Merge tag 'drm/tegra/for-4.18-rc5' of git://anongit.freedesktop.org/tegra/linux into...
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122                                 unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134
135 static bool largepages_enabled = true;
136
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142
143 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144                 unsigned long start, unsigned long end)
145 {
146 }
147
148 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
149 {
150         if (pfn_valid(pfn))
151                 return PageReserved(pfn_to_page(pfn));
152
153         return true;
154 }
155
156 /*
157  * Switches to specified vcpu, until a matching vcpu_put()
158  */
159 void vcpu_load(struct kvm_vcpu *vcpu)
160 {
161         int cpu = get_cpu();
162         preempt_notifier_register(&vcpu->preempt_notifier);
163         kvm_arch_vcpu_load(vcpu, cpu);
164         put_cpu();
165 }
166 EXPORT_SYMBOL_GPL(vcpu_load);
167
168 void vcpu_put(struct kvm_vcpu *vcpu)
169 {
170         preempt_disable();
171         kvm_arch_vcpu_put(vcpu);
172         preempt_notifier_unregister(&vcpu->preempt_notifier);
173         preempt_enable();
174 }
175 EXPORT_SYMBOL_GPL(vcpu_put);
176
177 /* TODO: merge with kvm_arch_vcpu_should_kick */
178 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
179 {
180         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
181
182         /*
183          * We need to wait for the VCPU to reenable interrupts and get out of
184          * READING_SHADOW_PAGE_TABLES mode.
185          */
186         if (req & KVM_REQUEST_WAIT)
187                 return mode != OUTSIDE_GUEST_MODE;
188
189         /*
190          * Need to kick a running VCPU, but otherwise there is nothing to do.
191          */
192         return mode == IN_GUEST_MODE;
193 }
194
195 static void ack_flush(void *_completed)
196 {
197 }
198
199 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
200 {
201         if (unlikely(!cpus))
202                 cpus = cpu_online_mask;
203
204         if (cpumask_empty(cpus))
205                 return false;
206
207         smp_call_function_many(cpus, ack_flush, NULL, wait);
208         return true;
209 }
210
211 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
212                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
213 {
214         int i, cpu, me;
215         struct kvm_vcpu *vcpu;
216         bool called;
217
218         me = get_cpu();
219
220         kvm_for_each_vcpu(i, vcpu, kvm) {
221                 if (!test_bit(i, vcpu_bitmap))
222                         continue;
223
224                 kvm_make_request(req, vcpu);
225                 cpu = vcpu->cpu;
226
227                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
228                         continue;
229
230                 if (tmp != NULL && cpu != -1 && cpu != me &&
231                     kvm_request_needs_ipi(vcpu, req))
232                         __cpumask_set_cpu(cpu, tmp);
233         }
234
235         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
236         put_cpu();
237
238         return called;
239 }
240
241 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
242 {
243         cpumask_var_t cpus;
244         bool called;
245         static unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)]
246                 = {[0 ... BITS_TO_LONGS(KVM_MAX_VCPUS)-1] = ULONG_MAX};
247
248         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
249
250         called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap, cpus);
251
252         free_cpumask_var(cpus);
253         return called;
254 }
255
256 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
257 void kvm_flush_remote_tlbs(struct kvm *kvm)
258 {
259         /*
260          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
261          * kvm_make_all_cpus_request.
262          */
263         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
264
265         /*
266          * We want to publish modifications to the page tables before reading
267          * mode. Pairs with a memory barrier in arch-specific code.
268          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
269          * and smp_mb in walk_shadow_page_lockless_begin/end.
270          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
271          *
272          * There is already an smp_mb__after_atomic() before
273          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
274          * barrier here.
275          */
276         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277                 ++kvm->stat.remote_tlb_flush;
278         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290         struct page *page;
291         int r;
292
293         mutex_init(&vcpu->mutex);
294         vcpu->cpu = -1;
295         vcpu->kvm = kvm;
296         vcpu->vcpu_id = id;
297         vcpu->pid = NULL;
298         init_swait_queue_head(&vcpu->wq);
299         kvm_async_pf_vcpu_init(vcpu);
300
301         vcpu->pre_pcpu = -1;
302         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303
304         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305         if (!page) {
306                 r = -ENOMEM;
307                 goto fail;
308         }
309         vcpu->run = page_address(page);
310
311         kvm_vcpu_set_in_spin_loop(vcpu, false);
312         kvm_vcpu_set_dy_eligible(vcpu, false);
313         vcpu->preempted = false;
314
315         r = kvm_arch_vcpu_init(vcpu);
316         if (r < 0)
317                 goto fail_free_run;
318         return 0;
319
320 fail_free_run:
321         free_page((unsigned long)vcpu->run);
322 fail:
323         return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329         /*
330          * no need for rcu_read_lock as VCPU_RUN is the only place that
331          * will change the vcpu->pid pointer and on uninit all file
332          * descriptors are already gone.
333          */
334         put_pid(rcu_dereference_protected(vcpu->pid, 1));
335         kvm_arch_vcpu_uninit(vcpu);
336         free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343         return container_of(mn, struct kvm, mmu_notifier);
344 }
345
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347                                         struct mm_struct *mm,
348                                         unsigned long address,
349                                         pte_t pte)
350 {
351         struct kvm *kvm = mmu_notifier_to_kvm(mn);
352         int idx;
353
354         idx = srcu_read_lock(&kvm->srcu);
355         spin_lock(&kvm->mmu_lock);
356         kvm->mmu_notifier_seq++;
357         kvm_set_spte_hva(kvm, address, pte);
358         spin_unlock(&kvm->mmu_lock);
359         srcu_read_unlock(&kvm->srcu, idx);
360 }
361
362 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
363                                                     struct mm_struct *mm,
364                                                     unsigned long start,
365                                                     unsigned long end)
366 {
367         struct kvm *kvm = mmu_notifier_to_kvm(mn);
368         int need_tlb_flush = 0, idx;
369
370         idx = srcu_read_lock(&kvm->srcu);
371         spin_lock(&kvm->mmu_lock);
372         /*
373          * The count increase must become visible at unlock time as no
374          * spte can be established without taking the mmu_lock and
375          * count is also read inside the mmu_lock critical section.
376          */
377         kvm->mmu_notifier_count++;
378         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
379         need_tlb_flush |= kvm->tlbs_dirty;
380         /* we've to flush the tlb before the pages can be freed */
381         if (need_tlb_flush)
382                 kvm_flush_remote_tlbs(kvm);
383
384         spin_unlock(&kvm->mmu_lock);
385
386         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
387
388         srcu_read_unlock(&kvm->srcu, idx);
389 }
390
391 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
392                                                   struct mm_struct *mm,
393                                                   unsigned long start,
394                                                   unsigned long end)
395 {
396         struct kvm *kvm = mmu_notifier_to_kvm(mn);
397
398         spin_lock(&kvm->mmu_lock);
399         /*
400          * This sequence increase will notify the kvm page fault that
401          * the page that is going to be mapped in the spte could have
402          * been freed.
403          */
404         kvm->mmu_notifier_seq++;
405         smp_wmb();
406         /*
407          * The above sequence increase must be visible before the
408          * below count decrease, which is ensured by the smp_wmb above
409          * in conjunction with the smp_rmb in mmu_notifier_retry().
410          */
411         kvm->mmu_notifier_count--;
412         spin_unlock(&kvm->mmu_lock);
413
414         BUG_ON(kvm->mmu_notifier_count < 0);
415 }
416
417 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
418                                               struct mm_struct *mm,
419                                               unsigned long start,
420                                               unsigned long end)
421 {
422         struct kvm *kvm = mmu_notifier_to_kvm(mn);
423         int young, idx;
424
425         idx = srcu_read_lock(&kvm->srcu);
426         spin_lock(&kvm->mmu_lock);
427
428         young = kvm_age_hva(kvm, start, end);
429         if (young)
430                 kvm_flush_remote_tlbs(kvm);
431
432         spin_unlock(&kvm->mmu_lock);
433         srcu_read_unlock(&kvm->srcu, idx);
434
435         return young;
436 }
437
438 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
439                                         struct mm_struct *mm,
440                                         unsigned long start,
441                                         unsigned long end)
442 {
443         struct kvm *kvm = mmu_notifier_to_kvm(mn);
444         int young, idx;
445
446         idx = srcu_read_lock(&kvm->srcu);
447         spin_lock(&kvm->mmu_lock);
448         /*
449          * Even though we do not flush TLB, this will still adversely
450          * affect performance on pre-Haswell Intel EPT, where there is
451          * no EPT Access Bit to clear so that we have to tear down EPT
452          * tables instead. If we find this unacceptable, we can always
453          * add a parameter to kvm_age_hva so that it effectively doesn't
454          * do anything on clear_young.
455          *
456          * Also note that currently we never issue secondary TLB flushes
457          * from clear_young, leaving this job up to the regular system
458          * cadence. If we find this inaccurate, we might come up with a
459          * more sophisticated heuristic later.
460          */
461         young = kvm_age_hva(kvm, start, end);
462         spin_unlock(&kvm->mmu_lock);
463         srcu_read_unlock(&kvm->srcu, idx);
464
465         return young;
466 }
467
468 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
469                                        struct mm_struct *mm,
470                                        unsigned long address)
471 {
472         struct kvm *kvm = mmu_notifier_to_kvm(mn);
473         int young, idx;
474
475         idx = srcu_read_lock(&kvm->srcu);
476         spin_lock(&kvm->mmu_lock);
477         young = kvm_test_age_hva(kvm, address);
478         spin_unlock(&kvm->mmu_lock);
479         srcu_read_unlock(&kvm->srcu, idx);
480
481         return young;
482 }
483
484 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
485                                      struct mm_struct *mm)
486 {
487         struct kvm *kvm = mmu_notifier_to_kvm(mn);
488         int idx;
489
490         idx = srcu_read_lock(&kvm->srcu);
491         kvm_arch_flush_shadow_all(kvm);
492         srcu_read_unlock(&kvm->srcu, idx);
493 }
494
495 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
496         .flags                  = MMU_INVALIDATE_DOES_NOT_BLOCK,
497         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
498         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
499         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
500         .clear_young            = kvm_mmu_notifier_clear_young,
501         .test_young             = kvm_mmu_notifier_test_young,
502         .change_pte             = kvm_mmu_notifier_change_pte,
503         .release                = kvm_mmu_notifier_release,
504 };
505
506 static int kvm_init_mmu_notifier(struct kvm *kvm)
507 {
508         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
509         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
510 }
511
512 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
513
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
515 {
516         return 0;
517 }
518
519 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
520
521 static struct kvm_memslots *kvm_alloc_memslots(void)
522 {
523         int i;
524         struct kvm_memslots *slots;
525
526         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
527         if (!slots)
528                 return NULL;
529
530         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
531                 slots->id_to_index[i] = slots->memslots[i].id = i;
532
533         return slots;
534 }
535
536 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
537 {
538         if (!memslot->dirty_bitmap)
539                 return;
540
541         kvfree(memslot->dirty_bitmap);
542         memslot->dirty_bitmap = NULL;
543 }
544
545 /*
546  * Free any memory in @free but not in @dont.
547  */
548 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
549                               struct kvm_memory_slot *dont)
550 {
551         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
552                 kvm_destroy_dirty_bitmap(free);
553
554         kvm_arch_free_memslot(kvm, free, dont);
555
556         free->npages = 0;
557 }
558
559 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
560 {
561         struct kvm_memory_slot *memslot;
562
563         if (!slots)
564                 return;
565
566         kvm_for_each_memslot(memslot, slots)
567                 kvm_free_memslot(kvm, memslot, NULL);
568
569         kvfree(slots);
570 }
571
572 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
573 {
574         int i;
575
576         if (!kvm->debugfs_dentry)
577                 return;
578
579         debugfs_remove_recursive(kvm->debugfs_dentry);
580
581         if (kvm->debugfs_stat_data) {
582                 for (i = 0; i < kvm_debugfs_num_entries; i++)
583                         kfree(kvm->debugfs_stat_data[i]);
584                 kfree(kvm->debugfs_stat_data);
585         }
586 }
587
588 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
589 {
590         char dir_name[ITOA_MAX_LEN * 2];
591         struct kvm_stat_data *stat_data;
592         struct kvm_stats_debugfs_item *p;
593
594         if (!debugfs_initialized())
595                 return 0;
596
597         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
598         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
599
600         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
601                                          sizeof(*kvm->debugfs_stat_data),
602                                          GFP_KERNEL);
603         if (!kvm->debugfs_stat_data)
604                 return -ENOMEM;
605
606         for (p = debugfs_entries; p->name; p++) {
607                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
608                 if (!stat_data)
609                         return -ENOMEM;
610
611                 stat_data->kvm = kvm;
612                 stat_data->offset = p->offset;
613                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
614                 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
615                                     stat_data, stat_fops_per_vm[p->kind]);
616         }
617         return 0;
618 }
619
620 static struct kvm *kvm_create_vm(unsigned long type)
621 {
622         int r, i;
623         struct kvm *kvm = kvm_arch_alloc_vm();
624
625         if (!kvm)
626                 return ERR_PTR(-ENOMEM);
627
628         spin_lock_init(&kvm->mmu_lock);
629         mmgrab(current->mm);
630         kvm->mm = current->mm;
631         kvm_eventfd_init(kvm);
632         mutex_init(&kvm->lock);
633         mutex_init(&kvm->irq_lock);
634         mutex_init(&kvm->slots_lock);
635         refcount_set(&kvm->users_count, 1);
636         INIT_LIST_HEAD(&kvm->devices);
637
638         r = kvm_arch_init_vm(kvm, type);
639         if (r)
640                 goto out_err_no_disable;
641
642         r = hardware_enable_all();
643         if (r)
644                 goto out_err_no_disable;
645
646 #ifdef CONFIG_HAVE_KVM_IRQFD
647         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
648 #endif
649
650         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
651
652         r = -ENOMEM;
653         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
654                 struct kvm_memslots *slots = kvm_alloc_memslots();
655                 if (!slots)
656                         goto out_err_no_srcu;
657                 /*
658                  * Generations must be different for each address space.
