Merge tag 'modules-for-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu...
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "mmu_lock.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 #include <linux/kvm_dirty_ring.h>
68
69 /* Worst case buffer size needed for holding an integer. */
70 #define ITOA_MAX_LEN 12
71
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74
75 /* Architectures should define their poll value according to the halt latency */
76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
77 module_param(halt_poll_ns, uint, 0644);
78 EXPORT_SYMBOL_GPL(halt_poll_ns);
79
80 /* Default doubles per-vcpu halt_poll_ns. */
81 unsigned int halt_poll_ns_grow = 2;
82 module_param(halt_poll_ns_grow, uint, 0644);
83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84
85 /* The start value to grow halt_poll_ns from */
86 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
87 module_param(halt_poll_ns_grow_start, uint, 0644);
88 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
89
90 /* Default resets per-vcpu halt_poll_ns . */
91 unsigned int halt_poll_ns_shrink;
92 module_param(halt_poll_ns_shrink, uint, 0644);
93 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
94
95 /*
96  * Ordering of locks:
97  *
98  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
99  */
100
101 DEFINE_MUTEX(kvm_lock);
102 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
103 LIST_HEAD(vm_list);
104
105 static cpumask_var_t cpus_hardware_enabled;
106 static int kvm_usage_count;
107 static atomic_t hardware_enable_failed;
108
109 static struct kmem_cache *kvm_vcpu_cache;
110
111 static __read_mostly struct preempt_ops kvm_preempt_ops;
112 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
113
114 struct dentry *kvm_debugfs_dir;
115 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
116
117 static int kvm_debugfs_num_entries;
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                                                    unsigned long start, unsigned long end)
160 {
161 }
162
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165         /*
166          * The metadata used by is_zone_device_page() to determine whether or
167          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168          * the device has been pinned, e.g. by get_user_pages().  WARN if the
169          * page_count() is zero to help detect bad usage of this helper.
170          */
171         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172                 return false;
173
174         return is_zone_device_page(pfn_to_page(pfn));
175 }
176
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179         /*
180          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181          * perspective they are "normal" pages, albeit with slightly different
182          * usage rules.
183          */
184         if (pfn_valid(pfn))
185                 return PageReserved(pfn_to_page(pfn)) &&
186                        !is_zero_pfn(pfn) &&
187                        !kvm_is_zone_device_pfn(pfn);
188
189         return true;
190 }
191
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194         struct page *page = pfn_to_page(pfn);
195
196         if (!PageTransCompoundMap(page))
197                 return false;
198
199         return is_transparent_hugepage(compound_head(page));
200 }
201
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207         int cpu = get_cpu();
208
209         __this_cpu_write(kvm_running_vcpu, vcpu);
210         preempt_notifier_register(&vcpu->preempt_notifier);
211         kvm_arch_vcpu_load(vcpu, cpu);
212         put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218         preempt_disable();
219         kvm_arch_vcpu_put(vcpu);
220         preempt_notifier_unregister(&vcpu->preempt_notifier);
221         __this_cpu_write(kvm_running_vcpu, NULL);
222         preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230
231         /*
232          * We need to wait for the VCPU to reenable interrupts and get out of
233          * READING_SHADOW_PAGE_TABLES mode.
234          */
235         if (req & KVM_REQUEST_WAIT)
236                 return mode != OUTSIDE_GUEST_MODE;
237
238         /*
239          * Need to kick a running VCPU, but otherwise there is nothing to do.
240          */
241         return mode == IN_GUEST_MODE;
242 }
243
244 static void ack_flush(void *_completed)
245 {
246 }
247
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250         if (unlikely(!cpus))
251                 cpus = cpu_online_mask;
252
253         if (cpumask_empty(cpus))
254                 return false;
255
256         smp_call_function_many(cpus, ack_flush, NULL, wait);
257         return true;
258 }
259
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261                                  struct kvm_vcpu *except,
262                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264         int i, cpu, me;
265         struct kvm_vcpu *vcpu;
266         bool called;
267
268         me = get_cpu();
269
270         kvm_for_each_vcpu(i, vcpu, kvm) {
271                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272                     vcpu == except)
273                         continue;
274
275                 kvm_make_request(req, vcpu);
276                 cpu = vcpu->cpu;
277
278                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279                         continue;
280
281                 if (tmp != NULL && cpu != -1 && cpu != me &&
282                     kvm_request_needs_ipi(vcpu, req))
283                         __cpumask_set_cpu(cpu, tmp);
284         }
285
286         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287         put_cpu();
288
289         return called;
290 }
291
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293                                       struct kvm_vcpu *except)
294 {
295         cpumask_var_t cpus;
296         bool called;
297
298         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
300         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301
302         free_cpumask_var(cpus);
303         return called;
304 }
305
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308         return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310
311 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
312 void kvm_flush_remote_tlbs(struct kvm *kvm)
313 {
314         /*
315          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
316          * kvm_make_all_cpus_request.
317          */
318         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
319
320         /*
321          * We want to publish modifications to the page tables before reading
322          * mode. Pairs with a memory barrier in arch-specific code.
323          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
324          * and smp_mb in walk_shadow_page_lockless_begin/end.
325          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
326          *
327          * There is already an smp_mb__after_atomic() before
328          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
329          * barrier here.
330          */
331         if (!kvm_arch_flush_remote_tlb(kvm)
332             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
333                 ++kvm->stat.remote_tlb_flush;
334         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
335 }
336 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
337 #endif
338
339 void kvm_reload_remote_mmus(struct kvm *kvm)
340 {
341         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
342 }
343
344 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
345 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
346                                                gfp_t gfp_flags)
347 {
348         gfp_flags |= mc->gfp_zero;
349
350         if (mc->kmem_cache)
351                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
352         else
353                 return (void *)__get_free_page(gfp_flags);
354 }
355
356 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
357 {
358         void *obj;
359
360         if (mc->nobjs >= min)
361                 return 0;
362         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
363                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
364                 if (!obj)
365                         return mc->nobjs >= min ? 0 : -ENOMEM;
366                 mc->objects[mc->nobjs++] = obj;
367         }
368         return 0;
369 }
370
371 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
372 {
373         return mc->nobjs;
374 }
375
376 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
377 {
378         while (mc->nobjs) {
379                 if (mc->kmem_cache)
380                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
381                 else
382                         free_page((unsigned long)mc->objects[--mc->nobjs]);
383         }
384 }
385
386 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
387 {
388         void *p;
389
390         if (WARN_ON(!mc->nobjs))
391                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
392         else
393                 p = mc->objects[--mc->nobjs];
394         BUG_ON(!p);
395         return p;
396 }
397 #endif
398
399 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
400 {
401         mutex_init(&vcpu->mutex);
402         vcpu->cpu = -1;
403         vcpu->kvm = kvm;
404         vcpu->vcpu_id = id;
405         vcpu->pid = NULL;
406         rcuwait_init(&vcpu->wait);
407         kvm_async_pf_vcpu_init(vcpu);
408
409         vcpu->pre_pcpu = -1;
410         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
411
412         kvm_vcpu_set_in_spin_loop(vcpu, false);
413         kvm_vcpu_set_dy_eligible(vcpu, false);
414         vcpu->preempted = false;
415         vcpu->ready = false;
416         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
417 }
418
419 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
420 {
421         kvm_dirty_ring_free(&vcpu->dirty_ring);
422         kvm_arch_vcpu_destroy(vcpu);
423
424         /*
425          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
426          * the vcpu->pid pointer, and at destruction time all file descriptors
427          * are already gone.
428          */
429         put_pid(rcu_dereference_protected(vcpu->pid, 1));
430
431         free_page((unsigned long)vcpu->run);
432         kmem_cache_free(kvm_vcpu_cache, vcpu);
433 }
434 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
435
436 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
437 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
438 {
439         return container_of(mn, struct kvm, mmu_notifier);
440 }
441
442 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
443                                               struct mm_struct *mm,
444                                               unsigned long start, unsigned long end)
445 {
446         struct kvm *kvm = mmu_notifier_to_kvm(mn);
447         int idx;
448
449         idx = srcu_read_lock(&kvm->srcu);
450         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
451         srcu_read_unlock(&kvm->srcu, idx);
452 }
453
454 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
455                                         struct mm_struct *mm,
456                                         unsigned long address,
457                                         pte_t pte)
458 {
459         struct kvm *kvm = mmu_notifier_to_kvm(mn);
460         int idx;
461
462         idx = srcu_read_lock(&kvm->srcu);
463
464         KVM_MMU_LOCK(kvm);
465
466         kvm->mmu_notifier_seq++;
467
468         if (kvm_set_spte_hva(kvm, address, pte))
469                 kvm_flush_remote_tlbs(kvm);
470
471         KVM_MMU_UNLOCK(kvm);
472         srcu_read_unlock(&kvm->srcu, idx);
473 }
474
475 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
476                                         const struct mmu_notifier_range *range)
477 {
478         struct kvm *kvm = mmu_notifier_to_kvm(mn);
479         int need_tlb_flush = 0, idx;
480
481         idx = srcu_read_lock(&kvm->srcu);
482         KVM_MMU_LOCK(kvm);
483         /*
484          * The count increase must become visible at unlock time as no
485          * spte can be established without taking the mmu_lock and
486          * count is also read inside the mmu_lock critical section.
487          */
488         kvm->mmu_notifier_count++;
489         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
490                                              range->flags);
491         /* we've to flush the tlb before the pages can be freed */
492         if (need_tlb_flush || kvm->tlbs_dirty)
493                 kvm_flush_remote_tlbs(kvm);
494
495         KVM_MMU_UNLOCK(kvm);
496         srcu_read_unlock(&kvm->srcu, idx);
497
498         return 0;
499 }
500
501 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
502                                         const struct mmu_notifier_range *range)
503 {
504         struct kvm *kvm = mmu_notifier_to_kvm(mn);
505
506         KVM_MMU_LOCK(kvm);
507         /*
508          * This sequence increase will notify the kvm page fault that
509          * the page that is going to be mapped in the spte could have
510          * been freed.
511          */
512         kvm->mmu_notifier_seq++;
513         smp_wmb();
514         /*
515          * The above sequence increase must be visible before the
516          * below count decrease, which is ensured by the smp_wmb above
517          * in conjunction with the smp_rmb in mmu_notifier_retry().
518          */
519         kvm->mmu_notifier_count--;
520         KVM_MMU_UNLOCK(kvm);
521
522         BUG_ON(kvm->mmu_notifier_count < 0);
523 }
524
525 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
526                                               struct mm_struct *mm,
527                                               unsigned long start,
528                                               unsigned long end)
529 {
530         struct kvm *kvm = mmu_notifier_to_kvm(mn);
531         int young, idx;
532
533         idx = srcu_read_lock(&kvm->srcu);
534         KVM_MMU_LOCK(kvm);
535
536         young = kvm_age_hva(kvm, start, end);
537         if (young)
538                 kvm_flush_remote_tlbs(kvm);
539
540         KVM_MMU_UNLOCK(kvm);
541         srcu_read_unlock(&kvm->srcu, idx);
542
543         return young;
544 }
545
546 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
547                                         struct mm_struct *mm,
548                                         unsigned long start,
549                                         unsigned long end)
550 {
551         struct kvm *kvm = mmu_notifier_to_kvm(mn);
552         int young, idx;
553
554         idx = srcu_read_lock(&kvm->srcu);
555         KVM_MMU_LOCK(kvm);
556         /*
557          * Even though we do not flush TLB, this will still adversely
558          * affect performance on pre-Haswell Intel EPT, where there is
559          * no EPT Access Bit to clear so that we have to tear down EPT
560          * tables instead. If we find this unacceptable, we can always
561          * add a parameter to kvm_age_hva so that it effectively doesn't
562          * do anything on clear_young.
563          *
564          * Also note that currently we never issue secondary TLB flushes
565          * from clear_young, leaving this job up to the regular system
566          * cadence. If we find this inaccurate, we might come up with a
567          * more sophisticated heuristic later.
568          */
569         young = kvm_age_hva(kvm, start, end);
570         KVM_MMU_UNLOCK(kvm);
571         srcu_read_unlock(&kvm->srcu, idx);
572
573         return young;
574 }
575
576 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
577                                        struct mm_struct *mm,
578                                        unsigned long address)
579 {
580         struct kvm *kvm = mmu_notifier_to_kvm(mn);
581         int young, idx;
582
583         idx = srcu_read_lock(&kvm->srcu);
584         KVM_MMU_LOCK(kvm);
585         young = kvm_test_age_hva(kvm, address);
586         KVM_MMU_UNLOCK(kvm);
587         srcu_read_unlock(&kvm->srcu, idx);
588
589         return young;
590 }
591
592 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
593                                      struct mm_struct *mm)
594 {
595         struct kvm *kvm = mmu_notifier_to_kvm(mn);
596         int idx;
597
598         idx = srcu_read_lock(&kvm->srcu);
599         kvm_arch_flush_shadow_all(kvm);
600         srcu_read_unlock(&kvm->srcu, idx);
601 }
602
603 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
604         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
605         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
606         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
607         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
608         .clear_young            = kvm_mmu_notifier_clear_young,
609         .test_young             = kvm_mmu_notifier_test_young,
610         .change_pte             = kvm_mmu_notifier_change_pte,
611         .release                = kvm_mmu_notifier_release,
612 };
613
614 static int kvm_init_mmu_notifier(struct kvm *kvm)
615 {
616         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
617         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
618 }
619
620 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
621
622 static int kvm_init_mmu_notifier(struct kvm *kvm)
623 {
624         return 0;
625 }
626
627 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
628
629 static struct kvm_memslots *kvm_alloc_memslots(void)
630 {
631         int i;
632         struct kvm_memslots *slots;
633
634         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
635         if (!slots)
636                 return NULL;
637
638         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
639                 slots->id_to_index[i] = -1;
640
641         return slots;
642 }
643
644 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
645 {
646         if (!memslot->dirty_bitmap)
647                 return;
648
649         kvfree(memslot->dirty_bitmap);
650         memslot->dirty_bitmap = NULL;
651 }
652
653 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
654 {
655         kvm_destroy_dirty_bitmap(slot);
656
657         kvm_arch_free_memslot(kvm, slot);
658
659         slot->flags = 0;
660         slot->npages = 0;
661 }
662
663 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
664 {
665         struct kvm_memory_slot *memslot;
666
667         if (!slots)
668                 return;
669
670         kvm_for_each_memslot(memslot, slots)
671                 kvm_free_memslot(kvm, memslot);
672
673         kvfree(slots);
674 }
675
676 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
677 {
678         int i;
679
680         if (!kvm->debugfs_dentry)
681                 return;
682
683         debugfs_remove_recursive(kvm->debugfs_dentry);
684
685         if (kvm->debugfs_stat_data) {
686                 for (i = 0; i < kvm_debugfs_num_entries; i++)
687                         kfree(kvm->debugfs_stat_data[i]);
688                 kfree(kvm->debugfs_stat_data);
689         }
690 }
691
692 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
693 {
694         char dir_name[ITOA_MAX_LEN * 2];
695         struct kvm_stat_data *stat_data;
696         struct kvm_stats_debugfs_item *p;
697
698         if (!debugfs_initialized())
699                 return 0;
700
701         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
702         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
703
704         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
705                                          sizeof(*kvm->debugfs_stat_data),
706                                          GFP_KERNEL_ACCOUNT);
707         if (!kvm->debugfs_stat_data)
708                 return -ENOMEM;
709
710         for (p = debugfs_entries; p->name; p++) {
711                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
712                 if (!stat_data)
713                         return -ENOMEM;
714
715                 stat_data->kvm = kvm;
716                 stat_data->dbgfs_item = p;
717                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
718                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
719                                     kvm->debugfs_dentry, stat_data,
720                                     &stat_fops_per_vm);
721         }
722         return 0;
723 }
724
725 /*
726  * Called after the VM is otherwise initialized, but just before adding it to
727  * the vm_list.
728  */
729 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
730 {
731         return 0;
732 }
733
734 /*
735  * Called just after removing the VM from the vm_list, but before doing any
736  * other destruction.
