Merge tag '5.12-smb3-part1' of git://git.samba.org/sfrench/cifs-2.6
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "mmu_lock.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 #include <linux/kvm_dirty_ring.h>
68
69 /* Worst case buffer size needed for holding an integer. */
70 #define ITOA_MAX_LEN 12
71
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74
75 /* Architectures should define their poll value according to the halt latency */
76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
77 module_param(halt_poll_ns, uint, 0644);
78 EXPORT_SYMBOL_GPL(halt_poll_ns);
79
80 /* Default doubles per-vcpu halt_poll_ns. */
81 unsigned int halt_poll_ns_grow = 2;
82 module_param(halt_poll_ns_grow, uint, 0644);
83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84
85 /* The start value to grow halt_poll_ns from */
86 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
87 module_param(halt_poll_ns_grow_start, uint, 0644);
88 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
89
90 /* Default resets per-vcpu halt_poll_ns . */
91 unsigned int halt_poll_ns_shrink;
92 module_param(halt_poll_ns_shrink, uint, 0644);
93 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
94
95 /*
96  * Ordering of locks:
97  *
98  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
99  */
100
101 DEFINE_MUTEX(kvm_lock);
102 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
103 LIST_HEAD(vm_list);
104
105 static cpumask_var_t cpus_hardware_enabled;
106 static int kvm_usage_count;
107 static atomic_t hardware_enable_failed;
108
109 static struct kmem_cache *kvm_vcpu_cache;
110
111 static __read_mostly struct preempt_ops kvm_preempt_ops;
112 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
113
114 struct dentry *kvm_debugfs_dir;
115 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
116
117 static int kvm_debugfs_num_entries;
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                                                    unsigned long start, unsigned long end)
160 {
161 }
162
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165         /*
166          * The metadata used by is_zone_device_page() to determine whether or
167          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168          * the device has been pinned, e.g. by get_user_pages().  WARN if the
169          * page_count() is zero to help detect bad usage of this helper.
170          */
171         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172                 return false;
173
174         return is_zone_device_page(pfn_to_page(pfn));
175 }
176
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179         /*
180          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181          * perspective they are "normal" pages, albeit with slightly different
182          * usage rules.
183          */
184         if (pfn_valid(pfn))
185                 return PageReserved(pfn_to_page(pfn)) &&
186                        !is_zero_pfn(pfn) &&
187                        !kvm_is_zone_device_pfn(pfn);
188
189         return true;
190 }
191
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194         struct page *page = pfn_to_page(pfn);
195
196         if (!PageTransCompoundMap(page))
197                 return false;
198
199         return is_transparent_hugepage(compound_head(page));
200 }
201
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207         int cpu = get_cpu();
208
209         __this_cpu_write(kvm_running_vcpu, vcpu);
210         preempt_notifier_register(&vcpu->preempt_notifier);
211         kvm_arch_vcpu_load(vcpu, cpu);
212         put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218         preempt_disable();
219         kvm_arch_vcpu_put(vcpu);
220         preempt_notifier_unregister(&vcpu->preempt_notifier);
221         __this_cpu_write(kvm_running_vcpu, NULL);
222         preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230
231         /*
232          * We need to wait for the VCPU to reenable interrupts and get out of
233          * READING_SHADOW_PAGE_TABLES mode.
234          */
235         if (req & KVM_REQUEST_WAIT)
236                 return mode != OUTSIDE_GUEST_MODE;
237
238         /*
239          * Need to kick a running VCPU, but otherwise there is nothing to do.
240          */
241         return mode == IN_GUEST_MODE;
242 }
243
244 static void ack_flush(void *_completed)
245 {
246 }
247
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250         if (unlikely(!cpus))
251                 cpus = cpu_online_mask;
252
253         if (cpumask_empty(cpus))
254                 return false;
255
256         smp_call_function_many(cpus, ack_flush, NULL, wait);
257         return true;
258 }
259
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261                                  struct kvm_vcpu *except,
262                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264         int i, cpu, me;
265         struct kvm_vcpu *vcpu;
266         bool called;
267
268         me = get_cpu();
269
270         kvm_for_each_vcpu(i, vcpu, kvm) {
271                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272                     vcpu == except)
273                         continue;
274
275                 kvm_make_request(req, vcpu);
276                 cpu = vcpu->cpu;
277
278                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279                         continue;
280
281                 if (tmp != NULL && cpu != -1 && cpu != me &&
282                     kvm_request_needs_ipi(vcpu, req))
283                         __cpumask_set_cpu(cpu, tmp);
284         }
285
286         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287         put_cpu();
288
289         return called;
290 }
291
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293                                       struct kvm_vcpu *except)
294 {
295         cpumask_var_t cpus;
296         bool called;
297
298         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
300         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301
302         free_cpumask_var(cpus);
303         return called;
304 }
305
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308         return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310
311 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
312 void kvm_flush_remote_tlbs(struct kvm *kvm)
313 {
314         /*
315          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
316          * kvm_make_all_cpus_request.
317          */
318         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
319
320         /*
321          * We want to publish modifications to the page tables before reading
322          * mode. Pairs with a memory barrier in arch-specific code.
323          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
324          * and smp_mb in walk_shadow_page_lockless_begin/end.
325          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
326          *
327          * There is already an smp_mb__after_atomic() before
328          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
329          * barrier here.
330          */
331         if (!kvm_arch_flush_remote_tlb(kvm)
332             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
333                 ++kvm->stat.remote_tlb_flush;
334         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
335 }
336 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
337 #endif
338
339 void kvm_reload_remote_mmus(struct kvm *kvm)
340 {
341         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
342 }
343
344 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
345 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
346                                                gfp_t gfp_flags)
347 {
348         gfp_flags |= mc->gfp_zero;
349
350         if (mc->kmem_cache)
351                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
352         else
353                 return (void *)__get_free_page(gfp_flags);
354 }
355
356 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
357 {
358         void *obj;
359
360         if (mc->nobjs >= min)
361                 return 0;
362         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
363                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
364                 if (!obj)
365                         return mc->nobjs >= min ? 0 : -ENOMEM;
366                 mc->objects[mc->nobjs++] = obj;
367         }
368         return 0;
369 }
370
371 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
372 {
373         return mc->nobjs;
374 }
375
376 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
377 {
378         while (mc->nobjs) {
379                 if (mc->kmem_cache)
380                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
381                 else
382                         free_page((unsigned long)mc->objects[--mc->nobjs]);
383         }
384 }
385
386 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
387 {
388         void *p;
389
390         if (WARN_ON(!mc->nobjs))
391                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
392         else
393                 p = mc->objects[--mc->nobjs];
394         BUG_ON(!p);
395         return p;
396 }
397 #endif
398
399 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
400 {
401         mutex_init(&vcpu->mutex);
402         vcpu->cpu = -1;
403         vcpu->kvm = kvm;
404         vcpu->vcpu_id = id;
405         vcpu->pid = NULL;
406         rcuwait_init(&vcpu->wait);
407         kvm_async_pf_vcpu_init(vcpu);
408
409         vcpu->pre_pcpu = -1;
410         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
411
412         kvm_vcpu_set_in_spin_loop(vcpu, false);
413         kvm_vcpu_set_dy_eligible(vcpu, false);
414         vcpu->preempted = false;
415         vcpu->ready = false;
416         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
417 }
418
419 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
420 {
421         kvm_dirty_ring_free(&vcpu->dirty_ring);
422         kvm_arch_vcpu_destroy(vcpu);
423
424         /*
425          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
426          * the vcpu->pid pointer, and at destruction time all file descriptors
427          * are already gone.
428          */
429         put_pid(rcu_dereference_protected(vcpu->pid, 1));
430
431         free_page((unsigned long)vcpu->run);
432         kmem_cache_free(kvm_vcpu_cache, vcpu);
433 }
434 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
435
436 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
437 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
438 {
439         return container_of(mn, struct kvm, mmu_notifier);
440 }
441
442 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
443                                               struct mm_struct *mm,
444                                               unsigned long start, unsigned long end)
445 {
446         struct kvm *kvm = mmu_notifier_to_kvm(mn);
447         int idx;
448
449         idx = srcu_read_lock(&kvm->srcu);
450         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
451         srcu_read_unlock(&kvm->srcu, idx);
452 }
453
454 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
455                                         struct mm_struct *mm,
456                                         unsigned long address,
457                                         pte_t pte)
458 {
459         struct kvm *kvm = mmu_notifier_to_kvm(mn);
460         int idx;
461
462         idx = srcu_read_lock(&kvm->srcu);
463
464         KVM_MMU_LOCK(kvm);
465
466         kvm->mmu_notifier_seq++;
467
468         if (kvm_set_spte_hva(kvm, address, pte))
469                 kvm_flush_remote_tlbs(kvm);
470
471         KVM_MMU_UNLOCK(kvm);
472         srcu_read_unlock(&kvm->srcu, idx);
473 }
474
475 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
476                                         const struct mmu_notifier_range *range)
477 {
478         struct kvm *kvm = mmu_notifier_to_kvm(mn);
479         int need_tlb_flush = 0, idx;
480
481         idx = srcu_read_lock(&kvm->srcu);
482         KVM_MMU_LOCK(kvm);
483         /*
484          * The count increase must become visible at unlock time as no
485          * spte can be established without taking the mmu_lock and
486          * count is also read inside the mmu_lock critical section.
487          */
488         kvm->mmu_notifier_count++;
489         if (likely(kvm->mmu_notifier_count == 1)) {
490                 kvm->mmu_notifier_range_start = range->start;
491                 kvm->mmu_notifier_range_end = range->end;
492         } else {
493                 /*
494                  * Fully tracking multiple concurrent ranges has dimishing
495                  * returns. Keep things simple and just find the minimal range
496                  * which includes the current and new ranges. As there won't be
497                  * enough information to subtract a range after its invalidate
498                  * completes, any ranges invalidated concurrently will
499                  * accumulate and persist until all outstanding invalidates
500                  * complete.
501                  */
502                 kvm->mmu_notifier_range_start =
503                         min(kvm->mmu_notifier_range_start, range->start);
504                 kvm->mmu_notifier_range_end =
505                         max(kvm->mmu_notifier_range_end, range->end);
506         }
507         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
508                                              range->flags);
509         /* we've to flush the tlb before the pages can be freed */
510         if (need_tlb_flush || kvm->tlbs_dirty)
511                 kvm_flush_remote_tlbs(kvm);
512
513         KVM_MMU_UNLOCK(kvm);
514         srcu_read_unlock(&kvm->srcu, idx);
515
516         return 0;
517 }
518
519 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
520                                         const struct mmu_notifier_range *range)
521 {
522         struct kvm *kvm = mmu_notifier_to_kvm(mn);
523
524         KVM_MMU_LOCK(kvm);
525         /*
526          * This sequence increase will notify the kvm page fault that
527          * the page that is going to be mapped in the spte could have
528          * been freed.
529          */
530         kvm->mmu_notifier_seq++;
531         smp_wmb();
532         /*
533          * The above sequence increase must be visible before the
534          * below count decrease, which is ensured by the smp_wmb above
535          * in conjunction with the smp_rmb in mmu_notifier_retry().
536          */
537         kvm->mmu_notifier_count--;
538         KVM_MMU_UNLOCK(kvm);
539
540         BUG_ON(kvm->mmu_notifier_count < 0);
541 }
542
543 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
544                                               struct mm_struct *mm,
545                                               unsigned long start,
546                                               unsigned long end)
547 {
548         struct kvm *kvm = mmu_notifier_to_kvm(mn);
549         int young, idx;
550
551         idx = srcu_read_lock(&kvm->srcu);
552         KVM_MMU_LOCK(kvm);
553
554         young = kvm_age_hva(kvm, start, end);
555         if (young)
556                 kvm_flush_remote_tlbs(kvm);
557
558         KVM_MMU_UNLOCK(kvm);
559         srcu_read_unlock(&kvm->srcu, idx);
560
561         return young;
562 }
563
564 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
565                                         struct mm_struct *mm,
566                                         unsigned long start,
567                                         unsigned long end)
568 {
569         struct kvm *kvm = mmu_notifier_to_kvm(mn);
570         int young, idx;
571
572         idx = srcu_read_lock(&kvm->srcu);
573         KVM_MMU_LOCK(kvm);
574         /*
575          * Even though we do not flush TLB, this will still adversely
576          * affect performance on pre-Haswell Intel EPT, where there is
577          * no EPT Access Bit to clear so that we have to tear down EPT
578          * tables instead. If we find this unacceptable, we can always
579          * add a parameter to kvm_age_hva so that it effectively doesn't
580          * do anything on clear_young.
581          *
582          * Also note that currently we never issue secondary TLB flushes
583          * from clear_young, leaving this job up to the regular system
584          * cadence. If we find this inaccurate, we might come up with a
585          * more sophisticated heuristic later.
586          */
587         young = kvm_age_hva(kvm, start, end);
588         KVM_MMU_UNLOCK(kvm);
589         srcu_read_unlock(&kvm->srcu, idx);
590
591         return young;
592 }
593
594 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
595                                        struct mm_struct *mm,
596                                        unsigned long address)
597 {
598         struct kvm *kvm = mmu_notifier_to_kvm(mn);
599         int young, idx;
600
601         idx = srcu_read_lock(&kvm->srcu);
602         KVM_MMU_LOCK(kvm);
603         young = kvm_test_age_hva(kvm, address);
604         KVM_MMU_UNLOCK(kvm);
605         srcu_read_unlock(&kvm->srcu, idx);
606
607         return young;
608 }
609
610 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
611                                      struct mm_struct *mm)
612 {
613         struct kvm *kvm = mmu_notifier_to_kvm(mn);
614         int idx;
615
616         idx = srcu_read_lock(&kvm->srcu);
617         kvm_arch_flush_shadow_all(kvm);
618         srcu_read_unlock(&kvm->srcu, idx);
619 }
620
621 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
622         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
623         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
624         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
625         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
626         .clear_young            = kvm_mmu_notifier_clear_young,
627         .test_young             = kvm_mmu_notifier_test_young,
628         .change_pte             = kvm_mmu_notifier_change_pte,
629         .release                = kvm_mmu_notifier_release,
630 };
631
632 static int kvm_init_mmu_notifier(struct kvm *kvm)
633 {
634         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
635         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
636 }
637
638 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
639
640 static int kvm_init_mmu_notifier(struct kvm *kvm)
641 {
642         return 0;
643 }
644
645 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
646
647 static struct kvm_memslots *kvm_alloc_memslots(void)
648 {
649         int i;
650         struct kvm_memslots *slots;
651
652         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
653         if (!slots)
654                 return NULL;
655
656         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
657                 slots->id_to_index[i] = -1;
658
659         return slots;
660 }
661
662 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
663 {
664         if (!memslot->dirty_bitmap)
665                 return;
666
667         kvfree(memslot->dirty_bitmap);
668         memslot->dirty_bitmap = NULL;
669 }
670
671 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
672 {
673         kvm_destroy_dirty_bitmap(slot);
674
675         kvm_arch_free_memslot(kvm, slot);
676
677         slot->flags = 0;
678         slot->npages = 0;
679 }
680
681 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
682 {
683         struct kvm_memory_slot *memslot;
684
685         if (!slots)
686                 return;
687
688         kvm_for_each_memslot(memslot, slots)
689                 kvm_free_memslot(kvm, memslot);
690
691         kvfree(slots);
692 }
693
694 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
695 {
696         int i;
697
698         if (!kvm->debugfs_dentry)
699                 return;
700
701         debugfs_remove_recursive(kvm->debugfs_dentry);
702
703         if (kvm->debugfs_stat_data) {
704                 for (i = 0; i < kvm_debugfs_num_entries; i++)
705                         kfree(kvm->debugfs_stat_data[i]);
706                 kfree(kvm->debugfs_stat_data);
707         }
708 }
709
710 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
711 {
712         char dir_name[ITOA_MAX_LEN * 2];
713         struct kvm_stat_data *stat_data;
714         struct kvm_stats_debugfs_item *p;
715
716         if (!debugfs_initialized())
717                 return 0;
718
719         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
720         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
721
722         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
723                                          sizeof(*kvm->debugfs_stat_data),
724                                          GFP_KERNEL_ACCOUNT);
725         if (!kvm->debugfs_stat_data)
726                 return -ENOMEM;
727
728         for (p = debugfs_entries; p->name; p++) {
729                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
730                 if (!stat_data)
731                         return -ENOMEM;
732
733                 stat_data->kvm = kvm;
734                 stat_data->dbgfs_item = p;
735                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
736                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
737                                     kvm->debugfs_dentry, stat_data,
738                                     &stat_fops_per_vm);
739         }
740         return 0;
741 }
742
743 /*
744  * Called after the VM is otherwise initialized, but just before adding it to
745  * the vm_list.
746  */
747 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
748 {
749         return 0;
750 }
751
752 /*
753  * Called just after removing the VM from the vm_list, but before doing any
754  * other destruction.