659                  * Init kvm generation close to the maximum to easily test the
660                  * code of handling generation number wrap-around.
661                  */
662                 slots->generation = i * 2 - 150;
663                 rcu_assign_pointer(kvm->memslots[i], slots);
664         }
665
666         if (init_srcu_struct(&kvm->srcu))
667                 goto out_err_no_srcu;
668         if (init_srcu_struct(&kvm->irq_srcu))
669                 goto out_err_no_irq_srcu;
670         for (i = 0; i < KVM_NR_BUSES; i++) {
671                 rcu_assign_pointer(kvm->buses[i],
672                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
673                 if (!kvm->buses[i])
674                         goto out_err;
675         }
676
677         r = kvm_init_mmu_notifier(kvm);
678         if (r)
679                 goto out_err;
680
681         spin_lock(&kvm_lock);
682         list_add(&kvm->vm_list, &vm_list);
683         spin_unlock(&kvm_lock);
684
685         preempt_notifier_inc();
686
687         return kvm;
688
689 out_err:
690         cleanup_srcu_struct(&kvm->irq_srcu);
691 out_err_no_irq_srcu:
692         cleanup_srcu_struct(&kvm->srcu);
693 out_err_no_srcu:
694         hardware_disable_all();
695 out_err_no_disable:
696         refcount_set(&kvm->users_count, 0);
697         for (i = 0; i < KVM_NR_BUSES; i++)
698                 kfree(kvm_get_bus(kvm, i));
699         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
700                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
701         kvm_arch_free_vm(kvm);
702         mmdrop(current->mm);
703         return ERR_PTR(r);
704 }
705
706 static void kvm_destroy_devices(struct kvm *kvm)
707 {
708         struct kvm_device *dev, *tmp;
709
710         /*
711          * We do not need to take the kvm->lock here, because nobody else
712          * has a reference to the struct kvm at this point and therefore
713          * cannot access the devices list anyhow.
714          */
715         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
716                 list_del(&dev->vm_node);
717                 dev->ops->destroy(dev);
718         }
719 }
720
721 static void kvm_destroy_vm(struct kvm *kvm)
722 {
723         int i;
724         struct mm_struct *mm = kvm->mm;
725
726         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
727         kvm_destroy_vm_debugfs(kvm);
728         kvm_arch_sync_events(kvm);
729         spin_lock(&kvm_lock);
730         list_del(&kvm->vm_list);
731         spin_unlock(&kvm_lock);
732         kvm_free_irq_routing(kvm);
733         for (i = 0; i < KVM_NR_BUSES; i++) {
734                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
735
736                 if (bus)
737                         kvm_io_bus_destroy(bus);
738                 kvm->buses[i] = NULL;
739         }
740         kvm_coalesced_mmio_free(kvm);
741 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
742         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
743 #else
744         kvm_arch_flush_shadow_all(kvm);
745 #endif
746         kvm_arch_destroy_vm(kvm);
747         kvm_destroy_devices(kvm);
748         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
749                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
750         cleanup_srcu_struct(&kvm->irq_srcu);
751         cleanup_srcu_struct(&kvm->srcu);
752         kvm_arch_free_vm(kvm);
753         preempt_notifier_dec();
754         hardware_disable_all();
755         mmdrop(mm);
756 }
757
758 void kvm_get_kvm(struct kvm *kvm)
759 {
760         refcount_inc(&kvm->users_count);
761 }
762 EXPORT_SYMBOL_GPL(kvm_get_kvm);
763
764 void kvm_put_kvm(struct kvm *kvm)
765 {
766         if (refcount_dec_and_test(&kvm->users_count))
767                 kvm_destroy_vm(kvm);
768 }
769 EXPORT_SYMBOL_GPL(kvm_put_kvm);
770
771
772 static int kvm_vm_release(struct inode *inode, struct file *filp)
773 {
774         struct kvm *kvm = filp->private_data;
775
776         kvm_irqfd_release(kvm);
777
778         kvm_put_kvm(kvm);
779         return 0;
780 }
781
782 /*
783  * Allocation size is twice as large as the actual dirty bitmap size.
784  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
785  */
786 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
787 {
788         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
789
790         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
791         if (!memslot->dirty_bitmap)
792                 return -ENOMEM;
793
794         return 0;
795 }
796
797 /*
798  * Insert memslot and re-sort memslots based on their GFN,
799  * so binary search could be used to lookup GFN.
800  * Sorting algorithm takes advantage of having initially
801  * sorted array and known changed memslot position.
802  */
803 static void update_memslots(struct kvm_memslots *slots,
804                             struct kvm_memory_slot *new)
805 {
806         int id = new->id;
807         int i = slots->id_to_index[id];
808         struct kvm_memory_slot *mslots = slots->memslots;
809
810         WARN_ON(mslots[i].id != id);
811         if (!new->npages) {
812                 WARN_ON(!mslots[i].npages);
813                 if (mslots[i].npages)
814                         slots->used_slots--;
815         } else {
816                 if (!mslots[i].npages)
817                         slots->used_slots++;
818         }
819
820         while (i < KVM_MEM_SLOTS_NUM - 1 &&
821                new->base_gfn <= mslots[i + 1].base_gfn) {
822                 if (!mslots[i + 1].npages)
823                         break;
824                 mslots[i] = mslots[i + 1];
825                 slots->id_to_index[mslots[i].id] = i;
826                 i++;
827         }
828
829         /*
830          * The ">=" is needed when creating a slot with base_gfn == 0,
831          * so that it moves before all those with base_gfn == npages == 0.
832          *
833          * On the other hand, if new->npages is zero, the above loop has
834          * already left i pointing to the beginning of the empty part of
835          * mslots, and the ">=" would move the hole backwards in this
836          * case---which is wrong.  So skip the loop when deleting a slot.
837          */
838         if (new->npages) {
839                 while (i > 0 &&
840                        new->base_gfn >= mslots[i - 1].base_gfn) {
841                         mslots[i] = mslots[i - 1];
842                         slots->id_to_index[mslots[i].id] = i;
843                         i--;
844                 }
845         } else
846                 WARN_ON_ONCE(i != slots->used_slots);
847
848         mslots[i] = *new;
849         slots->id_to_index[mslots[i].id] = i;
850 }
851
852 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
853 {
854         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
855
856 #ifdef __KVM_HAVE_READONLY_MEM
857         valid_flags |= KVM_MEM_READONLY;
858 #endif
859
860         if (mem->flags & ~valid_flags)
861                 return -EINVAL;
862
863         return 0;
864 }
865
866 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
867                 int as_id, struct kvm_memslots *slots)
868 {
869         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
870
871         /*
872          * Set the low bit in the generation, which disables SPTE caching
873          * until the end of synchronize_srcu_expedited.
874          */
875         WARN_ON(old_memslots->generation & 1);
876         slots->generation = old_memslots->generation + 1;
877
878         rcu_assign_pointer(kvm->memslots[as_id], slots);
879         synchronize_srcu_expedited(&kvm->srcu);
880
881         /*
882          * Increment the new memslot generation a second time. This prevents
883          * vm exits that race with memslot updates from caching a memslot
884          * generation that will (potentially) be valid forever.
885          *
886          * Generations must be unique even across address spaces.  We do not need
887          * a global counter for that, instead the generation space is evenly split
888          * across address spaces.  For example, with two address spaces, address
889          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
890          * use generations 2, 6, 10, 14, ...
891          */
892         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
893
894         kvm_arch_memslots_updated(kvm, slots);
895
896         return old_memslots;
897 }
898
899 /*
900  * Allocate some memory and give it an address in the guest physical address
901  * space.
902  *
903  * Discontiguous memory is allowed, mostly for framebuffers.
904  *
905  * Must be called holding kvm->slots_lock for write.
906  */
907 int __kvm_set_memory_region(struct kvm *kvm,
908                             const struct kvm_userspace_memory_region *mem)
909 {
910         int r;
911         gfn_t base_gfn;
912         unsigned long npages;
913         struct kvm_memory_slot *slot;
914         struct kvm_memory_slot old, new;
915         struct kvm_memslots *slots = NULL, *old_memslots;
916         int as_id, id;
917         enum kvm_mr_change change;
918
919         r = check_memory_region_flags(mem);
920         if (r)
921                 goto out;
922
923         r = -EINVAL;
924         as_id = mem->slot >> 16;
925         id = (u16)mem->slot;
926
927         /* General sanity checks */
928         if (mem->memory_size & (PAGE_SIZE - 1))
929                 goto out;
930         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
931                 goto out;
932         /* We can read the guest memory with __xxx_user() later on. */
933         if ((id < KVM_USER_MEM_SLOTS) &&
934             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
935              !access_ok(VERIFY_WRITE,
936                         (void __user *)(unsigned long)mem->userspace_addr,
937                         mem->memory_size)))
938                 goto out;
939         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
940                 goto out;
941         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
942                 goto out;
943
944         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
945         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
946         npages = mem->memory_size >> PAGE_SHIFT;
947
948         if (npages > KVM_MEM_MAX_NR_PAGES)
949                 goto out;
950
951         new = old = *slot;
952
953         new.id = id;
954         new.base_gfn = base_gfn;
955         new.npages = npages;
956         new.flags = mem->flags;
957
958         if (npages) {
959                 if (!old.npages)
960                         change = KVM_MR_CREATE;
961                 else { /* Modify an existing slot. */
962                         if ((mem->userspace_addr != old.userspace_addr) ||
963                             (npages != old.npages) ||
964                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
965                                 goto out;
966
967                         if (base_gfn != old.base_gfn)
968                                 change = KVM_MR_MOVE;
969                         else if (new.flags != old.flags)
970                                 change = KVM_MR_FLAGS_ONLY;
971                         else { /* Nothing to change. */
972                                 r = 0;
973                                 goto out;
974                         }
975                 }
976         } else {
977                 if (!old.npages)
978                         goto out;
979
980                 change = KVM_MR_DELETE;
981                 new.base_gfn = 0;
982                 new.flags = 0;
983         }
984
985         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
986                 /* Check for overlaps */
987                 r = -EEXIST;
988                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
989                         if (slot->id == id)
990                                 continue;
991                         if (!((base_gfn + npages <= slot->base_gfn) ||
992                               (base_gfn >= slot->base_gfn + slot->npages)))
993                                 goto out;
994                 }
995         }
996
997         /* Free page dirty bitmap if unneeded */
998         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
999                 new.dirty_bitmap = NULL;
1000
1001         r = -ENOMEM;
1002         if (change == KVM_MR_CREATE) {
1003                 new.userspace_addr = mem->userspace_addr;
1004
1005                 if (kvm_arch_create_memslot(kvm, &new, npages))
1006                         goto out_free;
1007         }
1008
1009         /* Allocate page dirty bitmap if needed */
1010         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1011                 if (kvm_create_dirty_bitmap(&new) < 0)
1012                         goto out_free;
1013         }
1014
1015         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1016         if (!slots)
1017                 goto out_free;
1018         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1019
1020         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1021                 slot = id_to_memslot(slots, id);
1022                 slot->flags |= KVM_MEMSLOT_INVALID;
1023
1024                 old_memslots = install_new_memslots(kvm, as_id, slots);
1025
1026                 /* From this point no new shadow pages pointing to a deleted,
1027                  * or moved, memslot will be created.
1028                  *
1029                  * validation of sp->gfn happens in:
1030                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1031                  *      - kvm_is_visible_gfn (mmu_check_roots)
1032                  */
1033                 kvm_arch_flush_shadow_memslot(kvm, slot);
1034
1035                 /*
1036                  * We can re-use the old_memslots from above, the only difference
1037                  * from the currently installed memslots is the invalid flag.  This
1038                  * will get overwritten by update_memslots anyway.
