpu);
3808         stgi();
3809
3810         /* Any pending NMI will happen here */
3811
3812         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3813                 kvm_after_interrupt(vcpu);
3814
3815         sync_cr8_to_lapic(vcpu);
3816
3817         svm->next_rip = 0;
3818         if (is_guest_mode(vcpu)) {
3819                 nested_sync_control_from_vmcb02(svm);
3820
3821                 /* Track VMRUNs that have made past consistency checking */
3822                 if (svm->nested.nested_run_pending &&
3823                     svm->vmcb->control.exit_code != SVM_EXIT_ERR)
3824                         ++vcpu->stat.nested_run;
3825
3826                 svm->nested.nested_run_pending = 0;
3827         }
3828
3829         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3830         vmcb_mark_all_clean(svm->vmcb);
3831
3832         /* if exit due to PF check for async PF */
3833         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3834                 vcpu->arch.apf.host_apf_flags =
3835                         kvm_read_and_reset_apf_flags();
3836
3837         vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
3838
3839         /*
3840          * We need to handle MC intercepts here before the vcpu has a chance to
3841          * change the physical cpu
3842          */
3843         if (unlikely(svm->vmcb->control.exit_code ==
3844                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3845                 svm_handle_mce(vcpu);
3846
3847         svm_complete_interrupts(vcpu);
3848
3849         if (is_guest_mode(vcpu))
3850                 return EXIT_FASTPATH_NONE;
3851
3852         return svm_exit_handlers_fastpath(vcpu);
3853 }
3854
3855 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3856                              int root_level)
3857 {
3858         struct vcpu_svm *svm = to_svm(vcpu);
3859         unsigned long cr3;
3860
3861         if (npt_enabled) {
3862                 svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
3863                 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3864
3865                 hv_track_root_tdp(vcpu, root_hpa);
3866
3867                 cr3 = vcpu->arch.cr3;
3868         } else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3869                 cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
3870         } else {
3871                 /* PCID in the guest should be impossible with a 32-bit MMU. */
3872                 WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
3873                 cr3 = root_hpa;
3874         }
3875
3876         svm->vmcb->save.cr3 = cr3;
3877         vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3878 }
3879
3880 static int is_disabled(void)
3881 {
3882         u64 vm_cr;
3883
3884         rdmsrl(MSR_VM_CR, vm_cr);
3885         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3886                 return 1;
3887
3888         return 0;
3889 }
3890
3891 static void
3892 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3893 {
3894         /*
3895          * Patch in the VMMCALL instruction:
3896          */
3897         hypercall[0] = 0x0f;
3898         hypercall[1] = 0x01;
3899         hypercall[2] = 0xd9;
3900 }
3901
3902 static int __init svm_check_processor_compat(void)
3903 {
3904         return 0;
3905 }
3906
3907 /*
3908  * The kvm parameter can be NULL (module initialization, or invocation before
3909  * VM creation). Be sure to check the kvm parameter before using it.
3910  */
3911 static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
3912 {
3913         switch (index) {
3914         case MSR_IA32_MCG_EXT_CTL:
3915         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3916                 return false;
3917         case MSR_IA32_SMBASE:
3918                 /* SEV-ES guests do not support SMM, so report false */
3919                 if (kvm && sev_es_guest(kvm))
3920                         return false;
3921                 break;
3922         default:
3923                 break;
3924         }
3925
3926         return true;
3927 }
3928
3929 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3930 {
3931         return 0;
3932 }
3933
3934 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3935 {
3936         struct vcpu_svm *svm = to_svm(vcpu);
3937         struct kvm_cpuid_entry2 *best;
3938         struct kvm *kvm = vcpu->kvm;
3939
3940         vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3941                                     boot_cpu_has(X86_FEATURE_XSAVE) &&
3942                                     boot_cpu_has(X86_FEATURE_XSAVES);
3943
3944         /* Update nrips enabled cache */
3945         svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3946                              guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
3947
3948         svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
3949
3950         svm_recalc_instruction_intercepts(vcpu, svm);
3951
3952         /* For sev guests, the memory encryption bit is not reserved in CR3.  */
3953         if (sev_guest(vcpu->kvm)) {
3954                 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
3955                 if (best)
3956                         vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
3957         }
3958
3959         if (kvm_vcpu_apicv_active(vcpu)) {
3960                 /*
3961                  * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3962                  * is exposed to the guest, disable AVIC.