737  */
738 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
739 {
740 }
741
742 static struct kvm *kvm_create_vm(unsigned long type)
743 {
744         struct kvm *kvm = kvm_arch_alloc_vm();
745         int r = -ENOMEM;
746         int i;
747
748         if (!kvm)
749                 return ERR_PTR(-ENOMEM);
750
751         KVM_MMU_LOCK_INIT(kvm);
752         mmgrab(current->mm);
753         kvm->mm = current->mm;
754         kvm_eventfd_init(kvm);
755         mutex_init(&kvm->lock);
756         mutex_init(&kvm->irq_lock);
757         mutex_init(&kvm->slots_lock);
758         INIT_LIST_HEAD(&kvm->devices);
759
760         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
761
762         if (init_srcu_struct(&kvm->srcu))
763                 goto out_err_no_srcu;
764         if (init_srcu_struct(&kvm->irq_srcu))
765                 goto out_err_no_irq_srcu;
766
767         refcount_set(&kvm->users_count, 1);
768         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
769                 struct kvm_memslots *slots = kvm_alloc_memslots();
770
771                 if (!slots)
772                         goto out_err_no_arch_destroy_vm;
773                 /* Generations must be different for each address space. */
774                 slots->generation = i;
775                 rcu_assign_pointer(kvm->memslots[i], slots);
776         }
777
778         for (i = 0; i < KVM_NR_BUSES; i++) {
779                 rcu_assign_pointer(kvm->buses[i],
780                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
781                 if (!kvm->buses[i])
782                         goto out_err_no_arch_destroy_vm;
783         }
784
785         kvm->max_halt_poll_ns = halt_poll_ns;
786
787         r = kvm_arch_init_vm(kvm, type);
788         if (r)
789                 goto out_err_no_arch_destroy_vm;
790
791         r = hardware_enable_all();
792         if (r)
793                 goto out_err_no_disable;
794
795 #ifdef CONFIG_HAVE_KVM_IRQFD
796         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
797 #endif
798
799         r = kvm_init_mmu_notifier(kvm);
800         if (r)
801                 goto out_err_no_mmu_notifier;
802
803         r = kvm_arch_post_init_vm(kvm);
804         if (r)
805                 goto out_err;
806
807         mutex_lock(&kvm_lock);
808         list_add(&kvm->vm_list, &vm_list);
809         mutex_unlock(&kvm_lock);
810
811         preempt_notifier_inc();
812
813         return kvm;
814
815 out_err:
816 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
817         if (kvm->mmu_notifier.ops)
818                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
819 #endif
820 out_err_no_mmu_notifier:
821         hardware_disable_all();
822 out_err_no_disable:
823         kvm_arch_destroy_vm(kvm);
824 out_err_no_arch_destroy_vm:
825         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
826         for (i = 0; i < KVM_NR_BUSES; i++)
827                 kfree(kvm_get_bus(kvm, i));
828         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
829                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
830         cleanup_srcu_struct(&kvm->irq_srcu);
831 out_err_no_irq_srcu:
832         cleanup_srcu_struct(&kvm->srcu);
833 out_err_no_srcu:
834         kvm_arch_free_vm(kvm);
835         mmdrop(current->mm);
836         return ERR_PTR(r);
837 }
838
839 static void kvm_destroy_devices(struct kvm *kvm)
840 {
841         struct kvm_device *dev, *tmp;
842
843         /*
844          * We do not need to take the kvm->lock here, because nobody else
845          * has a reference to the struct kvm at this point and therefore
846          * cannot access the devices list anyhow.
847          */
848         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
849                 list_del(&dev->vm_node);
850                 dev->ops->destroy(dev);
851         }
852 }
853
854 static void kvm_destroy_vm(struct kvm *kvm)
855 {
856         int i;
857         struct mm_struct *mm = kvm->mm;
858
859         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
860         kvm_destroy_vm_debugfs(kvm);
861         kvm_arch_sync_events(kvm);
862         mutex_lock(&kvm_lock);
863         list_del(&kvm->vm_list);
864         mutex_unlock(&kvm_lock);
865         kvm_arch_pre_destroy_vm(kvm);
866
867         kvm_free_irq_routing(kvm);
868         for (i = 0; i < KVM_NR_BUSES; i++) {
869                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
870
871                 if (bus)
872                         kvm_io_bus_destroy(bus);
873                 kvm->buses[i] = NULL;
874         }
875         kvm_coalesced_mmio_free(kvm);
876 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
877         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
878 #else
879         kvm_arch_flush_shadow_all(kvm);
880 #endif
881         kvm_arch_destroy_vm(kvm);
882         kvm_destroy_devices(kvm);
883         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
884                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
885         cleanup_srcu_struct(&kvm->irq_srcu);
886         cleanup_srcu_struct(&kvm->srcu);
887         kvm_arch_free_vm(kvm);
888         preempt_notifier_dec();
889         hardware_disable_all();
890         mmdrop(mm);
891 }
892
893 void kvm_get_kvm(struct kvm *kvm)
894 {
895         refcount_inc(&kvm->users_count);
896 }
897 EXPORT_SYMBOL_GPL(kvm_get_kvm);
898
899 void kvm_put_kvm(struct kvm *kvm)
900 {
901         if (refcount_dec_and_test(&kvm->users_count))
902                 kvm_destroy_vm(kvm);
903 }
904 EXPORT_SYMBOL_GPL(kvm_put_kvm);
905
906 /*
907  * Used to put a reference that was taken on behalf of an object associated
908  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
909  * of the new file descriptor fails and the reference cannot be transferred to
910  * its final owner.  In such cases, the caller is still actively using @kvm and
911  * will fail miserably if the refcount unexpectedly hits zero.
912  */
913 void kvm_put_kvm_no_destroy(struct kvm *kvm)
914 {
915         WARN_ON(refcount_dec_and_test(&kvm->users_count));
916 }
917 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
918
919 static int kvm_vm_release(struct inode *inode, struct file *filp)
920 {
921         struct kvm *kvm = filp->private_data;
922
923         kvm_irqfd_release(kvm);
924
925         kvm_put_kvm(kvm);
926         return 0;
927 }
928
929 /*
930  * Allocation size is twice as large as the actual dirty bitmap size.
931  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
932  */
933 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
934 {
935         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
936
937         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
938         if (!memslot->dirty_bitmap)
939                 return -ENOMEM;
940
941         return 0;
942 }
943
944 /*
945  * Delete a memslot by decrementing the number of used slots and shifting all
946  * other entries in the array forward one spot.
947  */
948 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
949                                       struct kvm_memory_slot *memslot)
950 {
951         struct kvm_memory_slot *mslots = slots->memslots;
952         int i;
953
954         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
955                 return;
956
957         slots->used_slots--;
958
959         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
960                 atomic_set(&slots->lru_slot, 0);
961
962         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
963                 mslots[i] = mslots[i + 1];
964                 slots->id_to_index[mslots[i].id] = i;
965         }
966         mslots[i] = *memslot;
967         slots->id_to_index[memslot->id] = -1;
968 }
969
970 /*
971  * "Insert" a new memslot by incrementing the number of used slots.  Returns
972  * the new slot's initial index into the memslots array.
973  */
974 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
975 {
976         return slots->used_slots++;
977 }
978
979 /*
980  * Move a changed memslot backwards in the array by shifting existing slots
981  * with a higher GFN toward the front of the array.  Note, the changed memslot
982  * itself is not preserved in the array, i.e. not swapped at this time, only
983  * its new index into the array is tracked.  Returns the changed memslot's
984  * current index into the memslots array.
985  */
986 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
987                                             struct kvm_memory_slot *memslot)
988 {
989         struct kvm_memory_slot *mslots = slots->memslots;
990         int i;
991
992         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
993             WARN_ON_ONCE(!slots->used_slots))
994                 return -1;
995
996         /*
997          * Move the target memslot backward in the array by shifting existing
998          * memslots with a higher GFN (than the target memslot) towards the
999          * front of the array.
1000          */
1001         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1002                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1003                         break;
1004
1005                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1006
1007                 /* Shift the next memslot forward one and update its index. */
1008                 mslots[i] = mslots[i + 1];
1009                 slots->id_to_index[mslots[i].id] = i;
1010         }
1011         return i;
1012 }
1013
1014 /*
1015  * Move a changed memslot forwards in the array by shifting existing slots with
1016  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1017  * is not preserved in the array, i.e. not swapped at this time, only its new
1018  * index into the array is tracked.  Returns the changed memslot's final index
1019  * into the memslots array.
1020  */
1021 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1022                                            struct kvm_memory_slot *memslot,
1023                                            int start)
1024 {
1025         struct kvm_memory_slot *mslots = slots->memslots;
1026         int i;
1027
1028         for (i = start; i > 0; i--) {
1029                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1030                         break;
1031
1032                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1033
1034                 /* Shift the next memslot back one and update its index. */
1035                 mslots[i] = mslots[i - 1];
1036                 slots->id_to_index[mslots[i].id] = i;
1037         }
1038         return i;
1039 }
1040
1041 /*
1042  * Re-sort memslots based on their GFN to account for an added, deleted, or
1043  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1044  * memslot lookup.
1045  *
1046  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1047  * at memslots[0] has the highest GFN.
1048  *
1049  * The sorting algorithm takes advantage of having initially sorted memslots
1050  * and knowing the position of the changed memslot.  Sorting is also optimized
1051  * by not swapping the updated memslot and instead only shifting other memslots
1052  * and tracking the new index for the update memslot.  Only once its final
1053  * index is known is the updated memslot copied into its position in the array.
1054  *
1055  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1056  *    the end of the array.
1057  *
1058  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1059  *    end of the array and then it forward to its correct location.
1060  *
1061  *  - When moving a memslot, the algorithm first moves the updated memslot
1062  *    backward to handle the scenario where the memslot's GFN was changed to a
1063  *    lower value.  update_memslots() then falls through and runs the same flow
1064  *    as creating a memslot to move the memslot forward to handle the scenario
1065  *    where its GFN was changed to a higher value.
1066  *
1067  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1068  * historical reasons.  Originally, invalid memslots where denoted by having
1069  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1070  * to the end of the array.  The current algorithm uses dedicated logic to
1071  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1072  *
1073  * The other historical motiviation for highest->lowest was to improve the
1074  * performance of memslot lookup.  KVM originally used a linear search starting
1075  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1076  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1077  * single memslot above the 4gb boundary.  As the largest memslot is also the
1078  * most likely to be referenced, sorting it to the front of the array was
1079  * advantageous.  The current binary search starts from the middle of the array
1080  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1081  */
1082 static void update_memslots(struct kvm_memslots *slots,
1083                             struct kvm_memory_slot *memslot,
1084                             enum kvm_mr_change change)
1085 {
1086         int i;
1087
1088         if (change == KVM_MR_DELETE) {
1089                 kvm_memslot_delete(slots, memslot);
1090         } else {
1091                 if (change == KVM_MR_CREATE)
1092                         i = kvm_memslot_insert_back(slots);
1093                 else
1094                         i = kvm_memslot_move_backward(slots, memslot);
1095                 i = kvm_memslot_move_forward(slots, memslot, i);
1096
1097                 /*
1098                  * Copy the memslot to its new position in memslots and update
1099                  * its index accordingly.
1100                  */
1101                 slots->memslots[i] = *memslot;
1102                 slots->id_to_index[memslot->id] = i;
1103         }
1104 }
1105
1106 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1107 {
1108         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1109
1110 #ifdef __KVM_HAVE_READONLY_MEM
1111         valid_flags |= KVM_MEM_READONLY;
1112 #endif
1113
1114         if (mem->flags & ~valid_flags)
1115                 return -EINVAL;
1116
1117         return 0;
1118 }
1119
1120 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1121                 int as_id, struct kvm_memslots *slots)
1122 {
1123         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1124         u64 gen = old_memslots->generation;
1125
1126         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1127         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1128
1129         rcu_assign_pointer(kvm->memslots[as_id], slots);
1130         synchronize_srcu_expedited(&kvm->srcu);
1131
1132         /*
1133          * Increment the new memslot generation a second time, dropping the
1134          * update in-progress flag and incrementing the generation based on
1135          * the number of address spaces.  This provides a unique and easily
1136          * identifiable generation number while the memslots are in flux.
1137          */
1138         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1139
1140         /*
1141          * Generations must be unique even across address spaces.  We do not need
1142          * a global counter for that, instead the generation space is evenly split
1143          * across address spaces.  For example, with two address spaces, address
1144          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1145          * use generations 1, 3, 5, ...
1146          */
1147         gen += KVM_ADDRESS_SPACE_NUM;
1148
1149         kvm_arch_memslots_updated(kvm, gen);
1150
1151         slots->generation = gen;
1152
1153         return old_memslots;
1154 }
1155
1156 /*
1157  * Note, at a minimum, the current number of used slots must be allocated, even
1158  * when deleting a memslot, as we need a complete duplicate of the memslots for
1159  * use when invalidating a memslot prior to deleting/moving the memslot.
1160  */
1161 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1162                                              enum kvm_mr_change change)
1163 {
1164         struct kvm_memslots *slots;
1165         size_t old_size, new_size;
1166
1167         old_size = sizeof(struct kvm_memslots) +
1168                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1169
1170         if (change == KVM_MR_CREATE)
1171                 new_size = old_size + sizeof(struct kvm_memory_slot);
1172         else
1173                 new_size = old_size;
1174
1175         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1176         if (likely(slots))
1177                 memcpy(slots, old, old_size);
1178
1179         return slots;
1180 }
1181
1182 static int kvm_set_memslot(struct kvm *kvm,
1183                            const struct kvm_userspace_memory_region *mem,
1184                            struct kvm_memory_slot *old,
1185                            struct kvm_memory_slot *new, int as_id,
1186                            enum kvm_mr_change change)
1187 {
1188         struct kvm_memory_slot *slot;
1189         struct kvm_memslots *slots;
1190         int r;
1191
1192         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1193         if (!slots)
1194                 return -ENOMEM;
1195
1196         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1197                 /*
1198                  * Note, the INVALID flag needs to be in the appropriate entry
1199                  * in the freshly allocated memslots, not in @old or @new.
1200                  */
1201                 slot = id_to_memslot(slots, old->id);
1202                 slot->flags |= KVM_MEMSLOT_INVALID;
1203
1204                 /*
1205                  * We can re-use the old memslots, the only difference from the
1206                  * newly installed memslots is the invalid flag, which will get
1207                  * dropped by update_memslots anyway.  We'll also revert to the
1208                  * old memslots if preparing the new memory region fails.
1209                  */
1210                 slots = install_new_memslots(kvm, as_id, slots);
1211
1212                 /* From this point no new shadow pages pointing to a deleted,
1213                  * or moved, memslot will be created.
1214                  *
1215                  * validation of sp->gfn happens in:
1216                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1217                  *      - kvm_is_visible_gfn (mmu_check_root)
1218                  */
1219                 kvm_arch_flush_shadow_memslot(kvm, slot);
1220         }
1221
1222         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1223         if (r)
1224                 goto out_slots;
1225
1226         update_memslots(slots, new, change);
1227         slots = install_new_memslots(kvm, as_id, slots);
1228
1229         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1230
1231         kvfree(slots);
1232         return 0;
1233
1234 out_slots:
1235         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1236                 slots = install_new_memslots(kvm, as_id, slots);
1237         kvfree(slots);
1238         return r;
1239 }
1240
1241 static int kvm_delete_memslot(struct kvm *kvm,
1242                               const struct kvm_userspace_memory_region *mem,
1243                               struct kvm_memory_slot *old, int as_id)
1244 {
1245         struct kvm_memory_slot new;
1246         int r;
1247
1248         if (!old->npages)
1249                 return -EINVAL;
1250
1251         memset(&new, 0, sizeof(new));
1252         new.id = old->id;
1253         /*
1254          * This is only for debugging purpose; it should never be referenced
1255          * for a removed memslot.
1256          */
1257         new.as_id = as_id;
1258
1259         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1260         if (r)
1261                 return r;
1262
1263         kvm_free_memslot(kvm, old);
1264         return 0;
1265 }
1266
1267 /*
1268  * Allocate some memory and give it an address in the guest physical address
1269  * space.
1270  *
1271  * Discontiguous memory is allowed, mostly for framebuffers.
1272  *
1273  * Must be called holding kvm->slots_lock for write.
1274  */
1275 int __kvm_set_memory_region(struct kvm *kvm,
1276                             const struct kvm_userspace_memory_region *mem)
1277 {
1278         struct kvm_memory_slot old, new;
1279         struct kvm_memory_slot *tmp;
1280         enum kvm_mr_change change;
1281         int as_id, id;
1282         int r;
1283
1284         r = check_memory_region_flags(mem);
1285         if (r)
1286                 return r;
1287
1288         as_id = mem->slot >> 16;
1289         id = (u16)mem->slot;
1290
1291         /* General sanity checks */
1292         if (mem->memory_size & (PAGE_SIZE - 1))
1293                 return -EINVAL;
1294         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1295                 return -EINVAL;
1296         /* We can read the guest memory with __xxx_user() later on. */
1297         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1298             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1299              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1300                         mem->memory_size))
1301                 return -EINVAL;
1302         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1303                 return -EINVAL;
1304         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1305                 return -EINVAL;
1306
1307         /*
1308          * Make a full copy of the old memslot, the pointer will become stale
1309          * when the memslots are re-sorted by update_memslots(), and the old
1310          * memslot needs to be referenced after calling update_memslots(), e.g.
1311          * to free its resources and for arch specific behavior.
