nds32: fix build error "relocation truncated to fit: R_NDS32_25_PCREL_RELA" when
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129
130 static bool largepages_enabled = true;
131
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139                 unsigned long start, unsigned long end)
140 {
141 }
142
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
144 {
145         if (pfn_valid(pfn))
146                 return PageReserved(pfn_to_page(pfn));
147
148         return true;
149 }
150
151 /*
152  * Switches to specified vcpu, until a matching vcpu_put()
153  */
154 void vcpu_load(struct kvm_vcpu *vcpu)
155 {
156         int cpu = get_cpu();
157         preempt_notifier_register(&vcpu->preempt_notifier);
158         kvm_arch_vcpu_load(vcpu, cpu);
159         put_cpu();
160 }
161 EXPORT_SYMBOL_GPL(vcpu_load);
162
163 void vcpu_put(struct kvm_vcpu *vcpu)
164 {
165         preempt_disable();
166         kvm_arch_vcpu_put(vcpu);
167         preempt_notifier_unregister(&vcpu->preempt_notifier);
168         preempt_enable();
169 }
170 EXPORT_SYMBOL_GPL(vcpu_put);
171
172 /* TODO: merge with kvm_arch_vcpu_should_kick */
173 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
174 {
175         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
176
177         /*
178          * We need to wait for the VCPU to reenable interrupts and get out of
179          * READING_SHADOW_PAGE_TABLES mode.
180          */
181         if (req & KVM_REQUEST_WAIT)
182                 return mode != OUTSIDE_GUEST_MODE;
183
184         /*
185          * Need to kick a running VCPU, but otherwise there is nothing to do.
186          */
187         return mode == IN_GUEST_MODE;
188 }
189
190 static void ack_flush(void *_completed)
191 {
192 }
193
194 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
195 {
196         if (unlikely(!cpus))
197                 cpus = cpu_online_mask;
198
199         if (cpumask_empty(cpus))
200                 return false;
201
202         smp_call_function_many(cpus, ack_flush, NULL, wait);
203         return true;
204 }
205
206 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
207                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
208 {
209         int i, cpu, me;
210         struct kvm_vcpu *vcpu;
211         bool called;
212
213         me = get_cpu();
214
215         kvm_for_each_vcpu(i, vcpu, kvm) {
216                 if (!test_bit(i, vcpu_bitmap))
217                         continue;
218
219                 kvm_make_request(req, vcpu);
220                 cpu = vcpu->cpu;
221
222                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
223                         continue;
224
225                 if (tmp != NULL && cpu != -1 && cpu != me &&
226                     kvm_request_needs_ipi(vcpu, req))
227                         __cpumask_set_cpu(cpu, tmp);
228         }
229
230         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
231         put_cpu();
232
233         return called;
234 }
235
236 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
237 {
238         cpumask_var_t cpus;
239         bool called;
240         static unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)]
241                 = {[0 ... BITS_TO_LONGS(KVM_MAX_VCPUS)-1] = ULONG_MAX};
242
243         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
244
245         called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap, cpus);
246
247         free_cpumask_var(cpus);
248         return called;
249 }
250
251 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
252 void kvm_flush_remote_tlbs(struct kvm *kvm)
253 {
254         /*
255          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
256          * kvm_make_all_cpus_request.
257          */
258         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
259
260         /*
261          * We want to publish modifications to the page tables before reading
262          * mode. Pairs with a memory barrier in arch-specific code.
263          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
264          * and smp_mb in walk_shadow_page_lockless_begin/end.
265          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
266          *
267          * There is already an smp_mb__after_atomic() before
268          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
269          * barrier here.
270          */
271         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
272                 ++kvm->stat.remote_tlb_flush;
273         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
274 }
275 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
276 #endif
277
278 void kvm_reload_remote_mmus(struct kvm *kvm)
279 {
280         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
281 }
282
283 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
284 {
285         struct page *page;
286         int r;
287
288         mutex_init(&vcpu->mutex);
289         vcpu->cpu = -1;
290         vcpu->kvm = kvm;
291         vcpu->vcpu_id = id;
292         vcpu->pid = NULL;
293         init_swait_queue_head(&vcpu->wq);
294         kvm_async_pf_vcpu_init(vcpu);
295
296         vcpu->pre_pcpu = -1;
297         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
298
299         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
300         if (!page) {
301                 r = -ENOMEM;
302                 goto fail;
303         }
304         vcpu->run = page_address(page);
305
306         kvm_vcpu_set_in_spin_loop(vcpu, false);
307         kvm_vcpu_set_dy_eligible(vcpu, false);
308         vcpu->preempted = false;
309
310         r = kvm_arch_vcpu_init(vcpu);
311         if (r < 0)
312                 goto fail_free_run;
313         return 0;
314
315 fail_free_run:
316         free_page((unsigned long)vcpu->run);
317 fail:
318         return r;
319 }
320 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
321
322 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
323 {
324         /*
325          * no need for rcu_read_lock as VCPU_RUN is the only place that
326          * will change the vcpu->pid pointer and on uninit all file
327          * descriptors are already gone.
328          */
329         put_pid(rcu_dereference_protected(vcpu->pid, 1));
330         kvm_arch_vcpu_uninit(vcpu);
331         free_page((unsigned long)vcpu->run);
332 }
333 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
334
335 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
336 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
337 {
338         return container_of(mn, struct kvm, mmu_notifier);
339 }
340
341 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
342                                         struct mm_struct *mm,
343                                         unsigned long address,
344                                         pte_t pte)
345 {
346         struct kvm *kvm = mmu_notifier_to_kvm(mn);
347         int idx;
348
349         idx = srcu_read_lock(&kvm->srcu);
350         spin_lock(&kvm->mmu_lock);
351         kvm->mmu_notifier_seq++;
352         kvm_set_spte_hva(kvm, address, pte);
353         spin_unlock(&kvm->mmu_lock);
354         srcu_read_unlock(&kvm->srcu, idx);
355 }
356
357 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
358                                                     struct mm_struct *mm,
359                                                     unsigned long start,
360                                                     unsigned long end)
361 {
362         struct kvm *kvm = mmu_notifier_to_kvm(mn);
363         int need_tlb_flush = 0, idx;
364
365         idx = srcu_read_lock(&kvm->srcu);
366         spin_lock(&kvm->mmu_lock);
367         /*
368          * The count increase must become visible at unlock time as no
369          * spte can be established without taking the mmu_lock and
370          * count is also read inside the mmu_lock critical section.
371          */
372         kvm->mmu_notifier_count++;
373         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
374         need_tlb_flush |= kvm->tlbs_dirty;
375         /* we've to flush the tlb before the pages can be freed */
376         if (need_tlb_flush)
377                 kvm_flush_remote_tlbs(kvm);
378
379         spin_unlock(&kvm->mmu_lock);
380
381         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
382
383         srcu_read_unlock(&kvm->srcu, idx);
384 }
385
386 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
387                                                   struct mm_struct *mm,
388                                                   unsigned long start,
389                                                   unsigned long end)
390 {
391         struct kvm *kvm = mmu_notifier_to_kvm(mn);
392
393         spin_lock(&kvm->mmu_lock);
394         /*
395          * This sequence increase will notify the kvm page fault that
396          * the page that is going to be mapped in the spte could have
397          * been freed.
398          */
399         kvm->mmu_notifier_seq++;
400         smp_wmb();
401         /*
402          * The above sequence increase must be visible before the
403          * below count decrease, which is ensured by the smp_wmb above
404          * in conjunction with the smp_rmb in mmu_notifier_retry().
405          */
406         kvm->mmu_notifier_count--;
407         spin_unlock(&kvm->mmu_lock);
408
409         BUG_ON(kvm->mmu_notifier_count < 0);
410 }
411
412 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
413                                               struct mm_struct *mm,
414                                               unsigned long start,
415                                               unsigned long end)
416 {
417         struct kvm *kvm = mmu_notifier_to_kvm(mn);
418         int young, idx;
419
420         idx = srcu_read_lock(&kvm->srcu);
421         spin_lock(&kvm->mmu_lock);
422
423         young = kvm_age_hva(kvm, start, end);
424         if (young)
425                 kvm_flush_remote_tlbs(kvm);
426
427         spin_unlock(&kvm->mmu_lock);
428         srcu_read_unlock(&kvm->srcu, idx);
429
430         return young;
431 }
432
433 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
434                                         struct mm_struct *mm,
435                                         unsigned long start,
436                                         unsigned long end)
437 {
438         struct kvm *kvm = mmu_notifier_to_kvm(mn);
439         int young, idx;
440
441         idx = srcu_read_lock(&kvm->srcu);
442         spin_lock(&kvm->mmu_lock);
443         /*
444          * Even though we do not flush TLB, this will still adversely
445          * affect performance on pre-Haswell Intel EPT, where there is
446          * no EPT Access Bit to clear so that we have to tear down EPT
447          * tables instead. If we find this unacceptable, we can always
448          * add a parameter to kvm_age_hva so that it effectively doesn't
449          * do anything on clear_young.
450          *
451          * Also note that currently we never issue secondary TLB flushes
452          * from clear_young, leaving this job up to the regular system
453          * cadence. If we find this inaccurate, we might come up with a
454          * more sophisticated heuristic later.
455          */
456         young = kvm_age_hva(kvm, start, end);
457         spin_unlock(&kvm->mmu_lock);
458         srcu_read_unlock(&kvm->srcu, idx);
459
460         return young;
461 }
462
463 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
464                                        struct mm_struct *mm,
465                                        unsigned long address)
466 {
467         struct kvm *kvm = mmu_notifier_to_kvm(mn);
468         int young, idx;
469
470         idx = srcu_read_lock(&kvm->srcu);
471         spin_lock(&kvm->mmu_lock);
472         young = kvm_test_age_hva(kvm, address);
473         spin_unlock(&kvm->mmu_lock);
474         srcu_read_unlock(&kvm->srcu, idx);
475
476         return young;
477 }
478
479 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
480                                      struct mm_struct *mm)
481 {
482         struct kvm *kvm = mmu_notifier_to_kvm(mn);
483         int idx;
484
485         idx = srcu_read_lock(&kvm->srcu);
486         kvm_arch_flush_shadow_all(kvm);
487         srcu_read_unlock(&kvm->srcu, idx);
488 }
489
490 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
491         .flags                  = MMU_INVALIDATE_DOES_NOT_BLOCK,
492         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
493         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
494         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
495         .clear_young            = kvm_mmu_notifier_clear_young,
496         .test_young             = kvm_mmu_notifier_test_young,
497         .change_pte             = kvm_mmu_notifier_change_pte,
498         .release                = kvm_mmu_notifier_release,
499 };
500
501 static int kvm_init_mmu_notifier(struct kvm *kvm)
502 {
503         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
504         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
505 }
506
507 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
508
509 static int kvm_init_mmu_notifier(struct kvm *kvm)
510 {
511         return 0;
512 }
513
514 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
515
516 static struct kvm_memslots *kvm_alloc_memslots(void)
517 {
518         int i;
519         struct kvm_memslots *slots;
520
521         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
522         if (!slots)
523                 return NULL;
524
525         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
526                 slots->id_to_index[i] = slots->memslots[i].id = i;
527
528         return slots;
529 }
530
531 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
532 {
533         if (!memslot->dirty_bitmap)
534                 return;
535
536         kvfree(memslot->dirty_bitmap);
537         memslot->dirty_bitmap = NULL;
538 }
539
540 /*
541  * Free any memory in @free but not in @dont.