3963                  */
3964                 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3965                         kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_X2APIC);
3966
3967                 /*
3968                  * Currently, AVIC does not work with nested virtualization.
3969                  * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3970                  */
3971                 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3972                         kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_NESTED);
3973         }
3974         init_vmcb_after_set_cpuid(vcpu);
3975 }
3976
3977 static bool svm_has_wbinvd_exit(void)
3978 {
3979         return true;
3980 }
3981
3982 #define PRE_EX(exit)  { .exit_code = (exit), \
3983                         .stage = X86_ICPT_PRE_EXCEPT, }
3984 #define POST_EX(exit) { .exit_code = (exit), \
3985                         .stage = X86_ICPT_POST_EXCEPT, }
3986 #define POST_MEM(exit) { .exit_code = (exit), \
3987                         .stage = X86_ICPT_POST_MEMACCESS, }
3988
3989 static const struct __x86_intercept {
3990         u32 exit_code;
3991         enum x86_intercept_stage stage;
3992 } x86_intercept_map[] = {
3993         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
3994         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
3995         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
3996         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
3997         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
3998         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
3999         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4000         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4001         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4002         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4003         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4004         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4005         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4006         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4007         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4008         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4009         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4010         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4011         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4012         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4013         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4014         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4015         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4016         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4017         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4018         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4019         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4020         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4021         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4022         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4023         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4024         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4025         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4026         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4027         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4028         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4029         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4030         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4031         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4032         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4033         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4034         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4035         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4036         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4037         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4038         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4039         [x86_intercept_xsetbv]          = PRE_EX(SVM_EXIT_XSETBV),
4040 };
4041
4042 #undef PRE_EX
4043 #undef POST_EX
4044 #undef POST_MEM
4045
4046 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4047                                struct x86_instruction_info *info,
4048                                enum x86_intercept_stage stage,
4049                                struct x86_exception *exception)
4050 {
4051         struct vcpu_svm *svm = to_svm(vcpu);
4052         int vmexit, ret = X86EMUL_CONTINUE;
4053         struct __x86_intercept icpt_info;
4054         struct vmcb *vmcb = svm->vmcb;
4055
4056         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4057                 goto out;
4058
4059         icpt_info = x86_intercept_map[info->intercept];
4060
4061         if (stage != icpt_info.stage)
4062                 goto out;
4063
4064         switch (icpt_info.exit_code) {
4065         case SVM_EXIT_READ_CR0:
4066                 if (info->intercept == x86_intercept_cr_read)
4067                         icpt_info.exit_code += info->modrm_reg;
4068                 break;
4069         case SVM_EXIT_WRITE_CR0: {
4070                 unsigned long cr0, val;
4071
4072                 if (info->intercept == x86_intercept_cr_write)
4073                         icpt_info.exit_code += info->modrm_reg;
4074
4075                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4076                     info->intercept == x86_intercept_clts)
4077                         break;
4078
4079                 if (!(vmcb12_is_intercept(&svm->nested.ctl,
4080                                         INTERCEPT_SELECTIVE_CR0)))
4081                         break;
4082
