Merge tag 'dmaengine-4.18-rc1' of git://git.infradead.org/users/vkoul/slave-dma
authorLinus Torvalds <torvalds@linux-foundation.org>
Fri, 8 Jun 2018 18:02:21 +0000 (11:02 -0700)
committerLinus Torvalds <torvalds@linux-foundation.org>
Fri, 8 Jun 2018 18:02:21 +0000 (11:02 -0700)
Pull dmaengine updates from Vinod Koul:

 - updates to sprd, bam_dma, stm drivers

 - remove VLAs in dmatest

 - move TI drivers to their own subdir

 - switch to SPDX tags for ima/mxs dma drivers

 - simplify getting .drvdata on bunch of drivers by Wolfram Sang

* tag 'dmaengine-4.18-rc1' of git://git.infradead.org/users/vkoul/slave-dma: (32 commits)
  dmaengine: sprd: Add Spreadtrum DMA configuration
  dmaengine: sprd: Optimize the sprd_dma_prep_dma_memcpy()
  dmaengine: imx-dma: Switch to SPDX identifier
  dmaengine: mxs-dma: Switch to SPDX identifier
  dmaengine: imx-sdma: Switch to SPDX identifier
  dmaengine: usb-dmac: Document R8A7799{0,5} bindings
  dmaengine: qcom: bam_dma: fix some doc warnings.
  dmaengine: qcom: bam_dma: fix invalid assignment warning
  dmaengine: sprd: fix an NULL vs IS_ERR() bug
  dmaengine: sprd: Use devm_ioremap_resource() to map memory
  dmaengine: sprd: Fix potential NULL dereference in sprd_dma_probe()
  dmaengine: pl330: flush before wait, and add dev burst support.
  dmaengine: axi-dmac: Request IRQ with IRQF_SHARED
  dmaengine: stm32-mdma: fix spelling mistake: "avalaible" -> "available"
  dmaengine: rcar-dmac: Document R-Car D3 bindings
  dmaengine: sprd: Move DMA request mode and interrupt type into head file
  dmaengine: sprd: Define the DMA data width type
  dmaengine: sprd: Define the DMA transfer step type
  dmaengine: ti: New directory for Texas Instruments DMA drivers
  dmaengine: shdmac: Change platform check to CONFIG_ARCH_RENESAS
  ...

1  2 
Documentation/devicetree/bindings/dma/renesas,rcar-dmac.txt
MAINTAINERS
drivers/dma/qcom/bam_dma.c
drivers/dma/sprd-dma.c
drivers/dma/ti/edma.c
drivers/dma/ti/omap-dma.c

@@@ -26,9 -26,9 +26,10 @@@ Required Properties
                - "renesas,dmac-r8a7794" (R-Car E2)
                - "renesas,dmac-r8a7795" (R-Car H3)
                - "renesas,dmac-r8a7796" (R-Car M3-W)
 +              - "renesas,dmac-r8a77965" (R-Car M3-N)
                - "renesas,dmac-r8a77970" (R-Car V3M)
                - "renesas,dmac-r8a77980" (R-Car V3H)
+               - "renesas,dmac-r8a77995" (R-Car D3)
  
  - reg: base address and length of the registers block for the DMAC
  
diff --cc MAINTAINERS
Simple merge
Simple merge
Simple merge
index 0000000,93a5cbf..ceabdea
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,2568 +1,2565 @@@
 -      edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
 -                      GFP_ATOMIC);
+ /*
+  * TI EDMA DMA engine driver
+  *
+  * Copyright 2012 Texas Instruments
+  *
+  * This program is free software; you can redistribute it and/or
+  * modify it under the terms of the GNU General Public License as
+  * published by the Free Software Foundation version 2.
+  *
+  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
+  * kind, whether express or implied; without even the implied warranty
+  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  * GNU General Public License for more details.
+  */
+ #include <linux/dmaengine.h>
+ #include <linux/dma-mapping.h>
+ #include <linux/edma.h>
+ #include <linux/err.h>
+ #include <linux/init.h>
+ #include <linux/interrupt.h>
+ #include <linux/list.h>
+ #include <linux/module.h>
+ #include <linux/platform_device.h>
+ #include <linux/slab.h>
+ #include <linux/spinlock.h>
+ #include <linux/of.h>
+ #include <linux/of_dma.h>
+ #include <linux/of_irq.h>
+ #include <linux/of_address.h>
+ #include <linux/of_device.h>
+ #include <linux/pm_runtime.h>
+ #include <linux/platform_data/edma.h>
+ #include "../dmaengine.h"
+ #include "../virt-dma.h"
+ /* Offsets matching "struct edmacc_param" */
+ #define PARM_OPT              0x00
+ #define PARM_SRC              0x04
+ #define PARM_A_B_CNT          0x08
+ #define PARM_DST              0x0c
+ #define PARM_SRC_DST_BIDX     0x10
+ #define PARM_LINK_BCNTRLD     0x14
+ #define PARM_SRC_DST_CIDX     0x18
+ #define PARM_CCNT             0x1c
+ #define PARM_SIZE             0x20
+ /* Offsets for EDMA CC global channel registers and their shadows */
+ #define SH_ER                 0x00    /* 64 bits */
+ #define SH_ECR                        0x08    /* 64 bits */
+ #define SH_ESR                        0x10    /* 64 bits */
+ #define SH_CER                        0x18    /* 64 bits */
+ #define SH_EER                        0x20    /* 64 bits */
+ #define SH_EECR                       0x28    /* 64 bits */
+ #define SH_EESR                       0x30    /* 64 bits */
+ #define SH_SER                        0x38    /* 64 bits */
+ #define SH_SECR                       0x40    /* 64 bits */
+ #define SH_IER                        0x50    /* 64 bits */
+ #define SH_IECR                       0x58    /* 64 bits */
+ #define SH_IESR                       0x60    /* 64 bits */
+ #define SH_IPR                        0x68    /* 64 bits */
+ #define SH_ICR                        0x70    /* 64 bits */
+ #define SH_IEVAL              0x78
+ #define SH_QER                        0x80
+ #define SH_QEER                       0x84
+ #define SH_QEECR              0x88
+ #define SH_QEESR              0x8c
+ #define SH_QSER                       0x90
+ #define SH_QSECR              0x94
+ #define SH_SIZE                       0x200
+ /* Offsets for EDMA CC global registers */
+ #define EDMA_REV              0x0000
+ #define EDMA_CCCFG            0x0004
+ #define EDMA_QCHMAP           0x0200  /* 8 registers */
+ #define EDMA_DMAQNUM          0x0240  /* 8 registers (4 on OMAP-L1xx) */
+ #define EDMA_QDMAQNUM         0x0260
+ #define EDMA_QUETCMAP         0x0280
+ #define EDMA_QUEPRI           0x0284
+ #define EDMA_EMR              0x0300  /* 64 bits */
+ #define EDMA_EMCR             0x0308  /* 64 bits */
+ #define EDMA_QEMR             0x0310
+ #define EDMA_QEMCR            0x0314
+ #define EDMA_CCERR            0x0318
+ #define EDMA_CCERRCLR         0x031c
+ #define EDMA_EEVAL            0x0320
+ #define EDMA_DRAE             0x0340  /* 4 x 64 bits*/
+ #define EDMA_QRAE             0x0380  /* 4 registers */
+ #define EDMA_QUEEVTENTRY      0x0400  /* 2 x 16 registers */
+ #define EDMA_QSTAT            0x0600  /* 2 registers */
+ #define EDMA_QWMTHRA          0x0620
+ #define EDMA_QWMTHRB          0x0624
+ #define EDMA_CCSTAT           0x0640
+ #define EDMA_M                        0x1000  /* global channel registers */
+ #define EDMA_ECR              0x1008
+ #define EDMA_ECRH             0x100C
+ #define EDMA_SHADOW0          0x2000  /* 4 shadow regions */
+ #define EDMA_PARM             0x4000  /* PaRAM entries */
+ #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
+ #define EDMA_DCHMAP           0x0100  /* 64 registers */
+ /* CCCFG register */
+ #define GET_NUM_DMACH(x)      (x & 0x7) /* bits 0-2 */
+ #define GET_NUM_QDMACH(x)     ((x & 0x70) >> 4) /* bits 4-6 */
+ #define GET_NUM_PAENTRY(x)    ((x & 0x7000) >> 12) /* bits 12-14 */
+ #define GET_NUM_EVQUE(x)      ((x & 0x70000) >> 16) /* bits 16-18 */
+ #define GET_NUM_REGN(x)               ((x & 0x300000) >> 20) /* bits 20-21 */
+ #define CHMAP_EXIST           BIT(24)
+ /* CCSTAT register */
+ #define EDMA_CCSTAT_ACTV      BIT(4)
+ /*
+  * Max of 20 segments per channel to conserve PaRAM slots
+  * Also note that MAX_NR_SG should be atleast the no.of periods
+  * that are required for ASoC, otherwise DMA prep calls will
+  * fail. Today davinci-pcm is the only user of this driver and
+  * requires atleast 17 slots, so we setup the default to 20.
+  */
+ #define MAX_NR_SG             20
+ #define EDMA_MAX_SLOTS                MAX_NR_SG
+ #define EDMA_DESCRIPTORS      16
+ #define EDMA_CHANNEL_ANY              -1      /* for edma_alloc_channel() */
+ #define EDMA_SLOT_ANY                 -1      /* for edma_alloc_slot() */
+ #define EDMA_CONT_PARAMS_ANY           1001
+ #define EDMA_CONT_PARAMS_FIXED_EXACT   1002
+ #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
+ /* PaRAM slots are laid out like this */
+ struct edmacc_param {
+       u32 opt;
+       u32 src;
+       u32 a_b_cnt;
+       u32 dst;
+       u32 src_dst_bidx;
+       u32 link_bcntrld;
+       u32 src_dst_cidx;
+       u32 ccnt;
+ } __packed;
+ /* fields in edmacc_param.opt */
+ #define SAM           BIT(0)
+ #define DAM           BIT(1)
+ #define SYNCDIM               BIT(2)
+ #define STATIC                BIT(3)
+ #define EDMA_FWID     (0x07 << 8)
+ #define TCCMODE               BIT(11)
+ #define EDMA_TCC(t)   ((t) << 12)
+ #define TCINTEN               BIT(20)
+ #define ITCINTEN      BIT(21)
+ #define TCCHEN                BIT(22)
+ #define ITCCHEN               BIT(23)
+ struct edma_pset {
+       u32                             len;
+       dma_addr_t                      addr;
+       struct edmacc_param             param;
+ };
+ struct edma_desc {
+       struct virt_dma_desc            vdesc;
+       struct list_head                node;
+       enum dma_transfer_direction     direction;
+       int                             cyclic;
+       int                             absync;
+       int                             pset_nr;
+       struct edma_chan                *echan;
+       int                             processed;
+       /*
+        * The following 4 elements are used for residue accounting.
+        *
+        * - processed_stat: the number of SG elements we have traversed
+        * so far to cover accounting. This is updated directly to processed
+        * during edma_callback and is always <= processed, because processed
+        * refers to the number of pending transfer (programmed to EDMA
+        * controller), where as processed_stat tracks number of transfers
+        * accounted for so far.
+        *
+        * - residue: The amount of bytes we have left to transfer for this desc
+        *
+        * - residue_stat: The residue in bytes of data we have covered
+        * so far for accounting. This is updated directly to residue
+        * during callbacks to keep it current.
+        *
+        * - sg_len: Tracks the length of the current intermediate transfer,
+        * this is required to update the residue during intermediate transfer
+        * completion callback.
+        */
+       int                             processed_stat;
+       u32                             sg_len;
+       u32                             residue;
+       u32                             residue_stat;
+       struct edma_pset                pset[0];
+ };
+ struct edma_cc;
+ struct edma_tc {
+       struct device_node              *node;
+       u16                             id;
+ };
+ struct edma_chan {
+       struct virt_dma_chan            vchan;
+       struct list_head                node;
+       struct edma_desc                *edesc;
+       struct edma_cc                  *ecc;
+       struct edma_tc                  *tc;
+       int                             ch_num;
+       bool                            alloced;
+       bool                            hw_triggered;
+       int                             slot[EDMA_MAX_SLOTS];
+       int                             missed;
+       struct dma_slave_config         cfg;
+ };
+ struct edma_cc {
+       struct device                   *dev;
+       struct edma_soc_info            *info;
+       void __iomem                    *base;
+       int                             id;
+       bool                            legacy_mode;
+       /* eDMA3 resource information */
+       unsigned                        num_channels;
+       unsigned                        num_qchannels;
+       unsigned                        num_region;
+       unsigned                        num_slots;
+       unsigned                        num_tc;
+       bool                            chmap_exist;
+       enum dma_event_q                default_queue;
+       unsigned int                    ccint;
+       unsigned int                    ccerrint;
+       /*
+        * The slot_inuse bit for each PaRAM slot is clear unless the slot is
+        * in use by Linux or if it is allocated to be used by DSP.
+        */
+       unsigned long *slot_inuse;
+       struct dma_device               dma_slave;
+       struct dma_device               *dma_memcpy;
+       struct edma_chan                *slave_chans;
+       struct edma_tc                  *tc_list;
+       int                             dummy_slot;
+ };
+ /* dummy param set used to (re)initialize parameter RAM slots */
+ static const struct edmacc_param dummy_paramset = {
+       .link_bcntrld = 0xffff,
+       .ccnt = 1,
+ };
+ #define EDMA_BINDING_LEGACY   0
+ #define EDMA_BINDING_TPCC     1
+ static const u32 edma_binding_type[] = {
+       [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
+       [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
+ };
+ static const struct of_device_id edma_of_ids[] = {
+       {
+               .compatible = "ti,edma3",
+               .data = &edma_binding_type[EDMA_BINDING_LEGACY],
+       },
+       {
+               .compatible = "ti,edma3-tpcc",
+               .data = &edma_binding_type[EDMA_BINDING_TPCC],
+       },
+       {}
+ };
+ MODULE_DEVICE_TABLE(of, edma_of_ids);
+ static const struct of_device_id edma_tptc_of_ids[] = {
+       { .compatible = "ti,edma3-tptc", },
+       {}
+ };
+ MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
+ static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
+ {
+       return (unsigned int)__raw_readl(ecc->base + offset);
+ }
+ static inline void edma_write(struct edma_cc *ecc, int offset, int val)
+ {
+       __raw_writel(val, ecc->base + offset);
+ }
+ static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
+                              unsigned or)
+ {
+       unsigned val = edma_read(ecc, offset);
+       val &= and;
+       val |= or;
+       edma_write(ecc, offset, val);
+ }
+ static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
+ {
+       unsigned val = edma_read(ecc, offset);
+       val &= and;
+       edma_write(ecc, offset, val);
+ }
+ static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
+ {
+       unsigned val = edma_read(ecc, offset);
+       val |= or;
+       edma_write(ecc, offset, val);
+ }
+ static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
+                                          int i)
+ {
+       return edma_read(ecc, offset + (i << 2));
+ }
+ static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
+                                   unsigned val)
+ {
+       edma_write(ecc, offset + (i << 2), val);
+ }
+ static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
+                                    unsigned and, unsigned or)
+ {
+       edma_modify(ecc, offset + (i << 2), and, or);
+ }
+ static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
+                                unsigned or)
+ {
+       edma_or(ecc, offset + (i << 2), or);
+ }
+ static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
+                                 unsigned or)
+ {
+       edma_or(ecc, offset + ((i * 2 + j) << 2), or);
+ }
+ static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
+                                    int j, unsigned val)
+ {
+       edma_write(ecc, offset + ((i * 2 + j) << 2), val);
+ }
+ static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
+ {
+       return edma_read(ecc, EDMA_SHADOW0 + offset);
+ }
+ static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
+                                                  int offset, int i)
+ {
+       return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
+ }
+ static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
+                                     unsigned val)
+ {
+       edma_write(ecc, EDMA_SHADOW0 + offset, val);
+ }
+ static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
+                                           int i, unsigned val)
+ {
+       edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
+ }
+ static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
+                                          int param_no)
+ {
+       return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
+ }
+ static inline void edma_param_write(struct edma_cc *ecc, int offset,
+                                   int param_no, unsigned val)
+ {
+       edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
+ }
+ static inline void edma_param_modify(struct edma_cc *ecc, int offset,
+                                    int param_no, unsigned and, unsigned or)
+ {
+       edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
+ }
+ static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
+                                 unsigned and)
+ {
+       edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
+ }
+ static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
+                                unsigned or)
+ {
+       edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
+ }
+ static inline void edma_set_bits(int offset, int len, unsigned long *p)
+ {
+       for (; len > 0; len--)
+               set_bit(offset + (len - 1), p);
+ }
+ static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
+                                         int priority)
+ {
+       int bit = queue_no * 4;
+       edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
+ }
+ static void edma_set_chmap(struct edma_chan *echan, int slot)
+ {
+       struct edma_cc *ecc = echan->ecc;
+       int channel = EDMA_CHAN_SLOT(echan->ch_num);
+       if (ecc->chmap_exist) {
+               slot = EDMA_CHAN_SLOT(slot);
+               edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
+       }
+ }
+ static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
+ {
+       struct edma_cc *ecc = echan->ecc;
+       int channel = EDMA_CHAN_SLOT(echan->ch_num);
+       if (enable) {
+               edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
+                                        BIT(channel & 0x1f));
+               edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
+                                        BIT(channel & 0x1f));
+       } else {
+               edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
+                                        BIT(channel & 0x1f));
+       }
+ }
+ /*
+  * paRAM slot management functions
+  */
+ static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
+                           const struct edmacc_param *param)
+ {
+       slot = EDMA_CHAN_SLOT(slot);
+       if (slot >= ecc->num_slots)
+               return;
+       memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
+ }
+ static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
+                          struct edmacc_param *param)
+ {
+       slot = EDMA_CHAN_SLOT(slot);
+       if (slot >= ecc->num_slots)
+               return -EINVAL;
+       memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
+       return 0;
+ }
+ /**
+  * edma_alloc_slot - allocate DMA parameter RAM
+  * @ecc: pointer to edma_cc struct
+  * @slot: specific slot to allocate; negative for "any unused slot"
+  *
+  * This allocates a parameter RAM slot, initializing it to hold a
+  * dummy transfer.  Slots allocated using this routine have not been
+  * mapped to a hardware DMA channel, and will normally be used by
+  * linking to them from a slot associated with a DMA channel.