542  */
543 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
544                               struct kvm_memory_slot *dont)
545 {
546         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
547                 kvm_destroy_dirty_bitmap(free);
548
549         kvm_arch_free_memslot(kvm, free, dont);
550
551         free->npages = 0;
552 }
553
554 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
555 {
556         struct kvm_memory_slot *memslot;
557
558         if (!slots)
559                 return;
560
561         kvm_for_each_memslot(memslot, slots)
562                 kvm_free_memslot(kvm, memslot, NULL);
563
564         kvfree(slots);
565 }
566
567 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
568 {
569         int i;
570
571         if (!kvm->debugfs_dentry)
572                 return;
573
574         debugfs_remove_recursive(kvm->debugfs_dentry);
575
576         if (kvm->debugfs_stat_data) {
577                 for (i = 0; i < kvm_debugfs_num_entries; i++)
578                         kfree(kvm->debugfs_stat_data[i]);
579                 kfree(kvm->debugfs_stat_data);
580         }
581 }
582
583 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
584 {
585         char dir_name[ITOA_MAX_LEN * 2];
586         struct kvm_stat_data *stat_data;
587         struct kvm_stats_debugfs_item *p;
588
589         if (!debugfs_initialized())
590                 return 0;
591
592         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
593         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
594
595         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
596                                          sizeof(*kvm->debugfs_stat_data),
597                                          GFP_KERNEL);
598         if (!kvm->debugfs_stat_data)
599                 return -ENOMEM;
600
601         for (p = debugfs_entries; p->name; p++) {
602                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
603                 if (!stat_data)
604                         return -ENOMEM;
605
606                 stat_data->kvm = kvm;
607                 stat_data->offset = p->offset;
608                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
609                 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
610                                     stat_data, stat_fops_per_vm[p->kind]);
611         }
612         return 0;
613 }
614
615 static struct kvm *kvm_create_vm(unsigned long type)
616 {
617         int r, i;
618         struct kvm *kvm = kvm_arch_alloc_vm();
619
620         if (!kvm)
621                 return ERR_PTR(-ENOMEM);
622
623         spin_lock_init(&kvm->mmu_lock);
624         mmgrab(current->mm);
625         kvm->mm = current->mm;
626         kvm_eventfd_init(kvm);
627         mutex_init(&kvm->lock);
628         mutex_init(&kvm->irq_lock);
629         mutex_init(&kvm->slots_lock);
630         refcount_set(&kvm->users_count, 1);
631         INIT_LIST_HEAD(&kvm->devices);
632
633         r = kvm_arch_init_vm(kvm, type);
634         if (r)
635                 goto out_err_no_disable;
636
637         r = hardware_enable_all();
638         if (r)
639                 goto out_err_no_disable;
640
641 #ifdef CONFIG_HAVE_KVM_IRQFD
642         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
643 #endif
644
645         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
646
647         r = -ENOMEM;
648         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
649                 struct kvm_memslots *slots = kvm_alloc_memslots();
650                 if (!slots)
651                         goto out_err_no_srcu;
652                 /*
653                  * Generations must be different for each address space.
654                  * Init kvm generation close to the maximum to easily test the
655                  * code of handling generation number wrap-around.
656                  */
657                 slots->generation = i * 2 - 150;
658                 rcu_assign_pointer(kvm->memslots[i], slots);
659         }
660
661         if (init_srcu_struct(&kvm->srcu))
662                 goto out_err_no_srcu;
663         if (init_srcu_struct(&kvm->irq_srcu))
664                 goto out_err_no_irq_srcu;
665         for (i = 0; i < KVM_NR_BUSES; i++) {
666                 rcu_assign_pointer(kvm->buses[i],
667                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
668                 if (!kvm->buses[i])
669                         goto out_err;
670         }
671
672         r = kvm_init_mmu_notifier(kvm);
673         if (r)
674                 goto out_err;
675
676         spin_lock(&kvm_lock);
677         list_add(&kvm->vm_list, &vm_list);
678         spin_unlock(&kvm_lock);
679
680         preempt_notifier_inc();
681
682         return kvm;
683
684 out_err:
685         cleanup_srcu_struct(&kvm->irq_srcu);
686 out_err_no_irq_srcu:
687         cleanup_srcu_struct(&kvm->srcu);
688 out_err_no_srcu:
689         hardware_disable_all();
690 out_err_no_disable:
691         refcount_set(&kvm->users_count, 0);
692         for (i = 0; i < KVM_NR_BUSES; i++)
693                 kfree(kvm_get_bus(kvm, i));
694         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
695                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
696         kvm_arch_free_vm(kvm);
697         mmdrop(current->mm);
698         return ERR_PTR(r);
699 }
700
701 static void kvm_destroy_devices(struct kvm *kvm)
702 {
703         struct kvm_device *dev, *tmp;
704
705         /*
706          * We do not need to take the kvm->lock here, because nobody else
707          * has a reference to the struct kvm at this point and therefore
708          * cannot access the devices list anyhow.
709          */
710         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
711                 list_del(&dev->vm_node);
712                 dev->ops->destroy(dev);
713         }
714 }
715
716 static void kvm_destroy_vm(struct kvm *kvm)
717 {
718         int i;
719         struct mm_struct *mm = kvm->mm;
720
721         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
722         kvm_destroy_vm_debugfs(kvm);
723         kvm_arch_sync_events(kvm);
724         spin_lock(&kvm_lock);
725         list_del(&kvm->vm_list);
726         spin_unlock(&kvm_lock);
727         kvm_free_irq_routing(kvm);
728         for (i = 0; i < KVM_NR_BUSES; i++) {
729                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
730
731                 if (bus)
732                         kvm_io_bus_destroy(bus);
733                 kvm->buses[i] = NULL;
734         }
735         kvm_coalesced_mmio_free(kvm);
736 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
737         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
738 #else
739         kvm_arch_flush_shadow_all(kvm);
740 #endif
741         kvm_arch_destroy_vm(kvm);
742         kvm_destroy_devices(kvm);
743         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
744                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
745         cleanup_srcu_struct(&kvm->irq_srcu);
746         cleanup_srcu_struct(&kvm->srcu);
747         kvm_arch_free_vm(kvm);
748         preempt_notifier_dec();
749         hardware_disable_all();
750         mmdrop(mm);
751 }
752
753 void kvm_get_kvm(struct kvm *kvm)
754 {
755         refcount_inc(&kvm->users_count);
756 }
757 EXPORT_SYMBOL_GPL(kvm_get_kvm);
758
759 void kvm_put_kvm(struct kvm *kvm)
760 {
761         if (refcount_dec_and_test(&kvm->users_count))
762                 kvm_destroy_vm(kvm);
763 }
764 EXPORT_SYMBOL_GPL(kvm_put_kvm);
765
766
767 static int kvm_vm_release(struct inode *inode, struct file *filp)
768 {
769         struct kvm *kvm = filp->private_data;
770
771         kvm_irqfd_release(kvm);
772
773         kvm_put_kvm(kvm);
774         return 0;
775 }
776
777 /*
778  * Allocation size is twice as large as the actual dirty bitmap size.
779  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
780  */
781 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
782 {
783         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
784
785         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
786         if (!memslot->dirty_bitmap)
787                 return -ENOMEM;
788
789         return 0;
790 }
791
792 /*
793  * Insert memslot and re-sort memslots based on their GFN,
794  * so binary search could be used to lookup GFN.
795  * Sorting algorithm takes advantage of having initially
796  * sorted array and known changed memslot position.
797  */
798 static void update_memslots(struct kvm_memslots *slots,
799                             struct kvm_memory_slot *new)
800 {
801         int id = new->id;
802         int i = slots->id_to_index[id];
803         struct kvm_memory_slot *mslots = slots->memslots;
804
805         WARN_ON(mslots[i].id != id);
806         if (!new->npages) {
807                 WARN_ON(!mslots[i].npages);
808                 if (mslots[i].npages)
809                         slots->used_slots--;
810         } else {
811                 if (!mslots[i].npages)
812                         slots->used_slots++;
813         }
814
815         while (i < KVM_MEM_SLOTS_NUM - 1 &&
816                new->base_gfn <= mslots[i + 1].base_gfn) {
817                 if (!mslots[i + 1].npages)
818                         break;
819                 mslots[i] = mslots[i + 1];
820                 slots->id_to_index[mslots[i].id] = i;
821                 i++;
822         }
823
824         /*
825          * The ">=" is needed when creating a slot with base_gfn == 0,
826          * so that it moves before all those with base_gfn == npages == 0.
827          *
828          * On the other hand, if new->npages is zero, the above loop has
829          * already left i pointing to the beginning of the empty part of
830          * mslots, and the ">=" would move the hole backwards in this
831          * case---which is wrong.  So skip the loop when deleting a slot.
832          */
833         if (new->npages) {
834                 while (i > 0 &&
835                        new->base_gfn >= mslots[i - 1].base_gfn) {
836                         mslots[i] = mslots[i - 1];
837                         slots->id_to_index[mslots[i].id] = i;
838                         i--;
839                 }
840         } else
841                 WARN_ON_ONCE(i != slots->used_slots);
842
843         mslots[i] = *new;
844         slots->id_to_index[mslots[i].id] = i;
845 }
846
847 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
848 {
849         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
850
851 #ifdef __KVM_HAVE_READONLY_MEM
852         valid_flags |= KVM_MEM_READONLY;
853 #endif
854
855         if (mem->flags & ~valid_flags)
856                 return -EINVAL;
857
858         return 0;
859 }
860
861 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
862                 int as_id, struct kvm_memslots *slots)
863 {
864         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
865
866         /*
867          * Set the low bit in the generation, which disables SPTE caching
868          * until the end of synchronize_srcu_expedited.
869          */
870         WARN_ON(old_memslots->generation & 1);
871         slots->generation = old_memslots->generation + 1;
872
873         rcu_assign_pointer(kvm->memslots[as_id], slots);
874         synchronize_srcu_expedited(&kvm->srcu);
875
876         /*
877          * Increment the new memslot generation a second time. This prevents
878          * vm exits that race with memslot updates from caching a memslot
879          * generation that will (potentially) be valid forever.
880          *
881          * Generations must be unique even across address spaces.  We do not need
882          * a global counter for that, instead the generation space is evenly split
883          * across address spaces.  For example, with two address spaces, address
884          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
885          * use generations 2, 6, 10, 14, ...
886          */
887         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
888
889         kvm_arch_memslots_updated(kvm, slots);
890
891         return old_memslots;
892 }
893
894 /*
895  * Allocate some memory and give it an address in the guest physical address
896  * space.
897  *
898  * Discontiguous memory is allowed, mostly for framebuffers.
899  *
900  * Must be called holding kvm->slots_lock for write.
901  */
902 int __kvm_set_memory_region(struct kvm *kvm,
903                             const struct kvm_userspace_memory_region *mem)
904 {
905         int r;
906         gfn_t base_gfn;
907         unsigned long npages;
908         struct kvm_memory_slot *slot;
909         struct kvm_memory_slot old, new;
910         struct kvm_memslots *slots = NULL, *old_memslots;
911         int as_id, id;
912         enum kvm_mr_change change;
913
914         r = check_memory_region_flags(mem);
915         if (r)
916                 goto out;
917
918         r = -EINVAL;
919         as_id = mem->slot >> 16;
920         id = (u16)mem->slot;
921
922         /* General sanity checks */
923         if (mem->memory_size & (PAGE_SIZE - 1))
924                 goto out;
925         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
926                 goto out;
927         /* We can read the guest memory with __xxx_user() later on. */
928         if ((id < KVM_USER_MEM_SLOTS) &&
929             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
930              !access_ok(VERIFY_WRITE,
931                         (void __user *)(unsigned long)mem->userspace_addr,
932                         mem->memory_size)))
933                 goto out;
934         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
935                 goto out;
936         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
937                 goto out;
938
939         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
940         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
941         npages = mem->memory_size >> PAGE_SHIFT;
942
943         if (npages > KVM_MEM_MAX_NR_PAGES)
944                 goto out;
945
946         new = old = *slot;
947
948         new.id = id;
949         new.base_gfn = base_gfn;
950         new.npages = npages;
951         new.flags = mem->flags;
952
953         if (npages) {
954                 if (!old.npages)
955                         change = KVM_MR_CREATE;
956                 else { /* Modify an existing slot. */
957                         if ((mem->userspace_addr != old.userspace_addr) ||
958                             (npages != old.npages) ||
959                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
960                                 goto out;
961
962                         if (base_gfn != old.base_gfn)
963                                 change = KVM_MR_MOVE;
964                         else if (new.flags != old.flags)
965                                 change = KVM_MR_FLAGS_ONLY;
966                         else { /* Nothing to change. */
967                                 r = 0;
968                                 goto out;
969                         }
970                 }
971         } else {
972                 if (!old.npages)
973                         goto out;
974
975                 change = KVM_MR_DELETE;
976                 new.base_gfn = 0;
977                 new.flags = 0;
978         }
979
980         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
981                 /* Check for overlaps */
982                 r = -EEXIST;
983                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
984                         if (slot->id == id)
985                                 continue;
986                         if (!((base_gfn + npages <= slot->base_gfn) ||
987                               (base_gfn >= slot->base_gfn + slot->npages)))
988                                 goto out;
989                 }
990         }
991
992         /* Free page dirty bitmap if unneeded */
993         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
994                 new.dirty_bitmap = NULL;
995
996         r = -ENOMEM;
997         if (change == KVM_MR_CREATE) {
998                 new.userspace_addr = mem->userspace_addr;
999
1000                 if (kvm_arch_create_memslot(kvm, &new, npages))
1001                         goto out_free;
1002         }
1003
1004         /* Allocate page dirty bitmap if needed */
1005         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1006                 if (kvm_create_dirty_bitmap(&new) < 0)
1007                         goto out_free;
1008         }
1009
1010         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1011         if (!slots)
1012                 goto out_free;
1013         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1014
1015         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1016                 slot = id_to_memslot(slots, id);
1017                 slot->flags |= KVM_MEMSLOT_INVALID;
1018
1019                 old_memslots = install_new_memslots(kvm, as_id, slots);
1020
1021                 /* From this point no new shadow pages pointing to a deleted,
1022                  * or moved, memslot will be created.