4083                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4084                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4085
4086                 if (info->intercept == x86_intercept_lmsw) {
4087                         cr0 &= 0xfUL;
4088                         val &= 0xfUL;
4089                         /* lmsw can't clear PE - catch this here */
4090                         if (cr0 & X86_CR0_PE)
4091                                 val |= X86_CR0_PE;
4092                 }
4093
4094                 if (cr0 ^ val)
4095                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4096
4097                 break;
4098         }
4099         case SVM_EXIT_READ_DR0:
4100         case SVM_EXIT_WRITE_DR0:
4101                 icpt_info.exit_code += info->modrm_reg;
4102                 break;
4103         case SVM_EXIT_MSR:
4104                 if (info->intercept == x86_intercept_wrmsr)
4105                         vmcb->control.exit_info_1 = 1;
4106                 else
4107                         vmcb->control.exit_info_1 = 0;
4108                 break;
4109         case SVM_EXIT_PAUSE:
4110                 /*
4111                  * We get this for NOP only, but pause
4112                  * is rep not, check this here
4113                  */
4114                 if (info->rep_prefix != REPE_PREFIX)
4115                         goto out;
4116                 break;
4117         case SVM_EXIT_IOIO: {
4118                 u64 exit_info;
4119                 u32 bytes;
4120
4121                 if (info->intercept == x86_intercept_in ||
4122                     info->intercept == x86_intercept_ins) {
4123                         exit_info = ((info->src_val & 0xffff) << 16) |
4124                                 SVM_IOIO_TYPE_MASK;
4125                         bytes = info->dst_bytes;
4126                 } else {
4127                         exit_info = (info->dst_val & 0xffff) << 16;
4128                         bytes = info->src_bytes;
4129                 }
4130
4131                 if (info->intercept == x86_intercept_outs ||
4132                     info->intercept == x86_intercept_ins)
4133                         exit_info |= SVM_IOIO_STR_MASK;
4134
4135                 if (info->rep_prefix)
4136                         exit_info |= SVM_IOIO_REP_MASK;
4137
4138                 bytes = min(bytes, 4u);
4139
4140                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4141
4142                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4143
4144                 vmcb->control.exit_info_1 = exit_info;
4145                 vmcb->control.exit_info_2 = info->next_rip;
4146
4147                 break;
4148         }
4149         default:
4150                 break;
4151         }
4152
4153         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4154         if (static_cpu_has(X86_FEATURE_NRIPS))
4155                 vmcb->control.next_rip  = info->next_rip;
4156         vmcb->control.exit_code = icpt_info.exit_code;
4157         vmexit = nested_svm_exit_handled(svm);
4158
4159         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4160                                            : X86EMUL_CONTINUE;
4161
4162 out:
4163         return ret;
4164 }
4165
4166 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4167 {
4168 }
4169
4170 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4171 {
4172         if (!kvm_pause_in_guest(vcpu->kvm))
4173                 shrink_ple_window(vcpu);
4174 }
4175
4176 static void svm_setup_mce(struct kvm_vcpu *vcpu)
4177 {
4178         /* [63:9] are reserved. */
4179         vcpu->arch.mcg_cap &= 0x1ff;
4180 }
4181
4182 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4183 {
4184         struct vcpu_svm *svm = to_svm(vcpu);
4185
4186         /* Per APM Vol.2 15.22.2 "Response to SMI" */
4187         if (!gif_set(svm))
4188                 return true;
4189
4190         return is_smm(vcpu);
4191 }
4192
4193 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4194 {
4195         struct vcpu_svm *svm = to_svm(vcpu);
4196         if (svm->nested.nested_run_pending)
4197                 return -EBUSY;
4198
4199         if (svm_smi_blocked(vcpu))
4200                 return 0;
4201
4202         /* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4203         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4204                 return -EBUSY;
4205
4206         return 1;
4207 }
4208
4209 static int svm_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4210 {
4211         struct vcpu_svm *svm = to_svm(vcpu);
4212         struct kvm_host_map map_save;
4213         int ret;
4214
4215         if (!is_guest_mode(vcpu))
4216                 return 0;
4217
4218         /* FED8h - SVM Guest */
4219         put_smstate(u64, smstate, 0x7ed8, 1);
4220         /* FEE0h - SVM Guest VMCB Physical Address */
4221         put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4222
4223         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4224         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4225         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4226
4227         ret = nested_svm_vmexit(svm);
4228         if (ret)
4229                 return ret;
4230
4231         /*
4232          * KVM uses VMCB01 to store L1 host state while L2 runs but
4233          * VMCB01 is going to be used during SMM and thus the state will
4234          * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4235          * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4236          * format of the area is identical to guest save area offsetted
4237          * by 0x400 (matches the offset of 'struct vmcb_save_area'
4238          * within 'struct vmcb'). Note: HSAVE area may also be used by
4239          * L1 hypervisor to save additional host context (e.g. KVM does
4240          * that, see svm_prepare_switch_to_guest()) which must be
4241          * preserved.
