Merge tag 'defconfig-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / arch / x86 / kvm / mmu / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * MMU support
9  *
10  * Copyright (C) 2006 Qumranet, Inc.
11  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12  *
13  * Authors:
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Avi Kivity   <avi@qumranet.com>
16  */
17
18 #include "irq.h"
19 #include "ioapic.h"
20 #include "mmu.h"
21 #include "mmu_internal.h"
22 #include "tdp_mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "kvm_emulate.h"
26 #include "cpuid.h"
27 #include "spte.h"
28
29 #include <linux/kvm_host.h>
30 #include <linux/types.h>
31 #include <linux/string.h>
32 #include <linux/mm.h>
33 #include <linux/highmem.h>
34 #include <linux/moduleparam.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/hugetlb.h>
38 #include <linux/compiler.h>
39 #include <linux/srcu.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 #include <linux/uaccess.h>
43 #include <linux/hash.h>
44 #include <linux/kern_levels.h>
45 #include <linux/kthread.h>
46
47 #include <asm/page.h>
48 #include <asm/memtype.h>
49 #include <asm/cmpxchg.h>
50 #include <asm/io.h>
51 #include <asm/set_memory.h>
52 #include <asm/vmx.h>
53 #include <asm/kvm_page_track.h>
54 #include "trace.h"
55
56 #include "paging.h"
57
58 extern bool itlb_multihit_kvm_mitigation;
59
60 int __read_mostly nx_huge_pages = -1;
61 #ifdef CONFIG_PREEMPT_RT
62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
64 #else
65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66 #endif
67
68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
70
71 static const struct kernel_param_ops nx_huge_pages_ops = {
72         .set = set_nx_huge_pages,
73         .get = param_get_bool,
74 };
75
76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77         .set = set_nx_huge_pages_recovery_ratio,
78         .get = param_get_uint,
79 };
80
81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
82 __MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
84                 &nx_huge_pages_recovery_ratio, 0644);
85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
86
87 static bool __read_mostly force_flush_and_sync_on_reuse;
88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
89
90 /*
91  * When setting this variable to true it enables Two-Dimensional-Paging
92  * where the hardware walks 2 page tables:
93  * 1. the guest-virtual to guest-physical
94  * 2. while doing 1. it walks guest-physical to host-physical
95  * If the hardware supports that we don't need to do shadow paging.
96  */
97 bool tdp_enabled = false;
98
99 static int max_huge_page_level __read_mostly;
100 static int max_tdp_level __read_mostly;
101
102 enum {
103         AUDIT_PRE_PAGE_FAULT,
104         AUDIT_POST_PAGE_FAULT,
105         AUDIT_PRE_PTE_WRITE,
106         AUDIT_POST_PTE_WRITE,
107         AUDIT_PRE_SYNC,
108         AUDIT_POST_SYNC
109 };
110
111 #ifdef MMU_DEBUG
112 bool dbg = 0;
113 module_param(dbg, bool, 0644);
114 #endif
115
116 #define PTE_PREFETCH_NUM                8
117
118 #define PT32_LEVEL_BITS 10
119
120 #define PT32_LEVEL_SHIFT(level) \
121                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
122
123 #define PT32_LVL_OFFSET_MASK(level) \
124         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
125                                                 * PT32_LEVEL_BITS))) - 1))
126
127 #define PT32_INDEX(address, level)\
128         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
129
130
131 #define PT32_BASE_ADDR_MASK PAGE_MASK
132 #define PT32_DIR_BASE_ADDR_MASK \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
134 #define PT32_LVL_ADDR_MASK(level) \
135         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
136                                             * PT32_LEVEL_BITS))) - 1))
137
138 #include <trace/events/kvm.h>
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144         u64 *sptes[PTE_LIST_EXT];
145         struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149         u64 addr;
150         hpa_t shadow_addr;
151         u64 *sptep;
152         int level;
153         unsigned index;
154 };
155
156 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
157         for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
158                                          (_root), (_addr));                \
159              shadow_walk_okay(&(_walker));                                 \
160              shadow_walk_next(&(_walker)))
161
162 #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
163         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
164              shadow_walk_okay(&(_walker));                      \
165              shadow_walk_next(&(_walker)))
166
167 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
168         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
169              shadow_walk_okay(&(_walker)) &&                            \
170                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
171              __shadow_walk_next(&(_walker), spte))
172
173 static struct kmem_cache *pte_list_desc_cache;
174 struct kmem_cache *mmu_page_header_cache;
175 static struct percpu_counter kvm_total_used_mmu_pages;
176
177 static void mmu_spte_set(u64 *sptep, u64 spte);
178 static union kvm_mmu_page_role
179 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
180
181 struct kvm_mmu_role_regs {
182         const unsigned long cr0;
183         const unsigned long cr4;
184         const u64 efer;
185 };
186
187 #define CREATE_TRACE_POINTS
188 #include "mmutrace.h"
189
190 /*
191  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
192  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
193  * the single source of truth for the MMU's state.
194  */
195 #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)                   \
196 static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
197 {                                                                       \
198         return !!(regs->reg & flag);                                    \
199 }
200 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
201 BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
202 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
203 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
204 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
205 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
206 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
207 BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
208 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
209 BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
210
211 /*
212  * The MMU itself (with a valid role) is the single source of truth for the
213  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
214  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
215  * and the vCPU may be incorrect/irrelevant.
216  */
217 #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)         \
218 static inline bool is_##reg##_##name(struct kvm_mmu *mmu)       \
219 {                                                               \
220         return !!(mmu->mmu_role. base_or_ext . reg##_##name);   \
221 }
222 BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
223 BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
224 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
225 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
226 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
227 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
228 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
229 BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
230 BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
231
232 static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
233 {
234         struct kvm_mmu_role_regs regs = {
235                 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
236                 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
237                 .efer = vcpu->arch.efer,
238         };
239
240         return regs;
241 }
242
243 static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
244 {
245         if (!____is_cr0_pg(regs))
246                 return 0;
247         else if (____is_efer_lma(regs))
248                 return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
249                                                PT64_ROOT_4LEVEL;
250         else if (____is_cr4_pae(regs))
251                 return PT32E_ROOT_LEVEL;
252         else
253                 return PT32_ROOT_LEVEL;
254 }
255
256 static inline bool kvm_available_flush_tlb_with_range(void)
257 {
258         return kvm_x86_ops.tlb_remote_flush_with_range;
259 }
260
261 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
262                 struct kvm_tlb_range *range)
263 {
264         int ret = -ENOTSUPP;
265
266         if (range && kvm_x86_ops.tlb_remote_flush_with_range)
267                 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
268
269         if (ret)
270                 kvm_flush_remote_tlbs(kvm);
271 }
272
273 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
274                 u64 start_gfn, u64 pages)
275 {
276         struct kvm_tlb_range range;
277
278         range.start_gfn = start_gfn;
279         range.pages = pages;
280
281         kvm_flush_remote_tlbs_with_range(kvm, &range);
282 }
283
284 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
285                            unsigned int access)
286 {
287         u64 spte = make_mmio_spte(vcpu, gfn, access);
288
289         trace_mark_mmio_spte(sptep, gfn, spte);
290         mmu_spte_set(sptep, spte);
291 }
292
293 static gfn_t get_mmio_spte_gfn(u64 spte)
294 {
295         u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
296
297         gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
298                & shadow_nonpresent_or_rsvd_mask;
299
300         return gpa >> PAGE_SHIFT;
301 }
302
303 static unsigned get_mmio_spte_access(u64 spte)
304 {
305         return spte & shadow_mmio_access_mask;
306 }
307
308 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
309 {
310         u64 kvm_gen, spte_gen, gen;
311
312         gen = kvm_vcpu_memslots(vcpu)->generation;
313         if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
314                 return false;
315
316         kvm_gen = gen & MMIO_SPTE_GEN_MASK;
317         spte_gen = get_mmio_spte_generation(spte);
318
319         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
320         return likely(kvm_gen == spte_gen);
321 }
322
323 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
324                                   struct x86_exception *exception)
325 {
326         /* Check if guest physical address doesn't exceed guest maximum */
327         if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
328                 exception->error_code |= PFERR_RSVD_MASK;
329                 return UNMAPPED_GVA;
330         }
331
332         return gpa;
333 }
334
335 static int is_cpuid_PSE36(void)
336 {
337         return 1;
338 }
339
340 static gfn_t pse36_gfn_delta(u32 gpte)
341 {
342         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
343
344         return (gpte & PT32_DIR_PSE36_MASK) << shift;
345 }
346
347 #ifdef CONFIG_X86_64
348 static void __set_spte(u64 *sptep, u64 spte)
349 {
350         WRITE_ONCE(*sptep, spte);
351 }
352
353 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
354 {
355         WRITE_ONCE(*sptep, spte);
356 }
357
358 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
359 {
360         return xchg(sptep, spte);
361 }
362
363 static u64 __get_spte_lockless(u64 *sptep)
364 {
365         return READ_ONCE(*sptep);
366 }
367 #else
368 union split_spte {
369         struct {
370                 u32 spte_low;
371                 u32 spte_high;
372         };
373         u64 spte;
374 };
375
376 static void count_spte_clear(u64 *sptep, u64 spte)
377 {
378         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
379
380         if (is_shadow_present_pte(spte))
381                 return;
382
383         /* Ensure the spte is completely set before we increase the count */
384         smp_wmb();
385         sp->clear_spte_count++;
386 }
387
388 static void __set_spte(u64 *sptep, u64 spte)
389 {
390         union split_spte *ssptep, sspte;
391
392         ssptep = (union split_spte *)sptep;
393         sspte = (union split_spte)spte;
394
395         ssptep->spte_high = sspte.spte_high;
396
397         /*
398          * If we map the spte from nonpresent to present, We should store
399          * the high bits firstly, then set present bit, so cpu can not
400          * fetch this spte while we are setting the spte.
401          */
402         smp_wmb();
403
404         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
405 }
406
407 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
408 {
409         union split_spte *ssptep, sspte;
410
411         ssptep = (union split_spte *)sptep;
412         sspte = (union split_spte)spte;
413
414         WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
415
416         /*
417          * If we map the spte from present to nonpresent, we should clear
418          * present bit firstly to avoid vcpu fetch the old high bits.
419          */
420         smp_wmb();
421
422         ssptep->spte_high = sspte.spte_high;
423         count_spte_clear(sptep, spte);
424 }
425
426 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
427 {
428         union split_spte *ssptep, sspte, orig;
429
430         ssptep = (union split_spte *)sptep;
431         sspte = (union split_spte)spte;
432
433         /* xchg acts as a barrier before the setting of the high bits */
434         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
435         orig.spte_high = ssptep->spte_high;
436         ssptep->spte_high = sspte.spte_high;
437         count_spte_clear(sptep, spte);
438
439         return orig.spte;
440 }
441
442 /*
443  * The idea using the light way get the spte on x86_32 guest is from
444  * gup_get_pte (mm/gup.c).
445  *
446  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
447  * coalesces them and we are running out of the MMU lock.  Therefore
448  * we need to protect against in-progress updates of the spte.
449  *
450  * Reading the spte while an update is in progress may get the old value
451  * for the high part of the spte.  The race is fine for a present->non-present
452  * change (because the high part of the spte is ignored for non-present spte),
453  * but for a present->present change we must reread the spte.
454  *
455  * All such changes are done in two steps (present->non-present and
456  * non-present->present), hence it is enough to count the number of
457  * present->non-present updates: if it changed while reading the spte,
458  * we might have hit the race.  This is done using clear_spte_count.
459  */
460 static u64 __get_spte_lockless(u64 *sptep)
461 {
462         struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
463         union split_spte spte, *orig = (union split_spte *)sptep;
464         int count;
465
466 retry:
467         count = sp->clear_spte_count;
468         smp_rmb();
469
470         spte.spte_low = orig->spte_low;
471         smp_rmb();
472
473         spte.spte_high = orig->spte_high;
474         smp_rmb();
475
476         if (unlikely(spte.spte_low != orig->spte_low ||
477               count != sp->clear_spte_count))
478                 goto retry;
479
480         return spte.spte;
481 }
482 #endif
483
484 static bool spte_has_volatile_bits(u64 spte)
485 {
486         if (!is_shadow_present_pte(spte))
487                 return false;
488
489         /*
490          * Always atomically update spte if it can be updated
491          * out of mmu-lock, it can ensure dirty bit is not lost,
492          * also, it can help us to get a stable is_writable_pte()
493          * to ensure tlb flush is not missed.
494          */
495         if (spte_can_locklessly_be_made_writable(spte) ||
496             is_access_track_spte(spte))
497                 return true;
498
499         if (spte_ad_enabled(spte)) {
500                 if ((spte & shadow_accessed_mask) == 0 ||
501                     (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
502                         return true;
503         }
504
505         return false;
506 }
507
508 /* Rules for using mmu_spte_set:
509  * Set the sptep from nonpresent to present.
510  * Note: the sptep being assigned *must* be either not present
511  * or in a state where the hardware will not attempt to update
512  * the spte.
513  */
514 static void mmu_spte_set(u64 *sptep, u64 new_spte)
515 {
516         WARN_ON(is_shadow_present_pte(*sptep));
517         __set_spte(sptep, new_spte);
518 }
519
520 /*
521  * Update the SPTE (excluding the PFN), but do not track changes in its
522  * accessed/dirty status.
523  */
524 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
525 {
526         u64 old_spte = *sptep;
527
528         WARN_ON(!is_shadow_present_pte(new_spte));
529
530         if (!is_shadow_present_pte(old_spte)) {
531                 mmu_spte_set(sptep, new_spte);
532                 return old_spte;
533         }
534
535         if (!spte_has_volatile_bits(old_spte))
536                 __update_clear_spte_fast(sptep, new_spte);
537         else
538                 old_spte = __update_clear_spte_slow(sptep, new_spte);
539
540         WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
541
542         return old_spte;
543 }
544
545 /* Rules for using mmu_spte_update:
546  * Update the state bits, it means the mapped pfn is not changed.
547  *
548  * Whenever we overwrite a writable spte with a read-only one we
549  * should flush remote TLBs. Otherwise rmap_write_protect
550  * will find a read-only spte, even though the writable spte
551  * might be cached on a CPU's TLB, the return value indicates this
552  * case.
553  *
554  * Returns true if the TLB needs to be flushed
555  */
556 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
557 {
558         bool flush = false;
559         u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
560
561         if (!is_shadow_present_pte(old_spte))
562                 return false;
563
564         /*
565          * For the spte updated out of mmu-lock is safe, since
566          * we always atomically update it, see the comments in
567          * spte_has_volatile_bits().
568          */
569         if (spte_can_locklessly_be_made_writable(old_spte) &&
570               !is_writable_pte(new_spte))
571                 flush = true;
572
573         /*
574          * Flush TLB when accessed/dirty states are changed in the page tables,
575          * to guarantee consistency between TLB and page tables.
576          */
577
578         if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
579                 flush = true;
580                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
581         }
582
583         if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
584                 flush = true;
585                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
586         }
587
588         return flush;
589 }
590
591 /*
592  * Rules for using mmu_spte_clear_track_bits:
593  * It sets the sptep from present to nonpresent, and track the
594  * state bits, it is used to clear the last level sptep.
595  * Returns non-zero if the PTE was previously valid.
596  */
597 static int mmu_spte_clear_track_bits(u64 *sptep)
598 {
599         kvm_pfn_t pfn;
600         u64 old_spte = *sptep;
601
602         if (!spte_has_volatile_bits(old_spte))
603                 __update_clear_spte_fast(sptep, 0ull);
604         else
605                 old_spte = __update_clear_spte_slow(sptep, 0ull);
606
607         if (!is_shadow_present_pte(old_spte))
608                 return 0;
609
610         pfn = spte_to_pfn(old_spte);
611
612         /*
613          * KVM does not hold the refcount of the page used by
614          * kvm mmu, before reclaiming the page, we should
615          * unmap it from mmu first.
616          */
617         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
618
619         if (is_accessed_spte(old_spte))
620                 kvm_set_pfn_accessed(pfn);
621
622         if (is_dirty_spte(old_spte))
623                 kvm_set_pfn_dirty(pfn);
624
625         return 1;
626 }
627
628 /*
629  * Rules for using mmu_spte_clear_no_track:
630  * Directly clear spte without caring the state bits of sptep,
631  * it is used to set the upper level spte.
632  */
633 static void mmu_spte_clear_no_track(u64 *sptep)
634 {
635         __update_clear_spte_fast(sptep, 0ull);
636 }
637
638 static u64 mmu_spte_get_lockless(u64 *sptep)
639 {
640         return __get_spte_lockless(sptep);
641 }
642
643 /* Restore an acc-track PTE back to a regular PTE */
644 static u64 restore_acc_track_spte(u64 spte)
645 {
646         u64 new_spte = spte;
647         u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
648                          & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
649
650         WARN_ON_ONCE(spte_ad_enabled(spte));
651         WARN_ON_ONCE(!is_access_track_spte(spte));
652
653         new_spte &= ~shadow_acc_track_mask;
654         new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
655                       SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
656         new_spte |= saved_bits;
657
658         return new_spte;
659 }
660
661 /* Returns the Accessed status of the PTE and resets it at the same time. */
662 static bool mmu_spte_age(u64 *sptep)
663 {
664         u64 spte = mmu_spte_get_lockless(sptep);
665
666         if (!is_accessed_spte(spte))
667                 return false;
668
669         if (spte_ad_enabled(spte)) {
670                 clear_bit((ffs(shadow_accessed_mask) - 1),
671                           (unsigned long *)sptep);
672         } else {
673                 /*
674                  * Capture the dirty status of the page, so that it doesn't get
675                  * lost when the SPTE is marked for access tracking.
676                  */
677                 if (is_writable_pte(spte))
678                         kvm_set_pfn_dirty(spte_to_pfn(spte));
679
680                 spte = mark_spte_for_access_track(spte);
681                 mmu_spte_update_no_track(sptep, spte);
682         }
683
684         return true;
685 }
686
687 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
688 {
689         /*
690          * Prevent page table teardown by making any free-er wait during
691          * kvm_flush_remote_tlbs() IPI to all active vcpus.
692          */
693         local_irq_disable();
694
695         /*
696          * Make sure a following spte read is not reordered ahead of the write
697          * to vcpu->mode.
698          */
699         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
700 }
701
702 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
703 {
704         /*
705          * Make sure the write to vcpu->mode is not reordered in front of
706          * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
707          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
708          */
709         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
710         local_irq_enable();
711 }
712
713 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
714 {
715         int r;
716
717         /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
718         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
719                                        1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
720         if (r)
721                 return r;
722         r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
723                                        PT64_ROOT_MAX_LEVEL);
724         if (r)
725                 return r;
726         if (maybe_indirect) {
727                 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
728                                                PT64_ROOT_MAX_LEVEL);
729                 if (r)
730                         return r;
731         }
732         return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
733                                           PT64_ROOT_MAX_LEVEL);
734 }
735
736 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
737 {
738         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
739         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
740         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
741         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
742 }
743
744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745 {
746         return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 }
748
749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750 {
751         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 }
753
754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755 {
756         if (!sp->role.direct)
757                 return sp->gfns[index];
758
759         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760 }
761
762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763 {
764         if (!sp->role.direct) {
765                 sp->gfns[index] = gfn;
766                 return;
767         }
768
769         if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
770                 pr_err_ratelimited("gfn mismatch under direct page %llx "
771                                    "(expected %llx, got %llx)\n",
772                                    sp->gfn,
773                                    kvm_mmu_page_get_gfn(sp, index), gfn);
774 }
775
776 /*
777  * Return the pointer to the large page information for a given gfn,
778  * handling slots that are not large page aligned.
779  */
780 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
781                 const struct kvm_memory_slot *slot, int level)
782 {
783         unsigned long idx;
784
785         idx = gfn_to_index(gfn, slot->base_gfn, level);
786         return &slot->arch.lpage_info[level - 2][idx];
787 }
788
789 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
790                                             gfn_t gfn, int count)
791 {
792         struct kvm_lpage_info *linfo;
793         int i;
794
795         for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
796                 linfo = lpage_info_slot(gfn, slot, i);
797                 linfo->disallow_lpage += count;
798                 WARN_ON(linfo->disallow_lpage < 0);
799         }
800 }
801
802 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
803 {
804         update_gfn_disallow_lpage_count(slot, gfn, 1);
805 }
806
807 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
808 {
809         update_gfn_disallow_lpage_count(slot, gfn, -1);
810 }
811
812 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
813 {
814         struct kvm_memslots *slots;
815         struct kvm_memory_slot *slot;
816         gfn_t gfn;
817
818         kvm->arch.indirect_shadow_pages++;
819         gfn = sp->gfn;
820         slots = kvm_memslots_for_spte_role(kvm, sp->role);
821         slot = __gfn_to_memslot(slots, gfn);
822
823         /* the non-leaf shadow pages are keeping readonly. */
824         if (sp->role.level > PG_LEVEL_4K)
825                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
826                                                     KVM_PAGE_TRACK_WRITE);
827
828         kvm_mmu_gfn_disallow_lpage(slot, gfn);
829 }
830
831 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
832 {
833         if (sp->lpage_disallowed)
834                 return;
835
836         ++kvm->stat.nx_lpage_splits;
837         list_add_tail(&sp->lpage_disallowed_link,
838                       &kvm->arch.lpage_disallowed_mmu_pages);
839         sp->lpage_disallowed = true;
840 }
841
842 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
843 {
844         struct kvm_memslots *slots;
845         struct kvm_memory_slot *slot;
846         gfn_t gfn;
847
848         kvm->arch.indirect_shadow_pages--;
849         gfn = sp->gfn;
850         slots = kvm_memslots_for_spte_role(kvm, sp->role);
851         slot = __gfn_to_memslot(slots, gfn);
852         if (sp->role.level > PG_LEVEL_4K)
853                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
854                                                        KVM_PAGE_TRACK_WRITE);
855
856         kvm_mmu_gfn_allow_lpage(slot, gfn);
857 }
858
859 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
860 {
861         --kvm->stat.nx_lpage_splits;
862         sp->lpage_disallowed = false;
863         list_del(&sp->lpage_disallowed_link);
864 }
865
866 static struct kvm_memory_slot *
867 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
868                             bool no_dirty_log)
869 {
870         struct kvm_memory_slot *slot;
871
872         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
873         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
874                 return NULL;
875         if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
876                 return NULL;
877
878         return slot;
879 }
880
881 /*
882  * About rmap_head encoding:
883  *
884  * If the bit zero of rmap_head->val is clear, then it points to the only spte
885  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
886  * pte_list_desc containing more mappings.