1023                  *
1024                  * validation of sp->gfn happens in:
1025                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1026                  *      - kvm_is_visible_gfn (mmu_check_roots)
1027                  */
1028                 kvm_arch_flush_shadow_memslot(kvm, slot);
1029
1030                 /*
1031                  * We can re-use the old_memslots from above, the only difference
1032                  * from the currently installed memslots is the invalid flag.  This
1033                  * will get overwritten by update_memslots anyway.
1034                  */
1035                 slots = old_memslots;
1036         }
1037
1038         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1039         if (r)
1040                 goto out_slots;
1041
1042         /* actual memory is freed via old in kvm_free_memslot below */
1043         if (change == KVM_MR_DELETE) {
1044                 new.dirty_bitmap = NULL;
1045                 memset(&new.arch, 0, sizeof(new.arch));
1046         }
1047
1048         update_memslots(slots, &new);
1049         old_memslots = install_new_memslots(kvm, as_id, slots);
1050
1051         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1052
1053         kvm_free_memslot(kvm, &old, &new);
1054         kvfree(old_memslots);
1055         return 0;
1056
1057 out_slots:
1058         kvfree(slots);
1059 out_free:
1060         kvm_free_memslot(kvm, &new, &old);
1061 out:
1062         return r;
1063 }
1064 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1065
1066 int kvm_set_memory_region(struct kvm *kvm,
1067                           const struct kvm_userspace_memory_region *mem)
1068 {
1069         int r;
1070
1071         mutex_lock(&kvm->slots_lock);
1072         r = __kvm_set_memory_region(kvm, mem);
1073         mutex_unlock(&kvm->slots_lock);
1074         return r;
1075 }
1076 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1077
1078 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1079                                           struct kvm_userspace_memory_region *mem)
1080 {
1081         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1082                 return -EINVAL;
1083
1084         return kvm_set_memory_region(kvm, mem);
1085 }
1086
1087 int kvm_get_dirty_log(struct kvm *kvm,
1088                         struct kvm_dirty_log *log, int *is_dirty)
1089 {
1090         struct kvm_memslots *slots;
1091         struct kvm_memory_slot *memslot;
1092         int i, as_id, id;
1093         unsigned long n;
1094         unsigned long any = 0;
1095
1096         as_id = log->slot >> 16;
1097         id = (u16)log->slot;
1098         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1099                 return -EINVAL;
1100
1101         slots = __kvm_memslots(kvm, as_id);
1102         memslot = id_to_memslot(slots, id);
1103         if (!memslot->dirty_bitmap)
1104                 return -ENOENT;
1105
1106         n = kvm_dirty_bitmap_bytes(memslot);
1107
1108         for (i = 0; !any && i < n/sizeof(long); ++i)
1109                 any = memslot->dirty_bitmap[i];
1110
1111         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1112                 return -EFAULT;
1113
1114         if (any)
1115                 *is_dirty = 1;
1116         return 0;
1117 }
1118 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1119
1120 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1121 /**
1122  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1123  *      are dirty write protect them for next write.
1124  * @kvm:        pointer to kvm instance
1125  * @log:        slot id and address to which we copy the log
1126  * @is_dirty:   flag set if any page is dirty
1127  *
1128  * We need to keep it in mind that VCPU threads can write to the bitmap
1129  * concurrently. So, to avoid losing track of dirty pages we keep the
1130  * following order:
1131  *
1132  *    1. Take a snapshot of the bit and clear it if needed.
1133  *    2. Write protect the corresponding page.
1134  *    3. Copy the snapshot to the userspace.
1135  *    4. Upon return caller flushes TLB's if needed.
1136  *
1137  * Between 2 and 4, the guest may write to the page using the remaining TLB
1138  * entry.  This is not a problem because the page is reported dirty using
1139  * the snapshot taken before and step 4 ensures that writes done after
1140  * exiting to userspace will be logged for the next call.
1141  *
1142  */
1143 int kvm_get_dirty_log_protect(struct kvm *kvm,
1144                         struct kvm_dirty_log *log, bool *is_dirty)
1145 {
1146         struct kvm_memslots *slots;
1147         struct kvm_memory_slot *memslot;
1148         int i, as_id, id;
1149         unsigned long n;
1150         unsigned long *dirty_bitmap;
1151         unsigned long *dirty_bitmap_buffer;
1152
1153         as_id = log->slot >> 16;
1154         id = (u16)log->slot;
1155         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1156                 return -EINVAL;
1157
1158         slots = __kvm_memslots(kvm, as_id);
1159         memslot = id_to_memslot(slots, id);
1160
1161         dirty_bitmap = memslot->dirty_bitmap;
1162         if (!dirty_bitmap)
1163                 return -ENOENT;
1164
1165         n = kvm_dirty_bitmap_bytes(memslot);
1166
1167         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1168         memset(dirty_bitmap_buffer, 0, n);
1169
1170         spin_lock(&kvm->mmu_lock);
1171         *is_dirty = false;
1172         for (i = 0; i < n / sizeof(long); i++) {
1173                 unsigned long mask;
1174                 gfn_t offset;
1175
1176                 if (!dirty_bitmap[i])
1177                         continue;
1178
1179                 *is_dirty = true;
1180
1181                 mask = xchg(&dirty_bitmap[i], 0);
1182                 dirty_bitmap_buffer[i] = mask;
1183
1184                 if (mask) {
1185                         offset = i * BITS_PER_LONG;
1186                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1187                                                                 offset, mask);
1188                 }
1189         }
1190
1191         spin_unlock(&kvm->mmu_lock);
1192         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1193                 return -EFAULT;
1194         return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1197 #endif
1198
1199 bool kvm_largepages_enabled(void)
1200 {
1201         return largepages_enabled;
1202 }
1203
1204 void kvm_disable_largepages(void)
1205 {
1206         largepages_enabled = false;
1207 }
1208 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1209
1210 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1211 {
1212         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1213 }
1214 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1215
1216 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1217 {
1218         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1219 }
1220
1221 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1222 {
1223         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1224
1225         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1226               memslot->flags & KVM_MEMSLOT_INVALID)
1227                 return false;
1228
1229         return true;
1230 }
1231 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1232
1233 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1234 {
1235         struct vm_area_struct *vma;
1236         unsigned long addr, size;
1237
1238         size = PAGE_SIZE;
1239
1240         addr = gfn_to_hva(kvm, gfn);
1241         if (kvm_is_error_hva(addr))
1242                 return PAGE_SIZE;
1243
1244         down_read(&current->mm->mmap_sem);
1245         vma = find_vma(current->mm, addr);
1246         if (!vma)
1247                 goto out;
1248
1249         size = vma_kernel_pagesize(vma);
1250
1251 out:
1252         up_read(&current->mm->mmap_sem);
1253
1254         return size;
1255 }
1256
1257 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1258 {
1259         return slot->flags & KVM_MEM_READONLY;
1260 }
1261
1262 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1263                                        gfn_t *nr_pages, bool write)
1264 {
1265         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1266                 return KVM_HVA_ERR_BAD;
1267
1268         if (memslot_is_readonly(slot) && write)
1269                 return KVM_HVA_ERR_RO_BAD;
1270
1271         if (nr_pages)
1272                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1273
1274         return __gfn_to_hva_memslot(slot, gfn);
1275 }
1276
1277 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1278                                      gfn_t *nr_pages)
1279 {
1280         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1281 }
1282
1283 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1284                                         gfn_t gfn)
1285 {
1286         return gfn_to_hva_many(slot, gfn, NULL);
1287 }
1288 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1289
1290 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1291 {
1292         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1293 }
1294 EXPORT_SYMBOL_GPL(gfn_to_hva);
1295
1296 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1297 {
1298         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1299 }
1300 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1301
1302 /*
1303  * If writable is set to false, the hva returned by this function is only
1304  * allowed to be read.
1305  */
1306 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1307                                       gfn_t gfn, bool *writable)
1308 {
1309         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1310
1311         if (!kvm_is_error_hva(hva) && writable)
1312                 *writable = !memslot_is_readonly(slot);
1313
1314         return hva;
1315 }
1316
1317 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1318 {
1319         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1320
1321         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1322 }
1323
1324 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1325 {
1326         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1327
1328         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1329 }
1330
1331 static inline int check_user_page_hwpoison(unsigned long addr)
1332 {
1333         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1334
1335         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1336         return rc == -EHWPOISON;
1337 }
1338
1339 /*
1340  * The atomic path to get the writable pfn which will be stored in @pfn,
1341  * true indicates success, otherwise false is returned.
1342  */
1343 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1344                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1345 {
1346         struct page *page[1];
1347         int npages;
1348
1349         if (!(async || atomic))
1350                 return false;
1351
1352         /*
1353          * Fast pin a writable pfn only if it is a write fault request
1354          * or the caller allows to map a writable pfn for a read fault
1355          * request.
1356          */
1357         if (!(write_fault || writable))
1358                 return false;
1359
1360         npages = __get_user_pages_fast(addr, 1, 1, page);
1361         if (npages == 1) {
1362                 *pfn = page_to_pfn(page[0]);
1363
1364                 if (writable)
1365                         *writable = true;
1366                 return true;
1367         }
1368
1369         return false;
1370 }
1371
1372 /*
1373  * The slow path to get the pfn of the specified host virtual address,
1374  * 1 indicates success, -errno is returned if error is detected.
1375  */
1376 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1377                            bool *writable, kvm_pfn_t *pfn)
1378 {
1379         unsigned int flags = FOLL_HWPOISON;
1380         struct page *page;
1381         int npages = 0;
1382
1383         might_sleep();
1384
1385         if (writable)
1386                 *writable = write_fault;
1387
1388         if (write_fault)
1389                 flags |= FOLL_WRITE;
1390         if (async)
1391                 flags |= FOLL_NOWAIT;
1392
1393         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1394         if (npages != 1)
1395                 return npages;
1396
1397         /* map read fault as writable if possible */
1398         if (unlikely(!write_fault) && writable) {
1399                 struct page *wpage;
1400
1401                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1402                         *writable = true;
1403                         put_page(page);
1404                         page = wpage;
1405                 }
1406         }
1407         *pfn = page_to_pfn(page);
1408         return npages;
1409 }
1410
1411 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1412 {
1413         if (unlikely(!(vma->vm_flags & VM_READ)))
1414                 return false;
1415
1416         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1417                 return false;
1418
1419         return true;
1420 }
1421
1422 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1423                                unsigned long addr, bool *async,
1424                                bool write_fault, bool *writable,
1425                                kvm_pfn_t *p_pfn)
1426 {
1427         unsigned long pfn;
1428         int r;
1429
1430         r = follow_pfn(vma, addr, &pfn);
1431         if (r) {
1432                 /*
1433                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1434                  * not call the fault handler, so do it here.
1435                  */
1436                 bool unlocked = false;
1437                 r = fixup_user_fault(current, current->mm, addr,
1438                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1439                                      &unlocked);
1440                 if (unlocked)
1441                         return -EAGAIN;
1442                 if (r)
1443                         return r;
1444
1445                 r = follow_pfn(vma, addr, &pfn);
1446                 if (r)
1447                         return r;
1448
1449         }
1450
1451         if (writable)
1452                 *writable = true;
1453
1454         /*
1455          * Get a reference here because callers of *hva_to_pfn* and
1456          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1457          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1458          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1459          * simply do nothing for reserved pfns.
1460          *
1461          * Whoever called remap_pfn_range is also going to call e.g.
1462          * unmap_mapping_range before the underlying pages are freed,
1463          * causing a call to our MMU notifier.
1464          */ 
1465         kvm_get_pfn(pfn);
1466
1467         *p_pfn = pfn;
1468         return 0;
1469 }
1470
1471 /*
1472  * Pin guest page in memory and return its pfn.
1473  * @addr: host virtual address which maps memory to the guest
1474  * @atomic: whether this function can sleep
1475  * @async: whether this function need to wait IO complete if the
1476  *         host page is not in the memory
1477  * @write_fault: whether we should get a writable host page
1478  * @writable: whether it allows to map a writable host page for !@write_fault
1479  *
1480  * The function will map a writable host page for these two cases:
1481  * 1): @write_fault = true
1482  * 2): @write_fault = false && @writable, @writable will tell the caller
1483  *     whether the mapping is writable.