+  *
+  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
+  * slots may be allocated on behalf of DSP firmware.
+  *
+  * Returns the number of the slot, else negative errno.
+  */
+ static int edma_alloc_slot(struct edma_cc *ecc, int slot)
+ {
+       if (slot >= 0) {
+               slot = EDMA_CHAN_SLOT(slot);
+               /* Requesting entry paRAM slot for a HW triggered channel. */
+               if (ecc->chmap_exist && slot < ecc->num_channels)
+                       slot = EDMA_SLOT_ANY;
+       }
+       if (slot < 0) {
+               if (ecc->chmap_exist)
+                       slot = 0;
+               else
+                       slot = ecc->num_channels;
+               for (;;) {
+                       slot = find_next_zero_bit(ecc->slot_inuse,
+                                                 ecc->num_slots,
+                                                 slot);
+                       if (slot == ecc->num_slots)
+                               return -ENOMEM;
+                       if (!test_and_set_bit(slot, ecc->slot_inuse))
+                               break;
+               }
+       } else if (slot >= ecc->num_slots) {
+               return -EINVAL;
+       } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
+               return -EBUSY;
+       }
+       edma_write_slot(ecc, slot, &dummy_paramset);
+       return EDMA_CTLR_CHAN(ecc->id, slot);
+ }
+ static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
+ {
+       slot = EDMA_CHAN_SLOT(slot);
+       if (slot >= ecc->num_slots)
+               return;
+       edma_write_slot(ecc, slot, &dummy_paramset);
+       clear_bit(slot, ecc->slot_inuse);
+ }
+ /**
+  * edma_link - link one parameter RAM slot to another
+  * @ecc: pointer to edma_cc struct
+  * @from: parameter RAM slot originating the link
+  * @to: parameter RAM slot which is the link target
+  *
+  * The originating slot should not be part of any active DMA transfer.
+  */
+ static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
+ {
+       if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
+               dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
+       from = EDMA_CHAN_SLOT(from);
+       to = EDMA_CHAN_SLOT(to);
+       if (from >= ecc->num_slots || to >= ecc->num_slots)
+               return;
+       edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
+                         PARM_OFFSET(to));
+ }
+ /**
+  * edma_get_position - returns the current transfer point
+  * @ecc: pointer to edma_cc struct
+  * @slot: parameter RAM slot being examined
+  * @dst:  true selects the dest position, false the source
+  *
+  * Returns the position of the current active slot
+  */
+ static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
+                                   bool dst)
+ {
+       u32 offs;
+       slot = EDMA_CHAN_SLOT(slot);
+       offs = PARM_OFFSET(slot);
+       offs += dst ? PARM_DST : PARM_SRC;
+       return edma_read(ecc, offs);
+ }
+ /*
+  * Channels with event associations will be triggered by their hardware
+  * events, and channels without such associations will be triggered by
+  * software.  (At this writing there is no interface for using software
+  * triggers except with channels that don't support hardware triggers.)
+  */
+ static void edma_start(struct edma_chan *echan)
+ {
+       struct edma_cc *ecc = echan->ecc;
+       int channel = EDMA_CHAN_SLOT(echan->ch_num);
+       int j = (channel >> 5);
+       unsigned int mask = BIT(channel & 0x1f);
+       if (!echan->hw_triggered) {
+               /* EDMA channels without event association */
+               dev_dbg(ecc->dev, "ESR%d %08x\n", j,
+                       edma_shadow0_read_array(ecc, SH_ESR, j));
+               edma_shadow0_write_array(ecc, SH_ESR, j, mask);
+       } else {
+               /* EDMA channel with event association */
+               dev_dbg(ecc->dev, "ER%d %08x\n", j,
+                       edma_shadow0_read_array(ecc, SH_ER, j));
+               /* Clear any pending event or error */
+               edma_write_array(ecc, EDMA_ECR, j, mask);
+               edma_write_array(ecc, EDMA_EMCR, j, mask);
+               /* Clear any SER */
+               edma_shadow0_write_array(ecc, SH_SECR, j, mask);
+               edma_shadow0_write_array(ecc, SH_EESR, j, mask);
+               dev_dbg(ecc->dev, "EER%d %08x\n", j,
+                       edma_shadow0_read_array(ecc, SH_EER, j));
+       }
+ }
+ static void edma_stop(struct edma_chan *echan)
+ {
+       struct edma_cc *ecc = echan->ecc;
+       int channel = EDMA_CHAN_SLOT(echan->ch_num);
+       int j = (channel >> 5);
+       unsigned int mask = BIT(channel & 0x1f);
+       edma_shadow0_write_array(ecc, SH_EECR, j, mask);
+       edma_shadow0_write_array(ecc, SH_ECR, j, mask);
+       edma_shadow0_write_array(ecc, SH_SECR, j, mask);
+       edma_write_array(ecc, EDMA_EMCR, j, mask);
+       /* clear possibly pending completion interrupt */
+       edma_shadow0_write_array(ecc, SH_ICR, j, mask);
+       dev_dbg(ecc->dev, "EER%d %08x\n", j,
+               edma_shadow0_read_array(ecc, SH_EER, j));
+       /* REVISIT:  consider guarding against inappropriate event
+        * chaining by overwriting with dummy_paramset.
+        */
+ }
+ /*
+  * Temporarily disable EDMA hardware events on the specified channel,
+  * preventing them from triggering new transfers
+  */
+ static void edma_pause(struct edma_chan *echan)
+ {
+       int channel = EDMA_CHAN_SLOT(echan->ch_num);
+       unsigned int mask = BIT(channel & 0x1f);
+       edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
+ }
+ /* Re-enable EDMA hardware events on the specified channel.  */
+ static void edma_resume(struct edma_chan *echan)
+ {
+       int channel = EDMA_CHAN_SLOT(echan->ch_num);
+       unsigned int mask = BIT(channel & 0x1f);
+       edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
+ }
+ static void edma_trigger_channel(struct edma_chan *echan)
+ {
+       struct edma_cc *ecc = echan->ecc;
+       int channel = EDMA_CHAN_SLOT(echan->ch_num);
+       unsigned int mask = BIT(channel & 0x1f);
+       edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
+       dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
+               edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
+ }
+ static void edma_clean_channel(struct edma_chan *echan)
+ {
+       struct edma_cc *ecc = echan->ecc;
+       int channel = EDMA_CHAN_SLOT(echan->ch_num);
+       int j = (channel >> 5);
+       unsigned int mask = BIT(channel & 0x1f);
+       dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
+       edma_shadow0_write_array(ecc, SH_ECR, j, mask);
+       /* Clear the corresponding EMR bits */
+       edma_write_array(ecc, EDMA_EMCR, j, mask);
+       /* Clear any SER */
+       edma_shadow0_write_array(ecc, SH_SECR, j, mask);
+       edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
+ }
+ /* Move channel to a specific event queue */
+ static void edma_assign_channel_eventq(struct edma_chan *echan,
+                                      enum dma_event_q eventq_no)
+ {
+       struct edma_cc *ecc = echan->ecc;
+       int channel = EDMA_CHAN_SLOT(echan->ch_num);
+       int bit = (channel & 0x7) * 4;
+       /* default to low priority queue */
+       if (eventq_no == EVENTQ_DEFAULT)
+               eventq_no = ecc->default_queue;
+       if (eventq_no >= ecc->num_tc)
+               return;
+       eventq_no &= 7;
+       edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
+                         eventq_no << bit);
+ }
+ static int edma_alloc_channel(struct edma_chan *echan,
+                             enum dma_event_q eventq_no)
+ {
+       struct edma_cc *ecc = echan->ecc;
+       int channel = EDMA_CHAN_SLOT(echan->ch_num);
+       /* ensure access through shadow region 0 */
+       edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
+       /* ensure no events are pending */
+       edma_stop(echan);
+       edma_setup_interrupt(echan, true);
+       edma_assign_channel_eventq(echan, eventq_no);
+       return 0;
+ }
+ static void edma_free_channel(struct edma_chan *echan)
+ {
+       /* ensure no events are pending */
+       edma_stop(echan);
+       /* REVISIT should probably take out of shadow region 0 */
+       edma_setup_interrupt(echan, false);
+ }
+ static inline struct edma_cc *to_edma_cc(struct dma_device *d)
+ {
+       return container_of(d, struct edma_cc, dma_slave);
+ }
+ static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
+ {
+       return container_of(c, struct edma_chan, vchan.chan);
+ }
+ static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
+ {
+       return container_of(tx, struct edma_desc, vdesc.tx);
+ }
+ static void edma_desc_free(struct virt_dma_desc *vdesc)
+ {
+       kfree(container_of(vdesc, struct edma_desc, vdesc));
+ }
+ /* Dispatch a queued descriptor to the controller (caller holds lock) */
+ static void edma_execute(struct edma_chan *echan)
+ {
+       struct edma_cc *ecc = echan->ecc;
+       struct virt_dma_desc *vdesc;
+       struct edma_desc *edesc;
+       struct device *dev = echan->vchan.chan.device->dev;
+       int i, j, left, nslots;
+       if (!echan->edesc) {
+               /* Setup is needed for the first transfer */
+               vdesc = vchan_next_desc(&echan->vchan);
+               if (!vdesc)
+                       return;
+               list_del(&vdesc->node);
+               echan->edesc = to_edma_desc(&vdesc->tx);
+       }
+       edesc = echan->edesc;
+       /* Find out how many left */
+       left = edesc->pset_nr - edesc->processed;
+       nslots = min(MAX_NR_SG, left);
+       edesc->sg_len = 0;
+       /* Write descriptor PaRAM set(s) */
+       for (i = 0; i < nslots; i++) {
+               j = i + edesc->processed;
+               edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
+               edesc->sg_len += edesc->pset[j].len;
+               dev_vdbg(dev,
+                        "\n pset[%d]:\n"
+                        "  chnum\t%d\n"
+                        "  slot\t%d\n"
+                        "  opt\t%08x\n"
+                        "  src\t%08x\n"
+                        "  dst\t%08x\n"
+                        "  abcnt\t%08x\n"
+                        "  ccnt\t%08x\n"
+                        "  bidx\t%08x\n"
+                        "  cidx\t%08x\n"
+                        "  lkrld\t%08x\n",
+                        j, echan->ch_num, echan->slot[i],
+                        edesc->pset[j].param.opt,
+                        edesc->pset[j].param.src,
+                        edesc->pset[j].param.dst,
+                        edesc->pset[j].param.a_b_cnt,
+                        edesc->pset[j].param.ccnt,
+                        edesc->pset[j].param.src_dst_bidx,
+                        edesc->pset[j].param.src_dst_cidx,
+                        edesc->pset[j].param.link_bcntrld);
+               /* Link to the previous slot if not the last set */
+               if (i != (nslots - 1))
+                       edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
+       }
+       edesc->processed += nslots;
+       /*
+        * If this is either the last set in a set of SG-list transactions
+        * then setup a link to the dummy slot, this results in all future
+        * events being absorbed and that's OK because we're done
+        */
+       if (edesc->processed == edesc->pset_nr) {
+               if (edesc->cyclic)
+                       edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
+               else
+                       edma_link(ecc, echan->slot[nslots - 1],
+                                 echan->ecc->dummy_slot);
+       }
+       if (echan->missed) {
+               /*
+                * This happens due to setup times between intermediate
+                * transfers in long SG lists which have to be broken up into
+                * transfers of MAX_NR_SG
+                */
+               dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
+               edma_clean_channel(echan);
+               edma_stop(echan);
+               edma_start(echan);
+               edma_trigger_channel(echan);
+               echan->missed = 0;
+       } else if (edesc->processed <= MAX_NR_SG) {
+               dev_dbg(dev, "first transfer starting on channel %d\n",
+                       echan->ch_num);
+               edma_start(echan);
+       } else {
+               dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
+                       echan->ch_num, edesc->processed);
+               edma_resume(echan);
+       }
+ }
+ static int edma_terminate_all(struct dma_chan *chan)
+ {
+       struct edma_chan *echan = to_edma_chan(chan);
+       unsigned long flags;
+       LIST_HEAD(head);
+       spin_lock_irqsave(&echan->vchan.lock, flags);
+       /*
+        * Stop DMA activity: we assume the callback will not be called
+        * after edma_dma() returns (even if it does, it will see
+        * echan->edesc is NULL and exit.)
+        */
+       if (echan->edesc) {
+               edma_stop(echan);
+               /* Move the cyclic channel back to default queue */
+               if (!echan->tc && echan->edesc->cyclic)
+                       edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
+               vchan_terminate_vdesc(&echan->edesc->vdesc);
+               echan->edesc = NULL;
+       }
+       vchan_get_all_descriptors(&echan->vchan, &head);
+       spin_unlock_irqrestore(&echan->vchan.lock, flags);
+       vchan_dma_desc_free_list(&echan->vchan, &head);
+       return 0;
+ }
+ static void edma_synchronize(struct dma_chan *chan)
+ {
+       struct edma_chan *echan = to_edma_chan(chan);
+       vchan_synchronize(&echan->vchan);
+ }
+ static int edma_slave_config(struct dma_chan *chan,
+       struct dma_slave_config *cfg)
+ {
+       struct edma_chan *echan = to_edma_chan(chan);
+       if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
+           cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
+               return -EINVAL;
+       if (cfg->src_maxburst > chan->device->max_burst ||
+           cfg->dst_maxburst > chan->device->max_burst)
+               return -EINVAL;
+       memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
+       return 0;
+ }
+ static int edma_dma_pause(struct dma_chan *chan)
+ {
+       struct edma_chan *echan = to_edma_chan(chan);
+       if (!echan->edesc)
+               return -EINVAL;
+       edma_pause(echan);
+       return 0;
+ }
+ static int edma_dma_resume(struct dma_chan *chan)
+ {
+       struct edma_chan *echan = to_edma_chan(chan);
+       edma_resume(echan);
+       return 0;
+ }
+ /*
+  * A PaRAM set configuration abstraction used by other modes
+  * @chan: Channel who's PaRAM set we're configuring
+  * @pset: PaRAM set to initialize and setup.
+  * @src_addr: Source address of the DMA
+  * @dst_addr: Destination address of the DMA
+  * @burst: In units of dev_width, how much to send
+  * @dev_width: How much is the dev_width
+  * @dma_length: Total length of the DMA transfer
+  * @direction: Direction of the transfer
+  */
+ static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
+                           dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
+                           unsigned int acnt, unsigned int dma_length,
+                           enum dma_transfer_direction direction)
+ {
+       struct edma_chan *echan = to_edma_chan(chan);
+       struct device *dev = chan->device->dev;
+       struct edmacc_param *param = &epset->param;
+       int bcnt, ccnt, cidx;
+       int src_bidx, dst_bidx, src_cidx, dst_cidx;
+       int absync;
+       /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
+       if (!burst)
+               burst = 1;
+       /*
+        * If the maxburst is equal to the fifo width, use
+        * A-synced transfers. This allows for large contiguous
+        * buffer transfers using only one PaRAM set.
+        */
+       if (burst == 1) {
+               /*
+                * For the A-sync case, bcnt and ccnt are the remainder
+                * and quotient respectively of the division of:
+                * (dma_length / acnt) by (SZ_64K -1). This is so
+                * that in case bcnt over flows, we have ccnt to use.
+                * Note: In A-sync tranfer only, bcntrld is used, but it
+                * only applies for sg_dma_len(sg) >= SZ_64K.
+                * In this case, the best way adopted is- bccnt for the
+                * first frame will be the remainder below. Then for
+                * every successive frame, bcnt will be SZ_64K-1. This
+                * is assured as bcntrld = 0xffff in end of function.