1312          */
1313         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1314         if (tmp) {
1315                 old = *tmp;
1316                 tmp = NULL;
1317         } else {
1318                 memset(&old, 0, sizeof(old));
1319                 old.id = id;
1320         }
1321
1322         if (!mem->memory_size)
1323                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1324
1325         new.as_id = as_id;
1326         new.id = id;
1327         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1328         new.npages = mem->memory_size >> PAGE_SHIFT;
1329         new.flags = mem->flags;
1330         new.userspace_addr = mem->userspace_addr;
1331
1332         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1333                 return -EINVAL;
1334
1335         if (!old.npages) {
1336                 change = KVM_MR_CREATE;
1337                 new.dirty_bitmap = NULL;
1338                 memset(&new.arch, 0, sizeof(new.arch));
1339         } else { /* Modify an existing slot. */
1340                 if ((new.userspace_addr != old.userspace_addr) ||
1341                     (new.npages != old.npages) ||
1342                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1343                         return -EINVAL;
1344
1345                 if (new.base_gfn != old.base_gfn)
1346                         change = KVM_MR_MOVE;
1347                 else if (new.flags != old.flags)
1348                         change = KVM_MR_FLAGS_ONLY;
1349                 else /* Nothing to change. */
1350                         return 0;
1351
1352                 /* Copy dirty_bitmap and arch from the current memslot. */
1353                 new.dirty_bitmap = old.dirty_bitmap;
1354                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1355         }
1356
1357         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1358                 /* Check for overlaps */
1359                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1360                         if (tmp->id == id)
1361                                 continue;
1362                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1363                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1364                                 return -EEXIST;
1365                 }
1366         }
1367
1368         /* Allocate/free page dirty bitmap as needed */
1369         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1370                 new.dirty_bitmap = NULL;
1371         else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1372                 r = kvm_alloc_dirty_bitmap(&new);
1373                 if (r)
1374                         return r;
1375
1376                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1377                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1378         }
1379
1380         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1381         if (r)
1382                 goto out_bitmap;
1383
1384         if (old.dirty_bitmap && !new.dirty_bitmap)
1385                 kvm_destroy_dirty_bitmap(&old);
1386         return 0;
1387
1388 out_bitmap:
1389         if (new.dirty_bitmap && !old.dirty_bitmap)
1390                 kvm_destroy_dirty_bitmap(&new);
1391         return r;
1392 }
1393 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1394
1395 int kvm_set_memory_region(struct kvm *kvm,
1396                           const struct kvm_userspace_memory_region *mem)
1397 {
1398         int r;
1399
1400         mutex_lock(&kvm->slots_lock);
1401         r = __kvm_set_memory_region(kvm, mem);
1402         mutex_unlock(&kvm->slots_lock);
1403         return r;
1404 }
1405 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1406
1407 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1408                                           struct kvm_userspace_memory_region *mem)
1409 {
1410         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1411                 return -EINVAL;
1412
1413         return kvm_set_memory_region(kvm, mem);
1414 }
1415
1416 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1417 /**
1418  * kvm_get_dirty_log - get a snapshot of dirty pages
1419  * @kvm:        pointer to kvm instance
1420  * @log:        slot id and address to which we copy the log
1421  * @is_dirty:   set to '1' if any dirty pages were found
1422  * @memslot:    set to the associated memslot, always valid on success
1423  */
1424 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1425                       int *is_dirty, struct kvm_memory_slot **memslot)
1426 {
1427         struct kvm_memslots *slots;
1428         int i, as_id, id;
1429         unsigned long n;
1430         unsigned long any = 0;
1431
1432         /* Dirty ring tracking is exclusive to dirty log tracking */
1433         if (kvm->dirty_ring_size)
1434                 return -ENXIO;
1435
1436         *memslot = NULL;
1437         *is_dirty = 0;
1438
1439         as_id = log->slot >> 16;
1440         id = (u16)log->slot;
1441         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1442                 return -EINVAL;
1443
1444         slots = __kvm_memslots(kvm, as_id);
1445         *memslot = id_to_memslot(slots, id);
1446         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1447                 return -ENOENT;
1448
1449         kvm_arch_sync_dirty_log(kvm, *memslot);
1450
1451         n = kvm_dirty_bitmap_bytes(*memslot);
1452
1453         for (i = 0; !any && i < n/sizeof(long); ++i)
1454                 any = (*memslot)->dirty_bitmap[i];
1455
1456         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1457                 return -EFAULT;
1458
1459         if (any)
1460                 *is_dirty = 1;
1461         return 0;
1462 }
1463 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1464
1465 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1466 /**
1467  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1468  *      and reenable dirty page tracking for the corresponding pages.
1469  * @kvm:        pointer to kvm instance
1470  * @log:        slot id and address to which we copy the log
1471  *
1472  * We need to keep it in mind that VCPU threads can write to the bitmap
1473  * concurrently. So, to avoid losing track of dirty pages we keep the
1474  * following order:
1475  *
1476  *    1. Take a snapshot of the bit and clear it if needed.
1477  *    2. Write protect the corresponding page.
1478  *    3. Copy the snapshot to the userspace.
1479  *    4. Upon return caller flushes TLB's if needed.
1480  *
1481  * Between 2 and 4, the guest may write to the page using the remaining TLB
1482  * entry.  This is not a problem because the page is reported dirty using
1483  * the snapshot taken before and step 4 ensures that writes done after
1484  * exiting to userspace will be logged for the next call.
1485  *
1486  */
1487 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1488 {
1489         struct kvm_memslots *slots;
1490         struct kvm_memory_slot *memslot;
1491         int i, as_id, id;
1492         unsigned long n;
1493         unsigned long *dirty_bitmap;
1494         unsigned long *dirty_bitmap_buffer;
1495         bool flush;
1496
1497         /* Dirty ring tracking is exclusive to dirty log tracking */
1498         if (kvm->dirty_ring_size)
1499                 return -ENXIO;
1500
1501         as_id = log->slot >> 16;
1502         id = (u16)log->slot;
1503         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1504                 return -EINVAL;
1505
1506         slots = __kvm_memslots(kvm, as_id);
1507         memslot = id_to_memslot(slots, id);
1508         if (!memslot || !memslot->dirty_bitmap)
1509                 return -ENOENT;
1510
1511         dirty_bitmap = memslot->dirty_bitmap;
1512
1513         kvm_arch_sync_dirty_log(kvm, memslot);
1514
1515         n = kvm_dirty_bitmap_bytes(memslot);
1516         flush = false;
1517         if (kvm->manual_dirty_log_protect) {
1518                 /*
1519                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1520                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1521                  * is some code duplication between this function and
1522                  * kvm_get_dirty_log, but hopefully all architecture
1523                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1524                  * can be eliminated.
1525                  */
1526                 dirty_bitmap_buffer = dirty_bitmap;
1527         } else {
1528                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1529                 memset(dirty_bitmap_buffer, 0, n);
1530
1531                 KVM_MMU_LOCK(kvm);
1532                 for (i = 0; i < n / sizeof(long); i++) {
1533                         unsigned long mask;
1534                         gfn_t offset;
1535
1536                         if (!dirty_bitmap[i])
1537                                 continue;
1538
1539                         flush = true;
1540                         mask = xchg(&dirty_bitmap[i], 0);
1541                         dirty_bitmap_buffer[i] = mask;
1542
1543                         offset = i * BITS_PER_LONG;
1544                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1545                                                                 offset, mask);
1546                 }
1547                 KVM_MMU_UNLOCK(kvm);
1548         }
1549
1550         if (flush)
1551                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1552
1553         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1554                 return -EFAULT;
1555         return 0;
1556 }
1557
1558
1559 /**
1560  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1561  * @kvm: kvm instance
1562  * @log: slot id and address to which we copy the log
1563  *
1564  * Steps 1-4 below provide general overview of dirty page logging. See
1565  * kvm_get_dirty_log_protect() function description for additional details.
1566  *
1567  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1568  * always flush the TLB (step 4) even if previous step failed  and the dirty
1569  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1570  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1571  * writes will be marked dirty for next log read.
1572  *
1573  *   1. Take a snapshot of the bit and clear it if needed.
1574  *   2. Write protect the corresponding page.
1575  *   3. Copy the snapshot to the userspace.
1576  *   4. Flush TLB's if needed.
1577  */
1578 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1579                                       struct kvm_dirty_log *log)
1580 {
1581         int r;
1582
1583         mutex_lock(&kvm->slots_lock);
1584
1585         r = kvm_get_dirty_log_protect(kvm, log);
1586
1587         mutex_unlock(&kvm->slots_lock);
1588         return r;
1589 }
1590
1591 /**
1592  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1593  *      and reenable dirty page tracking for the corresponding pages.
1594  * @kvm:        pointer to kvm instance
1595  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1596  */
1597 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1598                                        struct kvm_clear_dirty_log *log)
1599 {
1600         struct kvm_memslots *slots;
1601         struct kvm_memory_slot *memslot;
1602         int as_id, id;
1603         gfn_t offset;
1604         unsigned long i, n;
1605         unsigned long *dirty_bitmap;
1606         unsigned long *dirty_bitmap_buffer;
1607         bool flush;
1608
1609         /* Dirty ring tracking is exclusive to dirty log tracking */
1610         if (kvm->dirty_ring_size)
1611                 return -ENXIO;
1612
1613         as_id = log->slot >> 16;
1614         id = (u16)log->slot;
1615         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1616                 return -EINVAL;
1617
1618         if (log->first_page & 63)
1619                 return -EINVAL;
1620
1621         slots = __kvm_memslots(kvm, as_id);
1622         memslot = id_to_memslot(slots, id);
1623         if (!memslot || !memslot->dirty_bitmap)
1624                 return -ENOENT;
1625
1626         dirty_bitmap = memslot->dirty_bitmap;
1627
1628         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1629
1630         if (log->first_page > memslot->npages ||
1631             log->num_pages > memslot->npages - log->first_page ||
1632             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1633             return -EINVAL;
1634
1635         kvm_arch_sync_dirty_log(kvm, memslot);
1636
1637         flush = false;
1638         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1639         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1640                 return -EFAULT;
1641
1642         KVM_MMU_LOCK(kvm);
1643         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1644                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1645              i++, offset += BITS_PER_LONG) {
1646                 unsigned long mask = *dirty_bitmap_buffer++;
1647                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1648                 if (!mask)
1649                         continue;
1650
1651                 mask &= atomic_long_fetch_andnot(mask, p);
1652
1653                 /*
1654                  * mask contains the bits that really have been cleared.  This
1655                  * never includes any bits beyond the length of the memslot (if
1656                  * the length is not aligned to 64 pages), therefore it is not
1657                  * a problem if userspace sets them in log->dirty_bitmap.
1658                 */
1659                 if (mask) {
1660                         flush = true;
1661                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1662                                                                 offset, mask);
1663                 }
1664         }
1665         KVM_MMU_UNLOCK(kvm);
1666
1667         if (flush)
1668                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1669
1670         return 0;
1671 }
1672
1673 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1674                                         struct kvm_clear_dirty_log *log)
1675 {
1676         int r;
1677
1678         mutex_lock(&kvm->slots_lock);
1679
1680         r = kvm_clear_dirty_log_protect(kvm, log);
1681
1682         mutex_unlock(&kvm->slots_lock);
1683         return r;
1684 }
1685 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1686
1687 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1688 {
1689         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1690 }
1691 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1692
1693 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1694 {
1695         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1696 }
1697 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1698
1699 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1700 {
1701         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1702
1703         return kvm_is_visible_memslot(memslot);
1704 }
1705 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1706
1707 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1708 {
1709         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1710
1711         return kvm_is_visible_memslot(memslot);
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1714
1715 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1716 {
1717         struct vm_area_struct *vma;
1718         unsigned long addr, size;
1719
1720         size = PAGE_SIZE;
1721
1722         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1723         if (kvm_is_error_hva(addr))
1724                 return PAGE_SIZE;
1725
1726         mmap_read_lock(current->mm);
1727         vma = find_vma(current->mm, addr);
1728         if (!vma)
1729                 goto out;
1730
1731         size = vma_kernel_pagesize(vma);
1732
1733 out:
1734         mmap_read_unlock(current->mm);
1735
1736         return size;
1737 }
1738
1739 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1740 {
1741         return slot->flags & KVM_MEM_READONLY;
1742 }
1743
1744 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1745                                        gfn_t *nr_pages, bool write)
1746 {
1747         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1748                 return KVM_HVA_ERR_BAD;
1749
1750         if (memslot_is_readonly(slot) && write)
1751                 return KVM_HVA_ERR_RO_BAD;
1752
1753         if (nr_pages)
1754                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1755
1756         return __gfn_to_hva_memslot(slot, gfn);
1757 }
1758
1759 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1760                                      gfn_t *nr_pages)
1761 {
1762         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1763 }
1764
1765 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1766                                         gfn_t gfn)
1767 {
1768         return gfn_to_hva_many(slot, gfn, NULL);
1769 }
1770 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1771
1772 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1773 {
1774         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1775 }
1776 EXPORT_SYMBOL_GPL(gfn_to_hva);
1777
1778 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1779 {
1780         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1783
1784 /*
1785  * Return the hva of a @gfn and the R/W attribute if possible.
1786  *
1787  * @slot: the kvm_memory_slot which contains @gfn
1788  * @gfn: the gfn to be translated
1789  * @writable: used to return the read/write attribute of the @slot if the hva
1790  * is valid and @writable is not NULL
1791  */
1792 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1793                                       gfn_t gfn, bool *writable)
1794 {
1795         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1796
1797         if (!kvm_is_error_hva(hva) && writable)
1798                 *writable = !memslot_is_readonly(slot);
1799
1800         return hva;
1801 }
1802
1803 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1804 {
1805         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1806
1807         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1808 }
1809
1810 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1811 {
1812         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1813
1814         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1815 }
1816
1817 static inline int check_user_page_hwpoison(unsigned long addr)
1818 {
1819         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1820
1821         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1822         return rc == -EHWPOISON;
1823 }
1824
1825 /*
1826  * The fast path to get the writable pfn which will be stored in @pfn,
1827  * true indicates success, otherwise false is returned.  It's also the
1828  * only part that runs if we can in atomic context.
1829  */
1830 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1831                             bool *writable, kvm_pfn_t *pfn)
1832 {
1833         struct page *page[1];
1834
1835         /*
1836          * Fast pin a writable pfn only if it is a write fault request
1837          * or the caller allows to map a writable pfn for a read fault
1838          * request.
1839          */
1840         if (!(write_fault || writable))
1841                 return false;
1842
1843         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1844                 *pfn = page_to_pfn(page[0]);
1845
1846                 if (writable)
1847                         *writable = true;
1848                 return true;
1849         }
1850
1851         return false;
1852 }
1853
1854 /*
1855  * The slow path to get the pfn of the specified host virtual address,
1856  * 1 indicates success, -errno is returned if error is detected.
1857  */
1858 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1859                            bool *writable, kvm_pfn_t *pfn)
1860 {
1861         unsigned int flags = FOLL_HWPOISON;
1862         struct page *page;
1863         int npages = 0;
1864
1865         might_sleep();
1866
1867         if (writable)
1868                 *writable = write_fault;
1869
1870         if (write_fault)
1871                 flags |= FOLL_WRITE;
1872         if (async)
1873                 flags |= FOLL_NOWAIT;
1874
1875         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1876         if (npages != 1)
1877                 return npages;
1878
1879         /* map read fault as writable if possible */
1880         if (unlikely(!write_fault) && writable) {
1881                 struct page *wpage;
1882
1883                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1884                         *writable = true;
1885                         put_page(page);
1886                         page = wpage;
1887                 }
1888         }
1889         *pfn = page_to_pfn(page);
1890         return npages;
1891 }
1892
1893 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1894 {
1895         if (unlikely(!(vma->vm_flags & VM_READ)))
1896                 return false;
1897
1898         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1899                 return false;
1900
1901         return true;
1902 }
1903
1904 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1905                                unsigned long addr, bool *async,
1906                                bool write_fault, bool *writable,
1907                                kvm_pfn_t *p_pfn)
1908 {
1909         kvm_pfn_t pfn;
1910         pte_t *ptep;
1911         spinlock_t *ptl;
1912         int r;
1913
1914         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
1915         if (r) {
1916                 /*
1917                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1918                  * not call the fault handler, so do it here.
1919                  */
1920                 bool unlocked = false;
1921                 r = fixup_user_fault(current->mm, addr,
1922                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1923                                      &unlocked);
1924                 if (unlocked)
1925                         return -EAGAIN;
1926                 if (r)
1927                         return r;
1928
1929                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
1930                 if (r)
1931                         return r;
1932         }
1933
1934         if (write_fault && !pte_write(*ptep)) {
1935                 pfn = KVM_PFN_ERR_RO_FAULT;
1936                 goto out;
1937         }
1938
1939         if (writable)
1940                 *writable = pte_write(*ptep);
1941         pfn = pte_pfn(*ptep);
1942
1943         /*
1944          * Get a reference here because callers of *hva_to_pfn* and
1945          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1946          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1947          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1948          * simply do nothing for reserved pfns.
1949          *
1950          * Whoever called remap_pfn_range is also going to call e.g.
1951          * unmap_mapping_range before the underlying pages are freed,
1952          * causing a call to our MMU notifier.
1953          */ 
1954         kvm_get_pfn(pfn);
1955
1956 out:
1957         pte_unmap_unlock(ptep, ptl);
1958         *p_pfn = pfn;
1959         return 0;
1960 }
1961
1962 /*
1963  * Pin guest page in memory and return its pfn.