1484  */
1485 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1486                         bool write_fault, bool *writable)
1487 {
1488         struct vm_area_struct *vma;
1489         kvm_pfn_t pfn = 0;
1490         int npages, r;
1491
1492         /* we can do it either atomically or asynchronously, not both */
1493         BUG_ON(atomic && async);
1494
1495         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1496                 return pfn;
1497
1498         if (atomic)
1499                 return KVM_PFN_ERR_FAULT;
1500
1501         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1502         if (npages == 1)
1503                 return pfn;
1504
1505         down_read(&current->mm->mmap_sem);
1506         if (npages == -EHWPOISON ||
1507               (!async && check_user_page_hwpoison(addr))) {
1508                 pfn = KVM_PFN_ERR_HWPOISON;
1509                 goto exit;
1510         }
1511
1512 retry:
1513         vma = find_vma_intersection(current->mm, addr, addr + 1);
1514
1515         if (vma == NULL)
1516                 pfn = KVM_PFN_ERR_FAULT;
1517         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1518                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1519                 if (r == -EAGAIN)
1520                         goto retry;
1521                 if (r < 0)
1522                         pfn = KVM_PFN_ERR_FAULT;
1523         } else {
1524                 if (async && vma_is_valid(vma, write_fault))
1525                         *async = true;
1526                 pfn = KVM_PFN_ERR_FAULT;
1527         }
1528 exit:
1529         up_read(&current->mm->mmap_sem);
1530         return pfn;
1531 }
1532
1533 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1534                                bool atomic, bool *async, bool write_fault,
1535                                bool *writable)
1536 {
1537         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1538
1539         if (addr == KVM_HVA_ERR_RO_BAD) {
1540                 if (writable)
1541                         *writable = false;
1542                 return KVM_PFN_ERR_RO_FAULT;
1543         }
1544
1545         if (kvm_is_error_hva(addr)) {
1546                 if (writable)
1547                         *writable = false;
1548                 return KVM_PFN_NOSLOT;
1549         }
1550
1551         /* Do not map writable pfn in the readonly memslot. */
1552         if (writable && memslot_is_readonly(slot)) {
1553                 *writable = false;
1554                 writable = NULL;
1555         }
1556
1557         return hva_to_pfn(addr, atomic, async, write_fault,
1558                           writable);
1559 }
1560 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1561
1562 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1563                       bool *writable)
1564 {
1565         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1566                                     write_fault, writable);
1567 }
1568 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1569
1570 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1571 {
1572         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1573 }
1574 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1575
1576 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1577 {
1578         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1579 }
1580 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1581
1582 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1583 {
1584         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1585 }
1586 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1587
1588 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1589 {
1590         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1591 }
1592 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1593
1594 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1595 {
1596         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1597 }
1598 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1599
1600 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1601 {
1602         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1603 }
1604 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1605
1606 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1607                             struct page **pages, int nr_pages)
1608 {
1609         unsigned long addr;
1610         gfn_t entry = 0;
1611
1612         addr = gfn_to_hva_many(slot, gfn, &entry);
1613         if (kvm_is_error_hva(addr))
1614                 return -1;
1615
1616         if (entry < nr_pages)
1617                 return 0;
1618
1619         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1620 }
1621 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1622
1623 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1624 {
1625         if (is_error_noslot_pfn(pfn))
1626                 return KVM_ERR_PTR_BAD_PAGE;
1627
1628         if (kvm_is_reserved_pfn(pfn)) {
1629                 WARN_ON(1);
1630                 return KVM_ERR_PTR_BAD_PAGE;
1631         }
1632
1633         return pfn_to_page(pfn);
1634 }
1635
1636 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1637 {
1638         kvm_pfn_t pfn;
1639
1640         pfn = gfn_to_pfn(kvm, gfn);
1641
1642         return kvm_pfn_to_page(pfn);
1643 }
1644 EXPORT_SYMBOL_GPL(gfn_to_page);
1645
1646 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1647 {
1648         kvm_pfn_t pfn;
1649
1650         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1651
1652         return kvm_pfn_to_page(pfn);
1653 }
1654 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1655
1656 void kvm_release_page_clean(struct page *page)
1657 {
1658         WARN_ON(is_error_page(page));
1659
1660         kvm_release_pfn_clean(page_to_pfn(page));
1661 }
1662 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1663
1664 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1665 {
1666         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1667                 put_page(pfn_to_page(pfn));
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1670
1671 void kvm_release_page_dirty(struct page *page)
1672 {
1673         WARN_ON(is_error_page(page));
1674
1675         kvm_release_pfn_dirty(page_to_pfn(page));
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1678
1679 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1680 {
1681         kvm_set_pfn_dirty(pfn);
1682         kvm_release_pfn_clean(pfn);
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1685
1686 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1687 {
1688         if (!kvm_is_reserved_pfn(pfn)) {
1689                 struct page *page = pfn_to_page(pfn);
1690
1691                 if (!PageReserved(page))
1692                         SetPageDirty(page);
1693         }
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1696
1697 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1698 {
1699         if (!kvm_is_reserved_pfn(pfn))
1700                 mark_page_accessed(pfn_to_page(pfn));
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1703
1704 void kvm_get_pfn(kvm_pfn_t pfn)
1705 {
1706         if (!kvm_is_reserved_pfn(pfn))
1707                 get_page(pfn_to_page(pfn));
1708 }
1709 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1710
1711 static int next_segment(unsigned long len, int offset)
1712 {
1713         if (len > PAGE_SIZE - offset)
1714                 return PAGE_SIZE - offset;
1715         else
1716                 return len;
1717 }
1718
1719 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1720                                  void *data, int offset, int len)
1721 {
1722         int r;
1723         unsigned long addr;
1724
1725         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1726         if (kvm_is_error_hva(addr))
1727                 return -EFAULT;
1728         r = __copy_from_user(data, (void __user *)addr + offset, len);
1729         if (r)
1730                 return -EFAULT;
1731         return 0;
1732 }
1733
1734 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1735                         int len)
1736 {
1737         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1738
1739         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1740 }
1741 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1742
1743 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1744                              int offset, int len)
1745 {
1746         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1747
1748         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1751
1752 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1753 {
1754         gfn_t gfn = gpa >> PAGE_SHIFT;
1755         int seg;
1756         int offset = offset_in_page(gpa);
1757         int ret;
1758
1759         while ((seg = next_segment(len, offset)) != 0) {
1760                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1761                 if (ret < 0)
1762                         return ret;
1763                 offset = 0;
1764                 len -= seg;
1765                 data += seg;
1766                 ++gfn;
1767         }
1768         return 0;
1769 }
1770 EXPORT_SYMBOL_GPL(kvm_read_guest);
1771
1772 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1773 {
1774         gfn_t gfn = gpa >> PAGE_SHIFT;
1775         int seg;
1776         int offset = offset_in_page(gpa);
1777         int ret;
1778
1779         while ((seg = next_segment(len, offset)) != 0) {
1780                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1781                 if (ret < 0)
1782                         return ret;
1783                 offset = 0;
1784                 len -= seg;
1785                 data += seg;
1786                 ++gfn;
1787         }
1788         return 0;
1789 }
1790 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1791
1792 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1793                                    void *data, int offset, unsigned long len)
1794 {
1795         int r;
1796         unsigned long addr;
1797
1798         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1799         if (kvm_is_error_hva(addr))
1800                 return -EFAULT;
1801         pagefault_disable();
1802         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1803         pagefault_enable();
1804         if (r)
1805                 return -EFAULT;
1806         return 0;
1807 }
1808
1809 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1810                           unsigned long len)
1811 {
1812         gfn_t gfn = gpa >> PAGE_SHIFT;
1813         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1814         int offset = offset_in_page(gpa);
1815
1816         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1817 }
1818 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1819
1820 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1821                                void *data, unsigned long len)
1822 {
1823         gfn_t gfn = gpa >> PAGE_SHIFT;
1824         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1825         int offset = offset_in_page(gpa);
1826
1827         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1828 }
1829 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1830
1831 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1832                                   const void *data, int offset, int len)
1833 {
1834         int r;
1835         unsigned long addr;
1836
1837         addr = gfn_to_hva_memslot(memslot, gfn);
1838         if (kvm_is_error_hva(addr))
1839                 return -EFAULT;
1840         r = __copy_to_user((void __user *)addr + offset, data, len);
1841         if (r)
1842                 return -EFAULT;
1843         mark_page_dirty_in_slot(memslot, gfn);
1844         return 0;
1845 }
1846
1847 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1848                          const void *data, int offset, int len)
1849 {
1850         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1851
1852         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1853 }
1854 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1855
1856 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1857                               const void *data, int offset, int len)
1858 {
1859         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1860
1861         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1862 }
1863 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1864
1865 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1866                     unsigned long len)
1867 {
1868         gfn_t gfn = gpa >> PAGE_SHIFT;
1869         int seg;
1870         int offset = offset_in_page(gpa);
1871         int ret;
1872
1873         while ((seg = next_segment(len, offset)) != 0) {
1874                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1875                 if (ret < 0)
1876                         return ret;
1877                 offset = 0;
1878                 len -= seg;
1879                 data += seg;
1880                 ++gfn;
1881         }
1882         return 0;
1883 }
1884 EXPORT_SYMBOL_GPL(kvm_write_guest);
1885
1886 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1887                          unsigned long len)
1888 {
1889         gfn_t gfn = gpa >> PAGE_SHIFT;
1890         int seg;
1891         int offset = offset_in_page(gpa);
1892         int ret;
1893
1894         while ((seg = next_segment(len, offset)) != 0) {
1895                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1896                 if (ret < 0)
1897                         return ret;
1898                 offset = 0;
1899                 len -= seg;
1900                 data += seg;
1901                 ++gfn;
1902         }
1903         return 0;
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1906
1907 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1908                                        struct gfn_to_hva_cache *ghc,
1909                                        gpa_t gpa, unsigned long len)
1910 {
1911         int offset = offset_in_page(gpa);
1912         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1913         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1914         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1915         gfn_t nr_pages_avail;
1916
1917         ghc->gpa = gpa;
1918         ghc->generation = slots->generation;
1919         ghc->len = len;
1920         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1921         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1922         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1923                 ghc->hva += offset;
1924         } else {
1925                 /*
1926                  * If the requested region crosses two memslots, we still
1927                  * verify that the entire region is valid here.
1928                  */
1929                 while (start_gfn <= end_gfn) {
1930                         nr_pages_avail = 0;
1931                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1932                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1933                                                    &nr_pages_avail);
1934                         if (kvm_is_error_hva(ghc->hva))
1935                                 return -EFAULT;
1936                         start_gfn += nr_pages_avail;
1937                 }
1938                 /* Use the slow path for cross page reads and writes. */
1939                 ghc->memslot = NULL;
1940         }
1941         return 0;
1942 }
1943
1944 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1945                               gpa_t gpa, unsigned long len)
1946 {
1947         struct kvm_memslots *slots = kvm_memslots(kvm);
1948         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1949 }
1950 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1951
1952 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1953                            void *data, int offset, unsigned long len)
1954 {
1955         struct kvm_memslots *slots = kvm_memslots(kvm);
1956         int r;
1957         gpa_t gpa = ghc->gpa + offset;
1958
1959         BUG_ON(len + offset > ghc->len);
1960
1961         if (slots->generation != ghc->generation)
1962                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1963
1964         if (unlikely(!ghc->memslot))
1965                 return kvm_write_guest(kvm, gpa, data, len);
1966
1967         if (kvm_is_error_hva(ghc->hva))
1968                 return -EFAULT;
1969
1970         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1971         if (r)
1972                 return -EFAULT;
1973         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1974
1975         return 0;
1976 }
1977 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1978
1979 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1980                            void *data, unsigned long len)
1981 {
1982         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1983 }
1984 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1985
1986 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1987                            void *data, unsigned long len)
1988 {
1989         struct kvm_memslots *slots = kvm_memslots(kvm);
1990         int r;
1991
1992         BUG_ON(len > ghc->len);
1993
1994         if (slots->generation != ghc->generation)
1995                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1996
1997         if (unlikely(!ghc->memslot))
1998                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1999
2000         if (kvm_is_error_hva(ghc->hva))
2001                 return -EFAULT;
2002
2003         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2004         if (r)
2005                 return -EFAULT;
2006
2007         return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2010
2011 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2012 {
2013         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2014
2015         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2016 }
2017 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2018
2019 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2020 {
2021         gfn_t gfn = gpa >> PAGE_SHIFT;
2022         int seg;
2023         int offset = offset_in_page(gpa);
2024         int ret;
2025
2026         while ((seg = next_segment(len, offset)) != 0) {
2027                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2028                 if (ret < 0)
2029                         return ret;
2030                 offset = 0;
2031                 len -= seg;
2032                 ++gfn;
2033         }
2034         return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2037
2038 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2039                                     gfn_t gfn)
2040 {
2041         if (memslot && memslot->dirty_bitmap) {
2042                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2043
2044                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2045         }
2046 }
2047
2048 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2049 {
2050         struct kvm_memory_slot *memslot;
2051
2052         memslot = gfn_to_memslot(kvm, gfn);
2053         mark_page_dirty_in_slot(memslot, gfn);
2054 }
2055 EXPORT_SYMBOL_GPL(mark_page_dirty);
2056
2057 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2058 {
2059         struct kvm_memory_slot *memslot;
2060
2061         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2062         mark_page_dirty_in_slot(memslot, gfn);
2063 }
2064 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2065
2066 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2067 {
2068         if (!vcpu->sigset_active)
2069                 return;
2070
2071         /*
2072          * This does a lockless modification of ->real_blocked, which is fine
2073          * because, only current can change ->real_blocked and all readers of
2074          * ->real_blocked don't care as long ->real_blocked is always a subset
2075          * of ->blocked.