755  */
756 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
757 {
758 }
759
760 static struct kvm *kvm_create_vm(unsigned long type)
761 {
762         struct kvm *kvm = kvm_arch_alloc_vm();
763         int r = -ENOMEM;
764         int i;
765
766         if (!kvm)
767                 return ERR_PTR(-ENOMEM);
768
769         KVM_MMU_LOCK_INIT(kvm);
770         mmgrab(current->mm);
771         kvm->mm = current->mm;
772         kvm_eventfd_init(kvm);
773         mutex_init(&kvm->lock);
774         mutex_init(&kvm->irq_lock);
775         mutex_init(&kvm->slots_lock);
776         INIT_LIST_HEAD(&kvm->devices);
777
778         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
779
780         if (init_srcu_struct(&kvm->srcu))
781                 goto out_err_no_srcu;
782         if (init_srcu_struct(&kvm->irq_srcu))
783                 goto out_err_no_irq_srcu;
784
785         refcount_set(&kvm->users_count, 1);
786         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
787                 struct kvm_memslots *slots = kvm_alloc_memslots();
788
789                 if (!slots)
790                         goto out_err_no_arch_destroy_vm;
791                 /* Generations must be different for each address space. */
792                 slots->generation = i;
793                 rcu_assign_pointer(kvm->memslots[i], slots);
794         }
795
796         for (i = 0; i < KVM_NR_BUSES; i++) {
797                 rcu_assign_pointer(kvm->buses[i],
798                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
799                 if (!kvm->buses[i])
800                         goto out_err_no_arch_destroy_vm;
801         }
802
803         kvm->max_halt_poll_ns = halt_poll_ns;
804
805         r = kvm_arch_init_vm(kvm, type);
806         if (r)
807                 goto out_err_no_arch_destroy_vm;
808
809         r = hardware_enable_all();
810         if (r)
811                 goto out_err_no_disable;
812
813 #ifdef CONFIG_HAVE_KVM_IRQFD
814         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
815 #endif
816
817         r = kvm_init_mmu_notifier(kvm);
818         if (r)
819                 goto out_err_no_mmu_notifier;
820
821         r = kvm_arch_post_init_vm(kvm);
822         if (r)
823                 goto out_err;
824
825         mutex_lock(&kvm_lock);
826         list_add(&kvm->vm_list, &vm_list);
827         mutex_unlock(&kvm_lock);
828
829         preempt_notifier_inc();
830
831         return kvm;
832
833 out_err:
834 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
835         if (kvm->mmu_notifier.ops)
836                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
837 #endif
838 out_err_no_mmu_notifier:
839         hardware_disable_all();
840 out_err_no_disable:
841         kvm_arch_destroy_vm(kvm);
842 out_err_no_arch_destroy_vm:
843         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
844         for (i = 0; i < KVM_NR_BUSES; i++)
845                 kfree(kvm_get_bus(kvm, i));
846         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
847                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
848         cleanup_srcu_struct(&kvm->irq_srcu);
849 out_err_no_irq_srcu:
850         cleanup_srcu_struct(&kvm->srcu);
851 out_err_no_srcu:
852         kvm_arch_free_vm(kvm);
853         mmdrop(current->mm);
854         return ERR_PTR(r);
855 }
856
857 static void kvm_destroy_devices(struct kvm *kvm)
858 {
859         struct kvm_device *dev, *tmp;
860
861         /*
862          * We do not need to take the kvm->lock here, because nobody else
863          * has a reference to the struct kvm at this point and therefore
864          * cannot access the devices list anyhow.
865          */
866         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
867                 list_del(&dev->vm_node);
868                 dev->ops->destroy(dev);
869         }
870 }
871
872 static void kvm_destroy_vm(struct kvm *kvm)
873 {
874         int i;
875         struct mm_struct *mm = kvm->mm;
876
877         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
878         kvm_destroy_vm_debugfs(kvm);
879         kvm_arch_sync_events(kvm);
880         mutex_lock(&kvm_lock);
881         list_del(&kvm->vm_list);
882         mutex_unlock(&kvm_lock);
883         kvm_arch_pre_destroy_vm(kvm);
884
885         kvm_free_irq_routing(kvm);
886         for (i = 0; i < KVM_NR_BUSES; i++) {
887                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
888
889                 if (bus)
890                         kvm_io_bus_destroy(bus);
891                 kvm->buses[i] = NULL;
892         }
893         kvm_coalesced_mmio_free(kvm);
894 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
895         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
896 #else
897         kvm_arch_flush_shadow_all(kvm);
898 #endif
899         kvm_arch_destroy_vm(kvm);
900         kvm_destroy_devices(kvm);
901         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
902                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
903         cleanup_srcu_struct(&kvm->irq_srcu);
904         cleanup_srcu_struct(&kvm->srcu);
905         kvm_arch_free_vm(kvm);
906         preempt_notifier_dec();
907         hardware_disable_all();
908         mmdrop(mm);
909 }
910
911 void kvm_get_kvm(struct kvm *kvm)
912 {
913         refcount_inc(&kvm->users_count);
914 }
915 EXPORT_SYMBOL_GPL(kvm_get_kvm);
916
917 void kvm_put_kvm(struct kvm *kvm)
918 {
919         if (refcount_dec_and_test(&kvm->users_count))
920                 kvm_destroy_vm(kvm);
921 }
922 EXPORT_SYMBOL_GPL(kvm_put_kvm);
923
924 /*
925  * Used to put a reference that was taken on behalf of an object associated
926  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
927  * of the new file descriptor fails and the reference cannot be transferred to
928  * its final owner.  In such cases, the caller is still actively using @kvm and
929  * will fail miserably if the refcount unexpectedly hits zero.
930  */
931 void kvm_put_kvm_no_destroy(struct kvm *kvm)
932 {
933         WARN_ON(refcount_dec_and_test(&kvm->users_count));
934 }
935 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
936
937 static int kvm_vm_release(struct inode *inode, struct file *filp)
938 {
939         struct kvm *kvm = filp->private_data;
940
941         kvm_irqfd_release(kvm);
942
943         kvm_put_kvm(kvm);
944         return 0;
945 }
946
947 /*
948  * Allocation size is twice as large as the actual dirty bitmap size.
949  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
950  */
951 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
952 {
953         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
954
955         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
956         if (!memslot->dirty_bitmap)
957                 return -ENOMEM;
958
959         return 0;
960 }
961
962 /*
963  * Delete a memslot by decrementing the number of used slots and shifting all
964  * other entries in the array forward one spot.
965  */
966 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
967                                       struct kvm_memory_slot *memslot)
968 {
969         struct kvm_memory_slot *mslots = slots->memslots;
970         int i;
971
972         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
973                 return;
974
975         slots->used_slots--;
976
977         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
978                 atomic_set(&slots->lru_slot, 0);
979
980         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
981                 mslots[i] = mslots[i + 1];
982                 slots->id_to_index[mslots[i].id] = i;
983         }
984         mslots[i] = *memslot;
985         slots->id_to_index[memslot->id] = -1;
986 }
987
988 /*
989  * "Insert" a new memslot by incrementing the number of used slots.  Returns
990  * the new slot's initial index into the memslots array.
991  */
992 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
993 {
994         return slots->used_slots++;
995 }
996
997 /*
998  * Move a changed memslot backwards in the array by shifting existing slots
999  * with a higher GFN toward the front of the array.  Note, the changed memslot
1000  * itself is not preserved in the array, i.e. not swapped at this time, only
1001  * its new index into the array is tracked.  Returns the changed memslot's
1002  * current index into the memslots array.
1003  */
1004 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1005                                             struct kvm_memory_slot *memslot)
1006 {
1007         struct kvm_memory_slot *mslots = slots->memslots;
1008         int i;
1009
1010         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1011             WARN_ON_ONCE(!slots->used_slots))
1012                 return -1;
1013
1014         /*
1015          * Move the target memslot backward in the array by shifting existing
1016          * memslots with a higher GFN (than the target memslot) towards the
1017          * front of the array.
1018          */
1019         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1020                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1021                         break;
1022
1023                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1024
1025                 /* Shift the next memslot forward one and update its index. */
1026                 mslots[i] = mslots[i + 1];
1027                 slots->id_to_index[mslots[i].id] = i;
1028         }
1029         return i;
1030 }
1031
1032 /*
1033  * Move a changed memslot forwards in the array by shifting existing slots with
1034  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1035  * is not preserved in the array, i.e. not swapped at this time, only its new
1036  * index into the array is tracked.  Returns the changed memslot's final index
1037  * into the memslots array.
1038  */
1039 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1040                                            struct kvm_memory_slot *memslot,
1041                                            int start)
1042 {
1043         struct kvm_memory_slot *mslots = slots->memslots;
1044         int i;
1045
1046         for (i = start; i > 0; i--) {
1047                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1048                         break;
1049
1050                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1051
1052                 /* Shift the next memslot back one and update its index. */
1053                 mslots[i] = mslots[i - 1];
1054                 slots->id_to_index[mslots[i].id] = i;
1055         }
1056         return i;
1057 }
1058
1059 /*
1060  * Re-sort memslots based on their GFN to account for an added, deleted, or
1061  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1062  * memslot lookup.
1063  *
1064  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1065  * at memslots[0] has the highest GFN.
1066  *
1067  * The sorting algorithm takes advantage of having initially sorted memslots
1068  * and knowing the position of the changed memslot.  Sorting is also optimized
1069  * by not swapping the updated memslot and instead only shifting other memslots
1070  * and tracking the new index for the update memslot.  Only once its final
1071  * index is known is the updated memslot copied into its position in the array.
1072  *
1073  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1074  *    the end of the array.
1075  *
1076  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1077  *    end of the array and then it forward to its correct location.
1078  *
1079  *  - When moving a memslot, the algorithm first moves the updated memslot
1080  *    backward to handle the scenario where the memslot's GFN was changed to a
1081  *    lower value.  update_memslots() then falls through and runs the same flow
1082  *    as creating a memslot to move the memslot forward to handle the scenario
1083  *    where its GFN was changed to a higher value.
1084  *
1085  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1086  * historical reasons.  Originally, invalid memslots where denoted by having
1087  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1088  * to the end of the array.  The current algorithm uses dedicated logic to
1089  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1090  *
1091  * The other historical motiviation for highest->lowest was to improve the
1092  * performance of memslot lookup.  KVM originally used a linear search starting
1093  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1094  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1095  * single memslot above the 4gb boundary.  As the largest memslot is also the
1096  * most likely to be referenced, sorting it to the front of the array was
1097  * advantageous.  The current binary search starts from the middle of the array
1098  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1099  */
1100 static void update_memslots(struct kvm_memslots *slots,
1101                             struct kvm_memory_slot *memslot,
1102                             enum kvm_mr_change change)
1103 {
1104         int i;
1105
1106         if (change == KVM_MR_DELETE) {
1107                 kvm_memslot_delete(slots, memslot);
1108         } else {
1109                 if (change == KVM_MR_CREATE)
1110                         i = kvm_memslot_insert_back(slots);
1111                 else
1112                         i = kvm_memslot_move_backward(slots, memslot);
1113                 i = kvm_memslot_move_forward(slots, memslot, i);
1114
1115                 /*
1116                  * Copy the memslot to its new position in memslots and update
1117                  * its index accordingly.
1118                  */
1119                 slots->memslots[i] = *memslot;
1120                 slots->id_to_index[memslot->id] = i;
1121         }
1122 }
1123
1124 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1125 {
1126         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1127
1128 #ifdef __KVM_HAVE_READONLY_MEM
1129         valid_flags |= KVM_MEM_READONLY;
1130 #endif
1131
1132         if (mem->flags & ~valid_flags)
1133                 return -EINVAL;
1134
1135         return 0;
1136 }
1137
1138 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1139                 int as_id, struct kvm_memslots *slots)
1140 {
1141         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1142         u64 gen = old_memslots->generation;
1143
1144         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1145         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1146
1147         rcu_assign_pointer(kvm->memslots[as_id], slots);
1148         synchronize_srcu_expedited(&kvm->srcu);
1149
1150         /*
1151          * Increment the new memslot generation a second time, dropping the
1152          * update in-progress flag and incrementing the generation based on
1153          * the number of address spaces.  This provides a unique and easily
1154          * identifiable generation number while the memslots are in flux.
1155          */
1156         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1157
1158         /*
1159          * Generations must be unique even across address spaces.  We do not need
1160          * a global counter for that, instead the generation space is evenly split
1161          * across address spaces.  For example, with two address spaces, address
1162          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1163          * use generations 1, 3, 5, ...
1164          */
1165         gen += KVM_ADDRESS_SPACE_NUM;
1166
1167         kvm_arch_memslots_updated(kvm, gen);
1168
1169         slots->generation = gen;
1170
1171         return old_memslots;
1172 }
1173
1174 /*
1175  * Note, at a minimum, the current number of used slots must be allocated, even
1176  * when deleting a memslot, as we need a complete duplicate of the memslots for
1177  * use when invalidating a memslot prior to deleting/moving the memslot.
1178  */
1179 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1180                                              enum kvm_mr_change change)
1181 {
1182         struct kvm_memslots *slots;
1183         size_t old_size, new_size;
1184
1185         old_size = sizeof(struct kvm_memslots) +
1186                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1187
1188         if (change == KVM_MR_CREATE)
1189                 new_size = old_size + sizeof(struct kvm_memory_slot);
1190         else
1191                 new_size = old_size;
1192
1193         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1194         if (likely(slots))
1195                 memcpy(slots, old, old_size);
1196
1197         return slots;
1198 }
1199
1200 static int kvm_set_memslot(struct kvm *kvm,
1201                            const struct kvm_userspace_memory_region *mem,
1202                            struct kvm_memory_slot *old,
1203                            struct kvm_memory_slot *new, int as_id,
1204                            enum kvm_mr_change change)
1205 {
1206         struct kvm_memory_slot *slot;
1207         struct kvm_memslots *slots;
1208         int r;
1209
1210         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1211         if (!slots)
1212                 return -ENOMEM;
1213
1214         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1215                 /*
1216                  * Note, the INVALID flag needs to be in the appropriate entry
1217                  * in the freshly allocated memslots, not in @old or @new.
1218                  */
1219                 slot = id_to_memslot(slots, old->id);
1220                 slot->flags |= KVM_MEMSLOT_INVALID;
1221
1222                 /*
1223                  * We can re-use the old memslots, the only difference from the
1224                  * newly installed memslots is the invalid flag, which will get
1225                  * dropped by update_memslots anyway.  We'll also revert to the
1226                  * old memslots if preparing the new memory region fails.
1227                  */
1228                 slots = install_new_memslots(kvm, as_id, slots);
1229
1230                 /* From this point no new shadow pages pointing to a deleted,
1231                  * or moved, memslot will be created.
1232                  *
1233                  * validation of sp->gfn happens in:
1234                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1235                  *      - kvm_is_visible_gfn (mmu_check_root)
1236                  */
1237                 kvm_arch_flush_shadow_memslot(kvm, slot);
1238         }
1239
1240         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1241         if (r)
1242                 goto out_slots;
1243
1244         update_memslots(slots, new, change);
1245         slots = install_new_memslots(kvm, as_id, slots);
1246
1247         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1248
1249         kvfree(slots);
1250         return 0;
1251
1252 out_slots:
1253         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1254                 slots = install_new_memslots(kvm, as_id, slots);
1255         kvfree(slots);
1256         return r;
1257 }
1258
1259 static int kvm_delete_memslot(struct kvm *kvm,
1260                               const struct kvm_userspace_memory_region *mem,
1261                               struct kvm_memory_slot *old, int as_id)
1262 {
1263         struct kvm_memory_slot new;
1264         int r;
1265
1266         if (!old->npages)
1267                 return -EINVAL;
1268
1269         memset(&new, 0, sizeof(new));
1270         new.id = old->id;
1271         /*
1272          * This is only for debugging purpose; it should never be referenced
1273          * for a removed memslot.
1274          */
1275         new.as_id = as_id;
1276
1277         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1278         if (r)
1279                 return r;
1280
1281         kvm_free_memslot(kvm, old);
1282         return 0;
1283 }
1284
1285 /*
1286  * Allocate some memory and give it an address in the guest physical address
1287  * space.
1288  *
1289  * Discontiguous memory is allowed, mostly for framebuffers.
1290  *
1291  * Must be called holding kvm->slots_lock for write.
1292  */
1293 int __kvm_set_memory_region(struct kvm *kvm,
1294                             const struct kvm_userspace_memory_region *mem)
1295 {
1296         struct kvm_memory_slot old, new;
1297         struct kvm_memory_slot *tmp;
1298         enum kvm_mr_change change;
1299         int as_id, id;
1300         int r;
1301
1302         r = check_memory_region_flags(mem);
1303         if (r)
1304                 return r;
1305
1306         as_id = mem->slot >> 16;
1307         id = (u16)mem->slot;
1308
1309         /* General sanity checks */
1310         if (mem->memory_size & (PAGE_SIZE - 1))
1311                 return -EINVAL;
1312         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1313                 return -EINVAL;
1314         /* We can read the guest memory with __xxx_user() later on. */
1315         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1316             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1317              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1318                         mem->memory_size))
1319                 return -EINVAL;
1320         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1321                 return -EINVAL;
1322         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1323                 return -EINVAL;
1324
1325         /*
1326          * Make a full copy of the old memslot, the pointer will become stale
1327          * when the memslots are re-sorted by update_memslots(), and the old
1328          * memslot needs to be referenced after calling update_memslots(), e.g.
1329          * to free its resources and for arch specific behavior.