887  */
888
889 /*
890  * Returns the number of pointers in the rmap chain, not counting the new one.
891  */
892 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
893                         struct kvm_rmap_head *rmap_head)
894 {
895         struct pte_list_desc *desc;
896         int i, count = 0;
897
898         if (!rmap_head->val) {
899                 rmap_printk("%p %llx 0->1\n", spte, *spte);
900                 rmap_head->val = (unsigned long)spte;
901         } else if (!(rmap_head->val & 1)) {
902                 rmap_printk("%p %llx 1->many\n", spte, *spte);
903                 desc = mmu_alloc_pte_list_desc(vcpu);
904                 desc->sptes[0] = (u64 *)rmap_head->val;
905                 desc->sptes[1] = spte;
906                 rmap_head->val = (unsigned long)desc | 1;
907                 ++count;
908         } else {
909                 rmap_printk("%p %llx many->many\n", spte, *spte);
910                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
911                 while (desc->sptes[PTE_LIST_EXT-1]) {
912                         count += PTE_LIST_EXT;
913
914                         if (!desc->more) {
915                                 desc->more = mmu_alloc_pte_list_desc(vcpu);
916                                 desc = desc->more;
917                                 break;
918                         }
919                         desc = desc->more;
920                 }
921                 for (i = 0; desc->sptes[i]; ++i)
922                         ++count;
923                 desc->sptes[i] = spte;
924         }
925         return count;
926 }
927
928 static void
929 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
930                            struct pte_list_desc *desc, int i,
931                            struct pte_list_desc *prev_desc)
932 {
933         int j;
934
935         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
936                 ;
937         desc->sptes[i] = desc->sptes[j];
938         desc->sptes[j] = NULL;
939         if (j != 0)
940                 return;
941         if (!prev_desc && !desc->more)
942                 rmap_head->val = 0;
943         else
944                 if (prev_desc)
945                         prev_desc->more = desc->more;
946                 else
947                         rmap_head->val = (unsigned long)desc->more | 1;
948         mmu_free_pte_list_desc(desc);
949 }
950
951 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
952 {
953         struct pte_list_desc *desc;
954         struct pte_list_desc *prev_desc;
955         int i;
956
957         if (!rmap_head->val) {
958                 pr_err("%s: %p 0->BUG\n", __func__, spte);
959                 BUG();
960         } else if (!(rmap_head->val & 1)) {
961                 rmap_printk("%p 1->0\n", spte);
962                 if ((u64 *)rmap_head->val != spte) {
963                         pr_err("%s:  %p 1->BUG\n", __func__, spte);
964                         BUG();
965                 }
966                 rmap_head->val = 0;
967         } else {
968                 rmap_printk("%p many->many\n", spte);
969                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
970                 prev_desc = NULL;
971                 while (desc) {
972                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
973                                 if (desc->sptes[i] == spte) {
974                                         pte_list_desc_remove_entry(rmap_head,
975                                                         desc, i, prev_desc);
976                                         return;
977                                 }
978                         }
979                         prev_desc = desc;
980                         desc = desc->more;
981                 }
982                 pr_err("%s: %p many->many\n", __func__, spte);
983                 BUG();
984         }
985 }
986
987 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
988 {
989         mmu_spte_clear_track_bits(sptep);
990         __pte_list_remove(sptep, rmap_head);
991 }
992
993 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
994                                            struct kvm_memory_slot *slot)
995 {
996         unsigned long idx;
997
998         idx = gfn_to_index(gfn, slot->base_gfn, level);
999         return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1000 }
1001
1002 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1003                                          struct kvm_mmu_page *sp)
1004 {
1005         struct kvm_memslots *slots;
1006         struct kvm_memory_slot *slot;
1007
1008         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1009         slot = __gfn_to_memslot(slots, gfn);
1010         return __gfn_to_rmap(gfn, sp->role.level, slot);
1011 }
1012
1013 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1014 {
1015         struct kvm_mmu_memory_cache *mc;
1016
1017         mc = &vcpu->arch.mmu_pte_list_desc_cache;
1018         return kvm_mmu_memory_cache_nr_free_objects(mc);
1019 }
1020
1021 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1022 {
1023         struct kvm_mmu_page *sp;
1024         struct kvm_rmap_head *rmap_head;
1025
1026         sp = sptep_to_sp(spte);
1027         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1028         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1029         return pte_list_add(vcpu, spte, rmap_head);
1030 }
1031
1032 static void rmap_remove(struct kvm *kvm, u64 *spte)
1033 {
1034         struct kvm_mmu_page *sp;
1035         gfn_t gfn;
1036         struct kvm_rmap_head *rmap_head;
1037
1038         sp = sptep_to_sp(spte);
1039         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1040         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1041         __pte_list_remove(spte, rmap_head);
1042 }
1043
1044 /*
1045  * Used by the following functions to iterate through the sptes linked by a
1046  * rmap.  All fields are private and not assumed to be used outside.
1047  */
1048 struct rmap_iterator {
1049         /* private fields */
1050         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1051         int pos;                        /* index of the sptep */
1052 };
1053
1054 /*
1055  * Iteration must be started by this function.  This should also be used after
1056  * removing/dropping sptes from the rmap link because in such cases the
1057  * information in the iterator may not be valid.
1058  *
1059  * Returns sptep if found, NULL otherwise.
1060  */
1061 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1062                            struct rmap_iterator *iter)
1063 {
1064         u64 *sptep;
1065
1066         if (!rmap_head->val)
1067                 return NULL;
1068
1069         if (!(rmap_head->val & 1)) {
1070                 iter->desc = NULL;
1071                 sptep = (u64 *)rmap_head->val;
1072                 goto out;
1073         }
1074
1075         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1076         iter->pos = 0;
1077         sptep = iter->desc->sptes[iter->pos];
1078 out:
1079         BUG_ON(!is_shadow_present_pte(*sptep));
1080         return sptep;
1081 }
1082
1083 /*
1084  * Must be used with a valid iterator: e.g. after rmap_get_first().
1085  *
1086  * Returns sptep if found, NULL otherwise.
1087  */
1088 static u64 *rmap_get_next(struct rmap_iterator *iter)
1089 {
1090         u64 *sptep;
1091
1092         if (iter->desc) {
1093                 if (iter->pos < PTE_LIST_EXT - 1) {
1094                         ++iter->pos;
1095                         sptep = iter->desc->sptes[iter->pos];
1096                         if (sptep)
1097                                 goto out;
1098                 }
1099
1100                 iter->desc = iter->desc->more;
1101
1102                 if (iter->desc) {
1103                         iter->pos = 0;
1104                         /* desc->sptes[0] cannot be NULL */
1105                         sptep = iter->desc->sptes[iter->pos];
1106                         goto out;
1107                 }
1108         }
1109
1110         return NULL;
1111 out:
1112         BUG_ON(!is_shadow_present_pte(*sptep));
1113         return sptep;
1114 }
1115
1116 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1117         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1118              _spte_; _spte_ = rmap_get_next(_iter_))
1119
1120 static void drop_spte(struct kvm *kvm, u64 *sptep)
1121 {
1122         if (mmu_spte_clear_track_bits(sptep))
1123                 rmap_remove(kvm, sptep);
1124 }
1125
1126
1127 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1128 {
1129         if (is_large_pte(*sptep)) {
1130                 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1131                 drop_spte(kvm, sptep);
1132                 --kvm->stat.lpages;
1133                 return true;
1134         }
1135
1136         return false;
1137 }
1138
1139 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1140 {
1141         if (__drop_large_spte(vcpu->kvm, sptep)) {
1142                 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1143
1144                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1145                         KVM_PAGES_PER_HPAGE(sp->role.level));
1146         }
1147 }
1148
1149 /*
1150  * Write-protect on the specified @sptep, @pt_protect indicates whether
1151  * spte write-protection is caused by protecting shadow page table.
1152  *
1153  * Note: write protection is difference between dirty logging and spte
1154  * protection:
1155  * - for dirty logging, the spte can be set to writable at anytime if
1156  *   its dirty bitmap is properly set.
1157  * - for spte protection, the spte can be writable only after unsync-ing
1158  *   shadow page.
1159  *
1160  * Return true if tlb need be flushed.
1161  */
1162 static bool spte_write_protect(u64 *sptep, bool pt_protect)
1163 {
1164         u64 spte = *sptep;
1165
1166         if (!is_writable_pte(spte) &&
1167               !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1168                 return false;
1169
1170         rmap_printk("spte %p %llx\n", sptep, *sptep);
1171
1172         if (pt_protect)
1173                 spte &= ~shadow_mmu_writable_mask;
1174         spte = spte & ~PT_WRITABLE_MASK;
1175
1176         return mmu_spte_update(sptep, spte);
1177 }
1178
1179 static bool __rmap_write_protect(struct kvm *kvm,
1180                                  struct kvm_rmap_head *rmap_head,
1181                                  bool pt_protect)
1182 {
1183         u64 *sptep;
1184         struct rmap_iterator iter;
1185         bool flush = false;
1186
1187         for_each_rmap_spte(rmap_head, &iter, sptep)
1188                 flush |= spte_write_protect(sptep, pt_protect);
1189
1190         return flush;
1191 }
1192
1193 static bool spte_clear_dirty(u64 *sptep)
1194 {
1195         u64 spte = *sptep;
1196
1197         rmap_printk("spte %p %llx\n", sptep, *sptep);
1198
1199         MMU_WARN_ON(!spte_ad_enabled(spte));
1200         spte &= ~shadow_dirty_mask;
1201         return mmu_spte_update(sptep, spte);
1202 }
1203
1204 static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1205 {
1206         bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1207                                                (unsigned long *)sptep);
1208         if (was_writable && !spte_ad_enabled(*sptep))
1209                 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1210
1211         return was_writable;
1212 }
1213
1214 /*
1215  * Gets the GFN ready for another round of dirty logging by clearing the
1216  *      - D bit on ad-enabled SPTEs, and
1217  *      - W bit on ad-disabled SPTEs.
1218  * Returns true iff any D or W bits were cleared.
1219  */
1220 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1221                                struct kvm_memory_slot *slot)
1222 {
1223         u64 *sptep;
1224         struct rmap_iterator iter;
1225         bool flush = false;
1226
1227         for_each_rmap_spte(rmap_head, &iter, sptep)
1228                 if (spte_ad_need_write_protect(*sptep))
1229                         flush |= spte_wrprot_for_clear_dirty(sptep);
1230                 else
1231                         flush |= spte_clear_dirty(sptep);
1232
1233         return flush;
1234 }
1235
1236 /**
1237  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1238  * @kvm: kvm instance
1239  * @slot: slot to protect
1240  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1241  * @mask: indicates which pages we should protect
1242  *
1243  * Used when we do not need to care about huge page mappings.
1244  */
1245 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1246                                      struct kvm_memory_slot *slot,
1247                                      gfn_t gfn_offset, unsigned long mask)
1248 {
1249         struct kvm_rmap_head *rmap_head;
1250
1251         if (is_tdp_mmu_enabled(kvm))
1252                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1253                                 slot->base_gfn + gfn_offset, mask, true);
1254
1255         if (!kvm_memslots_have_rmaps(kvm))
1256                 return;
1257
1258         while (mask) {
1259                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1260                                           PG_LEVEL_4K, slot);
1261                 __rmap_write_protect(kvm, rmap_head, false);
1262
1263                 /* clear the first set bit */
1264                 mask &= mask - 1;
1265         }
1266 }
1267
1268 /**
1269  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1270  * protect the page if the D-bit isn't supported.
1271  * @kvm: kvm instance
1272  * @slot: slot to clear D-bit
1273  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1274  * @mask: indicates which pages we should clear D-bit
1275  *
1276  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1277  */
1278 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1279                                          struct kvm_memory_slot *slot,
1280                                          gfn_t gfn_offset, unsigned long mask)
1281 {
1282         struct kvm_rmap_head *rmap_head;
1283
1284         if (is_tdp_mmu_enabled(kvm))
1285                 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1286                                 slot->base_gfn + gfn_offset, mask, false);
1287
1288         if (!kvm_memslots_have_rmaps(kvm))
1289                 return;
1290
1291         while (mask) {
1292                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1293                                           PG_LEVEL_4K, slot);
1294                 __rmap_clear_dirty(kvm, rmap_head, slot);
1295
1296                 /* clear the first set bit */
1297                 mask &= mask - 1;
1298         }
1299 }
1300
1301 /**
1302  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1303  * PT level pages.
1304  *
1305  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1306  * enable dirty logging for them.
1307  *
1308  * We need to care about huge page mappings: e.g. during dirty logging we may
1309  * have such mappings.
1310  */
1311 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1312                                 struct kvm_memory_slot *slot,
1313                                 gfn_t gfn_offset, unsigned long mask)
1314 {
1315         /*
1316          * Huge pages are NOT write protected when we start dirty logging in
1317          * initially-all-set mode; must write protect them here so that they
1318          * are split to 4K on the first write.
1319          *
1320          * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1321          * of memslot has no such restriction, so the range can cross two large
1322          * pages.
1323          */
1324         if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1325                 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1326                 gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
1327
1328                 kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
1329
1330                 /* Cross two large pages? */
1331                 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1332                     ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1333                         kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
1334                                                        PG_LEVEL_2M);
1335         }
1336
1337         /* Now handle 4K PTEs.  */
1338         if (kvm_x86_ops.cpu_dirty_log_size)
1339                 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1340         else
1341                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1342 }
1343
1344 int kvm_cpu_dirty_log_size(void)
1345 {
1346         return kvm_x86_ops.cpu_dirty_log_size;
1347 }
1348
1349 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1350                                     struct kvm_memory_slot *slot, u64 gfn,
1351                                     int min_level)
1352 {
1353         struct kvm_rmap_head *rmap_head;
1354         int i;
1355         bool write_protected = false;
1356
1357         if (kvm_memslots_have_rmaps(kvm)) {
1358                 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1359                         rmap_head = __gfn_to_rmap(gfn, i, slot);
1360                         write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1361                 }
1362         }
1363
1364         if (is_tdp_mmu_enabled(kvm))
1365                 write_protected |=
1366                         kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1367
1368         return write_protected;
1369 }
1370
1371 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1372 {
1373         struct kvm_memory_slot *slot;
1374
1375         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1376         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1377 }
1378
1379 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1380                           struct kvm_memory_slot *slot)
1381 {
1382         u64 *sptep;
1383         struct rmap_iterator iter;
1384         bool flush = false;
1385
1386         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1387                 rmap_printk("spte %p %llx.\n", sptep, *sptep);
1388
1389                 pte_list_remove(rmap_head, sptep);
1390                 flush = true;
1391         }
1392
1393         return flush;
1394 }
1395
1396 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397                             struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398                             pte_t unused)
1399 {
1400         return kvm_zap_rmapp(kvm, rmap_head, slot);
1401 }
1402
1403 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1404                               struct kvm_memory_slot *slot, gfn_t gfn, int level,
1405                               pte_t pte)
1406 {
1407         u64 *sptep;
1408         struct rmap_iterator iter;
1409         int need_flush = 0;
1410         u64 new_spte;
1411         kvm_pfn_t new_pfn;
1412
1413         WARN_ON(pte_huge(pte));
1414         new_pfn = pte_pfn(pte);
1415
1416 restart:
1417         for_each_rmap_spte(rmap_head, &iter, sptep) {
1418                 rmap_printk("spte %p %llx gfn %llx (%d)\n",
1419                             sptep, *sptep, gfn, level);
1420
1421                 need_flush = 1;
1422
1423                 if (pte_write(pte)) {
1424                         pte_list_remove(rmap_head, sptep);
1425                         goto restart;
1426                 } else {
1427                         new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1428                                         *sptep, new_pfn);
1429
1430                         mmu_spte_clear_track_bits(sptep);
1431                         mmu_spte_set(sptep, new_spte);
1432                 }
1433         }
1434
1435         if (need_flush && kvm_available_flush_tlb_with_range()) {
1436                 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1437                 return 0;
1438         }
1439
1440         return need_flush;
1441 }
1442
1443 struct slot_rmap_walk_iterator {
1444         /* input fields. */
1445         struct kvm_memory_slot *slot;
1446         gfn_t start_gfn;
1447         gfn_t end_gfn;
1448         int start_level;
1449         int end_level;
1450
1451         /* output fields. */
1452         gfn_t gfn;
1453         struct kvm_rmap_head *rmap;
1454         int level;
1455
1456         /* private field. */
1457         struct kvm_rmap_head *end_rmap;
1458 };
1459
1460 static void
1461 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1462 {
1463         iterator->level = level;
1464         iterator->gfn = iterator->start_gfn;
1465         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1466         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1467                                            iterator->slot);
1468 }
1469
1470 static void
1471 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1472                     struct kvm_memory_slot *slot, int start_level,
1473                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1474 {
1475         iterator->slot = slot;
1476         iterator->start_level = start_level;
1477         iterator->end_level = end_level;
1478         iterator->start_gfn = start_gfn;
1479         iterator->end_gfn = end_gfn;
1480
1481         rmap_walk_init_level(iterator, iterator->start_level);
1482 }
1483
1484 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1485 {
1486         return !!iterator->rmap;
1487 }
1488
1489 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1490 {
1491         if (++iterator->rmap <= iterator->end_rmap) {
1492                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1493                 return;
1494         }
1495
1496         if (++iterator->level > iterator->end_level) {
1497                 iterator->rmap = NULL;
1498                 return;
1499         }
1500
1501         rmap_walk_init_level(iterator, iterator->level);
1502 }
1503
1504 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1505            _start_gfn, _end_gfn, _iter_)                                \
1506         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1507                                  _end_level_, _start_gfn, _end_gfn);    \
1508              slot_rmap_walk_okay(_iter_);                               \
1509              slot_rmap_walk_next(_iter_))
1510
1511 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1512                                struct kvm_memory_slot *slot, gfn_t gfn,
1513                                int level, pte_t pte);
1514
1515 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1516                                                  struct kvm_gfn_range *range,
1517                                                  rmap_handler_t handler)
1518 {
1519         struct slot_rmap_walk_iterator iterator;
1520         bool ret = false;
1521
1522         for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1523                                  range->start, range->end - 1, &iterator)
1524                 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1525                                iterator.level, range->pte);
1526
1527         return ret;
1528 }
1529
1530 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1531 {
1532         bool flush = false;
1533
1534         if (kvm_memslots_have_rmaps(kvm))
1535                 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1536
1537         if (is_tdp_mmu_enabled(kvm))
1538                 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1539
1540         return flush;
1541 }
1542
1543 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1544 {
1545         bool flush = false;
1546
1547         if (kvm_memslots_have_rmaps(kvm))
1548                 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1549
1550         if (is_tdp_mmu_enabled(kvm))
1551                 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1552
1553         return flush;
1554 }
1555
1556 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1557                           struct kvm_memory_slot *slot, gfn_t gfn, int level,
1558                           pte_t unused)
1559 {
1560         u64 *sptep;
1561         struct rmap_iterator iter;
1562         int young = 0;
1563
1564         for_each_rmap_spte(rmap_head, &iter, sptep)
1565                 young |= mmu_spte_age(sptep);
1566
1567         return young;
1568 }
1569
1570 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1571                                struct kvm_memory_slot *slot, gfn_t gfn,
1572                                int level, pte_t unused)
1573 {
1574         u64 *sptep;
1575         struct rmap_iterator iter;
1576
1577         for_each_rmap_spte(rmap_head, &iter, sptep)
1578                 if (is_accessed_spte(*sptep))
1579                         return 1;
1580         return 0;
1581 }
1582
1583 #define RMAP_RECYCLE_THRESHOLD 1000
1584
1585 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1586 {
1587         struct kvm_rmap_head *rmap_head;
1588         struct kvm_mmu_page *sp;
1589
1590         sp = sptep_to_sp(spte);
1591
1592         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1593
1594         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1595         kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1596                         KVM_PAGES_PER_HPAGE(sp->role.level));
1597 }
1598
1599 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1600 {
1601         bool young = false;
1602
1603         if (kvm_memslots_have_rmaps(kvm))
1604                 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1605
1606         if (is_tdp_mmu_enabled(kvm))
1607                 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1608
1609         return young;
1610 }
1611
1612 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1613 {
1614         bool young = false;
1615
1616         if (kvm_memslots_have_rmaps(kvm))
1617                 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1618
1619         if (is_tdp_mmu_enabled(kvm))
1620                 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1621
1622         return young;
1623 }
1624
1625 #ifdef MMU_DEBUG
1626 static int is_empty_shadow_page(u64 *spt)
1627 {
1628         u64 *pos;
1629         u64 *end;
1630
1631         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1632                 if (is_shadow_present_pte(*pos)) {
1633                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1634                                pos, *pos);
1635                         return 0;
1636                 }
1637         return 1;
1638 }
1639 #endif
1640
1641 /*
1642  * This value is the sum of all of the kvm instances's
1643  * kvm->arch.n_used_mmu_pages values.  We need a global,
1644  * aggregate version in order to make the slab shrinker
1645  * faster
1646  */
1647 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1648 {
1649         kvm->arch.n_used_mmu_pages += nr;
1650         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1651 }
1652
1653 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1654 {
1655         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1656         hlist_del(&sp->hash_link);
1657         list_del(&sp->link);
1658         free_page((unsigned long)sp->spt);
1659         if (!sp->role.direct)
1660                 free_page((unsigned long)sp->gfns);
1661         kmem_cache_free(mmu_page_header_cache, sp);
1662 }
1663
1664 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1665 {
1666         return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1667 }
1668
1669 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1670                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1671 {
1672         if (!parent_pte)
1673                 return;
1674
1675         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1676 }
1677
1678 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1679                                        u64 *parent_pte)
1680 {
1681         __pte_list_remove(parent_pte, &sp->parent_ptes);
1682 }
1683
1684 static void drop_parent_pte(struct kvm_mmu_page *sp,
1685                             u64 *parent_pte)
1686 {
1687         mmu_page_remove_parent_pte(sp, parent_pte);
1688         mmu_spte_clear_no_track(parent_pte);
1689 }
1690
1691 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1692 {
1693         struct kvm_mmu_page *sp;
1694
1695         sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1696         sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1697         if (!direct)
1698                 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1699         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1700
1701         /*
1702          * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1703          * depends on valid pages being added to the head of the list.  See
1704          * comments in kvm_zap_obsolete_pages().