+                */
+               absync = false;
+               ccnt = dma_length / acnt / (SZ_64K - 1);
+               bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
+               /*
+                * If bcnt is non-zero, we have a remainder and hence an
+                * extra frame to transfer, so increment ccnt.
+                */
+               if (bcnt)
+                       ccnt++;
+               else
+                       bcnt = SZ_64K - 1;
+               cidx = acnt;
+       } else {
+               /*
+                * If maxburst is greater than the fifo address_width,
+                * use AB-synced transfers where A count is the fifo
+                * address_width and B count is the maxburst. In this
+                * case, we are limited to transfers of C count frames
+                * of (address_width * maxburst) where C count is limited
+                * to SZ_64K-1. This places an upper bound on the length
+                * of an SG segment that can be handled.
+                */
+               absync = true;
+               bcnt = burst;
+               ccnt = dma_length / (acnt * bcnt);
+               if (ccnt > (SZ_64K - 1)) {
+                       dev_err(dev, "Exceeded max SG segment size\n");
+                       return -EINVAL;
+               }
+               cidx = acnt * bcnt;
+       }
+       epset->len = dma_length;
+       if (direction == DMA_MEM_TO_DEV) {
+               src_bidx = acnt;
+               src_cidx = cidx;
+               dst_bidx = 0;
+               dst_cidx = 0;
+               epset->addr = src_addr;
+       } else if (direction == DMA_DEV_TO_MEM)  {
+               src_bidx = 0;
+               src_cidx = 0;
+               dst_bidx = acnt;
+               dst_cidx = cidx;
+               epset->addr = dst_addr;
+       } else if (direction == DMA_MEM_TO_MEM)  {
+               src_bidx = acnt;
+               src_cidx = cidx;
+               dst_bidx = acnt;
+               dst_cidx = cidx;
+       } else {
+               dev_err(dev, "%s: direction not implemented yet\n", __func__);
+               return -EINVAL;
+       }
+       param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
+       /* Configure A or AB synchronized transfers */
+       if (absync)
+               param->opt |= SYNCDIM;
+       param->src = src_addr;
+       param->dst = dst_addr;
+       param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
+       param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
+       param->a_b_cnt = bcnt << 16 | acnt;
+       param->ccnt = ccnt;
+       /*
+        * Only time when (bcntrld) auto reload is required is for
+        * A-sync case, and in this case, a requirement of reload value
+        * of SZ_64K-1 only is assured. 'link' is initially set to NULL
+        * and then later will be populated by edma_execute.
+        */
+       param->link_bcntrld = 0xffffffff;
+       return absync;
+ }
+ static struct dma_async_tx_descriptor *edma_prep_slave_sg(
+       struct dma_chan *chan, struct scatterlist *sgl,
+       unsigned int sg_len, enum dma_transfer_direction direction,
+       unsigned long tx_flags, void *context)
+ {
+       struct edma_chan *echan = to_edma_chan(chan);
+       struct device *dev = chan->device->dev;
+       struct edma_desc *edesc;
+       dma_addr_t src_addr = 0, dst_addr = 0;
+       enum dma_slave_buswidth dev_width;
+       u32 burst;
+       struct scatterlist *sg;
+       int i, nslots, ret;
+       if (unlikely(!echan || !sgl || !sg_len))
+               return NULL;
+       if (direction == DMA_DEV_TO_MEM) {
+               src_addr = echan->cfg.src_addr;
+               dev_width = echan->cfg.src_addr_width;
+               burst = echan->cfg.src_maxburst;
+       } else if (direction == DMA_MEM_TO_DEV) {
+               dst_addr = echan->cfg.dst_addr;
+               dev_width = echan->cfg.dst_addr_width;
+               burst = echan->cfg.dst_maxburst;
+       } else {
+               dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
+               return NULL;
+       }
+       if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
+               dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
+               return NULL;
+       }
 -      edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
 -                      GFP_ATOMIC);
++      edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
+       if (!edesc)
+               return NULL;
+       edesc->pset_nr = sg_len;
+       edesc->residue = 0;
+       edesc->direction = direction;
+       edesc->echan = echan;
+       /* Allocate a PaRAM slot, if needed */
+       nslots = min_t(unsigned, MAX_NR_SG, sg_len);
+       for (i = 0; i < nslots; i++) {
+               if (echan->slot[i] < 0) {
+                       echan->slot[i] =
+                               edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
+                       if (echan->slot[i] < 0) {
+                               kfree(edesc);
+                               dev_err(dev, "%s: Failed to allocate slot\n",
+                                       __func__);
+                               return NULL;
+                       }
+               }
+       }
+       /* Configure PaRAM sets for each SG */
+       for_each_sg(sgl, sg, sg_len, i) {
+               /* Get address for each SG */
+               if (direction == DMA_DEV_TO_MEM)
+                       dst_addr = sg_dma_address(sg);
+               else
+                       src_addr = sg_dma_address(sg);
+               ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
+                                      dst_addr, burst, dev_width,
+                                      sg_dma_len(sg), direction);
+               if (ret < 0) {
+                       kfree(edesc);
+                       return NULL;
+               }
+               edesc->absync = ret;
+               edesc->residue += sg_dma_len(sg);
+               if (i == sg_len - 1)
+                       /* Enable completion interrupt */
+                       edesc->pset[i].param.opt |= TCINTEN;
+               else if (!((i+1) % MAX_NR_SG))
+                       /*
+                        * Enable early completion interrupt for the
+                        * intermediateset. In this case the driver will be
+                        * notified when the paRAM set is submitted to TC. This
+                        * will allow more time to set up the next set of slots.
+                        */
+                       edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
+       }
+       edesc->residue_stat = edesc->residue;
+       return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
+ }
+ static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
+       struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
+       size_t len, unsigned long tx_flags)
+ {
+       int ret, nslots;
+       struct edma_desc *edesc;
+       struct device *dev = chan->device->dev;
+       struct edma_chan *echan = to_edma_chan(chan);
+       unsigned int width, pset_len, array_size;
+       if (unlikely(!echan || !len))
+               return NULL;
+       /* Align the array size (acnt block) with the transfer properties */
+       switch (__ffs((src | dest | len))) {
+       case 0:
+               array_size = SZ_32K - 1;
+               break;
+       case 1:
+               array_size = SZ_32K - 2;
+               break;
+       default:
+               array_size = SZ_32K - 4;
+               break;
+       }
+       if (len < SZ_64K) {
+               /*
+                * Transfer size less than 64K can be handled with one paRAM
+                * slot and with one burst.
+                * ACNT = length
+                */
+               width = len;
+               pset_len = len;
+               nslots = 1;
+       } else {
+               /*
+                * Transfer size bigger than 64K will be handled with maximum of
+                * two paRAM slots.
+                * slot1: (full_length / 32767) times 32767 bytes bursts.
+                *        ACNT = 32767, length1: (full_length / 32767) * 32767
+                * slot2: the remaining amount of data after slot1.
+                *        ACNT = full_length - length1, length2 = ACNT
+                *
+                * When the full_length is multibple of 32767 one slot can be
+                * used to complete the transfer.
+                */
+               width = array_size;
+               pset_len = rounddown(len, width);
+               /* One slot is enough for lengths multiple of (SZ_32K -1) */
+               if (unlikely(pset_len == len))
+                       nslots = 1;
+               else
+                       nslots = 2;
+       }
 -      edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
 -                      GFP_ATOMIC);
++      edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
+       if (!edesc)
+               return NULL;
+       edesc->pset_nr = nslots;
+       edesc->residue = edesc->residue_stat = len;
+       edesc->direction = DMA_MEM_TO_MEM;
+       edesc->echan = echan;
+       ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
+                              width, pset_len, DMA_MEM_TO_MEM);
+       if (ret < 0) {
+               kfree(edesc);
+               return NULL;
+       }
+       edesc->absync = ret;
+       edesc->pset[0].param.opt |= ITCCHEN;
+       if (nslots == 1) {
+               /* Enable transfer complete interrupt */
+               edesc->pset[0].param.opt |= TCINTEN;
+       } else {
+               /* Enable transfer complete chaining for the first slot */
+               edesc->pset[0].param.opt |= TCCHEN;
+               if (echan->slot[1] < 0) {
+                       echan->slot[1] = edma_alloc_slot(echan->ecc,
+                                                        EDMA_SLOT_ANY);
+                       if (echan->slot[1] < 0) {
+                               kfree(edesc);
+                               dev_err(dev, "%s: Failed to allocate slot\n",
+                                       __func__);
+                               return NULL;
+                       }
+               }
+               dest += pset_len;
+               src += pset_len;
+               pset_len = width = len % array_size;
+               ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
+                                      width, pset_len, DMA_MEM_TO_MEM);
+               if (ret < 0) {
+                       kfree(edesc);
+                       return NULL;
+               }
+               edesc->pset[1].param.opt |= ITCCHEN;
+               edesc->pset[1].param.opt |= TCINTEN;
+       }
+       return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
+ }
+ static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
+       struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
+       size_t period_len, enum dma_transfer_direction direction,
+       unsigned long tx_flags)
+ {
+       struct edma_chan *echan = to_edma_chan(chan);
+       struct device *dev = chan->device->dev;
+       struct edma_desc *edesc;
+       dma_addr_t src_addr, dst_addr;
+       enum dma_slave_buswidth dev_width;
+       bool use_intermediate = false;
+       u32 burst;
+       int i, ret, nslots;
+       if (unlikely(!echan || !buf_len || !period_len))
+               return NULL;
+       if (direction == DMA_DEV_TO_MEM) {
+               src_addr = echan->cfg.src_addr;
+               dst_addr = buf_addr;
+               dev_width = echan->cfg.src_addr_width;
+               burst = echan->cfg.src_maxburst;
+       } else if (direction == DMA_MEM_TO_DEV) {
+               src_addr = buf_addr;
+               dst_addr = echan->cfg.dst_addr;
+               dev_width = echan->cfg.dst_addr_width;
+               burst = echan->cfg.dst_maxburst;
+       } else {
+               dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
+               return NULL;
+       }
+       if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
+               dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
+               return NULL;
+       }
+       if (unlikely(buf_len % period_len)) {
+               dev_err(dev, "Period should be multiple of Buffer length\n");
+               return NULL;
+       }
+       nslots = (buf_len / period_len) + 1;
+       /*
+        * Cyclic DMA users such as audio cannot tolerate delays introduced
+        * by cases where the number of periods is more than the maximum
+        * number of SGs the EDMA driver can handle at a time. For DMA types
+        * such as Slave SGs, such delays are tolerable and synchronized,
+        * but the synchronization is difficult to achieve with Cyclic and
+        * cannot be guaranteed, so we error out early.
+        */
+       if (nslots > MAX_NR_SG) {
+               /*
+                * If the burst and period sizes are the same, we can put
+                * the full buffer into a single period and activate
+                * intermediate interrupts. This will produce interrupts
+                * after each burst, which is also after each desired period.
+                */
+               if (burst == period_len) {
+                       period_len = buf_len;
+                       nslots = 2;
+                       use_intermediate = true;
+               } else {
+                       return NULL;
+               }
+       }
++      edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
+       if (!edesc)
+               return NULL;
+       edesc->cyclic = 1;
+       edesc->pset_nr = nslots;
+       edesc->residue = edesc->residue_stat = buf_len;
+       edesc->direction = direction;
+       edesc->echan = echan;
+       dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
+               __func__, echan->ch_num, nslots, period_len, buf_len);
+       for (i = 0; i < nslots; i++) {
+               /* Allocate a PaRAM slot, if needed */
+               if (echan->slot[i] < 0) {
+                       echan->slot[i] =
+                               edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
+                       if (echan->slot[i] < 0) {
+                               kfree(edesc);
+                               dev_err(dev, "%s: Failed to allocate slot\n",
+                                       __func__);
+                               return NULL;
+                       }
+               }
+               if (i == nslots - 1) {
+                       memcpy(&edesc->pset[i], &edesc->pset[0],
+                              sizeof(edesc->pset[0]));
+                       break;
+               }
+               ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
+                                      dst_addr, burst, dev_width, period_len,
+                                      direction);
+               if (ret < 0) {
+                       kfree(edesc);
+                       return NULL;
+               }
+               if (direction == DMA_DEV_TO_MEM)
+                       dst_addr += period_len;
+               else
+                       src_addr += period_len;
+               dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
+               dev_vdbg(dev,
+                       "\n pset[%d]:\n"
+                       "  chnum\t%d\n"
+                       "  slot\t%d\n"
+                       "  opt\t%08x\n"
+                       "  src\t%08x\n"
+                       "  dst\t%08x\n"
+                       "  abcnt\t%08x\n"
+                       "  ccnt\t%08x\n"
+                       "  bidx\t%08x\n"
+                       "  cidx\t%08x\n"
+                       "  lkrld\t%08x\n",
+                       i, echan->ch_num, echan->slot[i],
+                       edesc->pset[i].param.opt,
+                       edesc->pset[i].param.src,
+                       edesc->pset[i].param.dst,
+                       edesc->pset[i].param.a_b_cnt,
+                       edesc->pset[i].param.ccnt,
+                       edesc->pset[i].param.src_dst_bidx,
+                       edesc->pset[i].param.src_dst_cidx,
+                       edesc->pset[i].param.link_bcntrld);
+               edesc->absync = ret;
+               /*
+                * Enable period interrupt only if it is requested
+                */
+               if (tx_flags & DMA_PREP_INTERRUPT) {
+                       edesc->pset[i].param.opt |= TCINTEN;
+                       /* Also enable intermediate interrupts if necessary */
+                       if (use_intermediate)
+                               edesc->pset[i].param.opt |= ITCINTEN;
+               }
+       }
+       /* Place the cyclic channel to highest priority queue */
+       if (!echan->tc)
+               edma_assign_channel_eventq(echan, EVENTQ_0);
+       return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
+ }
+ static void edma_completion_handler(struct edma_chan *echan)
+ {
+       struct device *dev = echan->vchan.chan.device->dev;
+       struct edma_desc *edesc;
+       spin_lock(&echan->vchan.lock);
+       edesc = echan->edesc;
+       if (edesc) {
+               if (edesc->cyclic) {
+                       vchan_cyclic_callback(&edesc->vdesc);
+                       spin_unlock(&echan->vchan.lock);
+                       return;
+               } else if (edesc->processed == edesc->pset_nr) {
+                       edesc->residue = 0;
+                       edma_stop(echan);
+                       vchan_cookie_complete(&edesc->vdesc);
+                       echan->edesc = NULL;
+                       dev_dbg(dev, "Transfer completed on channel %d\n",
+                               echan->ch_num);
+               } else {
+                       dev_dbg(dev, "Sub transfer completed on channel %d\n",
+                               echan->ch_num);
+                       edma_pause(echan);
+                       /* Update statistics for tx_status */
+                       edesc->residue -= edesc->sg_len;
+                       edesc->residue_stat = edesc->residue;
+                       edesc->processed_stat = edesc->processed;
+               }
+               edma_execute(echan);
+       }
+       spin_unlock(&echan->vchan.lock);
+ }
+ /* eDMA interrupt handler */
+ static irqreturn_t dma_irq_handler(int irq, void *data)
+ {
+       struct edma_cc *ecc = data;
+       int ctlr;
+       u32 sh_ier;
+       u32 sh_ipr;
+       u32 bank;
+       ctlr = ecc->id;
+       if (ctlr < 0)
+               return IRQ_NONE;
+       dev_vdbg(ecc->dev, "dma_irq_handler\n");
+       sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
+       if (!sh_ipr) {
+               sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
+               if (!sh_ipr)
+                       return IRQ_NONE;
+               sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
+               bank = 1;
+       } else {
+               sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
+               bank = 0;
+       }
+       do {
+               u32 slot;
+               u32 channel;
+               slot = __ffs(sh_ipr);
+               sh_ipr &= ~(BIT(slot));
+               if (sh_ier & BIT(slot)) {
+                       channel = (bank << 5) | slot;
+                       /* Clear the corresponding IPR bits */
+                       edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
+                       edma_completion_handler(&ecc->slave_chans[channel]);
+               }
+       } while (sh_ipr);
+       edma_shadow0_write(ecc, SH_IEVAL, 1);
+       return IRQ_HANDLED;
+ }
+ static void edma_error_handler(struct edma_chan *echan)
+ {
+       struct edma_cc *ecc = echan->ecc;
+       struct device *dev = echan->vchan.chan.device->dev;
+       struct edmacc_param p;
+       int err;
+       if (!echan->edesc)
+               return;
+       spin_lock(&echan->vchan.lock);
+       err = edma_read_slot(ecc, echan->slot[0], &p);
+       /*
+        * Issue later based on missed flag which will be sure
+        * to happen as:
+        * (1) we finished transmitting an intermediate slot and
+        *     edma_execute is coming up.
+        * (2) or we finished current transfer and issue will
+        *     call edma_execute.
+        *
+        * Important note: issuing can be dangerous here and
+        * lead to some nasty recursion when we are in a NULL
+        * slot. So we avoid doing so and set the missed flag.