1964  * @addr: host virtual address which maps memory to the guest
1965  * @atomic: whether this function can sleep
1966  * @async: whether this function need to wait IO complete if the
1967  *         host page is not in the memory
1968  * @write_fault: whether we should get a writable host page
1969  * @writable: whether it allows to map a writable host page for !@write_fault
1970  *
1971  * The function will map a writable host page for these two cases:
1972  * 1): @write_fault = true
1973  * 2): @write_fault = false && @writable, @writable will tell the caller
1974  *     whether the mapping is writable.
1975  */
1976 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1977                         bool write_fault, bool *writable)
1978 {
1979         struct vm_area_struct *vma;
1980         kvm_pfn_t pfn = 0;
1981         int npages, r;
1982
1983         /* we can do it either atomically or asynchronously, not both */
1984         BUG_ON(atomic && async);
1985
1986         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1987                 return pfn;
1988
1989         if (atomic)
1990                 return KVM_PFN_ERR_FAULT;
1991
1992         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1993         if (npages == 1)
1994                 return pfn;
1995
1996         mmap_read_lock(current->mm);
1997         if (npages == -EHWPOISON ||
1998               (!async && check_user_page_hwpoison(addr))) {
1999                 pfn = KVM_PFN_ERR_HWPOISON;
2000                 goto exit;
2001         }
2002
2003 retry:
2004         vma = find_vma_intersection(current->mm, addr, addr + 1);
2005
2006         if (vma == NULL)
2007                 pfn = KVM_PFN_ERR_FAULT;
2008         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2009                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2010                 if (r == -EAGAIN)
2011                         goto retry;
2012                 if (r < 0)
2013                         pfn = KVM_PFN_ERR_FAULT;
2014         } else {
2015                 if (async && vma_is_valid(vma, write_fault))
2016                         *async = true;
2017                 pfn = KVM_PFN_ERR_FAULT;
2018         }
2019 exit:
2020         mmap_read_unlock(current->mm);
2021         return pfn;
2022 }
2023
2024 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2025                                bool atomic, bool *async, bool write_fault,
2026                                bool *writable)
2027 {
2028         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2029
2030         if (addr == KVM_HVA_ERR_RO_BAD) {
2031                 if (writable)
2032                         *writable = false;
2033                 return KVM_PFN_ERR_RO_FAULT;
2034         }
2035
2036         if (kvm_is_error_hva(addr)) {
2037                 if (writable)
2038                         *writable = false;
2039                 return KVM_PFN_NOSLOT;
2040         }
2041
2042         /* Do not map writable pfn in the readonly memslot. */
2043         if (writable && memslot_is_readonly(slot)) {
2044                 *writable = false;
2045                 writable = NULL;
2046         }
2047
2048         return hva_to_pfn(addr, atomic, async, write_fault,
2049                           writable);
2050 }
2051 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2052
2053 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2054                       bool *writable)
2055 {
2056         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2057                                     write_fault, writable);
2058 }
2059 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2060
2061 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2062 {
2063         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2064 }
2065 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2066
2067 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2068 {
2069         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2070 }
2071 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2072
2073 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2074 {
2075         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2078
2079 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2080 {
2081         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2082 }
2083 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2084
2085 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2086 {
2087         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2088 }
2089 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2090
2091 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2092                             struct page **pages, int nr_pages)
2093 {
2094         unsigned long addr;
2095         gfn_t entry = 0;
2096
2097         addr = gfn_to_hva_many(slot, gfn, &entry);
2098         if (kvm_is_error_hva(addr))
2099                 return -1;
2100
2101         if (entry < nr_pages)
2102                 return 0;
2103
2104         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2105 }
2106 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2107
2108 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2109 {
2110         if (is_error_noslot_pfn(pfn))
2111                 return KVM_ERR_PTR_BAD_PAGE;
2112
2113         if (kvm_is_reserved_pfn(pfn)) {
2114                 WARN_ON(1);
2115                 return KVM_ERR_PTR_BAD_PAGE;
2116         }
2117
2118         return pfn_to_page(pfn);
2119 }
2120
2121 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2122 {
2123         kvm_pfn_t pfn;
2124
2125         pfn = gfn_to_pfn(kvm, gfn);
2126
2127         return kvm_pfn_to_page(pfn);
2128 }
2129 EXPORT_SYMBOL_GPL(gfn_to_page);
2130
2131 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2132 {
2133         if (pfn == 0)
2134                 return;
2135
2136         if (cache)
2137                 cache->pfn = cache->gfn = 0;
2138
2139         if (dirty)
2140                 kvm_release_pfn_dirty(pfn);
2141         else
2142                 kvm_release_pfn_clean(pfn);
2143 }
2144
2145 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2146                                  struct gfn_to_pfn_cache *cache, u64 gen)
2147 {
2148         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2149
2150         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2151         cache->gfn = gfn;
2152         cache->dirty = false;
2153         cache->generation = gen;
2154 }
2155
2156 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2157                          struct kvm_host_map *map,
2158                          struct gfn_to_pfn_cache *cache,
2159                          bool atomic)
2160 {
2161         kvm_pfn_t pfn;
2162         void *hva = NULL;
2163         struct page *page = KVM_UNMAPPED_PAGE;
2164         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2165         u64 gen = slots->generation;
2166
2167         if (!map)
2168                 return -EINVAL;
2169
2170         if (cache) {
2171                 if (!cache->pfn || cache->gfn != gfn ||
2172                         cache->generation != gen) {
2173                         if (atomic)
2174                                 return -EAGAIN;
2175                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2176                 }
2177                 pfn = cache->pfn;
2178         } else {
2179                 if (atomic)
2180                         return -EAGAIN;
2181                 pfn = gfn_to_pfn_memslot(slot, gfn);
2182         }
2183         if (is_error_noslot_pfn(pfn))
2184                 return -EINVAL;
2185
2186         if (pfn_valid(pfn)) {
2187                 page = pfn_to_page(pfn);
2188                 if (atomic)
2189                         hva = kmap_atomic(page);
2190                 else
2191                         hva = kmap(page);
2192 #ifdef CONFIG_HAS_IOMEM
2193         } else if (!atomic) {
2194                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2195         } else {
2196                 return -EINVAL;
2197 #endif
2198         }
2199
2200         if (!hva)
2201                 return -EFAULT;
2202
2203         map->page = page;
2204         map->hva = hva;
2205         map->pfn = pfn;
2206         map->gfn = gfn;
2207
2208         return 0;
2209 }
2210
2211 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2212                 struct gfn_to_pfn_cache *cache, bool atomic)
2213 {
2214         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2215                         cache, atomic);
2216 }
2217 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2218
2219 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2220 {
2221         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2222                 NULL, false);
2223 }
2224 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2225
2226 static void __kvm_unmap_gfn(struct kvm *kvm,
2227                         struct kvm_memory_slot *memslot,
2228                         struct kvm_host_map *map,
2229                         struct gfn_to_pfn_cache *cache,
2230                         bool dirty, bool atomic)
2231 {
2232         if (!map)
2233                 return;
2234
2235         if (!map->hva)
2236                 return;
2237
2238         if (map->page != KVM_UNMAPPED_PAGE) {
2239                 if (atomic)
2240                         kunmap_atomic(map->hva);
2241                 else
2242                         kunmap(map->page);
2243         }
2244 #ifdef CONFIG_HAS_IOMEM
2245         else if (!atomic)
2246                 memunmap(map->hva);
2247         else
2248                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2249 #endif
2250
2251         if (dirty)
2252                 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2253
2254         if (cache)
2255                 cache->dirty |= dirty;
2256         else
2257                 kvm_release_pfn(map->pfn, dirty, NULL);
2258
2259         map->hva = NULL;
2260         map->page = NULL;
2261 }
2262
2263 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2264                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2265 {
2266         __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2267                         cache, dirty, atomic);
2268         return 0;
2269 }
2270 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2271
2272 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2273 {
2274         __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2275                         map, NULL, dirty, false);
2276 }
2277 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2278
2279 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2280 {
2281         kvm_pfn_t pfn;
2282
2283         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2284
2285         return kvm_pfn_to_page(pfn);
2286 }
2287 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2288
2289 void kvm_release_page_clean(struct page *page)
2290 {
2291         WARN_ON(is_error_page(page));
2292
2293         kvm_release_pfn_clean(page_to_pfn(page));
2294 }
2295 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2296
2297 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2298 {
2299         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2300                 put_page(pfn_to_page(pfn));
2301 }
2302 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2303
2304 void kvm_release_page_dirty(struct page *page)
2305 {
2306         WARN_ON(is_error_page(page));
2307
2308         kvm_release_pfn_dirty(page_to_pfn(page));
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2311
2312 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2313 {
2314         kvm_set_pfn_dirty(pfn);
2315         kvm_release_pfn_clean(pfn);
2316 }
2317 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2318
2319 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2320 {
2321         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2322                 SetPageDirty(pfn_to_page(pfn));
2323 }
2324 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2325
2326 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2327 {
2328         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2329                 mark_page_accessed(pfn_to_page(pfn));
2330 }
2331 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2332
2333 void kvm_get_pfn(kvm_pfn_t pfn)
2334 {
2335         if (!kvm_is_reserved_pfn(pfn))
2336                 get_page(pfn_to_page(pfn));
2337 }
2338 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2339
2340 static int next_segment(unsigned long len, int offset)
2341 {
2342         if (len > PAGE_SIZE - offset)
2343                 return PAGE_SIZE - offset;
2344         else
2345                 return len;
2346 }
2347
2348 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2349                                  void *data, int offset, int len)
2350 {
2351         int r;
2352         unsigned long addr;
2353
2354         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2355         if (kvm_is_error_hva(addr))
2356                 return -EFAULT;
2357         r = __copy_from_user(data, (void __user *)addr + offset, len);
2358         if (r)
2359                 return -EFAULT;
2360         return 0;
2361 }
2362
2363 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2364                         int len)
2365 {
2366         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2367
2368         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2369 }
2370 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2371
2372 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2373                              int offset, int len)
2374 {
2375         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2376
2377         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2378 }
2379 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2380
2381 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2382 {
2383         gfn_t gfn = gpa >> PAGE_SHIFT;
2384         int seg;
2385         int offset = offset_in_page(gpa);
2386         int ret;
2387
2388         while ((seg = next_segment(len, offset)) != 0) {
2389                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2390                 if (ret < 0)
2391                         return ret;
2392                 offset = 0;
2393                 len -= seg;
2394                 data += seg;
2395                 ++gfn;
2396         }
2397         return 0;
2398 }
2399 EXPORT_SYMBOL_GPL(kvm_read_guest);
2400
2401 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2402 {
2403         gfn_t gfn = gpa >> PAGE_SHIFT;
2404         int seg;
2405         int offset = offset_in_page(gpa);
2406         int ret;
2407
2408         while ((seg = next_segment(len, offset)) != 0) {
2409                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2410                 if (ret < 0)
2411                         return ret;
2412                 offset = 0;
2413                 len -= seg;
2414                 data += seg;
2415                 ++gfn;
2416         }
2417         return 0;
2418 }
2419 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2420
2421 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2422                                    void *data, int offset, unsigned long len)
2423 {
2424         int r;
2425         unsigned long addr;
2426
2427         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2428         if (kvm_is_error_hva(addr))
2429                 return -EFAULT;
2430         pagefault_disable();
2431         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2432         pagefault_enable();
2433         if (r)
2434                 return -EFAULT;
2435         return 0;
2436 }
2437
2438 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2439                                void *data, unsigned long len)
2440 {
2441         gfn_t gfn = gpa >> PAGE_SHIFT;
2442         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2443         int offset = offset_in_page(gpa);
2444
2445         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2446 }
2447 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2448
2449 static int __kvm_write_guest_page(struct kvm *kvm,
2450                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2451                                   const void *data, int offset, int len)
2452 {
2453         int r;
2454         unsigned long addr;
2455
2456         addr = gfn_to_hva_memslot(memslot, gfn);
2457         if (kvm_is_error_hva(addr))
2458                 return -EFAULT;
2459         r = __copy_to_user((void __user *)addr + offset, data, len);
2460         if (r)
2461                 return -EFAULT;
2462         mark_page_dirty_in_slot(kvm, memslot, gfn);
2463         return 0;
2464 }
2465
2466 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2467                          const void *data, int offset, int len)
2468 {
2469         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2470
2471         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2472 }
2473 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2474
2475 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2476                               const void *data, int offset, int len)
2477 {
2478         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2479
2480         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2481 }
2482 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2483
2484 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2485                     unsigned long len)
2486 {
2487         gfn_t gfn = gpa >> PAGE_SHIFT;
2488         int seg;
2489         int offset = offset_in_page(gpa);
2490         int ret;
2491
2492         while ((seg = next_segment(len, offset)) != 0) {
2493                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2494                 if (ret < 0)
2495                         return ret;
2496                 offset = 0;
2497                 len -= seg;
2498                 data += seg;
2499                 ++gfn;
2500         }
2501         return 0;
2502 }
2503 EXPORT_SYMBOL_GPL(kvm_write_guest);
2504
2505 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2506                          unsigned long len)
2507 {
2508         gfn_t gfn = gpa >> PAGE_SHIFT;
2509         int seg;
2510         int offset = offset_in_page(gpa);
2511         int ret;
2512
2513         while ((seg = next_segment(len, offset)) != 0) {
2514                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2515                 if (ret < 0)
2516                         return ret;
2517                 offset = 0;
2518                 len -= seg;
2519                 data += seg;
2520                 ++gfn;
2521         }
2522         return 0;
2523 }
2524 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2525
2526 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2527                                        struct gfn_to_hva_cache *ghc,
2528                                        gpa_t gpa, unsigned long len)
2529 {
2530         int offset = offset_in_page(gpa);
2531         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2532         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2533         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2534         gfn_t nr_pages_avail;
2535
2536         /* Update ghc->generation before performing any error checks. */
2537         ghc->generation = slots->generation;
2538
2539         if (start_gfn > end_gfn) {
2540                 ghc->hva = KVM_HVA_ERR_BAD;
2541                 return -EINVAL;
2542         }
2543
2544         /*
2545          * If the requested region crosses two memslots, we still
2546          * verify that the entire region is valid here.
2547          */
2548         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2549                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2550                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2551                                            &nr_pages_avail);
2552                 if (kvm_is_error_hva(ghc->hva))
2553                         return -EFAULT;
2554         }
2555
2556         /* Use the slow path for cross page reads and writes. */
2557         if (nr_pages_needed == 1)
2558                 ghc->hva += offset;
2559         else
2560                 ghc->memslot = NULL;
2561
2562         ghc->gpa = gpa;
2563         ghc->len = len;
2564         return 0;
2565 }
2566
2567 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2568                               gpa_t gpa, unsigned long len)
2569 {
2570         struct kvm_memslots *slots = kvm_memslots(kvm);
2571         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2572 }
2573 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2574
2575 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2576                                   void *data, unsigned int offset,
2577                                   unsigned long len)
2578 {
2579         struct kvm_memslots *slots = kvm_memslots(kvm);
2580         int r;
2581         gpa_t gpa = ghc->gpa + offset;
2582
2583         BUG_ON(len + offset > ghc->len);
2584
2585         if (slots->generation != ghc->generation) {
2586                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2587                         return -EFAULT;
2588         }
2589
2590         if (kvm_is_error_hva(ghc->hva))
2591                 return -EFAULT;
2592
2593         if (unlikely(!ghc->memslot))
2594                 return kvm_write_guest(kvm, gpa, data, len);
2595
2596         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2597         if (r)
2598                 return -EFAULT;
2599         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2600
2601         return 0;
2602 }
2603 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2604
2605 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2606                            void *data, unsigned long len)
2607 {
2608         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2609 }
2610 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2611
2612 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2613                                  void *data, unsigned int offset,
2614                                  unsigned long len)
2615 {
2616         struct kvm_memslots *slots = kvm_memslots(kvm);
2617         int r;
2618         gpa_t gpa = ghc->gpa + offset;
2619
2620         BUG_ON(len + offset > ghc->len);
2621
2622         if (slots->generation != ghc->generation) {
2623                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2624                         return -EFAULT;
2625         }
2626
2627         if (kvm_is_error_hva(ghc->hva))
2628                 return -EFAULT;
2629
2630         if (unlikely(!ghc->memslot))
2631                 return kvm_read_guest(kvm, gpa, data, len);
2632
2633         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2634         if (r)
2635                 return -EFAULT;
2636
2637         return 0;
2638 }
2639 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2640
2641 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2642                           void *data, unsigned long len)
2643 {
2644         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2645 }
2646 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2647
2648 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2649 {
2650         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2651         gfn_t gfn = gpa >> PAGE_SHIFT;
2652         int seg;
2653         int offset = offset_in_page(gpa);
2654         int ret;
2655
2656         while ((seg = next_segment(len, offset)) != 0) {
2657                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2658                 if (ret < 0)
2659                         return ret;
2660                 offset = 0;
2661                 len -= seg;
2662                 ++gfn;
2663         }
2664         return 0;
2665 }
2666 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2667
2668 void mark_page_dirty_in_slot(struct kvm *kvm,
2669                              struct kvm_memory_slot *memslot,
2670                              gfn_t gfn)
2671 {
2672         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2673                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2674                 u32 slot = (memslot->as_id << 16) | memslot->id;
2675
2676                 if (kvm->dirty_ring_size)
2677                         kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2678                                             slot, rel_gfn);
2679                 else
2680                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
2681         }
2682 }
2683 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2684
2685 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2686 {
2687         struct kvm_memory_slot *memslot;
2688
2689         memslot = gfn_to_memslot(kvm, gfn);
2690         mark_page_dirty_in_slot(kvm, memslot, gfn);
2691 }
2692 EXPORT_SYMBOL_GPL(mark_page_dirty);
2693
2694 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2695 {
2696         struct kvm_memory_slot *memslot;
2697
2698         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2699         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2700 }
2701 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2702
2703 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2704 {
2705         if (!vcpu->sigset_active)
2706                 return;
2707
2708         /*
2709          * This does a lockless modification of ->real_blocked, which is fine
2710          * because, only current can change ->real_blocked and all readers of
2711          * ->real_blocked don't care as long ->real_blocked is always a subset
2712          * of ->blocked.