1705          */
1706         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1707         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1708         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1709         return sp;
1710 }
1711
1712 static void mark_unsync(u64 *spte);
1713 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1714 {
1715         u64 *sptep;
1716         struct rmap_iterator iter;
1717
1718         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1719                 mark_unsync(sptep);
1720         }
1721 }
1722
1723 static void mark_unsync(u64 *spte)
1724 {
1725         struct kvm_mmu_page *sp;
1726         unsigned int index;
1727
1728         sp = sptep_to_sp(spte);
1729         index = spte - sp->spt;
1730         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1731                 return;
1732         if (sp->unsync_children++)
1733                 return;
1734         kvm_mmu_mark_parents_unsync(sp);
1735 }
1736
1737 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1738                                struct kvm_mmu_page *sp)
1739 {
1740         return 0;
1741 }
1742
1743 #define KVM_PAGE_ARRAY_NR 16
1744
1745 struct kvm_mmu_pages {
1746         struct mmu_page_and_offset {
1747                 struct kvm_mmu_page *sp;
1748                 unsigned int idx;
1749         } page[KVM_PAGE_ARRAY_NR];
1750         unsigned int nr;
1751 };
1752
1753 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1754                          int idx)
1755 {
1756         int i;
1757
1758         if (sp->unsync)
1759                 for (i=0; i < pvec->nr; i++)
1760                         if (pvec->page[i].sp == sp)
1761                                 return 0;
1762
1763         pvec->page[pvec->nr].sp = sp;
1764         pvec->page[pvec->nr].idx = idx;
1765         pvec->nr++;
1766         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1767 }
1768
1769 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1770 {
1771         --sp->unsync_children;
1772         WARN_ON((int)sp->unsync_children < 0);
1773         __clear_bit(idx, sp->unsync_child_bitmap);
1774 }
1775
1776 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1777                            struct kvm_mmu_pages *pvec)
1778 {
1779         int i, ret, nr_unsync_leaf = 0;
1780
1781         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1782                 struct kvm_mmu_page *child;
1783                 u64 ent = sp->spt[i];
1784
1785                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1786                         clear_unsync_child_bit(sp, i);
1787                         continue;
1788                 }
1789
1790                 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1791
1792                 if (child->unsync_children) {
1793                         if (mmu_pages_add(pvec, child, i))
1794                                 return -ENOSPC;
1795
1796                         ret = __mmu_unsync_walk(child, pvec);
1797                         if (!ret) {
1798                                 clear_unsync_child_bit(sp, i);
1799                                 continue;
1800                         } else if (ret > 0) {
1801                                 nr_unsync_leaf += ret;
1802                         } else
1803                                 return ret;
1804                 } else if (child->unsync) {
1805                         nr_unsync_leaf++;
1806                         if (mmu_pages_add(pvec, child, i))
1807                                 return -ENOSPC;
1808                 } else
1809                         clear_unsync_child_bit(sp, i);
1810         }
1811
1812         return nr_unsync_leaf;
1813 }
1814
1815 #define INVALID_INDEX (-1)
1816
1817 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1818                            struct kvm_mmu_pages *pvec)
1819 {
1820         pvec->nr = 0;
1821         if (!sp->unsync_children)
1822                 return 0;
1823
1824         mmu_pages_add(pvec, sp, INVALID_INDEX);
1825         return __mmu_unsync_walk(sp, pvec);
1826 }
1827
1828 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1829 {
1830         WARN_ON(!sp->unsync);
1831         trace_kvm_mmu_sync_page(sp);
1832         sp->unsync = 0;
1833         --kvm->stat.mmu_unsync;
1834 }
1835
1836 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1837                                      struct list_head *invalid_list);
1838 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1839                                     struct list_head *invalid_list);
1840
1841 #define for_each_valid_sp(_kvm, _sp, _list)                             \
1842         hlist_for_each_entry(_sp, _list, hash_link)                     \
1843                 if (is_obsolete_sp((_kvm), (_sp))) {                    \
1844                 } else
1845
1846 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1847         for_each_valid_sp(_kvm, _sp,                                    \
1848           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])     \
1849                 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1850
1851 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1852                          struct list_head *invalid_list)
1853 {
1854         if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1855                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1856                 return false;
1857         }
1858
1859         return true;
1860 }
1861
1862 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1863                                         struct list_head *invalid_list,
1864                                         bool remote_flush)
1865 {
1866         if (!remote_flush && list_empty(invalid_list))
1867                 return false;
1868
1869         if (!list_empty(invalid_list))
1870                 kvm_mmu_commit_zap_page(kvm, invalid_list);
1871         else
1872                 kvm_flush_remote_tlbs(kvm);
1873         return true;
1874 }
1875
1876 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1877                                  struct list_head *invalid_list,
1878                                  bool remote_flush, bool local_flush)
1879 {
1880         if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1881                 return;
1882
1883         if (local_flush)
1884                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1885 }
1886
1887 #ifdef CONFIG_KVM_MMU_AUDIT
1888 #include "mmu_audit.c"
1889 #else
1890 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1891 static void mmu_audit_disable(void) { }
1892 #endif
1893
1894 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1895 {
1896         return sp->role.invalid ||
1897                unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1898 }
1899
1900 struct mmu_page_path {
1901         struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1902         unsigned int idx[PT64_ROOT_MAX_LEVEL];
1903 };
1904
1905 #define for_each_sp(pvec, sp, parents, i)                       \
1906                 for (i = mmu_pages_first(&pvec, &parents);      \
1907                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1908                         i = mmu_pages_next(&pvec, &parents, i))
1909
1910 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1911                           struct mmu_page_path *parents,
1912                           int i)
1913 {
1914         int n;
1915
1916         for (n = i+1; n < pvec->nr; n++) {
1917                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1918                 unsigned idx = pvec->page[n].idx;
1919                 int level = sp->role.level;
1920
1921                 parents->idx[level-1] = idx;
1922                 if (level == PG_LEVEL_4K)
1923                         break;
1924
1925                 parents->parent[level-2] = sp;
1926         }
1927
1928         return n;
1929 }
1930
1931 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1932                            struct mmu_page_path *parents)
1933 {
1934         struct kvm_mmu_page *sp;
1935         int level;
1936
1937         if (pvec->nr == 0)
1938                 return 0;
1939
1940         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1941
1942         sp = pvec->page[0].sp;
1943         level = sp->role.level;
1944         WARN_ON(level == PG_LEVEL_4K);
1945
1946         parents->parent[level-2] = sp;
1947
1948         /* Also set up a sentinel.  Further entries in pvec are all
1949          * children of sp, so this element is never overwritten.
1950          */
1951         parents->parent[level-1] = NULL;
1952         return mmu_pages_next(pvec, parents, 0);
1953 }
1954
1955 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1956 {
1957         struct kvm_mmu_page *sp;
1958         unsigned int level = 0;
1959
1960         do {
1961                 unsigned int idx = parents->idx[level];
1962                 sp = parents->parent[level];
1963                 if (!sp)
1964                         return;
1965
1966                 WARN_ON(idx == INVALID_INDEX);
1967                 clear_unsync_child_bit(sp, idx);
1968                 level++;
1969         } while (!sp->unsync_children);
1970 }
1971
1972 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1973                               struct kvm_mmu_page *parent)
1974 {
1975         int i;
1976         struct kvm_mmu_page *sp;
1977         struct mmu_page_path parents;
1978         struct kvm_mmu_pages pages;
1979         LIST_HEAD(invalid_list);
1980         bool flush = false;
1981
1982         while (mmu_unsync_walk(parent, &pages)) {
1983                 bool protected = false;
1984
1985                 for_each_sp(pages, sp, parents, i)
1986                         protected |= rmap_write_protect(vcpu, sp->gfn);
1987
1988                 if (protected) {
1989                         kvm_flush_remote_tlbs(vcpu->kvm);
1990                         flush = false;
1991                 }
1992
1993                 for_each_sp(pages, sp, parents, i) {
1994                         kvm_unlink_unsync_page(vcpu->kvm, sp);
1995                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1996                         mmu_pages_clear_parents(&parents);
1997                 }
1998                 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1999                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2000                         cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2001                         flush = false;
2002                 }
2003         }
2004
2005         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2006 }
2007
2008 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2009 {
2010         atomic_set(&sp->write_flooding_count,  0);
2011 }
2012
2013 static void clear_sp_write_flooding_count(u64 *spte)
2014 {
2015         __clear_sp_write_flooding_count(sptep_to_sp(spte));
2016 }
2017
2018 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2019                                              gfn_t gfn,
2020                                              gva_t gaddr,
2021                                              unsigned level,
2022                                              int direct,
2023                                              unsigned int access)
2024 {
2025         bool direct_mmu = vcpu->arch.mmu->direct_map;
2026         union kvm_mmu_page_role role;
2027         struct hlist_head *sp_list;
2028         unsigned quadrant;
2029         struct kvm_mmu_page *sp;
2030         int collisions = 0;
2031         LIST_HEAD(invalid_list);
2032
2033         role = vcpu->arch.mmu->mmu_role.base;
2034         role.level = level;
2035         role.direct = direct;
2036         if (role.direct)
2037                 role.gpte_is_8_bytes = true;
2038         role.access = access;
2039         if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2040                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2041                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2042                 role.quadrant = quadrant;
2043         }
2044
2045         sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2046         for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2047                 if (sp->gfn != gfn) {
2048                         collisions++;
2049                         continue;
2050                 }
2051
2052                 if (sp->role.word != role.word) {
2053                         /*
2054                          * If the guest is creating an upper-level page, zap
2055                          * unsync pages for the same gfn.  While it's possible
2056                          * the guest is using recursive page tables, in all
2057                          * likelihood the guest has stopped using the unsync
2058                          * page and is installing a completely unrelated page.
2059                          * Unsync pages must not be left as is, because the new
2060                          * upper-level page will be write-protected.
2061                          */
2062                         if (level > PG_LEVEL_4K && sp->unsync)
2063                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2064                                                          &invalid_list);
2065                         continue;
2066                 }
2067
2068                 if (direct_mmu)
2069                         goto trace_get_page;
2070
2071                 if (sp->unsync) {
2072                         /*
2073                          * The page is good, but is stale.  kvm_sync_page does
2074                          * get the latest guest state, but (unlike mmu_unsync_children)
2075                          * it doesn't write-protect the page or mark it synchronized!
2076                          * This way the validity of the mapping is ensured, but the
2077                          * overhead of write protection is not incurred until the
2078                          * guest invalidates the TLB mapping.  This allows multiple
2079                          * SPs for a single gfn to be unsync.
2080                          *
2081                          * If the sync fails, the page is zapped.  If so, break
2082                          * in order to rebuild it.
2083                          */
2084                         if (!kvm_sync_page(vcpu, sp, &invalid_list))
2085                                 break;
2086
2087                         WARN_ON(!list_empty(&invalid_list));
2088                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2089                 }
2090
2091                 if (sp->unsync_children)
2092                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2093
2094                 __clear_sp_write_flooding_count(sp);
2095
2096 trace_get_page:
2097                 trace_kvm_mmu_get_page(sp, false);
2098                 goto out;
2099         }
2100
2101         ++vcpu->kvm->stat.mmu_cache_miss;
2102
2103         sp = kvm_mmu_alloc_page(vcpu, direct);
2104
2105         sp->gfn = gfn;
2106         sp->role = role;
2107         hlist_add_head(&sp->hash_link, sp_list);
2108         if (!direct) {
2109                 account_shadowed(vcpu->kvm, sp);
2110                 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2111                         kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2112         }
2113         trace_kvm_mmu_get_page(sp, true);
2114 out:
2115         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2116
2117         if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2118                 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2119         return sp;
2120 }
2121
2122 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2123                                         struct kvm_vcpu *vcpu, hpa_t root,
2124                                         u64 addr)
2125 {
2126         iterator->addr = addr;
2127         iterator->shadow_addr = root;
2128         iterator->level = vcpu->arch.mmu->shadow_root_level;
2129
2130         if (iterator->level == PT64_ROOT_4LEVEL &&
2131             vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2132             !vcpu->arch.mmu->direct_map)
2133                 --iterator->level;
2134
2135         if (iterator->level == PT32E_ROOT_LEVEL) {
2136                 /*
2137                  * prev_root is currently only used for 64-bit hosts. So only
2138                  * the active root_hpa is valid here.
2139                  */
2140                 BUG_ON(root != vcpu->arch.mmu->root_hpa);
2141
2142                 iterator->shadow_addr
2143                         = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2144                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2145                 --iterator->level;
2146                 if (!iterator->shadow_addr)
2147                         iterator->level = 0;
2148         }
2149 }
2150
2151 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2152                              struct kvm_vcpu *vcpu, u64 addr)
2153 {
2154         shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2155                                     addr);
2156 }
2157
2158 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2159 {
2160         if (iterator->level < PG_LEVEL_4K)
2161                 return false;
2162
2163         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2164         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2165         return true;
2166 }
2167
2168 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2169                                u64 spte)
2170 {
2171         if (is_last_spte(spte, iterator->level)) {
2172                 iterator->level = 0;
2173                 return;
2174         }
2175
2176         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2177         --iterator->level;
2178 }
2179
2180 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2181 {
2182         __shadow_walk_next(iterator, *iterator->sptep);
2183 }
2184
2185 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2186                              struct kvm_mmu_page *sp)
2187 {
2188         u64 spte;
2189
2190         BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2191
2192         spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2193
2194         mmu_spte_set(sptep, spte);
2195
2196         mmu_page_add_parent_pte(vcpu, sp, sptep);
2197
2198         if (sp->unsync_children || sp->unsync)
2199                 mark_unsync(sptep);
2200 }
2201
2202 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2203                                    unsigned direct_access)
2204 {
2205         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2206                 struct kvm_mmu_page *child;
2207
2208                 /*
2209                  * For the direct sp, if the guest pte's dirty bit
2210                  * changed form clean to dirty, it will corrupt the
2211                  * sp's access: allow writable in the read-only sp,
2212                  * so we should update the spte at this point to get
2213                  * a new sp with the correct access.
2214                  */
2215                 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2216                 if (child->role.access == direct_access)
2217                         return;
2218
2219                 drop_parent_pte(child, sptep);
2220                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2221         }
2222 }
2223
2224 /* Returns the number of zapped non-leaf child shadow pages. */
2225 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2226                             u64 *spte, struct list_head *invalid_list)
2227 {
2228         u64 pte;
2229         struct kvm_mmu_page *child;
2230
2231         pte = *spte;
2232         if (is_shadow_present_pte(pte)) {
2233                 if (is_last_spte(pte, sp->role.level)) {
2234                         drop_spte(kvm, spte);
2235                         if (is_large_pte(pte))
2236                                 --kvm->stat.lpages;
2237                 } else {
2238                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2239                         drop_parent_pte(child, spte);
2240
2241                         /*
2242                          * Recursively zap nested TDP SPs, parentless SPs are
2243                          * unlikely to be used again in the near future.  This
2244                          * avoids retaining a large number of stale nested SPs.
2245                          */
2246                         if (tdp_enabled && invalid_list &&
2247                             child->role.guest_mode && !child->parent_ptes.val)
2248                                 return kvm_mmu_prepare_zap_page(kvm, child,
2249                                                                 invalid_list);
2250                 }
2251         } else if (is_mmio_spte(pte)) {
2252                 mmu_spte_clear_no_track(spte);
2253         }
2254         return 0;
2255 }
2256
2257 static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2258                                         struct kvm_mmu_page *sp,
2259                                         struct list_head *invalid_list)
2260 {
2261         int zapped = 0;
2262         unsigned i;
2263
2264         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2265                 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2266
2267         return zapped;
2268 }
2269
2270 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2271 {
2272         u64 *sptep;
2273         struct rmap_iterator iter;
2274
2275         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2276                 drop_parent_pte(sp, sptep);
2277 }
2278
2279 static int mmu_zap_unsync_children(struct kvm *kvm,
2280                                    struct kvm_mmu_page *parent,
2281                                    struct list_head *invalid_list)
2282 {
2283         int i, zapped = 0;
2284         struct mmu_page_path parents;
2285         struct kvm_mmu_pages pages;
2286
2287         if (parent->role.level == PG_LEVEL_4K)
2288                 return 0;
2289
2290         while (mmu_unsync_walk(parent, &pages)) {
2291                 struct kvm_mmu_page *sp;
2292
2293                 for_each_sp(pages, sp, parents, i) {
2294                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2295                         mmu_pages_clear_parents(&parents);
2296                         zapped++;
2297                 }
2298         }
2299
2300         return zapped;
2301 }
2302
2303 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2304                                        struct kvm_mmu_page *sp,
2305                                        struct list_head *invalid_list,
2306                                        int *nr_zapped)
2307 {
2308         bool list_unstable;
2309
2310         trace_kvm_mmu_prepare_zap_page(sp);
2311         ++kvm->stat.mmu_shadow_zapped;
2312         *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2313         *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2314         kvm_mmu_unlink_parents(kvm, sp);
2315
2316         /* Zapping children means active_mmu_pages has become unstable. */
2317         list_unstable = *nr_zapped;
2318
2319         if (!sp->role.invalid && !sp->role.direct)
2320                 unaccount_shadowed(kvm, sp);
2321
2322         if (sp->unsync)
2323                 kvm_unlink_unsync_page(kvm, sp);
2324         if (!sp->root_count) {
2325                 /* Count self */
2326                 (*nr_zapped)++;
2327
2328                 /*
2329                  * Already invalid pages (previously active roots) are not on
2330                  * the active page list.  See list_del() in the "else" case of
2331                  * !sp->root_count.
2332                  */
2333                 if (sp->role.invalid)
2334                         list_add(&sp->link, invalid_list);
2335                 else
2336                         list_move(&sp->link, invalid_list);
2337                 kvm_mod_used_mmu_pages(kvm, -1);
2338         } else {
2339                 /*
2340                  * Remove the active root from the active page list, the root
2341                  * will be explicitly freed when the root_count hits zero.
2342                  */
2343                 list_del(&sp->link);
2344
2345                 /*
2346                  * Obsolete pages cannot be used on any vCPUs, see the comment
2347                  * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2348                  * treats invalid shadow pages as being obsolete.
2349                  */
2350                 if (!is_obsolete_sp(kvm, sp))
2351                         kvm_reload_remote_mmus(kvm);
2352         }
2353
2354         if (sp->lpage_disallowed)
2355                 unaccount_huge_nx_page(kvm, sp);
2356
2357         sp->role.invalid = 1;
2358         return list_unstable;
2359 }
2360
2361 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2362                                      struct list_head *invalid_list)
2363 {
2364         int nr_zapped;
2365
2366         __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2367         return nr_zapped;
2368 }
2369
2370 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2371                                     struct list_head *invalid_list)
2372 {
2373         struct kvm_mmu_page *sp, *nsp;
2374
2375         if (list_empty(invalid_list))
2376                 return;
2377
2378         /*
2379          * We need to make sure everyone sees our modifications to
2380          * the page tables and see changes to vcpu->mode here. The barrier
2381          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2382          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2383          *
2384          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2385          * guest mode and/or lockless shadow page table walks.
2386          */
2387         kvm_flush_remote_tlbs(kvm);
2388
2389         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2390                 WARN_ON(!sp->role.invalid || sp->root_count);
2391                 kvm_mmu_free_page(sp);
2392         }
2393 }
2394
2395 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2396                                                   unsigned long nr_to_zap)
2397 {
2398         unsigned long total_zapped = 0;
2399         struct kvm_mmu_page *sp, *tmp;
2400         LIST_HEAD(invalid_list);
2401         bool unstable;
2402         int nr_zapped;
2403
2404         if (list_empty(&kvm->arch.active_mmu_pages))
2405                 return 0;
2406
2407 restart:
2408         list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2409                 /*
2410                  * Don't zap active root pages, the page itself can't be freed
2411                  * and zapping it will just force vCPUs to realloc and reload.
2412                  */
2413                 if (sp->root_count)
2414                         continue;
2415
2416                 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2417                                                       &nr_zapped);
2418                 total_zapped += nr_zapped;
2419                 if (total_zapped >= nr_to_zap)
2420                         break;
2421
2422                 if (unstable)
2423                         goto restart;
2424         }
2425
2426         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2427
2428         kvm->stat.mmu_recycled += total_zapped;
2429         return total_zapped;
2430 }
2431
2432 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2433 {
2434         if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2435                 return kvm->arch.n_max_mmu_pages -
2436                         kvm->arch.n_used_mmu_pages;
2437
2438         return 0;
2439 }
2440
2441 static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2442 {
2443         unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2444
2445         if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2446                 return 0;
2447
2448         kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2449
2450         /*
2451          * Note, this check is intentionally soft, it only guarantees that one
2452          * page is available, while the caller may end up allocating as many as
2453          * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
2454          * exceeding the (arbitrary by default) limit will not harm the host,
2455          * being too aggressive may unnecessarily kill the guest, and getting an
2456          * exact count is far more trouble than it's worth, especially in the
2457          * page fault paths.