1330          */
1331         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1332         if (tmp) {
1333                 old = *tmp;
1334                 tmp = NULL;
1335         } else {
1336                 memset(&old, 0, sizeof(old));
1337                 old.id = id;
1338         }
1339
1340         if (!mem->memory_size)
1341                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1342
1343         new.as_id = as_id;
1344         new.id = id;
1345         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1346         new.npages = mem->memory_size >> PAGE_SHIFT;
1347         new.flags = mem->flags;
1348         new.userspace_addr = mem->userspace_addr;
1349
1350         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1351                 return -EINVAL;
1352
1353         if (!old.npages) {
1354                 change = KVM_MR_CREATE;
1355                 new.dirty_bitmap = NULL;
1356                 memset(&new.arch, 0, sizeof(new.arch));
1357         } else { /* Modify an existing slot. */
1358                 if ((new.userspace_addr != old.userspace_addr) ||
1359                     (new.npages != old.npages) ||
1360                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1361                         return -EINVAL;
1362
1363                 if (new.base_gfn != old.base_gfn)
1364                         change = KVM_MR_MOVE;
1365                 else if (new.flags != old.flags)
1366                         change = KVM_MR_FLAGS_ONLY;
1367                 else /* Nothing to change. */
1368                         return 0;
1369
1370                 /* Copy dirty_bitmap and arch from the current memslot. */
1371                 new.dirty_bitmap = old.dirty_bitmap;
1372                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1373         }
1374
1375         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1376                 /* Check for overlaps */
1377                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1378                         if (tmp->id == id)
1379                                 continue;
1380                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1381                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1382                                 return -EEXIST;
1383                 }
1384         }
1385
1386         /* Allocate/free page dirty bitmap as needed */
1387         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1388                 new.dirty_bitmap = NULL;
1389         else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1390                 r = kvm_alloc_dirty_bitmap(&new);
1391                 if (r)
1392                         return r;
1393
1394                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1395                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1396         }
1397
1398         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1399         if (r)
1400                 goto out_bitmap;
1401
1402         if (old.dirty_bitmap && !new.dirty_bitmap)
1403                 kvm_destroy_dirty_bitmap(&old);
1404         return 0;
1405
1406 out_bitmap:
1407         if (new.dirty_bitmap && !old.dirty_bitmap)
1408                 kvm_destroy_dirty_bitmap(&new);
1409         return r;
1410 }
1411 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1412
1413 int kvm_set_memory_region(struct kvm *kvm,
1414                           const struct kvm_userspace_memory_region *mem)
1415 {
1416         int r;
1417
1418         mutex_lock(&kvm->slots_lock);
1419         r = __kvm_set_memory_region(kvm, mem);
1420         mutex_unlock(&kvm->slots_lock);
1421         return r;
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1424
1425 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1426                                           struct kvm_userspace_memory_region *mem)
1427 {
1428         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1429                 return -EINVAL;
1430
1431         return kvm_set_memory_region(kvm, mem);
1432 }
1433
1434 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1435 /**
1436  * kvm_get_dirty_log - get a snapshot of dirty pages
1437  * @kvm:        pointer to kvm instance
1438  * @log:        slot id and address to which we copy the log
1439  * @is_dirty:   set to '1' if any dirty pages were found
1440  * @memslot:    set to the associated memslot, always valid on success
1441  */
1442 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1443                       int *is_dirty, struct kvm_memory_slot **memslot)
1444 {
1445         struct kvm_memslots *slots;
1446         int i, as_id, id;
1447         unsigned long n;
1448         unsigned long any = 0;
1449
1450         /* Dirty ring tracking is exclusive to dirty log tracking */
1451         if (kvm->dirty_ring_size)
1452                 return -ENXIO;
1453
1454         *memslot = NULL;
1455         *is_dirty = 0;
1456
1457         as_id = log->slot >> 16;
1458         id = (u16)log->slot;
1459         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1460                 return -EINVAL;
1461
1462         slots = __kvm_memslots(kvm, as_id);
1463         *memslot = id_to_memslot(slots, id);
1464         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1465                 return -ENOENT;
1466
1467         kvm_arch_sync_dirty_log(kvm, *memslot);
1468
1469         n = kvm_dirty_bitmap_bytes(*memslot);
1470
1471         for (i = 0; !any && i < n/sizeof(long); ++i)
1472                 any = (*memslot)->dirty_bitmap[i];
1473
1474         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1475                 return -EFAULT;
1476
1477         if (any)
1478                 *is_dirty = 1;
1479         return 0;
1480 }
1481 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1482
1483 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1484 /**
1485  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1486  *      and reenable dirty page tracking for the corresponding pages.
1487  * @kvm:        pointer to kvm instance
1488  * @log:        slot id and address to which we copy the log
1489  *
1490  * We need to keep it in mind that VCPU threads can write to the bitmap
1491  * concurrently. So, to avoid losing track of dirty pages we keep the
1492  * following order:
1493  *
1494  *    1. Take a snapshot of the bit and clear it if needed.
1495  *    2. Write protect the corresponding page.
1496  *    3. Copy the snapshot to the userspace.
1497  *    4. Upon return caller flushes TLB's if needed.
1498  *
1499  * Between 2 and 4, the guest may write to the page using the remaining TLB
1500  * entry.  This is not a problem because the page is reported dirty using
1501  * the snapshot taken before and step 4 ensures that writes done after
1502  * exiting to userspace will be logged for the next call.
1503  *
1504  */
1505 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1506 {
1507         struct kvm_memslots *slots;
1508         struct kvm_memory_slot *memslot;
1509         int i, as_id, id;
1510         unsigned long n;
1511         unsigned long *dirty_bitmap;
1512         unsigned long *dirty_bitmap_buffer;
1513         bool flush;
1514
1515         /* Dirty ring tracking is exclusive to dirty log tracking */
1516         if (kvm->dirty_ring_size)
1517                 return -ENXIO;
1518
1519         as_id = log->slot >> 16;
1520         id = (u16)log->slot;
1521         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1522                 return -EINVAL;
1523
1524         slots = __kvm_memslots(kvm, as_id);
1525         memslot = id_to_memslot(slots, id);
1526         if (!memslot || !memslot->dirty_bitmap)
1527                 return -ENOENT;
1528
1529         dirty_bitmap = memslot->dirty_bitmap;
1530
1531         kvm_arch_sync_dirty_log(kvm, memslot);
1532
1533         n = kvm_dirty_bitmap_bytes(memslot);
1534         flush = false;
1535         if (kvm->manual_dirty_log_protect) {
1536                 /*
1537                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1538                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1539                  * is some code duplication between this function and
1540                  * kvm_get_dirty_log, but hopefully all architecture
1541                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1542                  * can be eliminated.
1543                  */
1544                 dirty_bitmap_buffer = dirty_bitmap;
1545         } else {
1546                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1547                 memset(dirty_bitmap_buffer, 0, n);
1548
1549                 KVM_MMU_LOCK(kvm);
1550                 for (i = 0; i < n / sizeof(long); i++) {
1551                         unsigned long mask;
1552                         gfn_t offset;
1553
1554                         if (!dirty_bitmap[i])
1555                                 continue;
1556
1557                         flush = true;
1558                         mask = xchg(&dirty_bitmap[i], 0);
1559                         dirty_bitmap_buffer[i] = mask;
1560
1561                         offset = i * BITS_PER_LONG;
1562                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1563                                                                 offset, mask);
1564                 }
1565                 KVM_MMU_UNLOCK(kvm);
1566         }
1567
1568         if (flush)
1569                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1570
1571         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1572                 return -EFAULT;
1573         return 0;
1574 }
1575
1576
1577 /**
1578  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1579  * @kvm: kvm instance
1580  * @log: slot id and address to which we copy the log
1581  *
1582  * Steps 1-4 below provide general overview of dirty page logging. See
1583  * kvm_get_dirty_log_protect() function description for additional details.
1584  *
1585  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1586  * always flush the TLB (step 4) even if previous step failed  and the dirty
1587  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1588  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1589  * writes will be marked dirty for next log read.
1590  *
1591  *   1. Take a snapshot of the bit and clear it if needed.
1592  *   2. Write protect the corresponding page.
1593  *   3. Copy the snapshot to the userspace.
1594  *   4. Flush TLB's if needed.
1595  */
1596 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1597                                       struct kvm_dirty_log *log)
1598 {
1599         int r;
1600
1601         mutex_lock(&kvm->slots_lock);
1602
1603         r = kvm_get_dirty_log_protect(kvm, log);
1604
1605         mutex_unlock(&kvm->slots_lock);
1606         return r;
1607 }
1608
1609 /**
1610  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1611  *      and reenable dirty page tracking for the corresponding pages.
1612  * @kvm:        pointer to kvm instance
1613  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1614  */
1615 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1616                                        struct kvm_clear_dirty_log *log)
1617 {
1618         struct kvm_memslots *slots;
1619         struct kvm_memory_slot *memslot;
1620         int as_id, id;
1621         gfn_t offset;
1622         unsigned long i, n;
1623         unsigned long *dirty_bitmap;
1624         unsigned long *dirty_bitmap_buffer;
1625         bool flush;
1626
1627         /* Dirty ring tracking is exclusive to dirty log tracking */
1628         if (kvm->dirty_ring_size)
1629                 return -ENXIO;
1630
1631         as_id = log->slot >> 16;
1632         id = (u16)log->slot;
1633         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1634                 return -EINVAL;
1635
1636         if (log->first_page & 63)
1637                 return -EINVAL;
1638
1639         slots = __kvm_memslots(kvm, as_id);
1640         memslot = id_to_memslot(slots, id);
1641         if (!memslot || !memslot->dirty_bitmap)
1642                 return -ENOENT;
1643
1644         dirty_bitmap = memslot->dirty_bitmap;
1645
1646         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1647
1648         if (log->first_page > memslot->npages ||
1649             log->num_pages > memslot->npages - log->first_page ||
1650             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1651             return -EINVAL;
1652
1653         kvm_arch_sync_dirty_log(kvm, memslot);
1654
1655         flush = false;
1656         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1657         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1658                 return -EFAULT;
1659
1660         KVM_MMU_LOCK(kvm);
1661         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1662                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1663              i++, offset += BITS_PER_LONG) {
1664                 unsigned long mask = *dirty_bitmap_buffer++;
1665                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1666                 if (!mask)
1667                         continue;
1668
1669                 mask &= atomic_long_fetch_andnot(mask, p);
1670
1671                 /*
1672                  * mask contains the bits that really have been cleared.  This
1673                  * never includes any bits beyond the length of the memslot (if
1674                  * the length is not aligned to 64 pages), therefore it is not
1675                  * a problem if userspace sets them in log->dirty_bitmap.
1676                 */
1677                 if (mask) {
1678                         flush = true;
1679                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1680                                                                 offset, mask);
1681                 }
1682         }
1683         KVM_MMU_UNLOCK(kvm);
1684
1685         if (flush)
1686                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1687
1688         return 0;
1689 }
1690
1691 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1692                                         struct kvm_clear_dirty_log *log)
1693 {
1694         int r;
1695
1696         mutex_lock(&kvm->slots_lock);
1697
1698         r = kvm_clear_dirty_log_protect(kvm, log);
1699
1700         mutex_unlock(&kvm->slots_lock);
1701         return r;
1702 }
1703 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1704
1705 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1706 {
1707         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1708 }
1709 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1710
1711 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1712 {
1713         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1714 }
1715 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1716
1717 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1718 {
1719         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1720
1721         return kvm_is_visible_memslot(memslot);
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1724
1725 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1726 {
1727         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1728
1729         return kvm_is_visible_memslot(memslot);
1730 }
1731 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1732
1733 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1734 {
1735         struct vm_area_struct *vma;
1736         unsigned long addr, size;
1737
1738         size = PAGE_SIZE;
1739
1740         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1741         if (kvm_is_error_hva(addr))
1742                 return PAGE_SIZE;
1743
1744         mmap_read_lock(current->mm);
1745         vma = find_vma(current->mm, addr);
1746         if (!vma)
1747                 goto out;
1748
1749         size = vma_kernel_pagesize(vma);
1750
1751 out:
1752         mmap_read_unlock(current->mm);
1753
1754         return size;
1755 }
1756
1757 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1758 {
1759         return slot->flags & KVM_MEM_READONLY;
1760 }
1761
1762 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1763                                        gfn_t *nr_pages, bool write)
1764 {
1765         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1766                 return KVM_HVA_ERR_BAD;
1767
1768         if (memslot_is_readonly(slot) && write)
1769                 return KVM_HVA_ERR_RO_BAD;
1770
1771         if (nr_pages)
1772                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1773
1774         return __gfn_to_hva_memslot(slot, gfn);
1775 }
1776
1777 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1778                                      gfn_t *nr_pages)
1779 {
1780         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1781 }
1782
1783 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1784                                         gfn_t gfn)
1785 {
1786         return gfn_to_hva_many(slot, gfn, NULL);
1787 }
1788 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1789
1790 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1791 {
1792         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1793 }
1794 EXPORT_SYMBOL_GPL(gfn_to_hva);
1795
1796 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1797 {
1798         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1799 }
1800 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1801
1802 /*
1803  * Return the hva of a @gfn and the R/W attribute if possible.
1804  *
1805  * @slot: the kvm_memory_slot which contains @gfn
1806  * @gfn: the gfn to be translated
1807  * @writable: used to return the read/write attribute of the @slot if the hva
1808  * is valid and @writable is not NULL
1809  */
1810 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1811                                       gfn_t gfn, bool *writable)
1812 {
1813         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1814
1815         if (!kvm_is_error_hva(hva) && writable)
1816                 *writable = !memslot_is_readonly(slot);
1817
1818         return hva;
1819 }
1820
1821 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1822 {
1823         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1824
1825         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1826 }
1827
1828 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1829 {
1830         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1831
1832         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1833 }
1834
1835 static inline int check_user_page_hwpoison(unsigned long addr)
1836 {
1837         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1838
1839         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1840         return rc == -EHWPOISON;
1841 }
1842
1843 /*
1844  * The fast path to get the writable pfn which will be stored in @pfn,
1845  * true indicates success, otherwise false is returned.  It's also the
1846  * only part that runs if we can in atomic context.
1847  */
1848 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1849                             bool *writable, kvm_pfn_t *pfn)
1850 {
1851         struct page *page[1];
1852
1853         /*
1854          * Fast pin a writable pfn only if it is a write fault request
1855          * or the caller allows to map a writable pfn for a read fault
1856          * request.
1857          */
1858         if (!(write_fault || writable))
1859                 return false;
1860
1861         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1862                 *pfn = page_to_pfn(page[0]);
1863
1864                 if (writable)
1865                         *writable = true;
1866                 return true;
1867         }
1868
1869         return false;
1870 }
1871
1872 /*
1873  * The slow path to get the pfn of the specified host virtual address,
1874  * 1 indicates success, -errno is returned if error is detected.
1875  */
1876 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1877                            bool *writable, kvm_pfn_t *pfn)
1878 {
1879         unsigned int flags = FOLL_HWPOISON;
1880         struct page *page;
1881         int npages = 0;
1882
1883         might_sleep();
1884
1885         if (writable)
1886                 *writable = write_fault;
1887
1888         if (write_fault)
1889                 flags |= FOLL_WRITE;
1890         if (async)
1891                 flags |= FOLL_NOWAIT;
1892
1893         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1894         if (npages != 1)
1895                 return npages;
1896
1897         /* map read fault as writable if possible */
1898         if (unlikely(!write_fault) && writable) {
1899                 struct page *wpage;
1900
1901                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1902                         *writable = true;
1903                         put_page(page);
1904                         page = wpage;
1905                 }
1906         }
1907         *pfn = page_to_pfn(page);
1908         return npages;
1909 }
1910
1911 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1912 {
1913         if (unlikely(!(vma->vm_flags & VM_READ)))
1914                 return false;
1915
1916         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1917                 return false;
1918
1919         return true;
1920 }
1921
1922 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1923                                unsigned long addr, bool *async,
1924                                bool write_fault, bool *writable,
1925                                kvm_pfn_t *p_pfn)
1926 {
1927         kvm_pfn_t pfn;
1928         pte_t *ptep;
1929         spinlock_t *ptl;
1930         int r;
1931
1932         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
1933         if (r) {
1934                 /*
1935                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1936                  * not call the fault handler, so do it here.
1937                  */
1938                 bool unlocked = false;
1939                 r = fixup_user_fault(current->mm, addr,
1940                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1941                                      &unlocked);
1942                 if (unlocked)
1943                         return -EAGAIN;
1944                 if (r)
1945                         return r;
1946
1947                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
1948                 if (r)
1949                         return r;
1950         }
1951
1952         if (write_fault && !pte_write(*ptep)) {
1953                 pfn = KVM_PFN_ERR_RO_FAULT;
1954                 goto out;
1955         }
1956
1957         if (writable)
1958                 *writable = pte_write(*ptep);
1959         pfn = pte_pfn(*ptep);
1960
1961         /*
1962          * Get a reference here because callers of *hva_to_pfn* and
1963          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1964          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1965          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1966          * simply do nothing for reserved pfns.
1967          *
1968          * Whoever called remap_pfn_range is also going to call e.g.