1039                  */
1040                 slots = old_memslots;
1041         }
1042
1043         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1044         if (r)
1045                 goto out_slots;
1046
1047         /* actual memory is freed via old in kvm_free_memslot below */
1048         if (change == KVM_MR_DELETE) {
1049                 new.dirty_bitmap = NULL;
1050                 memset(&new.arch, 0, sizeof(new.arch));
1051         }
1052
1053         update_memslots(slots, &new);
1054         old_memslots = install_new_memslots(kvm, as_id, slots);
1055
1056         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1057
1058         kvm_free_memslot(kvm, &old, &new);
1059         kvfree(old_memslots);
1060         return 0;
1061
1062 out_slots:
1063         kvfree(slots);
1064 out_free:
1065         kvm_free_memslot(kvm, &new, &old);
1066 out:
1067         return r;
1068 }
1069 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1070
1071 int kvm_set_memory_region(struct kvm *kvm,
1072                           const struct kvm_userspace_memory_region *mem)
1073 {
1074         int r;
1075
1076         mutex_lock(&kvm->slots_lock);
1077         r = __kvm_set_memory_region(kvm, mem);
1078         mutex_unlock(&kvm->slots_lock);
1079         return r;
1080 }
1081 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1082
1083 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1084                                           struct kvm_userspace_memory_region *mem)
1085 {
1086         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1087                 return -EINVAL;
1088
1089         return kvm_set_memory_region(kvm, mem);
1090 }
1091
1092 int kvm_get_dirty_log(struct kvm *kvm,
1093                         struct kvm_dirty_log *log, int *is_dirty)
1094 {
1095         struct kvm_memslots *slots;
1096         struct kvm_memory_slot *memslot;
1097         int i, as_id, id;
1098         unsigned long n;
1099         unsigned long any = 0;
1100
1101         as_id = log->slot >> 16;
1102         id = (u16)log->slot;
1103         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1104                 return -EINVAL;
1105
1106         slots = __kvm_memslots(kvm, as_id);
1107         memslot = id_to_memslot(slots, id);
1108         if (!memslot->dirty_bitmap)
1109                 return -ENOENT;
1110
1111         n = kvm_dirty_bitmap_bytes(memslot);
1112
1113         for (i = 0; !any && i < n/sizeof(long); ++i)
1114                 any = memslot->dirty_bitmap[i];
1115
1116         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1117                 return -EFAULT;
1118
1119         if (any)
1120                 *is_dirty = 1;
1121         return 0;
1122 }
1123 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1124
1125 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1126 /**
1127  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1128  *      are dirty write protect them for next write.
1129  * @kvm:        pointer to kvm instance
1130  * @log:        slot id and address to which we copy the log
1131  * @is_dirty:   flag set if any page is dirty
1132  *
1133  * We need to keep it in mind that VCPU threads can write to the bitmap
1134  * concurrently. So, to avoid losing track of dirty pages we keep the
1135  * following order:
1136  *
1137  *    1. Take a snapshot of the bit and clear it if needed.
1138  *    2. Write protect the corresponding page.
1139  *    3. Copy the snapshot to the userspace.
1140  *    4. Upon return caller flushes TLB's if needed.
1141  *
1142  * Between 2 and 4, the guest may write to the page using the remaining TLB
1143  * entry.  This is not a problem because the page is reported dirty using
1144  * the snapshot taken before and step 4 ensures that writes done after
1145  * exiting to userspace will be logged for the next call.
1146  *
1147  */
1148 int kvm_get_dirty_log_protect(struct kvm *kvm,
1149                         struct kvm_dirty_log *log, bool *is_dirty)
1150 {
1151         struct kvm_memslots *slots;
1152         struct kvm_memory_slot *memslot;
1153         int i, as_id, id;
1154         unsigned long n;
1155         unsigned long *dirty_bitmap;
1156         unsigned long *dirty_bitmap_buffer;
1157
1158         as_id = log->slot >> 16;
1159         id = (u16)log->slot;
1160         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1161                 return -EINVAL;
1162
1163         slots = __kvm_memslots(kvm, as_id);
1164         memslot = id_to_memslot(slots, id);
1165
1166         dirty_bitmap = memslot->dirty_bitmap;
1167         if (!dirty_bitmap)
1168                 return -ENOENT;
1169
1170         n = kvm_dirty_bitmap_bytes(memslot);
1171
1172         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1173         memset(dirty_bitmap_buffer, 0, n);
1174
1175         spin_lock(&kvm->mmu_lock);
1176         *is_dirty = false;
1177         for (i = 0; i < n / sizeof(long); i++) {
1178                 unsigned long mask;
1179                 gfn_t offset;
1180
1181                 if (!dirty_bitmap[i])
1182                         continue;
1183
1184                 *is_dirty = true;
1185
1186                 mask = xchg(&dirty_bitmap[i], 0);
1187                 dirty_bitmap_buffer[i] = mask;
1188
1189                 if (mask) {
1190                         offset = i * BITS_PER_LONG;
1191                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1192                                                                 offset, mask);
1193                 }
1194         }
1195
1196         spin_unlock(&kvm->mmu_lock);
1197         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1198                 return -EFAULT;
1199         return 0;
1200 }
1201 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1202 #endif
1203
1204 bool kvm_largepages_enabled(void)
1205 {
1206         return largepages_enabled;
1207 }
1208
1209 void kvm_disable_largepages(void)
1210 {
1211         largepages_enabled = false;
1212 }
1213 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1214
1215 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1216 {
1217         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1218 }
1219 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1220
1221 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1222 {
1223         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1224 }
1225
1226 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1227 {
1228         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1229
1230         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1231               memslot->flags & KVM_MEMSLOT_INVALID)
1232                 return false;
1233
1234         return true;
1235 }
1236 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1237
1238 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1239 {
1240         struct vm_area_struct *vma;
1241         unsigned long addr, size;
1242
1243         size = PAGE_SIZE;
1244
1245         addr = gfn_to_hva(kvm, gfn);
1246         if (kvm_is_error_hva(addr))
1247                 return PAGE_SIZE;
1248
1249         down_read(&current->mm->mmap_sem);
1250         vma = find_vma(current->mm, addr);
1251         if (!vma)
1252                 goto out;
1253
1254         size = vma_kernel_pagesize(vma);
1255
1256 out:
1257         up_read(&current->mm->mmap_sem);
1258
1259         return size;
1260 }
1261
1262 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1263 {
1264         return slot->flags & KVM_MEM_READONLY;
1265 }
1266
1267 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1268                                        gfn_t *nr_pages, bool write)
1269 {
1270         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1271                 return KVM_HVA_ERR_BAD;
1272
1273         if (memslot_is_readonly(slot) && write)
1274                 return KVM_HVA_ERR_RO_BAD;
1275
1276         if (nr_pages)
1277                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1278
1279         return __gfn_to_hva_memslot(slot, gfn);
1280 }
1281
1282 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1283                                      gfn_t *nr_pages)
1284 {
1285         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1286 }
1287
1288 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1289                                         gfn_t gfn)
1290 {
1291         return gfn_to_hva_many(slot, gfn, NULL);
1292 }
1293 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1294
1295 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1296 {
1297         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1298 }
1299 EXPORT_SYMBOL_GPL(gfn_to_hva);
1300
1301 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1302 {
1303         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1304 }
1305 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1306
1307 /*
1308  * If writable is set to false, the hva returned by this function is only
1309  * allowed to be read.
1310  */
1311 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1312                                       gfn_t gfn, bool *writable)
1313 {
1314         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1315
1316         if (!kvm_is_error_hva(hva) && writable)
1317                 *writable = !memslot_is_readonly(slot);
1318
1319         return hva;
1320 }
1321
1322 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1323 {
1324         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1325
1326         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1327 }
1328
1329 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1330 {
1331         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1332
1333         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1334 }
1335
1336 static inline int check_user_page_hwpoison(unsigned long addr)
1337 {
1338         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1339
1340         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1341         return rc == -EHWPOISON;
1342 }
1343
1344 /*
1345  * The atomic path to get the writable pfn which will be stored in @pfn,
1346  * true indicates success, otherwise false is returned.
1347  */
1348 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1349                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1350 {
1351         struct page *page[1];
1352         int npages;
1353
1354         if (!(async || atomic))
1355                 return false;
1356
1357         /*
1358          * Fast pin a writable pfn only if it is a write fault request
1359          * or the caller allows to map a writable pfn for a read fault
1360          * request.
1361          */
1362         if (!(write_fault || writable))
1363                 return false;
1364
1365         npages = __get_user_pages_fast(addr, 1, 1, page);
1366         if (npages == 1) {
1367                 *pfn = page_to_pfn(page[0]);
1368
1369                 if (writable)
1370                         *writable = true;
1371                 return true;
1372         }
1373
1374         return false;
1375 }
1376
1377 /*
1378  * The slow path to get the pfn of the specified host virtual address,
1379  * 1 indicates success, -errno is returned if error is detected.
1380  */
1381 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1382                            bool *writable, kvm_pfn_t *pfn)
1383 {
1384         unsigned int flags = FOLL_HWPOISON;
1385         struct page *page;
1386         int npages = 0;
1387
1388         might_sleep();
1389
1390         if (writable)
1391                 *writable = write_fault;
1392
1393         if (write_fault)
1394                 flags |= FOLL_WRITE;
1395         if (async)
1396                 flags |= FOLL_NOWAIT;
1397
1398         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1399         if (npages != 1)
1400                 return npages;
1401
1402         /* map read fault as writable if possible */
1403         if (unlikely(!write_fault) && writable) {
1404                 struct page *wpage;
1405
1406                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1407                         *writable = true;
1408                         put_page(page);
1409                         page = wpage;
1410                 }
1411         }
1412         *pfn = page_to_pfn(page);
1413         return npages;
1414 }
1415
1416 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1417 {
1418         if (unlikely(!(vma->vm_flags & VM_READ)))
1419                 return false;
1420
1421         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1422                 return false;
1423
1424         return true;
1425 }
1426
1427 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1428                                unsigned long addr, bool *async,
1429                                bool write_fault, bool *writable,
1430                                kvm_pfn_t *p_pfn)
1431 {
1432         unsigned long pfn;
1433         int r;
1434
1435         r = follow_pfn(vma, addr, &pfn);
1436         if (r) {
1437                 /*
1438                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1439                  * not call the fault handler, so do it here.
1440                  */
1441                 bool unlocked = false;
1442                 r = fixup_user_fault(current, current->mm, addr,
1443                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1444                                      &unlocked);
1445                 if (unlocked)
1446                         return -EAGAIN;
1447                 if (r)
1448                         return r;
1449
1450                 r = follow_pfn(vma, addr, &pfn);
1451                 if (r)
1452                         return r;
1453
1454         }
1455
1456         if (writable)
1457                 *writable = true;
1458
1459         /*
1460          * Get a reference here because callers of *hva_to_pfn* and
1461          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1462          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1463          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1464          * simply do nothing for reserved pfns.
1465          *
1466          * Whoever called remap_pfn_range is also going to call e.g.
1467          * unmap_mapping_range before the underlying pages are freed,
1468          * causing a call to our MMU notifier.
1469          */ 
1470         kvm_get_pfn(pfn);
1471
1472         *p_pfn = pfn;
1473         return 0;
1474 }
1475
1476 /*
1477  * Pin guest page in memory and return its pfn.
1478  * @addr: host virtual address which maps memory to the guest
1479  * @atomic: whether this function can sleep
1480  * @async: whether this function need to wait IO complete if the
1481  *         host page is not in the memory
1482  * @write_fault: whether we should get a writable host page
1483  * @writable: whether it allows to map a writable host page for !@write_fault
1484  *
1485  * The function will map a writable host page for these two cases:
1486  * 1): @write_fault = true
1487  * 2): @write_fault = false && @writable, @writable will tell the caller
1488  *     whether the mapping is writable.