2458          */
2459         if (!kvm_mmu_available_pages(vcpu->kvm))
2460                 return -ENOSPC;
2461         return 0;
2462 }
2463
2464 /*
2465  * Changing the number of mmu pages allocated to the vm
2466  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2467  */
2468 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2469 {
2470         write_lock(&kvm->mmu_lock);
2471
2472         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2473                 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2474                                                   goal_nr_mmu_pages);
2475
2476                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2477         }
2478
2479         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2480
2481         write_unlock(&kvm->mmu_lock);
2482 }
2483
2484 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2485 {
2486         struct kvm_mmu_page *sp;
2487         LIST_HEAD(invalid_list);
2488         int r;
2489
2490         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2491         r = 0;
2492         write_lock(&kvm->mmu_lock);
2493         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2494                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2495                          sp->role.word);
2496                 r = 1;
2497                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2498         }
2499         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2500         write_unlock(&kvm->mmu_lock);
2501
2502         return r;
2503 }
2504
2505 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2506 {
2507         gpa_t gpa;
2508         int r;
2509
2510         if (vcpu->arch.mmu->direct_map)
2511                 return 0;
2512
2513         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2514
2515         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2516
2517         return r;
2518 }
2519
2520 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2521 {
2522         trace_kvm_mmu_unsync_page(sp);
2523         ++vcpu->kvm->stat.mmu_unsync;
2524         sp->unsync = 1;
2525
2526         kvm_mmu_mark_parents_unsync(sp);
2527 }
2528
2529 /*
2530  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2531  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
2532  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2533  * be write-protected.
2534  */
2535 int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2536 {
2537         struct kvm_mmu_page *sp;
2538         bool locked = false;
2539
2540         /*
2541          * Force write-protection if the page is being tracked.  Note, the page
2542          * track machinery is used to write-protect upper-level shadow pages,
2543          * i.e. this guards the role.level == 4K assertion below!
2544          */
2545         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2546                 return -EPERM;
2547
2548         /*
2549          * The page is not write-tracked, mark existing shadow pages unsync
2550          * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
2551          * that case, KVM must complete emulation of the guest TLB flush before
2552          * allowing shadow pages to become unsync (writable by the guest).
2553          */
2554         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2555                 if (!can_unsync)
2556                         return -EPERM;
2557
2558                 if (sp->unsync)
2559                         continue;
2560
2561                 /*
2562                  * TDP MMU page faults require an additional spinlock as they
2563                  * run with mmu_lock held for read, not write, and the unsync
2564                  * logic is not thread safe.  Take the spinklock regardless of
2565                  * the MMU type to avoid extra conditionals/parameters, there's
2566                  * no meaningful penalty if mmu_lock is held for write.
2567                  */
2568                 if (!locked) {
2569                         locked = true;
2570                         spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2571
2572                         /*
2573                          * Recheck after taking the spinlock, a different vCPU
2574                          * may have since marked the page unsync.  A false
2575                          * positive on the unprotected check above is not
2576                          * possible as clearing sp->unsync _must_ hold mmu_lock
2577                          * for write, i.e. unsync cannot transition from 0->1
2578                          * while this CPU holds mmu_lock for read (or write).
2579                          */
2580                         if (READ_ONCE(sp->unsync))
2581                                 continue;
2582                 }
2583
2584                 WARN_ON(sp->role.level != PG_LEVEL_4K);
2585                 kvm_unsync_page(vcpu, sp);
2586         }
2587         if (locked)
2588                 spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2589
2590         /*
2591          * We need to ensure that the marking of unsync pages is visible
2592          * before the SPTE is updated to allow writes because
2593          * kvm_mmu_sync_roots() checks the unsync flags without holding
2594          * the MMU lock and so can race with this. If the SPTE was updated
2595          * before the page had been marked as unsync-ed, something like the
2596          * following could happen:
2597          *
2598          * CPU 1                    CPU 2
2599          * ---------------------------------------------------------------------
2600          * 1.2 Host updates SPTE
2601          *     to be writable
2602          *                      2.1 Guest writes a GPTE for GVA X.
2603          *                          (GPTE being in the guest page table shadowed
2604          *                           by the SP from CPU 1.)
2605          *                          This reads SPTE during the page table walk.
2606          *                          Since SPTE.W is read as 1, there is no
2607          *                          fault.
2608          *
2609          *                      2.2 Guest issues TLB flush.
2610          *                          That causes a VM Exit.
2611          *
2612          *                      2.3 Walking of unsync pages sees sp->unsync is
2613          *                          false and skips the page.
2614          *
2615          *                      2.4 Guest accesses GVA X.
2616          *                          Since the mapping in the SP was not updated,
2617          *                          so the old mapping for GVA X incorrectly
2618          *                          gets used.
2619          * 1.1 Host marks SP
2620          *     as unsync
2621          *     (sp->unsync = true)
2622          *
2623          * The write barrier below ensures that 1.1 happens before 1.2 and thus
2624          * the situation in 2.4 does not arise. The implicit barrier in 2.2
2625          * pairs with this write barrier.
2626          */
2627         smp_wmb();
2628
2629         return 0;
2630 }
2631
2632 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2633                     unsigned int pte_access, int level,
2634                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2635                     bool can_unsync, bool host_writable)
2636 {
2637         u64 spte;
2638         struct kvm_mmu_page *sp;
2639         int ret;
2640
2641         sp = sptep_to_sp(sptep);
2642
2643         ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2644                         can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2645
2646         if (spte & PT_WRITABLE_MASK)
2647                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2648
2649         if (*sptep == spte)
2650                 ret |= SET_SPTE_SPURIOUS;
2651         else if (mmu_spte_update(sptep, spte))
2652                 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2653         return ret;
2654 }
2655
2656 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2657                         unsigned int pte_access, bool write_fault, int level,
2658                         gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2659                         bool host_writable)
2660 {
2661         int was_rmapped = 0;
2662         int rmap_count;
2663         int set_spte_ret;
2664         int ret = RET_PF_FIXED;
2665         bool flush = false;
2666
2667         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2668                  *sptep, write_fault, gfn);
2669
2670         if (unlikely(is_noslot_pfn(pfn))) {
2671                 mark_mmio_spte(vcpu, sptep, gfn, pte_access);
2672                 return RET_PF_EMULATE;
2673         }
2674
2675         if (is_shadow_present_pte(*sptep)) {
2676                 /*
2677                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2678                  * the parent of the now unreachable PTE.
2679                  */
2680                 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2681                         struct kvm_mmu_page *child;
2682                         u64 pte = *sptep;
2683
2684                         child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2685                         drop_parent_pte(child, sptep);
2686                         flush = true;
2687                 } else if (pfn != spte_to_pfn(*sptep)) {
2688                         pgprintk("hfn old %llx new %llx\n",
2689                                  spte_to_pfn(*sptep), pfn);
2690                         drop_spte(vcpu->kvm, sptep);
2691                         flush = true;
2692                 } else
2693                         was_rmapped = 1;
2694         }
2695
2696         set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2697                                 speculative, true, host_writable);
2698         if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2699                 if (write_fault)
2700                         ret = RET_PF_EMULATE;
2701                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2702         }
2703
2704         if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2705                 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2706                                 KVM_PAGES_PER_HPAGE(level));
2707
2708         /*
2709          * The fault is fully spurious if and only if the new SPTE and old SPTE
2710          * are identical, and emulation is not required.
2711          */
2712         if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2713                 WARN_ON_ONCE(!was_rmapped);
2714                 return RET_PF_SPURIOUS;
2715         }
2716
2717         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2718         trace_kvm_mmu_set_spte(level, gfn, sptep);
2719         if (!was_rmapped && is_large_pte(*sptep))
2720                 ++vcpu->kvm->stat.lpages;
2721
2722         if (is_shadow_present_pte(*sptep)) {
2723                 if (!was_rmapped) {
2724                         rmap_count = rmap_add(vcpu, sptep, gfn);
2725                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2726                                 rmap_recycle(vcpu, sptep, gfn);
2727                 }
2728         }
2729
2730         return ret;
2731 }
2732
2733 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2734                                      bool no_dirty_log)
2735 {
2736         struct kvm_memory_slot *slot;
2737
2738         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2739         if (!slot)
2740                 return KVM_PFN_ERR_FAULT;
2741
2742         return gfn_to_pfn_memslot_atomic(slot, gfn);
2743 }
2744
2745 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2746                                     struct kvm_mmu_page *sp,
2747                                     u64 *start, u64 *end)
2748 {
2749         struct page *pages[PTE_PREFETCH_NUM];
2750         struct kvm_memory_slot *slot;
2751         unsigned int access = sp->role.access;
2752         int i, ret;
2753         gfn_t gfn;
2754
2755         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2756         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2757         if (!slot)
2758                 return -1;
2759
2760         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2761         if (ret <= 0)
2762                 return -1;
2763
2764         for (i = 0; i < ret; i++, gfn++, start++) {
2765                 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2766                              page_to_pfn(pages[i]), true, true);
2767                 put_page(pages[i]);
2768         }
2769
2770         return 0;
2771 }
2772
2773 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2774                                   struct kvm_mmu_page *sp, u64 *sptep)
2775 {
2776         u64 *spte, *start = NULL;
2777         int i;
2778
2779         WARN_ON(!sp->role.direct);
2780
2781         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2782         spte = sp->spt + i;
2783
2784         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2785                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2786                         if (!start)
2787                                 continue;
2788                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2789                                 break;
2790                         start = NULL;
2791                 } else if (!start)
2792                         start = spte;
2793         }
2794 }
2795
2796 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2797 {
2798         struct kvm_mmu_page *sp;
2799
2800         sp = sptep_to_sp(sptep);
2801
2802         /*
2803          * Without accessed bits, there's no way to distinguish between
2804          * actually accessed translations and prefetched, so disable pte
2805          * prefetch if accessed bits aren't available.
2806          */
2807         if (sp_ad_disabled(sp))
2808                 return;
2809
2810         if (sp->role.level > PG_LEVEL_4K)
2811                 return;
2812
2813         /*
2814          * If addresses are being invalidated, skip prefetching to avoid
2815          * accidentally prefetching those addresses.
2816          */
2817         if (unlikely(vcpu->kvm->mmu_notifier_count))
2818                 return;
2819
2820         __direct_pte_prefetch(vcpu, sp, sptep);
2821 }
2822
2823 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2824                                   const struct kvm_memory_slot *slot)
2825 {
2826         unsigned long hva;
2827         pte_t *pte;
2828         int level;
2829
2830         if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2831                 return PG_LEVEL_4K;
2832
2833         /*
2834          * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2835          * is not solely for performance, it's also necessary to avoid the
2836          * "writable" check in __gfn_to_hva_many(), which will always fail on
2837          * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2838          * page fault steps have already verified the guest isn't writing a
2839          * read-only memslot.
2840          */
2841         hva = __gfn_to_hva_memslot(slot, gfn);
2842
2843         pte = lookup_address_in_mm(kvm->mm, hva, &level);
2844         if (unlikely(!pte))
2845                 return PG_LEVEL_4K;
2846
2847         return level;
2848 }
2849
2850 int kvm_mmu_max_mapping_level(struct kvm *kvm,
2851                               const struct kvm_memory_slot *slot, gfn_t gfn,
2852                               kvm_pfn_t pfn, int max_level)
2853 {
2854         struct kvm_lpage_info *linfo;
2855
2856         max_level = min(max_level, max_huge_page_level);
2857         for ( ; max_level > PG_LEVEL_4K; max_level--) {
2858                 linfo = lpage_info_slot(gfn, slot, max_level);
2859                 if (!linfo->disallow_lpage)
2860                         break;
2861         }
2862
2863         if (max_level == PG_LEVEL_4K)
2864                 return PG_LEVEL_4K;
2865
2866         return host_pfn_mapping_level(kvm, gfn, pfn, slot);
2867 }
2868
2869 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2870                             int max_level, kvm_pfn_t *pfnp,
2871                             bool huge_page_disallowed, int *req_level)
2872 {
2873         struct kvm_memory_slot *slot;
2874         kvm_pfn_t pfn = *pfnp;
2875         kvm_pfn_t mask;
2876         int level;
2877
2878         *req_level = PG_LEVEL_4K;
2879
2880         if (unlikely(max_level == PG_LEVEL_4K))
2881                 return PG_LEVEL_4K;
2882
2883         if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2884                 return PG_LEVEL_4K;
2885
2886         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2887         if (!slot)
2888                 return PG_LEVEL_4K;
2889
2890         level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2891         if (level == PG_LEVEL_4K)
2892                 return level;
2893
2894         *req_level = level = min(level, max_level);
2895
2896         /*
2897          * Enforce the iTLB multihit workaround after capturing the requested
2898          * level, which will be used to do precise, accurate accounting.
2899          */
2900         if (huge_page_disallowed)
2901                 return PG_LEVEL_4K;
2902
2903         /*
2904          * mmu_notifier_retry() was successful and mmu_lock is held, so
2905          * the pmd can't be split from under us.
2906          */
2907         mask = KVM_PAGES_PER_HPAGE(level) - 1;
2908         VM_BUG_ON((gfn & mask) != (pfn & mask));
2909         *pfnp = pfn & ~mask;
2910
2911         return level;
2912 }
2913
2914 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2915                                 kvm_pfn_t *pfnp, int *goal_levelp)
2916 {
2917         int level = *goal_levelp;
2918
2919         if (cur_level == level && level > PG_LEVEL_4K &&
2920             is_shadow_present_pte(spte) &&
2921             !is_large_pte(spte)) {
2922                 /*
2923                  * A small SPTE exists for this pfn, but FNAME(fetch)
2924                  * and __direct_map would like to create a large PTE
2925                  * instead: just force them to go down another level,
2926                  * patching back for them into pfn the next 9 bits of
2927                  * the address.
2928                  */
2929                 u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2930                                 KVM_PAGES_PER_HPAGE(level - 1);
2931                 *pfnp |= gfn & page_mask;
2932                 (*goal_levelp)--;
2933         }
2934 }
2935
2936 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2937                         int map_writable, int max_level, kvm_pfn_t pfn,
2938                         bool prefault, bool is_tdp)
2939 {
2940         bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2941         bool write = error_code & PFERR_WRITE_MASK;
2942         bool exec = error_code & PFERR_FETCH_MASK;
2943         bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2944         struct kvm_shadow_walk_iterator it;
2945         struct kvm_mmu_page *sp;
2946         int level, req_level, ret;
2947         gfn_t gfn = gpa >> PAGE_SHIFT;
2948         gfn_t base_gfn = gfn;
2949
2950         level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2951                                         huge_page_disallowed, &req_level);
2952
2953         trace_kvm_mmu_spte_requested(gpa, level, pfn);
2954         for_each_shadow_entry(vcpu, gpa, it) {
2955                 /*
2956                  * We cannot overwrite existing page tables with an NX
2957                  * large page, as the leaf could be executable.
2958                  */
2959                 if (nx_huge_page_workaround_enabled)
2960                         disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2961                                                    &pfn, &level);
2962
2963                 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2964                 if (it.level == level)
2965                         break;
2966
2967                 drop_large_spte(vcpu, it.sptep);
2968                 if (!is_shadow_present_pte(*it.sptep)) {
2969                         sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2970                                               it.level - 1, true, ACC_ALL);
2971
2972                         link_shadow_page(vcpu, it.sptep, sp);
2973                         if (is_tdp && huge_page_disallowed &&
2974                             req_level >= it.level)
2975                                 account_huge_nx_page(vcpu->kvm, sp);
2976                 }
2977         }
2978
2979         ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2980                            write, level, base_gfn, pfn, prefault,
2981                            map_writable);
2982         if (ret == RET_PF_SPURIOUS)
2983                 return ret;
2984
2985         direct_pte_prefetch(vcpu, it.sptep);
2986         ++vcpu->stat.pf_fixed;
2987         return ret;
2988 }
2989
2990 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2991 {
2992         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2993 }
2994
2995 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2996 {
2997         /*
2998          * Do not cache the mmio info caused by writing the readonly gfn
2999          * into the spte otherwise read access on readonly gfn also can
3000          * caused mmio page fault and treat it as mmio access.
3001          */
3002         if (pfn == KVM_PFN_ERR_RO_FAULT)
3003                 return RET_PF_EMULATE;
3004
3005         if (pfn == KVM_PFN_ERR_HWPOISON) {
3006                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3007                 return RET_PF_RETRY;
3008         }
3009
3010         return -EFAULT;
3011 }
3012
3013 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3014                                 kvm_pfn_t pfn, unsigned int access,
3015                                 int *ret_val)
3016 {
3017         /* The pfn is invalid, report the error! */
3018         if (unlikely(is_error_pfn(pfn))) {
3019                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3020                 return true;
3021         }
3022
3023         if (unlikely(is_noslot_pfn(pfn))) {
3024                 vcpu_cache_mmio_info(vcpu, gva, gfn,
3025                                      access & shadow_mmio_access_mask);
3026                 /*
3027                  * If MMIO caching is disabled, emulate immediately without
3028                  * touching the shadow page tables as attempting to install an
3029                  * MMIO SPTE will just be an expensive nop.
3030                  */
3031                 if (unlikely(!shadow_mmio_value)) {
3032                         *ret_val = RET_PF_EMULATE;
3033                         return true;
3034                 }
3035         }
3036
3037         return false;
3038 }
3039
3040 static bool page_fault_can_be_fast(u32 error_code)
3041 {
3042         /*
3043          * Do not fix the mmio spte with invalid generation number which
3044          * need to be updated by slow page fault path.
3045          */
3046         if (unlikely(error_code & PFERR_RSVD_MASK))
3047                 return false;
3048
3049         /* See if the page fault is due to an NX violation */
3050         if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3051                       == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3052                 return false;
3053
3054         /*
3055          * #PF can be fast if:
3056          * 1. The shadow page table entry is not present, which could mean that
3057          *    the fault is potentially caused by access tracking (if enabled).
3058          * 2. The shadow page table entry is present and the fault
3059          *    is caused by write-protect, that means we just need change the W
3060          *    bit of the spte which can be done out of mmu-lock.
3061          *
3062          * However, if access tracking is disabled we know that a non-present
3063          * page must be a genuine page fault where we have to create a new SPTE.
3064          * So, if access tracking is disabled, we return true only for write
3065          * accesses to a present page.
3066          */
3067
3068         return shadow_acc_track_mask != 0 ||
3069                ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3070                 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3071 }
3072
3073 /*
3074  * Returns true if the SPTE was fixed successfully. Otherwise,
3075  * someone else modified the SPTE from its original value.
3076  */
3077 static bool
3078 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3079                         u64 *sptep, u64 old_spte, u64 new_spte)
3080 {
3081         gfn_t gfn;
3082
3083         WARN_ON(!sp->role.direct);
3084
3085         /*
3086          * Theoretically we could also set dirty bit (and flush TLB) here in
3087          * order to eliminate unnecessary PML logging. See comments in
3088          * set_spte. But fast_page_fault is very unlikely to happen with PML
3089          * enabled, so we do not do this. This might result in the same GPA
3090          * to be logged in PML buffer again when the write really happens, and
3091          * eventually to be called by mark_page_dirty twice. But it's also no
3092          * harm. This also avoids the TLB flush needed after setting dirty bit
3093          * so non-PML cases won't be impacted.
3094          *
3095          * Compare with set_spte where instead shadow_dirty_mask is set.
3096          */
3097         if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3098                 return false;
3099
3100         if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3101                 /*
3102                  * The gfn of direct spte is stable since it is
3103                  * calculated by sp->gfn.
3104                  */
3105                 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3106                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3107         }
3108
3109         return true;
3110 }
3111
3112 static bool is_access_allowed(u32 fault_err_code, u64 spte)
3113 {
3114         if (fault_err_code & PFERR_FETCH_MASK)
3115                 return is_executable_pte(spte);
3116
3117         if (fault_err_code & PFERR_WRITE_MASK)
3118                 return is_writable_pte(spte);
3119
3120         /* Fault was on Read access */
3121         return spte & PT_PRESENT_MASK;
3122 }
3123
3124 /*
3125  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3126  */
3127 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3128                            u32 error_code)
3129 {
3130         struct kvm_shadow_walk_iterator iterator;
3131         struct kvm_mmu_page *sp;
3132         int ret = RET_PF_INVALID;
3133         u64 spte = 0ull;
3134         uint retry_count = 0;
3135
3136         if (!page_fault_can_be_fast(error_code))
3137                 return ret;
3138
3139         walk_shadow_page_lockless_begin(vcpu);
3140
3141         do {
3142                 u64 new_spte;
3143
3144                 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3145                         if (!is_shadow_present_pte(spte))
3146                                 break;
3147
3148                 if (!is_shadow_present_pte(spte))
3149                         break;
3150
3151                 sp = sptep_to_sp(iterator.sptep);
3152                 if (!is_last_spte(spte, sp->role.level))
3153                         break;
3154
3155                 /*
3156                  * Check whether the memory access that caused the fault would
3157                  * still cause it if it were to be performed right now. If not,
3158                  * then this is a spurious fault caused by TLB lazily flushed,
3159                  * or some other CPU has already fixed the PTE after the
3160                  * current CPU took the fault.
3161                  *
3162                  * Need not check the access of upper level table entries since
3163                  * they are always ACC_ALL.
3164                  */
3165                 if (is_access_allowed(error_code, spte)) {
3166                         ret = RET_PF_SPURIOUS;
3167                         break;
3168                 }
3169
3170                 new_spte = spte;
3171
3172                 if (is_access_track_spte(spte))
3173                         new_spte = restore_acc_track_spte(new_spte);
3174
3175                 /*
3176                  * Currently, to simplify the code, write-protection can
3177                  * be removed in the fast path only if the SPTE was
3178                  * write-protected for dirty-logging or access tracking.
