pwm: Add support for sl28cpld PWM controller
authorMichael Walle <michael@walle.cc>
Mon, 14 Sep 2020 21:43:34 +0000 (23:43 +0200)
committerLee Jones <lee.jones@linaro.org>
Thu, 17 Sep 2020 14:59:34 +0000 (15:59 +0100)
Add support for the PWM controller of the sl28cpld board management
controller. This is part of a multi-function device driver.

The controller has one PWM channel and can just generate four distinct
frequencies.

Signed-off-by: Michael Walle <michael@walle.cc>
Acked-by: Thierry Reding <thierry.reding@gmail.com>
Reviewed-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
drivers/pwm/Kconfig
drivers/pwm/Makefile
drivers/pwm/pwm-sl28cpld.c [new file with mode: 0644]

index 7dbcf69..78ddc12 100644 (file)
@@ -428,6 +428,16 @@ config PWM_SIFIVE
          To compile this driver as a module, choose M here: the module
          will be called pwm-sifive.
 
+config PWM_SL28CPLD
+       tristate "Kontron sl28cpld PWM support"
+       depends on MFD_SL28CPLD || COMPILE_TEST
+       help
+         Generic PWM framework driver for board management controller
+         found on the Kontron sl28 CPLD.
+
+         To compile this driver as a module, choose M here: the module
+         will be called pwm-sl28cpld.
+
 config PWM_SPEAR
        tristate "STMicroelectronics SPEAr PWM support"
        depends on PLAT_SPEAR || COMPILE_TEST
index 2c2ba0a..cbdcd55 100644 (file)
@@ -40,6 +40,7 @@ obj-$(CONFIG_PWM_RENESAS_TPU) += pwm-renesas-tpu.o
 obj-$(CONFIG_PWM_ROCKCHIP)     += pwm-rockchip.o
 obj-$(CONFIG_PWM_SAMSUNG)      += pwm-samsung.o
 obj-$(CONFIG_PWM_SIFIVE)       += pwm-sifive.o
+obj-$(CONFIG_PWM_SL28CPLD)     += pwm-sl28cpld.o
 obj-$(CONFIG_PWM_SPEAR)                += pwm-spear.o
 obj-$(CONFIG_PWM_SPRD)         += pwm-sprd.o
 obj-$(CONFIG_PWM_STI)          += pwm-sti.o
diff --git a/drivers/pwm/pwm-sl28cpld.c b/drivers/pwm/pwm-sl28cpld.c
new file mode 100644 (file)
index 0000000..5046b6b
--- /dev/null
@@ -0,0 +1,270 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * sl28cpld PWM driver
+ *
+ * Copyright (c) 2020 Michael Walle <michael@walle.cc>
+ *
+ * There is no public datasheet available for this PWM core. But it is easy
+ * enough to be briefly explained. It consists of one 8-bit counter. The PWM
+ * supports four distinct frequencies by selecting when to reset the counter.
+ * With the prescaler setting you can select which bit of the counter is used
+ * to reset it. This implies that the higher the frequency the less remaining
+ * bits are available for the actual counter.
+ *
+ * Let cnt[7:0] be the counter, clocked at 32kHz:
+ * +-----------+--------+--------------+-----------+---------------+
+ * | prescaler |  reset | counter bits | frequency | period length |
+ * +-----------+--------+--------------+-----------+---------------+
+ * |         0 | cnt[7] |     cnt[6:0] |    250 Hz |    4000000 ns |
+ * |         1 | cnt[6] |     cnt[5:0] |    500 Hz |    2000000 ns |
+ * |         2 | cnt[5] |     cnt[4:0] |     1 kHz |    1000000 ns |
+ * |         3 | cnt[4] |     cnt[3:0] |     2 kHz |     500000 ns |
+ * +-----------+--------+--------------+-----------+---------------+
+ *
+ * Limitations:
+ * - The hardware cannot generate a 100% duty cycle if the prescaler is 0.