+        */
+       if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
+               dev_dbg(dev, "Error on null slot, setting miss\n");
+               echan->missed = 1;
+       } else {
+               /*
+                * The slot is already programmed but the event got
+                * missed, so its safe to issue it here.
+                */
+               dev_dbg(dev, "Missed event, TRIGGERING\n");
+               edma_clean_channel(echan);
+               edma_stop(echan);
+               edma_start(echan);
+               edma_trigger_channel(echan);
+       }
+       spin_unlock(&echan->vchan.lock);
+ }
+ static inline bool edma_error_pending(struct edma_cc *ecc)
+ {
+       if (edma_read_array(ecc, EDMA_EMR, 0) ||
+           edma_read_array(ecc, EDMA_EMR, 1) ||
+           edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
+               return true;
+       return false;
+ }
+ /* eDMA error interrupt handler */
+ static irqreturn_t dma_ccerr_handler(int irq, void *data)
+ {
+       struct edma_cc *ecc = data;
+       int i, j;
+       int ctlr;
+       unsigned int cnt = 0;
+       unsigned int val;
+       ctlr = ecc->id;
+       if (ctlr < 0)
+               return IRQ_NONE;
+       dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
+       if (!edma_error_pending(ecc)) {
+               /*
+                * The registers indicate no pending error event but the irq
+                * handler has been called.
+                * Ask eDMA to re-evaluate the error registers.
+                */
+               dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
+                       __func__);
+               edma_write(ecc, EDMA_EEVAL, 1);
+               return IRQ_NONE;
+       }
+       while (1) {
+               /* Event missed register(s) */
+               for (j = 0; j < 2; j++) {
+                       unsigned long emr;
+                       val = edma_read_array(ecc, EDMA_EMR, j);
+                       if (!val)
+                               continue;
+                       dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
+                       emr = val;
+                       for (i = find_next_bit(&emr, 32, 0); i < 32;
+                            i = find_next_bit(&emr, 32, i + 1)) {
+                               int k = (j << 5) + i;
+                               /* Clear the corresponding EMR bits */
+                               edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
+                               /* Clear any SER */
+                               edma_shadow0_write_array(ecc, SH_SECR, j,
+                                                        BIT(i));
+                               edma_error_handler(&ecc->slave_chans[k]);
+                       }
+               }
+               val = edma_read(ecc, EDMA_QEMR);
+               if (val) {
+                       dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
+                       /* Not reported, just clear the interrupt reason. */
+                       edma_write(ecc, EDMA_QEMCR, val);
+                       edma_shadow0_write(ecc, SH_QSECR, val);
+               }
+               val = edma_read(ecc, EDMA_CCERR);
+               if (val) {
+                       dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
+                       /* Not reported, just clear the interrupt reason. */
+                       edma_write(ecc, EDMA_CCERRCLR, val);
+               }
+               if (!edma_error_pending(ecc))
+                       break;
+               cnt++;
+               if (cnt > 10)
+                       break;
+       }
+       edma_write(ecc, EDMA_EEVAL, 1);
+       return IRQ_HANDLED;
+ }
+ /* Alloc channel resources */
+ static int edma_alloc_chan_resources(struct dma_chan *chan)
+ {
+       struct edma_chan *echan = to_edma_chan(chan);
+       struct edma_cc *ecc = echan->ecc;
+       struct device *dev = ecc->dev;
+       enum dma_event_q eventq_no = EVENTQ_DEFAULT;
+       int ret;
+       if (echan->tc) {
+               eventq_no = echan->tc->id;
+       } else if (ecc->tc_list) {
+               /* memcpy channel */
+               echan->tc = &ecc->tc_list[ecc->info->default_queue];
+               eventq_no = echan->tc->id;
+       }
+       ret = edma_alloc_channel(echan, eventq_no);
+       if (ret)
+               return ret;
+       echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
+       if (echan->slot[0] < 0) {
+               dev_err(dev, "Entry slot allocation failed for channel %u\n",
+                       EDMA_CHAN_SLOT(echan->ch_num));
+               ret = echan->slot[0];
+               goto err_slot;
+       }
+       /* Set up channel -> slot mapping for the entry slot */
+       edma_set_chmap(echan, echan->slot[0]);
+       echan->alloced = true;
+       dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
+               EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
+               echan->hw_triggered ? "HW" : "SW");
+       return 0;
+ err_slot:
+       edma_free_channel(echan);
+       return ret;
+ }
+ /* Free channel resources */
+ static void edma_free_chan_resources(struct dma_chan *chan)
+ {
+       struct edma_chan *echan = to_edma_chan(chan);
+       struct device *dev = echan->ecc->dev;
+       int i;
+       /* Terminate transfers */
+       edma_stop(echan);
+       vchan_free_chan_resources(&echan->vchan);
+       /* Free EDMA PaRAM slots */
+       for (i = 0; i < EDMA_MAX_SLOTS; i++) {
+               if (echan->slot[i] >= 0) {
+                       edma_free_slot(echan->ecc, echan->slot[i]);
+                       echan->slot[i] = -1;
+               }
+       }
+       /* Set entry slot to the dummy slot */
+       edma_set_chmap(echan, echan->ecc->dummy_slot);
+       /* Free EDMA channel */
+       if (echan->alloced) {
+               edma_free_channel(echan);
+               echan->alloced = false;
+       }
+       echan->tc = NULL;
+       echan->hw_triggered = false;
+       dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
+               EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
+ }
+ /* Send pending descriptor to hardware */
+ static void edma_issue_pending(struct dma_chan *chan)
+ {
+       struct edma_chan *echan = to_edma_chan(chan);
+       unsigned long flags;
+       spin_lock_irqsave(&echan->vchan.lock, flags);
+       if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
+               edma_execute(echan);
+       spin_unlock_irqrestore(&echan->vchan.lock, flags);
+ }
+ /*
+  * This limit exists to avoid a possible infinite loop when waiting for proof
+  * that a particular transfer is completed. This limit can be hit if there
+  * are large bursts to/from slow devices or the CPU is never able to catch
+  * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
+  * RX-FIFO, as many as 55 loops have been seen.
+  */
+ #define EDMA_MAX_TR_WAIT_LOOPS 1000
+ static u32 edma_residue(struct edma_desc *edesc)
+ {
+       bool dst = edesc->direction == DMA_DEV_TO_MEM;
+       int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
+       struct edma_chan *echan = edesc->echan;
+       struct edma_pset *pset = edesc->pset;
+       dma_addr_t done, pos;
+       int i;
+       /*
+        * We always read the dst/src position from the first RamPar
+        * pset. That's the one which is active now.
+        */
+       pos = edma_get_position(echan->ecc, echan->slot[0], dst);
+       /*
+        * "pos" may represent a transfer request that is still being
+        * processed by the EDMACC or EDMATC. We will busy wait until
+        * any one of the situations occurs:
+        *   1. the DMA hardware is idle
+        *   2. a new transfer request is setup
+        *   3. we hit the loop limit
+        */
+       while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
+               /* check if a new transfer request is setup */
+               if (edma_get_position(echan->ecc,
+                                     echan->slot[0], dst) != pos) {
+                       break;
+               }
+               if (!--loop_count) {
+                       dev_dbg_ratelimited(echan->vchan.chan.device->dev,
+                               "%s: timeout waiting for PaRAM update\n",
+                               __func__);
+                       break;
+               }
+               cpu_relax();
+       }
+       /*
+        * Cyclic is simple. Just subtract pset[0].addr from pos.
+        *
+        * We never update edesc->residue in the cyclic case, so we
+        * can tell the remaining room to the end of the circular
+        * buffer.
+        */
+       if (edesc->cyclic) {
+               done = pos - pset->addr;
+               edesc->residue_stat = edesc->residue - done;
+               return edesc->residue_stat;
+       }
+       /*
+        * For SG operation we catch up with the last processed
+        * status.
+        */
+       pset += edesc->processed_stat;
+       for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
+               /*
+                * If we are inside this pset address range, we know
+                * this is the active one. Get the current delta and
+                * stop walking the psets.
+                */
+               if (pos >= pset->addr && pos < pset->addr + pset->len)
+                       return edesc->residue_stat - (pos - pset->addr);
+               /* Otherwise mark it done and update residue_stat. */
+               edesc->processed_stat++;
+               edesc->residue_stat -= pset->len;
+       }
+       return edesc->residue_stat;
+ }
+ /* Check request completion status */
+ static enum dma_status edma_tx_status(struct dma_chan *chan,
+                                     dma_cookie_t cookie,
+                                     struct dma_tx_state *txstate)
+ {
+       struct edma_chan *echan = to_edma_chan(chan);
+       struct virt_dma_desc *vdesc;
+       enum dma_status ret;
+       unsigned long flags;
+       ret = dma_cookie_status(chan, cookie, txstate);
+       if (ret == DMA_COMPLETE || !txstate)
+               return ret;
+       spin_lock_irqsave(&echan->vchan.lock, flags);
+       if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
+               txstate->residue = edma_residue(echan->edesc);
+       else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
+               txstate->residue = to_edma_desc(&vdesc->tx)->residue;
+       spin_unlock_irqrestore(&echan->vchan.lock, flags);
+       return ret;
+ }
+ static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
+ {
+       if (!memcpy_channels)
+               return false;
+       while (*memcpy_channels != -1) {
+               if (*memcpy_channels == ch_num)
+                       return true;
+               memcpy_channels++;
+       }
+       return false;
+ }
+ #define EDMA_DMA_BUSWIDTHS    (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
+                                BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
+                                BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
+                                BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
+ static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
+ {
+       struct dma_device *s_ddev = &ecc->dma_slave;
+       struct dma_device *m_ddev = NULL;
+       s32 *memcpy_channels = ecc->info->memcpy_channels;
+       int i, j;
+       dma_cap_zero(s_ddev->cap_mask);
+       dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
+       dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
+       if (ecc->legacy_mode && !memcpy_channels) {
+               dev_warn(ecc->dev,
+                        "Legacy memcpy is enabled, things might not work\n");
+               dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
+               s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
+               s_ddev->directions = BIT(DMA_MEM_TO_MEM);
+       }
+       s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
+       s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
+       s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
+       s_ddev->device_free_chan_resources = edma_free_chan_resources;
+       s_ddev->device_issue_pending = edma_issue_pending;
+       s_ddev->device_tx_status = edma_tx_status;
+       s_ddev->device_config = edma_slave_config;
+       s_ddev->device_pause = edma_dma_pause;
+       s_ddev->device_resume = edma_dma_resume;
+       s_ddev->device_terminate_all = edma_terminate_all;
+       s_ddev->device_synchronize = edma_synchronize;
+       s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
+       s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
+       s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
+       s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+       s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
+       s_ddev->dev = ecc->dev;
+       INIT_LIST_HEAD(&s_ddev->channels);
+       if (memcpy_channels) {
+               m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
+               if (!m_ddev) {
+                       dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
+                       memcpy_channels = NULL;
+                       goto ch_setup;
+               }
+               ecc->dma_memcpy = m_ddev;
+               dma_cap_zero(m_ddev->cap_mask);
+               dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
+               m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
+               m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
+               m_ddev->device_free_chan_resources = edma_free_chan_resources;
+               m_ddev->device_issue_pending = edma_issue_pending;
+               m_ddev->device_tx_status = edma_tx_status;
+               m_ddev->device_config = edma_slave_config;
+               m_ddev->device_pause = edma_dma_pause;
+               m_ddev->device_resume = edma_dma_resume;
+               m_ddev->device_terminate_all = edma_terminate_all;
+               m_ddev->device_synchronize = edma_synchronize;
+               m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
+               m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
+               m_ddev->directions = BIT(DMA_MEM_TO_MEM);
+               m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+               m_ddev->dev = ecc->dev;
+               INIT_LIST_HEAD(&m_ddev->channels);
+       } else if (!ecc->legacy_mode) {
+               dev_info(ecc->dev, "memcpy is disabled\n");
+       }
+ ch_setup:
+       for (i = 0; i < ecc->num_channels; i++) {
+               struct edma_chan *echan = &ecc->slave_chans[i];
+               echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
+               echan->ecc = ecc;
+               echan->vchan.desc_free = edma_desc_free;
+               if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
+                       vchan_init(&echan->vchan, m_ddev);
+               else
+                       vchan_init(&echan->vchan, s_ddev);
+               INIT_LIST_HEAD(&echan->node);
+               for (j = 0; j < EDMA_MAX_SLOTS; j++)
+                       echan->slot[j] = -1;
+       }
+ }
+ static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
+                             struct edma_cc *ecc)
+ {
+       int i;
+       u32 value, cccfg;
+       s8 (*queue_priority_map)[2];
+       /* Decode the eDMA3 configuration from CCCFG register */
+       cccfg = edma_read(ecc, EDMA_CCCFG);
+       value = GET_NUM_REGN(cccfg);
+       ecc->num_region = BIT(value);
+       value = GET_NUM_DMACH(cccfg);
+       ecc->num_channels = BIT(value + 1);
+       value = GET_NUM_QDMACH(cccfg);
+       ecc->num_qchannels = value * 2;
+       value = GET_NUM_PAENTRY(cccfg);
+       ecc->num_slots = BIT(value + 4);
+       value = GET_NUM_EVQUE(cccfg);
+       ecc->num_tc = value + 1;
+       ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
+       dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
+       dev_dbg(dev, "num_region: %u\n", ecc->num_region);
+       dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
+       dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
+       dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
+       dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
+       dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
+       /* Nothing need to be done if queue priority is provided */
+       if (pdata->queue_priority_mapping)
+               return 0;
+       /*
+        * Configure TC/queue priority as follows:
+        * Q0 - priority 0
+        * Q1 - priority 1
+        * Q2 - priority 2
+        * ...
+        * The meaning of priority numbers: 0 highest priority, 7 lowest
+        * priority. So Q0 is the highest priority queue and the last queue has
+        * the lowest priority.