1489  */
1490 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1491                         bool write_fault, bool *writable)
1492 {
1493         struct vm_area_struct *vma;
1494         kvm_pfn_t pfn = 0;
1495         int npages, r;
1496
1497         /* we can do it either atomically or asynchronously, not both */
1498         BUG_ON(atomic && async);
1499
1500         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1501                 return pfn;
1502
1503         if (atomic)
1504                 return KVM_PFN_ERR_FAULT;
1505
1506         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1507         if (npages == 1)
1508                 return pfn;
1509
1510         down_read(&current->mm->mmap_sem);
1511         if (npages == -EHWPOISON ||
1512               (!async && check_user_page_hwpoison(addr))) {
1513                 pfn = KVM_PFN_ERR_HWPOISON;
1514                 goto exit;
1515         }
1516
1517 retry:
1518         vma = find_vma_intersection(current->mm, addr, addr + 1);
1519
1520         if (vma == NULL)
1521                 pfn = KVM_PFN_ERR_FAULT;
1522         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1523                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1524                 if (r == -EAGAIN)
1525                         goto retry;
1526                 if (r < 0)
1527                         pfn = KVM_PFN_ERR_FAULT;
1528         } else {
1529                 if (async && vma_is_valid(vma, write_fault))
1530                         *async = true;
1531                 pfn = KVM_PFN_ERR_FAULT;
1532         }
1533 exit:
1534         up_read(&current->mm->mmap_sem);
1535         return pfn;
1536 }
1537
1538 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1539                                bool atomic, bool *async, bool write_fault,
1540                                bool *writable)
1541 {
1542         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1543
1544         if (addr == KVM_HVA_ERR_RO_BAD) {
1545                 if (writable)
1546                         *writable = false;
1547                 return KVM_PFN_ERR_RO_FAULT;
1548         }
1549
1550         if (kvm_is_error_hva(addr)) {
1551                 if (writable)
1552                         *writable = false;
1553                 return KVM_PFN_NOSLOT;
1554         }
1555
1556         /* Do not map writable pfn in the readonly memslot. */
1557         if (writable && memslot_is_readonly(slot)) {
1558                 *writable = false;
1559                 writable = NULL;
1560         }
1561
1562         return hva_to_pfn(addr, atomic, async, write_fault,
1563                           writable);
1564 }
1565 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1566
1567 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1568                       bool *writable)
1569 {
1570         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1571                                     write_fault, writable);
1572 }
1573 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1574
1575 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1576 {
1577         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1578 }
1579 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1580
1581 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1582 {
1583         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1584 }
1585 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1586
1587 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1588 {
1589         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1590 }
1591 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1592
1593 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1594 {
1595         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1596 }
1597 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1598
1599 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1600 {
1601         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1602 }
1603 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1604
1605 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1606 {
1607         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1608 }
1609 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1610
1611 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1612                             struct page **pages, int nr_pages)
1613 {
1614         unsigned long addr;
1615         gfn_t entry = 0;
1616
1617         addr = gfn_to_hva_many(slot, gfn, &entry);
1618         if (kvm_is_error_hva(addr))
1619                 return -1;
1620
1621         if (entry < nr_pages)
1622                 return 0;
1623
1624         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1625 }
1626 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1627
1628 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1629 {
1630         if (is_error_noslot_pfn(pfn))
1631                 return KVM_ERR_PTR_BAD_PAGE;
1632
1633         if (kvm_is_reserved_pfn(pfn)) {
1634                 WARN_ON(1);
1635                 return KVM_ERR_PTR_BAD_PAGE;
1636         }
1637
1638         return pfn_to_page(pfn);
1639 }
1640
1641 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1642 {
1643         kvm_pfn_t pfn;
1644
1645         pfn = gfn_to_pfn(kvm, gfn);
1646
1647         return kvm_pfn_to_page(pfn);
1648 }
1649 EXPORT_SYMBOL_GPL(gfn_to_page);
1650
1651 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1652 {
1653         kvm_pfn_t pfn;
1654
1655         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1656
1657         return kvm_pfn_to_page(pfn);
1658 }
1659 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1660
1661 void kvm_release_page_clean(struct page *page)
1662 {
1663         WARN_ON(is_error_page(page));
1664
1665         kvm_release_pfn_clean(page_to_pfn(page));
1666 }
1667 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1668
1669 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1670 {
1671         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1672                 put_page(pfn_to_page(pfn));
1673 }
1674 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1675
1676 void kvm_release_page_dirty(struct page *page)
1677 {
1678         WARN_ON(is_error_page(page));
1679
1680         kvm_release_pfn_dirty(page_to_pfn(page));
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1683
1684 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1685 {
1686         kvm_set_pfn_dirty(pfn);
1687         kvm_release_pfn_clean(pfn);
1688 }
1689 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1690
1691 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1692 {
1693         if (!kvm_is_reserved_pfn(pfn)) {
1694                 struct page *page = pfn_to_page(pfn);
1695
1696                 if (!PageReserved(page))
1697                         SetPageDirty(page);
1698         }
1699 }
1700 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1701
1702 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1703 {
1704         if (!kvm_is_reserved_pfn(pfn))
1705                 mark_page_accessed(pfn_to_page(pfn));
1706 }
1707 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1708
1709 void kvm_get_pfn(kvm_pfn_t pfn)
1710 {
1711         if (!kvm_is_reserved_pfn(pfn))
1712                 get_page(pfn_to_page(pfn));
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1715
1716 static int next_segment(unsigned long len, int offset)
1717 {
1718         if (len > PAGE_SIZE - offset)
1719                 return PAGE_SIZE - offset;
1720         else
1721                 return len;
1722 }
1723
1724 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1725                                  void *data, int offset, int len)
1726 {
1727         int r;
1728         unsigned long addr;
1729
1730         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1731         if (kvm_is_error_hva(addr))
1732                 return -EFAULT;
1733         r = __copy_from_user(data, (void __user *)addr + offset, len);
1734         if (r)
1735                 return -EFAULT;
1736         return 0;
1737 }
1738
1739 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1740                         int len)
1741 {
1742         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1743
1744         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1745 }
1746 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1747
1748 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1749                              int offset, int len)
1750 {
1751         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1752
1753         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1754 }
1755 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1756
1757 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1758 {
1759         gfn_t gfn = gpa >> PAGE_SHIFT;
1760         int seg;
1761         int offset = offset_in_page(gpa);
1762         int ret;
1763
1764         while ((seg = next_segment(len, offset)) != 0) {
1765                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1766                 if (ret < 0)
1767                         return ret;
1768                 offset = 0;
1769                 len -= seg;
1770                 data += seg;
1771                 ++gfn;
1772         }
1773         return 0;
1774 }
1775 EXPORT_SYMBOL_GPL(kvm_read_guest);
1776
1777 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1778 {
1779         gfn_t gfn = gpa >> PAGE_SHIFT;
1780         int seg;
1781         int offset = offset_in_page(gpa);
1782         int ret;
1783
1784         while ((seg = next_segment(len, offset)) != 0) {
1785                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1786                 if (ret < 0)
1787                         return ret;
1788                 offset = 0;
1789                 len -= seg;
1790                 data += seg;
1791                 ++gfn;
1792         }
1793         return 0;
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1796
1797 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1798                                    void *data, int offset, unsigned long len)
1799 {
1800         int r;
1801         unsigned long addr;
1802
1803         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1804         if (kvm_is_error_hva(addr))
1805                 return -EFAULT;
1806         pagefault_disable();
1807         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1808         pagefault_enable();
1809         if (r)
1810                 return -EFAULT;
1811         return 0;
1812 }
1813
1814 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1815                           unsigned long len)
1816 {
1817         gfn_t gfn = gpa >> PAGE_SHIFT;
1818         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1819         int offset = offset_in_page(gpa);
1820
1821         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1822 }
1823 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1824
1825 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1826                                void *data, unsigned long len)
1827 {
1828         gfn_t gfn = gpa >> PAGE_SHIFT;
1829         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1830         int offset = offset_in_page(gpa);
1831
1832         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1833 }
1834 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1835
1836 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1837                                   const void *data, int offset, int len)
1838 {
1839         int r;
1840         unsigned long addr;
1841
1842         addr = gfn_to_hva_memslot(memslot, gfn);
1843         if (kvm_is_error_hva(addr))
1844                 return -EFAULT;
1845         r = __copy_to_user((void __user *)addr + offset, data, len);
1846         if (r)
1847                 return -EFAULT;
1848         mark_page_dirty_in_slot(memslot, gfn);
1849         return 0;
1850 }
1851
1852 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1853                          const void *data, int offset, int len)
1854 {
1855         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1856
1857         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1858 }
1859 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1860
1861 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1862                               const void *data, int offset, int len)
1863 {
1864         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1865
1866         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1867 }
1868 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1869
1870 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1871                     unsigned long len)
1872 {
1873         gfn_t gfn = gpa >> PAGE_SHIFT;
1874         int seg;
1875         int offset = offset_in_page(gpa);
1876         int ret;
1877
1878         while ((seg = next_segment(len, offset)) != 0) {
1879                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1880                 if (ret < 0)
1881                         return ret;
1882                 offset = 0;
1883                 len -= seg;
1884                 data += seg;
1885                 ++gfn;
1886         }
1887         return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_write_guest);
1890
1891 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1892                          unsigned long len)
1893 {
1894         gfn_t gfn = gpa >> PAGE_SHIFT;
1895         int seg;
1896         int offset = offset_in_page(gpa);
1897         int ret;
1898
1899         while ((seg = next_segment(len, offset)) != 0) {
1900                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1901                 if (ret < 0)
1902                         return ret;
1903                 offset = 0;
1904                 len -= seg;
1905                 data += seg;
1906                 ++gfn;
1907         }
1908         return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1911
1912 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1913                                        struct gfn_to_hva_cache *ghc,
1914                                        gpa_t gpa, unsigned long len)
1915 {
1916         int offset = offset_in_page(gpa);
1917         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1918         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1919         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1920         gfn_t nr_pages_avail;
1921
1922         ghc->gpa = gpa;
1923         ghc->generation = slots->generation;
1924         ghc->len = len;
1925         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1926         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1927         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1928                 ghc->hva += offset;
1929         } else {
1930                 /*
1931                  * If the requested region crosses two memslots, we still
1932                  * verify that the entire region is valid here.
1933                  */
1934                 while (start_gfn <= end_gfn) {
1935                         nr_pages_avail = 0;
1936                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1937                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1938                                                    &nr_pages_avail);
1939                         if (kvm_is_error_hva(ghc->hva))
1940                                 return -EFAULT;
1941                         start_gfn += nr_pages_avail;
1942                 }
1943                 /* Use the slow path for cross page reads and writes. */
1944                 ghc->memslot = NULL;
1945         }
1946         return 0;
1947 }
1948
1949 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1950                               gpa_t gpa, unsigned long len)
1951 {
1952         struct kvm_memslots *slots = kvm_memslots(kvm);
1953         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1954 }
1955 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1956
1957 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1958                            void *data, int offset, unsigned long len)
1959 {
1960         struct kvm_memslots *slots = kvm_memslots(kvm);
1961         int r;
1962         gpa_t gpa = ghc->gpa + offset;
1963
1964         BUG_ON(len + offset > ghc->len);
1965
1966         if (slots->generation != ghc->generation)
1967                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1968
1969         if (unlikely(!ghc->memslot))
1970                 return kvm_write_guest(kvm, gpa, data, len);
1971
1972         if (kvm_is_error_hva(ghc->hva))
1973                 return -EFAULT;
1974
1975         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1976         if (r)
1977                 return -EFAULT;
1978         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1979
1980         return 0;
1981 }
1982 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1983
1984 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1985                            void *data, unsigned long len)
1986 {
1987         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1990
1991 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1992                            void *data, unsigned long len)
1993 {
1994         struct kvm_memslots *slots = kvm_memslots(kvm);
1995         int r;
1996
1997         BUG_ON(len > ghc->len);
1998
1999         if (slots->generation != ghc->generation)
2000                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2001
2002         if (unlikely(!ghc->memslot))
2003                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2004
2005         if (kvm_is_error_hva(ghc->hva))
2006                 return -EFAULT;
2007
2008         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2009         if (r)
2010                 return -EFAULT;
2011
2012         return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2015
2016 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2017 {
2018         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2019
2020         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2021 }
2022 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2023
2024 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2025 {
2026         gfn_t gfn = gpa >> PAGE_SHIFT;
2027         int seg;
2028         int offset = offset_in_page(gpa);
2029         int ret;
2030
2031         while ((seg = next_segment(len, offset)) != 0) {
2032                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2033                 if (ret < 0)
2034                         return ret;
2035                 offset = 0;
2036                 len -= seg;
2037                 ++gfn;
2038         }
2039         return 0;
2040 }
2041 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2042
2043 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2044                                     gfn_t gfn)
2045 {
2046         if (memslot && memslot->dirty_bitmap) {
2047                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2048
2049                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2050         }
2051 }
2052
2053 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2054 {
2055         struct kvm_memory_slot *memslot;
2056
2057         memslot = gfn_to_memslot(kvm, gfn);
2058         mark_page_dirty_in_slot(memslot, gfn);
2059 }
2060 EXPORT_SYMBOL_GPL(mark_page_dirty);
2061
2062 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2063 {
2064         struct kvm_memory_slot *memslot;
2065
2066         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2067         mark_page_dirty_in_slot(memslot, gfn);
2068 }
2069 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2070
2071 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2072 {
2073         if (!vcpu->sigset_active)
2074                 return;
2075
2076         /*
2077          * This does a lockless modification of ->real_blocked, which is fine
2078          * because, only current can change ->real_blocked and all readers of
2079          * ->real_blocked don't care as long ->real_blocked is always a subset
2080          * of ->blocked.
2081          */
2082         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2083 }
2084
2085 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2086 {
2087         if (!vcpu->sigset_active)
2088                 return;
2089
2090         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2091         sigemptyset(&current->real_blocked);
2092 }
2093
2094 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2095 {
2096         unsigned int old, val, grow;
2097
2098         old = val = vcpu->halt_poll_ns;
2099         grow = READ_ONCE(halt_poll_ns_grow);
2100         /* 10us base */
2101         if (val == 0 && grow)
2102                 val = 10000;
2103         else
2104                 val *= grow;
2105
2106         if (val > halt_poll_ns)
2107                 val = halt_poll_ns;
2108
2109         vcpu->halt_poll_ns = val;
2110         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2111 }
2112
2113 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2114 {
2115         unsigned int old, val, shrink;
2116
2117         old = val = vcpu->halt_poll_ns;
2118         shrink = READ_ONCE(halt_poll_ns_shrink);
2119         if (shrink == 0)
2120                 val = 0;
2121         else
2122                 val /= shrink;
2123
2124         vcpu->halt_poll_ns = val;
2125         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2126 }
2127
2128 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2129 {
2130         if (kvm_arch_vcpu_runnable(vcpu)) {
2131                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2132                 return -EINTR;
2133         }
2134         if (kvm_cpu_has_pending_timer(vcpu))
2135                 return -EINTR;
2136         if (signal_pending(current))
2137                 return -EINTR;
2138
2139         return 0;
2140 }
2141
2142 /*
2143  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2144  */
2145 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2146 {
2147         ktime_t start, cur;
2148         DECLARE_SWAITQUEUE(wait);
2149         bool waited = false;
2150         u64 block_ns;
2151
2152         start = cur = ktime_get();
2153         if (vcpu->halt_poll_ns) {
2154                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2155
2156                 ++vcpu->stat.halt_attempted_poll;
2157                 do {
2158                         /*
2159                          * This sets KVM_REQ_UNHALT if an interrupt
2160                          * arrives.