2076          */
2077         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2078 }
2079
2080 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2081 {
2082         if (!vcpu->sigset_active)
2083                 return;
2084
2085         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2086         sigemptyset(&current->real_blocked);
2087 }
2088
2089 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2090 {
2091         unsigned int old, val, grow;
2092
2093         old = val = vcpu->halt_poll_ns;
2094         grow = READ_ONCE(halt_poll_ns_grow);
2095         /* 10us base */
2096         if (val == 0 && grow)
2097                 val = 10000;
2098         else
2099                 val *= grow;
2100
2101         if (val > halt_poll_ns)
2102                 val = halt_poll_ns;
2103
2104         vcpu->halt_poll_ns = val;
2105         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2106 }
2107
2108 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2109 {
2110         unsigned int old, val, shrink;
2111
2112         old = val = vcpu->halt_poll_ns;
2113         shrink = READ_ONCE(halt_poll_ns_shrink);
2114         if (shrink == 0)
2115                 val = 0;
2116         else
2117                 val /= shrink;
2118
2119         vcpu->halt_poll_ns = val;
2120         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2121 }
2122
2123 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2124 {
2125         if (kvm_arch_vcpu_runnable(vcpu)) {
2126                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2127                 return -EINTR;
2128         }
2129         if (kvm_cpu_has_pending_timer(vcpu))
2130                 return -EINTR;
2131         if (signal_pending(current))
2132                 return -EINTR;
2133
2134         return 0;
2135 }
2136
2137 /*
2138  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2139  */
2140 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2141 {
2142         ktime_t start, cur;
2143         DECLARE_SWAITQUEUE(wait);
2144         bool waited = false;
2145         u64 block_ns;
2146
2147         start = cur = ktime_get();
2148         if (vcpu->halt_poll_ns) {
2149                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2150
2151                 ++vcpu->stat.halt_attempted_poll;
2152                 do {
2153                         /*
2154                          * This sets KVM_REQ_UNHALT if an interrupt
2155                          * arrives.
2156                          */
2157                         if (kvm_vcpu_check_block(vcpu) < 0) {
2158                                 ++vcpu->stat.halt_successful_poll;
2159                                 if (!vcpu_valid_wakeup(vcpu))
2160                                         ++vcpu->stat.halt_poll_invalid;
2161                                 goto out;
2162                         }
2163                         cur = ktime_get();
2164                 } while (single_task_running() && ktime_before(cur, stop));
2165         }
2166
2167         kvm_arch_vcpu_blocking(vcpu);
2168
2169         for (;;) {
2170                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2171
2172                 if (kvm_vcpu_check_block(vcpu) < 0)
2173                         break;
2174
2175                 waited = true;
2176                 schedule();
2177         }
2178
2179         finish_swait(&vcpu->wq, &wait);
2180         cur = ktime_get();
2181
2182         kvm_arch_vcpu_unblocking(vcpu);
2183 out:
2184         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2185
2186         if (!vcpu_valid_wakeup(vcpu))
2187                 shrink_halt_poll_ns(vcpu);
2188         else if (halt_poll_ns) {
2189                 if (block_ns <= vcpu->halt_poll_ns)
2190                         ;
2191                 /* we had a long block, shrink polling */
2192                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2193                         shrink_halt_poll_ns(vcpu);
2194                 /* we had a short halt and our poll time is too small */
2195                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2196                         block_ns < halt_poll_ns)
2197                         grow_halt_poll_ns(vcpu);
2198         } else
2199                 vcpu->halt_poll_ns = 0;
2200
2201         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2202         kvm_arch_vcpu_block_finish(vcpu);
2203 }
2204 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2205
2206 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2207 {
2208         struct swait_queue_head *wqp;
2209
2210         wqp = kvm_arch_vcpu_wq(vcpu);
2211         if (swq_has_sleeper(wqp)) {
2212                 swake_up(wqp);
2213                 ++vcpu->stat.halt_wakeup;
2214                 return true;
2215         }
2216
2217         return false;
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2220
2221 #ifndef CONFIG_S390
2222 /*
2223  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2224  */
2225 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2226 {
2227         int me;
2228         int cpu = vcpu->cpu;
2229
2230         if (kvm_vcpu_wake_up(vcpu))
2231                 return;
2232
2233         me = get_cpu();
2234         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2235                 if (kvm_arch_vcpu_should_kick(vcpu))
2236                         smp_send_reschedule(cpu);
2237         put_cpu();
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2240 #endif /* !CONFIG_S390 */
2241
2242 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2243 {
2244         struct pid *pid;
2245         struct task_struct *task = NULL;
2246         int ret = 0;
2247
2248         rcu_read_lock();
2249         pid = rcu_dereference(target->pid);
2250         if (pid)
2251                 task = get_pid_task(pid, PIDTYPE_PID);
2252         rcu_read_unlock();
2253         if (!task)
2254                 return ret;
2255         ret = yield_to(task, 1);
2256         put_task_struct(task);
2257
2258         return ret;
2259 }
2260 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2261
2262 /*
2263  * Helper that checks whether a VCPU is eligible for directed yield.
2264  * Most eligible candidate to yield is decided by following heuristics:
2265  *
2266  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2267  *  (preempted lock holder), indicated by @in_spin_loop.
2268  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2269  *
2270  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2271  *  chance last time (mostly it has become eligible now since we have probably
2272  *  yielded to lockholder in last iteration. This is done by toggling
2273  *  @dy_eligible each time a VCPU checked for eligibility.)
2274  *
2275  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2276  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2277  *  burning. Giving priority for a potential lock-holder increases lock
2278  *  progress.
2279  *
2280  *  Since algorithm is based on heuristics, accessing another VCPU data without
2281  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2282  *  and continue with next VCPU and so on.
2283  */
2284 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2285 {
2286 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2287         bool eligible;
2288
2289         eligible = !vcpu->spin_loop.in_spin_loop ||
2290                     vcpu->spin_loop.dy_eligible;
2291
2292         if (vcpu->spin_loop.in_spin_loop)
2293                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2294
2295         return eligible;
2296 #else
2297         return true;
2298 #endif
2299 }
2300
2301 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2302 {
2303         struct kvm *kvm = me->kvm;
2304         struct kvm_vcpu *vcpu;
2305         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2306         int yielded = 0;
2307         int try = 3;
2308         int pass;
2309         int i;
2310
2311         kvm_vcpu_set_in_spin_loop(me, true);
2312         /*
2313          * We boost the priority of a VCPU that is runnable but not
2314          * currently running, because it got preempted by something
2315          * else and called schedule in __vcpu_run.  Hopefully that
2316          * VCPU is holding the lock that we need and will release it.
2317          * We approximate round-robin by starting at the last boosted VCPU.
2318          */
2319         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2320                 kvm_for_each_vcpu(i, vcpu, kvm) {
2321                         if (!pass && i <= last_boosted_vcpu) {
2322                                 i = last_boosted_vcpu;
2323                                 continue;
2324                         } else if (pass && i > last_boosted_vcpu)
2325                                 break;
2326                         if (!READ_ONCE(vcpu->preempted))
2327                                 continue;
2328                         if (vcpu == me)
2329                                 continue;
2330                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2331                                 continue;
2332                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2333                                 continue;
2334                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2335                                 continue;
2336
2337                         yielded = kvm_vcpu_yield_to(vcpu);
2338                         if (yielded > 0) {
2339                                 kvm->last_boosted_vcpu = i;
2340                                 break;
2341                         } else if (yielded < 0) {
2342                                 try--;
2343                                 if (!try)
2344                                         break;
2345                         }
2346                 }
2347         }
2348         kvm_vcpu_set_in_spin_loop(me, false);
2349
2350         /* Ensure vcpu is not eligible during next spinloop */
2351         kvm_vcpu_set_dy_eligible(me, false);
2352 }
2353 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2354
2355 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2356 {
2357         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2358         struct page *page;
2359
2360         if (vmf->pgoff == 0)
2361                 page = virt_to_page(vcpu->run);
2362 #ifdef CONFIG_X86
2363         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2364                 page = virt_to_page(vcpu->arch.pio_data);
2365 #endif
2366 #ifdef CONFIG_KVM_MMIO
2367         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2368                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2369 #endif
2370         else
2371                 return kvm_arch_vcpu_fault(vcpu, vmf);
2372         get_page(page);
2373         vmf->page = page;
2374         return 0;
2375 }
2376
2377 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2378         .fault = kvm_vcpu_fault,
2379 };
2380
2381 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2382 {
2383         vma->vm_ops = &kvm_vcpu_vm_ops;
2384         return 0;
2385 }
2386
2387 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2388 {
2389         struct kvm_vcpu *vcpu = filp->private_data;
2390
2391         debugfs_remove_recursive(vcpu->debugfs_dentry);
2392         kvm_put_kvm(vcpu->kvm);
2393         return 0;
2394 }
2395
2396 static struct file_operations kvm_vcpu_fops = {
2397         .release        = kvm_vcpu_release,
2398         .unlocked_ioctl = kvm_vcpu_ioctl,
2399 #ifdef CONFIG_KVM_COMPAT
2400         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2401 #endif
2402         .mmap           = kvm_vcpu_mmap,
2403         .llseek         = noop_llseek,
2404 };
2405
2406 /*
2407  * Allocates an inode for the vcpu.
2408  */
2409 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2410 {
2411         char name[8 + 1 + ITOA_MAX_LEN + 1];
2412
2413         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2414         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2415 }
2416
2417 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2418 {
2419         char dir_name[ITOA_MAX_LEN * 2];
2420         int ret;
2421
2422         if (!kvm_arch_has_vcpu_debugfs())
2423                 return 0;
2424
2425         if (!debugfs_initialized())
2426                 return 0;
2427
2428         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2429         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2430                                                                 vcpu->kvm->debugfs_dentry);
2431         if (!vcpu->debugfs_dentry)
2432                 return -ENOMEM;
2433
2434         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2435         if (ret < 0) {
2436                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2437                 return ret;
2438         }
2439
2440         return 0;
2441 }
2442
2443 /*
2444  * Creates some virtual cpus.  Good luck creating more than one.
2445  */
2446 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2447 {
2448         int r;
2449         struct kvm_vcpu *vcpu;
2450
2451         if (id >= KVM_MAX_VCPU_ID)
2452                 return -EINVAL;
2453
2454         mutex_lock(&kvm->lock);
2455         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2456                 mutex_unlock(&kvm->lock);
2457                 return -EINVAL;
2458         }
2459
2460         kvm->created_vcpus++;
2461         mutex_unlock(&kvm->lock);
2462
2463         vcpu = kvm_arch_vcpu_create(kvm, id);
2464         if (IS_ERR(vcpu)) {
2465                 r = PTR_ERR(vcpu);
2466                 goto vcpu_decrement;
2467         }
2468
2469         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2470
2471         r = kvm_arch_vcpu_setup(vcpu);
2472         if (r)
2473                 goto vcpu_destroy;
2474
2475         r = kvm_create_vcpu_debugfs(vcpu);
2476         if (r)
2477                 goto vcpu_destroy;
2478
2479         mutex_lock(&kvm->lock);
2480         if (kvm_get_vcpu_by_id(kvm, id)) {
2481                 r = -EEXIST;
2482                 goto unlock_vcpu_destroy;
2483         }
2484
2485         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2486
2487         /* Now it's all set up, let userspace reach it */
2488         kvm_get_kvm(kvm);
2489         r = create_vcpu_fd(vcpu);
2490         if (r < 0) {
2491                 kvm_put_kvm(kvm);
2492                 goto unlock_vcpu_destroy;
2493         }
2494
2495         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2496
2497         /*
2498          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2499          * before kvm->online_vcpu's incremented value.
2500          */
2501         smp_wmb();
2502         atomic_inc(&kvm->online_vcpus);
2503
2504         mutex_unlock(&kvm->lock);
2505         kvm_arch_vcpu_postcreate(vcpu);
2506         return r;
2507
2508 unlock_vcpu_destroy:
2509         mutex_unlock(&kvm->lock);
2510         debugfs_remove_recursive(vcpu->debugfs_dentry);
2511 vcpu_destroy:
2512         kvm_arch_vcpu_destroy(vcpu);
2513 vcpu_decrement:
2514         mutex_lock(&kvm->lock);
2515         kvm->created_vcpus--;
2516         mutex_unlock(&kvm->lock);
2517         return r;
2518 }
2519
2520 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2521 {
2522         if (sigset) {
2523                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2524                 vcpu->sigset_active = 1;
2525                 vcpu->sigset = *sigset;
2526         } else
2527                 vcpu->sigset_active = 0;
2528         return 0;
2529 }
2530
2531 static long kvm_vcpu_ioctl(struct file *filp,
2532                            unsigned int ioctl, unsigned long arg)
2533 {
2534         struct kvm_vcpu *vcpu = filp->private_data;
2535         void __user *argp = (void __user *)arg;
2536         int r;
2537         struct kvm_fpu *fpu = NULL;
2538         struct kvm_sregs *kvm_sregs = NULL;
2539
2540         if (vcpu->kvm->mm != current->mm)
2541                 return -EIO;
2542
2543         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2544                 return -EINVAL;
2545
2546         /*
2547          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2548          * execution; mutex_lock() would break them.