2713          */
2714         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2715 }
2716
2717 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2718 {
2719         if (!vcpu->sigset_active)
2720                 return;
2721
2722         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2723         sigemptyset(&current->real_blocked);
2724 }
2725
2726 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2727 {
2728         unsigned int old, val, grow, grow_start;
2729
2730         old = val = vcpu->halt_poll_ns;
2731         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2732         grow = READ_ONCE(halt_poll_ns_grow);
2733         if (!grow)
2734                 goto out;
2735
2736         val *= grow;
2737         if (val < grow_start)
2738                 val = grow_start;
2739
2740         if (val > halt_poll_ns)
2741                 val = halt_poll_ns;
2742
2743         vcpu->halt_poll_ns = val;
2744 out:
2745         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2746 }
2747
2748 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2749 {
2750         unsigned int old, val, shrink;
2751
2752         old = val = vcpu->halt_poll_ns;
2753         shrink = READ_ONCE(halt_poll_ns_shrink);
2754         if (shrink == 0)
2755                 val = 0;
2756         else
2757                 val /= shrink;
2758
2759         vcpu->halt_poll_ns = val;
2760         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2761 }
2762
2763 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2764 {
2765         int ret = -EINTR;
2766         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2767
2768         if (kvm_arch_vcpu_runnable(vcpu)) {
2769                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2770                 goto out;
2771         }
2772         if (kvm_cpu_has_pending_timer(vcpu))
2773                 goto out;
2774         if (signal_pending(current))
2775                 goto out;
2776
2777         ret = 0;
2778 out:
2779         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2780         return ret;
2781 }
2782
2783 static inline void
2784 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2785 {
2786         if (waited)
2787                 vcpu->stat.halt_poll_fail_ns += poll_ns;
2788         else
2789                 vcpu->stat.halt_poll_success_ns += poll_ns;
2790 }
2791
2792 /*
2793  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2794  */
2795 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2796 {
2797         ktime_t start, cur, poll_end;
2798         bool waited = false;
2799         u64 block_ns;
2800
2801         kvm_arch_vcpu_blocking(vcpu);
2802
2803         start = cur = poll_end = ktime_get();
2804         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2805                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2806
2807                 ++vcpu->stat.halt_attempted_poll;
2808                 do {
2809                         /*
2810                          * This sets KVM_REQ_UNHALT if an interrupt
2811                          * arrives.
2812                          */
2813                         if (kvm_vcpu_check_block(vcpu) < 0) {
2814                                 ++vcpu->stat.halt_successful_poll;
2815                                 if (!vcpu_valid_wakeup(vcpu))
2816                                         ++vcpu->stat.halt_poll_invalid;
2817                                 goto out;
2818                         }
2819                         poll_end = cur = ktime_get();
2820                 } while (single_task_running() && ktime_before(cur, stop));
2821         }
2822
2823         prepare_to_rcuwait(&vcpu->wait);
2824         for (;;) {
2825                 set_current_state(TASK_INTERRUPTIBLE);
2826
2827                 if (kvm_vcpu_check_block(vcpu) < 0)
2828                         break;
2829
2830                 waited = true;
2831                 schedule();
2832         }
2833         finish_rcuwait(&vcpu->wait);
2834         cur = ktime_get();
2835 out:
2836         kvm_arch_vcpu_unblocking(vcpu);
2837         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2838
2839         update_halt_poll_stats(
2840                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2841
2842         if (!kvm_arch_no_poll(vcpu)) {
2843                 if (!vcpu_valid_wakeup(vcpu)) {
2844                         shrink_halt_poll_ns(vcpu);
2845                 } else if (vcpu->kvm->max_halt_poll_ns) {
2846                         if (block_ns <= vcpu->halt_poll_ns)
2847                                 ;
2848                         /* we had a long block, shrink polling */
2849                         else if (vcpu->halt_poll_ns &&
2850                                         block_ns > vcpu->kvm->max_halt_poll_ns)
2851                                 shrink_halt_poll_ns(vcpu);
2852                         /* we had a short halt and our poll time is too small */
2853                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2854                                         block_ns < vcpu->kvm->max_halt_poll_ns)
2855                                 grow_halt_poll_ns(vcpu);
2856                 } else {
2857                         vcpu->halt_poll_ns = 0;
2858                 }
2859         }
2860
2861         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2862         kvm_arch_vcpu_block_finish(vcpu);
2863 }
2864 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2865
2866 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2867 {
2868         struct rcuwait *waitp;
2869
2870         waitp = kvm_arch_vcpu_get_wait(vcpu);
2871         if (rcuwait_wake_up(waitp)) {
2872                 WRITE_ONCE(vcpu->ready, true);
2873                 ++vcpu->stat.halt_wakeup;
2874                 return true;
2875         }
2876
2877         return false;
2878 }
2879 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2880
2881 #ifndef CONFIG_S390
2882 /*
2883  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2884  */
2885 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2886 {
2887         int me;
2888         int cpu = vcpu->cpu;
2889
2890         if (kvm_vcpu_wake_up(vcpu))
2891                 return;
2892
2893         me = get_cpu();
2894         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2895                 if (kvm_arch_vcpu_should_kick(vcpu))
2896                         smp_send_reschedule(cpu);
2897         put_cpu();
2898 }
2899 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2900 #endif /* !CONFIG_S390 */
2901
2902 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2903 {
2904         struct pid *pid;
2905         struct task_struct *task = NULL;
2906         int ret = 0;
2907
2908         rcu_read_lock();
2909         pid = rcu_dereference(target->pid);
2910         if (pid)
2911                 task = get_pid_task(pid, PIDTYPE_PID);
2912         rcu_read_unlock();
2913         if (!task)
2914                 return ret;
2915         ret = yield_to(task, 1);
2916         put_task_struct(task);
2917
2918         return ret;
2919 }
2920 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2921
2922 /*
2923  * Helper that checks whether a VCPU is eligible for directed yield.
2924  * Most eligible candidate to yield is decided by following heuristics:
2925  *
2926  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2927  *  (preempted lock holder), indicated by @in_spin_loop.
2928  *  Set at the beginning and cleared at the end of interception/PLE handler.
2929  *
2930  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2931  *  chance last time (mostly it has become eligible now since we have probably
2932  *  yielded to lockholder in last iteration. This is done by toggling
2933  *  @dy_eligible each time a VCPU checked for eligibility.)
2934  *
2935  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2936  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2937  *  burning. Giving priority for a potential lock-holder increases lock
2938  *  progress.
2939  *
2940  *  Since algorithm is based on heuristics, accessing another VCPU data without
2941  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2942  *  and continue with next VCPU and so on.
2943  */
2944 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2945 {
2946 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2947         bool eligible;
2948
2949         eligible = !vcpu->spin_loop.in_spin_loop ||
2950                     vcpu->spin_loop.dy_eligible;
2951
2952         if (vcpu->spin_loop.in_spin_loop)
2953                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2954
2955         return eligible;
2956 #else
2957         return true;
2958 #endif
2959 }
2960
2961 /*
2962  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2963  * a vcpu_load/vcpu_put pair.  However, for most architectures
2964  * kvm_arch_vcpu_runnable does not require vcpu_load.
2965  */
2966 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2967 {
2968         return kvm_arch_vcpu_runnable(vcpu);
2969 }
2970
2971 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2972 {
2973         if (kvm_arch_dy_runnable(vcpu))
2974                 return true;
2975
2976 #ifdef CONFIG_KVM_ASYNC_PF
2977         if (!list_empty_careful(&vcpu->async_pf.done))
2978                 return true;
2979 #endif
2980
2981         return false;
2982 }
2983
2984 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2985 {
2986         struct kvm *kvm = me->kvm;
2987         struct kvm_vcpu *vcpu;
2988         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2989         int yielded = 0;
2990         int try = 3;
2991         int pass;
2992         int i;
2993
2994         kvm_vcpu_set_in_spin_loop(me, true);
2995         /*
2996          * We boost the priority of a VCPU that is runnable but not
2997          * currently running, because it got preempted by something
2998          * else and called schedule in __vcpu_run.  Hopefully that
2999          * VCPU is holding the lock that we need and will release it.
3000          * We approximate round-robin by starting at the last boosted VCPU.
3001          */
3002         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3003                 kvm_for_each_vcpu(i, vcpu, kvm) {
3004                         if (!pass && i <= last_boosted_vcpu) {
3005                                 i = last_boosted_vcpu;
3006                                 continue;
3007                         } else if (pass && i > last_boosted_vcpu)
3008                                 break;
3009                         if (!READ_ONCE(vcpu->ready))
3010                                 continue;
3011                         if (vcpu == me)
3012                                 continue;
3013                         if (rcuwait_active(&vcpu->wait) &&
3014                             !vcpu_dy_runnable(vcpu))
3015                                 continue;
3016                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3017                                 !kvm_arch_vcpu_in_kernel(vcpu))
3018                                 continue;
3019                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3020                                 continue;
3021
3022                         yielded = kvm_vcpu_yield_to(vcpu);
3023                         if (yielded > 0) {
3024                                 kvm->last_boosted_vcpu = i;
3025                                 break;
3026                         } else if (yielded < 0) {
3027                                 try--;
3028                                 if (!try)
3029                                         break;
3030                         }
3031                 }
3032         }
3033         kvm_vcpu_set_in_spin_loop(me, false);
3034
3035         /* Ensure vcpu is not eligible during next spinloop */
3036         kvm_vcpu_set_dy_eligible(me, false);
3037 }
3038 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3039
3040 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3041 {
3042 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3043         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3044             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3045              kvm->dirty_ring_size / PAGE_SIZE);
3046 #else
3047         return false;
3048 #endif
3049 }
3050
3051 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3052 {
3053         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3054         struct page *page;
3055
3056         if (vmf->pgoff == 0)
3057                 page = virt_to_page(vcpu->run);
3058 #ifdef CONFIG_X86
3059         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3060                 page = virt_to_page(vcpu->arch.pio_data);
3061 #endif
3062 #ifdef CONFIG_KVM_MMIO
3063         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3064                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3065 #endif
3066         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3067                 page = kvm_dirty_ring_get_page(
3068                     &vcpu->dirty_ring,
3069                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3070         else
3071                 return kvm_arch_vcpu_fault(vcpu, vmf);
3072         get_page(page);
3073         vmf->page = page;
3074         return 0;
3075 }
3076
3077 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3078         .fault = kvm_vcpu_fault,
3079 };
3080
3081 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3082 {
3083         struct kvm_vcpu *vcpu = file->private_data;
3084         unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3085
3086         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3087              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3088             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3089                 return -EINVAL;
3090
3091         vma->vm_ops = &kvm_vcpu_vm_ops;
3092         return 0;
3093 }
3094
3095 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3096 {
3097         struct kvm_vcpu *vcpu = filp->private_data;
3098
3099         kvm_put_kvm(vcpu->kvm);
3100         return 0;
3101 }
3102
3103 static struct file_operations kvm_vcpu_fops = {
3104         .release        = kvm_vcpu_release,
3105         .unlocked_ioctl = kvm_vcpu_ioctl,
3106         .mmap           = kvm_vcpu_mmap,
3107         .llseek         = noop_llseek,
3108         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3109 };
3110
3111 /*
3112  * Allocates an inode for the vcpu.
3113  */
3114 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3115 {
3116         char name[8 + 1 + ITOA_MAX_LEN + 1];
3117
3118         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3119         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3120 }
3121
3122 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3123 {
3124 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3125         struct dentry *debugfs_dentry;
3126         char dir_name[ITOA_MAX_LEN * 2];
3127
3128         if (!debugfs_initialized())
3129                 return;
3130
3131         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3132         debugfs_dentry = debugfs_create_dir(dir_name,
3133                                             vcpu->kvm->debugfs_dentry);
3134
3135         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3136 #endif
3137 }
3138
3139 /*
3140  * Creates some virtual cpus.  Good luck creating more than one.
3141  */
3142 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3143 {
3144         int r;
3145         struct kvm_vcpu *vcpu;
3146         struct page *page;
3147
3148         if (id >= KVM_MAX_VCPU_ID)
3149                 return -EINVAL;
3150
3151         mutex_lock(&kvm->lock);
3152         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3153                 mutex_unlock(&kvm->lock);
3154                 return -EINVAL;
3155         }
3156
3157         kvm->created_vcpus++;
3158         mutex_unlock(&kvm->lock);
3159
3160         r = kvm_arch_vcpu_precreate(kvm, id);
3161         if (r)
3162                 goto vcpu_decrement;
3163
3164         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3165         if (!vcpu) {
3166                 r = -ENOMEM;
3167                 goto vcpu_decrement;
3168         }
3169
3170         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3171         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3172         if (!page) {
3173                 r = -ENOMEM;
3174                 goto vcpu_free;
3175         }
3176         vcpu->run = page_address(page);
3177
3178         kvm_vcpu_init(vcpu, kvm, id);
3179
3180         r = kvm_arch_vcpu_create(vcpu);
3181         if (r)
3182                 goto vcpu_free_run_page;
3183
3184         if (kvm->dirty_ring_size) {
3185                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3186                                          id, kvm->dirty_ring_size);
3187                 if (r)
3188                         goto arch_vcpu_destroy;
3189         }
3190
3191         mutex_lock(&kvm->lock);
3192         if (kvm_get_vcpu_by_id(kvm, id)) {
3193                 r = -EEXIST;
3194                 goto unlock_vcpu_destroy;
3195         }
3196
3197         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3198         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3199
3200         /* Now it's all set up, let userspace reach it */
3201         kvm_get_kvm(kvm);
3202         r = create_vcpu_fd(vcpu);
3203         if (r < 0) {
3204                 kvm_put_kvm_no_destroy(kvm);
3205                 goto unlock_vcpu_destroy;
3206         }
3207
3208         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3209
3210         /*
3211          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3212          * before kvm->online_vcpu's incremented value.
3213          */
3214         smp_wmb();
3215         atomic_inc(&kvm->online_vcpus);
3216
3217         mutex_unlock(&kvm->lock);
3218         kvm_arch_vcpu_postcreate(vcpu);
3219         kvm_create_vcpu_debugfs(vcpu);
3220         return r;
3221
3222 unlock_vcpu_destroy:
3223         mutex_unlock(&kvm->lock);
3224         kvm_dirty_ring_free(&vcpu->dirty_ring);
3225 arch_vcpu_destroy:
3226         kvm_arch_vcpu_destroy(vcpu);
3227 vcpu_free_run_page:
3228         free_page((unsigned long)vcpu->run);
3229 vcpu_free:
3230         kmem_cache_free(kvm_vcpu_cache, vcpu);
3231 vcpu_decrement:
3232         mutex_lock(&kvm->lock);
3233         kvm->created_vcpus--;
3234         mutex_unlock(&kvm->lock);
3235         return r;
3236 }
3237
3238 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3239 {
3240         if (sigset) {
3241                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3242                 vcpu->sigset_active = 1;
3243                 vcpu->sigset = *sigset;
3244         } else
3245                 vcpu->sigset_active = 0;
3246         return 0;
3247 }
3248
3249 static long kvm_vcpu_ioctl(struct file *filp,
3250                            unsigned int ioctl, unsigned long arg)
3251 {
3252         struct kvm_vcpu *vcpu = filp->private_data;
3253         void __user *argp = (void __user *)arg;
3254         int r;
3255         struct kvm_fpu *fpu = NULL;
3256         struct kvm_sregs *kvm_sregs = NULL;
3257
3258         if (vcpu->kvm->mm != current->mm)
3259                 return -EIO;
3260
3261         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3262                 return -EINVAL;
3263
3264         /*
3265          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3266          * execution; mutex_lock() would break them.