2161                          */
2162                         if (kvm_vcpu_check_block(vcpu) < 0) {
2163                                 ++vcpu->stat.halt_successful_poll;
2164                                 if (!vcpu_valid_wakeup(vcpu))
2165                                         ++vcpu->stat.halt_poll_invalid;
2166                                 goto out;
2167                         }
2168                         cur = ktime_get();
2169                 } while (single_task_running() && ktime_before(cur, stop));
2170         }
2171
2172         kvm_arch_vcpu_blocking(vcpu);
2173
2174         for (;;) {
2175                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2176
2177                 if (kvm_vcpu_check_block(vcpu) < 0)
2178                         break;
2179
2180                 waited = true;
2181                 schedule();
2182         }
2183
2184         finish_swait(&vcpu->wq, &wait);
2185         cur = ktime_get();
2186
2187         kvm_arch_vcpu_unblocking(vcpu);
2188 out:
2189         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2190
2191         if (!vcpu_valid_wakeup(vcpu))
2192                 shrink_halt_poll_ns(vcpu);
2193         else if (halt_poll_ns) {
2194                 if (block_ns <= vcpu->halt_poll_ns)
2195                         ;
2196                 /* we had a long block, shrink polling */
2197                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2198                         shrink_halt_poll_ns(vcpu);
2199                 /* we had a short halt and our poll time is too small */
2200                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2201                         block_ns < halt_poll_ns)
2202                         grow_halt_poll_ns(vcpu);
2203         } else
2204                 vcpu->halt_poll_ns = 0;
2205
2206         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2207         kvm_arch_vcpu_block_finish(vcpu);
2208 }
2209 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2210
2211 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2212 {
2213         struct swait_queue_head *wqp;
2214
2215         wqp = kvm_arch_vcpu_wq(vcpu);
2216         if (swq_has_sleeper(wqp)) {
2217                 swake_up(wqp);
2218                 ++vcpu->stat.halt_wakeup;
2219                 return true;
2220         }
2221
2222         return false;
2223 }
2224 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2225
2226 #ifndef CONFIG_S390
2227 /*
2228  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2229  */
2230 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2231 {
2232         int me;
2233         int cpu = vcpu->cpu;
2234
2235         if (kvm_vcpu_wake_up(vcpu))
2236                 return;
2237
2238         me = get_cpu();
2239         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2240                 if (kvm_arch_vcpu_should_kick(vcpu))
2241                         smp_send_reschedule(cpu);
2242         put_cpu();
2243 }
2244 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2245 #endif /* !CONFIG_S390 */
2246
2247 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2248 {
2249         struct pid *pid;
2250         struct task_struct *task = NULL;
2251         int ret = 0;
2252
2253         rcu_read_lock();
2254         pid = rcu_dereference(target->pid);
2255         if (pid)
2256                 task = get_pid_task(pid, PIDTYPE_PID);
2257         rcu_read_unlock();
2258         if (!task)
2259                 return ret;
2260         ret = yield_to(task, 1);
2261         put_task_struct(task);
2262
2263         return ret;
2264 }
2265 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2266
2267 /*
2268  * Helper that checks whether a VCPU is eligible for directed yield.
2269  * Most eligible candidate to yield is decided by following heuristics:
2270  *
2271  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2272  *  (preempted lock holder), indicated by @in_spin_loop.
2273  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2274  *
2275  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2276  *  chance last time (mostly it has become eligible now since we have probably
2277  *  yielded to lockholder in last iteration. This is done by toggling
2278  *  @dy_eligible each time a VCPU checked for eligibility.)
2279  *
2280  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2281  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2282  *  burning. Giving priority for a potential lock-holder increases lock
2283  *  progress.
2284  *
2285  *  Since algorithm is based on heuristics, accessing another VCPU data without
2286  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2287  *  and continue with next VCPU and so on.
2288  */
2289 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2290 {
2291 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2292         bool eligible;
2293
2294         eligible = !vcpu->spin_loop.in_spin_loop ||
2295                     vcpu->spin_loop.dy_eligible;
2296
2297         if (vcpu->spin_loop.in_spin_loop)
2298                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2299
2300         return eligible;
2301 #else
2302         return true;
2303 #endif
2304 }
2305
2306 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2307 {
2308         struct kvm *kvm = me->kvm;
2309         struct kvm_vcpu *vcpu;
2310         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2311         int yielded = 0;
2312         int try = 3;
2313         int pass;
2314         int i;
2315
2316         kvm_vcpu_set_in_spin_loop(me, true);
2317         /*
2318          * We boost the priority of a VCPU that is runnable but not
2319          * currently running, because it got preempted by something
2320          * else and called schedule in __vcpu_run.  Hopefully that
2321          * VCPU is holding the lock that we need and will release it.
2322          * We approximate round-robin by starting at the last boosted VCPU.
2323          */
2324         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2325                 kvm_for_each_vcpu(i, vcpu, kvm) {
2326                         if (!pass && i <= last_boosted_vcpu) {
2327                                 i = last_boosted_vcpu;
2328                                 continue;
2329                         } else if (pass && i > last_boosted_vcpu)
2330                                 break;
2331                         if (!READ_ONCE(vcpu->preempted))
2332                                 continue;
2333                         if (vcpu == me)
2334                                 continue;
2335                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2336                                 continue;
2337                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2338                                 continue;
2339                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2340                                 continue;
2341
2342                         yielded = kvm_vcpu_yield_to(vcpu);
2343                         if (yielded > 0) {
2344                                 kvm->last_boosted_vcpu = i;
2345                                 break;
2346                         } else if (yielded < 0) {
2347                                 try--;
2348                                 if (!try)
2349                                         break;
2350                         }
2351                 }
2352         }
2353         kvm_vcpu_set_in_spin_loop(me, false);
2354
2355         /* Ensure vcpu is not eligible during next spinloop */
2356         kvm_vcpu_set_dy_eligible(me, false);
2357 }
2358 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2359
2360 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2361 {
2362         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2363         struct page *page;
2364
2365         if (vmf->pgoff == 0)
2366                 page = virt_to_page(vcpu->run);
2367 #ifdef CONFIG_X86
2368         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2369                 page = virt_to_page(vcpu->arch.pio_data);
2370 #endif
2371 #ifdef CONFIG_KVM_MMIO
2372         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2373                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2374 #endif
2375         else
2376                 return kvm_arch_vcpu_fault(vcpu, vmf);
2377         get_page(page);
2378         vmf->page = page;
2379         return 0;
2380 }
2381
2382 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2383         .fault = kvm_vcpu_fault,
2384 };
2385
2386 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2387 {
2388         vma->vm_ops = &kvm_vcpu_vm_ops;
2389         return 0;
2390 }
2391
2392 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2393 {
2394         struct kvm_vcpu *vcpu = filp->private_data;
2395
2396         debugfs_remove_recursive(vcpu->debugfs_dentry);
2397         kvm_put_kvm(vcpu->kvm);
2398         return 0;
2399 }
2400
2401 static struct file_operations kvm_vcpu_fops = {
2402         .release        = kvm_vcpu_release,
2403         .unlocked_ioctl = kvm_vcpu_ioctl,
2404         .mmap           = kvm_vcpu_mmap,
2405         .llseek         = noop_llseek,
2406         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2407 };
2408
2409 /*
2410  * Allocates an inode for the vcpu.
2411  */
2412 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2413 {
2414         char name[8 + 1 + ITOA_MAX_LEN + 1];
2415
2416         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2417         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2418 }
2419
2420 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2421 {
2422         char dir_name[ITOA_MAX_LEN * 2];
2423         int ret;
2424
2425         if (!kvm_arch_has_vcpu_debugfs())
2426                 return 0;
2427
2428         if (!debugfs_initialized())
2429                 return 0;
2430
2431         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2432         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2433                                                                 vcpu->kvm->debugfs_dentry);
2434         if (!vcpu->debugfs_dentry)
2435                 return -ENOMEM;
2436
2437         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2438         if (ret < 0) {
2439                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2440                 return ret;
2441         }
2442
2443         return 0;
2444 }
2445
2446 /*
2447  * Creates some virtual cpus.  Good luck creating more than one.
2448  */
2449 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2450 {
2451         int r;
2452         struct kvm_vcpu *vcpu;
2453
2454         if (id >= KVM_MAX_VCPU_ID)
2455                 return -EINVAL;
2456
2457         mutex_lock(&kvm->lock);
2458         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2459                 mutex_unlock(&kvm->lock);
2460                 return -EINVAL;
2461         }
2462
2463         kvm->created_vcpus++;
2464         mutex_unlock(&kvm->lock);
2465
2466         vcpu = kvm_arch_vcpu_create(kvm, id);
2467         if (IS_ERR(vcpu)) {
2468                 r = PTR_ERR(vcpu);
2469                 goto vcpu_decrement;
2470         }
2471
2472         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2473
2474         r = kvm_arch_vcpu_setup(vcpu);
2475         if (r)
2476                 goto vcpu_destroy;
2477
2478         r = kvm_create_vcpu_debugfs(vcpu);
2479         if (r)
2480                 goto vcpu_destroy;
2481
2482         mutex_lock(&kvm->lock);
2483         if (kvm_get_vcpu_by_id(kvm, id)) {
2484                 r = -EEXIST;
2485                 goto unlock_vcpu_destroy;
2486         }
2487
2488         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2489
2490         /* Now it's all set up, let userspace reach it */
2491         kvm_get_kvm(kvm);
2492         r = create_vcpu_fd(vcpu);
2493         if (r < 0) {
2494                 kvm_put_kvm(kvm);
2495                 goto unlock_vcpu_destroy;
2496         }
2497
2498         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2499
2500         /*
2501          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2502          * before kvm->online_vcpu's incremented value.
2503          */
2504         smp_wmb();
2505         atomic_inc(&kvm->online_vcpus);
2506
2507         mutex_unlock(&kvm->lock);
2508         kvm_arch_vcpu_postcreate(vcpu);
2509         return r;
2510
2511 unlock_vcpu_destroy:
2512         mutex_unlock(&kvm->lock);
2513         debugfs_remove_recursive(vcpu->debugfs_dentry);
2514 vcpu_destroy:
2515         kvm_arch_vcpu_destroy(vcpu);
2516 vcpu_decrement:
2517         mutex_lock(&kvm->lock);
2518         kvm->created_vcpus--;
2519         mutex_unlock(&kvm->lock);
2520         return r;
2521 }
2522
2523 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2524 {
2525         if (sigset) {
2526                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2527                 vcpu->sigset_active = 1;
2528                 vcpu->sigset = *sigset;
2529         } else
2530                 vcpu->sigset_active = 0;
2531         return 0;
2532 }
2533
2534 static long kvm_vcpu_ioctl(struct file *filp,
2535                            unsigned int ioctl, unsigned long arg)
2536 {
2537         struct kvm_vcpu *vcpu = filp->private_data;
2538         void __user *argp = (void __user *)arg;
2539         int r;
2540         struct kvm_fpu *fpu = NULL;
2541         struct kvm_sregs *kvm_sregs = NULL;
2542
2543         if (vcpu->kvm->mm != current->mm)
2544                 return -EIO;
2545
2546         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2547                 return -EINVAL;
2548
2549         /*
2550          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2551          * execution; mutex_lock() would break them.