+        */
+       queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
+                                         GFP_KERNEL);
+       if (!queue_priority_map)
+               return -ENOMEM;
+       for (i = 0; i < ecc->num_tc; i++) {
+               queue_priority_map[i][0] = i;
+               queue_priority_map[i][1] = i;
+       }
+       queue_priority_map[i][0] = -1;
+       queue_priority_map[i][1] = -1;
+       pdata->queue_priority_mapping = queue_priority_map;
+       /* Default queue has the lowest priority */
+       pdata->default_queue = i - 1;
+       return 0;
+ }
+ #if IS_ENABLED(CONFIG_OF)
+ static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
+                              size_t sz)
+ {
+       const char pname[] = "ti,edma-xbar-event-map";
+       struct resource res;
+       void __iomem *xbar;
+       s16 (*xbar_chans)[2];
+       size_t nelm = sz / sizeof(s16);
+       u32 shift, offset, mux;
+       int ret, i;
+       xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
+       if (!xbar_chans)
+               return -ENOMEM;
+       ret = of_address_to_resource(dev->of_node, 1, &res);
+       if (ret)
+               return -ENOMEM;
+       xbar = devm_ioremap(dev, res.start, resource_size(&res));
+       if (!xbar)
+               return -ENOMEM;
+       ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
+                                        nelm);
+       if (ret)
+               return -EIO;
+       /* Invalidate last entry for the other user of this mess */
+       nelm >>= 1;
+       xbar_chans[nelm][0] = -1;
+       xbar_chans[nelm][1] = -1;
+       for (i = 0; i < nelm; i++) {
+               shift = (xbar_chans[i][1] & 0x03) << 3;
+               offset = xbar_chans[i][1] & 0xfffffffc;
+               mux = readl(xbar + offset);
+               mux &= ~(0xff << shift);
+               mux |= xbar_chans[i][0] << shift;
+               writel(mux, (xbar + offset));
+       }
+       pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
+       return 0;
+ }
+ static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
+                                                    bool legacy_mode)
+ {
+       struct edma_soc_info *info;
+       struct property *prop;
+       int sz, ret;
+       info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
+       if (!info)
+               return ERR_PTR(-ENOMEM);
+       if (legacy_mode) {
+               prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
+                                       &sz);
+               if (prop) {
+                       ret = edma_xbar_event_map(dev, info, sz);
+                       if (ret)
+                               return ERR_PTR(ret);
+               }
+               return info;
+       }
+       /* Get the list of channels allocated to be used for memcpy */
+       prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
+       if (prop) {
+               const char pname[] = "ti,edma-memcpy-channels";
+               size_t nelm = sz / sizeof(s32);
+               s32 *memcpy_ch;
+               memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
+                                        GFP_KERNEL);
+               if (!memcpy_ch)
+                       return ERR_PTR(-ENOMEM);
+               ret = of_property_read_u32_array(dev->of_node, pname,
+                                                (u32 *)memcpy_ch, nelm);
+               if (ret)
+                       return ERR_PTR(ret);
+               memcpy_ch[nelm] = -1;
+               info->memcpy_channels = memcpy_ch;
+       }
+       prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
+                               &sz);
+       if (prop) {
+               const char pname[] = "ti,edma-reserved-slot-ranges";
+               u32 (*tmp)[2];
+               s16 (*rsv_slots)[2];
+               size_t nelm = sz / sizeof(*tmp);
+               struct edma_rsv_info *rsv_info;
+               int i;
+               if (!nelm)
+                       return info;
+               tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
+               if (!tmp)
+                       return ERR_PTR(-ENOMEM);
+               rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
+               if (!rsv_info) {
+                       kfree(tmp);
+                       return ERR_PTR(-ENOMEM);
+               }
+               rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
+                                        GFP_KERNEL);
+               if (!rsv_slots) {
+                       kfree(tmp);
+                       return ERR_PTR(-ENOMEM);
+               }
+               ret = of_property_read_u32_array(dev->of_node, pname,
+                                                (u32 *)tmp, nelm * 2);
+               if (ret) {
+                       kfree(tmp);
+                       return ERR_PTR(ret);
+               }
+               for (i = 0; i < nelm; i++) {
+                       rsv_slots[i][0] = tmp[i][0];
+                       rsv_slots[i][1] = tmp[i][1];
+               }
+               rsv_slots[nelm][0] = -1;
+               rsv_slots[nelm][1] = -1;
+               info->rsv = rsv_info;
+               info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
+               kfree(tmp);
+       }
+       return info;
+ }
+ static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
+                                     struct of_dma *ofdma)
+ {
+       struct edma_cc *ecc = ofdma->of_dma_data;
+       struct dma_chan *chan = NULL;
+       struct edma_chan *echan;
+       int i;
+       if (!ecc || dma_spec->args_count < 1)
+               return NULL;
+       for (i = 0; i < ecc->num_channels; i++) {
+               echan = &ecc->slave_chans[i];
+               if (echan->ch_num == dma_spec->args[0]) {
+                       chan = &echan->vchan.chan;
+                       break;
+               }
+       }
+       if (!chan)
+               return NULL;
+       if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
+               goto out;
+       if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
+           dma_spec->args[1] < echan->ecc->num_tc) {
+               echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
+               goto out;
+       }
+       return NULL;
+ out:
+       /* The channel is going to be used as HW synchronized */
+       echan->hw_triggered = true;
+       return dma_get_slave_channel(chan);
+ }
+ #else
+ static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
+                                                    bool legacy_mode)
+ {
+       return ERR_PTR(-EINVAL);
+ }
+ static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
+                                     struct of_dma *ofdma)
+ {
+       return NULL;
+ }
+ #endif
+ static int edma_probe(struct platform_device *pdev)
+ {
+       struct edma_soc_info    *info = pdev->dev.platform_data;
+       s8                      (*queue_priority_mapping)[2];
+       int                     i, off, ln;
+       const s16               (*rsv_slots)[2];
+       const s16               (*xbar_chans)[2];
+       int                     irq;
+       char                    *irq_name;
+       struct resource         *mem;
+       struct device_node      *node = pdev->dev.of_node;
+       struct device           *dev = &pdev->dev;
+       struct edma_cc          *ecc;
+       bool                    legacy_mode = true;
+       int ret;
+       if (node) {
+               const struct of_device_id *match;
+               match = of_match_node(edma_of_ids, node);
+               if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
+                       legacy_mode = false;
+               info = edma_setup_info_from_dt(dev, legacy_mode);
+               if (IS_ERR(info)) {
+                       dev_err(dev, "failed to get DT data\n");
+                       return PTR_ERR(info);
+               }
+       }
+       if (!info)
+               return -ENODEV;
+       pm_runtime_enable(dev);
+       ret = pm_runtime_get_sync(dev);
+       if (ret < 0) {
+               dev_err(dev, "pm_runtime_get_sync() failed\n");
+               return ret;
+       }
+       ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
+       if (ret)
+               return ret;
+       ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
+       if (!ecc)
+               return -ENOMEM;
+       ecc->dev = dev;
+       ecc->id = pdev->id;
+       ecc->legacy_mode = legacy_mode;
+       /* When booting with DT the pdev->id is -1 */
+       if (ecc->id < 0)
+               ecc->id = 0;
+       mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
+       if (!mem) {
+               dev_dbg(dev, "mem resource not found, using index 0\n");
+               mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+               if (!mem) {
+                       dev_err(dev, "no mem resource?\n");
+                       return -ENODEV;
+               }
+       }
+       ecc->base = devm_ioremap_resource(dev, mem);
+       if (IS_ERR(ecc->base))
+               return PTR_ERR(ecc->base);
+       platform_set_drvdata(pdev, ecc);
+       /* Get eDMA3 configuration from IP */
+       ret = edma_setup_from_hw(dev, info, ecc);
+       if (ret)
+               return ret;
+       /* Allocate memory based on the information we got from the IP */
+       ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
+                                       sizeof(*ecc->slave_chans), GFP_KERNEL);
+       if (!ecc->slave_chans)
+               return -ENOMEM;
+       ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
+                                      sizeof(unsigned long), GFP_KERNEL);
+       if (!ecc->slot_inuse)
+               return -ENOMEM;
+       ecc->default_queue = info->default_queue;
+       for (i = 0; i < ecc->num_slots; i++)
+               edma_write_slot(ecc, i, &dummy_paramset);
+       if (info->rsv) {
+               /* Set the reserved slots in inuse list */
+               rsv_slots = info->rsv->rsv_slots;
+               if (rsv_slots) {
+                       for (i = 0; rsv_slots[i][0] != -1; i++) {
+                               off = rsv_slots[i][0];
+                               ln = rsv_slots[i][1];
+                               edma_set_bits(off, ln, ecc->slot_inuse);
+                       }
+               }
+       }
+       /* Clear the xbar mapped channels in unused list */
+       xbar_chans = info->xbar_chans;
+       if (xbar_chans) {
+               for (i = 0; xbar_chans[i][1] != -1; i++) {
+                       off = xbar_chans[i][1];
+               }
+       }
+       irq = platform_get_irq_byname(pdev, "edma3_ccint");
+       if (irq < 0 && node)
+               irq = irq_of_parse_and_map(node, 0);
+       if (irq >= 0) {
+               irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
+                                         dev_name(dev));
+               ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
+                                      ecc);
+               if (ret) {
+                       dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
+                       return ret;
+               }
+               ecc->ccint = irq;
+       }
+       irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
+       if (irq < 0 && node)
+               irq = irq_of_parse_and_map(node, 2);
+       if (irq >= 0) {
+               irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
+                                         dev_name(dev));
+               ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
+                                      ecc);
+               if (ret) {
+                       dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
+                       return ret;
+               }
+               ecc->ccerrint = irq;
+       }
+       ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
+       if (ecc->dummy_slot < 0) {
+               dev_err(dev, "Can't allocate PaRAM dummy slot\n");
+               return ecc->dummy_slot;
+       }
+       queue_priority_mapping = info->queue_priority_mapping;
+       if (!ecc->legacy_mode) {
+               int lowest_priority = 0;
+               struct of_phandle_args tc_args;
+               ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
+                                           sizeof(*ecc->tc_list), GFP_KERNEL);
+               if (!ecc->tc_list)
+                       return -ENOMEM;
+               for (i = 0;; i++) {
+                       ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
+                                                              1, i, &tc_args);
+                       if (ret || i == ecc->num_tc)
+                               break;
+                       ecc->tc_list[i].node = tc_args.np;
+                       ecc->tc_list[i].id = i;
+                       queue_priority_mapping[i][1] = tc_args.args[0];
+                       if (queue_priority_mapping[i][1] > lowest_priority) {
+                               lowest_priority = queue_priority_mapping[i][1];
+                               info->default_queue = i;
+                       }
+               }
+       }
+       /* Event queue priority mapping */
+       for (i = 0; queue_priority_mapping[i][0] != -1; i++)
+               edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
+                                             queue_priority_mapping[i][1]);
+       for (i = 0; i < ecc->num_region; i++) {
+               edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
+               edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
+               edma_write_array(ecc, EDMA_QRAE, i, 0x0);
+       }
+       ecc->info = info;
+       /* Init the dma device and channels */
+       edma_dma_init(ecc, legacy_mode);
+       for (i = 0; i < ecc->num_channels; i++) {
+               /* Assign all channels to the default queue */
+               edma_assign_channel_eventq(&ecc->slave_chans[i],
+                                          info->default_queue);
+               /* Set entry slot to the dummy slot */
+               edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
+       }
+       ecc->dma_slave.filter.map = info->slave_map;
+       ecc->dma_slave.filter.mapcnt = info->slavecnt;
+       ecc->dma_slave.filter.fn = edma_filter_fn;
+       ret = dma_async_device_register(&ecc->dma_slave);
+       if (ret) {
+               dev_err(dev, "slave ddev registration failed (%d)\n", ret);
+               goto err_reg1;
+       }
+       if (ecc->dma_memcpy) {
+               ret = dma_async_device_register(ecc->dma_memcpy);
+               if (ret) {
+                       dev_err(dev, "memcpy ddev registration failed (%d)\n",
+                               ret);
+                       dma_async_device_unregister(&ecc->dma_slave);
+                       goto err_reg1;
+               }
+       }
+       if (node)
+               of_dma_controller_register(node, of_edma_xlate, ecc);
+       dev_info(dev, "TI EDMA DMA engine driver\n");
+       return 0;
+ err_reg1:
+       edma_free_slot(ecc, ecc->dummy_slot);
+       return ret;
+ }
+ static void edma_cleanupp_vchan(struct dma_device *dmadev)
+ {
+       struct edma_chan *echan, *_echan;
+       list_for_each_entry_safe(echan, _echan,
+                       &dmadev->channels, vchan.chan.device_node) {
+               list_del(&echan->vchan.chan.device_node);
+               tasklet_kill(&echan->vchan.task);
+       }
+ }
+ static int edma_remove(struct platform_device *pdev)
+ {
+       struct device *dev = &pdev->dev;
+       struct edma_cc *ecc = dev_get_drvdata(dev);
+       devm_free_irq(dev, ecc->ccint, ecc);
+       devm_free_irq(dev, ecc->ccerrint, ecc);
+       edma_cleanupp_vchan(&ecc->dma_slave);
+       if (dev->of_node)
+               of_dma_controller_free(dev->of_node);
+       dma_async_device_unregister(&ecc->dma_slave);
+       if (ecc->dma_memcpy)
+               dma_async_device_unregister(ecc->dma_memcpy);
+       edma_free_slot(ecc, ecc->dummy_slot);
+       return 0;
+ }
+ #ifdef CONFIG_PM_SLEEP
+ static int edma_pm_suspend(struct device *dev)
+ {
+       struct edma_cc *ecc = dev_get_drvdata(dev);
+       struct edma_chan *echan = ecc->slave_chans;
+       int i;
+       for (i = 0; i < ecc->num_channels; i++) {
+               if (echan[i].alloced)
+                       edma_setup_interrupt(&echan[i], false);
+       }
+       return 0;
+ }
+ static int edma_pm_resume(struct device *dev)
+ {
+       struct edma_cc *ecc = dev_get_drvdata(dev);
+       struct edma_chan *echan = ecc->slave_chans;
+       int i;
+       s8 (*queue_priority_mapping)[2];
+       /* re initialize dummy slot to dummy param set */
+       edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
+       queue_priority_mapping = ecc->info->queue_priority_mapping;
+       /* Event queue priority mapping */
+       for (i = 0; queue_priority_mapping[i][0] != -1; i++)
+               edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
+                                             queue_priority_mapping[i][1]);
+       for (i = 0; i < ecc->num_channels; i++) {
+               if (echan[i].alloced) {
+                       /* ensure access through shadow region 0 */
+                       edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
+                                      BIT(i & 0x1f));
+                       edma_setup_interrupt(&echan[i], true);
+                       /* Set up channel -> slot mapping for the entry slot */
+                       edma_set_chmap(&echan[i], echan[i].slot[0]);
+               }
+       }
+       return 0;
+ }
+ #endif
+ static const struct dev_pm_ops edma_pm_ops = {
+       SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
+ };
+ static struct platform_driver edma_driver = {
+       .probe          = edma_probe,
+       .remove         = edma_remove,
+       .driver = {
+               .name   = "edma",
+               .pm     = &edma_pm_ops,
+               .of_match_table = edma_of_ids,
+       },
+ };
+ static int edma_tptc_probe(struct platform_device *pdev)
+ {
+       pm_runtime_enable(&pdev->dev);
+       return pm_runtime_get_sync(&pdev->dev);
+ }
+ static struct platform_driver edma_tptc_driver = {
+       .probe          = edma_tptc_probe,
+       .driver = {
+               .name   = "edma3-tptc",
+               .of_match_table = edma_tptc_of_ids,
+       },
+ };
+ bool edma_filter_fn(struct dma_chan *chan, void *param)
+ {
+       bool match = false;
+       if (chan->device->dev->driver == &edma_driver.driver) {
+               struct edma_chan *echan = to_edma_chan(chan);
+               unsigned ch_req = *(unsigned *)param;
+               if (ch_req == echan->ch_num) {
+                       /* The channel is going to be used as HW synchronized */
+                       echan->hw_triggered = true;
+                       match = true;
+               }
+       }
+       return match;
+ }
+ EXPORT_SYMBOL(edma_filter_fn);
+ static int edma_init(void)
+ {
+       int ret;
+       ret = platform_driver_register(&edma_tptc_driver);
+       if (ret)
+               return ret;
+       return platform_driver_register(&edma_driver);
+ }
+ subsys_initcall(edma_init);
+ static void __exit edma_exit(void)
+ {
+       platform_driver_unregister(&edma_driver);
+       platform_driver_unregister(&edma_tptc_driver);
+ }
+ module_exit(edma_exit);
+ MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
+ MODULE_DESCRIPTION("TI EDMA DMA engine driver");
+ MODULE_LICENSE("GPL v2");
index 0000000,b73fb51..9b5ca86
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,1668 +1,1668 @@@
 -      d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
+ /*
+  * OMAP DMAengine support
+  *
+  * This program is free software; you can redistribute it and/or modify
+  * it under the terms of the GNU General Public License version 2 as
+  * published by the Free Software Foundation.