3267          */
3268         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3269         if (r != -ENOIOCTLCMD)
3270                 return r;
3271
3272         if (mutex_lock_killable(&vcpu->mutex))
3273                 return -EINTR;
3274         switch (ioctl) {
3275         case KVM_RUN: {
3276                 struct pid *oldpid;
3277                 r = -EINVAL;
3278                 if (arg)
3279                         goto out;
3280                 oldpid = rcu_access_pointer(vcpu->pid);
3281                 if (unlikely(oldpid != task_pid(current))) {
3282                         /* The thread running this VCPU changed. */
3283                         struct pid *newpid;
3284
3285                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3286                         if (r)
3287                                 break;
3288
3289                         newpid = get_task_pid(current, PIDTYPE_PID);
3290                         rcu_assign_pointer(vcpu->pid, newpid);
3291                         if (oldpid)
3292                                 synchronize_rcu();
3293                         put_pid(oldpid);
3294                 }
3295                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3296                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3297                 break;
3298         }
3299         case KVM_GET_REGS: {
3300                 struct kvm_regs *kvm_regs;
3301
3302                 r = -ENOMEM;
3303                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3304                 if (!kvm_regs)
3305                         goto out;
3306                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3307                 if (r)
3308                         goto out_free1;
3309                 r = -EFAULT;
3310                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3311                         goto out_free1;
3312                 r = 0;
3313 out_free1:
3314                 kfree(kvm_regs);
3315                 break;
3316         }
3317         case KVM_SET_REGS: {
3318                 struct kvm_regs *kvm_regs;
3319
3320                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3321                 if (IS_ERR(kvm_regs)) {
3322                         r = PTR_ERR(kvm_regs);
3323                         goto out;
3324                 }
3325                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3326                 kfree(kvm_regs);
3327                 break;
3328         }
3329         case KVM_GET_SREGS: {
3330                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3331                                     GFP_KERNEL_ACCOUNT);
3332                 r = -ENOMEM;
3333                 if (!kvm_sregs)
3334                         goto out;
3335                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3336                 if (r)
3337                         goto out;
3338                 r = -EFAULT;
3339                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3340                         goto out;
3341                 r = 0;
3342                 break;
3343         }
3344         case KVM_SET_SREGS: {
3345                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3346                 if (IS_ERR(kvm_sregs)) {
3347                         r = PTR_ERR(kvm_sregs);
3348                         kvm_sregs = NULL;
3349                         goto out;
3350                 }
3351                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3352                 break;
3353         }
3354         case KVM_GET_MP_STATE: {
3355                 struct kvm_mp_state mp_state;
3356
3357                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3358                 if (r)
3359                         goto out;
3360                 r = -EFAULT;
3361                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3362                         goto out;
3363                 r = 0;
3364                 break;
3365         }
3366         case KVM_SET_MP_STATE: {
3367                 struct kvm_mp_state mp_state;
3368
3369                 r = -EFAULT;
3370                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3371                         goto out;
3372                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3373                 break;
3374         }
3375         case KVM_TRANSLATE: {
3376                 struct kvm_translation tr;
3377
3378                 r = -EFAULT;
3379                 if (copy_from_user(&tr, argp, sizeof(tr)))
3380                         goto out;
3381                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3382                 if (r)
3383                         goto out;
3384                 r = -EFAULT;
3385                 if (copy_to_user(argp, &tr, sizeof(tr)))
3386                         goto out;
3387                 r = 0;
3388                 break;
3389         }
3390         case KVM_SET_GUEST_DEBUG: {
3391                 struct kvm_guest_debug dbg;
3392
3393                 r = -EFAULT;
3394                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3395                         goto out;
3396                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3397                 break;
3398         }
3399         case KVM_SET_SIGNAL_MASK: {
3400                 struct kvm_signal_mask __user *sigmask_arg = argp;
3401                 struct kvm_signal_mask kvm_sigmask;
3402                 sigset_t sigset, *p;
3403
3404                 p = NULL;
3405                 if (argp) {
3406                         r = -EFAULT;
3407                         if (copy_from_user(&kvm_sigmask, argp,
3408                                            sizeof(kvm_sigmask)))
3409                                 goto out;
3410                         r = -EINVAL;
3411                         if (kvm_sigmask.len != sizeof(sigset))
3412                                 goto out;
3413                         r = -EFAULT;
3414                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3415                                            sizeof(sigset)))
3416                                 goto out;
3417                         p = &sigset;
3418                 }
3419                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3420                 break;
3421         }
3422         case KVM_GET_FPU: {
3423                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3424                 r = -ENOMEM;
3425                 if (!fpu)
3426                         goto out;
3427                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3428                 if (r)
3429                         goto out;
3430                 r = -EFAULT;
3431                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3432                         goto out;
3433                 r = 0;
3434                 break;
3435         }
3436         case KVM_SET_FPU: {
3437                 fpu = memdup_user(argp, sizeof(*fpu));
3438                 if (IS_ERR(fpu)) {
3439                         r = PTR_ERR(fpu);
3440                         fpu = NULL;
3441                         goto out;
3442                 }
3443                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3444                 break;
3445         }
3446         default:
3447                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3448         }
3449 out:
3450         mutex_unlock(&vcpu->mutex);
3451         kfree(fpu);
3452         kfree(kvm_sregs);
3453         return r;
3454 }
3455
3456 #ifdef CONFIG_KVM_COMPAT
3457 static long kvm_vcpu_compat_ioctl(struct file *filp,
3458                                   unsigned int ioctl, unsigned long arg)
3459 {
3460         struct kvm_vcpu *vcpu = filp->private_data;
3461         void __user *argp = compat_ptr(arg);
3462         int r;
3463
3464         if (vcpu->kvm->mm != current->mm)
3465                 return -EIO;
3466
3467         switch (ioctl) {
3468         case KVM_SET_SIGNAL_MASK: {
3469                 struct kvm_signal_mask __user *sigmask_arg = argp;
3470                 struct kvm_signal_mask kvm_sigmask;
3471                 sigset_t sigset;
3472
3473                 if (argp) {
3474                         r = -EFAULT;
3475                         if (copy_from_user(&kvm_sigmask, argp,
3476                                            sizeof(kvm_sigmask)))
3477                                 goto out;
3478                         r = -EINVAL;
3479                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3480                                 goto out;
3481                         r = -EFAULT;
3482                         if (get_compat_sigset(&sigset,
3483                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3484                                 goto out;
3485                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3486                 } else
3487                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3488                 break;
3489         }
3490         default:
3491                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3492         }
3493
3494 out:
3495         return r;
3496 }
3497 #endif
3498
3499 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3500 {
3501         struct kvm_device *dev = filp->private_data;
3502
3503         if (dev->ops->mmap)
3504                 return dev->ops->mmap(dev, vma);
3505
3506         return -ENODEV;
3507 }
3508
3509 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3510                                  int (*accessor)(struct kvm_device *dev,
3511                                                  struct kvm_device_attr *attr),
3512                                  unsigned long arg)
3513 {
3514         struct kvm_device_attr attr;
3515
3516         if (!accessor)
3517                 return -EPERM;
3518
3519         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3520                 return -EFAULT;
3521
3522         return accessor(dev, &attr);
3523 }
3524
3525 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3526                              unsigned long arg)
3527 {
3528         struct kvm_device *dev = filp->private_data;
3529
3530         if (dev->kvm->mm != current->mm)
3531                 return -EIO;
3532
3533         switch (ioctl) {
3534         case KVM_SET_DEVICE_ATTR:
3535                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3536         case KVM_GET_DEVICE_ATTR:
3537                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3538         case KVM_HAS_DEVICE_ATTR:
3539                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3540         default:
3541                 if (dev->ops->ioctl)
3542                         return dev->ops->ioctl(dev, ioctl, arg);
3543
3544                 return -ENOTTY;
3545         }
3546 }
3547
3548 static int kvm_device_release(struct inode *inode, struct file *filp)
3549 {
3550         struct kvm_device *dev = filp->private_data;
3551         struct kvm *kvm = dev->kvm;
3552
3553         if (dev->ops->release) {
3554                 mutex_lock(&kvm->lock);
3555                 list_del(&dev->vm_node);
3556                 dev->ops->release(dev);
3557                 mutex_unlock(&kvm->lock);
3558         }
3559
3560         kvm_put_kvm(kvm);
3561         return 0;
3562 }
3563
3564 static const struct file_operations kvm_device_fops = {
3565         .unlocked_ioctl = kvm_device_ioctl,
3566         .release = kvm_device_release,
3567         KVM_COMPAT(kvm_device_ioctl),
3568         .mmap = kvm_device_mmap,
3569 };
3570
3571 struct kvm_device *kvm_device_from_filp(struct file *filp)
3572 {
3573         if (filp->f_op != &kvm_device_fops)
3574                 return NULL;
3575
3576         return filp->private_data;
3577 }
3578
3579 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3580 #ifdef CONFIG_KVM_MPIC
3581         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3582         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3583 #endif
3584 };
3585
3586 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3587 {
3588         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3589                 return -ENOSPC;
3590
3591         if (kvm_device_ops_table[type] != NULL)
3592                 return -EEXIST;
3593
3594         kvm_device_ops_table[type] = ops;
3595         return 0;
3596 }
3597
3598 void kvm_unregister_device_ops(u32 type)
3599 {
3600         if (kvm_device_ops_table[type] != NULL)
3601                 kvm_device_ops_table[type] = NULL;
3602 }
3603
3604 static int kvm_ioctl_create_device(struct kvm *kvm,
3605                                    struct kvm_create_device *cd)
3606 {
3607         const struct kvm_device_ops *ops = NULL;
3608         struct kvm_device *dev;
3609         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3610         int type;
3611         int ret;
3612
3613         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3614                 return -ENODEV;
3615
3616         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3617         ops = kvm_device_ops_table[type];
3618         if (ops == NULL)
3619                 return -ENODEV;
3620
3621         if (test)
3622                 return 0;
3623
3624         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3625         if (!dev)
3626                 return -ENOMEM;
3627
3628         dev->ops = ops;
3629         dev->kvm = kvm;
3630
3631         mutex_lock(&kvm->lock);
3632         ret = ops->create(dev, type);
3633         if (ret < 0) {
3634                 mutex_unlock(&kvm->lock);
3635                 kfree(dev);
3636                 return ret;
3637         }
3638         list_add(&dev->vm_node, &kvm->devices);
3639         mutex_unlock(&kvm->lock);
3640
3641         if (ops->init)
3642                 ops->init(dev);
3643
3644         kvm_get_kvm(kvm);
3645         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3646         if (ret < 0) {
3647                 kvm_put_kvm_no_destroy(kvm);
3648                 mutex_lock(&kvm->lock);
3649                 list_del(&dev->vm_node);
3650                 mutex_unlock(&kvm->lock);
3651                 ops->destroy(dev);
3652                 return ret;
3653         }
3654
3655         cd->fd = ret;
3656         return 0;
3657 }
3658
3659 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3660 {
3661         switch (arg) {
3662         case KVM_CAP_USER_MEMORY:
3663         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3664         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3665         case KVM_CAP_INTERNAL_ERROR_DATA:
3666 #ifdef CONFIG_HAVE_KVM_MSI
3667         case KVM_CAP_SIGNAL_MSI:
3668 #endif
3669 #ifdef CONFIG_HAVE_KVM_IRQFD
3670         case KVM_CAP_IRQFD:
3671         case KVM_CAP_IRQFD_RESAMPLE:
3672 #endif
3673         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3674         case KVM_CAP_CHECK_EXTENSION_VM:
3675         case KVM_CAP_ENABLE_CAP_VM:
3676         case KVM_CAP_HALT_POLL:
3677                 return 1;
3678 #ifdef CONFIG_KVM_MMIO
3679         case KVM_CAP_COALESCED_MMIO:
3680                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3681         case KVM_CAP_COALESCED_PIO:
3682                 return 1;
3683 #endif
3684 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3685         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3686                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3687 #endif
3688 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3689         case KVM_CAP_IRQ_ROUTING:
3690                 return KVM_MAX_IRQ_ROUTES;
3691 #endif
3692 #if KVM_ADDRESS_SPACE_NUM > 1
3693         case KVM_CAP_MULTI_ADDRESS_SPACE:
3694                 return KVM_ADDRESS_SPACE_NUM;
3695 #endif
3696         case KVM_CAP_NR_MEMSLOTS:
3697                 return KVM_USER_MEM_SLOTS;
3698         case KVM_CAP_DIRTY_LOG_RING:
3699 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3700                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
3701 #else
3702                 return 0;
3703 #endif
3704         default:
3705                 break;
3706         }
3707         return kvm_vm_ioctl_check_extension(kvm, arg);
3708 }
3709
3710 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
3711 {
3712         int r;
3713
3714         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
3715                 return -EINVAL;
3716
3717         /* the size should be power of 2 */
3718         if (!size || (size & (size - 1)))
3719                 return -EINVAL;
3720
3721         /* Should be bigger to keep the reserved entries, or a page */
3722         if (size < kvm_dirty_ring_get_rsvd_entries() *
3723             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
3724                 return -EINVAL;
3725
3726         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
3727             sizeof(struct kvm_dirty_gfn))
3728                 return -E2BIG;
3729
3730         /* We only allow it to set once */
3731         if (kvm->dirty_ring_size)
3732                 return -EINVAL;
3733
3734         mutex_lock(&kvm->lock);
3735
3736         if (kvm->created_vcpus) {
3737                 /* We don't allow to change this value after vcpu created */
3738                 r = -EINVAL;
3739         } else {
3740                 kvm->dirty_ring_size = size;
3741                 r = 0;
3742         }
3743
3744         mutex_unlock(&kvm->lock);
3745         return r;
3746 }
3747
3748 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
3749 {
3750         int i;
3751         struct kvm_vcpu *vcpu;
3752         int cleared = 0;
3753
3754         if (!kvm->dirty_ring_size)
3755                 return -EINVAL;
3756
3757         mutex_lock(&kvm->slots_lock);
3758
3759         kvm_for_each_vcpu(i, vcpu, kvm)
3760                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
3761
3762         mutex_unlock(&kvm->slots_lock);
3763
3764         if (cleared)
3765                 kvm_flush_remote_tlbs(kvm);
3766
3767         return cleared;
3768 }
3769
3770 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3771                                                   struct kvm_enable_cap *cap)
3772 {
3773         return -EINVAL;
3774 }
3775
3776 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3777                                            struct kvm_enable_cap *cap)
3778 {
3779         switch (cap->cap) {
3780 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3781         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3782                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3783
3784                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3785                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3786
3787                 if (cap->flags || (cap->args[0] & ~allowed_options))
3788                         return -EINVAL;
3789                 kvm->manual_dirty_log_protect = cap->args[0];
3790                 return 0;
3791         }
3792 #endif
3793         case KVM_CAP_HALT_POLL: {
3794                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3795                         return -EINVAL;
3796
3797                 kvm->max_halt_poll_ns = cap->args[0];
3798                 return 0;
3799         }
3800         case KVM_CAP_DIRTY_LOG_RING:
3801                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
3802         default:
3803                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3804         }
3805 }
3806
3807 static long kvm_vm_ioctl(struct file *filp,
3808                            unsigned int ioctl, unsigned long arg)
3809 {
3810         struct kvm *kvm = filp->private_data;
3811         void __user *argp = (void __user *)arg;
3812         int r;
3813
3814         if (kvm->mm != current->mm)
3815                 return -EIO;
3816         switch (ioctl) {
3817         case KVM_CREATE_VCPU:
3818                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3819                 break;
3820         case KVM_ENABLE_CAP: {
3821                 struct kvm_enable_cap cap;
3822
3823                 r = -EFAULT;
3824                 if (copy_from_user(&cap, argp, sizeof(cap)))
3825                         goto out;
3826                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3827                 break;
3828         }
3829         case KVM_SET_USER_MEMORY_REGION: {
3830                 struct kvm_userspace_memory_region kvm_userspace_mem;
3831
3832                 r = -EFAULT;
3833                 if (copy_from_user(&kvm_userspace_mem, argp,
3834                                                 sizeof(kvm_userspace_mem)))
3835                         goto out;
3836
3837                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3838                 break;
3839         }
3840         case KVM_GET_DIRTY_LOG: {
3841                 struct kvm_dirty_log log;
3842
3843                 r = -EFAULT;
3844                 if (copy_from_user(&log, argp, sizeof(log)))
3845                         goto out;
3846                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3847                 break;
3848         }
3849 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3850         case KVM_CLEAR_DIRTY_LOG: {
3851                 struct kvm_clear_dirty_log log;
3852
3853                 r = -EFAULT;
3854                 if (copy_from_user(&log, argp, sizeof(log)))
3855                         goto out;
3856                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3857                 break;
3858         }
3859 #endif
3860 #ifdef CONFIG_KVM_MMIO
3861         case KVM_REGISTER_COALESCED_MMIO: {
3862                 struct kvm_coalesced_mmio_zone zone;
3863
3864                 r = -EFAULT;
3865                 if (copy_from_user(&zone, argp, sizeof(zone)))
3866                         goto out;
3867                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3868                 break;
3869         }
3870         case KVM_UNREGISTER_COALESCED_MMIO: {
3871                 struct kvm_coalesced_mmio_zone zone;
3872
3873                 r = -EFAULT;
3874                 if (copy_from_user(&zone, argp, sizeof(zone)))
3875                         goto out;
3876                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3877                 break;
3878         }
3879 #endif
3880         case KVM_IRQFD: {
3881                 struct kvm_irqfd data;
3882