1969          * unmap_mapping_range before the underlying pages are freed,
1970          * causing a call to our MMU notifier.
1971          */ 
1972         kvm_get_pfn(pfn);
1973
1974 out:
1975         pte_unmap_unlock(ptep, ptl);
1976         *p_pfn = pfn;
1977         return 0;
1978 }
1979
1980 /*
1981  * Pin guest page in memory and return its pfn.
1982  * @addr: host virtual address which maps memory to the guest
1983  * @atomic: whether this function can sleep
1984  * @async: whether this function need to wait IO complete if the
1985  *         host page is not in the memory
1986  * @write_fault: whether we should get a writable host page
1987  * @writable: whether it allows to map a writable host page for !@write_fault
1988  *
1989  * The function will map a writable host page for these two cases:
1990  * 1): @write_fault = true
1991  * 2): @write_fault = false && @writable, @writable will tell the caller
1992  *     whether the mapping is writable.
1993  */
1994 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1995                         bool write_fault, bool *writable)
1996 {
1997         struct vm_area_struct *vma;
1998         kvm_pfn_t pfn = 0;
1999         int npages, r;
2000
2001         /* we can do it either atomically or asynchronously, not both */
2002         BUG_ON(atomic && async);
2003
2004         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2005                 return pfn;
2006
2007         if (atomic)
2008                 return KVM_PFN_ERR_FAULT;
2009
2010         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2011         if (npages == 1)
2012                 return pfn;
2013
2014         mmap_read_lock(current->mm);
2015         if (npages == -EHWPOISON ||
2016               (!async && check_user_page_hwpoison(addr))) {
2017                 pfn = KVM_PFN_ERR_HWPOISON;
2018                 goto exit;
2019         }
2020
2021 retry:
2022         vma = find_vma_intersection(current->mm, addr, addr + 1);
2023
2024         if (vma == NULL)
2025                 pfn = KVM_PFN_ERR_FAULT;
2026         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2027                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2028                 if (r == -EAGAIN)
2029                         goto retry;
2030                 if (r < 0)
2031                         pfn = KVM_PFN_ERR_FAULT;
2032         } else {
2033                 if (async && vma_is_valid(vma, write_fault))
2034                         *async = true;
2035                 pfn = KVM_PFN_ERR_FAULT;
2036         }
2037 exit:
2038         mmap_read_unlock(current->mm);
2039         return pfn;
2040 }
2041
2042 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2043                                bool atomic, bool *async, bool write_fault,
2044                                bool *writable, hva_t *hva)
2045 {
2046         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2047
2048         if (hva)
2049                 *hva = addr;
2050
2051         if (addr == KVM_HVA_ERR_RO_BAD) {
2052                 if (writable)
2053                         *writable = false;
2054                 return KVM_PFN_ERR_RO_FAULT;
2055         }
2056
2057         if (kvm_is_error_hva(addr)) {
2058                 if (writable)
2059                         *writable = false;
2060                 return KVM_PFN_NOSLOT;
2061         }
2062
2063         /* Do not map writable pfn in the readonly memslot. */
2064         if (writable && memslot_is_readonly(slot)) {
2065                 *writable = false;
2066                 writable = NULL;
2067         }
2068
2069         return hva_to_pfn(addr, atomic, async, write_fault,
2070                           writable);
2071 }
2072 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2073
2074 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2075                       bool *writable)
2076 {
2077         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2078                                     write_fault, writable, NULL);
2079 }
2080 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2081
2082 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2083 {
2084         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2085 }
2086 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2087
2088 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2089 {
2090         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2091 }
2092 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2093
2094 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2095 {
2096         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2097 }
2098 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2099
2100 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2101 {
2102         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2103 }
2104 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2105
2106 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2107 {
2108         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2109 }
2110 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2111
2112 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2113                             struct page **pages, int nr_pages)
2114 {
2115         unsigned long addr;
2116         gfn_t entry = 0;
2117
2118         addr = gfn_to_hva_many(slot, gfn, &entry);
2119         if (kvm_is_error_hva(addr))
2120                 return -1;
2121
2122         if (entry < nr_pages)
2123                 return 0;
2124
2125         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2126 }
2127 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2128
2129 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2130 {
2131         if (is_error_noslot_pfn(pfn))
2132                 return KVM_ERR_PTR_BAD_PAGE;
2133
2134         if (kvm_is_reserved_pfn(pfn)) {
2135                 WARN_ON(1);
2136                 return KVM_ERR_PTR_BAD_PAGE;
2137         }
2138
2139         return pfn_to_page(pfn);
2140 }
2141
2142 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2143 {
2144         kvm_pfn_t pfn;
2145
2146         pfn = gfn_to_pfn(kvm, gfn);
2147
2148         return kvm_pfn_to_page(pfn);
2149 }
2150 EXPORT_SYMBOL_GPL(gfn_to_page);
2151
2152 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2153 {
2154         if (pfn == 0)
2155                 return;
2156
2157         if (cache)
2158                 cache->pfn = cache->gfn = 0;
2159
2160         if (dirty)
2161                 kvm_release_pfn_dirty(pfn);
2162         else
2163                 kvm_release_pfn_clean(pfn);
2164 }
2165
2166 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2167                                  struct gfn_to_pfn_cache *cache, u64 gen)
2168 {
2169         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2170
2171         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2172         cache->gfn = gfn;
2173         cache->dirty = false;
2174         cache->generation = gen;
2175 }
2176
2177 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2178                          struct kvm_host_map *map,
2179                          struct gfn_to_pfn_cache *cache,
2180                          bool atomic)
2181 {
2182         kvm_pfn_t pfn;
2183         void *hva = NULL;
2184         struct page *page = KVM_UNMAPPED_PAGE;
2185         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2186         u64 gen = slots->generation;
2187
2188         if (!map)
2189                 return -EINVAL;
2190
2191         if (cache) {
2192                 if (!cache->pfn || cache->gfn != gfn ||
2193                         cache->generation != gen) {
2194                         if (atomic)
2195                                 return -EAGAIN;
2196                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2197                 }
2198                 pfn = cache->pfn;
2199         } else {
2200                 if (atomic)
2201                         return -EAGAIN;
2202                 pfn = gfn_to_pfn_memslot(slot, gfn);
2203         }
2204         if (is_error_noslot_pfn(pfn))
2205                 return -EINVAL;
2206
2207         if (pfn_valid(pfn)) {
2208                 page = pfn_to_page(pfn);
2209                 if (atomic)
2210                         hva = kmap_atomic(page);
2211                 else
2212                         hva = kmap(page);
2213 #ifdef CONFIG_HAS_IOMEM
2214         } else if (!atomic) {
2215                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2216         } else {
2217                 return -EINVAL;
2218 #endif
2219         }
2220
2221         if (!hva)
2222                 return -EFAULT;
2223
2224         map->page = page;
2225         map->hva = hva;
2226         map->pfn = pfn;
2227         map->gfn = gfn;
2228
2229         return 0;
2230 }
2231
2232 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2233                 struct gfn_to_pfn_cache *cache, bool atomic)
2234 {
2235         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2236                         cache, atomic);
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2239
2240 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2241 {
2242         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2243                 NULL, false);
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2246
2247 static void __kvm_unmap_gfn(struct kvm *kvm,
2248                         struct kvm_memory_slot *memslot,
2249                         struct kvm_host_map *map,
2250                         struct gfn_to_pfn_cache *cache,
2251                         bool dirty, bool atomic)
2252 {
2253         if (!map)
2254                 return;
2255
2256         if (!map->hva)
2257                 return;
2258
2259         if (map->page != KVM_UNMAPPED_PAGE) {
2260                 if (atomic)
2261                         kunmap_atomic(map->hva);
2262                 else
2263                         kunmap(map->page);
2264         }
2265 #ifdef CONFIG_HAS_IOMEM
2266         else if (!atomic)
2267                 memunmap(map->hva);
2268         else
2269                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2270 #endif
2271
2272         if (dirty)
2273                 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2274
2275         if (cache)
2276                 cache->dirty |= dirty;
2277         else
2278                 kvm_release_pfn(map->pfn, dirty, NULL);
2279
2280         map->hva = NULL;
2281         map->page = NULL;
2282 }
2283
2284 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2285                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2286 {
2287         __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2288                         cache, dirty, atomic);
2289         return 0;
2290 }
2291 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2292
2293 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2294 {
2295         __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2296                         map, NULL, dirty, false);
2297 }
2298 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2299
2300 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2301 {
2302         kvm_pfn_t pfn;
2303
2304         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2305
2306         return kvm_pfn_to_page(pfn);
2307 }
2308 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2309
2310 void kvm_release_page_clean(struct page *page)
2311 {
2312         WARN_ON(is_error_page(page));
2313
2314         kvm_release_pfn_clean(page_to_pfn(page));
2315 }
2316 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2317
2318 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2319 {
2320         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2321                 put_page(pfn_to_page(pfn));
2322 }
2323 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2324
2325 void kvm_release_page_dirty(struct page *page)
2326 {
2327         WARN_ON(is_error_page(page));
2328
2329         kvm_release_pfn_dirty(page_to_pfn(page));
2330 }
2331 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2332
2333 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2334 {
2335         kvm_set_pfn_dirty(pfn);
2336         kvm_release_pfn_clean(pfn);
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2339
2340 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2341 {
2342         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2343                 SetPageDirty(pfn_to_page(pfn));
2344 }
2345 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2346
2347 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2348 {
2349         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2350                 mark_page_accessed(pfn_to_page(pfn));
2351 }
2352 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2353
2354 void kvm_get_pfn(kvm_pfn_t pfn)
2355 {
2356         if (!kvm_is_reserved_pfn(pfn))
2357                 get_page(pfn_to_page(pfn));
2358 }
2359 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2360
2361 static int next_segment(unsigned long len, int offset)
2362 {
2363         if (len > PAGE_SIZE - offset)
2364                 return PAGE_SIZE - offset;
2365         else
2366                 return len;
2367 }
2368
2369 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2370                                  void *data, int offset, int len)
2371 {
2372         int r;
2373         unsigned long addr;
2374
2375         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2376         if (kvm_is_error_hva(addr))
2377                 return -EFAULT;
2378         r = __copy_from_user(data, (void __user *)addr + offset, len);
2379         if (r)
2380                 return -EFAULT;
2381         return 0;
2382 }
2383
2384 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2385                         int len)
2386 {
2387         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2388
2389         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2390 }
2391 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2392
2393 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2394                              int offset, int len)
2395 {
2396         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2397
2398         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2399 }
2400 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2401
2402 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2403 {
2404         gfn_t gfn = gpa >> PAGE_SHIFT;
2405         int seg;
2406         int offset = offset_in_page(gpa);
2407         int ret;
2408
2409         while ((seg = next_segment(len, offset)) != 0) {
2410                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2411                 if (ret < 0)
2412                         return ret;
2413                 offset = 0;
2414                 len -= seg;
2415                 data += seg;
2416                 ++gfn;
2417         }
2418         return 0;
2419 }
2420 EXPORT_SYMBOL_GPL(kvm_read_guest);
2421
2422 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2423 {
2424         gfn_t gfn = gpa >> PAGE_SHIFT;
2425         int seg;
2426         int offset = offset_in_page(gpa);
2427         int ret;
2428
2429         while ((seg = next_segment(len, offset)) != 0) {
2430                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2431                 if (ret < 0)
2432                         return ret;
2433                 offset = 0;
2434                 len -= seg;
2435                 data += seg;
2436                 ++gfn;
2437         }
2438         return 0;
2439 }
2440 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2441
2442 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2443                                    void *data, int offset, unsigned long len)
2444 {
2445         int r;
2446         unsigned long addr;
2447
2448         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2449         if (kvm_is_error_hva(addr))
2450                 return -EFAULT;
2451         pagefault_disable();
2452         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2453         pagefault_enable();
2454         if (r)
2455                 return -EFAULT;
2456         return 0;
2457 }
2458
2459 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2460                                void *data, unsigned long len)
2461 {
2462         gfn_t gfn = gpa >> PAGE_SHIFT;
2463         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2464         int offset = offset_in_page(gpa);
2465
2466         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2467 }
2468 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2469
2470 static int __kvm_write_guest_page(struct kvm *kvm,
2471                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2472                                   const void *data, int offset, int len)
2473 {
2474         int r;
2475         unsigned long addr;
2476
2477         addr = gfn_to_hva_memslot(memslot, gfn);
2478         if (kvm_is_error_hva(addr))
2479                 return -EFAULT;
2480         r = __copy_to_user((void __user *)addr + offset, data, len);
2481         if (r)
2482                 return -EFAULT;
2483         mark_page_dirty_in_slot(kvm, memslot, gfn);
2484         return 0;
2485 }
2486
2487 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2488                          const void *data, int offset, int len)
2489 {
2490         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2491
2492         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2493 }
2494 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2495
2496 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2497                               const void *data, int offset, int len)
2498 {
2499         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2500
2501         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2502 }
2503 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2504
2505 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2506                     unsigned long len)
2507 {
2508         gfn_t gfn = gpa >> PAGE_SHIFT;
2509         int seg;
2510         int offset = offset_in_page(gpa);
2511         int ret;
2512
2513         while ((seg = next_segment(len, offset)) != 0) {
2514                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2515                 if (ret < 0)
2516                         return ret;
2517                 offset = 0;
2518                 len -= seg;
2519                 data += seg;
2520                 ++gfn;
2521         }
2522         return 0;
2523 }
2524 EXPORT_SYMBOL_GPL(kvm_write_guest);
2525
2526 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2527                          unsigned long len)
2528 {
2529         gfn_t gfn = gpa >> PAGE_SHIFT;
2530         int seg;
2531         int offset = offset_in_page(gpa);
2532         int ret;
2533
2534         while ((seg = next_segment(len, offset)) != 0) {
2535                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2536                 if (ret < 0)
2537                         return ret;
2538                 offset = 0;
2539                 len -= seg;
2540                 data += seg;
2541                 ++gfn;
2542         }
2543         return 0;
2544 }
2545 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2546
2547 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2548                                        struct gfn_to_hva_cache *ghc,
2549                                        gpa_t gpa, unsigned long len)
2550 {
2551         int offset = offset_in_page(gpa);
2552         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2553         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2554         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2555         gfn_t nr_pages_avail;
2556
2557         /* Update ghc->generation before performing any error checks. */
2558         ghc->generation = slots->generation;
2559
2560         if (start_gfn > end_gfn) {
2561                 ghc->hva = KVM_HVA_ERR_BAD;
2562                 return -EINVAL;
2563         }
2564
2565         /*
2566          * If the requested region crosses two memslots, we still
2567          * verify that the entire region is valid here.
2568          */
2569         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2570                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2571                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2572                                            &nr_pages_avail);
2573                 if (kvm_is_error_hva(ghc->hva))
2574                         return -EFAULT;
2575         }
2576
2577         /* Use the slow path for cross page reads and writes. */
2578         if (nr_pages_needed == 1)
2579                 ghc->hva += offset;
2580         else
2581                 ghc->memslot = NULL;
2582
2583         ghc->gpa = gpa;
2584         ghc->len = len;
2585         return 0;
2586 }
2587
2588 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2589                               gpa_t gpa, unsigned long len)
2590 {
2591         struct kvm_memslots *slots = kvm_memslots(kvm);
2592         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2593 }
2594 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2595
2596 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2597                                   void *data, unsigned int offset,
2598                                   unsigned long len)
2599 {
2600         struct kvm_memslots *slots = kvm_memslots(kvm);
2601         int r;
2602         gpa_t gpa = ghc->gpa + offset;
2603
2604         BUG_ON(len + offset > ghc->len);
2605
2606         if (slots->generation != ghc->generation) {
2607                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2608                         return -EFAULT;
2609         }
2610
2611         if (kvm_is_error_hva(ghc->hva))
2612                 return -EFAULT;
2613
2614         if (unlikely(!ghc->memslot))
2615                 return kvm_write_guest(kvm, gpa, data, len);
2616
2617         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2618         if (r)
2619                 return -EFAULT;
2620         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2621
2622         return 0;
2623 }
2624 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2625
2626 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2627                            void *data, unsigned long len)
2628 {
2629         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2630 }
2631 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2632
2633 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2634                                  void *data, unsigned int offset,
2635                                  unsigned long len)
2636 {
2637         struct kvm_memslots *slots = kvm_memslots(kvm);
2638         int r;
2639         gpa_t gpa = ghc->gpa + offset;
2640
2641         BUG_ON(len + offset > ghc->len);
2642
2643         if (slots->generation != ghc->generation) {
2644                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2645                         return -EFAULT;
2646         }
2647
2648         if (kvm_is_error_hva(ghc->hva))
2649                 return -EFAULT;
2650
2651         if (unlikely(!ghc->memslot))
2652                 return kvm_read_guest(kvm, gpa, data, len);
2653
2654         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2655         if (r)
2656                 return -EFAULT;
2657
2658         return 0;
2659 }
2660 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2661
2662 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2663                           void *data, unsigned long len)
2664 {
2665         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2666 }
2667 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2668
2669 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2670 {
2671         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2672         gfn_t gfn = gpa >> PAGE_SHIFT;
2673         int seg;
2674         int offset = offset_in_page(gpa);
2675         int ret;
2676
2677         while ((seg = next_segment(len, offset)) != 0) {
2678                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2679                 if (ret < 0)
2680                         return ret;
2681                 offset = 0;
2682                 len -= seg;
2683                 ++gfn;
2684         }
2685         return 0;
2686 }
2687 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2688
2689 void mark_page_dirty_in_slot(struct kvm *kvm,
2690                              struct kvm_memory_slot *memslot,
2691                              gfn_t gfn)
2692 {
2693         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2694                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2695                 u32 slot = (memslot->as_id << 16) | memslot->id;
2696
2697                 if (kvm->dirty_ring_size)
2698                         kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2699                                             slot, rel_gfn);
2700                 else
2701                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
2702         }
2703 }
2704 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2705
2706 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2707 {
2708         struct kvm_memory_slot *memslot;
2709
2710         memslot = gfn_to_memslot(kvm, gfn);
2711         mark_page_dirty_in_slot(kvm, memslot, gfn);
2712 }
2713 EXPORT_SYMBOL_GPL(mark_page_dirty);
2714
2715 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2716 {
2717         struct kvm_memory_slot *memslot;
2718
2719         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2720         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2721 }
2722 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2723
2724 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2725 {
2726         if (!vcpu->sigset_active)
2727                 return;
2728
2729         /*
2730          * This does a lockless modification of ->real_blocked, which is fine
2731          * because, only current can change ->real_blocked and all readers of
2732          * ->real_blocked don't care as long ->real_blocked is always a subset
2733          * of ->blocked.