2549          */
2550         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2551         if (r != -ENOIOCTLCMD)
2552                 return r;
2553
2554         if (mutex_lock_killable(&vcpu->mutex))
2555                 return -EINTR;
2556         switch (ioctl) {
2557         case KVM_RUN: {
2558                 struct pid *oldpid;
2559                 r = -EINVAL;
2560                 if (arg)
2561                         goto out;
2562                 oldpid = rcu_access_pointer(vcpu->pid);
2563                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2564                         /* The thread running this VCPU changed. */
2565                         struct pid *newpid;
2566
2567                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2568                         if (r)
2569                                 break;
2570
2571                         newpid = get_task_pid(current, PIDTYPE_PID);
2572                         rcu_assign_pointer(vcpu->pid, newpid);
2573                         if (oldpid)
2574                                 synchronize_rcu();
2575                         put_pid(oldpid);
2576                 }
2577                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2578                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2579                 break;
2580         }
2581         case KVM_GET_REGS: {
2582                 struct kvm_regs *kvm_regs;
2583
2584                 r = -ENOMEM;
2585                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2586                 if (!kvm_regs)
2587                         goto out;
2588                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2589                 if (r)
2590                         goto out_free1;
2591                 r = -EFAULT;
2592                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2593                         goto out_free1;
2594                 r = 0;
2595 out_free1:
2596                 kfree(kvm_regs);
2597                 break;
2598         }
2599         case KVM_SET_REGS: {
2600                 struct kvm_regs *kvm_regs;
2601
2602                 r = -ENOMEM;
2603                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2604                 if (IS_ERR(kvm_regs)) {
2605                         r = PTR_ERR(kvm_regs);
2606                         goto out;
2607                 }
2608                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2609                 kfree(kvm_regs);
2610                 break;
2611         }
2612         case KVM_GET_SREGS: {
2613                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2614                 r = -ENOMEM;
2615                 if (!kvm_sregs)
2616                         goto out;
2617                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2618                 if (r)
2619                         goto out;
2620                 r = -EFAULT;
2621                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2622                         goto out;
2623                 r = 0;
2624                 break;
2625         }
2626         case KVM_SET_SREGS: {
2627                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2628                 if (IS_ERR(kvm_sregs)) {
2629                         r = PTR_ERR(kvm_sregs);
2630                         kvm_sregs = NULL;
2631                         goto out;
2632                 }
2633                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2634                 break;
2635         }
2636         case KVM_GET_MP_STATE: {
2637                 struct kvm_mp_state mp_state;
2638
2639                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2640                 if (r)
2641                         goto out;
2642                 r = -EFAULT;
2643                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2644                         goto out;
2645                 r = 0;
2646                 break;
2647         }
2648         case KVM_SET_MP_STATE: {
2649                 struct kvm_mp_state mp_state;
2650
2651                 r = -EFAULT;
2652                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2653                         goto out;
2654                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2655                 break;
2656         }
2657         case KVM_TRANSLATE: {
2658                 struct kvm_translation tr;
2659
2660                 r = -EFAULT;
2661                 if (copy_from_user(&tr, argp, sizeof(tr)))
2662                         goto out;
2663                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2664                 if (r)
2665                         goto out;
2666                 r = -EFAULT;
2667                 if (copy_to_user(argp, &tr, sizeof(tr)))
2668                         goto out;
2669                 r = 0;
2670                 break;
2671         }
2672         case KVM_SET_GUEST_DEBUG: {
2673                 struct kvm_guest_debug dbg;
2674
2675                 r = -EFAULT;
2676                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2677                         goto out;
2678                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2679                 break;
2680         }
2681         case KVM_SET_SIGNAL_MASK: {
2682                 struct kvm_signal_mask __user *sigmask_arg = argp;
2683                 struct kvm_signal_mask kvm_sigmask;
2684                 sigset_t sigset, *p;
2685
2686                 p = NULL;
2687                 if (argp) {
2688                         r = -EFAULT;
2689                         if (copy_from_user(&kvm_sigmask, argp,
2690                                            sizeof(kvm_sigmask)))
2691                                 goto out;
2692                         r = -EINVAL;
2693                         if (kvm_sigmask.len != sizeof(sigset))
2694                                 goto out;
2695                         r = -EFAULT;
2696                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2697                                            sizeof(sigset)))
2698                                 goto out;
2699                         p = &sigset;
2700                 }
2701                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2702                 break;
2703         }
2704         case KVM_GET_FPU: {
2705                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2706                 r = -ENOMEM;
2707                 if (!fpu)
2708                         goto out;
2709                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2710                 if (r)
2711                         goto out;
2712                 r = -EFAULT;
2713                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2714                         goto out;
2715                 r = 0;
2716                 break;
2717         }
2718         case KVM_SET_FPU: {
2719                 fpu = memdup_user(argp, sizeof(*fpu));
2720                 if (IS_ERR(fpu)) {
2721                         r = PTR_ERR(fpu);
2722                         fpu = NULL;
2723                         goto out;
2724                 }
2725                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2726                 break;
2727         }
2728         default:
2729                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2730         }
2731 out:
2732         mutex_unlock(&vcpu->mutex);
2733         kfree(fpu);
2734         kfree(kvm_sregs);
2735         return r;
2736 }
2737
2738 #ifdef CONFIG_KVM_COMPAT
2739 static long kvm_vcpu_compat_ioctl(struct file *filp,
2740                                   unsigned int ioctl, unsigned long arg)
2741 {
2742         struct kvm_vcpu *vcpu = filp->private_data;
2743         void __user *argp = compat_ptr(arg);
2744         int r;
2745
2746         if (vcpu->kvm->mm != current->mm)
2747                 return -EIO;
2748
2749         switch (ioctl) {
2750         case KVM_SET_SIGNAL_MASK: {
2751                 struct kvm_signal_mask __user *sigmask_arg = argp;
2752                 struct kvm_signal_mask kvm_sigmask;
2753                 sigset_t sigset;
2754
2755                 if (argp) {
2756                         r = -EFAULT;
2757                         if (copy_from_user(&kvm_sigmask, argp,
2758                                            sizeof(kvm_sigmask)))
2759                                 goto out;
2760                         r = -EINVAL;
2761                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2762                                 goto out;
2763                         r = -EFAULT;
2764                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2765                                 goto out;
2766                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2767                 } else
2768                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2769                 break;
2770         }
2771         default:
2772                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2773         }
2774
2775 out:
2776         return r;
2777 }
2778 #endif
2779
2780 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2781                                  int (*accessor)(struct kvm_device *dev,
2782                                                  struct kvm_device_attr *attr),
2783                                  unsigned long arg)
2784 {
2785         struct kvm_device_attr attr;
2786
2787         if (!accessor)
2788                 return -EPERM;
2789
2790         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2791                 return -EFAULT;
2792
2793         return accessor(dev, &attr);
2794 }
2795
2796 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2797                              unsigned long arg)
2798 {
2799         struct kvm_device *dev = filp->private_data;
2800
2801         switch (ioctl) {
2802         case KVM_SET_DEVICE_ATTR:
2803                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2804         case KVM_GET_DEVICE_ATTR:
2805                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2806         case KVM_HAS_DEVICE_ATTR:
2807                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2808         default:
2809                 if (dev->ops->ioctl)
2810                         return dev->ops->ioctl(dev, ioctl, arg);
2811
2812                 return -ENOTTY;
2813         }
2814 }
2815
2816 static int kvm_device_release(struct inode *inode, struct file *filp)
2817 {
2818         struct kvm_device *dev = filp->private_data;
2819         struct kvm *kvm = dev->kvm;
2820
2821         kvm_put_kvm(kvm);
2822         return 0;
2823 }
2824
2825 static const struct file_operations kvm_device_fops = {
2826         .unlocked_ioctl = kvm_device_ioctl,
2827 #ifdef CONFIG_KVM_COMPAT
2828         .compat_ioctl = kvm_device_ioctl,
2829 #endif
2830         .release = kvm_device_release,
2831 };
2832
2833 struct kvm_device *kvm_device_from_filp(struct file *filp)
2834 {
2835         if (filp->f_op != &kvm_device_fops)
2836                 return NULL;
2837
2838         return filp->private_data;
2839 }
2840
2841 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2842 #ifdef CONFIG_KVM_MPIC
2843         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2844         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2845 #endif
2846 };
2847
2848 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2849 {
2850         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2851                 return -ENOSPC;
2852
2853         if (kvm_device_ops_table[type] != NULL)
2854                 return -EEXIST;
2855
2856         kvm_device_ops_table[type] = ops;
2857         return 0;
2858 }
2859
2860 void kvm_unregister_device_ops(u32 type)
2861 {
2862         if (kvm_device_ops_table[type] != NULL)
2863                 kvm_device_ops_table[type] = NULL;
2864 }
2865
2866 static int kvm_ioctl_create_device(struct kvm *kvm,
2867                                    struct kvm_create_device *cd)
2868 {
2869         struct kvm_device_ops *ops = NULL;
2870         struct kvm_device *dev;
2871         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2872         int ret;
2873
2874         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2875                 return -ENODEV;
2876
2877         ops = kvm_device_ops_table[cd->type];
2878         if (ops == NULL)
2879                 return -ENODEV;
2880
2881         if (test)
2882                 return 0;
2883
2884         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2885         if (!dev)
2886                 return -ENOMEM;
2887
2888         dev->ops = ops;
2889         dev->kvm = kvm;
2890
2891         mutex_lock(&kvm->lock);
2892         ret = ops->create(dev, cd->type);
2893         if (ret < 0) {
2894                 mutex_unlock(&kvm->lock);
2895                 kfree(dev);
2896                 return ret;
2897         }
2898         list_add(&dev->vm_node, &kvm->devices);
2899         mutex_unlock(&kvm->lock);
2900
2901         if (ops->init)
2902                 ops->init(dev);
2903
2904         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2905         if (ret < 0) {
2906                 mutex_lock(&kvm->lock);
2907                 list_del(&dev->vm_node);
2908                 mutex_unlock(&kvm->lock);
2909                 ops->destroy(dev);
2910                 return ret;
2911         }
2912
2913         kvm_get_kvm(kvm);
2914         cd->fd = ret;
2915         return 0;
2916 }
2917
2918 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2919 {
2920         switch (arg) {
2921         case KVM_CAP_USER_MEMORY:
2922         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2923         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2924         case KVM_CAP_INTERNAL_ERROR_DATA:
2925 #ifdef CONFIG_HAVE_KVM_MSI
2926         case KVM_CAP_SIGNAL_MSI:
2927 #endif
2928 #ifdef CONFIG_HAVE_KVM_IRQFD
2929         case KVM_CAP_IRQFD:
2930         case KVM_CAP_IRQFD_RESAMPLE:
2931 #endif
2932         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2933         case KVM_CAP_CHECK_EXTENSION_VM:
2934                 return 1;
2935 #ifdef CONFIG_KVM_MMIO
2936         case KVM_CAP_COALESCED_MMIO:
2937                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2938 #endif
2939 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2940         case KVM_CAP_IRQ_ROUTING:
2941                 return KVM_MAX_IRQ_ROUTES;
2942 #endif
2943 #if KVM_ADDRESS_SPACE_NUM > 1
2944         case KVM_CAP_MULTI_ADDRESS_SPACE:
2945                 return KVM_ADDRESS_SPACE_NUM;
2946 #endif
2947         case KVM_CAP_MAX_VCPU_ID:
2948                 return KVM_MAX_VCPU_ID;
2949         default:
2950                 break;
2951         }
2952         return kvm_vm_ioctl_check_extension(kvm, arg);
2953 }
2954
2955 static long kvm_vm_ioctl(struct file *filp,
2956                            unsigned int ioctl, unsigned long arg)
2957 {
2958         struct kvm *kvm = filp->private_data;
2959         void __user *argp = (void __user *)arg;
2960         int r;
2961
2962         if (kvm->mm != current->mm)