+  */
+ #include <linux/delay.h>
+ #include <linux/dmaengine.h>
+ #include <linux/dma-mapping.h>
+ #include <linux/dmapool.h>
+ #include <linux/err.h>
+ #include <linux/init.h>
+ #include <linux/interrupt.h>
+ #include <linux/list.h>
+ #include <linux/module.h>
+ #include <linux/omap-dma.h>
+ #include <linux/platform_device.h>
+ #include <linux/slab.h>
+ #include <linux/spinlock.h>
+ #include <linux/of_dma.h>
+ #include <linux/of_device.h>
+ #include "../virt-dma.h"
+ #define OMAP_SDMA_REQUESTS    127
+ #define OMAP_SDMA_CHANNELS    32
+ struct omap_dmadev {
+       struct dma_device ddev;
+       spinlock_t lock;
+       void __iomem *base;
+       const struct omap_dma_reg *reg_map;
+       struct omap_system_dma_plat_info *plat;
+       bool legacy;
+       bool ll123_supported;
+       struct dma_pool *desc_pool;
+       unsigned dma_requests;
+       spinlock_t irq_lock;
+       uint32_t irq_enable_mask;
+       struct omap_chan **lch_map;
+ };
+ struct omap_chan {
+       struct virt_dma_chan vc;
+       void __iomem *channel_base;
+       const struct omap_dma_reg *reg_map;
+       uint32_t ccr;
+       struct dma_slave_config cfg;
+       unsigned dma_sig;
+       bool cyclic;
+       bool paused;
+       bool running;
+       int dma_ch;
+       struct omap_desc *desc;
+       unsigned sgidx;
+ };
+ #define DESC_NXT_SV_REFRESH   (0x1 << 24)
+ #define DESC_NXT_SV_REUSE     (0x2 << 24)
+ #define DESC_NXT_DV_REFRESH   (0x1 << 26)
+ #define DESC_NXT_DV_REUSE     (0x2 << 26)
+ #define DESC_NTYPE_TYPE2      (0x2 << 29)
+ /* Type 2 descriptor with Source or Destination address update */
+ struct omap_type2_desc {
+       uint32_t next_desc;
+       uint32_t en;
+       uint32_t addr; /* src or dst */
+       uint16_t fn;
+       uint16_t cicr;
+       int16_t cdei;
+       int16_t csei;
+       int32_t cdfi;
+       int32_t csfi;
+ } __packed;
+ struct omap_sg {
+       dma_addr_t addr;
+       uint32_t en;            /* number of elements (24-bit) */
+       uint32_t fn;            /* number of frames (16-bit) */
+       int32_t fi;             /* for double indexing */
+       int16_t ei;             /* for double indexing */
+       /* Linked list */
+       struct omap_type2_desc *t2_desc;
+       dma_addr_t t2_desc_paddr;
+ };
+ struct omap_desc {
+       struct virt_dma_desc vd;
+       bool using_ll;
+       enum dma_transfer_direction dir;
+       dma_addr_t dev_addr;
+       int32_t fi;             /* for OMAP_DMA_SYNC_PACKET / double indexing */
+       int16_t ei;             /* for double indexing */
+       uint8_t es;             /* CSDP_DATA_TYPE_xxx */
+       uint32_t ccr;           /* CCR value */
+       uint16_t clnk_ctrl;     /* CLNK_CTRL value */
+       uint16_t cicr;          /* CICR value */
+       uint32_t csdp;          /* CSDP value */
+       unsigned sglen;
+       struct omap_sg sg[0];
+ };
+ enum {
+       CAPS_0_SUPPORT_LL123    = BIT(20),      /* Linked List type1/2/3 */
+       CAPS_0_SUPPORT_LL4      = BIT(21),      /* Linked List type4 */
+       CCR_FS                  = BIT(5),
+       CCR_READ_PRIORITY       = BIT(6),
+       CCR_ENABLE              = BIT(7),
+       CCR_AUTO_INIT           = BIT(8),       /* OMAP1 only */
+       CCR_REPEAT              = BIT(9),       /* OMAP1 only */
+       CCR_OMAP31_DISABLE      = BIT(10),      /* OMAP1 only */
+       CCR_SUSPEND_SENSITIVE   = BIT(8),       /* OMAP2+ only */
+       CCR_RD_ACTIVE           = BIT(9),       /* OMAP2+ only */
+       CCR_WR_ACTIVE           = BIT(10),      /* OMAP2+ only */
+       CCR_SRC_AMODE_CONSTANT  = 0 << 12,
+       CCR_SRC_AMODE_POSTINC   = 1 << 12,
+       CCR_SRC_AMODE_SGLIDX    = 2 << 12,
+       CCR_SRC_AMODE_DBLIDX    = 3 << 12,
+       CCR_DST_AMODE_CONSTANT  = 0 << 14,
+       CCR_DST_AMODE_POSTINC   = 1 << 14,
+       CCR_DST_AMODE_SGLIDX    = 2 << 14,
+       CCR_DST_AMODE_DBLIDX    = 3 << 14,
+       CCR_CONSTANT_FILL       = BIT(16),
+       CCR_TRANSPARENT_COPY    = BIT(17),
+       CCR_BS                  = BIT(18),
+       CCR_SUPERVISOR          = BIT(22),
+       CCR_PREFETCH            = BIT(23),
+       CCR_TRIGGER_SRC         = BIT(24),
+       CCR_BUFFERING_DISABLE   = BIT(25),
+       CCR_WRITE_PRIORITY      = BIT(26),
+       CCR_SYNC_ELEMENT        = 0,
+       CCR_SYNC_FRAME          = CCR_FS,
+       CCR_SYNC_BLOCK          = CCR_BS,
+       CCR_SYNC_PACKET         = CCR_BS | CCR_FS,
+       CSDP_DATA_TYPE_8        = 0,
+       CSDP_DATA_TYPE_16       = 1,
+       CSDP_DATA_TYPE_32       = 2,
+       CSDP_SRC_PORT_EMIFF     = 0 << 2, /* OMAP1 only */
+       CSDP_SRC_PORT_EMIFS     = 1 << 2, /* OMAP1 only */
+       CSDP_SRC_PORT_OCP_T1    = 2 << 2, /* OMAP1 only */
+       CSDP_SRC_PORT_TIPB      = 3 << 2, /* OMAP1 only */
+       CSDP_SRC_PORT_OCP_T2    = 4 << 2, /* OMAP1 only */
+       CSDP_SRC_PORT_MPUI      = 5 << 2, /* OMAP1 only */
+       CSDP_SRC_PACKED         = BIT(6),
+       CSDP_SRC_BURST_1        = 0 << 7,
+       CSDP_SRC_BURST_16       = 1 << 7,
+       CSDP_SRC_BURST_32       = 2 << 7,
+       CSDP_SRC_BURST_64       = 3 << 7,
+       CSDP_DST_PORT_EMIFF     = 0 << 9, /* OMAP1 only */
+       CSDP_DST_PORT_EMIFS     = 1 << 9, /* OMAP1 only */
+       CSDP_DST_PORT_OCP_T1    = 2 << 9, /* OMAP1 only */
+       CSDP_DST_PORT_TIPB      = 3 << 9, /* OMAP1 only */
+       CSDP_DST_PORT_OCP_T2    = 4 << 9, /* OMAP1 only */
+       CSDP_DST_PORT_MPUI      = 5 << 9, /* OMAP1 only */
+       CSDP_DST_PACKED         = BIT(13),
+       CSDP_DST_BURST_1        = 0 << 14,
+       CSDP_DST_BURST_16       = 1 << 14,
+       CSDP_DST_BURST_32       = 2 << 14,
+       CSDP_DST_BURST_64       = 3 << 14,
+       CSDP_WRITE_NON_POSTED   = 0 << 16,
+       CSDP_WRITE_POSTED       = 1 << 16,
+       CSDP_WRITE_LAST_NON_POSTED = 2 << 16,
+       CICR_TOUT_IE            = BIT(0),       /* OMAP1 only */
+       CICR_DROP_IE            = BIT(1),
+       CICR_HALF_IE            = BIT(2),
+       CICR_FRAME_IE           = BIT(3),
+       CICR_LAST_IE            = BIT(4),
+       CICR_BLOCK_IE           = BIT(5),
+       CICR_PKT_IE             = BIT(7),       /* OMAP2+ only */
+       CICR_TRANS_ERR_IE       = BIT(8),       /* OMAP2+ only */
+       CICR_SUPERVISOR_ERR_IE  = BIT(10),      /* OMAP2+ only */
+       CICR_MISALIGNED_ERR_IE  = BIT(11),      /* OMAP2+ only */
+       CICR_DRAIN_IE           = BIT(12),      /* OMAP2+ only */
+       CICR_SUPER_BLOCK_IE     = BIT(14),      /* OMAP2+ only */
+       CLNK_CTRL_ENABLE_LNK    = BIT(15),
+       CDP_DST_VALID_INC       = 0 << 0,
+       CDP_DST_VALID_RELOAD    = 1 << 0,
+       CDP_DST_VALID_REUSE     = 2 << 0,
+       CDP_SRC_VALID_INC       = 0 << 2,
+       CDP_SRC_VALID_RELOAD    = 1 << 2,
+       CDP_SRC_VALID_REUSE     = 2 << 2,
+       CDP_NTYPE_TYPE1         = 1 << 4,
+       CDP_NTYPE_TYPE2         = 2 << 4,
+       CDP_NTYPE_TYPE3         = 3 << 4,
+       CDP_TMODE_NORMAL        = 0 << 8,
+       CDP_TMODE_LLIST         = 1 << 8,
+       CDP_FAST                = BIT(10),
+ };
+ static const unsigned es_bytes[] = {
+       [CSDP_DATA_TYPE_8] = 1,
+       [CSDP_DATA_TYPE_16] = 2,
+       [CSDP_DATA_TYPE_32] = 4,
+ };
+ static struct of_dma_filter_info omap_dma_info = {
+       .filter_fn = omap_dma_filter_fn,
+ };
+ static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
+ {
+       return container_of(d, struct omap_dmadev, ddev);
+ }
+ static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
+ {
+       return container_of(c, struct omap_chan, vc.chan);
+ }
+ static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
+ {
+       return container_of(t, struct omap_desc, vd.tx);
+ }
+ static void omap_dma_desc_free(struct virt_dma_desc *vd)
+ {
+       struct omap_desc *d = to_omap_dma_desc(&vd->tx);
+       if (d->using_ll) {
+               struct omap_dmadev *od = to_omap_dma_dev(vd->tx.chan->device);
+               int i;
+               for (i = 0; i < d->sglen; i++) {
+                       if (d->sg[i].t2_desc)
+                               dma_pool_free(od->desc_pool, d->sg[i].t2_desc,
+                                             d->sg[i].t2_desc_paddr);
+               }
+       }
+       kfree(d);
+ }
+ static void omap_dma_fill_type2_desc(struct omap_desc *d, int idx,
+                                    enum dma_transfer_direction dir, bool last)
+ {
+       struct omap_sg *sg = &d->sg[idx];
+       struct omap_type2_desc *t2_desc = sg->t2_desc;
+       if (idx)
+               d->sg[idx - 1].t2_desc->next_desc = sg->t2_desc_paddr;
+       if (last)
+               t2_desc->next_desc = 0xfffffffc;
+       t2_desc->en = sg->en;
+       t2_desc->addr = sg->addr;
+       t2_desc->fn = sg->fn & 0xffff;
+       t2_desc->cicr = d->cicr;
+       if (!last)
+               t2_desc->cicr &= ~CICR_BLOCK_IE;
+       switch (dir) {
+       case DMA_DEV_TO_MEM:
+               t2_desc->cdei = sg->ei;
+               t2_desc->csei = d->ei;
+               t2_desc->cdfi = sg->fi;
+               t2_desc->csfi = d->fi;
+               t2_desc->en |= DESC_NXT_DV_REFRESH;
+               t2_desc->en |= DESC_NXT_SV_REUSE;
+               break;
+       case DMA_MEM_TO_DEV:
+               t2_desc->cdei = d->ei;
+               t2_desc->csei = sg->ei;
+               t2_desc->cdfi = d->fi;
+               t2_desc->csfi = sg->fi;
+               t2_desc->en |= DESC_NXT_SV_REFRESH;
+               t2_desc->en |= DESC_NXT_DV_REUSE;
+               break;
+       default:
+               return;
+       }
+       t2_desc->en |= DESC_NTYPE_TYPE2;
+ }
+ static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
+ {
+       switch (type) {
+       case OMAP_DMA_REG_16BIT:
+               writew_relaxed(val, addr);
+               break;
+       case OMAP_DMA_REG_2X16BIT:
+               writew_relaxed(val, addr);
+               writew_relaxed(val >> 16, addr + 2);
+               break;
+       case OMAP_DMA_REG_32BIT:
+               writel_relaxed(val, addr);
+               break;
+       default:
+               WARN_ON(1);
+       }
+ }
+ static unsigned omap_dma_read(unsigned type, void __iomem *addr)
+ {
+       unsigned val;
+       switch (type) {
+       case OMAP_DMA_REG_16BIT:
+               val = readw_relaxed(addr);
+               break;
+       case OMAP_DMA_REG_2X16BIT:
+               val = readw_relaxed(addr);
+               val |= readw_relaxed(addr + 2) << 16;
+               break;
+       case OMAP_DMA_REG_32BIT:
+               val = readl_relaxed(addr);
+               break;
+       default:
+               WARN_ON(1);
+               val = 0;
+       }
+       return val;
+ }
+ static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
+ {
+       const struct omap_dma_reg *r = od->reg_map + reg;
+       WARN_ON(r->stride);
+       omap_dma_write(val, r->type, od->base + r->offset);
+ }
+ static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
+ {
+       const struct omap_dma_reg *r = od->reg_map + reg;
+       WARN_ON(r->stride);
+       return omap_dma_read(r->type, od->base + r->offset);
+ }
+ static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
+ {
+       const struct omap_dma_reg *r = c->reg_map + reg;
+       omap_dma_write(val, r->type, c->channel_base + r->offset);
+ }
+ static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
+ {
+       const struct omap_dma_reg *r = c->reg_map + reg;
+       return omap_dma_read(r->type, c->channel_base + r->offset);
+ }
+ static void omap_dma_clear_csr(struct omap_chan *c)
+ {
+       if (dma_omap1())
+               omap_dma_chan_read(c, CSR);
+       else
+               omap_dma_chan_write(c, CSR, ~0);
+ }
+ static unsigned omap_dma_get_csr(struct omap_chan *c)
+ {
+       unsigned val = omap_dma_chan_read(c, CSR);
+       if (!dma_omap1())
+               omap_dma_chan_write(c, CSR, val);
+       return val;
+ }
+ static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
+       unsigned lch)
+ {
+       c->channel_base = od->base + od->plat->channel_stride * lch;
+       od->lch_map[lch] = c;
+ }
+ static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
+ {
+       struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
+       uint16_t cicr = d->cicr;
+       if (__dma_omap15xx(od->plat->dma_attr))
+               omap_dma_chan_write(c, CPC, 0);
+       else
+               omap_dma_chan_write(c, CDAC, 0);
+       omap_dma_clear_csr(c);
+       if (d->using_ll) {
+               uint32_t cdp = CDP_TMODE_LLIST | CDP_NTYPE_TYPE2 | CDP_FAST;
+               if (d->dir == DMA_DEV_TO_MEM)
+                       cdp |= (CDP_DST_VALID_RELOAD | CDP_SRC_VALID_REUSE);
+               else
+                       cdp |= (CDP_DST_VALID_REUSE | CDP_SRC_VALID_RELOAD);
+               omap_dma_chan_write(c, CDP, cdp);
+               omap_dma_chan_write(c, CNDP, d->sg[0].t2_desc_paddr);
+               omap_dma_chan_write(c, CCDN, 0);
+               omap_dma_chan_write(c, CCFN, 0xffff);
+               omap_dma_chan_write(c, CCEN, 0xffffff);
+               cicr &= ~CICR_BLOCK_IE;
+       } else if (od->ll123_supported) {
+               omap_dma_chan_write(c, CDP, 0);
+       }
+       /* Enable interrupts */
+       omap_dma_chan_write(c, CICR, cicr);
+       /* Enable channel */
+       omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
+       c->running = true;
+ }
+ static void omap_dma_drain_chan(struct omap_chan *c)
+ {
+       int i;
+       u32 val;
+       /* Wait for sDMA FIFO to drain */
+       for (i = 0; ; i++) {
+               val = omap_dma_chan_read(c, CCR);
+               if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
+                       break;
+               if (i > 100)
+                       break;
+               udelay(5);
+       }
+       if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
+               dev_err(c->vc.chan.device->dev,
+                       "DMA drain did not complete on lch %d\n",
+                       c->dma_ch);
+ }
+ static int omap_dma_stop(struct omap_chan *c)
+ {
+       struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
+       uint32_t val;
+       /* disable irq */
+       omap_dma_chan_write(c, CICR, 0);
+       omap_dma_clear_csr(c);
+       val = omap_dma_chan_read(c, CCR);
+       if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
+               uint32_t sysconfig;
+               sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
+               val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
+               val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
+               omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
+               val = omap_dma_chan_read(c, CCR);
+               val &= ~CCR_ENABLE;
+               omap_dma_chan_write(c, CCR, val);
+               if (!(c->ccr & CCR_BUFFERING_DISABLE))
+                       omap_dma_drain_chan(c);
+               omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
+       } else {
+               if (!(val & CCR_ENABLE))
+                       return -EINVAL;
+               val &= ~CCR_ENABLE;
+               omap_dma_chan_write(c, CCR, val);
+               if (!(c->ccr & CCR_BUFFERING_DISABLE))
+                       omap_dma_drain_chan(c);
+       }
+       mb();
+       if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
+               val = omap_dma_chan_read(c, CLNK_CTRL);
+               if (dma_omap1())
+                       val |= 1 << 14; /* set the STOP_LNK bit */
+               else
+                       val &= ~CLNK_CTRL_ENABLE_LNK;
+               omap_dma_chan_write(c, CLNK_CTRL, val);
+       }
+       c->running = false;
+       return 0;
+ }
+ static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d)
+ {
+       struct omap_sg *sg = d->sg + c->sgidx;
+       unsigned cxsa, cxei, cxfi;
+       if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
+               cxsa = CDSA;
+               cxei = CDEI;
+               cxfi = CDFI;
+       } else {
+               cxsa = CSSA;
+               cxei = CSEI;
+               cxfi = CSFI;
+       }
+       omap_dma_chan_write(c, cxsa, sg->addr);
+       omap_dma_chan_write(c, cxei, sg->ei);
+       omap_dma_chan_write(c, cxfi, sg->fi);
+       omap_dma_chan_write(c, CEN, sg->en);
+       omap_dma_chan_write(c, CFN, sg->fn);
+       omap_dma_start(c, d);
+       c->sgidx++;
+ }
+ static void omap_dma_start_desc(struct omap_chan *c)
+ {
+       struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
+       struct omap_desc *d;
+       unsigned cxsa, cxei, cxfi;
+       if (!vd) {
+               c->desc = NULL;
+               return;
+       }
+       list_del(&vd->node);
+       c->desc = d = to_omap_dma_desc(&vd->tx);
+       c->sgidx = 0;
+       /*
+        * This provides the necessary barrier to ensure data held in
+        * DMA coherent memory is visible to the DMA engine prior to
+        * the transfer starting.