2734          */
2735         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2736 }
2737
2738 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2739 {
2740         if (!vcpu->sigset_active)
2741                 return;
2742
2743         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2744         sigemptyset(&current->real_blocked);
2745 }
2746
2747 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2748 {
2749         unsigned int old, val, grow, grow_start;
2750
2751         old = val = vcpu->halt_poll_ns;
2752         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2753         grow = READ_ONCE(halt_poll_ns_grow);
2754         if (!grow)
2755                 goto out;
2756
2757         val *= grow;
2758         if (val < grow_start)
2759                 val = grow_start;
2760
2761         if (val > halt_poll_ns)
2762                 val = halt_poll_ns;
2763
2764         vcpu->halt_poll_ns = val;
2765 out:
2766         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2767 }
2768
2769 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2770 {
2771         unsigned int old, val, shrink;
2772
2773         old = val = vcpu->halt_poll_ns;
2774         shrink = READ_ONCE(halt_poll_ns_shrink);
2775         if (shrink == 0)
2776                 val = 0;
2777         else
2778                 val /= shrink;
2779
2780         vcpu->halt_poll_ns = val;
2781         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2782 }
2783
2784 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2785 {
2786         int ret = -EINTR;
2787         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2788
2789         if (kvm_arch_vcpu_runnable(vcpu)) {
2790                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2791                 goto out;
2792         }
2793         if (kvm_cpu_has_pending_timer(vcpu))
2794                 goto out;
2795         if (signal_pending(current))
2796                 goto out;
2797
2798         ret = 0;
2799 out:
2800         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2801         return ret;
2802 }
2803
2804 static inline void
2805 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2806 {
2807         if (waited)
2808                 vcpu->stat.halt_poll_fail_ns += poll_ns;
2809         else
2810                 vcpu->stat.halt_poll_success_ns += poll_ns;
2811 }
2812
2813 /*
2814  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2815  */
2816 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2817 {
2818         ktime_t start, cur, poll_end;
2819         bool waited = false;
2820         u64 block_ns;
2821
2822         kvm_arch_vcpu_blocking(vcpu);
2823
2824         start = cur = poll_end = ktime_get();
2825         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2826                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2827
2828                 ++vcpu->stat.halt_attempted_poll;
2829                 do {
2830                         /*
2831                          * This sets KVM_REQ_UNHALT if an interrupt
2832                          * arrives.
2833                          */
2834                         if (kvm_vcpu_check_block(vcpu) < 0) {
2835                                 ++vcpu->stat.halt_successful_poll;
2836                                 if (!vcpu_valid_wakeup(vcpu))
2837                                         ++vcpu->stat.halt_poll_invalid;
2838                                 goto out;
2839                         }
2840                         poll_end = cur = ktime_get();
2841                 } while (single_task_running() && ktime_before(cur, stop));
2842         }
2843
2844         prepare_to_rcuwait(&vcpu->wait);
2845         for (;;) {
2846                 set_current_state(TASK_INTERRUPTIBLE);
2847
2848                 if (kvm_vcpu_check_block(vcpu) < 0)
2849                         break;
2850
2851                 waited = true;
2852                 schedule();
2853         }
2854         finish_rcuwait(&vcpu->wait);
2855         cur = ktime_get();
2856 out:
2857         kvm_arch_vcpu_unblocking(vcpu);
2858         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2859
2860         update_halt_poll_stats(
2861                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2862
2863         if (!kvm_arch_no_poll(vcpu)) {
2864                 if (!vcpu_valid_wakeup(vcpu)) {
2865                         shrink_halt_poll_ns(vcpu);
2866                 } else if (vcpu->kvm->max_halt_poll_ns) {
2867                         if (block_ns <= vcpu->halt_poll_ns)
2868                                 ;
2869                         /* we had a long block, shrink polling */
2870                         else if (vcpu->halt_poll_ns &&
2871                                         block_ns > vcpu->kvm->max_halt_poll_ns)
2872                                 shrink_halt_poll_ns(vcpu);
2873                         /* we had a short halt and our poll time is too small */
2874                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2875                                         block_ns < vcpu->kvm->max_halt_poll_ns)
2876                                 grow_halt_poll_ns(vcpu);
2877                 } else {
2878                         vcpu->halt_poll_ns = 0;
2879                 }
2880         }
2881
2882         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2883         kvm_arch_vcpu_block_finish(vcpu);
2884 }
2885 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2886
2887 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2888 {
2889         struct rcuwait *waitp;
2890
2891         waitp = kvm_arch_vcpu_get_wait(vcpu);
2892         if (rcuwait_wake_up(waitp)) {
2893                 WRITE_ONCE(vcpu->ready, true);
2894                 ++vcpu->stat.halt_wakeup;
2895                 return true;
2896         }
2897
2898         return false;
2899 }
2900 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2901
2902 #ifndef CONFIG_S390
2903 /*
2904  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2905  */
2906 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2907 {
2908         int me;
2909         int cpu = vcpu->cpu;
2910
2911         if (kvm_vcpu_wake_up(vcpu))
2912                 return;
2913
2914         me = get_cpu();
2915         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2916                 if (kvm_arch_vcpu_should_kick(vcpu))
2917                         smp_send_reschedule(cpu);
2918         put_cpu();
2919 }
2920 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2921 #endif /* !CONFIG_S390 */
2922
2923 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2924 {
2925         struct pid *pid;
2926         struct task_struct *task = NULL;
2927         int ret = 0;
2928
2929         rcu_read_lock();
2930         pid = rcu_dereference(target->pid);
2931         if (pid)
2932                 task = get_pid_task(pid, PIDTYPE_PID);
2933         rcu_read_unlock();
2934         if (!task)
2935                 return ret;
2936         ret = yield_to(task, 1);
2937         put_task_struct(task);
2938
2939         return ret;
2940 }
2941 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2942
2943 /*
2944  * Helper that checks whether a VCPU is eligible for directed yield.
2945  * Most eligible candidate to yield is decided by following heuristics:
2946  *
2947  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2948  *  (preempted lock holder), indicated by @in_spin_loop.
2949  *  Set at the beginning and cleared at the end of interception/PLE handler.
2950  *
2951  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2952  *  chance last time (mostly it has become eligible now since we have probably
2953  *  yielded to lockholder in last iteration. This is done by toggling
2954  *  @dy_eligible each time a VCPU checked for eligibility.)
2955  *
2956  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2957  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2958  *  burning. Giving priority for a potential lock-holder increases lock
2959  *  progress.
2960  *
2961  *  Since algorithm is based on heuristics, accessing another VCPU data without
2962  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2963  *  and continue with next VCPU and so on.
2964  */
2965 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2966 {
2967 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2968         bool eligible;
2969
2970         eligible = !vcpu->spin_loop.in_spin_loop ||
2971                     vcpu->spin_loop.dy_eligible;
2972
2973         if (vcpu->spin_loop.in_spin_loop)
2974                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2975
2976         return eligible;
2977 #else
2978         return true;
2979 #endif
2980 }
2981
2982 /*
2983  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2984  * a vcpu_load/vcpu_put pair.  However, for most architectures
2985  * kvm_arch_vcpu_runnable does not require vcpu_load.
2986  */
2987 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2988 {
2989         return kvm_arch_vcpu_runnable(vcpu);
2990 }
2991
2992 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2993 {
2994         if (kvm_arch_dy_runnable(vcpu))
2995                 return true;
2996
2997 #ifdef CONFIG_KVM_ASYNC_PF
2998         if (!list_empty_careful(&vcpu->async_pf.done))
2999                 return true;
3000 #endif
3001
3002         return false;
3003 }
3004
3005 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3006 {
3007         struct kvm *kvm = me->kvm;
3008         struct kvm_vcpu *vcpu;
3009         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3010         int yielded = 0;
3011         int try = 3;
3012         int pass;
3013         int i;
3014
3015         kvm_vcpu_set_in_spin_loop(me, true);
3016         /*
3017          * We boost the priority of a VCPU that is runnable but not
3018          * currently running, because it got preempted by something
3019          * else and called schedule in __vcpu_run.  Hopefully that
3020          * VCPU is holding the lock that we need and will release it.
3021          * We approximate round-robin by starting at the last boosted VCPU.
3022          */
3023         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3024                 kvm_for_each_vcpu(i, vcpu, kvm) {
3025                         if (!pass && i <= last_boosted_vcpu) {
3026                                 i = last_boosted_vcpu;
3027                                 continue;
3028                         } else if (pass && i > last_boosted_vcpu)
3029                                 break;
3030                         if (!READ_ONCE(vcpu->ready))
3031                                 continue;
3032                         if (vcpu == me)
3033                                 continue;
3034                         if (rcuwait_active(&vcpu->wait) &&
3035                             !vcpu_dy_runnable(vcpu))
3036                                 continue;
3037                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3038                                 !kvm_arch_vcpu_in_kernel(vcpu))
3039                                 continue;
3040                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3041                                 continue;
3042
3043                         yielded = kvm_vcpu_yield_to(vcpu);
3044                         if (yielded > 0) {
3045                                 kvm->last_boosted_vcpu = i;
3046                                 break;
3047                         } else if (yielded < 0) {
3048                                 try--;
3049                                 if (!try)
3050                                         break;
3051                         }
3052                 }
3053         }
3054         kvm_vcpu_set_in_spin_loop(me, false);
3055
3056         /* Ensure vcpu is not eligible during next spinloop */
3057         kvm_vcpu_set_dy_eligible(me, false);
3058 }
3059 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3060
3061 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3062 {
3063 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3064         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3065             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3066              kvm->dirty_ring_size / PAGE_SIZE);
3067 #else
3068         return false;
3069 #endif
3070 }
3071
3072 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3073 {
3074         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3075         struct page *page;
3076
3077         if (vmf->pgoff == 0)
3078                 page = virt_to_page(vcpu->run);
3079 #ifdef CONFIG_X86
3080         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3081                 page = virt_to_page(vcpu->arch.pio_data);
3082 #endif
3083 #ifdef CONFIG_KVM_MMIO
3084         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3085                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3086 #endif
3087         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3088                 page = kvm_dirty_ring_get_page(
3089                     &vcpu->dirty_ring,
3090                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3091         else
3092                 return kvm_arch_vcpu_fault(vcpu, vmf);
3093         get_page(page);
3094         vmf->page = page;
3095         return 0;
3096 }
3097
3098 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3099         .fault = kvm_vcpu_fault,
3100 };
3101
3102 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3103 {
3104         struct kvm_vcpu *vcpu = file->private_data;
3105         unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3106
3107         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3108              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3109             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3110                 return -EINVAL;
3111
3112         vma->vm_ops = &kvm_vcpu_vm_ops;
3113         return 0;
3114 }
3115
3116 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3117 {
3118         struct kvm_vcpu *vcpu = filp->private_data;
3119
3120         kvm_put_kvm(vcpu->kvm);
3121         return 0;
3122 }
3123
3124 static struct file_operations kvm_vcpu_fops = {
3125         .release        = kvm_vcpu_release,
3126         .unlocked_ioctl = kvm_vcpu_ioctl,
3127         .mmap           = kvm_vcpu_mmap,
3128         .llseek         = noop_llseek,
3129         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3130 };
3131
3132 /*
3133  * Allocates an inode for the vcpu.
3134  */
3135 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3136 {
3137         char name[8 + 1 + ITOA_MAX_LEN + 1];
3138
3139         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3140         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3141 }
3142
3143 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3144 {
3145 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3146         struct dentry *debugfs_dentry;
3147         char dir_name[ITOA_MAX_LEN * 2];
3148
3149         if (!debugfs_initialized())
3150                 return;
3151
3152         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3153         debugfs_dentry = debugfs_create_dir(dir_name,
3154                                             vcpu->kvm->debugfs_dentry);
3155
3156         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3157 #endif
3158 }
3159
3160 /*
3161  * Creates some virtual cpus.  Good luck creating more than one.
3162  */
3163 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3164 {
3165         int r;
3166         struct kvm_vcpu *vcpu;
3167         struct page *page;
3168
3169         if (id >= KVM_MAX_VCPU_ID)
3170                 return -EINVAL;
3171
3172         mutex_lock(&kvm->lock);
3173         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3174                 mutex_unlock(&kvm->lock);
3175                 return -EINVAL;
3176         }
3177
3178         kvm->created_vcpus++;
3179         mutex_unlock(&kvm->lock);
3180
3181         r = kvm_arch_vcpu_precreate(kvm, id);
3182         if (r)
3183                 goto vcpu_decrement;
3184
3185         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3186         if (!vcpu) {
3187                 r = -ENOMEM;
3188                 goto vcpu_decrement;
3189         }
3190
3191         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3192         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3193         if (!page) {
3194                 r = -ENOMEM;
3195                 goto vcpu_free;
3196         }
3197         vcpu->run = page_address(page);
3198
3199         kvm_vcpu_init(vcpu, kvm, id);
3200
3201         r = kvm_arch_vcpu_create(vcpu);
3202         if (r)
3203                 goto vcpu_free_run_page;
3204
3205         if (kvm->dirty_ring_size) {
3206                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3207                                          id, kvm->dirty_ring_size);
3208                 if (r)
3209                         goto arch_vcpu_destroy;
3210         }
3211
3212         mutex_lock(&kvm->lock);
3213         if (kvm_get_vcpu_by_id(kvm, id)) {
3214                 r = -EEXIST;
3215                 goto unlock_vcpu_destroy;
3216         }
3217
3218         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3219         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3220
3221         /* Now it's all set up, let userspace reach it */
3222         kvm_get_kvm(kvm);
3223         r = create_vcpu_fd(vcpu);
3224         if (r < 0) {
3225                 kvm_put_kvm_no_destroy(kvm);
3226                 goto unlock_vcpu_destroy;
3227         }
3228
3229         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3230
3231         /*
3232          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3233          * before kvm->online_vcpu's incremented value.
3234          */
3235         smp_wmb();
3236         atomic_inc(&kvm->online_vcpus);
3237
3238         mutex_unlock(&kvm->lock);
3239         kvm_arch_vcpu_postcreate(vcpu);
3240         kvm_create_vcpu_debugfs(vcpu);
3241         return r;
3242
3243 unlock_vcpu_destroy:
3244         mutex_unlock(&kvm->lock);
3245         kvm_dirty_ring_free(&vcpu->dirty_ring);
3246 arch_vcpu_destroy:
3247         kvm_arch_vcpu_destroy(vcpu);
3248 vcpu_free_run_page:
3249         free_page((unsigned long)vcpu->run);
3250 vcpu_free:
3251         kmem_cache_free(kvm_vcpu_cache, vcpu);
3252 vcpu_decrement:
3253         mutex_lock(&kvm->lock);
3254         kvm->created_vcpus--;
3255         mutex_unlock(&kvm->lock);
3256         return r;
3257 }
3258
3259 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3260 {
3261         if (sigset) {
3262                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3263                 vcpu->sigset_active = 1;
3264                 vcpu->sigset = *sigset;
3265         } else
3266                 vcpu->sigset_active = 0;
3267         return 0;
3268 }
3269
3270 static long kvm_vcpu_ioctl(struct file *filp,
3271                            unsigned int ioctl, unsigned long arg)
3272 {
3273         struct kvm_vcpu *vcpu = filp->private_data;
3274         void __user *argp = (void __user *)arg;
3275         int r;
3276         struct kvm_fpu *fpu = NULL;
3277         struct kvm_sregs *kvm_sregs = NULL;
3278
3279         if (vcpu->kvm->mm != current->mm)
3280                 return -EIO;
3281
3282         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3283                 return -EINVAL;
3284
3285         /*
3286          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3287          * execution; mutex_lock() would break them.