3179                  */
3180                 if ((error_code & PFERR_WRITE_MASK) &&
3181                     spte_can_locklessly_be_made_writable(spte)) {
3182                         new_spte |= PT_WRITABLE_MASK;
3183
3184                         /*
3185                          * Do not fix write-permission on the large spte.  Since
3186                          * we only dirty the first page into the dirty-bitmap in
3187                          * fast_pf_fix_direct_spte(), other pages are missed
3188                          * if its slot has dirty logging enabled.
3189                          *
3190                          * Instead, we let the slow page fault path create a
3191                          * normal spte to fix the access.
3192                          *
3193                          * See the comments in kvm_arch_commit_memory_region().
3194                          */
3195                         if (sp->role.level > PG_LEVEL_4K)
3196                                 break;
3197                 }
3198
3199                 /* Verify that the fault can be handled in the fast path */
3200                 if (new_spte == spte ||
3201                     !is_access_allowed(error_code, new_spte))
3202                         break;
3203
3204                 /*
3205                  * Currently, fast page fault only works for direct mapping
3206                  * since the gfn is not stable for indirect shadow page. See
3207                  * Documentation/virt/kvm/locking.rst to get more detail.
3208                  */
3209                 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3210                                             new_spte)) {
3211                         ret = RET_PF_FIXED;
3212                         break;
3213                 }
3214
3215                 if (++retry_count > 4) {
3216                         printk_once(KERN_WARNING
3217                                 "kvm: Fast #PF retrying more than 4 times.\n");
3218                         break;
3219                 }
3220
3221         } while (true);
3222
3223         trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3224                               spte, ret);
3225         walk_shadow_page_lockless_end(vcpu);
3226
3227         return ret;
3228 }
3229
3230 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3231                                struct list_head *invalid_list)
3232 {
3233         struct kvm_mmu_page *sp;
3234
3235         if (!VALID_PAGE(*root_hpa))
3236                 return;
3237
3238         sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3239
3240         if (is_tdp_mmu_page(sp))
3241                 kvm_tdp_mmu_put_root(kvm, sp, false);
3242         else if (!--sp->root_count && sp->role.invalid)
3243                 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3244
3245         *root_hpa = INVALID_PAGE;
3246 }
3247
3248 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3249 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3250                         ulong roots_to_free)
3251 {
3252         struct kvm *kvm = vcpu->kvm;
3253         int i;
3254         LIST_HEAD(invalid_list);
3255         bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3256
3257         BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3258
3259         /* Before acquiring the MMU lock, see if we need to do any real work. */
3260         if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3261                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3262                         if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3263                             VALID_PAGE(mmu->prev_roots[i].hpa))
3264                                 break;
3265
3266                 if (i == KVM_MMU_NUM_PREV_ROOTS)
3267                         return;
3268         }
3269
3270         write_lock(&kvm->mmu_lock);
3271
3272         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3273                 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3274                         mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3275                                            &invalid_list);
3276
3277         if (free_active_root) {
3278                 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3279                     (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3280                         mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3281                 } else if (mmu->pae_root) {
3282                         for (i = 0; i < 4; ++i) {
3283                                 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3284                                         continue;
3285
3286                                 mmu_free_root_page(kvm, &mmu->pae_root[i],
3287                                                    &invalid_list);
3288                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3289                         }
3290                 }
3291                 mmu->root_hpa = INVALID_PAGE;
3292                 mmu->root_pgd = 0;
3293         }
3294
3295         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3296         write_unlock(&kvm->mmu_lock);
3297 }
3298 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3299
3300 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3301 {
3302         unsigned long roots_to_free = 0;
3303         hpa_t root_hpa;
3304         int i;
3305
3306         /*
3307          * This should not be called while L2 is active, L2 can't invalidate
3308          * _only_ its own roots, e.g. INVVPID unconditionally exits.
3309          */
3310         WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
3311
3312         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3313                 root_hpa = mmu->prev_roots[i].hpa;
3314                 if (!VALID_PAGE(root_hpa))
3315                         continue;
3316
3317                 if (!to_shadow_page(root_hpa) ||
3318                         to_shadow_page(root_hpa)->role.guest_mode)
3319                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3320         }
3321
3322         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
3323 }
3324 EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3325
3326
3327 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3328 {
3329         int ret = 0;
3330
3331         if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3332                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3333                 ret = 1;
3334         }
3335
3336         return ret;
3337 }
3338
3339 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3340                             u8 level, bool direct)
3341 {
3342         struct kvm_mmu_page *sp;
3343
3344         sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3345         ++sp->root_count;
3346
3347         return __pa(sp->spt);
3348 }
3349
3350 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3351 {
3352         struct kvm_mmu *mmu = vcpu->arch.mmu;
3353         u8 shadow_root_level = mmu->shadow_root_level;
3354         hpa_t root;
3355         unsigned i;
3356         int r;
3357
3358         write_lock(&vcpu->kvm->mmu_lock);
3359         r = make_mmu_pages_available(vcpu);
3360         if (r < 0)
3361                 goto out_unlock;
3362
3363         if (is_tdp_mmu_enabled(vcpu->kvm)) {
3364                 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3365                 mmu->root_hpa = root;
3366         } else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3367                 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3368                 mmu->root_hpa = root;
3369         } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3370                 if (WARN_ON_ONCE(!mmu->pae_root)) {
3371                         r = -EIO;
3372                         goto out_unlock;
3373                 }
3374
3375                 for (i = 0; i < 4; ++i) {
3376                         WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3377
3378                         root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3379                                               i << 30, PT32_ROOT_LEVEL, true);
3380                         mmu->pae_root[i] = root | PT_PRESENT_MASK |
3381                                            shadow_me_mask;
3382                 }
3383                 mmu->root_hpa = __pa(mmu->pae_root);
3384         } else {
3385                 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3386                 r = -EIO;
3387                 goto out_unlock;
3388         }
3389
3390         /* root_pgd is ignored for direct MMUs. */
3391         mmu->root_pgd = 0;
3392 out_unlock:
3393         write_unlock(&vcpu->kvm->mmu_lock);
3394         return r;
3395 }
3396
3397 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3398 {
3399         struct kvm_mmu *mmu = vcpu->arch.mmu;
3400         u64 pdptrs[4], pm_mask;
3401         gfn_t root_gfn, root_pgd;
3402         hpa_t root;
3403         unsigned i;
3404         int r;
3405
3406         root_pgd = mmu->get_guest_pgd(vcpu);
3407         root_gfn = root_pgd >> PAGE_SHIFT;
3408
3409         if (mmu_check_root(vcpu, root_gfn))
3410                 return 1;
3411
3412         /*
3413          * On SVM, reading PDPTRs might access guest memory, which might fault
3414          * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
3415          */
3416         if (mmu->root_level == PT32E_ROOT_LEVEL) {
3417                 for (i = 0; i < 4; ++i) {
3418                         pdptrs[i] = mmu->get_pdptr(vcpu, i);
3419                         if (!(pdptrs[i] & PT_PRESENT_MASK))
3420                                 continue;
3421
3422                         if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
3423                                 return 1;
3424                 }
3425         }
3426
3427         r = alloc_all_memslots_rmaps(vcpu->kvm);
3428         if (r)
3429                 return r;
3430
3431         write_lock(&vcpu->kvm->mmu_lock);
3432         r = make_mmu_pages_available(vcpu);
3433         if (r < 0)
3434                 goto out_unlock;
3435
3436         /*
3437          * Do we shadow a long mode page table? If so we need to
3438          * write-protect the guests page table root.
3439          */
3440         if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3441                 root = mmu_alloc_root(vcpu, root_gfn, 0,
3442                                       mmu->shadow_root_level, false);
3443                 mmu->root_hpa = root;
3444                 goto set_root_pgd;
3445         }
3446
3447         if (WARN_ON_ONCE(!mmu->pae_root)) {
3448                 r = -EIO;
3449                 goto out_unlock;
3450         }
3451
3452         /*
3453          * We shadow a 32 bit page table. This may be a legacy 2-level
3454          * or a PAE 3-level page table. In either case we need to be aware that
3455          * the shadow page table may be a PAE or a long mode page table.
3456          */
3457         pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3458         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3459                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3460
3461                 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3462                         r = -EIO;
3463                         goto out_unlock;
3464                 }
3465
3466                 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3467         }
3468
3469         for (i = 0; i < 4; ++i) {
3470                 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3471
3472                 if (mmu->root_level == PT32E_ROOT_LEVEL) {
3473                         if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3474                                 mmu->pae_root[i] = INVALID_PAE_ROOT;
3475                                 continue;
3476                         }
3477                         root_gfn = pdptrs[i] >> PAGE_SHIFT;
3478                 }
3479
3480                 root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3481                                       PT32_ROOT_LEVEL, false);
3482                 mmu->pae_root[i] = root | pm_mask;
3483         }
3484
3485         if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3486                 mmu->root_hpa = __pa(mmu->pml4_root);
3487         else
3488                 mmu->root_hpa = __pa(mmu->pae_root);
3489
3490 set_root_pgd:
3491         mmu->root_pgd = root_pgd;
3492 out_unlock:
3493         write_unlock(&vcpu->kvm->mmu_lock);
3494
3495         return 0;
3496 }
3497
3498 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3499 {
3500         struct kvm_mmu *mmu = vcpu->arch.mmu;
3501         u64 *pml4_root, *pae_root;
3502
3503         /*
3504          * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3505          * tables are allocated and initialized at root creation as there is no
3506          * equivalent level in the guest's NPT to shadow.  Allocate the tables
3507          * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3508          */
3509         if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
3510             mmu->shadow_root_level < PT64_ROOT_4LEVEL)
3511                 return 0;
3512
3513         /*
3514          * This mess only works with 4-level paging and needs to be updated to
3515          * work with 5-level paging.
3516          */
3517         if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
3518                 return -EIO;
3519
3520         if (mmu->pae_root && mmu->pml4_root)
3521                 return 0;
3522
3523         /*
3524          * The special roots should always be allocated in concert.  Yell and
3525          * bail if KVM ends up in a state where only one of the roots is valid.
3526          */
3527         if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3528                 return -EIO;
3529
3530         /*
3531          * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3532          * doesn't need to be decrypted.
3533          */
3534         pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3535         if (!pae_root)
3536                 return -ENOMEM;
3537
3538         pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3539         if (!pml4_root) {
3540                 free_page((unsigned long)pae_root);
3541                 return -ENOMEM;
3542         }
3543
3544         mmu->pae_root = pae_root;
3545         mmu->pml4_root = pml4_root;
3546
3547         return 0;
3548 }
3549
3550 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3551 {
3552         int i;
3553         struct kvm_mmu_page *sp;
3554
3555         if (vcpu->arch.mmu->direct_map)
3556                 return;
3557
3558         if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3559                 return;
3560
3561         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3562
3563         if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3564                 hpa_t root = vcpu->arch.mmu->root_hpa;
3565                 sp = to_shadow_page(root);
3566
3567                 /*
3568                  * Even if another CPU was marking the SP as unsync-ed
3569                  * simultaneously, any guest page table changes are not
3570                  * guaranteed to be visible anyway until this VCPU issues a TLB
3571                  * flush strictly after those changes are made. We only need to
3572                  * ensure that the other CPU sets these flags before any actual
3573                  * changes to the page tables are made. The comments in
3574                  * mmu_try_to_unsync_pages() describe what could go wrong if
3575                  * this requirement isn't satisfied.
3576                  */
3577                 if (!smp_load_acquire(&sp->unsync) &&
3578                     !smp_load_acquire(&sp->unsync_children))
3579                         return;
3580
3581                 write_lock(&vcpu->kvm->mmu_lock);
3582                 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3583
3584                 mmu_sync_children(vcpu, sp);
3585
3586                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3587                 write_unlock(&vcpu->kvm->mmu_lock);
3588                 return;
3589         }
3590
3591         write_lock(&vcpu->kvm->mmu_lock);
3592         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3593
3594         for (i = 0; i < 4; ++i) {
3595                 hpa_t root = vcpu->arch.mmu->pae_root[i];
3596
3597                 if (IS_VALID_PAE_ROOT(root)) {
3598                         root &= PT64_BASE_ADDR_MASK;
3599                         sp = to_shadow_page(root);
3600                         mmu_sync_children(vcpu, sp);
3601                 }
3602         }
3603
3604         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3605         write_unlock(&vcpu->kvm->mmu_lock);
3606 }
3607
3608 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3609                                   u32 access, struct x86_exception *exception)
3610 {
3611         if (exception)
3612                 exception->error_code = 0;
3613         return vaddr;
3614 }
3615
3616 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3617                                          u32 access,
3618                                          struct x86_exception *exception)
3619 {
3620         if (exception)
3621                 exception->error_code = 0;
3622         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3623 }
3624
3625 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3626 {
3627         /*
3628          * A nested guest cannot use the MMIO cache if it is using nested
3629          * page tables, because cr2 is a nGPA while the cache stores GPAs.
3630          */
3631         if (mmu_is_nested(vcpu))
3632                 return false;
3633
3634         if (direct)
3635                 return vcpu_match_mmio_gpa(vcpu, addr);
3636
3637         return vcpu_match_mmio_gva(vcpu, addr);
3638 }
3639
3640 /*
3641  * Return the level of the lowest level SPTE added to sptes.
3642  * That SPTE may be non-present.
3643  */
3644 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3645 {
3646         struct kvm_shadow_walk_iterator iterator;
3647         int leaf = -1;
3648         u64 spte;
3649
3650         walk_shadow_page_lockless_begin(vcpu);
3651
3652         for (shadow_walk_init(&iterator, vcpu, addr),
3653              *root_level = iterator.level;
3654              shadow_walk_okay(&iterator);
3655              __shadow_walk_next(&iterator, spte)) {
3656                 leaf = iterator.level;
3657                 spte = mmu_spte_get_lockless(iterator.sptep);
3658
3659                 sptes[leaf] = spte;
3660
3661                 if (!is_shadow_present_pte(spte))
3662                         break;
3663         }
3664
3665         walk_shadow_page_lockless_end(vcpu);
3666
3667         return leaf;
3668 }
3669
3670 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3671 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3672 {
3673         u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3674         struct rsvd_bits_validate *rsvd_check;
3675         int root, leaf, level;
3676         bool reserved = false;
3677
3678         if (is_tdp_mmu(vcpu->arch.mmu))
3679                 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3680         else
3681                 leaf = get_walk(vcpu, addr, sptes, &root);
3682
3683         if (unlikely(leaf < 0)) {
3684                 *sptep = 0ull;
3685                 return reserved;
3686         }
3687
3688         *sptep = sptes[leaf];
3689
3690         /*
3691          * Skip reserved bits checks on the terminal leaf if it's not a valid
3692          * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
3693          * design, always have reserved bits set.  The purpose of the checks is
3694          * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
3695          */
3696         if (!is_shadow_present_pte(sptes[leaf]))
3697                 leaf++;
3698
3699         rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3700
3701         for (level = root; level >= leaf; level--)
3702                 reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3703
3704         if (reserved) {
3705                 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3706                        __func__, addr);
3707                 for (level = root; level >= leaf; level--)
3708                         pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
3709                                sptes[level], level,
3710                                get_rsvd_bits(rsvd_check, sptes[level], level));
3711         }
3712
3713         return reserved;
3714 }
3715
3716 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3717 {
3718         u64 spte;
3719         bool reserved;
3720
3721         if (mmio_info_in_cache(vcpu, addr, direct))
3722                 return RET_PF_EMULATE;
3723
3724         reserved = get_mmio_spte(vcpu, addr, &spte);
3725         if (WARN_ON(reserved))
3726                 return -EINVAL;
3727
3728         if (is_mmio_spte(spte)) {
3729                 gfn_t gfn = get_mmio_spte_gfn(spte);
3730                 unsigned int access = get_mmio_spte_access(spte);
3731
3732                 if (!check_mmio_spte(vcpu, spte))
3733                         return RET_PF_INVALID;
3734
3735                 if (direct)
3736                         addr = 0;
3737
3738                 trace_handle_mmio_page_fault(addr, gfn, access);
3739                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3740                 return RET_PF_EMULATE;
3741         }
3742
3743         /*
3744          * If the page table is zapped by other cpus, let CPU fault again on
3745          * the address.
3746          */
3747         return RET_PF_RETRY;
3748 }
3749
3750 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3751                                          u32 error_code, gfn_t gfn)
3752 {
3753         if (unlikely(error_code & PFERR_RSVD_MASK))
3754                 return false;
3755
3756         if (!(error_code & PFERR_PRESENT_MASK) ||
3757               !(error_code & PFERR_WRITE_MASK))
3758                 return false;
3759
3760         /*
3761          * guest is writing the page which is write tracked which can
3762          * not be fixed by page fault handler.
3763          */
3764         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3765                 return true;
3766
3767         return false;
3768 }
3769
3770 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3771 {
3772         struct kvm_shadow_walk_iterator iterator;
3773         u64 spte;
3774
3775         walk_shadow_page_lockless_begin(vcpu);
3776         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3777                 clear_sp_write_flooding_count(iterator.sptep);
3778                 if (!is_shadow_present_pte(spte))
3779                         break;
3780         }
3781         walk_shadow_page_lockless_end(vcpu);
3782 }
3783
3784 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3785                                     gfn_t gfn)
3786 {
3787         struct kvm_arch_async_pf arch;
3788
3789         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3790         arch.gfn = gfn;
3791         arch.direct_map = vcpu->arch.mmu->direct_map;
3792         arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3793
3794         return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3795                                   kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3796 }
3797
3798 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3799                          gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
3800                          bool write, bool *writable)
3801 {
3802         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3803         bool async;
3804
3805         /*
3806          * Retry the page fault if the gfn hit a memslot that is being deleted
3807          * or moved.  This ensures any existing SPTEs for the old memslot will
3808          * be zapped before KVM inserts a new MMIO SPTE for the gfn.
3809          */
3810         if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3811                 return true;
3812
3813         /* Don't expose private memslots to L2. */
3814         if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3815                 *pfn = KVM_PFN_NOSLOT;
3816                 *writable = false;
3817                 return false;
3818         }
3819
3820         async = false;
3821         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
3822                                     write, writable, hva);
3823         if (!async)
3824                 return false; /* *pfn has correct page already */
3825
3826         if (!prefault && kvm_can_do_async_pf(vcpu)) {
3827                 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3828                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3829                         trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3830                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3831                         return true;
3832                 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3833                         return true;
3834         }
3835
3836         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
3837                                     write, writable, hva);
3838         return false;
3839 }
3840
3841 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3842                              bool prefault, int max_level, bool is_tdp)
3843 {
3844         bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3845         bool write = error_code & PFERR_WRITE_MASK;
3846         bool map_writable;
3847
3848         gfn_t gfn = gpa >> PAGE_SHIFT;
3849         unsigned long mmu_seq;
3850         kvm_pfn_t pfn;
3851         hva_t hva;
3852         int r;
3853
3854         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3855                 return RET_PF_EMULATE;
3856
3857         if (!is_tdp_mmu_fault) {
3858                 r = fast_page_fault(vcpu, gpa, error_code);
3859                 if (r != RET_PF_INVALID)
3860                         return r;
3861         }
3862
3863         r = mmu_topup_memory_caches(vcpu, false);
3864         if (r)
3865                 return r;
3866
3867         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3868         smp_rmb();
3869
3870         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
3871                          write, &map_writable))
3872                 return RET_PF_RETRY;
3873
3874         if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3875                 return r;
3876
3877         r = RET_PF_RETRY;
3878
3879         if (is_tdp_mmu_fault)
3880                 read_lock(&vcpu->kvm->mmu_lock);
3881         else
3882                 write_lock(&vcpu->kvm->mmu_lock);
3883
3884         if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3885                 goto out_unlock;
3886         r = make_mmu_pages_available(vcpu);
3887         if (r)
3888                 goto out_unlock;
3889
3890         if (is_tdp_mmu_fault)
3891                 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3892                                     pfn, prefault);
3893         else
3894                 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3895                                  prefault, is_tdp);
3896
3897 out_unlock:
3898         if (is_tdp_mmu_fault)
3899                 read_unlock(&vcpu->kvm->mmu_lock);
3900         else
3901                 write_unlock(&vcpu->kvm->mmu_lock);
3902         kvm_release_pfn_clean(pfn);
3903         return r;
3904 }
3905
3906 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3907                                 u32 error_code, bool prefault)
3908 {
3909         pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3910
3911         /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3912         return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3913                                  PG_LEVEL_2M, false);
3914 }
3915
3916 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3917                                 u64 fault_address, char *insn, int insn_len)
3918 {
3919         int r = 1;
3920         u32 flags = vcpu->arch.apf.host_apf_flags;
3921
3922 #ifndef CONFIG_X86_64
3923         /* A 64-bit CR2 should be impossible on 32-bit KVM. */
3924         if (WARN_ON_ONCE(fault_address >> 32))
3925                 return -EFAULT;
3926 #endif
3927
3928         vcpu->arch.l1tf_flush_l1d = true;
3929         if (!flags) {
3930                 trace_kvm_page_fault(fault_address, error_code);
3931
3932                 if (kvm_event_needs_reinjection(vcpu))
3933                         kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3934                 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3935                                 insn_len);
3936         } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3937                 vcpu->arch.apf.host_apf_flags = 0;
3938                 local_irq_disable();
3939                 kvm_async_pf_task_wait_schedule(fault_address);
3940                 local_irq_enable();
3941         } else {
3942                 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3943         }
3944
3945         return r;
3946 }
3947 EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3948
3949 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3950                        bool prefault)
3951 {
3952         int max_level;
3953
3954         for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3955              max_level > PG_LEVEL_4K;
3956              max_level--) {
3957                 int page_num = KVM_PAGES_PER_HPAGE(max_level);
3958                 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3959
3960                 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3961                         break;
3962         }
3963
3964         return direct_page_fault(vcpu, gpa, error_code, prefault,
3965                                  max_level, true);
3966 }
3967
3968 static void nonpaging_init_context(struct kvm_mmu *context)
3969 {
3970         context->page_fault = nonpaging_page_fault;
3971         context->gva_to_gpa = nonpaging_gva_to_gpa;
3972         context->sync_page = nonpaging_sync_page;
3973         context->invlpg = NULL;
3974         context->direct_map = true;
3975 }
3976
3977 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3978                                   union kvm_mmu_page_role role)
3979 {
3980         return (role.direct || pgd == root->pgd) &&
3981                VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3982                role.word == to_shadow_page(root->hpa)->role.word;
3983 }
3984
3985 /*
3986  * Find out if a previously cached root matching the new pgd/role is available.