4242          */
4243         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr),
4244                          &map_save) == -EINVAL)
4245                 return 1;
4246
4247         BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4248
4249         svm_copy_vmrun_state(map_save.hva + 0x400,
4250                              &svm->vmcb01.ptr->save);
4251
4252         kvm_vcpu_unmap(vcpu, &map_save, true);
4253         return 0;
4254 }
4255
4256 static int svm_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4257 {
4258         struct vcpu_svm *svm = to_svm(vcpu);
4259         struct kvm_host_map map, map_save;
4260         u64 saved_efer, vmcb12_gpa;
4261         struct vmcb *vmcb12;
4262         int ret;
4263
4264         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4265                 return 0;
4266
4267         /* Non-zero if SMI arrived while vCPU was in guest mode. */
4268         if (!GET_SMSTATE(u64, smstate, 0x7ed8))
4269                 return 0;
4270
4271         if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4272                 return 1;
4273
4274         saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4275         if (!(saved_efer & EFER_SVME))
4276                 return 1;
4277
4278         vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4279         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4280                 return 1;
4281
4282         ret = 1;
4283         if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save) == -EINVAL)
4284                 goto unmap_map;
4285
4286         if (svm_allocate_nested(svm))
4287                 goto unmap_save;
4288
4289         /*
4290          * Restore L1 host state from L1 HSAVE area as VMCB01 was
4291          * used during SMM (see svm_enter_smm())
4292          */
4293
4294         svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4295
4296         /*
4297          * Enter the nested guest now
4298          */
4299
4300         vmcb_mark_all_dirty(svm->vmcb01.ptr);
4301
4302         vmcb12 = map.hva;
4303         nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4304         nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4305         ret = enter_svm_guest_mode(vcpu, vmcb12_gpa, vmcb12, false);
4306
4307         if (ret)
4308                 goto unmap_save;
4309
4310         svm->nested.nested_run_pending = 1;
4311
4312 unmap_save:
4313         kvm_vcpu_unmap(vcpu, &map_save, true);
4314 unmap_map:
4315         kvm_vcpu_unmap(vcpu, &map, true);
4316         return ret;
4317 }
4318
4319 static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4320 {
4321         struct vcpu_svm *svm = to_svm(vcpu);
4322
4323         if (!gif_set(svm)) {
4324                 if (vgif_enabled(svm))
4325                         svm_set_intercept(svm, INTERCEPT_STGI);
4326                 /* STGI will cause a vm exit */
4327         } else {
4328                 /* We must be in SMM; RSM will cause a vmexit anyway.  */
4329         }
4330 }
4331
4332 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4333                                         void *insn, int insn_len)
4334 {
4335         bool smep, smap, is_user;
4336         unsigned long cr4;
4337         u64 error_code;
4338
4339         /* Emulation is always possible when KVM has access to all guest state. */
4340         if (!sev_guest(vcpu->kvm))
4341                 return true;
4342
4343         /* #UD and #GP should never be intercepted for SEV guests. */
4344         WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4345                                   EMULTYPE_TRAP_UD_FORCED |
4346                                   EMULTYPE_VMWARE_GP));
4347
4348         /*
4349          * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4350          * to guest register state.
4351          */
4352         if (sev_es_guest(vcpu->kvm))
4353                 return false;
4354
4355         /*
4356          * Emulation is possible if the instruction is already decoded, e.g.
4357          * when completing I/O after returning from userspace.
4358          */
4359         if (emul_type & EMULTYPE_NO_DECODE)
4360                 return true;
4361
4362         /*
4363          * Emulation is possible for SEV guests if and only if a prefilled
4364          * buffer containing the bytes of the intercepted instruction is
4365          * available. SEV guest memory is encrypted with a guest specific key
4366          * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4367          * decode garbage.
4368          *
4369          * Inject #UD if KVM reached this point without an instruction buffer.
4370          * In practice, this path should never be hit by a well-behaved guest,
4371          * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
4372          * is still theoretically reachable, e.g. via unaccelerated fault-like
4373          * AVIC access, and needs to be handled by KVM to avoid putting the
4374          * guest into an infinite loop.   Injecting #UD is somewhat arbitrary,
4375          * but its the least awful option given lack of insight into the guest.
4376          */
4377         if (unlikely(!insn)) {
4378                 kvm_queue_exception(vcpu, UD_VECTOR);
4379                 return false;
4380         }
4381
4382         /*
4383          * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4384          * will be empty if the DecodeAssist microcode cannot fetch bytes for
4385          * the faulting instruction because the code fetch itself faulted, e.g.
4386          * the guest attempted to fetch from emulated MMIO or a guest page
4387          * table used to translate CS:RIP resides in emulated MMIO.
4388          */
4389         if (likely(insn_len))
4390                 return true;
4391
4392         /*
4393          * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4394          *
4395          * Errata:
4396          * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4397          * possible that CPU microcode implementing DecodeAssist will fail to
4398          * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4399          * be '0'.  This happens because microcode reads CS:RIP using a _data_
4400          * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4401          * gives up and does not fill the instruction bytes buffer.
4402          *
4403          * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4404          * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4405          * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4406          * GuestIntrBytes field of the VMCB.