+ * - The hardware cannot atomically set the prescaler and the counter value,
+ *   which might lead to glitches and inconsistent states if a write fails.
+ * - The counter is not reset if you switch the prescaler which leads
+ *   to glitches, too.
+ * - The duty cycle will switch immediately and not after a complete cycle.
+ * - Depending on the actual implementation, disabling the PWM might have
+ *   side effects. For example, if the output pin is shared with a GPIO pin
+ *   it will automatically switch back to GPIO mode.
+ */
+
+#include <linux/bitfield.h>
+#include <linux/kernel.h>
+#include <linux/mod_devicetable.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/pwm.h>
+#include <linux/regmap.h>
+
+/*
+ * PWM timer block registers.
+ */
+#define SL28CPLD_PWM_CTRL                      0x00
+#define   SL28CPLD_PWM_CTRL_ENABLE             BIT(7)
+#define   SL28CPLD_PWM_CTRL_PRESCALER_MASK     GENMASK(1, 0)
+#define SL28CPLD_PWM_CYCLE                     0x01
+#define   SL28CPLD_PWM_CYCLE_MAX               GENMASK(6, 0)
+
+#define SL28CPLD_PWM_CLK                       32000 /* 32 kHz */
+#define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler)))
+#define SL28CPLD_PWM_PERIOD(prescaler) \
+       (NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler))
+
+/*
+ * We calculate the duty cycle like this:
+ *   duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
+ *
+ * With
+ *   max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
+ *   max_duty_cycle = 1 << (7 - prescaler)
+ * this then simplifies to:
+ *   duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
+ *                 = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
+ *
+ * NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing
+ * precision by doing the divison first.
+ */
+#define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \
+       (NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg))
+#define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \
+       (DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK))
+
+#define sl28cpld_pwm_read(priv, reg, val) \
+       regmap_read((priv)->regmap, (priv)->offset + (reg), (val))
+#define sl28cpld_pwm_write(priv, reg, val) \
+       regmap_write((priv)->regmap, (priv)->offset + (reg), (val))
+
+struct sl28cpld_pwm {
+       struct pwm_chip pwm_chip;
+       struct regmap *regmap;
+       u32 offset;
+};
+
+static void sl28cpld_pwm_get_state(struct pwm_chip *chip,
+                                  struct pwm_device *pwm,
+                                  struct pwm_state *state)
+{
+       struct sl28cpld_pwm *priv = dev_get_drvdata(chip->dev);
+       unsigned int reg;
+       int prescaler;
+
+       sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, &reg);
+
+       state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE;
+
+       prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg);
+       state->period = SL28CPLD_PWM_PERIOD(prescaler);
+
+       sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, &reg);
+       state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg);
+       state->polarity = PWM_POLARITY_NORMAL;
+
+       /*
+        * Sanitize values for the PWM core. Depending on the prescaler it
+        * might happen that we calculate a duty_cycle greater than the actual
+        * period. This might happen if someone (e.g. the bootloader) sets an
+        * invalid combination of values. The behavior of the hardware is
+        * undefined in this case. But we need to report sane values back to
+        * the PWM core.
+        */
+       state->duty_cycle = min(state->duty_cycle, state->period);
+}
+
+static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
+                             const struct pwm_state *state)
+{
+       struct sl28cpld_pwm *priv = dev_get_drvdata(chip->dev);
+       unsigned int cycle, prescaler;
+       bool write_duty_cycle_first;
+       int ret;
+       u8 ctrl;
+
+       /* Polarity inversion is not supported */
+       if (state->polarity != PWM_POLARITY_NORMAL)
+               return -EINVAL;
+
+       /*
+        * Calculate the prescaler. Pick the biggest period that isn't
+        * bigger than the requested period.