+        */
+       mb();
+       omap_dma_chan_write(c, CCR, d->ccr);
+       if (dma_omap1())
+               omap_dma_chan_write(c, CCR2, d->ccr >> 16);
+       if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
+               cxsa = CSSA;
+               cxei = CSEI;
+               cxfi = CSFI;
+       } else {
+               cxsa = CDSA;
+               cxei = CDEI;
+               cxfi = CDFI;
+       }
+       omap_dma_chan_write(c, cxsa, d->dev_addr);
+       omap_dma_chan_write(c, cxei, d->ei);
+       omap_dma_chan_write(c, cxfi, d->fi);
+       omap_dma_chan_write(c, CSDP, d->csdp);
+       omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
+       omap_dma_start_sg(c, d);
+ }
+ static void omap_dma_callback(int ch, u16 status, void *data)
+ {
+       struct omap_chan *c = data;
+       struct omap_desc *d;
+       unsigned long flags;
+       spin_lock_irqsave(&c->vc.lock, flags);
+       d = c->desc;
+       if (d) {
+               if (c->cyclic) {
+                       vchan_cyclic_callback(&d->vd);
+               } else if (d->using_ll || c->sgidx == d->sglen) {
+                       omap_dma_start_desc(c);
+                       vchan_cookie_complete(&d->vd);
+               } else {
+                       omap_dma_start_sg(c, d);
+               }
+       }
+       spin_unlock_irqrestore(&c->vc.lock, flags);
+ }
+ static irqreturn_t omap_dma_irq(int irq, void *devid)
+ {
+       struct omap_dmadev *od = devid;
+       unsigned status, channel;
+       spin_lock(&od->irq_lock);
+       status = omap_dma_glbl_read(od, IRQSTATUS_L1);
+       status &= od->irq_enable_mask;
+       if (status == 0) {
+               spin_unlock(&od->irq_lock);
+               return IRQ_NONE;
+       }
+       while ((channel = ffs(status)) != 0) {
+               unsigned mask, csr;
+               struct omap_chan *c;
+               channel -= 1;
+               mask = BIT(channel);
+               status &= ~mask;
+               c = od->lch_map[channel];
+               if (c == NULL) {
+                       /* This should never happen */
+                       dev_err(od->ddev.dev, "invalid channel %u\n", channel);
+                       continue;
+               }
+               csr = omap_dma_get_csr(c);
+               omap_dma_glbl_write(od, IRQSTATUS_L1, mask);
+               omap_dma_callback(channel, csr, c);
+       }
+       spin_unlock(&od->irq_lock);
+       return IRQ_HANDLED;
+ }
+ static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
+ {
+       struct omap_dmadev *od = to_omap_dma_dev(chan->device);
+       struct omap_chan *c = to_omap_dma_chan(chan);
+       struct device *dev = od->ddev.dev;
+       int ret;
+       if (od->legacy) {
+               ret = omap_request_dma(c->dma_sig, "DMA engine",
+                                      omap_dma_callback, c, &c->dma_ch);
+       } else {
+               ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL,
+                                      &c->dma_ch);
+       }
+       dev_dbg(dev, "allocating channel %u for %u\n", c->dma_ch, c->dma_sig);
+       if (ret >= 0) {
+               omap_dma_assign(od, c, c->dma_ch);
+               if (!od->legacy) {
+                       unsigned val;
+                       spin_lock_irq(&od->irq_lock);
+                       val = BIT(c->dma_ch);
+                       omap_dma_glbl_write(od, IRQSTATUS_L1, val);
+                       od->irq_enable_mask |= val;
+                       omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
+                       val = omap_dma_glbl_read(od, IRQENABLE_L0);
+                       val &= ~BIT(c->dma_ch);
+                       omap_dma_glbl_write(od, IRQENABLE_L0, val);
+                       spin_unlock_irq(&od->irq_lock);
+               }
+       }
+       if (dma_omap1()) {
+               if (__dma_omap16xx(od->plat->dma_attr)) {
+                       c->ccr = CCR_OMAP31_DISABLE;
+                       /* Duplicate what plat-omap/dma.c does */
+                       c->ccr |= c->dma_ch + 1;
+               } else {
+                       c->ccr = c->dma_sig & 0x1f;
+               }
+       } else {
+               c->ccr = c->dma_sig & 0x1f;
+               c->ccr |= (c->dma_sig & ~0x1f) << 14;
+       }
+       if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
+               c->ccr |= CCR_BUFFERING_DISABLE;
+       return ret;
+ }
+ static void omap_dma_free_chan_resources(struct dma_chan *chan)
+ {
+       struct omap_dmadev *od = to_omap_dma_dev(chan->device);
+       struct omap_chan *c = to_omap_dma_chan(chan);
+       if (!od->legacy) {
+               spin_lock_irq(&od->irq_lock);
+               od->irq_enable_mask &= ~BIT(c->dma_ch);
+               omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
+               spin_unlock_irq(&od->irq_lock);
+       }
+       c->channel_base = NULL;
+       od->lch_map[c->dma_ch] = NULL;
+       vchan_free_chan_resources(&c->vc);
+       omap_free_dma(c->dma_ch);
+       dev_dbg(od->ddev.dev, "freeing channel %u used for %u\n", c->dma_ch,
+               c->dma_sig);
+       c->dma_sig = 0;
+ }
+ static size_t omap_dma_sg_size(struct omap_sg *sg)
+ {
+       return sg->en * sg->fn;
+ }
+ static size_t omap_dma_desc_size(struct omap_desc *d)
+ {
+       unsigned i;
+       size_t size;
+       for (size = i = 0; i < d->sglen; i++)
+               size += omap_dma_sg_size(&d->sg[i]);
+       return size * es_bytes[d->es];
+ }
+ static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
+ {
+       unsigned i;
+       size_t size, es_size = es_bytes[d->es];
+       for (size = i = 0; i < d->sglen; i++) {
+               size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
+               if (size)
+                       size += this_size;
+               else if (addr >= d->sg[i].addr &&
+                        addr < d->sg[i].addr + this_size)
+                       size += d->sg[i].addr + this_size - addr;
+       }
+       return size;
+ }
+ /*
+  * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
+  * read before the DMA controller finished disabling the channel.
+  */
+ static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
+ {
+       struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
+       uint32_t val;
+       val = omap_dma_chan_read(c, reg);
+       if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
+               val = omap_dma_chan_read(c, reg);
+       return val;
+ }
+ static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
+ {
+       struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
+       dma_addr_t addr, cdac;
+       if (__dma_omap15xx(od->plat->dma_attr)) {
+               addr = omap_dma_chan_read(c, CPC);
+       } else {
+               addr = omap_dma_chan_read_3_3(c, CSAC);
+               cdac = omap_dma_chan_read_3_3(c, CDAC);
+               /*
+                * CDAC == 0 indicates that the DMA transfer on the channel has
+                * not been started (no data has been transferred so far).
+                * Return the programmed source start address in this case.
+                */
+               if (cdac == 0)
+                       addr = omap_dma_chan_read(c, CSSA);
+       }
+       if (dma_omap1())
+               addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
+       return addr;
+ }
+ static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
+ {
+       struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
+       dma_addr_t addr;
+       if (__dma_omap15xx(od->plat->dma_attr)) {
+               addr = omap_dma_chan_read(c, CPC);
+       } else {
+               addr = omap_dma_chan_read_3_3(c, CDAC);
+               /*
+                * CDAC == 0 indicates that the DMA transfer on the channel
+                * has not been started (no data has been transferred so
+                * far).  Return the programmed destination start address in
+                * this case.
+                */
+               if (addr == 0)
+                       addr = omap_dma_chan_read(c, CDSA);
+       }
+       if (dma_omap1())
+               addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
+       return addr;
+ }
+ static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
+       dma_cookie_t cookie, struct dma_tx_state *txstate)
+ {
+       struct omap_chan *c = to_omap_dma_chan(chan);
+       struct virt_dma_desc *vd;
+       enum dma_status ret;
+       unsigned long flags;
+       ret = dma_cookie_status(chan, cookie, txstate);
+       if (!c->paused && c->running) {
+               uint32_t ccr = omap_dma_chan_read(c, CCR);
+               /*
+                * The channel is no longer active, set the return value
+                * accordingly
+                */
+               if (!(ccr & CCR_ENABLE))
+                       ret = DMA_COMPLETE;
+       }
+       if (ret == DMA_COMPLETE || !txstate)
+               return ret;
+       spin_lock_irqsave(&c->vc.lock, flags);
+       vd = vchan_find_desc(&c->vc, cookie);
+       if (vd) {
+               txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
+       } else if (c->desc && c->desc->vd.tx.cookie == cookie) {
+               struct omap_desc *d = c->desc;
+               dma_addr_t pos;
+               if (d->dir == DMA_MEM_TO_DEV)
+                       pos = omap_dma_get_src_pos(c);
+               else if (d->dir == DMA_DEV_TO_MEM  || d->dir == DMA_MEM_TO_MEM)
+                       pos = omap_dma_get_dst_pos(c);
+               else
+                       pos = 0;
+               txstate->residue = omap_dma_desc_size_pos(d, pos);
+       } else {
+               txstate->residue = 0;
+       }
+       if (ret == DMA_IN_PROGRESS && c->paused)
+               ret = DMA_PAUSED;
+       spin_unlock_irqrestore(&c->vc.lock, flags);
+       return ret;
+ }
+ static void omap_dma_issue_pending(struct dma_chan *chan)
+ {
+       struct omap_chan *c = to_omap_dma_chan(chan);
+       unsigned long flags;
+       spin_lock_irqsave(&c->vc.lock, flags);
+       if (vchan_issue_pending(&c->vc) && !c->desc)
+               omap_dma_start_desc(c);
+       spin_unlock_irqrestore(&c->vc.lock, flags);
+ }
+ static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
+       struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
+       enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
+ {
+       struct omap_dmadev *od = to_omap_dma_dev(chan->device);
+       struct omap_chan *c = to_omap_dma_chan(chan);
+       enum dma_slave_buswidth dev_width;
+       struct scatterlist *sgent;
+       struct omap_desc *d;
+       dma_addr_t dev_addr;
+       unsigned i, es, en, frame_bytes;
+       bool ll_failed = false;
+       u32 burst;
+       u32 port_window, port_window_bytes;
+       if (dir == DMA_DEV_TO_MEM) {
+               dev_addr = c->cfg.src_addr;
+               dev_width = c->cfg.src_addr_width;
+               burst = c->cfg.src_maxburst;
+               port_window = c->cfg.src_port_window_size;
+       } else if (dir == DMA_MEM_TO_DEV) {
+               dev_addr = c->cfg.dst_addr;
+               dev_width = c->cfg.dst_addr_width;
+               burst = c->cfg.dst_maxburst;
+               port_window = c->cfg.dst_port_window_size;
+       } else {
+               dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
+               return NULL;
+       }
+       /* Bus width translates to the element size (ES) */
+       switch (dev_width) {
+       case DMA_SLAVE_BUSWIDTH_1_BYTE:
+               es = CSDP_DATA_TYPE_8;
+               break;
+       case DMA_SLAVE_BUSWIDTH_2_BYTES:
+               es = CSDP_DATA_TYPE_16;
+               break;
+       case DMA_SLAVE_BUSWIDTH_4_BYTES:
+               es = CSDP_DATA_TYPE_32;
+               break;
+       default: /* not reached */
+               return NULL;
+       }
+       /* Now allocate and setup the descriptor. */
++      d = kzalloc(struct_size(d, sg, sglen), GFP_ATOMIC);
+       if (!d)
+               return NULL;
+       d->dir = dir;
+       d->dev_addr = dev_addr;
+       d->es = es;
+       /* When the port_window is used, one frame must cover the window */
+       if (port_window) {
+               burst = port_window;
+               port_window_bytes = port_window * es_bytes[es];
+               d->ei = 1;
+               /*
+                * One frame covers the port_window and by  configure
+                * the source frame index to be -1 * (port_window - 1)
+                * we instruct the sDMA that after a frame is processed
+                * it should move back to the start of the window.
+                */
+               d->fi = -(port_window_bytes - 1);
+       }
+       d->ccr = c->ccr | CCR_SYNC_FRAME;
+       if (dir == DMA_DEV_TO_MEM) {
+               d->csdp = CSDP_DST_BURST_64 | CSDP_DST_PACKED;
+               d->ccr |= CCR_DST_AMODE_POSTINC;
+               if (port_window) {
+                       d->ccr |= CCR_SRC_AMODE_DBLIDX;
+                       if (port_window_bytes >= 64)
+                               d->csdp |= CSDP_SRC_BURST_64;
+                       else if (port_window_bytes >= 32)
+                               d->csdp |= CSDP_SRC_BURST_32;
+                       else if (port_window_bytes >= 16)
+                               d->csdp |= CSDP_SRC_BURST_16;
+               } else {
+                       d->ccr |= CCR_SRC_AMODE_CONSTANT;
+               }
+       } else {
+               d->csdp = CSDP_SRC_BURST_64 | CSDP_SRC_PACKED;
+               d->ccr |= CCR_SRC_AMODE_POSTINC;
+               if (port_window) {
+                       d->ccr |= CCR_DST_AMODE_DBLIDX;
+                       if (port_window_bytes >= 64)
+                               d->csdp |= CSDP_DST_BURST_64;
+                       else if (port_window_bytes >= 32)
+                               d->csdp |= CSDP_DST_BURST_32;
+                       else if (port_window_bytes >= 16)
+                               d->csdp |= CSDP_DST_BURST_16;
+               } else {
+                       d->ccr |= CCR_DST_AMODE_CONSTANT;
+               }
+       }
+       d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
+       d->csdp |= es;
+       if (dma_omap1()) {
+               d->cicr |= CICR_TOUT_IE;
+               if (dir == DMA_DEV_TO_MEM)
+                       d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
+               else
+                       d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
+       } else {
+               if (dir == DMA_DEV_TO_MEM)
+                       d->ccr |= CCR_TRIGGER_SRC;
+               d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
+               if (port_window)
+                       d->csdp |= CSDP_WRITE_LAST_NON_POSTED;
+       }
+       if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
+               d->clnk_ctrl = c->dma_ch;
+       /*
+        * Build our scatterlist entries: each contains the address,
+        * the number of elements (EN) in each frame, and the number of
+        * frames (FN).  Number of bytes for this entry = ES * EN * FN.
+        *
+        * Burst size translates to number of elements with frame sync.
+        * Note: DMA engine defines burst to be the number of dev-width
+        * transfers.