2963                 return -EIO;
2964         switch (ioctl) {
2965         case KVM_CREATE_VCPU:
2966                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2967                 break;
2968         case KVM_SET_USER_MEMORY_REGION: {
2969                 struct kvm_userspace_memory_region kvm_userspace_mem;
2970
2971                 r = -EFAULT;
2972                 if (copy_from_user(&kvm_userspace_mem, argp,
2973                                                 sizeof(kvm_userspace_mem)))
2974                         goto out;
2975
2976                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2977                 break;
2978         }
2979         case KVM_GET_DIRTY_LOG: {
2980                 struct kvm_dirty_log log;
2981
2982                 r = -EFAULT;
2983                 if (copy_from_user(&log, argp, sizeof(log)))
2984                         goto out;
2985                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2986                 break;
2987         }
2988 #ifdef CONFIG_KVM_MMIO
2989         case KVM_REGISTER_COALESCED_MMIO: {
2990                 struct kvm_coalesced_mmio_zone zone;
2991
2992                 r = -EFAULT;
2993                 if (copy_from_user(&zone, argp, sizeof(zone)))
2994                         goto out;
2995                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2996                 break;
2997         }
2998         case KVM_UNREGISTER_COALESCED_MMIO: {
2999                 struct kvm_coalesced_mmio_zone zone;
3000
3001                 r = -EFAULT;
3002                 if (copy_from_user(&zone, argp, sizeof(zone)))
3003                         goto out;
3004                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3005                 break;
3006         }
3007 #endif
3008         case KVM_IRQFD: {
3009                 struct kvm_irqfd data;
3010
3011                 r = -EFAULT;
3012                 if (copy_from_user(&data, argp, sizeof(data)))
3013                         goto out;
3014                 r = kvm_irqfd(kvm, &data);
3015                 break;
3016         }
3017         case KVM_IOEVENTFD: {
3018                 struct kvm_ioeventfd data;
3019
3020                 r = -EFAULT;
3021                 if (copy_from_user(&data, argp, sizeof(data)))
3022                         goto out;
3023                 r = kvm_ioeventfd(kvm, &data);
3024                 break;
3025         }
3026 #ifdef CONFIG_HAVE_KVM_MSI
3027         case KVM_SIGNAL_MSI: {
3028                 struct kvm_msi msi;
3029
3030                 r = -EFAULT;
3031                 if (copy_from_user(&msi, argp, sizeof(msi)))
3032                         goto out;
3033                 r = kvm_send_userspace_msi(kvm, &msi);
3034                 break;
3035         }
3036 #endif
3037 #ifdef __KVM_HAVE_IRQ_LINE
3038         case KVM_IRQ_LINE_STATUS:
3039         case KVM_IRQ_LINE: {
3040                 struct kvm_irq_level irq_event;
3041
3042                 r = -EFAULT;
3043                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3044                         goto out;
3045
3046                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3047                                         ioctl == KVM_IRQ_LINE_STATUS);
3048                 if (r)
3049                         goto out;
3050
3051                 r = -EFAULT;
3052                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3053                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3054                                 goto out;
3055                 }
3056
3057                 r = 0;
3058                 break;
3059         }
3060 #endif
3061 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3062         case KVM_SET_GSI_ROUTING: {
3063                 struct kvm_irq_routing routing;
3064                 struct kvm_irq_routing __user *urouting;
3065                 struct kvm_irq_routing_entry *entries = NULL;
3066
3067                 r = -EFAULT;
3068                 if (copy_from_user(&routing, argp, sizeof(routing)))
3069                         goto out;
3070                 r = -EINVAL;
3071                 if (!kvm_arch_can_set_irq_routing(kvm))
3072                         goto out;
3073                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3074                         goto out;
3075                 if (routing.flags)
3076                         goto out;
3077                 if (routing.nr) {
3078                         r = -ENOMEM;
3079                         entries = vmalloc(array_size(sizeof(*entries),
3080                                                      routing.nr));
3081                         if (!entries)
3082                                 goto out;
3083                         r = -EFAULT;
3084                         urouting = argp;
3085                         if (copy_from_user(entries, urouting->entries,
3086                                            routing.nr * sizeof(*entries)))
3087                                 goto out_free_irq_routing;
3088                 }
3089                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3090                                         routing.flags);
3091 out_free_irq_routing:
3092                 vfree(entries);
3093                 break;
3094         }
3095 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3096         case KVM_CREATE_DEVICE: {
3097                 struct kvm_create_device cd;
3098
3099                 r = -EFAULT;
3100                 if (copy_from_user(&cd, argp, sizeof(cd)))
3101                         goto out;
3102
3103                 r = kvm_ioctl_create_device(kvm, &cd);
3104                 if (r)
3105                         goto out;
3106
3107                 r = -EFAULT;
3108                 if (copy_to_user(argp, &cd, sizeof(cd)))
3109                         goto out;
3110
3111                 r = 0;
3112                 break;
3113         }
3114         case KVM_CHECK_EXTENSION:
3115                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3116                 break;
3117         default:
3118                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3119         }
3120 out:
3121         return r;
3122 }
3123
3124 #ifdef CONFIG_KVM_COMPAT
3125 struct compat_kvm_dirty_log {
3126         __u32 slot;
3127         __u32 padding1;
3128         union {
3129                 compat_uptr_t dirty_bitmap; /* one bit per page */
3130                 __u64 padding2;
3131         };
3132 };
3133
3134 static long kvm_vm_compat_ioctl(struct file *filp,
3135                            unsigned int ioctl, unsigned long arg)
3136 {
3137         struct kvm *kvm = filp->private_data;
3138         int r;
3139
3140         if (kvm->mm != current->mm)
3141                 return -EIO;
3142         switch (ioctl) {
3143         case KVM_GET_DIRTY_LOG: {
3144                 struct compat_kvm_dirty_log compat_log;
3145                 struct kvm_dirty_log log;
3146
3147                 if (copy_from_user(&compat_log, (void __user *)arg,
3148                                    sizeof(compat_log)))
3149                         return -EFAULT;
3150                 log.slot         = compat_log.slot;
3151                 log.padding1     = compat_log.padding1;
3152                 log.padding2     = compat_log.padding2;
3153                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3154
3155                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3156                 break;
3157         }
3158         default:
3159                 r = kvm_vm_ioctl(filp, ioctl, arg);
3160         }
3161         return r;
3162 }
3163 #endif
3164
3165 static struct file_operations kvm_vm_fops = {
3166         .release        = kvm_vm_release,
3167         .unlocked_ioctl = kvm_vm_ioctl,
3168 #ifdef CONFIG_KVM_COMPAT
3169         .compat_ioctl   = kvm_vm_compat_ioctl,
3170 #endif
3171         .llseek         = noop_llseek,
3172 };
3173
3174 static int kvm_dev_ioctl_create_vm(unsigned long type)
3175 {
3176         int r;
3177         struct kvm *kvm;
3178         struct file *file;
3179
3180         kvm = kvm_create_vm(type);
3181         if (IS_ERR(kvm))
3182                 return PTR_ERR(kvm);
3183 #ifdef CONFIG_KVM_MMIO
3184         r = kvm_coalesced_mmio_init(kvm);
3185         if (r < 0)
3186                 goto put_kvm;
3187 #endif
3188         r = get_unused_fd_flags(O_CLOEXEC);
3189         if (r < 0)
3190                 goto put_kvm;
3191
3192         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3193         if (IS_ERR(file)) {
3194                 put_unused_fd(r);
3195                 r = PTR_ERR(file);
3196                 goto put_kvm;
3197         }
3198
3199         /*
3200          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3201          * already set, with ->release() being kvm_vm_release().  In error
3202          * cases it will be called by the final fput(file) and will take
3203          * care of doing kvm_put_kvm(kvm).
3204          */
3205         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3206                 put_unused_fd(r);
3207                 fput(file);
3208                 return -ENOMEM;
3209         }
3210         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3211
3212         fd_install(r, file);
3213         return r;
3214
3215 put_kvm:
3216         kvm_put_kvm(kvm);
3217         return r;
3218 }
3219
3220 static long kvm_dev_ioctl(struct file *filp,
3221                           unsigned int ioctl, unsigned long arg)
3222 {
3223         long r = -EINVAL;
3224
3225         switch (ioctl) {
3226         case KVM_GET_API_VERSION:
3227                 if (arg)
3228                         goto out;
3229                 r = KVM_API_VERSION;
3230                 break;
3231         case KVM_CREATE_VM:
3232                 r = kvm_dev_ioctl_create_vm(arg);
3233                 break;
3234         case KVM_CHECK_EXTENSION:
3235                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3236                 break;
3237         case KVM_GET_VCPU_MMAP_SIZE:
3238                 if (arg)
3239                         goto out;
3240                 r = PAGE_SIZE;     /* struct kvm_run */
3241 #ifdef CONFIG_X86
3242                 r += PAGE_SIZE;    /* pio data page */
3243 #endif
3244 #ifdef CONFIG_KVM_MMIO
3245                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3246 #endif
3247                 break;
3248         case KVM_TRACE_ENABLE:
3249         case KVM_TRACE_PAUSE:
3250         case KVM_TRACE_DISABLE:
3251                 r = -EOPNOTSUPP;
3252                 break;
3253         default:
3254                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3255         }
3256 out:
3257         return r;
3258 }
3259
3260 static struct file_operations kvm_chardev_ops = {
3261         .unlocked_ioctl = kvm_dev_ioctl,
3262         .compat_ioctl   = kvm_dev_ioctl,
3263         .llseek         = noop_llseek,
3264 };
3265
3266 static struct miscdevice kvm_dev = {
3267         KVM_MINOR,
3268         "kvm",
3269         &kvm_chardev_ops,
3270 };
3271
3272 static void hardware_enable_nolock(void *junk)
3273 {
3274         int cpu = raw_smp_processor_id();
3275         int r;
3276
3277         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3278                 return;
3279
3280         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3281
3282         r = kvm_arch_hardware_enable();
3283
3284         if (r) {
3285                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3286                 atomic_inc(&hardware_enable_failed);
3287                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3288         }
3289 }
3290
3291 static int kvm_starting_cpu(unsigned int cpu)
3292 {
3293         raw_spin_lock(&kvm_count_lock);
3294         if (kvm_usage_count)
3295                 hardware_enable_nolock(NULL);
3296         raw_spin_unlock(&kvm_count_lock);
3297         return 0;
3298 }
3299
3300 static void hardware_disable_nolock(void *junk)
3301 {
3302         int cpu = raw_smp_processor_id();
3303
3304         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3305                 return;
3306         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3307         kvm_arch_hardware_disable();
3308 }
3309
3310 static int kvm_dying_cpu(unsigned int cpu)
3311 {
3312         raw_spin_lock(&kvm_count_lock);
3313         if (kvm_usage_count)
3314                 hardware_disable_nolock(NULL);
3315         raw_spin_unlock(&kvm_count_lock);
3316         return 0;
3317 }
3318
3319 static void hardware_disable_all_nolock(void)
3320 {
3321         BUG_ON(!kvm_usage_count);
3322
3323         kvm_usage_count--;
3324         if (!kvm_usage_count)
3325                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3326 }
3327
3328 static void hardware_disable_all(void)
3329 {
3330         raw_spin_lock(&kvm_count_lock);
3331         hardware_disable_all_nolock();
3332         raw_spin_unlock(&kvm_count_lock);
3333 }
3334
3335 static int hardware_enable_all(void)
3336 {
3337         int r = 0;
3338
3339         raw_spin_lock(&kvm_count_lock);
3340
3341         kvm_usage_count++;
3342         if (kvm_usage_count == 1) {
3343                 atomic_set(&hardware_enable_failed, 0);
3344                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3345
3346                 if (atomic_read(&hardware_enable_failed)) {
3347                         hardware_disable_all_nolock();
3348                         r = -EBUSY;
3349                 }
3350         }
3351
3352         raw_spin_unlock(&kvm_count_lock);
3353
3354         return r;
3355 }
3356
3357 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3358                       void *v)
3359 {
3360         /*
3361          * Some (well, at least mine) BIOSes hang on reboot if
3362          * in vmx root mode.
3363          *
3364          * And Intel TXT required VMX off for all cpu when system shutdown.
3365          */
3366         pr_info("kvm: exiting hardware virtualization\n");
3367         kvm_rebooting = true;
3368         on_each_cpu(hardware_disable_nolock, NULL, 1);
3369         return NOTIFY_OK;
3370 }
3371
3372 static struct notifier_block kvm_reboot_notifier = {
3373         .notifier_call = kvm_reboot,
3374         .priority = 0,
3375 };
3376
3377 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3378 {
3379         int i;
3380
3381         for (i = 0; i < bus->dev_count; i++) {
3382                 struct kvm_io_device *pos = bus->range[i].dev;
3383
3384                 kvm_iodevice_destructor(pos);
3385         }
3386         kfree(bus);
3387 }
3388
3389 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3390                                  const struct kvm_io_range *r2)
3391 {
3392         gpa_t addr1 = r1->addr;
3393         gpa_t addr2 = r2->addr;
3394
3395         if (addr1 < addr2)
3396                 return -1;
3397
3398         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3399          * accept any overlapping write.  Any order is acceptable for
3400          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3401          * we process all of them.