2552          */
2553         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2554         if (r != -ENOIOCTLCMD)
2555                 return r;
2556
2557         if (mutex_lock_killable(&vcpu->mutex))
2558                 return -EINTR;
2559         switch (ioctl) {
2560         case KVM_RUN: {
2561                 struct pid *oldpid;
2562                 r = -EINVAL;
2563                 if (arg)
2564                         goto out;
2565                 oldpid = rcu_access_pointer(vcpu->pid);
2566                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2567                         /* The thread running this VCPU changed. */
2568                         struct pid *newpid;
2569
2570                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2571                         if (r)
2572                                 break;
2573
2574                         newpid = get_task_pid(current, PIDTYPE_PID);
2575                         rcu_assign_pointer(vcpu->pid, newpid);
2576                         if (oldpid)
2577                                 synchronize_rcu();
2578                         put_pid(oldpid);
2579                 }
2580                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2581                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2582                 break;
2583         }
2584         case KVM_GET_REGS: {
2585                 struct kvm_regs *kvm_regs;
2586
2587                 r = -ENOMEM;
2588                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2589                 if (!kvm_regs)
2590                         goto out;
2591                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2592                 if (r)
2593                         goto out_free1;
2594                 r = -EFAULT;
2595                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2596                         goto out_free1;
2597                 r = 0;
2598 out_free1:
2599                 kfree(kvm_regs);
2600                 break;
2601         }
2602         case KVM_SET_REGS: {
2603                 struct kvm_regs *kvm_regs;
2604
2605                 r = -ENOMEM;
2606                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2607                 if (IS_ERR(kvm_regs)) {
2608                         r = PTR_ERR(kvm_regs);
2609                         goto out;
2610                 }
2611                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2612                 kfree(kvm_regs);
2613                 break;
2614         }
2615         case KVM_GET_SREGS: {
2616                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2617                 r = -ENOMEM;
2618                 if (!kvm_sregs)
2619                         goto out;
2620                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2621                 if (r)
2622                         goto out;
2623                 r = -EFAULT;
2624                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2625                         goto out;
2626                 r = 0;
2627                 break;
2628         }
2629         case KVM_SET_SREGS: {
2630                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2631                 if (IS_ERR(kvm_sregs)) {
2632                         r = PTR_ERR(kvm_sregs);
2633                         kvm_sregs = NULL;
2634                         goto out;
2635                 }
2636                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2637                 break;
2638         }
2639         case KVM_GET_MP_STATE: {
2640                 struct kvm_mp_state mp_state;
2641
2642                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2643                 if (r)
2644                         goto out;
2645                 r = -EFAULT;
2646                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2647                         goto out;
2648                 r = 0;
2649                 break;
2650         }
2651         case KVM_SET_MP_STATE: {
2652                 struct kvm_mp_state mp_state;
2653
2654                 r = -EFAULT;
2655                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2656                         goto out;
2657                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2658                 break;
2659         }
2660         case KVM_TRANSLATE: {
2661                 struct kvm_translation tr;
2662
2663                 r = -EFAULT;
2664                 if (copy_from_user(&tr, argp, sizeof(tr)))
2665                         goto out;
2666                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2667                 if (r)
2668                         goto out;
2669                 r = -EFAULT;
2670                 if (copy_to_user(argp, &tr, sizeof(tr)))
2671                         goto out;
2672                 r = 0;
2673                 break;
2674         }
2675         case KVM_SET_GUEST_DEBUG: {
2676                 struct kvm_guest_debug dbg;
2677
2678                 r = -EFAULT;
2679                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2680                         goto out;
2681                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2682                 break;
2683         }
2684         case KVM_SET_SIGNAL_MASK: {
2685                 struct kvm_signal_mask __user *sigmask_arg = argp;
2686                 struct kvm_signal_mask kvm_sigmask;
2687                 sigset_t sigset, *p;
2688
2689                 p = NULL;
2690                 if (argp) {
2691                         r = -EFAULT;
2692                         if (copy_from_user(&kvm_sigmask, argp,
2693                                            sizeof(kvm_sigmask)))
2694                                 goto out;
2695                         r = -EINVAL;
2696                         if (kvm_sigmask.len != sizeof(sigset))
2697                                 goto out;
2698                         r = -EFAULT;
2699                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2700                                            sizeof(sigset)))
2701                                 goto out;
2702                         p = &sigset;
2703                 }
2704                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2705                 break;
2706         }
2707         case KVM_GET_FPU: {
2708                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2709                 r = -ENOMEM;
2710                 if (!fpu)
2711                         goto out;
2712                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2713                 if (r)
2714                         goto out;
2715                 r = -EFAULT;
2716                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2717                         goto out;
2718                 r = 0;
2719                 break;
2720         }
2721         case KVM_SET_FPU: {
2722                 fpu = memdup_user(argp, sizeof(*fpu));
2723                 if (IS_ERR(fpu)) {
2724                         r = PTR_ERR(fpu);
2725                         fpu = NULL;
2726                         goto out;
2727                 }
2728                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2729                 break;
2730         }
2731         default:
2732                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2733         }
2734 out:
2735         mutex_unlock(&vcpu->mutex);
2736         kfree(fpu);
2737         kfree(kvm_sregs);
2738         return r;
2739 }
2740
2741 #ifdef CONFIG_KVM_COMPAT
2742 static long kvm_vcpu_compat_ioctl(struct file *filp,
2743                                   unsigned int ioctl, unsigned long arg)
2744 {
2745         struct kvm_vcpu *vcpu = filp->private_data;
2746         void __user *argp = compat_ptr(arg);
2747         int r;
2748
2749         if (vcpu->kvm->mm != current->mm)
2750                 return -EIO;
2751
2752         switch (ioctl) {
2753         case KVM_SET_SIGNAL_MASK: {
2754                 struct kvm_signal_mask __user *sigmask_arg = argp;
2755                 struct kvm_signal_mask kvm_sigmask;
2756                 sigset_t sigset;
2757
2758                 if (argp) {
2759                         r = -EFAULT;
2760                         if (copy_from_user(&kvm_sigmask, argp,
2761                                            sizeof(kvm_sigmask)))
2762                                 goto out;
2763                         r = -EINVAL;
2764                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2765                                 goto out;
2766                         r = -EFAULT;
2767                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2768                                 goto out;
2769                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2770                 } else
2771                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2772                 break;
2773         }
2774         default:
2775                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2776         }
2777
2778 out:
2779         return r;
2780 }
2781 #endif
2782
2783 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2784                                  int (*accessor)(struct kvm_device *dev,
2785                                                  struct kvm_device_attr *attr),
2786                                  unsigned long arg)
2787 {
2788         struct kvm_device_attr attr;
2789
2790         if (!accessor)
2791                 return -EPERM;
2792
2793         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2794                 return -EFAULT;
2795
2796         return accessor(dev, &attr);
2797 }
2798
2799 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2800                              unsigned long arg)
2801 {
2802         struct kvm_device *dev = filp->private_data;
2803
2804         switch (ioctl) {
2805         case KVM_SET_DEVICE_ATTR:
2806                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2807         case KVM_GET_DEVICE_ATTR:
2808                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2809         case KVM_HAS_DEVICE_ATTR:
2810                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2811         default:
2812                 if (dev->ops->ioctl)
2813                         return dev->ops->ioctl(dev, ioctl, arg);
2814
2815                 return -ENOTTY;
2816         }
2817 }
2818
2819 static int kvm_device_release(struct inode *inode, struct file *filp)
2820 {
2821         struct kvm_device *dev = filp->private_data;
2822         struct kvm *kvm = dev->kvm;
2823
2824         kvm_put_kvm(kvm);
2825         return 0;
2826 }
2827
2828 static const struct file_operations kvm_device_fops = {
2829         .unlocked_ioctl = kvm_device_ioctl,
2830         .release = kvm_device_release,
2831         KVM_COMPAT(kvm_device_ioctl),
2832 };
2833
2834 struct kvm_device *kvm_device_from_filp(struct file *filp)
2835 {
2836         if (filp->f_op != &kvm_device_fops)
2837                 return NULL;
2838
2839         return filp->private_data;
2840 }
2841
2842 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2843 #ifdef CONFIG_KVM_MPIC
2844         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2845         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2846 #endif
2847 };
2848
2849 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2850 {
2851         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2852                 return -ENOSPC;
2853
2854         if (kvm_device_ops_table[type] != NULL)
2855                 return -EEXIST;
2856
2857         kvm_device_ops_table[type] = ops;
2858         return 0;
2859 }
2860
2861 void kvm_unregister_device_ops(u32 type)
2862 {
2863         if (kvm_device_ops_table[type] != NULL)
2864                 kvm_device_ops_table[type] = NULL;
2865 }
2866
2867 static int kvm_ioctl_create_device(struct kvm *kvm,
2868                                    struct kvm_create_device *cd)
2869 {
2870         struct kvm_device_ops *ops = NULL;
2871         struct kvm_device *dev;
2872         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2873         int ret;
2874
2875         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2876                 return -ENODEV;
2877
2878         ops = kvm_device_ops_table[cd->type];
2879         if (ops == NULL)
2880                 return -ENODEV;
2881
2882         if (test)
2883                 return 0;
2884
2885         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2886         if (!dev)
2887                 return -ENOMEM;
2888
2889         dev->ops = ops;
2890         dev->kvm = kvm;
2891
2892         mutex_lock(&kvm->lock);
2893         ret = ops->create(dev, cd->type);
2894         if (ret < 0) {
2895                 mutex_unlock(&kvm->lock);
2896                 kfree(dev);
2897                 return ret;
2898         }
2899         list_add(&dev->vm_node, &kvm->devices);
2900         mutex_unlock(&kvm->lock);
2901
2902         if (ops->init)
2903                 ops->init(dev);
2904
2905         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2906         if (ret < 0) {
2907                 mutex_lock(&kvm->lock);
2908                 list_del(&dev->vm_node);
2909                 mutex_unlock(&kvm->lock);
2910                 ops->destroy(dev);
2911                 return ret;
2912         }
2913
2914         kvm_get_kvm(kvm);
2915         cd->fd = ret;
2916         return 0;
2917 }
2918
2919 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2920 {
2921         switch (arg) {
2922         case KVM_CAP_USER_MEMORY:
2923         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2924         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2925         case KVM_CAP_INTERNAL_ERROR_DATA:
2926 #ifdef CONFIG_HAVE_KVM_MSI
2927         case KVM_CAP_SIGNAL_MSI:
2928 #endif
2929 #ifdef CONFIG_HAVE_KVM_IRQFD
2930         case KVM_CAP_IRQFD:
2931         case KVM_CAP_IRQFD_RESAMPLE:
2932 #endif
2933         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2934         case KVM_CAP_CHECK_EXTENSION_VM:
2935                 return 1;
2936 #ifdef CONFIG_KVM_MMIO
2937         case KVM_CAP_COALESCED_MMIO:
2938                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2939 #endif
2940 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2941         case KVM_CAP_IRQ_ROUTING:
2942                 return KVM_MAX_IRQ_ROUTES;
2943 #endif
2944 #if KVM_ADDRESS_SPACE_NUM > 1
2945         case KVM_CAP_MULTI_ADDRESS_SPACE:
2946                 return KVM_ADDRESS_SPACE_NUM;
2947 #endif
2948         case KVM_CAP_MAX_VCPU_ID:
2949                 return KVM_MAX_VCPU_ID;
2950         default:
2951                 break;
2952         }
2953         return kvm_vm_ioctl_check_extension(kvm, arg);
2954 }
2955
2956 static long kvm_vm_ioctl(struct file *filp,
2957                            unsigned int ioctl, unsigned long arg)
2958 {
2959         struct kvm *kvm = filp->private_data;
2960         void __user *argp = (void __user *)arg;
2961         int r;
2962
2963         if (kvm->mm != current->mm)
2964                 return -EIO;
2965         switch (ioctl) {
2966         case KVM_CREATE_VCPU:
2967                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2968                 break;
2969         case KVM_SET_USER_MEMORY_REGION: {
2970                 struct kvm_userspace_memory_region kvm_userspace_mem;
2971
2972                 r = -EFAULT;
2973                 if (copy_from_user(&kvm_userspace_mem, argp,
2974                                                 sizeof(kvm_userspace_mem)))
2975                         goto out;
2976
2977                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2978                 break;
2979         }
2980         case KVM_GET_DIRTY_LOG: {
2981                 struct kvm_dirty_log log;
2982
2983                 r = -EFAULT;
2984                 if (copy_from_user(&log, argp, sizeof(log)))
2985                         goto out;
2986                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2987                 break;
2988         }
2989 #ifdef CONFIG_KVM_MMIO
2990         case KVM_REGISTER_COALESCED_MMIO: {
2991                 struct kvm_coalesced_mmio_zone zone;
2992
2993                 r = -EFAULT;
2994                 if (copy_from_user(&zone, argp, sizeof(zone)))
2995                         goto out;
2996                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2997                 break;
2998         }
2999         case KVM_UNREGISTER_COALESCED_MMIO: {
3000                 struct kvm_coalesced_mmio_zone zone;
3001
3002                 r = -EFAULT;
3003                 if (copy_from_user(&zone, argp, sizeof(zone)))
3004                         goto out;
3005                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3006                 break;
3007         }
3008 #endif
3009         case KVM_IRQFD: {
3010                 struct kvm_irqfd data;
3011
3012                 r = -EFAULT;
3013                 if (copy_from_user(&data, argp, sizeof(data)))
3014                         goto out;
3015                 r = kvm_irqfd(kvm, &data);
3016                 break;
3017         }
3018         case KVM_IOEVENTFD: {
3019                 struct kvm_ioeventfd data;
3020
3021                 r = -EFAULT;
3022                 if (copy_from_user(&data, argp, sizeof(data)))
3023                         goto out;
3024                 r = kvm_ioeventfd(kvm, &data);
3025                 break;
3026         }
3027 #ifdef CONFIG_HAVE_KVM_MSI
3028         case KVM_SIGNAL_MSI: {
3029                 struct kvm_msi msi;
3030
3031                 r = -EFAULT;
3032                 if (copy_from_user(&msi, argp, sizeof(msi)))
3033                         goto out;
3034                 r = kvm_send_userspace_msi(kvm, &msi);
3035                 break;
3036         }
3037 #endif
3038 #ifdef __KVM_HAVE_IRQ_LINE
3039         case KVM_IRQ_LINE_STATUS:
3040         case KVM_IRQ_LINE: {
3041                 struct kvm_irq_level irq_event;
3042
3043                 r = -EFAULT;
3044                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3045                         goto out;
3046
3047                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3048                                         ioctl == KVM_IRQ_LINE_STATUS);
3049                 if (r)
3050                         goto out;
3051
3052                 r = -EFAULT;
3053                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3054                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3055                                 goto out;
3056                 }
3057
3058                 r = 0;
3059                 break;
3060         }
3061 #endif
3062 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3063         case KVM_SET_GSI_ROUTING: {
3064                 struct kvm_irq_routing routing;
3065                 struct kvm_irq_routing __user *urouting;
3066                 struct kvm_irq_routing_entry *entries = NULL;
3067
3068                 r = -EFAULT;
3069                 if (copy_from_user(&routing, argp, sizeof(routing)))
3070                         goto out;
3071                 r = -EINVAL;
3072                 if (!kvm_arch_can_set_irq_routing(kvm))
3073                         goto out;
3074                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3075                         goto out;
3076                 if (routing.flags)
3077                         goto out;
3078                 if (routing.nr) {
3079                         r = -ENOMEM;
3080                         entries = vmalloc(array_size(sizeof(*entries),
3081                                                      routing.nr));
3082                         if (!entries)
3083                                 goto out;
3084                         r = -EFAULT;
3085                         urouting = argp;
3086                         if (copy_from_user(entries, urouting->entries,
3087                                            routing.nr * sizeof(*entries)))
3088                                 goto out_free_irq_routing;
3089                 }
3090                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3091                                         routing.flags);
3092 out_free_irq_routing:
3093                 vfree(entries);
3094                 break;
3095         }
3096 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3097         case KVM_CREATE_DEVICE: {
3098                 struct kvm_create_device cd;
3099
3100                 r = -EFAULT;
3101                 if (copy_from_user(&cd, argp, sizeof(cd)))
3102                         goto out;
3103
3104                 r = kvm_ioctl_create_device(kvm, &cd);
3105                 if (r)
3106                         goto out;
3107
3108                 r = -EFAULT;
3109                 if (copy_to_user(argp, &cd, sizeof(cd)))
3110                         goto out;
3111
3112                 r = 0;
3113                 break;
3114         }
3115         case KVM_CHECK_EXTENSION:
3116                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3117                 break;
3118         default:
3119                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3120         }
3121 out:
3122         return r;
3123 }
3124
3125 #ifdef CONFIG_KVM_COMPAT
3126 struct compat_kvm_dirty_log {
3127         __u32 slot;
3128         __u32 padding1;
3129         union {
3130                 compat_uptr_t dirty_bitmap; /* one bit per page */
3131                 __u64 padding2;
3132         };
3133 };
3134
3135 static long kvm_vm_compat_ioctl(struct file *filp,
3136                            unsigned int ioctl, unsigned long arg)
3137 {
3138         struct kvm *kvm = filp->private_data;
3139         int r;
3140
3141         if (kvm->mm != current->mm)
3142                 return -EIO;
3143         switch (ioctl) {
3144         case KVM_GET_DIRTY_LOG: {
3145                 struct compat_kvm_dirty_log compat_log;
3146                 struct kvm_dirty_log log;
3147
3148                 if (copy_from_user(&compat_log, (void __user *)arg,
3149                                    sizeof(compat_log)))
3150                         return -EFAULT;
3151                 log.slot         = compat_log.slot;
3152                 log.padding1     = compat_log.padding1;
3153                 log.padding2     = compat_log.padding2;
3154                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3155
3156                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3157                 break;
3158         }
3159         default:
3160                 r = kvm_vm_ioctl(filp, ioctl, arg);
3161         }
3162         return r;
3163 }
3164 #endif
3165
3166 static struct file_operations kvm_vm_fops = {
3167         .release        = kvm_vm_release,
3168         .unlocked_ioctl = kvm_vm_ioctl,
3169         .llseek         = noop_llseek,
3170         KVM_COMPAT(kvm_vm_compat_ioctl),
3171 };
3172
3173 static int kvm_dev_ioctl_create_vm(unsigned long type)
3174 {
3175         int r;
3176         struct kvm *kvm;
3177         struct file *file;
3178
3179         kvm = kvm_create_vm(type);
3180         if (IS_ERR(kvm))
3181                 return PTR_ERR(kvm);
3182 #ifdef CONFIG_KVM_MMIO
3183         r = kvm_coalesced_mmio_init(kvm);
3184         if (r < 0)
3185                 goto put_kvm;
3186 #endif
3187         r = get_unused_fd_flags(O_CLOEXEC);
3188         if (r < 0)
3189                 goto put_kvm;
3190
3191         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3192         if (IS_ERR(file)) {
3193                 put_unused_fd(r);
3194                 r = PTR_ERR(file);
3195                 goto put_kvm;
3196         }
3197
3198         /*
3199          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3200          * already set, with ->release() being kvm_vm_release().  In error
3201          * cases it will be called by the final fput(file) and will take
3202          * care of doing kvm_put_kvm(kvm).