3288          */
3289         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3290         if (r != -ENOIOCTLCMD)
3291                 return r;
3292
3293         if (mutex_lock_killable(&vcpu->mutex))
3294                 return -EINTR;
3295         switch (ioctl) {
3296         case KVM_RUN: {
3297                 struct pid *oldpid;
3298                 r = -EINVAL;
3299                 if (arg)
3300                         goto out;
3301                 oldpid = rcu_access_pointer(vcpu->pid);
3302                 if (unlikely(oldpid != task_pid(current))) {
3303                         /* The thread running this VCPU changed. */
3304                         struct pid *newpid;
3305
3306                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3307                         if (r)
3308                                 break;
3309
3310                         newpid = get_task_pid(current, PIDTYPE_PID);
3311                         rcu_assign_pointer(vcpu->pid, newpid);
3312                         if (oldpid)
3313                                 synchronize_rcu();
3314                         put_pid(oldpid);
3315                 }
3316                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3317                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3318                 break;
3319         }
3320         case KVM_GET_REGS: {
3321                 struct kvm_regs *kvm_regs;
3322
3323                 r = -ENOMEM;
3324                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3325                 if (!kvm_regs)
3326                         goto out;
3327                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3328                 if (r)
3329                         goto out_free1;
3330                 r = -EFAULT;
3331                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3332                         goto out_free1;
3333                 r = 0;
3334 out_free1:
3335                 kfree(kvm_regs);
3336                 break;
3337         }
3338         case KVM_SET_REGS: {
3339                 struct kvm_regs *kvm_regs;
3340
3341                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3342                 if (IS_ERR(kvm_regs)) {
3343                         r = PTR_ERR(kvm_regs);
3344                         goto out;
3345                 }
3346                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3347                 kfree(kvm_regs);
3348                 break;
3349         }
3350         case KVM_GET_SREGS: {
3351                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3352                                     GFP_KERNEL_ACCOUNT);
3353                 r = -ENOMEM;
3354                 if (!kvm_sregs)
3355                         goto out;
3356                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3357                 if (r)
3358                         goto out;
3359                 r = -EFAULT;
3360                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3361                         goto out;
3362                 r = 0;
3363                 break;
3364         }
3365         case KVM_SET_SREGS: {
3366                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3367                 if (IS_ERR(kvm_sregs)) {
3368                         r = PTR_ERR(kvm_sregs);
3369                         kvm_sregs = NULL;
3370                         goto out;
3371                 }
3372                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3373                 break;
3374         }
3375         case KVM_GET_MP_STATE: {
3376                 struct kvm_mp_state mp_state;
3377
3378                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3379                 if (r)
3380                         goto out;
3381                 r = -EFAULT;
3382                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3383                         goto out;
3384                 r = 0;
3385                 break;
3386         }
3387         case KVM_SET_MP_STATE: {
3388                 struct kvm_mp_state mp_state;
3389
3390                 r = -EFAULT;
3391                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3392                         goto out;
3393                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3394                 break;
3395         }
3396         case KVM_TRANSLATE: {
3397                 struct kvm_translation tr;
3398
3399                 r = -EFAULT;
3400                 if (copy_from_user(&tr, argp, sizeof(tr)))
3401                         goto out;
3402                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3403                 if (r)
3404                         goto out;
3405                 r = -EFAULT;
3406                 if (copy_to_user(argp, &tr, sizeof(tr)))
3407                         goto out;
3408                 r = 0;
3409                 break;
3410         }
3411         case KVM_SET_GUEST_DEBUG: {
3412                 struct kvm_guest_debug dbg;
3413
3414                 r = -EFAULT;
3415                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3416                         goto out;
3417                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3418                 break;
3419         }
3420         case KVM_SET_SIGNAL_MASK: {
3421                 struct kvm_signal_mask __user *sigmask_arg = argp;
3422                 struct kvm_signal_mask kvm_sigmask;
3423                 sigset_t sigset, *p;
3424
3425                 p = NULL;
3426                 if (argp) {
3427                         r = -EFAULT;
3428                         if (copy_from_user(&kvm_sigmask, argp,
3429                                            sizeof(kvm_sigmask)))
3430                                 goto out;
3431                         r = -EINVAL;
3432                         if (kvm_sigmask.len != sizeof(sigset))
3433                                 goto out;
3434                         r = -EFAULT;
3435                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3436                                            sizeof(sigset)))
3437                                 goto out;
3438                         p = &sigset;
3439                 }
3440                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3441                 break;
3442         }
3443         case KVM_GET_FPU: {
3444                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3445                 r = -ENOMEM;
3446                 if (!fpu)
3447                         goto out;
3448                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3449                 if (r)
3450                         goto out;
3451                 r = -EFAULT;
3452                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3453                         goto out;
3454                 r = 0;
3455                 break;
3456         }
3457         case KVM_SET_FPU: {
3458                 fpu = memdup_user(argp, sizeof(*fpu));
3459                 if (IS_ERR(fpu)) {
3460                         r = PTR_ERR(fpu);
3461                         fpu = NULL;
3462                         goto out;
3463                 }
3464                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3465                 break;
3466         }
3467         default:
3468                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3469         }
3470 out:
3471         mutex_unlock(&vcpu->mutex);
3472         kfree(fpu);
3473         kfree(kvm_sregs);
3474         return r;
3475 }
3476
3477 #ifdef CONFIG_KVM_COMPAT
3478 static long kvm_vcpu_compat_ioctl(struct file *filp,
3479                                   unsigned int ioctl, unsigned long arg)
3480 {
3481         struct kvm_vcpu *vcpu = filp->private_data;
3482         void __user *argp = compat_ptr(arg);
3483         int r;
3484
3485         if (vcpu->kvm->mm != current->mm)
3486                 return -EIO;
3487
3488         switch (ioctl) {
3489         case KVM_SET_SIGNAL_MASK: {
3490                 struct kvm_signal_mask __user *sigmask_arg = argp;
3491                 struct kvm_signal_mask kvm_sigmask;
3492                 sigset_t sigset;
3493
3494                 if (argp) {
3495                         r = -EFAULT;
3496                         if (copy_from_user(&kvm_sigmask, argp,
3497                                            sizeof(kvm_sigmask)))
3498                                 goto out;
3499                         r = -EINVAL;
3500                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3501                                 goto out;
3502                         r = -EFAULT;
3503                         if (get_compat_sigset(&sigset,
3504                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3505                                 goto out;
3506                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3507                 } else
3508                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3509                 break;
3510         }
3511         default:
3512                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3513         }
3514
3515 out:
3516         return r;
3517 }
3518 #endif
3519
3520 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3521 {
3522         struct kvm_device *dev = filp->private_data;
3523
3524         if (dev->ops->mmap)
3525                 return dev->ops->mmap(dev, vma);
3526
3527         return -ENODEV;
3528 }
3529
3530 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3531                                  int (*accessor)(struct kvm_device *dev,
3532                                                  struct kvm_device_attr *attr),
3533                                  unsigned long arg)
3534 {
3535         struct kvm_device_attr attr;
3536
3537         if (!accessor)
3538                 return -EPERM;
3539
3540         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3541                 return -EFAULT;
3542
3543         return accessor(dev, &attr);
3544 }
3545
3546 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3547                              unsigned long arg)
3548 {
3549         struct kvm_device *dev = filp->private_data;
3550
3551         if (dev->kvm->mm != current->mm)
3552                 return -EIO;
3553
3554         switch (ioctl) {
3555         case KVM_SET_DEVICE_ATTR:
3556                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3557         case KVM_GET_DEVICE_ATTR:
3558                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3559         case KVM_HAS_DEVICE_ATTR:
3560                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3561         default:
3562                 if (dev->ops->ioctl)
3563                         return dev->ops->ioctl(dev, ioctl, arg);
3564
3565                 return -ENOTTY;
3566         }
3567 }
3568
3569 static int kvm_device_release(struct inode *inode, struct file *filp)
3570 {
3571         struct kvm_device *dev = filp->private_data;
3572         struct kvm *kvm = dev->kvm;
3573
3574         if (dev->ops->release) {
3575                 mutex_lock(&kvm->lock);
3576                 list_del(&dev->vm_node);
3577                 dev->ops->release(dev);
3578                 mutex_unlock(&kvm->lock);
3579         }
3580
3581         kvm_put_kvm(kvm);
3582         return 0;
3583 }
3584
3585 static const struct file_operations kvm_device_fops = {
3586         .unlocked_ioctl = kvm_device_ioctl,
3587         .release = kvm_device_release,
3588         KVM_COMPAT(kvm_device_ioctl),
3589         .mmap = kvm_device_mmap,
3590 };
3591
3592 struct kvm_device *kvm_device_from_filp(struct file *filp)
3593 {
3594         if (filp->f_op != &kvm_device_fops)
3595                 return NULL;
3596
3597         return filp->private_data;
3598 }
3599
3600 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3601 #ifdef CONFIG_KVM_MPIC
3602         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3603         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3604 #endif
3605 };
3606
3607 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3608 {
3609         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3610                 return -ENOSPC;
3611
3612         if (kvm_device_ops_table[type] != NULL)
3613                 return -EEXIST;
3614
3615         kvm_device_ops_table[type] = ops;
3616         return 0;
3617 }
3618
3619 void kvm_unregister_device_ops(u32 type)
3620 {
3621         if (kvm_device_ops_table[type] != NULL)
3622                 kvm_device_ops_table[type] = NULL;
3623 }
3624
3625 static int kvm_ioctl_create_device(struct kvm *kvm,
3626                                    struct kvm_create_device *cd)
3627 {
3628         const struct kvm_device_ops *ops = NULL;
3629         struct kvm_device *dev;
3630         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3631         int type;
3632         int ret;
3633
3634         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3635                 return -ENODEV;
3636
3637         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3638         ops = kvm_device_ops_table[type];
3639         if (ops == NULL)
3640                 return -ENODEV;
3641
3642         if (test)
3643                 return 0;
3644
3645         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3646         if (!dev)
3647                 return -ENOMEM;
3648
3649         dev->ops = ops;
3650         dev->kvm = kvm;
3651
3652         mutex_lock(&kvm->lock);
3653         ret = ops->create(dev, type);
3654         if (ret < 0) {
3655                 mutex_unlock(&kvm->lock);
3656                 kfree(dev);
3657                 return ret;
3658         }
3659         list_add(&dev->vm_node, &kvm->devices);
3660         mutex_unlock(&kvm->lock);
3661
3662         if (ops->init)
3663                 ops->init(dev);
3664
3665         kvm_get_kvm(kvm);
3666         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3667         if (ret < 0) {
3668                 kvm_put_kvm_no_destroy(kvm);
3669                 mutex_lock(&kvm->lock);
3670                 list_del(&dev->vm_node);
3671                 mutex_unlock(&kvm->lock);
3672                 ops->destroy(dev);
3673                 return ret;
3674         }
3675
3676         cd->fd = ret;
3677         return 0;
3678 }
3679
3680 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3681 {
3682         switch (arg) {
3683         case KVM_CAP_USER_MEMORY:
3684         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3685         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3686         case KVM_CAP_INTERNAL_ERROR_DATA:
3687 #ifdef CONFIG_HAVE_KVM_MSI
3688         case KVM_CAP_SIGNAL_MSI:
3689 #endif
3690 #ifdef CONFIG_HAVE_KVM_IRQFD
3691         case KVM_CAP_IRQFD:
3692         case KVM_CAP_IRQFD_RESAMPLE:
3693 #endif
3694         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3695         case KVM_CAP_CHECK_EXTENSION_VM:
3696         case KVM_CAP_ENABLE_CAP_VM:
3697         case KVM_CAP_HALT_POLL:
3698                 return 1;
3699 #ifdef CONFIG_KVM_MMIO
3700         case KVM_CAP_COALESCED_MMIO:
3701                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3702         case KVM_CAP_COALESCED_PIO:
3703                 return 1;
3704 #endif
3705 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3706         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3707                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3708 #endif
3709 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3710         case KVM_CAP_IRQ_ROUTING:
3711                 return KVM_MAX_IRQ_ROUTES;
3712 #endif
3713 #if KVM_ADDRESS_SPACE_NUM > 1
3714         case KVM_CAP_MULTI_ADDRESS_SPACE:
3715                 return KVM_ADDRESS_SPACE_NUM;
3716 #endif
3717         case KVM_CAP_NR_MEMSLOTS:
3718                 return KVM_USER_MEM_SLOTS;
3719         case KVM_CAP_DIRTY_LOG_RING:
3720 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3721                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
3722 #else
3723                 return 0;
3724 #endif
3725         default:
3726                 break;
3727         }
3728         return kvm_vm_ioctl_check_extension(kvm, arg);
3729 }
3730
3731 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
3732 {
3733         int r;
3734
3735         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
3736                 return -EINVAL;
3737
3738         /* the size should be power of 2 */
3739         if (!size || (size & (size - 1)))
3740                 return -EINVAL;
3741
3742         /* Should be bigger to keep the reserved entries, or a page */
3743         if (size < kvm_dirty_ring_get_rsvd_entries() *
3744             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
3745                 return -EINVAL;
3746
3747         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
3748             sizeof(struct kvm_dirty_gfn))
3749                 return -E2BIG;
3750
3751         /* We only allow it to set once */
3752         if (kvm->dirty_ring_size)
3753                 return -EINVAL;
3754
3755         mutex_lock(&kvm->lock);
3756
3757         if (kvm->created_vcpus) {
3758                 /* We don't allow to change this value after vcpu created */
3759                 r = -EINVAL;
3760         } else {
3761                 kvm->dirty_ring_size = size;
3762                 r = 0;
3763         }
3764
3765         mutex_unlock(&kvm->lock);
3766         return r;
3767 }
3768
3769 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
3770 {
3771         int i;
3772         struct kvm_vcpu *vcpu;
3773         int cleared = 0;
3774
3775         if (!kvm->dirty_ring_size)
3776                 return -EINVAL;
3777
3778         mutex_lock(&kvm->slots_lock);
3779
3780         kvm_for_each_vcpu(i, vcpu, kvm)
3781                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
3782
3783         mutex_unlock(&kvm->slots_lock);
3784
3785         if (cleared)
3786                 kvm_flush_remote_tlbs(kvm);
3787
3788         return cleared;
3789 }
3790
3791 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3792                                                   struct kvm_enable_cap *cap)
3793 {
3794         return -EINVAL;
3795 }
3796
3797 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3798                                            struct kvm_enable_cap *cap)
3799 {
3800         switch (cap->cap) {
3801 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3802         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3803                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3804
3805                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3806                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3807
3808                 if (cap->flags || (cap->args[0] & ~allowed_options))
3809                         return -EINVAL;
3810                 kvm->manual_dirty_log_protect = cap->args[0];
3811                 return 0;
3812         }
3813 #endif
3814         case KVM_CAP_HALT_POLL: {
3815                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3816                         return -EINVAL;
3817
3818                 kvm->max_halt_poll_ns = cap->args[0];
3819                 return 0;
3820         }
3821         case KVM_CAP_DIRTY_LOG_RING:
3822                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
3823         default:
3824                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3825         }
3826 }
3827
3828 static long kvm_vm_ioctl(struct file *filp,
3829                            unsigned int ioctl, unsigned long arg)
3830 {
3831         struct kvm *kvm = filp->private_data;
3832         void __user *argp = (void __user *)arg;
3833         int r;
3834
3835         if (kvm->mm != current->mm)
3836                 return -EIO;
3837         switch (ioctl) {
3838         case KVM_CREATE_VCPU:
3839                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3840                 break;
3841         case KVM_ENABLE_CAP: {
3842                 struct kvm_enable_cap cap;
3843
3844                 r = -EFAULT;
3845                 if (copy_from_user(&cap, argp, sizeof(cap)))
3846                         goto out;
3847                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3848                 break;
3849         }
3850         case KVM_SET_USER_MEMORY_REGION: {
3851                 struct kvm_userspace_memory_region kvm_userspace_mem;
3852
3853                 r = -EFAULT;
3854                 if (copy_from_user(&kvm_userspace_mem, argp,
3855                                                 sizeof(kvm_userspace_mem)))
3856                         goto out;
3857
3858                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3859                 break;
3860         }
3861         case KVM_GET_DIRTY_LOG: {
3862                 struct kvm_dirty_log log;
3863
3864                 r = -EFAULT;
3865                 if (copy_from_user(&log, argp, sizeof(log)))
3866                         goto out;
3867                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3868                 break;
3869         }
3870 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3871         case KVM_CLEAR_DIRTY_LOG: {
3872                 struct kvm_clear_dirty_log log;
3873
3874                 r = -EFAULT;
3875                 if (copy_from_user(&log, argp, sizeof(log)))
3876                         goto out;
3877                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3878                 break;
3879         }
3880 #endif
3881 #ifdef CONFIG_KVM_MMIO
3882         case KVM_REGISTER_COALESCED_MMIO: {
3883                 struct kvm_coalesced_mmio_zone zone;
3884
3885                 r = -EFAULT;
3886                 if (copy_from_user(&zone, argp, sizeof(zone)))
3887                         goto out;
3888                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3889                 break;
3890         }
3891         case KVM_UNREGISTER_COALESCED_MMIO: {
3892                 struct kvm_coalesced_mmio_zone zone;
3893
3894                 r = -EFAULT;
3895                 if (copy_from_user(&zone, argp, sizeof(zone)))
3896                         goto out;
3897                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3898                 break;
3899         }
3900 #endif
3901         case KVM_IRQFD: {
3902                 struct kvm_irqfd data;
3903