3883                 r = -EFAULT;
3884                 if (copy_from_user(&data, argp, sizeof(data)))
3885                         goto out;
3886                 r = kvm_irqfd(kvm, &data);
3887                 break;
3888         }
3889         case KVM_IOEVENTFD: {
3890                 struct kvm_ioeventfd data;
3891
3892                 r = -EFAULT;
3893                 if (copy_from_user(&data, argp, sizeof(data)))
3894                         goto out;
3895                 r = kvm_ioeventfd(kvm, &data);
3896                 break;
3897         }
3898 #ifdef CONFIG_HAVE_KVM_MSI
3899         case KVM_SIGNAL_MSI: {
3900                 struct kvm_msi msi;
3901
3902                 r = -EFAULT;
3903                 if (copy_from_user(&msi, argp, sizeof(msi)))
3904                         goto out;
3905                 r = kvm_send_userspace_msi(kvm, &msi);
3906                 break;
3907         }
3908 #endif
3909 #ifdef __KVM_HAVE_IRQ_LINE
3910         case KVM_IRQ_LINE_STATUS:
3911         case KVM_IRQ_LINE: {
3912                 struct kvm_irq_level irq_event;
3913
3914                 r = -EFAULT;
3915                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3916                         goto out;
3917
3918                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3919                                         ioctl == KVM_IRQ_LINE_STATUS);
3920                 if (r)
3921                         goto out;
3922
3923                 r = -EFAULT;
3924                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3925                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3926                                 goto out;
3927                 }
3928
3929                 r = 0;
3930                 break;
3931         }
3932 #endif
3933 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3934         case KVM_SET_GSI_ROUTING: {
3935                 struct kvm_irq_routing routing;
3936                 struct kvm_irq_routing __user *urouting;
3937                 struct kvm_irq_routing_entry *entries = NULL;
3938
3939                 r = -EFAULT;
3940                 if (copy_from_user(&routing, argp, sizeof(routing)))
3941                         goto out;
3942                 r = -EINVAL;
3943                 if (!kvm_arch_can_set_irq_routing(kvm))
3944                         goto out;
3945                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3946                         goto out;
3947                 if (routing.flags)
3948                         goto out;
3949                 if (routing.nr) {
3950                         urouting = argp;
3951                         entries = vmemdup_user(urouting->entries,
3952                                                array_size(sizeof(*entries),
3953                                                           routing.nr));
3954                         if (IS_ERR(entries)) {
3955                                 r = PTR_ERR(entries);
3956                                 goto out;
3957                         }
3958                 }
3959                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3960                                         routing.flags);
3961                 kvfree(entries);
3962                 break;
3963         }
3964 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3965         case KVM_CREATE_DEVICE: {
3966                 struct kvm_create_device cd;
3967
3968                 r = -EFAULT;
3969                 if (copy_from_user(&cd, argp, sizeof(cd)))
3970                         goto out;
3971
3972                 r = kvm_ioctl_create_device(kvm, &cd);
3973                 if (r)
3974                         goto out;
3975
3976                 r = -EFAULT;
3977                 if (copy_to_user(argp, &cd, sizeof(cd)))
3978                         goto out;
3979
3980                 r = 0;
3981                 break;
3982         }
3983         case KVM_CHECK_EXTENSION:
3984                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3985                 break;
3986         case KVM_RESET_DIRTY_RINGS:
3987                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
3988                 break;
3989         default:
3990                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3991         }
3992 out:
3993         return r;
3994 }
3995
3996 #ifdef CONFIG_KVM_COMPAT
3997 struct compat_kvm_dirty_log {
3998         __u32 slot;
3999         __u32 padding1;
4000         union {
4001                 compat_uptr_t dirty_bitmap; /* one bit per page */
4002                 __u64 padding2;
4003         };
4004 };
4005
4006 static long kvm_vm_compat_ioctl(struct file *filp,
4007                            unsigned int ioctl, unsigned long arg)
4008 {
4009         struct kvm *kvm = filp->private_data;
4010         int r;
4011
4012         if (kvm->mm != current->mm)
4013                 return -EIO;
4014         switch (ioctl) {
4015         case KVM_GET_DIRTY_LOG: {
4016                 struct compat_kvm_dirty_log compat_log;
4017                 struct kvm_dirty_log log;
4018
4019                 if (copy_from_user(&compat_log, (void __user *)arg,
4020                                    sizeof(compat_log)))
4021                         return -EFAULT;
4022                 log.slot         = compat_log.slot;
4023                 log.padding1     = compat_log.padding1;
4024                 log.padding2     = compat_log.padding2;
4025                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4026
4027                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4028                 break;
4029         }
4030         default:
4031                 r = kvm_vm_ioctl(filp, ioctl, arg);
4032         }
4033         return r;
4034 }
4035 #endif
4036
4037 static struct file_operations kvm_vm_fops = {
4038         .release        = kvm_vm_release,
4039         .unlocked_ioctl = kvm_vm_ioctl,
4040         .llseek         = noop_llseek,
4041         KVM_COMPAT(kvm_vm_compat_ioctl),
4042 };
4043
4044 static int kvm_dev_ioctl_create_vm(unsigned long type)
4045 {
4046         int r;
4047         struct kvm *kvm;
4048         struct file *file;
4049
4050         kvm = kvm_create_vm(type);
4051         if (IS_ERR(kvm))
4052                 return PTR_ERR(kvm);
4053 #ifdef CONFIG_KVM_MMIO
4054         r = kvm_coalesced_mmio_init(kvm);
4055         if (r < 0)
4056                 goto put_kvm;
4057 #endif
4058         r = get_unused_fd_flags(O_CLOEXEC);
4059         if (r < 0)
4060                 goto put_kvm;
4061
4062         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4063         if (IS_ERR(file)) {
4064                 put_unused_fd(r);
4065                 r = PTR_ERR(file);
4066                 goto put_kvm;
4067         }
4068
4069         /*
4070          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4071          * already set, with ->release() being kvm_vm_release().  In error
4072          * cases it will be called by the final fput(file) and will take
4073          * care of doing kvm_put_kvm(kvm).
4074          */
4075         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4076                 put_unused_fd(r);
4077                 fput(file);
4078                 return -ENOMEM;
4079         }
4080         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4081
4082         fd_install(r, file);
4083         return r;
4084
4085 put_kvm:
4086         kvm_put_kvm(kvm);
4087         return r;
4088 }
4089
4090 static long kvm_dev_ioctl(struct file *filp,
4091                           unsigned int ioctl, unsigned long arg)
4092 {
4093         long r = -EINVAL;
4094
4095         switch (ioctl) {
4096         case KVM_GET_API_VERSION:
4097                 if (arg)
4098                         goto out;
4099                 r = KVM_API_VERSION;
4100                 break;
4101         case KVM_CREATE_VM:
4102                 r = kvm_dev_ioctl_create_vm(arg);
4103                 break;
4104         case KVM_CHECK_EXTENSION:
4105                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4106                 break;
4107         case KVM_GET_VCPU_MMAP_SIZE:
4108                 if (arg)
4109                         goto out;
4110                 r = PAGE_SIZE;     /* struct kvm_run */
4111 #ifdef CONFIG_X86
4112                 r += PAGE_SIZE;    /* pio data page */
4113 #endif
4114 #ifdef CONFIG_KVM_MMIO
4115                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4116 #endif
4117                 break;
4118         case KVM_TRACE_ENABLE:
4119         case KVM_TRACE_PAUSE:
4120         case KVM_TRACE_DISABLE:
4121                 r = -EOPNOTSUPP;
4122                 break;
4123         default:
4124                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4125         }
4126 out:
4127         return r;
4128 }
4129
4130 static struct file_operations kvm_chardev_ops = {
4131         .unlocked_ioctl = kvm_dev_ioctl,
4132         .llseek         = noop_llseek,
4133         KVM_COMPAT(kvm_dev_ioctl),
4134 };
4135
4136 static struct miscdevice kvm_dev = {
4137         KVM_MINOR,
4138         "kvm",
4139         &kvm_chardev_ops,
4140 };
4141
4142 static void hardware_enable_nolock(void *junk)
4143 {
4144         int cpu = raw_smp_processor_id();
4145         int r;
4146
4147         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4148                 return;
4149
4150         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4151
4152         r = kvm_arch_hardware_enable();
4153
4154         if (r) {
4155                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4156                 atomic_inc(&hardware_enable_failed);
4157                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4158         }
4159 }
4160
4161 static int kvm_starting_cpu(unsigned int cpu)
4162 {
4163         raw_spin_lock(&kvm_count_lock);
4164         if (kvm_usage_count)
4165                 hardware_enable_nolock(NULL);
4166         raw_spin_unlock(&kvm_count_lock);
4167         return 0;
4168 }
4169
4170 static void hardware_disable_nolock(void *junk)
4171 {
4172         int cpu = raw_smp_processor_id();
4173
4174         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4175                 return;
4176         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4177         kvm_arch_hardware_disable();
4178 }
4179
4180 static int kvm_dying_cpu(unsigned int cpu)
4181 {
4182         raw_spin_lock(&kvm_count_lock);
4183         if (kvm_usage_count)
4184                 hardware_disable_nolock(NULL);
4185         raw_spin_unlock(&kvm_count_lock);
4186         return 0;
4187 }
4188
4189 static void hardware_disable_all_nolock(void)
4190 {
4191         BUG_ON(!kvm_usage_count);
4192
4193         kvm_usage_count--;
4194         if (!kvm_usage_count)
4195                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4196 }
4197
4198 static void hardware_disable_all(void)
4199 {
4200         raw_spin_lock(&kvm_count_lock);
4201         hardware_disable_all_nolock();
4202         raw_spin_unlock(&kvm_count_lock);
4203 }
4204
4205 static int hardware_enable_all(void)
4206 {
4207         int r = 0;
4208
4209         raw_spin_lock(&kvm_count_lock);
4210
4211         kvm_usage_count++;
4212         if (kvm_usage_count == 1) {
4213                 atomic_set(&hardware_enable_failed, 0);
4214                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4215
4216                 if (atomic_read(&hardware_enable_failed)) {
4217                         hardware_disable_all_nolock();
4218                         r = -EBUSY;
4219                 }
4220         }
4221
4222         raw_spin_unlock(&kvm_count_lock);
4223
4224         return r;
4225 }
4226
4227 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4228                       void *v)
4229 {
4230         /*
4231          * Some (well, at least mine) BIOSes hang on reboot if
4232          * in vmx root mode.
4233          *
4234          * And Intel TXT required VMX off for all cpu when system shutdown.
4235          */
4236         pr_info("kvm: exiting hardware virtualization\n");
4237         kvm_rebooting = true;
4238         on_each_cpu(hardware_disable_nolock, NULL, 1);
4239         return NOTIFY_OK;
4240 }
4241
4242 static struct notifier_block kvm_reboot_notifier = {
4243         .notifier_call = kvm_reboot,
4244         .priority = 0,
4245 };
4246
4247 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4248 {
4249         int i;
4250
4251         for (i = 0; i < bus->dev_count; i++) {
4252                 struct kvm_io_device *pos = bus->range[i].dev;
4253
4254                 kvm_iodevice_destructor(pos);
4255         }
4256         kfree(bus);
4257 }
4258
4259 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4260                                  const struct kvm_io_range *r2)
4261 {
4262         gpa_t addr1 = r1->addr;
4263         gpa_t addr2 = r2->addr;
4264
4265         if (addr1 < addr2)
4266                 return -1;
4267
4268         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4269          * accept any overlapping write.  Any order is acceptable for
4270          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4271          * we process all of them.
4272          */
4273         if (r2->len) {
4274                 addr1 += r1->len;
4275                 addr2 += r2->len;
4276         }
4277
4278         if (addr1 > addr2)
4279                 return 1;
4280
4281         return 0;
4282 }
4283
4284 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4285 {
4286         return kvm_io_bus_cmp(p1, p2);
4287 }
4288
4289 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4290                              gpa_t addr, int len)
4291 {
4292         struct kvm_io_range *range, key;
4293         int off;
4294
4295         key = (struct kvm_io_range) {
4296                 .addr = addr,
4297                 .len = len,
4298         };
4299
4300         range = bsearch(&key, bus->range, bus->dev_count,
4301                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4302         if (range == NULL)
4303                 return -ENOENT;
4304
4305         off = range - bus->range;
4306
4307         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4308                 off--;
4309
4310         return off;
4311 }
4312
4313 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4314                               struct kvm_io_range *range, const void *val)
4315 {
4316         int idx;
4317
4318         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4319         if (idx < 0)
4320                 return -EOPNOTSUPP;
4321
4322         while (idx < bus->dev_count &&
4323                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4324                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4325                                         range->len, val))
4326                         return idx;
4327                 idx++;
4328         }
4329
4330         return -EOPNOTSUPP;
4331 }
4332
4333 /* kvm_io_bus_write - called under kvm->slots_lock */
4334 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4335                      int len, const void *val)
4336 {
4337         struct kvm_io_bus *bus;
4338         struct kvm_io_range range;
4339         int r;
4340
4341         range = (struct kvm_io_range) {
4342                 .addr = addr,
4343                 .len = len,
4344         };
4345
4346         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4347         if (!bus)
4348                 return -ENOMEM;
4349         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4350         return r < 0 ? r : 0;
4351 }
4352 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4353
4354 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4355 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4356                             gpa_t addr, int len, const void *val, long cookie)
4357 {
4358         struct kvm_io_bus *bus;
4359         struct kvm_io_range range;
4360
4361         range = (struct kvm_io_range) {
4362                 .addr = addr,
4363                 .len = len,
4364         };
4365
4366         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4367         if (!bus)
4368                 return -ENOMEM;
4369
4370         /* First try the device referenced by cookie. */
4371         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4372             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4373                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4374                                         val))
4375                         return cookie;
4376
4377         /*
4378          * cookie contained garbage; fall back to search and return the
4379          * correct cookie value.
4380          */
4381         return __kvm_io_bus_write(vcpu, bus, &range, val);
4382 }
4383
4384 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4385                              struct kvm_io_range *range, void *val)
4386 {
4387         int idx;
4388
4389         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4390         if (idx < 0)
4391                 return -EOPNOTSUPP;
4392
4393         while (idx < bus->dev_count &&
4394                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4395                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4396                                        range->len, val))
4397                         return idx;
4398                 idx++;
4399         }
4400
4401         return -EOPNOTSUPP;
4402 }
4403
4404 /* kvm_io_bus_read - called under kvm->slots_lock */
4405 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4406                     int len, void *val)
4407 {
4408         struct kvm_io_bus *bus;
4409         struct kvm_io_range range;
4410         int r;
4411
4412         range = (struct kvm_io_range) {
4413                 .addr = addr,
4414                 .len = len,
4415         };
4416
4417         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4418         if (!bus)
4419                 return -ENOMEM;
4420         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4421         return r < 0 ? r : 0;
4422 }
4423
4424 /* Caller must hold slots_lock. */
4425 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4426                             int len, struct kvm_io_device *dev)
4427 {
4428         int i;
4429         struct kvm_io_bus *new_bus, *bus;
4430         struct kvm_io_range range;
4431
4432         bus = kvm_get_bus(kvm, bus_idx);
4433         if (!bus)
4434                 return -ENOMEM;
4435
4436         /* exclude ioeventfd which is limited by maximum fd */
4437         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4438                 return -ENOSPC;
4439
4440         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4441                           GFP_KERNEL_ACCOUNT);
4442         if (!new_bus)
4443                 return -ENOMEM;
4444
4445         range = (struct kvm_io_range) {
4446                 .addr = addr,
4447                 .len = len,
4448                 .dev = dev,
4449         };
4450
4451         for (i = 0; i < bus->dev_count; i++)
4452                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4453                         break;
4454
4455         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4456         new_bus->dev_count++;
4457         new_bus->range[i] = range;
4458         memcpy(new_bus->range + i + 1, bus->range + i,
4459                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4460         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4461         synchronize_srcu_expedited(&kvm->srcu);
4462         kfree(bus);
4463
4464         return 0;
4465 }
4466
4467 /* Caller must hold slots_lock. */
4468 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4469                                struct kvm_io_device *dev)
4470 {
4471         int i, j;
4472         struct kvm_io_bus *new_bus, *bus;
4473
4474         bus = kvm_get_bus(kvm, bus_idx);
4475         if (!bus)
4476                 return;
4477
4478         for (i = 0; i < bus->dev_count; i++)
4479                 if (bus->range[i].dev == dev) {
4480                         break;
4481                 }
4482
4483         if (i == bus->dev_count)
4484                 return;
4485
4486         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4487                           GFP_KERNEL_ACCOUNT);
4488         if (new_bus) {
4489                 memcpy(new_bus, bus, struct_size(bus, range, i));
4490                 new_bus->dev_count--;
4491                 memcpy(new_bus->range + i, bus->range + i + 1,
4492                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
4493         } else {
4494                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4495                 for (j = 0; j < bus->dev_count; j++) {
4496                         if (j == i)
4497                                 continue;
4498                         kvm_iodevice_destructor(bus->range[j].dev);
4499                 }
4500         }
4501
4502         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4503         synchronize_srcu_expedited(&kvm->srcu);
4504         kfree(bus);
4505         return;
4506 }
4507
4508 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4509                                          gpa_t addr)
4510 {
4511         struct kvm_io_bus *bus;
4512         int dev_idx, srcu_idx;
4513         struct kvm_io_device *iodev = NULL;
4514
4515         srcu_idx = srcu_read_lock(&kvm->srcu);
4516
4517         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4518         if (!bus)
4519                 goto out_unlock;
4520
4521         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4522         if (dev_idx < 0)
4523                 goto out_unlock;
4524
4525         iodev = bus->range[dev_idx].dev;
4526
4527 out_unlock:
4528         srcu_read_unlock(&kvm->srcu, srcu_idx);
4529
4530         return iodev;
4531 }
4532 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4533
4534 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4535                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4536                            const char *fmt)
4537 {
4538         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4539                                           inode->i_private;
4540
4541         /* The debugfs files are a reference to the kvm struct which
4542          * is still valid when kvm_destroy_vm is called.