3987  * The current root is also inserted into the cache.
3988  * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3989  * returned.
3990  * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3991  * false is returned. This root should now be freed by the caller.
3992  */
3993 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3994                                   union kvm_mmu_page_role new_role)
3995 {
3996         uint i;
3997         struct kvm_mmu_root_info root;
3998         struct kvm_mmu *mmu = vcpu->arch.mmu;
3999
4000         root.pgd = mmu->root_pgd;
4001         root.hpa = mmu->root_hpa;
4002
4003         if (is_root_usable(&root, new_pgd, new_role))
4004                 return true;
4005
4006         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4007                 swap(root, mmu->prev_roots[i]);
4008
4009                 if (is_root_usable(&root, new_pgd, new_role))
4010                         break;
4011         }
4012
4013         mmu->root_hpa = root.hpa;
4014         mmu->root_pgd = root.pgd;
4015
4016         return i < KVM_MMU_NUM_PREV_ROOTS;
4017 }
4018
4019 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4020                             union kvm_mmu_page_role new_role)
4021 {
4022         struct kvm_mmu *mmu = vcpu->arch.mmu;
4023
4024         /*
4025          * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4026          * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4027          * later if necessary.
4028          */
4029         if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4030             mmu->root_level >= PT64_ROOT_4LEVEL)
4031                 return cached_root_available(vcpu, new_pgd, new_role);
4032
4033         return false;
4034 }
4035
4036 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4037                               union kvm_mmu_page_role new_role)
4038 {
4039         if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4040                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
4041                 return;
4042         }
4043
4044         /*
4045          * It's possible that the cached previous root page is obsolete because
4046          * of a change in the MMU generation number. However, changing the
4047          * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
4048          * free the root set here and allocate a new one.
4049          */
4050         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4051
4052         if (force_flush_and_sync_on_reuse) {
4053                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4054                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4055         }
4056
4057         /*
4058          * The last MMIO access's GVA and GPA are cached in the VCPU. When
4059          * switching to a new CR3, that GVA->GPA mapping may no longer be
4060          * valid. So clear any cached MMIO info even when we don't need to sync
4061          * the shadow page tables.
4062          */
4063         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4064
4065         /*
4066          * If this is a direct root page, it doesn't have a write flooding
4067          * count. Otherwise, clear the write flooding count.
4068          */
4069         if (!new_role.direct)
4070                 __clear_sp_write_flooding_count(
4071                                 to_shadow_page(vcpu->arch.mmu->root_hpa));
4072 }
4073
4074 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4075 {
4076         __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4077 }
4078 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4079
4080 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4081 {
4082         return kvm_read_cr3(vcpu);
4083 }
4084
4085 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4086                            unsigned int access, int *nr_present)
4087 {
4088         if (unlikely(is_mmio_spte(*sptep))) {
4089                 if (gfn != get_mmio_spte_gfn(*sptep)) {
4090                         mmu_spte_clear_no_track(sptep);
4091                         return true;
4092                 }
4093
4094                 (*nr_present)++;
4095                 mark_mmio_spte(vcpu, sptep, gfn, access);
4096                 return true;
4097         }
4098
4099         return false;
4100 }
4101
4102 #define PTTYPE_EPT 18 /* arbitrary */
4103 #define PTTYPE PTTYPE_EPT
4104 #include "paging_tmpl.h"
4105 #undef PTTYPE
4106
4107 #define PTTYPE 64
4108 #include "paging_tmpl.h"
4109 #undef PTTYPE
4110
4111 #define PTTYPE 32
4112 #include "paging_tmpl.h"
4113 #undef PTTYPE
4114
4115 static void
4116 __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4117                         u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4118                         bool pse, bool amd)
4119 {
4120         u64 gbpages_bit_rsvd = 0;
4121         u64 nonleaf_bit8_rsvd = 0;
4122         u64 high_bits_rsvd;
4123
4124         rsvd_check->bad_mt_xwr = 0;
4125
4126         if (!gbpages)
4127                 gbpages_bit_rsvd = rsvd_bits(7, 7);
4128
4129         if (level == PT32E_ROOT_LEVEL)
4130                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4131         else
4132                 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4133
4134         /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4135         if (!nx)
4136                 high_bits_rsvd |= rsvd_bits(63, 63);
4137
4138         /*
4139          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4140          * leaf entries) on AMD CPUs only.
4141          */
4142         if (amd)
4143                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4144
4145         switch (level) {
4146         case PT32_ROOT_LEVEL:
4147                 /* no rsvd bits for 2 level 4K page table entries */
4148                 rsvd_check->rsvd_bits_mask[0][1] = 0;
4149                 rsvd_check->rsvd_bits_mask[0][0] = 0;
4150                 rsvd_check->rsvd_bits_mask[1][0] =
4151                         rsvd_check->rsvd_bits_mask[0][0];
4152
4153                 if (!pse) {
4154                         rsvd_check->rsvd_bits_mask[1][1] = 0;
4155                         break;
4156                 }
4157
4158                 if (is_cpuid_PSE36())
4159                         /* 36bits PSE 4MB page */
4160                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4161                 else
4162                         /* 32 bits PSE 4MB page */
4163                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4164                 break;
4165         case PT32E_ROOT_LEVEL:
4166                 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4167                                                    high_bits_rsvd |
4168                                                    rsvd_bits(5, 8) |
4169                                                    rsvd_bits(1, 2);     /* PDPTE */
4170                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;      /* PDE */
4171                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;      /* PTE */
4172                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4173                                                    rsvd_bits(13, 20);   /* large page */
4174                 rsvd_check->rsvd_bits_mask[1][0] =
4175                         rsvd_check->rsvd_bits_mask[0][0];
4176                 break;
4177         case PT64_ROOT_5LEVEL:
4178                 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4179                                                    nonleaf_bit8_rsvd |
4180                                                    rsvd_bits(7, 7);
4181                 rsvd_check->rsvd_bits_mask[1][4] =
4182                         rsvd_check->rsvd_bits_mask[0][4];
4183                 fallthrough;
4184         case PT64_ROOT_4LEVEL:
4185                 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4186                                                    nonleaf_bit8_rsvd |
4187                                                    rsvd_bits(7, 7);
4188                 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4189                                                    gbpages_bit_rsvd;
4190                 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4191                 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4192                 rsvd_check->rsvd_bits_mask[1][3] =
4193                         rsvd_check->rsvd_bits_mask[0][3];
4194                 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4195                                                    gbpages_bit_rsvd |
4196                                                    rsvd_bits(13, 29);
4197                 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4198                                                    rsvd_bits(13, 20); /* large page */
4199                 rsvd_check->rsvd_bits_mask[1][0] =
4200                         rsvd_check->rsvd_bits_mask[0][0];
4201                 break;
4202         }
4203 }
4204
4205 static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
4206 {
4207         /*
4208          * If TDP is enabled, let the guest use GBPAGES if they're supported in
4209          * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
4210          * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
4211          * walk for performance and complexity reasons.  Not to mention KVM
4212          * _can't_ solve the problem because GVA->GPA walks aren't visible to
4213          * KVM once a TDP translation is installed.  Mimic hardware behavior so
4214          * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
4215          */
4216         return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
4217                              guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
4218 }
4219
4220 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4221                                   struct kvm_mmu *context)
4222 {
4223         __reset_rsvds_bits_mask(&context->guest_rsvd_check,
4224                                 vcpu->arch.reserved_gpa_bits,
4225                                 context->root_level, is_efer_nx(context),
4226                                 guest_can_use_gbpages(vcpu),
4227                                 is_cr4_pse(context),
4228                                 guest_cpuid_is_amd_or_hygon(vcpu));
4229 }
4230
4231 static void
4232 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4233                             u64 pa_bits_rsvd, bool execonly)
4234 {
4235         u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4236         u64 bad_mt_xwr;
4237
4238         rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4239         rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4240         rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
4241         rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
4242         rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4243
4244         /* large page */
4245         rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4246         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4247         rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
4248         rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4249         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4250
4251         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
4252         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
4253         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
4254         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
4255         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
4256         if (!execonly) {
4257                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4258                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4259         }
4260         rsvd_check->bad_mt_xwr = bad_mt_xwr;
4261 }
4262
4263 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4264                 struct kvm_mmu *context, bool execonly)
4265 {
4266         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4267                                     vcpu->arch.reserved_gpa_bits, execonly);
4268 }
4269
4270 static inline u64 reserved_hpa_bits(void)
4271 {
4272         return rsvd_bits(shadow_phys_bits, 63);
4273 }
4274
4275 /*
4276  * the page table on host is the shadow page table for the page
4277  * table in guest or amd nested guest, its mmu features completely
4278  * follow the features in guest.
4279  */
4280 static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4281                                         struct kvm_mmu *context)
4282 {
4283         /*
4284          * KVM uses NX when TDP is disabled to handle a variety of scenarios,
4285          * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
4286          * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
4287          * The iTLB multi-hit workaround can be toggled at any time, so assume
4288          * NX can be used by any non-nested shadow MMU to avoid having to reset
4289          * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
4290          */
4291         bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4292
4293         /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
4294         bool is_amd = true;
4295         /* KVM doesn't use 2-level page tables for the shadow MMU. */
4296         bool is_pse = false;
4297         struct rsvd_bits_validate *shadow_zero_check;
4298         int i;
4299
4300         WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
4301
4302         shadow_zero_check = &context->shadow_zero_check;
4303         __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4304                                 context->shadow_root_level, uses_nx,
4305                                 guest_can_use_gbpages(vcpu), is_pse, is_amd);
4306
4307         if (!shadow_me_mask)
4308                 return;
4309
4310         for (i = context->shadow_root_level; --i >= 0;) {
4311                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4312                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4313         }
4314
4315 }
4316
4317 static inline bool boot_cpu_is_amd(void)
4318 {
4319         WARN_ON_ONCE(!tdp_enabled);
4320         return shadow_x_mask == 0;
4321 }
4322
4323 /*
4324  * the direct page table on host, use as much mmu features as
4325  * possible, however, kvm currently does not do execution-protection.
4326  */
4327 static void
4328 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4329                                 struct kvm_mmu *context)
4330 {
4331         struct rsvd_bits_validate *shadow_zero_check;
4332         int i;
4333
4334         shadow_zero_check = &context->shadow_zero_check;
4335
4336         if (boot_cpu_is_amd())
4337                 __reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4338                                         context->shadow_root_level, false,
4339                                         boot_cpu_has(X86_FEATURE_GBPAGES),
4340                                         false, true);
4341         else
4342                 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4343                                             reserved_hpa_bits(), false);
4344
4345         if (!shadow_me_mask)
4346                 return;
4347
4348         for (i = context->shadow_root_level; --i >= 0;) {
4349                 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4350                 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4351         }
4352 }
4353
4354 /*
4355  * as the comments in reset_shadow_zero_bits_mask() except it
4356  * is the shadow page table for intel nested guest.
4357  */
4358 static void
4359 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4360                                 struct kvm_mmu *context, bool execonly)
4361 {
4362         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4363                                     reserved_hpa_bits(), execonly);
4364 }
4365
4366 #define BYTE_MASK(access) \
4367         ((1 & (access) ? 2 : 0) | \
4368          (2 & (access) ? 4 : 0) | \
4369          (3 & (access) ? 8 : 0) | \
4370          (4 & (access) ? 16 : 0) | \
4371          (5 & (access) ? 32 : 0) | \
4372          (6 & (access) ? 64 : 0) | \
4373          (7 & (access) ? 128 : 0))
4374
4375
4376 static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4377 {
4378         unsigned byte;
4379
4380         const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4381         const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4382         const u8 u = BYTE_MASK(ACC_USER_MASK);
4383
4384         bool cr4_smep = is_cr4_smep(mmu);
4385         bool cr4_smap = is_cr4_smap(mmu);
4386         bool cr0_wp = is_cr0_wp(mmu);
4387         bool efer_nx = is_efer_nx(mmu);
4388
4389         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4390                 unsigned pfec = byte << 1;
4391
4392                 /*
4393                  * Each "*f" variable has a 1 bit for each UWX value
4394                  * that causes a fault with the given PFEC.
4395                  */
4396
4397                 /* Faults from writes to non-writable pages */
4398                 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4399                 /* Faults from user mode accesses to supervisor pages */
4400                 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4401                 /* Faults from fetches of non-executable pages*/
4402                 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4403                 /* Faults from kernel mode fetches of user pages */
4404                 u8 smepf = 0;
4405                 /* Faults from kernel mode accesses of user pages */
4406                 u8 smapf = 0;
4407
4408                 if (!ept) {
4409                         /* Faults from kernel mode accesses to user pages */
4410                         u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4411
4412                         /* Not really needed: !nx will cause pte.nx to fault */
4413                         if (!efer_nx)
4414                                 ff = 0;
4415
4416                         /* Allow supervisor writes if !cr0.wp */
4417                         if (!cr0_wp)
4418                                 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4419
4420                         /* Disallow supervisor fetches of user code if cr4.smep */
4421                         if (cr4_smep)
4422                                 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4423
4424                         /*
4425                          * SMAP:kernel-mode data accesses from user-mode
4426                          * mappings should fault. A fault is considered
4427                          * as a SMAP violation if all of the following
4428                          * conditions are true:
4429                          *   - X86_CR4_SMAP is set in CR4
4430                          *   - A user page is accessed
4431                          *   - The access is not a fetch
4432                          *   - Page fault in kernel mode
4433                          *   - if CPL = 3 or X86_EFLAGS_AC is clear
4434                          *
4435                          * Here, we cover the first three conditions.
4436                          * The fourth is computed dynamically in permission_fault();
4437                          * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4438                          * *not* subject to SMAP restrictions.
4439                          */
4440                         if (cr4_smap)
4441                                 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4442                 }
4443
4444                 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4445         }
4446 }
4447
4448 /*
4449 * PKU is an additional mechanism by which the paging controls access to
4450 * user-mode addresses based on the value in the PKRU register.  Protection
4451 * key violations are reported through a bit in the page fault error code.
4452 * Unlike other bits of the error code, the PK bit is not known at the
4453 * call site of e.g. gva_to_gpa; it must be computed directly in
4454 * permission_fault based on two bits of PKRU, on some machine state (CR4,
4455 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4456 *
4457 * In particular the following conditions come from the error code, the
4458 * page tables and the machine state:
4459 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4460 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4461 * - PK is always zero if U=0 in the page tables
4462 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4463 *
4464 * The PKRU bitmask caches the result of these four conditions.  The error
4465 * code (minus the P bit) and the page table's U bit form an index into the
4466 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4467 * with the two bits of the PKRU register corresponding to the protection key.
4468 * For the first three conditions above the bits will be 00, thus masking
4469 * away both AD and WD.  For all reads or if the last condition holds, WD
4470 * only will be masked away.
4471 */
4472 static void update_pkru_bitmask(struct kvm_mmu *mmu)
4473 {
4474         unsigned bit;
4475         bool wp;
4476
4477         if (!is_cr4_pke(mmu)) {
4478                 mmu->pkru_mask = 0;
4479                 return;
4480         }
4481
4482         wp = is_cr0_wp(mmu);
4483
4484         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4485                 unsigned pfec, pkey_bits;
4486                 bool check_pkey, check_write, ff, uf, wf, pte_user;
4487
4488                 pfec = bit << 1;
4489                 ff = pfec & PFERR_FETCH_MASK;
4490                 uf = pfec & PFERR_USER_MASK;
4491                 wf = pfec & PFERR_WRITE_MASK;
4492
4493                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4494                 pte_user = pfec & PFERR_RSVD_MASK;
4495
4496                 /*
4497                  * Only need to check the access which is not an
4498                  * instruction fetch and is to a user page.
4499                  */
4500                 check_pkey = (!ff && pte_user);
4501                 /*
4502                  * write access is controlled by PKRU if it is a
4503                  * user access or CR0.WP = 1.
4504                  */
4505                 check_write = check_pkey && wf && (uf || wp);
4506
4507                 /* PKRU.AD stops both read and write access. */
4508                 pkey_bits = !!check_pkey;
4509                 /* PKRU.WD stops write access. */
4510                 pkey_bits |= (!!check_write) << 1;
4511
4512                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4513         }
4514 }
4515
4516 static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
4517                                         struct kvm_mmu *mmu)
4518 {
4519         if (!is_cr0_pg(mmu))
4520                 return;
4521
4522         reset_rsvds_bits_mask(vcpu, mmu);
4523         update_permission_bitmask(mmu, false);
4524         update_pkru_bitmask(mmu);
4525 }
4526
4527 static void paging64_init_context(struct kvm_mmu *context)
4528 {
4529         context->page_fault = paging64_page_fault;
4530         context->gva_to_gpa = paging64_gva_to_gpa;
4531         context->sync_page = paging64_sync_page;
4532         context->invlpg = paging64_invlpg;
4533         context->direct_map = false;
4534 }
4535
4536 static void paging32_init_context(struct kvm_mmu *context)
4537 {
4538         context->page_fault = paging32_page_fault;
4539         context->gva_to_gpa = paging32_gva_to_gpa;
4540         context->sync_page = paging32_sync_page;
4541         context->invlpg = paging32_invlpg;
4542         context->direct_map = false;
4543 }
4544
4545 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
4546                                                          struct kvm_mmu_role_regs *regs)
4547 {
4548         union kvm_mmu_extended_role ext = {0};
4549
4550         if (____is_cr0_pg(regs)) {
4551                 ext.cr0_pg = 1;
4552                 ext.cr4_pae = ____is_cr4_pae(regs);
4553                 ext.cr4_smep = ____is_cr4_smep(regs);
4554                 ext.cr4_smap = ____is_cr4_smap(regs);
4555                 ext.cr4_pse = ____is_cr4_pse(regs);
4556
4557                 /* PKEY and LA57 are active iff long mode is active. */
4558                 ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
4559                 ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4560         }
4561
4562         ext.valid = 1;
4563
4564         return ext;
4565 }
4566
4567 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4568                                                    struct kvm_mmu_role_regs *regs,
4569                                                    bool base_only)
4570 {
4571         union kvm_mmu_role role = {0};
4572
4573         role.base.access = ACC_ALL;
4574         if (____is_cr0_pg(regs)) {
4575                 role.base.efer_nx = ____is_efer_nx(regs);
4576                 role.base.cr0_wp = ____is_cr0_wp(regs);
4577         }
4578         role.base.smm = is_smm(vcpu);
4579         role.base.guest_mode = is_guest_mode(vcpu);
4580
4581         if (base_only)
4582                 return role;
4583
4584         role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4585
4586         return role;
4587 }
4588
4589 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4590 {
4591         /* Use 5-level TDP if and only if it's useful/necessary. */
4592         if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4593                 return 4;
4594
4595         return max_tdp_level;
4596 }
4597
4598 static union kvm_mmu_role
4599 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
4600                                 struct kvm_mmu_role_regs *regs, bool base_only)
4601 {
4602         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4603
4604         role.base.ad_disabled = (shadow_accessed_mask == 0);
4605         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4606         role.base.direct = true;
4607         role.base.gpte_is_8_bytes = true;
4608
4609         return role;
4610 }
4611
4612 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4613 {
4614         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4615         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4616         union kvm_mmu_role new_role =
4617                 kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4618
4619         if (new_role.as_u64 == context->mmu_role.as_u64)
4620                 return;
4621
4622         context->mmu_role.as_u64 = new_role.as_u64;
4623         context->page_fault = kvm_tdp_page_fault;
4624         context->sync_page = nonpaging_sync_page;
4625         context->invlpg = NULL;
4626         context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4627         context->direct_map = true;
4628         context->get_guest_pgd = get_cr3;
4629         context->get_pdptr = kvm_pdptr_read;
4630         context->inject_page_fault = kvm_inject_page_fault;
4631         context->root_level = role_regs_to_root_level(&regs);
4632
4633         if (!is_cr0_pg(context))
4634                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4635         else if (is_cr4_pae(context))
4636                 context->gva_to_gpa = paging64_gva_to_gpa;
4637         else
4638                 context->gva_to_gpa = paging32_gva_to_gpa;
4639
4640         reset_guest_paging_metadata(vcpu, context);
4641         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4642 }
4643
4644 static union kvm_mmu_role
4645 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
4646                                       struct kvm_mmu_role_regs *regs, bool base_only)
4647 {
4648         union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4649
4650         role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
4651         role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4652         role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4653
4654         return role;
4655 }
4656
4657 static union kvm_mmu_role
4658 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
4659                                    struct kvm_mmu_role_regs *regs, bool base_only)
4660 {
4661         union kvm_mmu_role role =
4662                 kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4663
4664         role.base.direct = !____is_cr0_pg(regs);
4665
4666         if (!____is_efer_lma(regs))
4667                 role.base.level = PT32E_ROOT_LEVEL;
4668         else if (____is_cr4_la57(regs))
4669                 role.base.level = PT64_ROOT_5LEVEL;
4670         else
4671                 role.base.level = PT64_ROOT_4LEVEL;
4672
4673         return role;
4674 }
4675
4676 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4677                                     struct kvm_mmu_role_regs *regs,
4678                                     union kvm_mmu_role new_role)
4679 {
4680         if (new_role.as_u64 == context->mmu_role.as_u64)
4681                 return;
4682
4683         context->mmu_role.as_u64 = new_role.as_u64;
4684
4685         if (!is_cr0_pg(context))
4686                 nonpaging_init_context(context);
4687         else if (is_cr4_pae(context))
4688                 paging64_init_context(context);
4689         else
4690                 paging32_init_context(context);
4691         context->root_level = role_regs_to_root_level(regs);
4692
4693         reset_guest_paging_metadata(vcpu, context);
4694         context->shadow_root_level = new_role.base.level;
4695
4696         reset_shadow_zero_bits_mask(vcpu, context);
4697 }
4698
4699 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
4700                                 struct kvm_mmu_role_regs *regs)
4701 {
4702         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4703         union kvm_mmu_role new_role =
4704                 kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4705
4706         shadow_mmu_init_context(vcpu, context, regs, new_role);
4707 }
4708
4709 static union kvm_mmu_role
4710 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
4711                                    struct kvm_mmu_role_regs *regs)
4712 {
4713         union kvm_mmu_role role =
4714                 kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4715
4716         role.base.direct = false;
4717         role.base.level = kvm_mmu_get_tdp_level(vcpu);
4718
4719         return role;
4720 }
4721
4722 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
4723                              unsigned long cr4, u64 efer, gpa_t nested_cr3)
4724 {
4725         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4726         struct kvm_mmu_role_regs regs = {
4727                 .cr0 = cr0,
4728                 .cr4 = cr4,
4729                 .efer = efer,
4730         };
4731         union kvm_mmu_role new_role;
4732
4733         new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4734
4735         __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4736
4737         shadow_mmu_init_context(vcpu, context, &regs, new_role);
4738 }
4739 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4740
4741 static union kvm_mmu_role
4742 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4743                                    bool execonly, u8 level)
4744 {
4745         union kvm_mmu_role role = {0};
4746
4747         /* SMM flag is inherited from root_mmu */
4748         role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4749
4750         role.base.level = level;
4751         role.base.gpte_is_8_bytes = true;
4752         role.base.direct = false;
4753         role.base.ad_disabled = !accessed_dirty;
4754         role.base.guest_mode = true;
4755         role.base.access = ACC_ALL;
4756
4757         /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
4758         role.ext.word = 0;
4759         role.ext.execonly = execonly;
4760         role.ext.valid = 1;
4761
4762         return role;
4763 }
4764
4765 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4766                              bool accessed_dirty, gpa_t new_eptp)
4767 {
4768         struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4769         u8 level = vmx_eptp_page_walk_level(new_eptp);
4770         union kvm_mmu_role new_role =
4771                 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4772                                                    execonly, level);
4773
4774         __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4775
4776         if (new_role.as_u64 == context->mmu_role.as_u64)
4777                 return;
4778
4779         context->mmu_role.as_u64 = new_role.as_u64;
4780
4781         context->shadow_root_level = level;
4782
4783         context->ept_ad = accessed_dirty;
4784         context->page_fault = ept_page_fault;
4785         context->gva_to_gpa = ept_gva_to_gpa;
4786         context->sync_page = ept_sync_page;
4787         context->invlpg = ept_invlpg;
4788         context->root_level = level;
4789         context->direct_map = false;
4790
4791         update_permission_bitmask(context, true);
4792         update_pkru_bitmask(context);
4793         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4794         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4795 }
4796 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4797
4798 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4799 {
4800         struct kvm_mmu *context = &vcpu->arch.root_mmu;
4801         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4802
4803         kvm_init_shadow_mmu(vcpu, &regs);
4804
4805         context->get_guest_pgd     = get_cr3;
4806         context->get_pdptr         = kvm_pdptr_read;
4807         context->inject_page_fault = kvm_inject_page_fault;
4808 }
4809
4810 static union kvm_mmu_role
4811 kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4812 {
4813         union kvm_mmu_role role;
4814
4815         role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4816
4817         /*
4818          * Nested MMUs are used only for walking L2's gva->gpa, they never have
4819          * shadow pages of their own and so "direct" has no meaning.   Set it
4820          * to "true" to try to detect bogus usage of the nested MMU.