3904                 r = -EFAULT;
3905                 if (copy_from_user(&data, argp, sizeof(data)))
3906                         goto out;
3907                 r = kvm_irqfd(kvm, &data);
3908                 break;
3909         }
3910         case KVM_IOEVENTFD: {
3911                 struct kvm_ioeventfd data;
3912
3913                 r = -EFAULT;
3914                 if (copy_from_user(&data, argp, sizeof(data)))
3915                         goto out;
3916                 r = kvm_ioeventfd(kvm, &data);
3917                 break;
3918         }
3919 #ifdef CONFIG_HAVE_KVM_MSI
3920         case KVM_SIGNAL_MSI: {
3921                 struct kvm_msi msi;
3922
3923                 r = -EFAULT;
3924                 if (copy_from_user(&msi, argp, sizeof(msi)))
3925                         goto out;
3926                 r = kvm_send_userspace_msi(kvm, &msi);
3927                 break;
3928         }
3929 #endif
3930 #ifdef __KVM_HAVE_IRQ_LINE
3931         case KVM_IRQ_LINE_STATUS:
3932         case KVM_IRQ_LINE: {
3933                 struct kvm_irq_level irq_event;
3934
3935                 r = -EFAULT;
3936                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3937                         goto out;
3938
3939                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3940                                         ioctl == KVM_IRQ_LINE_STATUS);
3941                 if (r)
3942                         goto out;
3943
3944                 r = -EFAULT;
3945                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3946                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3947                                 goto out;
3948                 }
3949
3950                 r = 0;
3951                 break;
3952         }
3953 #endif
3954 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3955         case KVM_SET_GSI_ROUTING: {
3956                 struct kvm_irq_routing routing;
3957                 struct kvm_irq_routing __user *urouting;
3958                 struct kvm_irq_routing_entry *entries = NULL;
3959
3960                 r = -EFAULT;
3961                 if (copy_from_user(&routing, argp, sizeof(routing)))
3962                         goto out;
3963                 r = -EINVAL;
3964                 if (!kvm_arch_can_set_irq_routing(kvm))
3965                         goto out;
3966                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3967                         goto out;
3968                 if (routing.flags)
3969                         goto out;
3970                 if (routing.nr) {
3971                         urouting = argp;
3972                         entries = vmemdup_user(urouting->entries,
3973                                                array_size(sizeof(*entries),
3974                                                           routing.nr));
3975                         if (IS_ERR(entries)) {
3976                                 r = PTR_ERR(entries);
3977                                 goto out;
3978                         }
3979                 }
3980                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3981                                         routing.flags);
3982                 kvfree(entries);
3983                 break;
3984         }
3985 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3986         case KVM_CREATE_DEVICE: {
3987                 struct kvm_create_device cd;
3988
3989                 r = -EFAULT;
3990                 if (copy_from_user(&cd, argp, sizeof(cd)))
3991                         goto out;
3992
3993                 r = kvm_ioctl_create_device(kvm, &cd);
3994                 if (r)
3995                         goto out;
3996
3997                 r = -EFAULT;
3998                 if (copy_to_user(argp, &cd, sizeof(cd)))
3999                         goto out;
4000
4001                 r = 0;
4002                 break;
4003         }
4004         case KVM_CHECK_EXTENSION:
4005                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4006                 break;
4007         case KVM_RESET_DIRTY_RINGS:
4008                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4009                 break;
4010         default:
4011                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4012         }
4013 out:
4014         return r;
4015 }
4016
4017 #ifdef CONFIG_KVM_COMPAT
4018 struct compat_kvm_dirty_log {
4019         __u32 slot;
4020         __u32 padding1;
4021         union {
4022                 compat_uptr_t dirty_bitmap; /* one bit per page */
4023                 __u64 padding2;
4024         };
4025 };
4026
4027 static long kvm_vm_compat_ioctl(struct file *filp,
4028                            unsigned int ioctl, unsigned long arg)
4029 {
4030         struct kvm *kvm = filp->private_data;
4031         int r;
4032
4033         if (kvm->mm != current->mm)
4034                 return -EIO;
4035         switch (ioctl) {
4036         case KVM_GET_DIRTY_LOG: {
4037                 struct compat_kvm_dirty_log compat_log;
4038                 struct kvm_dirty_log log;
4039
4040                 if (copy_from_user(&compat_log, (void __user *)arg,
4041                                    sizeof(compat_log)))
4042                         return -EFAULT;
4043                 log.slot         = compat_log.slot;
4044                 log.padding1     = compat_log.padding1;
4045                 log.padding2     = compat_log.padding2;
4046                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4047
4048                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4049                 break;
4050         }
4051         default:
4052                 r = kvm_vm_ioctl(filp, ioctl, arg);
4053         }
4054         return r;
4055 }
4056 #endif
4057
4058 static struct file_operations kvm_vm_fops = {
4059         .release        = kvm_vm_release,
4060         .unlocked_ioctl = kvm_vm_ioctl,
4061         .llseek         = noop_llseek,
4062         KVM_COMPAT(kvm_vm_compat_ioctl),
4063 };
4064
4065 static int kvm_dev_ioctl_create_vm(unsigned long type)
4066 {
4067         int r;
4068         struct kvm *kvm;
4069         struct file *file;
4070
4071         kvm = kvm_create_vm(type);
4072         if (IS_ERR(kvm))
4073                 return PTR_ERR(kvm);
4074 #ifdef CONFIG_KVM_MMIO
4075         r = kvm_coalesced_mmio_init(kvm);
4076         if (r < 0)
4077                 goto put_kvm;
4078 #endif
4079         r = get_unused_fd_flags(O_CLOEXEC);
4080         if (r < 0)
4081                 goto put_kvm;
4082
4083         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4084         if (IS_ERR(file)) {
4085                 put_unused_fd(r);
4086                 r = PTR_ERR(file);
4087                 goto put_kvm;
4088         }
4089
4090         /*
4091          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4092          * already set, with ->release() being kvm_vm_release().  In error
4093          * cases it will be called by the final fput(file) and will take
4094          * care of doing kvm_put_kvm(kvm).
4095          */
4096         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4097                 put_unused_fd(r);
4098                 fput(file);
4099                 return -ENOMEM;
4100         }
4101         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4102
4103         fd_install(r, file);
4104         return r;
4105
4106 put_kvm:
4107         kvm_put_kvm(kvm);
4108         return r;
4109 }
4110
4111 static long kvm_dev_ioctl(struct file *filp,
4112                           unsigned int ioctl, unsigned long arg)
4113 {
4114         long r = -EINVAL;
4115
4116         switch (ioctl) {
4117         case KVM_GET_API_VERSION:
4118                 if (arg)
4119                         goto out;
4120                 r = KVM_API_VERSION;
4121                 break;
4122         case KVM_CREATE_VM:
4123                 r = kvm_dev_ioctl_create_vm(arg);
4124                 break;
4125         case KVM_CHECK_EXTENSION:
4126                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4127                 break;
4128         case KVM_GET_VCPU_MMAP_SIZE:
4129                 if (arg)
4130                         goto out;
4131                 r = PAGE_SIZE;     /* struct kvm_run */
4132 #ifdef CONFIG_X86
4133                 r += PAGE_SIZE;    /* pio data page */
4134 #endif
4135 #ifdef CONFIG_KVM_MMIO
4136                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4137 #endif
4138                 break;
4139         case KVM_TRACE_ENABLE:
4140         case KVM_TRACE_PAUSE:
4141         case KVM_TRACE_DISABLE:
4142                 r = -EOPNOTSUPP;
4143                 break;
4144         default:
4145                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4146         }
4147 out:
4148         return r;
4149 }
4150
4151 static struct file_operations kvm_chardev_ops = {
4152         .unlocked_ioctl = kvm_dev_ioctl,
4153         .llseek         = noop_llseek,
4154         KVM_COMPAT(kvm_dev_ioctl),
4155 };
4156
4157 static struct miscdevice kvm_dev = {
4158         KVM_MINOR,
4159         "kvm",
4160         &kvm_chardev_ops,
4161 };
4162
4163 static void hardware_enable_nolock(void *junk)
4164 {
4165         int cpu = raw_smp_processor_id();
4166         int r;
4167
4168         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4169                 return;
4170
4171         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4172
4173         r = kvm_arch_hardware_enable();
4174
4175         if (r) {
4176                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4177                 atomic_inc(&hardware_enable_failed);
4178                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4179         }
4180 }
4181
4182 static int kvm_starting_cpu(unsigned int cpu)
4183 {
4184         raw_spin_lock(&kvm_count_lock);
4185         if (kvm_usage_count)
4186                 hardware_enable_nolock(NULL);
4187         raw_spin_unlock(&kvm_count_lock);
4188         return 0;
4189 }
4190
4191 static void hardware_disable_nolock(void *junk)
4192 {
4193         int cpu = raw_smp_processor_id();
4194
4195         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4196                 return;
4197         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4198         kvm_arch_hardware_disable();
4199 }
4200
4201 static int kvm_dying_cpu(unsigned int cpu)
4202 {
4203         raw_spin_lock(&kvm_count_lock);
4204         if (kvm_usage_count)
4205                 hardware_disable_nolock(NULL);
4206         raw_spin_unlock(&kvm_count_lock);
4207         return 0;
4208 }
4209
4210 static void hardware_disable_all_nolock(void)
4211 {
4212         BUG_ON(!kvm_usage_count);
4213
4214         kvm_usage_count--;
4215         if (!kvm_usage_count)
4216                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4217 }
4218
4219 static void hardware_disable_all(void)
4220 {
4221         raw_spin_lock(&kvm_count_lock);
4222         hardware_disable_all_nolock();
4223         raw_spin_unlock(&kvm_count_lock);
4224 }
4225
4226 static int hardware_enable_all(void)
4227 {
4228         int r = 0;
4229
4230         raw_spin_lock(&kvm_count_lock);
4231
4232         kvm_usage_count++;
4233         if (kvm_usage_count == 1) {
4234                 atomic_set(&hardware_enable_failed, 0);
4235                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4236
4237                 if (atomic_read(&hardware_enable_failed)) {
4238                         hardware_disable_all_nolock();
4239                         r = -EBUSY;
4240                 }
4241         }
4242
4243         raw_spin_unlock(&kvm_count_lock);
4244
4245         return r;
4246 }
4247
4248 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4249                       void *v)
4250 {
4251         /*
4252          * Some (well, at least mine) BIOSes hang on reboot if
4253          * in vmx root mode.
4254          *
4255          * And Intel TXT required VMX off for all cpu when system shutdown.
4256          */
4257         pr_info("kvm: exiting hardware virtualization\n");
4258         kvm_rebooting = true;
4259         on_each_cpu(hardware_disable_nolock, NULL, 1);
4260         return NOTIFY_OK;
4261 }
4262
4263 static struct notifier_block kvm_reboot_notifier = {
4264         .notifier_call = kvm_reboot,
4265         .priority = 0,
4266 };
4267
4268 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4269 {
4270         int i;
4271
4272         for (i = 0; i < bus->dev_count; i++) {
4273                 struct kvm_io_device *pos = bus->range[i].dev;
4274
4275                 kvm_iodevice_destructor(pos);
4276         }
4277         kfree(bus);
4278 }
4279
4280 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4281                                  const struct kvm_io_range *r2)
4282 {
4283         gpa_t addr1 = r1->addr;
4284         gpa_t addr2 = r2->addr;
4285
4286         if (addr1 < addr2)
4287                 return -1;
4288
4289         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4290          * accept any overlapping write.  Any order is acceptable for
4291          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4292          * we process all of them.
4293          */
4294         if (r2->len) {
4295                 addr1 += r1->len;
4296                 addr2 += r2->len;
4297         }
4298
4299         if (addr1 > addr2)
4300                 return 1;
4301
4302         return 0;
4303 }
4304
4305 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4306 {
4307         return kvm_io_bus_cmp(p1, p2);
4308 }
4309
4310 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4311                              gpa_t addr, int len)
4312 {
4313         struct kvm_io_range *range, key;
4314         int off;
4315
4316         key = (struct kvm_io_range) {
4317                 .addr = addr,
4318                 .len = len,
4319         };
4320
4321         range = bsearch(&key, bus->range, bus->dev_count,
4322                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4323         if (range == NULL)
4324                 return -ENOENT;
4325
4326         off = range - bus->range;
4327
4328         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4329                 off--;
4330
4331         return off;
4332 }
4333
4334 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4335                               struct kvm_io_range *range, const void *val)
4336 {
4337         int idx;
4338
4339         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4340         if (idx < 0)
4341                 return -EOPNOTSUPP;
4342
4343         while (idx < bus->dev_count &&
4344                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4345                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4346                                         range->len, val))
4347                         return idx;
4348                 idx++;
4349         }
4350
4351         return -EOPNOTSUPP;
4352 }
4353
4354 /* kvm_io_bus_write - called under kvm->slots_lock */
4355 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4356                      int len, const void *val)
4357 {
4358         struct kvm_io_bus *bus;
4359         struct kvm_io_range range;
4360         int r;
4361
4362         range = (struct kvm_io_range) {
4363                 .addr = addr,
4364                 .len = len,
4365         };
4366
4367         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4368         if (!bus)
4369                 return -ENOMEM;
4370         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4371         return r < 0 ? r : 0;
4372 }
4373 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4374
4375 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4376 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4377                             gpa_t addr, int len, const void *val, long cookie)
4378 {
4379         struct kvm_io_bus *bus;
4380         struct kvm_io_range range;
4381
4382         range = (struct kvm_io_range) {
4383                 .addr = addr,
4384                 .len = len,
4385         };
4386
4387         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4388         if (!bus)
4389                 return -ENOMEM;
4390
4391         /* First try the device referenced by cookie. */
4392         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4393             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4394                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4395                                         val))
4396                         return cookie;
4397
4398         /*
4399          * cookie contained garbage; fall back to search and return the
4400          * correct cookie value.
4401          */
4402         return __kvm_io_bus_write(vcpu, bus, &range, val);
4403 }
4404
4405 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4406                              struct kvm_io_range *range, void *val)
4407 {
4408         int idx;
4409
4410         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4411         if (idx < 0)
4412                 return -EOPNOTSUPP;
4413
4414         while (idx < bus->dev_count &&
4415                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4416                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4417                                        range->len, val))
4418                         return idx;
4419                 idx++;
4420         }
4421
4422         return -EOPNOTSUPP;
4423 }
4424
4425 /* kvm_io_bus_read - called under kvm->slots_lock */
4426 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4427                     int len, void *val)
4428 {
4429         struct kvm_io_bus *bus;
4430         struct kvm_io_range range;
4431         int r;
4432
4433         range = (struct kvm_io_range) {
4434                 .addr = addr,
4435                 .len = len,
4436         };
4437
4438         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4439         if (!bus)
4440                 return -ENOMEM;
4441         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4442         return r < 0 ? r : 0;
4443 }
4444
4445 /* Caller must hold slots_lock. */
4446 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4447                             int len, struct kvm_io_device *dev)
4448 {
4449         int i;
4450         struct kvm_io_bus *new_bus, *bus;
4451         struct kvm_io_range range;
4452
4453         bus = kvm_get_bus(kvm, bus_idx);
4454         if (!bus)
4455                 return -ENOMEM;
4456
4457         /* exclude ioeventfd which is limited by maximum fd */
4458         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4459                 return -ENOSPC;
4460
4461         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4462                           GFP_KERNEL_ACCOUNT);
4463         if (!new_bus)
4464                 return -ENOMEM;
4465
4466         range = (struct kvm_io_range) {
4467                 .addr = addr,
4468                 .len = len,
4469                 .dev = dev,
4470         };
4471
4472         for (i = 0; i < bus->dev_count; i++)
4473                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4474                         break;
4475
4476         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4477         new_bus->dev_count++;
4478         new_bus->range[i] = range;
4479         memcpy(new_bus->range + i + 1, bus->range + i,
4480                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4481         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4482         synchronize_srcu_expedited(&kvm->srcu);
4483         kfree(bus);
4484
4485         return 0;
4486 }
4487
4488 /* Caller must hold slots_lock. */
4489 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4490                                struct kvm_io_device *dev)
4491 {
4492         int i, j;
4493         struct kvm_io_bus *new_bus, *bus;
4494
4495         bus = kvm_get_bus(kvm, bus_idx);
4496         if (!bus)
4497                 return;
4498
4499         for (i = 0; i < bus->dev_count; i++)
4500                 if (bus->range[i].dev == dev) {
4501                         break;
4502                 }
4503
4504         if (i == bus->dev_count)
4505                 return;
4506
4507         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4508                           GFP_KERNEL_ACCOUNT);
4509         if (new_bus) {
4510                 memcpy(new_bus, bus, struct_size(bus, range, i));
4511                 new_bus->dev_count--;
4512                 memcpy(new_bus->range + i, bus->range + i + 1,
4513                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
4514         } else {
4515                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4516                 for (j = 0; j < bus->dev_count; j++) {
4517                         if (j == i)
4518                                 continue;
4519                         kvm_iodevice_destructor(bus->range[j].dev);
4520                 }
4521         }
4522
4523         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4524         synchronize_srcu_expedited(&kvm->srcu);
4525         kfree(bus);
4526         return;
4527 }
4528
4529 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4530                                          gpa_t addr)
4531 {
4532         struct kvm_io_bus *bus;
4533         int dev_idx, srcu_idx;
4534         struct kvm_io_device *iodev = NULL;
4535
4536         srcu_idx = srcu_read_lock(&kvm->srcu);
4537
4538         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4539         if (!bus)
4540                 goto out_unlock;
4541
4542         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4543         if (dev_idx < 0)
4544                 goto out_unlock;
4545
4546         iodev = bus->range[dev_idx].dev;
4547
4548 out_unlock:
4549         srcu_read_unlock(&kvm->srcu, srcu_idx);
4550
4551         return iodev;
4552 }
4553 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4554
4555 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4556                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4557                            const char *fmt)
4558 {
4559         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4560                                           inode->i_private;
4561
4562         /* The debugfs files are a reference to the kvm struct which
4563          * is still valid when kvm_destroy_vm is called.