3203          */
3204         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3205                 put_unused_fd(r);
3206                 fput(file);
3207                 return -ENOMEM;
3208         }
3209         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3210
3211         fd_install(r, file);
3212         return r;
3213
3214 put_kvm:
3215         kvm_put_kvm(kvm);
3216         return r;
3217 }
3218
3219 static long kvm_dev_ioctl(struct file *filp,
3220                           unsigned int ioctl, unsigned long arg)
3221 {
3222         long r = -EINVAL;
3223
3224         switch (ioctl) {
3225         case KVM_GET_API_VERSION:
3226                 if (arg)
3227                         goto out;
3228                 r = KVM_API_VERSION;
3229                 break;
3230         case KVM_CREATE_VM:
3231                 r = kvm_dev_ioctl_create_vm(arg);
3232                 break;
3233         case KVM_CHECK_EXTENSION:
3234                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3235                 break;
3236         case KVM_GET_VCPU_MMAP_SIZE:
3237                 if (arg)
3238                         goto out;
3239                 r = PAGE_SIZE;     /* struct kvm_run */
3240 #ifdef CONFIG_X86
3241                 r += PAGE_SIZE;    /* pio data page */
3242 #endif
3243 #ifdef CONFIG_KVM_MMIO
3244                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3245 #endif
3246                 break;
3247         case KVM_TRACE_ENABLE:
3248         case KVM_TRACE_PAUSE:
3249         case KVM_TRACE_DISABLE:
3250                 r = -EOPNOTSUPP;
3251                 break;
3252         default:
3253                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3254         }
3255 out:
3256         return r;
3257 }
3258
3259 static struct file_operations kvm_chardev_ops = {
3260         .unlocked_ioctl = kvm_dev_ioctl,
3261         .llseek         = noop_llseek,
3262         KVM_COMPAT(kvm_dev_ioctl),
3263 };
3264
3265 static struct miscdevice kvm_dev = {
3266         KVM_MINOR,
3267         "kvm",
3268         &kvm_chardev_ops,
3269 };
3270
3271 static void hardware_enable_nolock(void *junk)
3272 {
3273         int cpu = raw_smp_processor_id();
3274         int r;
3275
3276         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3277                 return;
3278
3279         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3280
3281         r = kvm_arch_hardware_enable();
3282
3283         if (r) {
3284                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3285                 atomic_inc(&hardware_enable_failed);
3286                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3287         }
3288 }
3289
3290 static int kvm_starting_cpu(unsigned int cpu)
3291 {
3292         raw_spin_lock(&kvm_count_lock);
3293         if (kvm_usage_count)
3294                 hardware_enable_nolock(NULL);
3295         raw_spin_unlock(&kvm_count_lock);
3296         return 0;
3297 }
3298
3299 static void hardware_disable_nolock(void *junk)
3300 {
3301         int cpu = raw_smp_processor_id();
3302
3303         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3304                 return;
3305         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3306         kvm_arch_hardware_disable();
3307 }
3308
3309 static int kvm_dying_cpu(unsigned int cpu)
3310 {
3311         raw_spin_lock(&kvm_count_lock);
3312         if (kvm_usage_count)
3313                 hardware_disable_nolock(NULL);
3314         raw_spin_unlock(&kvm_count_lock);
3315         return 0;
3316 }
3317
3318 static void hardware_disable_all_nolock(void)
3319 {
3320         BUG_ON(!kvm_usage_count);
3321
3322         kvm_usage_count--;
3323         if (!kvm_usage_count)
3324                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3325 }
3326
3327 static void hardware_disable_all(void)
3328 {
3329         raw_spin_lock(&kvm_count_lock);
3330         hardware_disable_all_nolock();
3331         raw_spin_unlock(&kvm_count_lock);
3332 }
3333
3334 static int hardware_enable_all(void)
3335 {
3336         int r = 0;
3337
3338         raw_spin_lock(&kvm_count_lock);
3339
3340         kvm_usage_count++;
3341         if (kvm_usage_count == 1) {
3342                 atomic_set(&hardware_enable_failed, 0);
3343                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3344
3345                 if (atomic_read(&hardware_enable_failed)) {
3346                         hardware_disable_all_nolock();
3347                         r = -EBUSY;
3348                 }
3349         }
3350
3351         raw_spin_unlock(&kvm_count_lock);
3352
3353         return r;
3354 }
3355
3356 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3357                       void *v)
3358 {
3359         /*
3360          * Some (well, at least mine) BIOSes hang on reboot if
3361          * in vmx root mode.
3362          *
3363          * And Intel TXT required VMX off for all cpu when system shutdown.
3364          */
3365         pr_info("kvm: exiting hardware virtualization\n");
3366         kvm_rebooting = true;
3367         on_each_cpu(hardware_disable_nolock, NULL, 1);
3368         return NOTIFY_OK;
3369 }
3370
3371 static struct notifier_block kvm_reboot_notifier = {
3372         .notifier_call = kvm_reboot,
3373         .priority = 0,
3374 };
3375
3376 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3377 {
3378         int i;
3379
3380         for (i = 0; i < bus->dev_count; i++) {
3381                 struct kvm_io_device *pos = bus->range[i].dev;
3382
3383                 kvm_iodevice_destructor(pos);
3384         }
3385         kfree(bus);
3386 }
3387
3388 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3389                                  const struct kvm_io_range *r2)
3390 {
3391         gpa_t addr1 = r1->addr;
3392         gpa_t addr2 = r2->addr;
3393
3394         if (addr1 < addr2)
3395                 return -1;
3396
3397         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3398          * accept any overlapping write.  Any order is acceptable for
3399          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3400          * we process all of them.
3401          */
3402         if (r2->len) {
3403                 addr1 += r1->len;
3404                 addr2 += r2->len;
3405         }
3406
3407         if (addr1 > addr2)
3408                 return 1;
3409
3410         return 0;
3411 }
3412
3413 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3414 {
3415         return kvm_io_bus_cmp(p1, p2);
3416 }
3417
3418 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3419                              gpa_t addr, int len)
3420 {
3421         struct kvm_io_range *range, key;
3422         int off;
3423
3424         key = (struct kvm_io_range) {
3425                 .addr = addr,
3426                 .len = len,
3427         };
3428
3429         range = bsearch(&key, bus->range, bus->dev_count,
3430                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3431         if (range == NULL)
3432                 return -ENOENT;
3433
3434         off = range - bus->range;
3435
3436         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3437                 off--;
3438
3439         return off;
3440 }
3441
3442 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3443                               struct kvm_io_range *range, const void *val)
3444 {
3445         int idx;
3446
3447         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3448         if (idx < 0)
3449                 return -EOPNOTSUPP;
3450
3451         while (idx < bus->dev_count &&
3452                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3453                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3454                                         range->len, val))
3455                         return idx;
3456                 idx++;
3457         }
3458
3459         return -EOPNOTSUPP;
3460 }
3461
3462 /* kvm_io_bus_write - called under kvm->slots_lock */
3463 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3464                      int len, const void *val)
3465 {
3466         struct kvm_io_bus *bus;
3467         struct kvm_io_range range;
3468         int r;
3469
3470         range = (struct kvm_io_range) {
3471                 .addr = addr,
3472                 .len = len,
3473         };
3474
3475         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3476         if (!bus)
3477                 return -ENOMEM;
3478         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3479         return r < 0 ? r : 0;
3480 }
3481
3482 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3483 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3484                             gpa_t addr, int len, const void *val, long cookie)
3485 {
3486         struct kvm_io_bus *bus;
3487         struct kvm_io_range range;
3488
3489         range = (struct kvm_io_range) {
3490                 .addr = addr,
3491                 .len = len,
3492         };
3493
3494         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3495         if (!bus)
3496                 return -ENOMEM;
3497
3498         /* First try the device referenced by cookie. */
3499         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3500             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3501                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3502                                         val))
3503                         return cookie;
3504
3505         /*
3506          * cookie contained garbage; fall back to search and return the
3507          * correct cookie value.
3508          */
3509         return __kvm_io_bus_write(vcpu, bus, &range, val);
3510 }
3511
3512 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3513                              struct kvm_io_range *range, void *val)
3514 {
3515         int idx;
3516
3517         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3518         if (idx < 0)
3519                 return -EOPNOTSUPP;
3520
3521         while (idx < bus->dev_count &&
3522                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3523                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3524                                        range->len, val))
3525                         return idx;
3526                 idx++;
3527         }
3528
3529         return -EOPNOTSUPP;
3530 }
3531 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3532
3533 /* kvm_io_bus_read - called under kvm->slots_lock */
3534 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3535                     int len, void *val)
3536 {
3537         struct kvm_io_bus *bus;
3538         struct kvm_io_range range;
3539         int r;
3540
3541         range = (struct kvm_io_range) {
3542                 .addr = addr,
3543                 .len = len,
3544         };
3545
3546         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3547         if (!bus)
3548                 return -ENOMEM;
3549         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3550         return r < 0 ? r : 0;
3551 }
3552
3553
3554 /* Caller must hold slots_lock. */
3555 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3556                             int len, struct kvm_io_device *dev)
3557 {
3558         int i;
3559         struct kvm_io_bus *new_bus, *bus;
3560         struct kvm_io_range range;
3561
3562         bus = kvm_get_bus(kvm, bus_idx);
3563         if (!bus)
3564                 return -ENOMEM;
3565
3566         /* exclude ioeventfd which is limited by maximum fd */
3567         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3568                 return -ENOSPC;
3569
3570         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3571                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3572         if (!new_bus)
3573                 return -ENOMEM;
3574
3575         range = (struct kvm_io_range) {
3576                 .addr = addr,
3577                 .len = len,
3578                 .dev = dev,
3579         };
3580
3581         for (i = 0; i < bus->dev_count; i++)
3582                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3583                         break;
3584
3585         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3586         new_bus->dev_count++;
3587         new_bus->range[i] = range;
3588         memcpy(new_bus->range + i + 1, bus->range + i,
3589                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3590         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3591         synchronize_srcu_expedited(&kvm->srcu);
3592         kfree(bus);
3593
3594         return 0;
3595 }
3596
3597 /* Caller must hold slots_lock. */
3598 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3599                                struct kvm_io_device *dev)
3600 {
3601         int i;
3602         struct kvm_io_bus *new_bus, *bus;
3603
3604         bus = kvm_get_bus(kvm, bus_idx);
3605         if (!bus)
3606                 return;
3607
3608         for (i = 0; i < bus->dev_count; i++)
3609                 if (bus->range[i].dev == dev) {
3610                         break;
3611                 }
3612
3613         if (i == bus->dev_count)
3614                 return;
3615
3616         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3617                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3618         if (!new_bus)  {
3619                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3620                 goto broken;
3621         }
3622
3623         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3624         new_bus->dev_count--;
3625         memcpy(new_bus->range + i, bus->range + i + 1,
3626                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3627
3628 broken:
3629         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3630         synchronize_srcu_expedited(&kvm->srcu);
3631         kfree(bus);
3632         return;
3633 }
3634
3635 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3636                                          gpa_t addr)
3637 {
3638         struct kvm_io_bus *bus;
3639         int dev_idx, srcu_idx;
3640         struct kvm_io_device *iodev = NULL;
3641
3642         srcu_idx = srcu_read_lock(&kvm->srcu);
3643
3644         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3645         if (!bus)
3646                 goto out_unlock;
3647
3648         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3649         if (dev_idx < 0)
3650                 goto out_unlock;
3651
3652         iodev = bus->range[dev_idx].dev;
3653
3654 out_unlock:
3655         srcu_read_unlock(&kvm->srcu, srcu_idx);
3656
3657         return iodev;
3658 }
3659 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3660
3661 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3662                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3663                            const char *fmt)
3664 {
3665         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3666                                           inode->i_private;
3667
3668         /* The debugfs files are a reference to the kvm struct which
3669          * is still valid when kvm_destroy_vm is called.