+        */
+       prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period);
+       prescaler = order_base_2(prescaler);
+
+       if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK))
+               return -ERANGE;
+
+       ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler);
+       if (state->enabled)
+               ctrl |= SL28CPLD_PWM_CTRL_ENABLE;
+
+       cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle);
+       cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler));
+
+       /*
+        * Work around the hardware limitation. See also above. Trap 100% duty
+        * cycle if the prescaler is 0. Set prescaler to 1 instead. We don't
+        * care about the frequency because its "all-one" in either case.
+        *
+        * We don't need to check the actual prescaler setting, because only
+        * if the prescaler is 0 we can have this particular value.
+        */
+       if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) {
+               ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK;
+               ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1);
+               cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1);
+       }
+
+       /*
+        * To avoid glitches when we switch the prescaler, we have to make sure
+        * we have a valid duty cycle for the new mode.
+        *
+        * Take the current prescaler (or the current period length) into
+        * account to decide whether we have to write the duty cycle or the new
+        * prescaler first. If the period length is decreasing we have to
+        * write the duty cycle first.
+        */
+       write_duty_cycle_first = pwm->state.period > state->period;
+
+       if (write_duty_cycle_first) {
+               ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
+               if (ret)
+                       return ret;
+       }
+
+       ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl);
+       if (ret)
+               return ret;
+
+       if (!write_duty_cycle_first) {
+               ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
+               if (ret)
+                       return ret;
+       }
+
+       return 0;
+}
+
+static const struct pwm_ops sl28cpld_pwm_ops = {
+       .apply = sl28cpld_pwm_apply,
+       .get_state = sl28cpld_pwm_get_state,
+       .owner = THIS_MODULE,
+};
+
+static int sl28cpld_pwm_probe(struct platform_device *pdev)
+{
+       struct sl28cpld_pwm *priv;
+       struct pwm_chip *chip;
+       int ret;
+
+       if (!pdev->dev.parent) {
+               dev_err(&pdev->dev, "no parent device\n");
+               return -ENODEV;
+       }
+
+       priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
+       if (!priv)
+               return -ENOMEM;
+
+       priv->regmap = dev_get_regmap(pdev->dev.parent, NULL);
+       if (!priv->regmap) {
+               dev_err(&pdev->dev, "could not get parent regmap\n");
+               return -ENODEV;
+       }
+
+       ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset);
+       if (ret) {
+               dev_err(&pdev->dev, "no 'reg' property found (%pe)\n",
+                       ERR_PTR(ret));
+               return -EINVAL;
+       }
+
+       /* Initialize the pwm_chip structure */
+       chip = &priv->pwm_chip;
+       chip->dev = &pdev->dev;
+       chip->ops = &sl28cpld_pwm_ops;
+       chip->base = -1;
+       chip->npwm = 1;
+
+       ret = pwmchip_add(&priv->pwm_chip);
+       if (ret) {
+               dev_err(&pdev->dev, "failed to add PWM chip (%pe)",
+                       ERR_PTR(ret));
+               return ret;
+       }
+
+       platform_set_drvdata(pdev, priv);
+
+       return 0;
+}
+
+static int sl28cpld_pwm_remove(struct platform_device *pdev)
+{
+       struct sl28cpld_pwm *priv = platform_get_drvdata(pdev);
+
+       return pwmchip_remove(&priv->pwm_chip);
+}
+
+static const struct of_device_id sl28cpld_pwm_of_match[] = {
+       { .compatible = "kontron,sl28cpld-pwm" },
+       {}
+};
+MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match);
+
+static struct platform_driver sl28cpld_pwm_driver = {
+       .probe = sl28cpld_pwm_probe,
+       .remove = sl28cpld_pwm_remove,
+       .driver = {
+               .name = "sl28cpld-pwm",
+               .of_match_table = sl28cpld_pwm_of_match,
+       },
+};
+module_platform_driver(sl28cpld_pwm_driver);
+
+MODULE_DESCRIPTION("sl28cpld PWM Driver");
+MODULE_AUTHOR("Michael Walle <michael@walle.cc>");
+MODULE_LICENSE("GPL");