4564          * To avoid the race between open and the removal of the debugfs
4565          * directory we test against the users count.
4566          */
4567         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4568                 return -ENOENT;
4569
4570         if (simple_attr_open(inode, file, get,
4571                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4572                     ? set : NULL,
4573                     fmt)) {
4574                 kvm_put_kvm(stat_data->kvm);
4575                 return -ENOMEM;
4576         }
4577
4578         return 0;
4579 }
4580
4581 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4582 {
4583         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4584                                           inode->i_private;
4585
4586         simple_attr_release(inode, file);
4587         kvm_put_kvm(stat_data->kvm);
4588
4589         return 0;
4590 }
4591
4592 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4593 {
4594         *val = *(ulong *)((void *)kvm + offset);
4595
4596         return 0;
4597 }
4598
4599 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4600 {
4601         *(ulong *)((void *)kvm + offset) = 0;
4602
4603         return 0;
4604 }
4605
4606 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4607 {
4608         int i;
4609         struct kvm_vcpu *vcpu;
4610
4611         *val = 0;
4612
4613         kvm_for_each_vcpu(i, vcpu, kvm)
4614                 *val += *(u64 *)((void *)vcpu + offset);
4615
4616         return 0;
4617 }
4618
4619 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4620 {
4621         int i;
4622         struct kvm_vcpu *vcpu;
4623
4624         kvm_for_each_vcpu(i, vcpu, kvm)
4625                 *(u64 *)((void *)vcpu + offset) = 0;
4626
4627         return 0;
4628 }
4629
4630 static int kvm_stat_data_get(void *data, u64 *val)
4631 {
4632         int r = -EFAULT;
4633         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4634
4635         switch (stat_data->dbgfs_item->kind) {
4636         case KVM_STAT_VM:
4637                 r = kvm_get_stat_per_vm(stat_data->kvm,
4638                                         stat_data->dbgfs_item->offset, val);
4639                 break;
4640         case KVM_STAT_VCPU:
4641                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4642                                           stat_data->dbgfs_item->offset, val);
4643                 break;
4644         }
4645
4646         return r;
4647 }
4648
4649 static int kvm_stat_data_clear(void *data, u64 val)
4650 {
4651         int r = -EFAULT;
4652         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4653
4654         if (val)
4655                 return -EINVAL;
4656
4657         switch (stat_data->dbgfs_item->kind) {
4658         case KVM_STAT_VM:
4659                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4660                                           stat_data->dbgfs_item->offset);
4661                 break;
4662         case KVM_STAT_VCPU:
4663                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4664                                             stat_data->dbgfs_item->offset);
4665                 break;
4666         }
4667
4668         return r;
4669 }
4670
4671 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4672 {
4673         __simple_attr_check_format("%llu\n", 0ull);
4674         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4675                                 kvm_stat_data_clear, "%llu\n");
4676 }
4677
4678 static const struct file_operations stat_fops_per_vm = {
4679         .owner = THIS_MODULE,
4680         .open = kvm_stat_data_open,
4681         .release = kvm_debugfs_release,
4682         .read = simple_attr_read,
4683         .write = simple_attr_write,
4684         .llseek = no_llseek,
4685 };
4686
4687 static int vm_stat_get(void *_offset, u64 *val)
4688 {
4689         unsigned offset = (long)_offset;
4690         struct kvm *kvm;
4691         u64 tmp_val;
4692
4693         *val = 0;
4694         mutex_lock(&kvm_lock);
4695         list_for_each_entry(kvm, &vm_list, vm_list) {
4696                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4697                 *val += tmp_val;
4698         }
4699         mutex_unlock(&kvm_lock);
4700         return 0;
4701 }
4702
4703 static int vm_stat_clear(void *_offset, u64 val)
4704 {
4705         unsigned offset = (long)_offset;
4706         struct kvm *kvm;
4707
4708         if (val)
4709                 return -EINVAL;
4710
4711         mutex_lock(&kvm_lock);
4712         list_for_each_entry(kvm, &vm_list, vm_list) {
4713                 kvm_clear_stat_per_vm(kvm, offset);
4714         }
4715         mutex_unlock(&kvm_lock);
4716
4717         return 0;
4718 }
4719
4720 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4721
4722 static int vcpu_stat_get(void *_offset, u64 *val)
4723 {
4724         unsigned offset = (long)_offset;
4725         struct kvm *kvm;
4726         u64 tmp_val;
4727
4728         *val = 0;
4729         mutex_lock(&kvm_lock);
4730         list_for_each_entry(kvm, &vm_list, vm_list) {
4731                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4732                 *val += tmp_val;
4733         }
4734         mutex_unlock(&kvm_lock);
4735         return 0;
4736 }
4737
4738 static int vcpu_stat_clear(void *_offset, u64 val)
4739 {
4740         unsigned offset = (long)_offset;
4741         struct kvm *kvm;
4742
4743         if (val)
4744                 return -EINVAL;
4745
4746         mutex_lock(&kvm_lock);
4747         list_for_each_entry(kvm, &vm_list, vm_list) {
4748                 kvm_clear_stat_per_vcpu(kvm, offset);
4749         }
4750         mutex_unlock(&kvm_lock);
4751
4752         return 0;
4753 }
4754
4755 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4756                         "%llu\n");
4757
4758 static const struct file_operations *stat_fops[] = {
4759         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4760         [KVM_STAT_VM]   = &vm_stat_fops,
4761 };
4762
4763 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4764 {
4765         struct kobj_uevent_env *env;
4766         unsigned long long created, active;
4767
4768         if (!kvm_dev.this_device || !kvm)
4769                 return;
4770
4771         mutex_lock(&kvm_lock);
4772         if (type == KVM_EVENT_CREATE_VM) {
4773                 kvm_createvm_count++;
4774                 kvm_active_vms++;
4775         } else if (type == KVM_EVENT_DESTROY_VM) {
4776                 kvm_active_vms--;
4777         }
4778         created = kvm_createvm_count;
4779         active = kvm_active_vms;
4780         mutex_unlock(&kvm_lock);
4781
4782         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4783         if (!env)
4784                 return;
4785
4786         add_uevent_var(env, "CREATED=%llu", created);
4787         add_uevent_var(env, "COUNT=%llu", active);
4788
4789         if (type == KVM_EVENT_CREATE_VM) {
4790                 add_uevent_var(env, "EVENT=create");
4791                 kvm->userspace_pid = task_pid_nr(current);
4792         } else if (type == KVM_EVENT_DESTROY_VM) {
4793                 add_uevent_var(env, "EVENT=destroy");
4794         }
4795         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4796
4797         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4798                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4799
4800                 if (p) {
4801                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4802                         if (!IS_ERR(tmp))
4803                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4804                         kfree(p);
4805                 }
4806         }
4807         /* no need for checks, since we are adding at most only 5 keys */
4808         env->envp[env->envp_idx++] = NULL;
4809         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4810         kfree(env);
4811 }
4812
4813 static void kvm_init_debug(void)
4814 {
4815         struct kvm_stats_debugfs_item *p;
4816
4817         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4818
4819         kvm_debugfs_num_entries = 0;
4820         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4821                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4822                                     kvm_debugfs_dir, (void *)(long)p->offset,
4823                                     stat_fops[p->kind]);
4824         }
4825 }
4826
4827 static int kvm_suspend(void)
4828 {
4829         if (kvm_usage_count)
4830                 hardware_disable_nolock(NULL);
4831         return 0;
4832 }
4833
4834 static void kvm_resume(void)
4835 {
4836         if (kvm_usage_count) {
4837 #ifdef CONFIG_LOCKDEP
4838                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4839 #endif
4840                 hardware_enable_nolock(NULL);
4841         }
4842 }
4843
4844 static struct syscore_ops kvm_syscore_ops = {
4845         .suspend = kvm_suspend,
4846         .resume = kvm_resume,
4847 };
4848
4849 static inline
4850 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4851 {
4852         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4853 }
4854
4855 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4856 {
4857         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4858
4859         WRITE_ONCE(vcpu->preempted, false);
4860         WRITE_ONCE(vcpu->ready, false);
4861
4862         __this_cpu_write(kvm_running_vcpu, vcpu);
4863         kvm_arch_sched_in(vcpu, cpu);
4864         kvm_arch_vcpu_load(vcpu, cpu);
4865 }
4866
4867 static void kvm_sched_out(struct preempt_notifier *pn,
4868                           struct task_struct *next)
4869 {
4870         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4871
4872         if (current->state == TASK_RUNNING) {
4873                 WRITE_ONCE(vcpu->preempted, true);
4874                 WRITE_ONCE(vcpu->ready, true);
4875         }
4876         kvm_arch_vcpu_put(vcpu);
4877         __this_cpu_write(kvm_running_vcpu, NULL);
4878 }
4879
4880 /**
4881  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4882  *
4883  * We can disable preemption locally around accessing the per-CPU variable,
4884  * and use the resolved vcpu pointer after enabling preemption again,
4885  * because even if the current thread is migrated to another CPU, reading
4886  * the per-CPU value later will give us the same value as we update the
4887  * per-CPU variable in the preempt notifier handlers.
4888  */
4889 struct kvm_vcpu *kvm_get_running_vcpu(void)
4890 {
4891         struct kvm_vcpu *vcpu;
4892
4893         preempt_disable();
4894         vcpu = __this_cpu_read(kvm_running_vcpu);
4895         preempt_enable();
4896
4897         return vcpu;
4898 }
4899 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4900
4901 /**
4902  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4903  */
4904 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4905 {
4906         return &kvm_running_vcpu;
4907 }
4908
4909 struct kvm_cpu_compat_check {
4910         void *opaque;
4911         int *ret;
4912 };
4913
4914 static void check_processor_compat(void *data)
4915 {
4916         struct kvm_cpu_compat_check *c = data;
4917
4918         *c->ret = kvm_arch_check_processor_compat(c->opaque);
4919 }
4920
4921 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4922                   struct module *module)
4923 {
4924         struct kvm_cpu_compat_check c;
4925         int r;
4926         int cpu;
4927
4928         r = kvm_arch_init(opaque);
4929         if (r)
4930                 goto out_fail;
4931
4932         /*
4933          * kvm_arch_init makes sure there's at most one caller
4934          * for architectures that support multiple implementations,
4935          * like intel and amd on x86.
4936          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4937          * conflicts in case kvm is already setup for another implementation.
4938          */
4939         r = kvm_irqfd_init();
4940         if (r)
4941                 goto out_irqfd;
4942
4943         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4944                 r = -ENOMEM;
4945                 goto out_free_0;
4946         }
4947
4948         r = kvm_arch_hardware_setup(opaque);
4949         if (r < 0)
4950                 goto out_free_1;
4951
4952         c.ret = &r;
4953         c.opaque = opaque;
4954         for_each_online_cpu(cpu) {
4955                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4956                 if (r < 0)
4957                         goto out_free_2;
4958         }
4959
4960         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4961                                       kvm_starting_cpu, kvm_dying_cpu);
4962         if (r)
4963                 goto out_free_2;
4964         register_reboot_notifier(&kvm_reboot_notifier);
4965
4966         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4967         if (!vcpu_align)
4968                 vcpu_align = __alignof__(struct kvm_vcpu);
4969         kvm_vcpu_cache =
4970                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4971                                            SLAB_ACCOUNT,
4972                                            offsetof(struct kvm_vcpu, arch),
4973                                            sizeof_field(struct kvm_vcpu, arch),
4974                                            NULL);
4975         if (!kvm_vcpu_cache) {
4976                 r = -ENOMEM;
4977                 goto out_free_3;
4978         }
4979
4980         r = kvm_async_pf_init();
4981         if (r)
4982                 goto out_free;
4983
4984         kvm_chardev_ops.owner = module;
4985         kvm_vm_fops.owner = module;
4986         kvm_vcpu_fops.owner = module;
4987
4988         r = misc_register(&kvm_dev);
4989         if (r) {
4990                 pr_err("kvm: misc device register failed\n");
4991                 goto out_unreg;
4992         }
4993
4994         register_syscore_ops(&kvm_syscore_ops);
4995
4996         kvm_preempt_ops.sched_in = kvm_sched_in;
4997         kvm_preempt_ops.sched_out = kvm_sched_out;
4998
4999         kvm_init_debug();
5000
5001         r = kvm_vfio_ops_init();
5002         WARN_ON(r);
5003
5004         return 0;
5005
5006 out_unreg:
5007         kvm_async_pf_deinit();
5008 out_free:
5009         kmem_cache_destroy(kvm_vcpu_cache);
5010 out_free_3:
5011         unregister_reboot_notifier(&kvm_reboot_notifier);
5012         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5013 out_free_2:
5014         kvm_arch_hardware_unsetup();
5015 out_free_1:
5016         free_cpumask_var(cpus_hardware_enabled);
5017 out_free_0:
5018         kvm_irqfd_exit();
5019 out_irqfd:
5020         kvm_arch_exit();
5021 out_fail:
5022         return r;
5023 }
5024 EXPORT_SYMBOL_GPL(kvm_init);
5025
5026 void kvm_exit(void)
5027 {
5028         debugfs_remove_recursive(kvm_debugfs_dir);
5029         misc_deregister(&kvm_dev);
5030         kmem_cache_destroy(kvm_vcpu_cache);
5031         kvm_async_pf_deinit();
5032         unregister_syscore_ops(&kvm_syscore_ops);
5033         unregister_reboot_notifier(&kvm_reboot_notifier);
5034         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5035         on_each_cpu(hardware_disable_nolock, NULL, 1);
5036         kvm_arch_hardware_unsetup();
5037         kvm_arch_exit();
5038         kvm_irqfd_exit();
5039         free_cpumask_var(cpus_hardware_enabled);
5040         kvm_vfio_ops_exit();
5041 }
5042 EXPORT_SYMBOL_GPL(kvm_exit);
5043
5044 struct kvm_vm_worker_thread_context {
5045         struct kvm *kvm;
5046         struct task_struct *parent;
5047         struct completion init_done;
5048         kvm_vm_thread_fn_t thread_fn;
5049         uintptr_t data;
5050         int err;
5051 };
5052
5053 static int kvm_vm_worker_thread(void *context)
5054 {
5055         /*
5056          * The init_context is allocated on the stack of the parent thread, so
5057          * we have to locally copy anything that is needed beyond initialization
5058          */
5059         struct kvm_vm_worker_thread_context *init_context = context;
5060         struct kvm *kvm = init_context->kvm;
5061         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5062         uintptr_t data = init_context->data;
5063         int err;
5064
5065         err = kthread_park(current);
5066         /* kthread_park(current) is never supposed to return an error */
5067         WARN_ON(err != 0);
5068         if (err)
5069                 goto init_complete;
5070
5071         err = cgroup_attach_task_all(init_context->parent, current);
5072         if (err) {
5073                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5074                         __func__, err);
5075                 goto init_complete;
5076         }
5077
5078         set_user_nice(current, task_nice(init_context->parent));
5079
5080 init_complete:
5081         init_context->err = err;
5082         complete(&init_context->init_done);
5083         init_context = NULL;
5084
5085         if (err)
5086                 return err;
5087
5088         /* Wait to be woken up by the spawner before proceeding. */
5089         kthread_parkme();
5090
5091         if (!kthread_should_stop())
5092                 err = thread_fn(kvm, data);
5093
5094         return err;
5095 }
5096
5097 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5098                                 uintptr_t data, const char *name,
5099                                 struct task_struct **thread_ptr)
5100 {
5101         struct kvm_vm_worker_thread_context init_context = {};
5102         struct task_struct *thread;
5103
5104         *thread_ptr = NULL;
5105         init_context.kvm = kvm;
5106         init_context.parent = current;
5107         init_context.thread_fn = thread_fn;
5108         init_context.data = data;
5109         init_completion(&init_context.init_done);
5110
5111         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5112                              "%s-%d", name, task_pid_nr(current));
5113         if (IS_ERR(thread))
5114                 return PTR_ERR(thread);
5115
5116         /* kthread_run is never supposed to return NULL */
5117         WARN_ON(thread == NULL);
5118
5119         wait_for_completion(&init_context.init_done);
5120
5121         if (!init_context.err)
5122                 *thread_ptr = thread;
5123
5124         return init_context.err;
5125 }