4543          * To avoid the race between open and the removal of the debugfs
4544          * directory we test against the users count.
4545          */
4546         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4547                 return -ENOENT;
4548
4549         if (simple_attr_open(inode, file, get,
4550                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4551                     ? set : NULL,
4552                     fmt)) {
4553                 kvm_put_kvm(stat_data->kvm);
4554                 return -ENOMEM;
4555         }
4556
4557         return 0;
4558 }
4559
4560 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4561 {
4562         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4563                                           inode->i_private;
4564
4565         simple_attr_release(inode, file);
4566         kvm_put_kvm(stat_data->kvm);
4567
4568         return 0;
4569 }
4570
4571 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4572 {
4573         *val = *(ulong *)((void *)kvm + offset);
4574
4575         return 0;
4576 }
4577
4578 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4579 {
4580         *(ulong *)((void *)kvm + offset) = 0;
4581
4582         return 0;
4583 }
4584
4585 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4586 {
4587         int i;
4588         struct kvm_vcpu *vcpu;
4589
4590         *val = 0;
4591
4592         kvm_for_each_vcpu(i, vcpu, kvm)
4593                 *val += *(u64 *)((void *)vcpu + offset);
4594
4595         return 0;
4596 }
4597
4598 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4599 {
4600         int i;
4601         struct kvm_vcpu *vcpu;
4602
4603         kvm_for_each_vcpu(i, vcpu, kvm)
4604                 *(u64 *)((void *)vcpu + offset) = 0;
4605
4606         return 0;
4607 }
4608
4609 static int kvm_stat_data_get(void *data, u64 *val)
4610 {
4611         int r = -EFAULT;
4612         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4613
4614         switch (stat_data->dbgfs_item->kind) {
4615         case KVM_STAT_VM:
4616                 r = kvm_get_stat_per_vm(stat_data->kvm,
4617                                         stat_data->dbgfs_item->offset, val);
4618                 break;
4619         case KVM_STAT_VCPU:
4620                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4621                                           stat_data->dbgfs_item->offset, val);
4622                 break;
4623         }
4624
4625         return r;
4626 }
4627
4628 static int kvm_stat_data_clear(void *data, u64 val)
4629 {
4630         int r = -EFAULT;
4631         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4632
4633         if (val)
4634                 return -EINVAL;
4635
4636         switch (stat_data->dbgfs_item->kind) {
4637         case KVM_STAT_VM:
4638                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4639                                           stat_data->dbgfs_item->offset);
4640                 break;
4641         case KVM_STAT_VCPU:
4642                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4643                                             stat_data->dbgfs_item->offset);
4644                 break;
4645         }
4646
4647         return r;
4648 }
4649
4650 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4651 {
4652         __simple_attr_check_format("%llu\n", 0ull);
4653         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4654                                 kvm_stat_data_clear, "%llu\n");
4655 }
4656
4657 static const struct file_operations stat_fops_per_vm = {
4658         .owner = THIS_MODULE,
4659         .open = kvm_stat_data_open,
4660         .release = kvm_debugfs_release,
4661         .read = simple_attr_read,
4662         .write = simple_attr_write,
4663         .llseek = no_llseek,
4664 };
4665
4666 static int vm_stat_get(void *_offset, u64 *val)
4667 {
4668         unsigned offset = (long)_offset;
4669         struct kvm *kvm;
4670         u64 tmp_val;
4671
4672         *val = 0;
4673         mutex_lock(&kvm_lock);
4674         list_for_each_entry(kvm, &vm_list, vm_list) {
4675                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4676                 *val += tmp_val;
4677         }
4678         mutex_unlock(&kvm_lock);
4679         return 0;
4680 }
4681
4682 static int vm_stat_clear(void *_offset, u64 val)
4683 {
4684         unsigned offset = (long)_offset;
4685         struct kvm *kvm;
4686
4687         if (val)
4688                 return -EINVAL;
4689
4690         mutex_lock(&kvm_lock);
4691         list_for_each_entry(kvm, &vm_list, vm_list) {
4692                 kvm_clear_stat_per_vm(kvm, offset);
4693         }
4694         mutex_unlock(&kvm_lock);
4695
4696         return 0;
4697 }
4698
4699 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4700
4701 static int vcpu_stat_get(void *_offset, u64 *val)
4702 {
4703         unsigned offset = (long)_offset;
4704         struct kvm *kvm;
4705         u64 tmp_val;
4706
4707         *val = 0;
4708         mutex_lock(&kvm_lock);
4709         list_for_each_entry(kvm, &vm_list, vm_list) {
4710                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4711                 *val += tmp_val;
4712         }
4713         mutex_unlock(&kvm_lock);
4714         return 0;
4715 }
4716
4717 static int vcpu_stat_clear(void *_offset, u64 val)
4718 {
4719         unsigned offset = (long)_offset;
4720         struct kvm *kvm;
4721
4722         if (val)
4723                 return -EINVAL;
4724
4725         mutex_lock(&kvm_lock);
4726         list_for_each_entry(kvm, &vm_list, vm_list) {
4727                 kvm_clear_stat_per_vcpu(kvm, offset);
4728         }
4729         mutex_unlock(&kvm_lock);
4730
4731         return 0;
4732 }
4733
4734 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4735                         "%llu\n");
4736
4737 static const struct file_operations *stat_fops[] = {
4738         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4739         [KVM_STAT_VM]   = &vm_stat_fops,
4740 };
4741
4742 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4743 {
4744         struct kobj_uevent_env *env;
4745         unsigned long long created, active;
4746
4747         if (!kvm_dev.this_device || !kvm)
4748                 return;
4749
4750         mutex_lock(&kvm_lock);
4751         if (type == KVM_EVENT_CREATE_VM) {
4752                 kvm_createvm_count++;
4753                 kvm_active_vms++;
4754         } else if (type == KVM_EVENT_DESTROY_VM) {
4755                 kvm_active_vms--;
4756         }
4757         created = kvm_createvm_count;
4758         active = kvm_active_vms;
4759         mutex_unlock(&kvm_lock);
4760
4761         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4762         if (!env)
4763                 return;
4764
4765         add_uevent_var(env, "CREATED=%llu", created);
4766         add_uevent_var(env, "COUNT=%llu", active);
4767
4768         if (type == KVM_EVENT_CREATE_VM) {
4769                 add_uevent_var(env, "EVENT=create");
4770                 kvm->userspace_pid = task_pid_nr(current);
4771         } else if (type == KVM_EVENT_DESTROY_VM) {
4772                 add_uevent_var(env, "EVENT=destroy");
4773         }
4774         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4775
4776         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4777                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4778
4779                 if (p) {
4780                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4781                         if (!IS_ERR(tmp))
4782                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4783                         kfree(p);
4784                 }
4785         }
4786         /* no need for checks, since we are adding at most only 5 keys */
4787         env->envp[env->envp_idx++] = NULL;
4788         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4789         kfree(env);
4790 }
4791
4792 static void kvm_init_debug(void)
4793 {
4794         struct kvm_stats_debugfs_item *p;
4795
4796         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4797
4798         kvm_debugfs_num_entries = 0;
4799         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4800                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4801                                     kvm_debugfs_dir, (void *)(long)p->offset,
4802                                     stat_fops[p->kind]);
4803         }
4804 }
4805
4806 static int kvm_suspend(void)
4807 {
4808         if (kvm_usage_count)
4809                 hardware_disable_nolock(NULL);
4810         return 0;
4811 }
4812
4813 static void kvm_resume(void)
4814 {
4815         if (kvm_usage_count) {
4816 #ifdef CONFIG_LOCKDEP
4817                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4818 #endif
4819                 hardware_enable_nolock(NULL);
4820         }
4821 }
4822
4823 static struct syscore_ops kvm_syscore_ops = {
4824         .suspend = kvm_suspend,
4825         .resume = kvm_resume,
4826 };
4827
4828 static inline
4829 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4830 {
4831         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4832 }
4833
4834 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4835 {
4836         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4837
4838         WRITE_ONCE(vcpu->preempted, false);
4839         WRITE_ONCE(vcpu->ready, false);
4840
4841         __this_cpu_write(kvm_running_vcpu, vcpu);
4842         kvm_arch_sched_in(vcpu, cpu);
4843         kvm_arch_vcpu_load(vcpu, cpu);
4844 }
4845
4846 static void kvm_sched_out(struct preempt_notifier *pn,
4847                           struct task_struct *next)
4848 {
4849         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4850
4851         if (current->state == TASK_RUNNING) {
4852                 WRITE_ONCE(vcpu->preempted, true);
4853                 WRITE_ONCE(vcpu->ready, true);
4854         }
4855         kvm_arch_vcpu_put(vcpu);
4856         __this_cpu_write(kvm_running_vcpu, NULL);
4857 }
4858
4859 /**
4860  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4861  *
4862  * We can disable preemption locally around accessing the per-CPU variable,
4863  * and use the resolved vcpu pointer after enabling preemption again,
4864  * because even if the current thread is migrated to another CPU, reading
4865  * the per-CPU value later will give us the same value as we update the
4866  * per-CPU variable in the preempt notifier handlers.
4867  */
4868 struct kvm_vcpu *kvm_get_running_vcpu(void)
4869 {
4870         struct kvm_vcpu *vcpu;
4871
4872         preempt_disable();
4873         vcpu = __this_cpu_read(kvm_running_vcpu);
4874         preempt_enable();
4875
4876         return vcpu;
4877 }
4878 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4879
4880 /**
4881  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4882  */
4883 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4884 {
4885         return &kvm_running_vcpu;
4886 }
4887
4888 struct kvm_cpu_compat_check {
4889         void *opaque;
4890         int *ret;
4891 };
4892
4893 static void check_processor_compat(void *data)
4894 {
4895         struct kvm_cpu_compat_check *c = data;
4896
4897         *c->ret = kvm_arch_check_processor_compat(c->opaque);
4898 }
4899
4900 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4901                   struct module *module)
4902 {
4903         struct kvm_cpu_compat_check c;
4904         int r;
4905         int cpu;
4906
4907         r = kvm_arch_init(opaque);
4908         if (r)
4909                 goto out_fail;
4910
4911         /*
4912          * kvm_arch_init makes sure there's at most one caller
4913          * for architectures that support multiple implementations,
4914          * like intel and amd on x86.
4915          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4916          * conflicts in case kvm is already setup for another implementation.
4917          */
4918         r = kvm_irqfd_init();
4919         if (r)
4920                 goto out_irqfd;
4921
4922         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4923                 r = -ENOMEM;
4924                 goto out_free_0;
4925         }
4926
4927         r = kvm_arch_hardware_setup(opaque);
4928         if (r < 0)
4929                 goto out_free_1;
4930
4931         c.ret = &r;
4932         c.opaque = opaque;
4933         for_each_online_cpu(cpu) {
4934                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4935                 if (r < 0)
4936                         goto out_free_2;
4937         }
4938
4939         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4940                                       kvm_starting_cpu, kvm_dying_cpu);
4941         if (r)
4942                 goto out_free_2;
4943         register_reboot_notifier(&kvm_reboot_notifier);
4944
4945         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4946         if (!vcpu_align)
4947                 vcpu_align = __alignof__(struct kvm_vcpu);
4948         kvm_vcpu_cache =
4949                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4950                                            SLAB_ACCOUNT,
4951                                            offsetof(struct kvm_vcpu, arch),
4952                                            sizeof_field(struct kvm_vcpu, arch),
4953                                            NULL);
4954         if (!kvm_vcpu_cache) {
4955                 r = -ENOMEM;
4956                 goto out_free_3;
4957         }
4958
4959         r = kvm_async_pf_init();
4960         if (r)
4961                 goto out_free;
4962
4963         kvm_chardev_ops.owner = module;
4964         kvm_vm_fops.owner = module;
4965         kvm_vcpu_fops.owner = module;
4966
4967         r = misc_register(&kvm_dev);
4968         if (r) {
4969                 pr_err("kvm: misc device register failed\n");
4970                 goto out_unreg;
4971         }
4972
4973         register_syscore_ops(&kvm_syscore_ops);
4974
4975         kvm_preempt_ops.sched_in = kvm_sched_in;
4976         kvm_preempt_ops.sched_out = kvm_sched_out;
4977
4978         kvm_init_debug();
4979
4980         r = kvm_vfio_ops_init();
4981         WARN_ON(r);
4982
4983         return 0;
4984
4985 out_unreg:
4986         kvm_async_pf_deinit();
4987 out_free:
4988         kmem_cache_destroy(kvm_vcpu_cache);
4989 out_free_3:
4990         unregister_reboot_notifier(&kvm_reboot_notifier);
4991         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4992 out_free_2:
4993         kvm_arch_hardware_unsetup();
4994 out_free_1:
4995         free_cpumask_var(cpus_hardware_enabled);
4996 out_free_0:
4997         kvm_irqfd_exit();
4998 out_irqfd:
4999         kvm_arch_exit();
5000 out_fail:
5001         return r;
5002 }
5003 EXPORT_SYMBOL_GPL(kvm_init);
5004
5005 void kvm_exit(void)
5006 {
5007         debugfs_remove_recursive(kvm_debugfs_dir);
5008         misc_deregister(&kvm_dev);
5009         kmem_cache_destroy(kvm_vcpu_cache);
5010         kvm_async_pf_deinit();
5011         unregister_syscore_ops(&kvm_syscore_ops);
5012         unregister_reboot_notifier(&kvm_reboot_notifier);
5013         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5014         on_each_cpu(hardware_disable_nolock, NULL, 1);
5015         kvm_arch_hardware_unsetup();
5016         kvm_arch_exit();
5017         kvm_irqfd_exit();
5018         free_cpumask_var(cpus_hardware_enabled);
5019         kvm_vfio_ops_exit();
5020 }
5021 EXPORT_SYMBOL_GPL(kvm_exit);
5022
5023 struct kvm_vm_worker_thread_context {
5024         struct kvm *kvm;
5025         struct task_struct *parent;
5026         struct completion init_done;
5027         kvm_vm_thread_fn_t thread_fn;
5028         uintptr_t data;
5029         int err;
5030 };
5031
5032 static int kvm_vm_worker_thread(void *context)
5033 {
5034         /*
5035          * The init_context is allocated on the stack of the parent thread, so
5036          * we have to locally copy anything that is needed beyond initialization
5037          */
5038         struct kvm_vm_worker_thread_context *init_context = context;
5039         struct kvm *kvm = init_context->kvm;
5040         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5041         uintptr_t data = init_context->data;
5042         int err;
5043
5044         err = kthread_park(current);
5045         /* kthread_park(current) is never supposed to return an error */
5046         WARN_ON(err != 0);
5047         if (err)
5048                 goto init_complete;
5049
5050         err = cgroup_attach_task_all(init_context->parent, current);
5051         if (err) {
5052                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5053                         __func__, err);
5054                 goto init_complete;
5055         }
5056
5057         set_user_nice(current, task_nice(init_context->parent));
5058
5059 init_complete:
5060         init_context->err = err;
5061         complete(&init_context->init_done);
5062         init_context = NULL;
5063
5064         if (err)
5065                 return err;
5066
5067         /* Wait to be woken up by the spawner before proceeding. */
5068         kthread_parkme();
5069
5070         if (!kthread_should_stop())
5071                 err = thread_fn(kvm, data);
5072
5073         return err;
5074 }
5075
5076 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5077                                 uintptr_t data, const char *name,
5078                                 struct task_struct **thread_ptr)
5079 {
5080         struct kvm_vm_worker_thread_context init_context = {};
5081         struct task_struct *thread;
5082
5083         *thread_ptr = NULL;
5084         init_context.kvm = kvm;
5085         init_context.parent = current;
5086         init_context.thread_fn = thread_fn;
5087         init_context.data = data;
5088         init_completion(&init_context.init_done);
5089
5090         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5091                              "%s-%d", name, task_pid_nr(current));
5092         if (IS_ERR(thread))
5093                 return PTR_ERR(thread);
5094
5095         /* kthread_run is never supposed to return NULL */
5096         WARN_ON(thread == NULL);
5097
5098         wait_for_completion(&init_context.init_done);
5099
5100         if (!init_context.err)
5101                 *thread_ptr = thread;
5102
5103         return init_context.err;
5104 }