+        */
+       en = burst;
+       frame_bytes = es_bytes[es] * en;
+       if (sglen >= 2)
+               d->using_ll = od->ll123_supported;
+       for_each_sg(sgl, sgent, sglen, i) {
+               struct omap_sg *osg = &d->sg[i];
+               osg->addr = sg_dma_address(sgent);
+               osg->en = en;
+               osg->fn = sg_dma_len(sgent) / frame_bytes;
+               if (d->using_ll) {
+                       osg->t2_desc = dma_pool_alloc(od->desc_pool, GFP_ATOMIC,
+                                                     &osg->t2_desc_paddr);
+                       if (!osg->t2_desc) {
+                               dev_err(chan->device->dev,
+                                       "t2_desc[%d] allocation failed\n", i);
+                               ll_failed = true;
+                               d->using_ll = false;
+                               continue;
+                       }
+                       omap_dma_fill_type2_desc(d, i, dir, (i == sglen - 1));
+               }
+       }
+       d->sglen = sglen;
+       /* Release the dma_pool entries if one allocation failed */
+       if (ll_failed) {
+               for (i = 0; i < d->sglen; i++) {
+                       struct omap_sg *osg = &d->sg[i];
+                       if (osg->t2_desc) {
+                               dma_pool_free(od->desc_pool, osg->t2_desc,
+                                             osg->t2_desc_paddr);
+                               osg->t2_desc = NULL;
+                       }
+               }
+       }
+       return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
+ }
+ static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
+       struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
+       size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
+ {
+       struct omap_dmadev *od = to_omap_dma_dev(chan->device);
+       struct omap_chan *c = to_omap_dma_chan(chan);
+       enum dma_slave_buswidth dev_width;
+       struct omap_desc *d;
+       dma_addr_t dev_addr;
+       unsigned es;
+       u32 burst;
+       if (dir == DMA_DEV_TO_MEM) {
+               dev_addr = c->cfg.src_addr;
+               dev_width = c->cfg.src_addr_width;
+               burst = c->cfg.src_maxburst;
+       } else if (dir == DMA_MEM_TO_DEV) {
+               dev_addr = c->cfg.dst_addr;
+               dev_width = c->cfg.dst_addr_width;
+               burst = c->cfg.dst_maxburst;
+       } else {
+               dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
+               return NULL;
+       }
+       /* Bus width translates to the element size (ES) */
+       switch (dev_width) {
+       case DMA_SLAVE_BUSWIDTH_1_BYTE:
+               es = CSDP_DATA_TYPE_8;
+               break;
+       case DMA_SLAVE_BUSWIDTH_2_BYTES:
+               es = CSDP_DATA_TYPE_16;
+               break;
+       case DMA_SLAVE_BUSWIDTH_4_BYTES:
+               es = CSDP_DATA_TYPE_32;
+               break;
+       default: /* not reached */
+               return NULL;
+       }
+       /* Now allocate and setup the descriptor. */
+       d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
+       if (!d)
+               return NULL;
+       d->dir = dir;
+       d->dev_addr = dev_addr;
+       d->fi = burst;
+       d->es = es;
+       d->sg[0].addr = buf_addr;
+       d->sg[0].en = period_len / es_bytes[es];
+       d->sg[0].fn = buf_len / period_len;
+       d->sglen = 1;
+       d->ccr = c->ccr;
+       if (dir == DMA_DEV_TO_MEM)
+               d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
+       else
+               d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
+       d->cicr = CICR_DROP_IE;
+       if (flags & DMA_PREP_INTERRUPT)
+               d->cicr |= CICR_FRAME_IE;
+       d->csdp = es;
+       if (dma_omap1()) {
+               d->cicr |= CICR_TOUT_IE;
+               if (dir == DMA_DEV_TO_MEM)
+                       d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
+               else
+                       d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
+       } else {
+               if (burst)
+                       d->ccr |= CCR_SYNC_PACKET;
+               else
+                       d->ccr |= CCR_SYNC_ELEMENT;
+               if (dir == DMA_DEV_TO_MEM) {
+                       d->ccr |= CCR_TRIGGER_SRC;
+                       d->csdp |= CSDP_DST_PACKED;
+               } else {
+                       d->csdp |= CSDP_SRC_PACKED;
+               }
+               d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
+               d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
+       }
+       if (__dma_omap15xx(od->plat->dma_attr))
+               d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
+       else
+               d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;
+       c->cyclic = true;
+       return vchan_tx_prep(&c->vc, &d->vd, flags);
+ }
+ static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy(
+       struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
+       size_t len, unsigned long tx_flags)
+ {
+       struct omap_chan *c = to_omap_dma_chan(chan);
+       struct omap_desc *d;
+       uint8_t data_type;
+       d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
+       if (!d)
+               return NULL;
+       data_type = __ffs((src | dest | len));
+       if (data_type > CSDP_DATA_TYPE_32)
+               data_type = CSDP_DATA_TYPE_32;
+       d->dir = DMA_MEM_TO_MEM;
+       d->dev_addr = src;
+       d->fi = 0;
+       d->es = data_type;
+       d->sg[0].en = len / BIT(data_type);
+       d->sg[0].fn = 1;
+       d->sg[0].addr = dest;
+       d->sglen = 1;
+       d->ccr = c->ccr;
+       d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC;
+       d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
+       d->csdp = data_type;
+       if (dma_omap1()) {
+               d->cicr |= CICR_TOUT_IE;
+               d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
+       } else {
+               d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
+               d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
+               d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
+       }
+       return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
+ }
+ static struct dma_async_tx_descriptor *omap_dma_prep_dma_interleaved(
+       struct dma_chan *chan, struct dma_interleaved_template *xt,
+       unsigned long flags)
+ {
+       struct omap_chan *c = to_omap_dma_chan(chan);
+       struct omap_desc *d;
+       struct omap_sg *sg;
+       uint8_t data_type;
+       size_t src_icg, dst_icg;
+       /* Slave mode is not supported */
+       if (is_slave_direction(xt->dir))
+               return NULL;
+       if (xt->frame_size != 1 || xt->numf == 0)
+               return NULL;
+       d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
+       if (!d)
+               return NULL;
+       data_type = __ffs((xt->src_start | xt->dst_start | xt->sgl[0].size));
+       if (data_type > CSDP_DATA_TYPE_32)
+               data_type = CSDP_DATA_TYPE_32;
+       sg = &d->sg[0];
+       d->dir = DMA_MEM_TO_MEM;
+       d->dev_addr = xt->src_start;
+       d->es = data_type;
+       sg->en = xt->sgl[0].size / BIT(data_type);
+       sg->fn = xt->numf;
+       sg->addr = xt->dst_start;
+       d->sglen = 1;
+       d->ccr = c->ccr;
+       src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
+       dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
+       if (src_icg) {
+               d->ccr |= CCR_SRC_AMODE_DBLIDX;
+               d->ei = 1;
+               d->fi = src_icg;
+       } else if (xt->src_inc) {
+               d->ccr |= CCR_SRC_AMODE_POSTINC;
+               d->fi = 0;
+       } else {
+               dev_err(chan->device->dev,
+                       "%s: SRC constant addressing is not supported\n",
+                       __func__);
+               kfree(d);
+               return NULL;
+       }
+       if (dst_icg) {
+               d->ccr |= CCR_DST_AMODE_DBLIDX;
+               sg->ei = 1;
+               sg->fi = dst_icg;
+       } else if (xt->dst_inc) {
+               d->ccr |= CCR_DST_AMODE_POSTINC;
+               sg->fi = 0;
+       } else {
+               dev_err(chan->device->dev,
+                       "%s: DST constant addressing is not supported\n",
+                       __func__);
+               kfree(d);
+               return NULL;
+       }
+       d->cicr = CICR_DROP_IE | CICR_FRAME_IE;
+       d->csdp = data_type;
+       if (dma_omap1()) {
+               d->cicr |= CICR_TOUT_IE;
+               d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
+       } else {
+               d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
+               d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
+               d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
+       }
+       return vchan_tx_prep(&c->vc, &d->vd, flags);
+ }
+ static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
+ {
+       struct omap_chan *c = to_omap_dma_chan(chan);
+       if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
+           cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
+               return -EINVAL;
+       if (cfg->src_maxburst > chan->device->max_burst ||
+           cfg->dst_maxburst > chan->device->max_burst)
+               return -EINVAL;
+       memcpy(&c->cfg, cfg, sizeof(c->cfg));
+       return 0;
+ }
+ static int omap_dma_terminate_all(struct dma_chan *chan)
+ {
+       struct omap_chan *c = to_omap_dma_chan(chan);
+       unsigned long flags;
+       LIST_HEAD(head);
+       spin_lock_irqsave(&c->vc.lock, flags);
+       /*
+        * Stop DMA activity: we assume the callback will not be called
+        * after omap_dma_stop() returns (even if it does, it will see
+        * c->desc is NULL and exit.)
+        */
+       if (c->desc) {
+               vchan_terminate_vdesc(&c->desc->vd);
+               c->desc = NULL;
+               /* Avoid stopping the dma twice */
+               if (!c->paused)
+                       omap_dma_stop(c);
+       }
+       c->cyclic = false;
+       c->paused = false;
+       vchan_get_all_descriptors(&c->vc, &head);
+       spin_unlock_irqrestore(&c->vc.lock, flags);
+       vchan_dma_desc_free_list(&c->vc, &head);
+       return 0;
+ }
+ static void omap_dma_synchronize(struct dma_chan *chan)
+ {
+       struct omap_chan *c = to_omap_dma_chan(chan);
+       vchan_synchronize(&c->vc);
+ }
+ static int omap_dma_pause(struct dma_chan *chan)
+ {
+       struct omap_chan *c = to_omap_dma_chan(chan);
+       struct omap_dmadev *od = to_omap_dma_dev(chan->device);
+       unsigned long flags;
+       int ret = -EINVAL;
+       bool can_pause = false;
+       spin_lock_irqsave(&od->irq_lock, flags);
+       if (!c->desc)
+               goto out;
+       if (c->cyclic)
+               can_pause = true;
+       /*
+        * We do not allow DMA_MEM_TO_DEV transfers to be paused.
+        * From the AM572x TRM, 16.1.4.18 Disabling a Channel During Transfer:
+        * "When a channel is disabled during a transfer, the channel undergoes
+        * an abort, unless it is hardware-source-synchronized …".
+        * A source-synchronised channel is one where the fetching of data is
+        * under control of the device. In other words, a device-to-memory
+        * transfer. So, a destination-synchronised channel (which would be a
+        * memory-to-device transfer) undergoes an abort if the the CCR_ENABLE
+        * bit is cleared.
+        * From 16.1.4.20.4.6.2 Abort: "If an abort trigger occurs, the channel
+        * aborts immediately after completion of current read/write
+        * transactions and then the FIFO is cleaned up." The term "cleaned up"
+        * is not defined. TI recommends to check that RD_ACTIVE and WR_ACTIVE
+        * are both clear _before_ disabling the channel, otherwise data loss
+        * will occur.
+        * The problem is that if the channel is active, then device activity
+        * can result in DMA activity starting between reading those as both
+        * clear and the write to DMA_CCR to clear the enable bit hitting the
+        * hardware. If the DMA hardware can't drain the data in its FIFO to the
+        * destination, then data loss "might" occur (say if we write to an UART
+        * and the UART is not accepting any further data).
+        */
+       else if (c->desc->dir == DMA_DEV_TO_MEM)
+               can_pause = true;
+       if (can_pause && !c->paused) {
+               ret = omap_dma_stop(c);
+               if (!ret)
+                       c->paused = true;
+       }
+ out:
+       spin_unlock_irqrestore(&od->irq_lock, flags);
+       return ret;
+ }
+ static int omap_dma_resume(struct dma_chan *chan)
+ {
+       struct omap_chan *c = to_omap_dma_chan(chan);
+       struct omap_dmadev *od = to_omap_dma_dev(chan->device);
+       unsigned long flags;
+       int ret = -EINVAL;
+       spin_lock_irqsave(&od->irq_lock, flags);
+       if (c->paused && c->desc) {
+               mb();
+               /* Restore channel link register */
+               omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);
+               omap_dma_start(c, c->desc);
+               c->paused = false;
+               ret = 0;
+       }
+       spin_unlock_irqrestore(&od->irq_lock, flags);
+       return ret;
+ }
+ static int omap_dma_chan_init(struct omap_dmadev *od)
+ {
+       struct omap_chan *c;
+       c = kzalloc(sizeof(*c), GFP_KERNEL);
+       if (!c)
+               return -ENOMEM;
+       c->reg_map = od->reg_map;
+       c->vc.desc_free = omap_dma_desc_free;
+       vchan_init(&c->vc, &od->ddev);
+       return 0;
+ }
+ static void omap_dma_free(struct omap_dmadev *od)
+ {
+       while (!list_empty(&od->ddev.channels)) {
+               struct omap_chan *c = list_first_entry(&od->ddev.channels,
+                       struct omap_chan, vc.chan.device_node);
+               list_del(&c->vc.chan.device_node);
+               tasklet_kill(&c->vc.task);
+               kfree(c);
+       }
+ }
+ #define OMAP_DMA_BUSWIDTHS    (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
+                                BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
+                                BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
+ static int omap_dma_probe(struct platform_device *pdev)
+ {
+       struct omap_dmadev *od;
+       struct resource *res;
+       int rc, i, irq;
+       u32 lch_count;
+       od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
+       if (!od)
+               return -ENOMEM;
+       res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       od->base = devm_ioremap_resource(&pdev->dev, res);
+       if (IS_ERR(od->base))
+               return PTR_ERR(od->base);
+       od->plat = omap_get_plat_info();
+       if (!od->plat)
+               return -EPROBE_DEFER;
+       od->reg_map = od->plat->reg_map;
+       dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
+       dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
+       dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask);
+       dma_cap_set(DMA_INTERLEAVE, od->ddev.cap_mask);
+       od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
+       od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
+       od->ddev.device_tx_status = omap_dma_tx_status;
+       od->ddev.device_issue_pending = omap_dma_issue_pending;
+       od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
+       od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
+       od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy;
+       od->ddev.device_prep_interleaved_dma = omap_dma_prep_dma_interleaved;
+       od->ddev.device_config = omap_dma_slave_config;
+       od->ddev.device_pause = omap_dma_pause;
+       od->ddev.device_resume = omap_dma_resume;
+       od->ddev.device_terminate_all = omap_dma_terminate_all;
+       od->ddev.device_synchronize = omap_dma_synchronize;
+       od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS;
+       od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
+       od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
+       od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
+       od->ddev.max_burst = SZ_16M - 1; /* CCEN: 24bit unsigned */
+       od->ddev.dev = &pdev->dev;
+       INIT_LIST_HEAD(&od->ddev.channels);
+       spin_lock_init(&od->lock);
+       spin_lock_init(&od->irq_lock);
+       /* Number of DMA requests */
+       od->dma_requests = OMAP_SDMA_REQUESTS;
+       if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
+                                                     "dma-requests",
+                                                     &od->dma_requests)) {
+               dev_info(&pdev->dev,
+                        "Missing dma-requests property, using %u.\n",
+                        OMAP_SDMA_REQUESTS);
+       }
+       /* Number of available logical channels */
+       if (!pdev->dev.of_node) {
+               lch_count = od->plat->dma_attr->lch_count;
+               if (unlikely(!lch_count))
+                       lch_count = OMAP_SDMA_CHANNELS;
+       } else if (of_property_read_u32(pdev->dev.of_node, "dma-channels",
+                                       &lch_count)) {
+               dev_info(&pdev->dev,
+                        "Missing dma-channels property, using %u.\n",
+                        OMAP_SDMA_CHANNELS);
+               lch_count = OMAP_SDMA_CHANNELS;
+       }
+       od->lch_map = devm_kcalloc(&pdev->dev, lch_count, sizeof(*od->lch_map),
+                                  GFP_KERNEL);
+       if (!od->lch_map)
+               return -ENOMEM;
+       for (i = 0; i < od->dma_requests; i++) {
+               rc = omap_dma_chan_init(od);
+               if (rc) {
+                       omap_dma_free(od);
+                       return rc;
+               }
+       }
+       irq = platform_get_irq(pdev, 1);
+       if (irq <= 0) {
+               dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
+               od->legacy = true;
+       } else {
+               /* Disable all interrupts */
+               od->irq_enable_mask = 0;
+               omap_dma_glbl_write(od, IRQENABLE_L1, 0);
+               rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
+                                     IRQF_SHARED, "omap-dma-engine", od);
+               if (rc)
+                       return rc;
+       }
+       if (omap_dma_glbl_read(od, CAPS_0) & CAPS_0_SUPPORT_LL123)
+               od->ll123_supported = true;
+       od->ddev.filter.map = od->plat->slave_map;
+       od->ddev.filter.mapcnt = od->plat->slavecnt;
+       od->ddev.filter.fn = omap_dma_filter_fn;
+       if (od->ll123_supported) {
+               od->desc_pool = dma_pool_create(dev_name(&pdev->dev),
+                                               &pdev->dev,
+                                               sizeof(struct omap_type2_desc),
+                                               4, 0);
+               if (!od->desc_pool) {
+                       dev_err(&pdev->dev,
+                               "unable to allocate descriptor pool\n");
+                       od->ll123_supported = false;
+               }
+       }
+       rc = dma_async_device_register(&od->ddev);
+       if (rc) {
+               pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
+                       rc);
+               omap_dma_free(od);
+               return rc;
+       }
+       platform_set_drvdata(pdev, od);
+       if (pdev->dev.of_node) {
+               omap_dma_info.dma_cap = od->ddev.cap_mask;
+               /* Device-tree DMA controller registration */
+               rc = of_dma_controller_register(pdev->dev.of_node,
+                               of_dma_simple_xlate, &omap_dma_info);
+               if (rc) {
+                       pr_warn("OMAP-DMA: failed to register DMA controller\n");
+                       dma_async_device_unregister(&od->ddev);
+                       omap_dma_free(od);
+               }
+       }
+       dev_info(&pdev->dev, "OMAP DMA engine driver%s\n",
+                od->ll123_supported ? " (LinkedList1/2/3 supported)" : "");
+       return rc;
+ }
+ static int omap_dma_remove(struct platform_device *pdev)
+ {
+       struct omap_dmadev *od = platform_get_drvdata(pdev);
+       int irq;
+       if (pdev->dev.of_node)
+               of_dma_controller_free(pdev->dev.of_node);
+       irq = platform_get_irq(pdev, 1);
+       devm_free_irq(&pdev->dev, irq, od);
+       dma_async_device_unregister(&od->ddev);
+       if (!od->legacy) {
+               /* Disable all interrupts */
+               omap_dma_glbl_write(od, IRQENABLE_L0, 0);
+       }
+       if (od->ll123_supported)
+               dma_pool_destroy(od->desc_pool);
+       omap_dma_free(od);
+       return 0;
+ }
+ static const struct of_device_id omap_dma_match[] = {
+       { .compatible = "ti,omap2420-sdma", },
+       { .compatible = "ti,omap2430-sdma", },
+       { .compatible = "ti,omap3430-sdma", },
+       { .compatible = "ti,omap3630-sdma", },
+       { .compatible = "ti,omap4430-sdma", },
+       {},
+ };
+ MODULE_DEVICE_TABLE(of, omap_dma_match);
+ static struct platform_driver omap_dma_driver = {
+       .probe  = omap_dma_probe,
+       .remove = omap_dma_remove,
+       .driver = {
+               .name = "omap-dma-engine",
+               .of_match_table = of_match_ptr(omap_dma_match),
+       },
+ };
+ bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
+ {
+       if (chan->device->dev->driver == &omap_dma_driver.driver) {
+               struct omap_dmadev *od = to_omap_dma_dev(chan->device);
+               struct omap_chan *c = to_omap_dma_chan(chan);
+               unsigned req = *(unsigned *)param;
+               if (req <= od->dma_requests) {
+                       c->dma_sig = req;
+                       return true;
+               }
+       }
+       return false;
+ }
+ EXPORT_SYMBOL_GPL(omap_dma_filter_fn);
+ static int omap_dma_init(void)
+ {
+       return platform_driver_register(&omap_dma_driver);
+ }
+ subsys_initcall(omap_dma_init);
+ static void __exit omap_dma_exit(void)
+ {
+       platform_driver_unregister(&omap_dma_driver);
+ }
+ module_exit(omap_dma_exit);
+ MODULE_AUTHOR("Russell King");
+ MODULE_LICENSE("GPL");