4407          *
4408          * This does _not_ mean that the erratum has been encountered, as the
4409          * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4410          * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4411          * encountered a reserved/not-present #PF.
4412          *
4413          * To hit the erratum, the following conditions must be true:
4414          *    1. CR4.SMAP=1 (obviously).
4415          *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4416          *       have been hit as the guest would have encountered a SMEP
4417          *       violation #PF, not a #NPF.
4418          *    3. The #NPF is not due to a code fetch, in which case failure to
4419          *       retrieve the instruction bytes is legitimate (see abvoe).
4420          *
4421          * In addition, don't apply the erratum workaround if the #NPF occurred
4422          * while translating guest page tables (see below).
4423          */
4424         error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4425         if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4426                 goto resume_guest;
4427
4428         cr4 = kvm_read_cr4(vcpu);
4429         smep = cr4 & X86_CR4_SMEP;
4430         smap = cr4 & X86_CR4_SMAP;
4431         is_user = svm_get_cpl(vcpu) == 3;
4432         if (smap && (!smep || is_user)) {
4433                 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4434
4435                 /*
4436                  * If the fault occurred in userspace, arbitrarily inject #GP
4437                  * to avoid killing the guest and to hopefully avoid confusing
4438                  * the guest kernel too much, e.g. injecting #PF would not be
4439                  * coherent with respect to the guest's page tables.  Request
4440                  * triple fault if the fault occurred in the kernel as there's
4441                  * no fault that KVM can inject without confusing the guest.
4442                  * In practice, the triple fault is moot as no sane SEV kernel
4443                  * will execute from user memory while also running with SMAP=1.
4444                  */
4445                 if (is_user)
4446                         kvm_inject_gp(vcpu, 0);
4447                 else
4448                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4449         }
4450
4451 resume_guest:
4452         /*
4453          * If the erratum was not hit, simply resume the guest and let it fault
4454          * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4455          * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4456          * userspace will kill the guest, and letting the emulator read garbage
4457          * will yield random behavior and potentially corrupt the guest.
4458          *
4459          * Simply resuming the guest is technically not a violation of the SEV
4460          * architecture.  AMD's APM states that all code fetches and page table
4461          * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4462          * APM also states that encrypted accesses to MMIO are "ignored", but
4463          * doesn't explicitly define "ignored", i.e. doing nothing and letting
4464          * the guest spin is technically "ignoring" the access.
4465          */
4466         return false;
4467 }
4468
4469 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4470 {
4471         struct vcpu_svm *svm = to_svm(vcpu);
4472
4473         /*
4474          * TODO: Last condition latch INIT signals on vCPU when
4475          * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4476          * To properly emulate the INIT intercept,
4477          * svm_check_nested_events() should call nested_svm_vmexit()
4478          * if an INIT signal is pending.
4479          */
4480         return !gif_set(svm) ||
4481                    (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4482 }
4483
4484 static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4485 {
4486         if (!sev_es_guest(vcpu->kvm))
4487                 return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4488
4489         sev_vcpu_deliver_sipi_vector(vcpu, vector);
4490 }
4491
4492 static void svm_vm_destroy(struct kvm *kvm)
4493 {
4494         avic_vm_destroy(kvm);
4495         sev_vm_destroy(kvm);
4496 }
4497
4498 static int svm_vm_init(struct kvm *kvm)
4499 {
4500         if (!pause_filter_count || !pause_filter_thresh)
4501                 kvm->arch.pause_in_guest = true;
4502
4503         if (enable_apicv) {
4504                 int ret = avic_vm_init(kvm);
4505                 if (ret)
4506                         return ret;
4507         }
4508
4509         return 0;
4510 }
4511
4512 static struct kvm_x86_ops svm_x86_ops __initdata = {
4513         .name = "kvm_amd",
4514
4515         .hardware_unsetup = svm_hardware_unsetup,
4516         .hardware_enable = svm_hardware_enable,
4517         .hardware_disable = svm_hardware_disable,
4518         .has_emulated_msr = svm_has_emulated_msr,
4519
4520         .vcpu_create = svm_vcpu_create,
4521         .vcpu_free = svm_vcpu_free,