4821          */
4822         role.base.direct = true;
4823         role.base.level = role_regs_to_root_level(regs);
4824         return role;
4825 }
4826
4827 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4828 {
4829         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4830         union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4831         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4832
4833         if (new_role.as_u64 == g_context->mmu_role.as_u64)
4834                 return;
4835
4836         g_context->mmu_role.as_u64 = new_role.as_u64;
4837         g_context->get_guest_pgd     = get_cr3;
4838         g_context->get_pdptr         = kvm_pdptr_read;
4839         g_context->inject_page_fault = kvm_inject_page_fault;
4840         g_context->root_level        = new_role.base.level;
4841
4842         /*
4843          * L2 page tables are never shadowed, so there is no need to sync
4844          * SPTEs.
4845          */
4846         g_context->invlpg            = NULL;
4847
4848         /*
4849          * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4850          * L1's nested page tables (e.g. EPT12). The nested translation
4851          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4852          * L2's page tables as the first level of translation and L1's
4853          * nested page tables as the second level of translation. Basically
4854          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4855          */
4856         if (!is_paging(vcpu))
4857                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4858         else if (is_long_mode(vcpu))
4859                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4860         else if (is_pae(vcpu))
4861                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4862         else
4863                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4864
4865         reset_guest_paging_metadata(vcpu, g_context);
4866 }
4867
4868 void kvm_init_mmu(struct kvm_vcpu *vcpu)
4869 {
4870         if (mmu_is_nested(vcpu))
4871                 init_kvm_nested_mmu(vcpu);
4872         else if (tdp_enabled)
4873                 init_kvm_tdp_mmu(vcpu);
4874         else
4875                 init_kvm_softmmu(vcpu);
4876 }
4877 EXPORT_SYMBOL_GPL(kvm_init_mmu);
4878
4879 static union kvm_mmu_page_role
4880 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4881 {
4882         struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4883         union kvm_mmu_role role;
4884
4885         if (tdp_enabled)
4886                 role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
4887         else
4888                 role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
4889
4890         return role.base;
4891 }
4892
4893 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
4894 {
4895         /*
4896          * Invalidate all MMU roles to force them to reinitialize as CPUID
4897          * information is factored into reserved bit calculations.
4898          */
4899         vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
4900         vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
4901         vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
4902         kvm_mmu_reset_context(vcpu);
4903
4904         /*
4905          * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
4906          * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
4907          * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
4908          * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
4909          * sweep the problem under the rug.
4910          *
4911          * KVM's horrific CPUID ABI makes the problem all but impossible to
4912          * solve, as correctly handling multiple vCPU models (with respect to
4913          * paging and physical address properties) in a single VM would require
4914          * tracking all relevant CPUID information in kvm_mmu_page_role.  That
4915          * is very undesirable as it would double the memory requirements for
4916          * gfn_track (see struct kvm_mmu_page_role comments), and in practice
4917          * no sane VMM mucks with the core vCPU model on the fly.
4918          */
4919         if (vcpu->arch.last_vmentry_cpu != -1) {
4920                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
4921                 pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
4922         }
4923 }
4924
4925 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4926 {
4927         kvm_mmu_unload(vcpu);
4928         kvm_init_mmu(vcpu);
4929 }
4930 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4931
4932 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4933 {
4934         int r;
4935
4936         r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4937         if (r)
4938                 goto out;
4939         r = mmu_alloc_special_roots(vcpu);
4940         if (r)
4941                 goto out;
4942         if (vcpu->arch.mmu->direct_map)
4943                 r = mmu_alloc_direct_roots(vcpu);
4944         else
4945                 r = mmu_alloc_shadow_roots(vcpu);
4946         if (r)
4947                 goto out;
4948
4949         kvm_mmu_sync_roots(vcpu);
4950
4951         kvm_mmu_load_pgd(vcpu);
4952         static_call(kvm_x86_tlb_flush_current)(vcpu);
4953 out:
4954         return r;
4955 }
4956
4957 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4958 {
4959         kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4960         WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4961         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4962         WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4963 }
4964
4965 static bool need_remote_flush(u64 old, u64 new)
4966 {
4967         if (!is_shadow_present_pte(old))
4968                 return false;
4969         if (!is_shadow_present_pte(new))
4970                 return true;
4971         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4972                 return true;
4973         old ^= shadow_nx_mask;
4974         new ^= shadow_nx_mask;
4975         return (old & ~new & PT64_PERM_MASK) != 0;
4976 }
4977
4978 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4979                                     int *bytes)
4980 {
4981         u64 gentry = 0;
4982         int r;
4983
4984         /*
4985          * Assume that the pte write on a page table of the same type
4986          * as the current vcpu paging mode since we update the sptes only
4987          * when they have the same mode.
4988          */
4989         if (is_pae(vcpu) && *bytes == 4) {
4990                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4991                 *gpa &= ~(gpa_t)7;
4992                 *bytes = 8;
4993         }
4994
4995         if (*bytes == 4 || *bytes == 8) {
4996                 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4997                 if (r)
4998                         gentry = 0;
4999         }
5000
5001         return gentry;
5002 }
5003
5004 /*
5005  * If we're seeing too many writes to a page, it may no longer be a page table,
5006  * or we may be forking, in which case it is better to unmap the page.
5007  */
5008 static bool detect_write_flooding(struct kvm_mmu_page *sp)
5009 {
5010         /*
5011          * Skip write-flooding detected for the sp whose level is 1, because
5012          * it can become unsync, then the guest page is not write-protected.
5013          */
5014         if (sp->role.level == PG_LEVEL_4K)
5015                 return false;
5016
5017         atomic_inc(&sp->write_flooding_count);
5018         return atomic_read(&sp->write_flooding_count) >= 3;
5019 }
5020
5021 /*
5022  * Misaligned accesses are too much trouble to fix up; also, they usually
5023  * indicate a page is not used as a page table.
5024  */
5025 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5026                                     int bytes)
5027 {
5028         unsigned offset, pte_size, misaligned;
5029
5030         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5031                  gpa, bytes, sp->role.word);
5032
5033         offset = offset_in_page(gpa);
5034         pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5035
5036         /*
5037          * Sometimes, the OS only writes the last one bytes to update status
5038          * bits, for example, in linux, andb instruction is used in clear_bit().
5039          */
5040         if (!(offset & (pte_size - 1)) && bytes == 1)
5041                 return false;
5042
5043         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5044         misaligned |= bytes < 4;
5045
5046         return misaligned;
5047 }
5048
5049 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5050 {
5051         unsigned page_offset, quadrant;
5052         u64 *spte;
5053         int level;
5054
5055         page_offset = offset_in_page(gpa);
5056         level = sp->role.level;
5057         *nspte = 1;
5058         if (!sp->role.gpte_is_8_bytes) {
5059                 page_offset <<= 1;      /* 32->64 */
5060                 /*
5061                  * A 32-bit pde maps 4MB while the shadow pdes map
5062                  * only 2MB.  So we need to double the offset again
5063                  * and zap two pdes instead of one.
5064                  */
5065                 if (level == PT32_ROOT_LEVEL) {
5066                         page_offset &= ~7; /* kill rounding error */
5067                         page_offset <<= 1;
5068                         *nspte = 2;
5069                 }
5070                 quadrant = page_offset >> PAGE_SHIFT;
5071                 page_offset &= ~PAGE_MASK;
5072                 if (quadrant != sp->role.quadrant)
5073                         return NULL;
5074         }
5075
5076         spte = &sp->spt[page_offset / sizeof(*spte)];
5077         return spte;
5078 }
5079
5080 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5081                               const u8 *new, int bytes,
5082                               struct kvm_page_track_notifier_node *node)
5083 {
5084         gfn_t gfn = gpa >> PAGE_SHIFT;
5085         struct kvm_mmu_page *sp;
5086         LIST_HEAD(invalid_list);
5087         u64 entry, gentry, *spte;
5088         int npte;
5089         bool remote_flush, local_flush;
5090
5091         /*
5092          * If we don't have indirect shadow pages, it means no page is
5093          * write-protected, so we can exit simply.
5094          */
5095         if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5096                 return;
5097
5098         remote_flush = local_flush = false;
5099
5100         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5101
5102         /*
5103          * No need to care whether allocation memory is successful
5104          * or not since pte prefetch is skipped if it does not have
5105          * enough objects in the cache.
5106          */
5107         mmu_topup_memory_caches(vcpu, true);
5108
5109         write_lock(&vcpu->kvm->mmu_lock);
5110
5111         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5112
5113         ++vcpu->kvm->stat.mmu_pte_write;
5114         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5115
5116         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5117                 if (detect_write_misaligned(sp, gpa, bytes) ||
5118                       detect_write_flooding(sp)) {
5119                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
5120                         ++vcpu->kvm->stat.mmu_flooded;
5121                         continue;
5122                 }
5123
5124                 spte = get_written_sptes(sp, gpa, &npte);
5125                 if (!spte)
5126                         continue;
5127
5128                 local_flush = true;
5129                 while (npte--) {
5130                         entry = *spte;
5131                         mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5132                         if (gentry && sp->role.level != PG_LEVEL_4K)
5133                                 ++vcpu->kvm->stat.mmu_pde_zapped;
5134                         if (need_remote_flush(entry, *spte))
5135                                 remote_flush = true;
5136                         ++spte;
5137                 }
5138         }
5139         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5140         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5141         write_unlock(&vcpu->kvm->mmu_lock);
5142 }
5143
5144 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5145                        void *insn, int insn_len)
5146 {
5147         int r, emulation_type = EMULTYPE_PF;
5148         bool direct = vcpu->arch.mmu->direct_map;
5149
5150         if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5151                 return RET_PF_RETRY;
5152
5153         r = RET_PF_INVALID;
5154         if (unlikely(error_code & PFERR_RSVD_MASK)) {
5155                 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5156                 if (r == RET_PF_EMULATE)
5157                         goto emulate;
5158         }
5159
5160         if (r == RET_PF_INVALID) {
5161                 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5162                                           lower_32_bits(error_code), false);
5163                 if (WARN_ON_ONCE(r == RET_PF_INVALID))
5164                         return -EIO;
5165         }
5166
5167         if (r < 0)
5168                 return r;
5169         if (r != RET_PF_EMULATE)
5170                 return 1;
5171
5172         /*
5173          * Before emulating the instruction, check if the error code
5174          * was due to a RO violation while translating the guest page.
5175          * This can occur when using nested virtualization with nested
5176          * paging in both guests. If true, we simply unprotect the page
5177          * and resume the guest.
5178          */
5179         if (vcpu->arch.mmu->direct_map &&
5180             (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5181                 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5182                 return 1;
5183         }
5184
5185         /*
5186          * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5187          * optimistically try to just unprotect the page and let the processor
5188          * re-execute the instruction that caused the page fault.  Do not allow
5189          * retrying MMIO emulation, as it's not only pointless but could also
5190          * cause us to enter an infinite loop because the processor will keep
5191          * faulting on the non-existent MMIO address.  Retrying an instruction
5192          * from a nested guest is also pointless and dangerous as we are only
5193          * explicitly shadowing L1's page tables, i.e. unprotecting something
5194          * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5195          */
5196         if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5197                 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5198 emulate:
5199         return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5200                                        insn_len);
5201 }
5202 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5203
5204 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5205                             gva_t gva, hpa_t root_hpa)
5206 {
5207         int i;
5208
5209         /* It's actually a GPA for vcpu->arch.guest_mmu.  */
5210         if (mmu != &vcpu->arch.guest_mmu) {
5211                 /* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5212                 if (is_noncanonical_address(gva, vcpu))
5213                         return;
5214
5215                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5216         }
5217
5218         if (!mmu->invlpg)
5219                 return;
5220
5221         if (root_hpa == INVALID_PAGE) {
5222                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5223
5224                 /*
5225                  * INVLPG is required to invalidate any global mappings for the VA,
5226                  * irrespective of PCID. Since it would take us roughly similar amount
5227                  * of work to determine whether any of the prev_root mappings of the VA
5228                  * is marked global, or to just sync it blindly, so we might as well
5229                  * just always sync it.
5230                  *
5231                  * Mappings not reachable via the current cr3 or the prev_roots will be
5232                  * synced when switching to that cr3, so nothing needs to be done here
5233                  * for them.
5234                  */
5235                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5236                         if (VALID_PAGE(mmu->prev_roots[i].hpa))
5237                                 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5238         } else {
5239                 mmu->invlpg(vcpu, gva, root_hpa);
5240         }
5241 }
5242
5243 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5244 {
5245         kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5246         ++vcpu->stat.invlpg;
5247 }
5248 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5249
5250
5251 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5252 {
5253         struct kvm_mmu *mmu = vcpu->arch.mmu;
5254         bool tlb_flush = false;
5255         uint i;
5256
5257         if (pcid == kvm_get_active_pcid(vcpu)) {
5258                 mmu->invlpg(vcpu, gva, mmu->root_hpa);
5259                 tlb_flush = true;
5260         }
5261
5262         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5263                 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5264                     pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5265                         mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5266                         tlb_flush = true;
5267                 }
5268         }
5269
5270         if (tlb_flush)
5271                 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5272
5273         ++vcpu->stat.invlpg;
5274
5275         /*
5276          * Mappings not reachable via the current cr3 or the prev_roots will be
5277          * synced when switching to that cr3, so nothing needs to be done here
5278          * for them.
5279          */
5280 }
5281
5282 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5283                        int tdp_huge_page_level)
5284 {
5285         tdp_enabled = enable_tdp;
5286         max_tdp_level = tdp_max_root_level;
5287
5288         /*
5289          * max_huge_page_level reflects KVM's MMU capabilities irrespective
5290          * of kernel support, e.g. KVM may be capable of using 1GB pages when
5291          * the kernel is not.  But, KVM never creates a page size greater than
5292          * what is used by the kernel for any given HVA, i.e. the kernel's
5293          * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5294          */
5295         if (tdp_enabled)
5296                 max_huge_page_level = tdp_huge_page_level;
5297         else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5298                 max_huge_page_level = PG_LEVEL_1G;
5299         else
5300                 max_huge_page_level = PG_LEVEL_2M;
5301 }
5302 EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5303
5304 /* The return value indicates if tlb flush on all vcpus is needed. */
5305 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
5306                                     struct kvm_memory_slot *slot);
5307
5308 /* The caller should hold mmu-lock before calling this function. */
5309 static __always_inline bool
5310 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5311                         slot_level_handler fn, int start_level, int end_level,
5312                         gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
5313                         bool flush)
5314 {
5315         struct slot_rmap_walk_iterator iterator;
5316
5317         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5318                         end_gfn, &iterator) {
5319                 if (iterator.rmap)
5320                         flush |= fn(kvm, iterator.rmap, memslot);
5321
5322                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5323                         if (flush && flush_on_yield) {
5324                                 kvm_flush_remote_tlbs_with_address(kvm,
5325                                                 start_gfn,
5326                                                 iterator.gfn - start_gfn + 1);
5327                                 flush = false;
5328                         }
5329                         cond_resched_rwlock_write(&kvm->mmu_lock);
5330                 }
5331         }
5332
5333         return flush;
5334 }
5335
5336 static __always_inline bool
5337 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5338                   slot_level_handler fn, int start_level, int end_level,
5339                   bool flush_on_yield)
5340 {
5341         return slot_handle_level_range(kvm, memslot, fn, start_level,
5342                         end_level, memslot->base_gfn,
5343                         memslot->base_gfn + memslot->npages - 1,
5344                         flush_on_yield, false);
5345 }
5346
5347 static __always_inline bool
5348 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5349                  slot_level_handler fn, bool flush_on_yield)
5350 {
5351         return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5352                                  PG_LEVEL_4K, flush_on_yield);
5353 }
5354
5355 static void free_mmu_pages(struct kvm_mmu *mmu)
5356 {
5357         if (!tdp_enabled && mmu->pae_root)
5358                 set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5359         free_page((unsigned long)mmu->pae_root);
5360         free_page((unsigned long)mmu->pml4_root);
5361 }
5362
5363 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5364 {
5365         struct page *page;
5366         int i;
5367
5368         mmu->root_hpa = INVALID_PAGE;
5369         mmu->root_pgd = 0;
5370         mmu->translate_gpa = translate_gpa;
5371         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5372                 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5373
5374         /*
5375          * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5376          * while the PDP table is a per-vCPU construct that's allocated at MMU
5377          * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5378          * x86_64.  Therefore we need to allocate the PDP table in the first
5379          * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
5380          * generally doesn't use PAE paging and can skip allocating the PDP
5381          * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
5382          * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
5383          * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5384          */
5385         if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5386                 return 0;
5387
5388         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5389         if (!page)
5390                 return -ENOMEM;
5391
5392         mmu->pae_root = page_address(page);
5393
5394         /*
5395          * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
5396          * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
5397          * that KVM's writes and the CPU's reads get along.  Note, this is
5398          * only necessary when using shadow paging, as 64-bit NPT can get at
5399          * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
5400          * by 32-bit kernels (when KVM itself uses 32-bit NPT).
5401          */
5402         if (!tdp_enabled)
5403                 set_memory_decrypted((unsigned long)mmu->pae_root, 1);
5404         else
5405                 WARN_ON_ONCE(shadow_me_mask);
5406
5407         for (i = 0; i < 4; ++i)
5408                 mmu->pae_root[i] = INVALID_PAE_ROOT;
5409
5410         return 0;
5411 }
5412
5413 int kvm_mmu_create(struct kvm_vcpu *vcpu)
5414 {
5415         int ret;
5416
5417         vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5418         vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5419
5420         vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5421         vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5422
5423         vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5424
5425         vcpu->arch.mmu = &vcpu->arch.root_mmu;
5426         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5427
5428         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5429
5430         ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5431         if (ret)
5432                 return ret;
5433
5434         ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5435         if (ret)
5436                 goto fail_allocate_root;
5437
5438         return ret;
5439  fail_allocate_root:
5440         free_mmu_pages(&vcpu->arch.guest_mmu);
5441         return ret;
5442 }
5443
5444 #define BATCH_ZAP_PAGES 10
5445 static void kvm_zap_obsolete_pages(struct kvm *kvm)
5446 {
5447         struct kvm_mmu_page *sp, *node;
5448         int nr_zapped, batch = 0;
5449
5450 restart:
5451         list_for_each_entry_safe_reverse(sp, node,
5452               &kvm->arch.active_mmu_pages, link) {
5453                 /*
5454                  * No obsolete valid page exists before a newly created page
5455                  * since active_mmu_pages is a FIFO list.