3670          * To avoid the race between open and the removal of the debugfs
3671          * directory we test against the users count.
3672          */
3673         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3674                 return -ENOENT;
3675
3676         if (simple_attr_open(inode, file, get, set, fmt)) {
3677                 kvm_put_kvm(stat_data->kvm);
3678                 return -ENOMEM;
3679         }
3680
3681         return 0;
3682 }
3683
3684 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3685 {
3686         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3687                                           inode->i_private;
3688
3689         simple_attr_release(inode, file);
3690         kvm_put_kvm(stat_data->kvm);
3691
3692         return 0;
3693 }
3694
3695 static int vm_stat_get_per_vm(void *data, u64 *val)
3696 {
3697         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3698
3699         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3700
3701         return 0;
3702 }
3703
3704 static int vm_stat_clear_per_vm(void *data, u64 val)
3705 {
3706         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3707
3708         if (val)
3709                 return -EINVAL;
3710
3711         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3712
3713         return 0;
3714 }
3715
3716 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3717 {
3718         __simple_attr_check_format("%llu\n", 0ull);
3719         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3720                                 vm_stat_clear_per_vm, "%llu\n");
3721 }
3722
3723 static const struct file_operations vm_stat_get_per_vm_fops = {
3724         .owner   = THIS_MODULE,
3725         .open    = vm_stat_get_per_vm_open,
3726         .release = kvm_debugfs_release,
3727         .read    = simple_attr_read,
3728         .write   = simple_attr_write,
3729         .llseek  = no_llseek,
3730 };
3731
3732 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3733 {
3734         int i;
3735         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3736         struct kvm_vcpu *vcpu;
3737
3738         *val = 0;
3739
3740         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3741                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3742
3743         return 0;
3744 }
3745
3746 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3747 {
3748         int i;
3749         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3750         struct kvm_vcpu *vcpu;
3751
3752         if (val)
3753                 return -EINVAL;
3754
3755         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3756                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3757
3758         return 0;
3759 }
3760
3761 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3762 {
3763         __simple_attr_check_format("%llu\n", 0ull);
3764         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3765                                  vcpu_stat_clear_per_vm, "%llu\n");
3766 }
3767
3768 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3769         .owner   = THIS_MODULE,
3770         .open    = vcpu_stat_get_per_vm_open,
3771         .release = kvm_debugfs_release,
3772         .read    = simple_attr_read,
3773         .write   = simple_attr_write,
3774         .llseek  = no_llseek,
3775 };
3776
3777 static const struct file_operations *stat_fops_per_vm[] = {
3778         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3779         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3780 };
3781
3782 static int vm_stat_get(void *_offset, u64 *val)
3783 {
3784         unsigned offset = (long)_offset;
3785         struct kvm *kvm;
3786         struct kvm_stat_data stat_tmp = {.offset = offset};
3787         u64 tmp_val;
3788
3789         *val = 0;
3790         spin_lock(&kvm_lock);
3791         list_for_each_entry(kvm, &vm_list, vm_list) {
3792                 stat_tmp.kvm = kvm;
3793                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3794                 *val += tmp_val;
3795         }
3796         spin_unlock(&kvm_lock);
3797         return 0;
3798 }
3799
3800 static int vm_stat_clear(void *_offset, u64 val)
3801 {
3802         unsigned offset = (long)_offset;
3803         struct kvm *kvm;
3804         struct kvm_stat_data stat_tmp = {.offset = offset};
3805
3806         if (val)
3807                 return -EINVAL;
3808
3809         spin_lock(&kvm_lock);
3810         list_for_each_entry(kvm, &vm_list, vm_list) {
3811                 stat_tmp.kvm = kvm;
3812                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3813         }
3814         spin_unlock(&kvm_lock);
3815
3816         return 0;
3817 }
3818
3819 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3820
3821 static int vcpu_stat_get(void *_offset, u64 *val)
3822 {
3823         unsigned offset = (long)_offset;
3824         struct kvm *kvm;
3825         struct kvm_stat_data stat_tmp = {.offset = offset};
3826         u64 tmp_val;
3827
3828         *val = 0;
3829         spin_lock(&kvm_lock);
3830         list_for_each_entry(kvm, &vm_list, vm_list) {
3831                 stat_tmp.kvm = kvm;
3832                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3833                 *val += tmp_val;
3834         }
3835         spin_unlock(&kvm_lock);
3836         return 0;
3837 }
3838
3839 static int vcpu_stat_clear(void *_offset, u64 val)
3840 {
3841         unsigned offset = (long)_offset;
3842         struct kvm *kvm;
3843         struct kvm_stat_data stat_tmp = {.offset = offset};
3844
3845         if (val)
3846                 return -EINVAL;
3847
3848         spin_lock(&kvm_lock);
3849         list_for_each_entry(kvm, &vm_list, vm_list) {
3850                 stat_tmp.kvm = kvm;
3851                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3852         }
3853         spin_unlock(&kvm_lock);
3854
3855         return 0;
3856 }
3857
3858 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3859                         "%llu\n");
3860
3861 static const struct file_operations *stat_fops[] = {
3862         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3863         [KVM_STAT_VM]   = &vm_stat_fops,
3864 };
3865
3866 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3867 {
3868         struct kobj_uevent_env *env;
3869         unsigned long long created, active;
3870
3871         if (!kvm_dev.this_device || !kvm)
3872                 return;
3873
3874         spin_lock(&kvm_lock);
3875         if (type == KVM_EVENT_CREATE_VM) {
3876                 kvm_createvm_count++;
3877                 kvm_active_vms++;
3878         } else if (type == KVM_EVENT_DESTROY_VM) {
3879                 kvm_active_vms--;
3880         }
3881         created = kvm_createvm_count;
3882         active = kvm_active_vms;
3883         spin_unlock(&kvm_lock);
3884
3885         env = kzalloc(sizeof(*env), GFP_KERNEL);
3886         if (!env)
3887                 return;
3888
3889         add_uevent_var(env, "CREATED=%llu", created);
3890         add_uevent_var(env, "COUNT=%llu", active);
3891
3892         if (type == KVM_EVENT_CREATE_VM) {
3893                 add_uevent_var(env, "EVENT=create");
3894                 kvm->userspace_pid = task_pid_nr(current);
3895         } else if (type == KVM_EVENT_DESTROY_VM) {
3896                 add_uevent_var(env, "EVENT=destroy");
3897         }
3898         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3899
3900         if (kvm->debugfs_dentry) {
3901                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3902
3903                 if (p) {
3904                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3905                         if (!IS_ERR(tmp))
3906                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3907                         kfree(p);
3908                 }
3909         }
3910         /* no need for checks, since we are adding at most only 5 keys */
3911         env->envp[env->envp_idx++] = NULL;
3912         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3913         kfree(env);
3914 }
3915
3916 static void kvm_init_debug(void)
3917 {
3918         struct kvm_stats_debugfs_item *p;
3919
3920         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3921
3922         kvm_debugfs_num_entries = 0;
3923         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3924                 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3925                                     (void *)(long)p->offset,
3926                                     stat_fops[p->kind]);
3927         }
3928 }
3929
3930 static int kvm_suspend(void)
3931 {
3932         if (kvm_usage_count)
3933                 hardware_disable_nolock(NULL);
3934         return 0;
3935 }
3936
3937 static void kvm_resume(void)
3938 {
3939         if (kvm_usage_count) {
3940                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3941                 hardware_enable_nolock(NULL);
3942         }
3943 }
3944
3945 static struct syscore_ops kvm_syscore_ops = {
3946         .suspend = kvm_suspend,
3947         .resume = kvm_resume,
3948 };
3949
3950 static inline
3951 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3952 {
3953         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3954 }
3955
3956 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3957 {
3958         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3959
3960         if (vcpu->preempted)
3961                 vcpu->preempted = false;
3962
3963         kvm_arch_sched_in(vcpu, cpu);
3964
3965         kvm_arch_vcpu_load(vcpu, cpu);
3966 }
3967
3968 static void kvm_sched_out(struct preempt_notifier *pn,
3969                           struct task_struct *next)
3970 {
3971         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3972
3973         if (current->state == TASK_RUNNING)
3974                 vcpu->preempted = true;
3975         kvm_arch_vcpu_put(vcpu);
3976 }
3977
3978 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3979                   struct module *module)
3980 {
3981         int r;
3982         int cpu;
3983
3984         r = kvm_arch_init(opaque);
3985         if (r)
3986                 goto out_fail;
3987
3988         /*
3989          * kvm_arch_init makes sure there's at most one caller
3990          * for architectures that support multiple implementations,
3991          * like intel and amd on x86.
3992          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3993          * conflicts in case kvm is already setup for another implementation.
3994          */
3995         r = kvm_irqfd_init();
3996         if (r)
3997                 goto out_irqfd;
3998
3999         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4000                 r = -ENOMEM;
4001                 goto out_free_0;
4002         }
4003
4004         r = kvm_arch_hardware_setup();
4005         if (r < 0)
4006                 goto out_free_0a;
4007
4008         for_each_online_cpu(cpu) {
4009                 smp_call_function_single(cpu,
4010                                 kvm_arch_check_processor_compat,
4011                                 &r, 1);
4012                 if (r < 0)
4013                         goto out_free_1;
4014         }
4015
4016         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4017                                       kvm_starting_cpu, kvm_dying_cpu);
4018         if (r)
4019                 goto out_free_2;
4020         register_reboot_notifier(&kvm_reboot_notifier);
4021
4022         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4023         if (!vcpu_align)
4024                 vcpu_align = __alignof__(struct kvm_vcpu);
4025         kvm_vcpu_cache =
4026                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4027                                            SLAB_ACCOUNT,
4028                                            offsetof(struct kvm_vcpu, arch),
4029                                            sizeof_field(struct kvm_vcpu, arch),
4030                                            NULL);
4031         if (!kvm_vcpu_cache) {
4032                 r = -ENOMEM;
4033                 goto out_free_3;
4034         }
4035
4036         r = kvm_async_pf_init();
4037         if (r)
4038                 goto out_free;
4039
4040         kvm_chardev_ops.owner = module;
4041         kvm_vm_fops.owner = module;
4042         kvm_vcpu_fops.owner = module;
4043
4044         r = misc_register(&kvm_dev);
4045         if (r) {
4046                 pr_err("kvm: misc device register failed\n");
4047                 goto out_unreg;
4048         }
4049
4050         register_syscore_ops(&kvm_syscore_ops);
4051
4052         kvm_preempt_ops.sched_in = kvm_sched_in;
4053         kvm_preempt_ops.sched_out = kvm_sched_out;
4054
4055         kvm_init_debug();
4056
4057         r = kvm_vfio_ops_init();
4058         WARN_ON(r);
4059
4060         return 0;
4061
4062 out_unreg:
4063         kvm_async_pf_deinit();
4064 out_free:
4065         kmem_cache_destroy(kvm_vcpu_cache);
4066 out_free_3:
4067         unregister_reboot_notifier(&kvm_reboot_notifier);
4068         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4069 out_free_2:
4070 out_free_1:
4071         kvm_arch_hardware_unsetup();
4072 out_free_0a:
4073         free_cpumask_var(cpus_hardware_enabled);
4074 out_free_0:
4075         kvm_irqfd_exit();
4076 out_irqfd:
4077         kvm_arch_exit();
4078 out_fail:
4079         return r;
4080 }
4081 EXPORT_SYMBOL_GPL(kvm_init);
4082
4083 void kvm_exit(void)
4084 {
4085         debugfs_remove_recursive(kvm_debugfs_dir);
4086         misc_deregister(&kvm_dev);
4087         kmem_cache_destroy(kvm_vcpu_cache);
4088         kvm_async_pf_deinit();
4089         unregister_syscore_ops(&kvm_syscore_ops);
4090         unregister_reboot_notifier(&kvm_reboot_notifier);
4091         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4092         on_each_cpu(hardware_disable_nolock, NULL, 1);
4093         kvm_arch_hardware_unsetup();
4094         kvm_arch_exit();
4095         kvm_irqfd_exit();
4096         free_cpumask_var(cpus_hardware_enabled);
4097         kvm_vfio_ops_exit();
4098 }
4099 EXPORT_SYMBOL_GPL(kvm_exit);