4522         .vcpu_reset = svm_vcpu_reset,
4523
4524         .vm_size = sizeof(struct kvm_svm),
4525         .vm_init = svm_vm_init,
4526         .vm_destroy = svm_vm_destroy,
4527
4528         .prepare_switch_to_guest = svm_prepare_switch_to_guest,
4529         .vcpu_load = svm_vcpu_load,
4530         .vcpu_put = svm_vcpu_put,
4531         .vcpu_blocking = avic_vcpu_blocking,
4532         .vcpu_unblocking = avic_vcpu_unblocking,
4533
4534         .update_exception_bitmap = svm_update_exception_bitmap,
4535         .get_msr_feature = svm_get_msr_feature,
4536         .get_msr = svm_get_msr,
4537         .set_msr = svm_set_msr,
4538         .get_segment_base = svm_get_segment_base,
4539         .get_segment = svm_get_segment,
4540         .set_segment = svm_set_segment,
4541         .get_cpl = svm_get_cpl,
4542         .get_cs_db_l_bits = svm_get_cs_db_l_bits,
4543         .set_cr0 = svm_set_cr0,
4544         .post_set_cr3 = sev_post_set_cr3,
4545         .is_valid_cr4 = svm_is_valid_cr4,
4546         .set_cr4 = svm_set_cr4,
4547         .set_efer = svm_set_efer,
4548         .get_idt = svm_get_idt,
4549         .set_idt = svm_set_idt,
4550         .get_gdt = svm_get_gdt,
4551         .set_gdt = svm_set_gdt,
4552         .set_dr7 = svm_set_dr7,
4553         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4554         .cache_reg = svm_cache_reg,
4555         .get_rflags = svm_get_rflags,
4556         .set_rflags = svm_set_rflags,
4557         .get_if_flag = svm_get_if_flag,
4558
4559         .flush_tlb_all = svm_flush_tlb_current,
4560         .flush_tlb_current = svm_flush_tlb_current,
4561         .flush_tlb_gva = svm_flush_tlb_gva,
4562         .flush_tlb_guest = svm_flush_tlb_current,
4563
4564         .vcpu_pre_run = svm_vcpu_pre_run,
4565         .vcpu_run = svm_vcpu_run,
4566         .handle_exit = svm_handle_exit,
4567         .skip_emulated_instruction = svm_skip_emulated_instruction,
4568         .update_emulated_instruction = NULL,
4569         .set_interrupt_shadow = svm_set_interrupt_shadow,
4570         .get_interrupt_shadow = svm_get_interrupt_shadow,
4571         .patch_hypercall = svm_patch_hypercall,
4572         .inject_irq = svm_inject_irq,
4573         .inject_nmi = svm_inject_nmi,
4574         .queue_exception = svm_queue_exception,
4575         .cancel_injection = svm_cancel_injection,
4576         .interrupt_allowed = svm_interrupt_allowed,
4577         .nmi_allowed = svm_nmi_allowed,
4578         .get_nmi_mask = svm_get_nmi_mask,
4579         .set_nmi_mask = svm_set_nmi_mask,
4580         .enable_nmi_window = svm_enable_nmi_window,
4581         .enable_irq_window = svm_enable_irq_window,
4582         .update_cr8_intercept = svm_update_cr8_intercept,
4583         .refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4584         .check_apicv_inhibit_reasons = avic_check_apicv_inhibit_reasons,
4585         .apicv_post_state_restore = avic_apicv_post_state_restore,
4586
4587         .get_mt_mask = svm_get_mt_mask,
4588         .get_exit_info = svm_get_exit_info,
4589
4590         .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4591
4592         .has_wbinvd_exit = svm_has_wbinvd_exit,
4593
4594         .get_l2_tsc_offset = svm_get_l2_tsc_offset,
4595         .get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
4596         .write_tsc_offset = svm_write_tsc_offset,
4597         .write_tsc_multiplier = svm_write_tsc_multiplier,
4598
4599         .load_mmu_pgd = svm_load_mmu_pgd,
4600
4601         .check_intercept = svm_check_intercept,
4602         .handle_exit_irqoff = svm_handle_exit_irqoff,
4603
4604         .request_immediate_exit = __kvm_request_immediate_exit,
4605
4606         .sched_in = svm_sched_in,
4607
4608         .pmu_ops = &amd_pmu_ops,
4609         .nested_ops = &svm_nested_ops,
4610
4611         .deliver_interrupt = svm_deliver_interrupt,
4612         .pi_update_irte = avic_pi_update_irte,
4613         .setup_mce = svm_setup_mce,
4614
4615         .smi_allowed = svm_smi_allowed,
4616         .enter_smm = svm_enter_smm,
4617         .leave_smm = svm_leave_smm,
4618         .enable_smi_window = svm_enable_smi_window,
4619
4620         .mem_enc_ioctl = sev_mem_enc_ioctl,
4621         .mem_enc_register_region = sev_mem_enc_register_region,
4622         .mem_enc_unregister_region = sev_mem_enc_unregister_region,
4623
4624         .vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
4625         .vm_move_enc_context_from = sev_vm_move_enc_context_from,
4626
4627         .can_emulate_instruction = svm_can_emulate_instruction,
4628
4629         .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4630
4631         .msr_filter_changed = svm_msr_filter_changed,
4632         .complete_emulated_msr = svm_complete_emulated_msr,
4633
4634         .vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
4635 };
4636
4637 /*
4638  * The default MMIO mask is a single bit (excluding the present bit),
4639  * which could conflict with the memory encryption bit. Check for
4640  * memory encryption support and override the default MMIO mask if
4641  * memory encryption is enabled.