5456                  */
5457                 if (!is_obsolete_sp(kvm, sp))
5458                         break;
5459
5460                 /*
5461                  * Invalid pages should never land back on the list of active
5462                  * pages.  Skip the bogus page, otherwise we'll get stuck in an
5463                  * infinite loop if the page gets put back on the list (again).
5464                  */
5465                 if (WARN_ON(sp->role.invalid))
5466                         continue;
5467
5468                 /*
5469                  * No need to flush the TLB since we're only zapping shadow
5470                  * pages with an obsolete generation number and all vCPUS have
5471                  * loaded a new root, i.e. the shadow pages being zapped cannot
5472                  * be in active use by the guest.
5473                  */
5474                 if (batch >= BATCH_ZAP_PAGES &&
5475                     cond_resched_rwlock_write(&kvm->mmu_lock)) {
5476                         batch = 0;
5477                         goto restart;
5478                 }
5479
5480                 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5481                                 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5482                         batch += nr_zapped;
5483                         goto restart;
5484                 }
5485         }
5486
5487         /*
5488          * Trigger a remote TLB flush before freeing the page tables to ensure
5489          * KVM is not in the middle of a lockless shadow page table walk, which
5490          * may reference the pages.
5491          */
5492         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5493 }
5494
5495 /*
5496  * Fast invalidate all shadow pages and use lock-break technique
5497  * to zap obsolete pages.
5498  *
5499  * It's required when memslot is being deleted or VM is being
5500  * destroyed, in these cases, we should ensure that KVM MMU does
5501  * not use any resource of the being-deleted slot or all slots
5502  * after calling the function.
5503  */
5504 static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5505 {
5506         lockdep_assert_held(&kvm->slots_lock);
5507
5508         write_lock(&kvm->mmu_lock);
5509         trace_kvm_mmu_zap_all_fast(kvm);
5510
5511         /*
5512          * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5513          * held for the entire duration of zapping obsolete pages, it's
5514          * impossible for there to be multiple invalid generations associated
5515          * with *valid* shadow pages at any given time, i.e. there is exactly
5516          * one valid generation and (at most) one invalid generation.
5517          */
5518         kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5519
5520         /* In order to ensure all threads see this change when
5521          * handling the MMU reload signal, this must happen in the
5522          * same critical section as kvm_reload_remote_mmus, and
5523          * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
5524          * could drop the MMU lock and yield.
5525          */
5526         if (is_tdp_mmu_enabled(kvm))
5527                 kvm_tdp_mmu_invalidate_all_roots(kvm);
5528
5529         /*
5530          * Notify all vcpus to reload its shadow page table and flush TLB.
5531          * Then all vcpus will switch to new shadow page table with the new
5532          * mmu_valid_gen.
5533          *
5534          * Note: we need to do this under the protection of mmu_lock,
5535          * otherwise, vcpu would purge shadow page but miss tlb flush.
5536          */
5537         kvm_reload_remote_mmus(kvm);
5538
5539         kvm_zap_obsolete_pages(kvm);
5540
5541         write_unlock(&kvm->mmu_lock);
5542
5543         if (is_tdp_mmu_enabled(kvm)) {
5544                 read_lock(&kvm->mmu_lock);
5545                 kvm_tdp_mmu_zap_invalidated_roots(kvm);
5546                 read_unlock(&kvm->mmu_lock);
5547         }
5548 }
5549
5550 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5551 {
5552         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5553 }
5554
5555 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5556                         struct kvm_memory_slot *slot,
5557                         struct kvm_page_track_notifier_node *node)
5558 {
5559         kvm_mmu_zap_all_fast(kvm);
5560 }
5561
5562 void kvm_mmu_init_vm(struct kvm *kvm)
5563 {
5564         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5565
5566         spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
5567
5568         if (!kvm_mmu_init_tdp_mmu(kvm))
5569                 /*
5570                  * No smp_load/store wrappers needed here as we are in
5571                  * VM init and there cannot be any memslots / other threads
5572                  * accessing this struct kvm yet.
5573                  */
5574                 kvm->arch.memslots_have_rmaps = true;
5575
5576         node->track_write = kvm_mmu_pte_write;
5577         node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5578         kvm_page_track_register_notifier(kvm, node);
5579 }
5580
5581 void kvm_mmu_uninit_vm(struct kvm *kvm)
5582 {
5583         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5584
5585         kvm_page_track_unregister_notifier(kvm, node);
5586
5587         kvm_mmu_uninit_tdp_mmu(kvm);
5588 }
5589
5590 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5591 {
5592         struct kvm_memslots *slots;
5593         struct kvm_memory_slot *memslot;
5594         int i;
5595         bool flush = false;
5596
5597         if (kvm_memslots_have_rmaps(kvm)) {
5598                 write_lock(&kvm->mmu_lock);
5599                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5600                         slots = __kvm_memslots(kvm, i);
5601                         kvm_for_each_memslot(memslot, slots) {
5602                                 gfn_t start, end;
5603
5604                                 start = max(gfn_start, memslot->base_gfn);
5605                                 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5606                                 if (start >= end)
5607                                         continue;
5608
5609                                 flush = slot_handle_level_range(kvm, memslot,
5610                                                 kvm_zap_rmapp, PG_LEVEL_4K,
5611                                                 KVM_MAX_HUGEPAGE_LEVEL, start,
5612                                                 end - 1, true, flush);
5613                         }
5614                 }
5615                 if (flush)
5616                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
5617                 write_unlock(&kvm->mmu_lock);
5618         }
5619
5620         if (is_tdp_mmu_enabled(kvm)) {
5621                 flush = false;
5622
5623                 read_lock(&kvm->mmu_lock);
5624                 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
5625                         flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5626                                                           gfn_end, flush, true);
5627                 if (flush)
5628                         kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5629                                                            gfn_end);
5630
5631                 read_unlock(&kvm->mmu_lock);
5632         }
5633 }
5634
5635 static bool slot_rmap_write_protect(struct kvm *kvm,
5636                                     struct kvm_rmap_head *rmap_head,
5637                                     struct kvm_memory_slot *slot)
5638 {
5639         return __rmap_write_protect(kvm, rmap_head, false);
5640 }
5641
5642 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5643                                       struct kvm_memory_slot *memslot,
5644                                       int start_level)
5645 {
5646         bool flush = false;
5647
5648         if (kvm_memslots_have_rmaps(kvm)) {
5649                 write_lock(&kvm->mmu_lock);
5650                 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5651                                           start_level, KVM_MAX_HUGEPAGE_LEVEL,
5652                                           false);
5653                 write_unlock(&kvm->mmu_lock);
5654         }
5655
5656         if (is_tdp_mmu_enabled(kvm)) {
5657                 read_lock(&kvm->mmu_lock);
5658                 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
5659                 read_unlock(&kvm->mmu_lock);
5660         }
5661
5662         /*
5663          * We can flush all the TLBs out of the mmu lock without TLB
5664          * corruption since we just change the spte from writable to
5665          * readonly so that we only need to care the case of changing
5666          * spte from present to present (changing the spte from present
5667          * to nonpresent will flush all the TLBs immediately), in other
5668          * words, the only case we care is mmu_spte_update() where we
5669          * have checked Host-writable | MMU-writable instead of
5670          * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
5671          * anymore.
5672          */
5673         if (flush)
5674                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5675 }
5676
5677 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5678                                          struct kvm_rmap_head *rmap_head,
5679                                          struct kvm_memory_slot *slot)
5680 {
5681         u64 *sptep;
5682         struct rmap_iterator iter;
5683         int need_tlb_flush = 0;
5684         kvm_pfn_t pfn;
5685         struct kvm_mmu_page *sp;
5686
5687 restart:
5688         for_each_rmap_spte(rmap_head, &iter, sptep) {
5689                 sp = sptep_to_sp(sptep);
5690                 pfn = spte_to_pfn(*sptep);
5691
5692                 /*
5693                  * We cannot do huge page mapping for indirect shadow pages,
5694                  * which are found on the last rmap (level = 1) when not using
5695                  * tdp; such shadow pages are synced with the page table in
5696                  * the guest, and the guest page table is using 4K page size
5697                  * mapping if the indirect sp has level = 1.
5698                  */
5699                 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5700                     sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
5701                                                                pfn, PG_LEVEL_NUM)) {
5702                         pte_list_remove(rmap_head, sptep);
5703
5704                         if (kvm_available_flush_tlb_with_range())
5705                                 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5706                                         KVM_PAGES_PER_HPAGE(sp->role.level));
5707                         else
5708                                 need_tlb_flush = 1;
5709
5710                         goto restart;
5711                 }
5712         }
5713
5714         return need_tlb_flush;
5715 }
5716
5717 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5718                                    const struct kvm_memory_slot *memslot)
5719 {
5720         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5721         struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5722         bool flush = false;
5723
5724         if (kvm_memslots_have_rmaps(kvm)) {
5725                 write_lock(&kvm->mmu_lock);
5726                 flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
5727                 if (flush)
5728                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5729                 write_unlock(&kvm->mmu_lock);
5730         }
5731
5732         if (is_tdp_mmu_enabled(kvm)) {
5733                 read_lock(&kvm->mmu_lock);
5734                 flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
5735                 if (flush)
5736                         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
5737                 read_unlock(&kvm->mmu_lock);
5738         }
5739 }
5740
5741 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5742                                         const struct kvm_memory_slot *memslot)
5743 {
5744         /*
5745          * All current use cases for flushing the TLBs for a specific memslot
5746          * related to dirty logging, and many do the TLB flush out of mmu_lock.
5747          * The interaction between the various operations on memslot must be
5748          * serialized by slots_locks to ensure the TLB flush from one operation
5749          * is observed by any other operation on the same memslot.
5750          */
5751         lockdep_assert_held(&kvm->slots_lock);
5752         kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5753                                            memslot->npages);
5754 }
5755
5756 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5757                                    struct kvm_memory_slot *memslot)
5758 {
5759         bool flush = false;
5760
5761         if (kvm_memslots_have_rmaps(kvm)) {
5762                 write_lock(&kvm->mmu_lock);
5763                 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
5764                                          false);
5765                 write_unlock(&kvm->mmu_lock);
5766         }
5767
5768         if (is_tdp_mmu_enabled(kvm)) {
5769                 read_lock(&kvm->mmu_lock);
5770                 flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5771                 read_unlock(&kvm->mmu_lock);
5772         }
5773
5774         /*
5775          * It's also safe to flush TLBs out of mmu lock here as currently this
5776          * function is only used for dirty logging, in which case flushing TLB
5777          * out of mmu lock also guarantees no dirty pages will be lost in
5778          * dirty_bitmap.
5779          */
5780         if (flush)
5781                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5782 }
5783
5784 void kvm_mmu_zap_all(struct kvm *kvm)
5785 {
5786         struct kvm_mmu_page *sp, *node;
5787         LIST_HEAD(invalid_list);
5788         int ign;
5789
5790         write_lock(&kvm->mmu_lock);
5791 restart:
5792         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5793                 if (WARN_ON(sp->role.invalid))
5794                         continue;
5795                 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5796                         goto restart;
5797                 if (cond_resched_rwlock_write(&kvm->mmu_lock))
5798                         goto restart;
5799         }
5800
5801         kvm_mmu_commit_zap_page(kvm, &invalid_list);
5802
5803         if (is_tdp_mmu_enabled(kvm))
5804                 kvm_tdp_mmu_zap_all(kvm);
5805
5806         write_unlock(&kvm->mmu_lock);
5807 }
5808
5809 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5810 {
5811         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5812
5813         gen &= MMIO_SPTE_GEN_MASK;
5814
5815         /*
5816          * Generation numbers are incremented in multiples of the number of
5817          * address spaces in order to provide unique generations across all
5818          * address spaces.  Strip what is effectively the address space
5819          * modifier prior to checking for a wrap of the MMIO generation so
5820          * that a wrap in any address space is detected.
5821          */
5822         gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5823
5824         /*
5825          * The very rare case: if the MMIO generation number has wrapped,
5826          * zap all shadow pages.
5827          */
5828         if (unlikely(gen == 0)) {
5829                 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5830                 kvm_mmu_zap_all_fast(kvm);
5831         }
5832 }
5833
5834 static unsigned long
5835 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5836 {
5837         struct kvm *kvm;
5838         int nr_to_scan = sc->nr_to_scan;
5839         unsigned long freed = 0;
5840
5841         mutex_lock(&kvm_lock);
5842
5843         list_for_each_entry(kvm, &vm_list, vm_list) {
5844                 int idx;
5845                 LIST_HEAD(invalid_list);
5846
5847                 /*
5848                  * Never scan more than sc->nr_to_scan VM instances.
5849                  * Will not hit this condition practically since we do not try
5850                  * to shrink more than one VM and it is very unlikely to see
5851                  * !n_used_mmu_pages so many times.
5852                  */
5853                 if (!nr_to_scan--)
5854                         break;
5855                 /*
5856                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5857                  * here. We may skip a VM instance errorneosly, but we do not
5858                  * want to shrink a VM that only started to populate its MMU
5859                  * anyway.
5860                  */
5861                 if (!kvm->arch.n_used_mmu_pages &&
5862                     !kvm_has_zapped_obsolete_pages(kvm))
5863                         continue;
5864
5865                 idx = srcu_read_lock(&kvm->srcu);
5866                 write_lock(&kvm->mmu_lock);
5867
5868                 if (kvm_has_zapped_obsolete_pages(kvm)) {
5869                         kvm_mmu_commit_zap_page(kvm,
5870                               &kvm->arch.zapped_obsolete_pages);
5871                         goto unlock;
5872                 }
5873
5874                 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5875
5876 unlock:
5877                 write_unlock(&kvm->mmu_lock);
5878                 srcu_read_unlock(&kvm->srcu, idx);
5879
5880                 /*
5881                  * unfair on small ones
5882                  * per-vm shrinkers cry out
5883                  * sadness comes quickly
5884                  */
5885                 list_move_tail(&kvm->vm_list, &vm_list);
5886                 break;
5887         }
5888
5889         mutex_unlock(&kvm_lock);
5890         return freed;
5891 }
5892
5893 static unsigned long
5894 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5895 {
5896         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5897 }
5898
5899 static struct shrinker mmu_shrinker = {
5900         .count_objects = mmu_shrink_count,
5901         .scan_objects = mmu_shrink_scan,
5902         .seeks = DEFAULT_SEEKS * 10,
5903 };
5904
5905 static void mmu_destroy_caches(void)
5906 {
5907         kmem_cache_destroy(pte_list_desc_cache);
5908         kmem_cache_destroy(mmu_page_header_cache);
5909 }
5910
5911 static bool get_nx_auto_mode(void)
5912 {
5913         /* Return true when CPU has the bug, and mitigations are ON */
5914         return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5915 }
5916
5917 static void __set_nx_huge_pages(bool val)
5918 {
5919         nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5920 }
5921
5922 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5923 {
5924         bool old_val = nx_huge_pages;
5925         bool new_val;
5926
5927         /* In "auto" mode deploy workaround only if CPU has the bug. */
5928         if (sysfs_streq(val, "off"))
5929                 new_val = 0;
5930         else if (sysfs_streq(val, "force"))
5931                 new_val = 1;
5932         else if (sysfs_streq(val, "auto"))
5933                 new_val = get_nx_auto_mode();
5934         else if (strtobool(val, &new_val) < 0)
5935                 return -EINVAL;
5936
5937         __set_nx_huge_pages(new_val);
5938
5939         if (new_val != old_val) {
5940                 struct kvm *kvm;
5941
5942                 mutex_lock(&kvm_lock);
5943
5944                 list_for_each_entry(kvm, &vm_list, vm_list) {
5945                         mutex_lock(&kvm->slots_lock);
5946                         kvm_mmu_zap_all_fast(kvm);
5947                         mutex_unlock(&kvm->slots_lock);
5948
5949                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5950                 }
5951                 mutex_unlock(&kvm_lock);
5952         }
5953
5954         return 0;
5955 }
5956
5957 int kvm_mmu_module_init(void)
5958 {
5959         int ret = -ENOMEM;
5960
5961         if (nx_huge_pages == -1)
5962                 __set_nx_huge_pages(get_nx_auto_mode());
5963
5964         /*
5965          * MMU roles use union aliasing which is, generally speaking, an
5966          * undefined behavior. However, we supposedly know how compilers behave
5967          * and the current status quo is unlikely to change. Guardians below are
5968          * supposed to let us know if the assumption becomes false.
5969          */
5970         BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5971         BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5972         BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5973
5974         kvm_mmu_reset_all_pte_masks();
5975
5976         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5977                                             sizeof(struct pte_list_desc),
5978                                             0, SLAB_ACCOUNT, NULL);
5979         if (!pte_list_desc_cache)
5980                 goto out;
5981
5982         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5983                                                   sizeof(struct kvm_mmu_page),
5984                                                   0, SLAB_ACCOUNT, NULL);
5985         if (!mmu_page_header_cache)
5986                 goto out;
5987
5988         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5989                 goto out;
5990
5991         ret = register_shrinker(&mmu_shrinker);
5992         if (ret)
5993                 goto out;
5994
5995         return 0;
5996
5997 out:
5998         mmu_destroy_caches();
5999         return ret;
6000 }
6001
6002 /*
6003  * Calculate mmu pages needed for kvm.
6004  */
6005 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6006 {
6007         unsigned long nr_mmu_pages;
6008         unsigned long nr_pages = 0;
6009         struct kvm_memslots *slots;
6010         struct kvm_memory_slot *memslot;
6011         int i;
6012
6013         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6014                 slots = __kvm_memslots(kvm, i);
6015
6016                 kvm_for_each_memslot(memslot, slots)
6017                         nr_pages += memslot->npages;
6018         }
6019
6020         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6021         nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6022
6023         return nr_mmu_pages;
6024 }
6025
6026 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6027 {
6028         kvm_mmu_unload(vcpu);
6029         free_mmu_pages(&vcpu->arch.root_mmu);
6030         free_mmu_pages(&vcpu->arch.guest_mmu);
6031         mmu_free_memory_caches(vcpu);
6032 }
6033
6034 void kvm_mmu_module_exit(void)
6035 {
6036         mmu_destroy_caches();
6037         percpu_counter_destroy(&kvm_total_used_mmu_pages);
6038         unregister_shrinker(&mmu_shrinker);
6039         mmu_audit_disable();
6040 }
6041
6042 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6043 {
6044         unsigned int old_val;
6045         int err;
6046
6047         old_val = nx_huge_pages_recovery_ratio;
6048         err = param_set_uint(val, kp);
6049         if (err)
6050                 return err;
6051
6052         if (READ_ONCE(nx_huge_pages) &&
6053             !old_val && nx_huge_pages_recovery_ratio) {
6054                 struct kvm *kvm;
6055
6056                 mutex_lock(&kvm_lock);
6057
6058                 list_for_each_entry(kvm, &vm_list, vm_list)
6059                         wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6060
6061                 mutex_unlock(&kvm_lock);
6062         }
6063
6064         return err;
6065 }
6066
6067 static void kvm_recover_nx_lpages(struct kvm *kvm)
6068 {
6069         unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6070         int rcu_idx;
6071         struct kvm_mmu_page *sp;
6072         unsigned int ratio;
6073         LIST_HEAD(invalid_list);
6074         bool flush = false;
6075         ulong to_zap;
6076
6077         rcu_idx = srcu_read_lock(&kvm->srcu);
6078         write_lock(&kvm->mmu_lock);
6079
6080         ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6081         to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6082         for ( ; to_zap; --to_zap) {
6083                 if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
6084                         break;
6085
6086                 /*
6087                  * We use a separate list instead of just using active_mmu_pages
6088                  * because the number of lpage_disallowed pages is expected to
6089                  * be relatively small compared to the total.
6090                  */
6091                 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6092                                       struct kvm_mmu_page,
6093                                       lpage_disallowed_link);
6094                 WARN_ON_ONCE(!sp->lpage_disallowed);
6095                 if (is_tdp_mmu_page(sp)) {
6096                         flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6097                 } else {
6098                         kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6099                         WARN_ON_ONCE(sp->lpage_disallowed);
6100                 }
6101
6102                 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6103                         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6104                         cond_resched_rwlock_write(&kvm->mmu_lock);
6105                         flush = false;
6106                 }
6107         }
6108         kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6109
6110         write_unlock(&kvm->mmu_lock);
6111         srcu_read_unlock(&kvm->srcu, rcu_idx);
6112 }
6113
6114 static long get_nx_lpage_recovery_timeout(u64 start_time)
6115 {
6116         return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6117                 ? start_time + 60 * HZ - get_jiffies_64()
6118                 : MAX_SCHEDULE_TIMEOUT;
6119 }
6120
6121 static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6122 {
6123         u64 start_time;
6124         long remaining_time;
6125
6126         while (true) {
6127                 start_time = get_jiffies_64();
6128                 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6129
6130                 set_current_state(TASK_INTERRUPTIBLE);
6131                 while (!kthread_should_stop() && remaining_time > 0) {
6132                         schedule_timeout(remaining_time);
6133                         remaining_time = get_nx_lpage_recovery_timeout(start_time);
6134                         set_current_state(TASK_INTERRUPTIBLE);
6135                 }
6136
6137                 set_current_state(TASK_RUNNING);
6138
6139                 if (kthread_should_stop())
6140                         return 0;
6141
6142                 kvm_recover_nx_lpages(kvm);
6143         }
6144 }
6145
6146 int kvm_mmu_post_init_vm(struct kvm *kvm)
6147 {
6148         int err;
6149
6150         err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6151                                           "kvm-nx-lpage-recovery",
6152                                           &kvm->arch.nx_lpage_recovery_thread);
6153         if (!err)
6154                 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6155
6156         return err;
6157 }
6158
6159 void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6160 {
6161         if (kvm->arch.nx_lpage_recovery_thread)
6162                 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6163 }