4642  */
4643 static __init void svm_adjust_mmio_mask(void)
4644 {
4645         unsigned int enc_bit, mask_bit;
4646         u64 msr, mask;
4647
4648         /* If there is no memory encryption support, use existing mask */
4649         if (cpuid_eax(0x80000000) < 0x8000001f)
4650                 return;
4651
4652         /* If memory encryption is not enabled, use existing mask */
4653         rdmsrl(MSR_AMD64_SYSCFG, msr);
4654         if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
4655                 return;
4656
4657         enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
4658         mask_bit = boot_cpu_data.x86_phys_bits;
4659
4660         /* Increment the mask bit if it is the same as the encryption bit */
4661         if (enc_bit == mask_bit)
4662                 mask_bit++;
4663
4664         /*
4665          * If the mask bit location is below 52, then some bits above the
4666          * physical addressing limit will always be reserved, so use the
4667          * rsvd_bits() function to generate the mask. This mask, along with
4668          * the present bit, will be used to generate a page fault with
4669          * PFER.RSV = 1.
4670          *
4671          * If the mask bit location is 52 (or above), then clear the mask.
4672          */
4673         mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
4674
4675         kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
4676 }
4677
4678 static __init void svm_set_cpu_caps(void)
4679 {
4680         kvm_set_cpu_caps();
4681
4682         supported_xss = 0;
4683
4684         /* CPUID 0x80000001 and 0x8000000A (SVM features) */
4685         if (nested) {
4686                 kvm_cpu_cap_set(X86_FEATURE_SVM);
4687                 kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
4688
4689                 if (nrips)
4690                         kvm_cpu_cap_set(X86_FEATURE_NRIPS);
4691
4692                 if (npt_enabled)
4693                         kvm_cpu_cap_set(X86_FEATURE_NPT);
4694
4695                 if (tsc_scaling)
4696                         kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
4697
4698                 /* Nested VM can receive #VMEXIT instead of triggering #GP */
4699                 kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
4700         }
4701
4702         /* CPUID 0x80000008 */
4703         if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
4704             boot_cpu_has(X86_FEATURE_AMD_SSBD))
4705                 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
4706
4707         /* AMD PMU PERFCTR_CORE CPUID */
4708         if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
4709                 kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
4710
4711         /* CPUID 0x8000001F (SME/SEV features) */
4712         sev_set_cpu_caps();
4713 }
4714
4715 static __init int svm_hardware_setup(void)
4716 {
4717         int cpu;
4718         struct page *iopm_pages;
4719         void *iopm_va;
4720         int r;
4721         unsigned int order = get_order(IOPM_SIZE);
4722
4723         /*
4724          * NX is required for shadow paging and for NPT if the NX huge pages
4725          * mitigation is enabled.
4726          */
4727         if (!boot_cpu_has(X86_FEATURE_NX)) {
4728                 pr_err_ratelimited("NX (Execute Disable) not supported\n");
4729                 return -EOPNOTSUPP;
4730         }
4731         kvm_enable_efer_bits(EFER_NX);
4732
4733         iopm_pages = alloc_pages(GFP_KERNEL, order);
4734
4735         if (!iopm_pages)
4736                 return -ENOMEM;
4737
4738         iopm_va = page_address(iopm_pages);
4739         memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
4740         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
4741
4742         init_msrpm_offsets();
4743
4744         supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
4745
4746         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
4747                 kvm_enable_efer_bits(EFER_FFXSR);
4748
4749         if (tsc_scaling) {
4750                 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
4751                         tsc_scaling = false;
4752                 } else {
4753                         pr_info("TSC scaling supported\n");
4754                         kvm_has_tsc_control = true;
4755                 }
4756         }
4757         kvm_max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
4758         kvm_tsc_scaling_ratio_frac_bits = 32;
4759
4760         tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
4761
4762         /* Check for pause filtering support */
4763         if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
4764                 pause_filter_count = 0;
4765                 pause_filter_thresh = 0;
4766         } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
4767                 pause_filter_thresh = 0;
4768         }
4769
4770         if (nested) {
4771                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
4772                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
4773         }
4774
4775         /*
4776          * KVM's MMU doesn't support using 2-level paging for itself, and thus
4777          * NPT isn't supported if the host is using 2-level paging since host
4778          * CR4 is unchanged on VMRUN.
4779          */
4780         if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
4781                 npt_enabled = false;
4782
4783         if (!boot_cpu_has(X86_FEATURE_NPT))
4784                 npt_enabled = false;
4785
4786         /* Force VM NPT level equal to the host's paging level */
4787         kvm_configure_mmu(npt_enabled, get_npt_level(),
4788                           get_npt_level(), PG_LEVEL_1G);
4789         pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
4790
4791         /* Note, SEV setup consumes npt_enabled. */
4792         sev_hardware_setup();
4793
4794         svm_hv_hardware_setup();
4795
4796         svm_adjust_mmio_mask();
4797
4798         for_each_possible_cpu(cpu) {
4799                 r = svm_cpu_init(cpu);
4800                 if (r)
4801                         goto err;
4802         }
4803
4804         if (nrips) {
4805                 if (!boot_cpu_has(X86_FEATURE_NRIPS))
4806                         nrips = false;
4807         }
4808
4809         enable_apicv = avic = avic && npt_enabled && boot_cpu_has(X86_FEATURE_AVIC);
4810
4811         if (enable_apicv) {
4812                 pr_info("AVIC enabled\n");
4813
4814                 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
4815         } else {
4816                 svm_x86_ops.vcpu_blocking = NULL;
4817                 svm_x86_ops.vcpu_unblocking = NULL;
4818         }
4819
4820         if (vls) {
4821                 if (!npt_enabled ||
4822                     !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
4823                     !IS_ENABLED(CONFIG_X86_64)) {
4824                         vls = false;
4825                 } else {
4826                         pr_info("Virtual VMLOAD VMSAVE supported\n");
4827                 }
4828         }
4829
4830         if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
4831                 svm_gp_erratum_intercept = false;
4832
4833         if (vgif) {
4834                 if (!boot_cpu_has(X86_FEATURE_VGIF))
4835                         vgif = false;
4836                 else
4837                         pr_info("Virtual GIF supported\n");
4838         }
4839
4840         if (lbrv) {
4841                 if (!boot_cpu_has(X86_FEATURE_LBRV))
4842                         lbrv = false;
4843                 else
4844                         pr_info("LBR virtualization supported\n");
4845         }
4846
4847         if (!enable_pmu)
4848                 pr_info("PMU virtualization is disabled\n");
4849
4850         svm_set_cpu_caps();
4851
4852         /*
4853          * It seems that on AMD processors PTE's accessed bit is
4854          * being set by the CPU hardware before the NPF vmexit.
4855          * This is not expected behaviour and our tests fail because
4856          * of it.
4857          * A workaround here is to disable support for
4858          * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
4859          * In this case userspace can know if there is support using
4860          * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
4861          * it
4862          * If future AMD CPU models change the behaviour described above,
4863          * this variable can be changed accordingly
4864          */
4865         allow_smaller_maxphyaddr = !npt_enabled;
4866
4867         return 0;
4868
4869 err:
4870         svm_hardware_unsetup();
4871         return r;
4872 }
4873
4874
4875 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4876         .cpu_has_kvm_support = has_svm,
4877         .disabled_by_bios = is_disabled,
4878         .hardware_setup = svm_hardware_setup,
4879         .check_processor_compatibility = svm_check_processor_compat,
4880
4881         .runtime_ops = &svm_x86_ops,
4882 };
4883
4884 static int __init svm_init(void)
4885 {
4886         __unused_size_checks();
4887
4888         return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4889                         __alignof__(struct vcpu_svm), THIS_MODULE);
4890 }
4891
4892 static void __exit svm_exit(void)
4893 {
4894         kvm_exit();
4895 }
4896
4897 module_init(svm_init)
4898 module_exit(svm_exit)