3402          */
3403         if (r2->len) {
3404                 addr1 += r1->len;
3405                 addr2 += r2->len;
3406         }
3407
3408         if (addr1 > addr2)
3409                 return 1;
3410
3411         return 0;
3412 }
3413
3414 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3415 {
3416         return kvm_io_bus_cmp(p1, p2);
3417 }
3418
3419 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3420                              gpa_t addr, int len)
3421 {
3422         struct kvm_io_range *range, key;
3423         int off;
3424
3425         key = (struct kvm_io_range) {
3426                 .addr = addr,
3427                 .len = len,
3428         };
3429
3430         range = bsearch(&key, bus->range, bus->dev_count,
3431                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3432         if (range == NULL)
3433                 return -ENOENT;
3434
3435         off = range - bus->range;
3436
3437         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3438                 off--;
3439
3440         return off;
3441 }
3442
3443 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3444                               struct kvm_io_range *range, const void *val)
3445 {
3446         int idx;
3447
3448         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3449         if (idx < 0)
3450                 return -EOPNOTSUPP;
3451
3452         while (idx < bus->dev_count &&
3453                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3454                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3455                                         range->len, val))
3456                         return idx;
3457                 idx++;
3458         }
3459
3460         return -EOPNOTSUPP;
3461 }
3462
3463 /* kvm_io_bus_write - called under kvm->slots_lock */
3464 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3465                      int len, const void *val)
3466 {
3467         struct kvm_io_bus *bus;
3468         struct kvm_io_range range;
3469         int r;
3470
3471         range = (struct kvm_io_range) {
3472                 .addr = addr,
3473                 .len = len,
3474         };
3475
3476         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3477         if (!bus)
3478                 return -ENOMEM;
3479         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3480         return r < 0 ? r : 0;
3481 }
3482
3483 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3484 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3485                             gpa_t addr, int len, const void *val, long cookie)
3486 {
3487         struct kvm_io_bus *bus;
3488         struct kvm_io_range range;
3489
3490         range = (struct kvm_io_range) {
3491                 .addr = addr,
3492                 .len = len,
3493         };
3494
3495         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3496         if (!bus)
3497                 return -ENOMEM;
3498
3499         /* First try the device referenced by cookie. */
3500         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3501             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3502                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3503                                         val))
3504                         return cookie;
3505
3506         /*
3507          * cookie contained garbage; fall back to search and return the
3508          * correct cookie value.
3509          */
3510         return __kvm_io_bus_write(vcpu, bus, &range, val);
3511 }
3512
3513 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3514                              struct kvm_io_range *range, void *val)
3515 {
3516         int idx;
3517
3518         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3519         if (idx < 0)
3520                 return -EOPNOTSUPP;
3521
3522         while (idx < bus->dev_count &&
3523                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3524                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3525                                        range->len, val))
3526                         return idx;
3527                 idx++;
3528         }
3529
3530         return -EOPNOTSUPP;
3531 }
3532 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3533
3534 /* kvm_io_bus_read - called under kvm->slots_lock */
3535 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3536                     int len, void *val)
3537 {
3538         struct kvm_io_bus *bus;
3539         struct kvm_io_range range;
3540         int r;
3541
3542         range = (struct kvm_io_range) {
3543                 .addr = addr,
3544                 .len = len,
3545         };
3546
3547         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3548         if (!bus)
3549                 return -ENOMEM;
3550         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3551         return r < 0 ? r : 0;
3552 }
3553
3554
3555 /* Caller must hold slots_lock. */
3556 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3557                             int len, struct kvm_io_device *dev)
3558 {
3559         int i;
3560         struct kvm_io_bus *new_bus, *bus;
3561         struct kvm_io_range range;
3562
3563         bus = kvm_get_bus(kvm, bus_idx);
3564         if (!bus)
3565                 return -ENOMEM;
3566
3567         /* exclude ioeventfd which is limited by maximum fd */
3568         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3569                 return -ENOSPC;
3570
3571         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3572                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3573         if (!new_bus)
3574                 return -ENOMEM;
3575
3576         range = (struct kvm_io_range) {
3577                 .addr = addr,
3578                 .len = len,
3579                 .dev = dev,
3580         };
3581
3582         for (i = 0; i < bus->dev_count; i++)
3583                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3584                         break;
3585
3586         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3587         new_bus->dev_count++;
3588         new_bus->range[i] = range;
3589         memcpy(new_bus->range + i + 1, bus->range + i,
3590                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3591         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3592         synchronize_srcu_expedited(&kvm->srcu);
3593         kfree(bus);
3594
3595         return 0;
3596 }
3597
3598 /* Caller must hold slots_lock. */
3599 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3600                                struct kvm_io_device *dev)
3601 {
3602         int i;
3603         struct kvm_io_bus *new_bus, *bus;
3604
3605         bus = kvm_get_bus(kvm, bus_idx);
3606         if (!bus)
3607                 return;
3608
3609         for (i = 0; i < bus->dev_count; i++)
3610                 if (bus->range[i].dev == dev) {
3611                         break;
3612                 }
3613
3614         if (i == bus->dev_count)
3615                 return;
3616
3617         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3618                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3619         if (!new_bus)  {
3620                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3621                 goto broken;
3622         }
3623
3624         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3625         new_bus->dev_count--;
3626         memcpy(new_bus->range + i, bus->range + i + 1,
3627                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3628
3629 broken:
3630         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3631         synchronize_srcu_expedited(&kvm->srcu);
3632         kfree(bus);
3633         return;
3634 }
3635
3636 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3637                                          gpa_t addr)
3638 {
3639         struct kvm_io_bus *bus;
3640         int dev_idx, srcu_idx;
3641         struct kvm_io_device *iodev = NULL;
3642
3643         srcu_idx = srcu_read_lock(&kvm->srcu);
3644
3645         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3646         if (!bus)
3647                 goto out_unlock;
3648
3649         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3650         if (dev_idx < 0)
3651                 goto out_unlock;
3652
3653         iodev = bus->range[dev_idx].dev;
3654
3655 out_unlock:
3656         srcu_read_unlock(&kvm->srcu, srcu_idx);
3657
3658         return iodev;
3659 }
3660 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3661
3662 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3663                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3664                            const char *fmt)
3665 {
3666         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3667                                           inode->i_private;
3668
3669         /* The debugfs files are a reference to the kvm struct which
3670          * is still valid when kvm_destroy_vm is called.
3671          * To avoid the race between open and the removal of the debugfs
3672          * directory we test against the users count.
3673          */
3674         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3675                 return -ENOENT;
3676
3677         if (simple_attr_open(inode, file, get, set, fmt)) {
3678                 kvm_put_kvm(stat_data->kvm);
3679                 return -ENOMEM;
3680         }
3681
3682         return 0;
3683 }
3684
3685 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3686 {
3687         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3688                                           inode->i_private;
3689
3690         simple_attr_release(inode, file);
3691         kvm_put_kvm(stat_data->kvm);
3692
3693         return 0;
3694 }
3695
3696 static int vm_stat_get_per_vm(void *data, u64 *val)
3697 {
3698         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3699
3700         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3701
3702         return 0;
3703 }
3704
3705 static int vm_stat_clear_per_vm(void *data, u64 val)
3706 {
3707         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3708
3709         if (val)
3710                 return -EINVAL;
3711
3712         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3713
3714         return 0;
3715 }
3716
3717 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3718 {
3719         __simple_attr_check_format("%llu\n", 0ull);
3720         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3721                                 vm_stat_clear_per_vm, "%llu\n");
3722 }
3723
3724 static const struct file_operations vm_stat_get_per_vm_fops = {
3725         .owner   = THIS_MODULE,
3726         .open    = vm_stat_get_per_vm_open,
3727         .release = kvm_debugfs_release,
3728         .read    = simple_attr_read,
3729         .write   = simple_attr_write,
3730         .llseek  = no_llseek,
3731 };
3732
3733 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3734 {
3735         int i;
3736         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3737         struct kvm_vcpu *vcpu;
3738
3739         *val = 0;
3740
3741         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3742                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3743
3744         return 0;
3745 }
3746
3747 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3748 {
3749         int i;
3750         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3751         struct kvm_vcpu *vcpu;
3752
3753         if (val)
3754                 return -EINVAL;
3755
3756         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3757                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3758
3759         return 0;
3760 }
3761
3762 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3763 {
3764         __simple_attr_check_format("%llu\n", 0ull);
3765         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3766                                  vcpu_stat_clear_per_vm, "%llu\n");
3767 }
3768
3769 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3770         .owner   = THIS_MODULE,
3771         .open    = vcpu_stat_get_per_vm_open,
3772         .release = kvm_debugfs_release,
3773         .read    = simple_attr_read,
3774         .write   = simple_attr_write,
3775         .llseek  = no_llseek,
3776 };
3777
3778 static const struct file_operations *stat_fops_per_vm[] = {
3779         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3780         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3781 };
3782
3783 static int vm_stat_get(void *_offset, u64 *val)
3784 {
3785         unsigned offset = (long)_offset;
3786         struct kvm *kvm;
3787         struct kvm_stat_data stat_tmp = {.offset = offset};
3788         u64 tmp_val;
3789
3790         *val = 0;
3791         spin_lock(&kvm_lock);
3792         list_for_each_entry(kvm, &vm_list, vm_list) {
3793                 stat_tmp.kvm = kvm;
3794                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3795                 *val += tmp_val;
3796         }
3797         spin_unlock(&kvm_lock);
3798         return 0;
3799 }
3800
3801 static int vm_stat_clear(void *_offset, u64 val)
3802 {
3803         unsigned offset = (long)_offset;
3804         struct kvm *kvm;
3805         struct kvm_stat_data stat_tmp = {.offset = offset};
3806
3807         if (val)
3808                 return -EINVAL;
3809
3810         spin_lock(&kvm_lock);
3811         list_for_each_entry(kvm, &vm_list, vm_list) {
3812                 stat_tmp.kvm = kvm;
3813                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3814         }
3815         spin_unlock(&kvm_lock);
3816
3817         return 0;
3818 }
3819
3820 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3821
3822 static int vcpu_stat_get(void *_offset, u64 *val)
3823 {
3824         unsigned offset = (long)_offset;
3825         struct kvm *kvm;
3826         struct kvm_stat_data stat_tmp = {.offset = offset};
3827         u64 tmp_val;
3828
3829         *val = 0;
3830         spin_lock(&kvm_lock);
3831         list_for_each_entry(kvm, &vm_list, vm_list) {
3832                 stat_tmp.kvm = kvm;
3833                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3834                 *val += tmp_val;
3835         }
3836         spin_unlock(&kvm_lock);
3837         return 0;
3838 }
3839
3840 static int vcpu_stat_clear(void *_offset, u64 val)
3841 {
3842         unsigned offset = (long)_offset;
3843         struct kvm *kvm;
3844         struct kvm_stat_data stat_tmp = {.offset = offset};
3845
3846         if (val)
3847                 return -EINVAL;
3848
3849         spin_lock(&kvm_lock);
3850         list_for_each_entry(kvm, &vm_list, vm_list) {
3851                 stat_tmp.kvm = kvm;
3852                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3853         }
3854         spin_unlock(&kvm_lock);
3855
3856         return 0;
3857 }
3858
3859 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3860                         "%llu\n");
3861
3862 static const struct file_operations *stat_fops[] = {
3863         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3864         [KVM_STAT_VM]   = &vm_stat_fops,
3865 };
3866
3867 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3868 {
3869         struct kobj_uevent_env *env;
3870         unsigned long long created, active;
3871
3872         if (!kvm_dev.this_device || !kvm)
3873                 return;
3874
3875         spin_lock(&kvm_lock);
3876         if (type == KVM_EVENT_CREATE_VM) {
3877                 kvm_createvm_count++;
3878                 kvm_active_vms++;
3879         } else if (type == KVM_EVENT_DESTROY_VM) {
3880                 kvm_active_vms--;
3881         }
3882         created = kvm_createvm_count;
3883         active = kvm_active_vms;
3884         spin_unlock(&kvm_lock);
3885
3886         env = kzalloc(sizeof(*env), GFP_KERNEL);
3887         if (!env)
3888                 return;
3889
3890         add_uevent_var(env, "CREATED=%llu", created);
3891         add_uevent_var(env, "COUNT=%llu", active);
3892
3893         if (type == KVM_EVENT_CREATE_VM) {
3894                 add_uevent_var(env, "EVENT=create");
3895                 kvm->userspace_pid = task_pid_nr(current);
3896         } else if (type == KVM_EVENT_DESTROY_VM) {
3897                 add_uevent_var(env, "EVENT=destroy");
3898         }
3899         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3900
3901         if (kvm->debugfs_dentry) {
3902                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3903
3904                 if (p) {
3905                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3906                         if (!IS_ERR(tmp))
3907                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3908                         kfree(p);
3909                 }
3910         }
3911         /* no need for checks, since we are adding at most only 5 keys */
3912         env->envp[env->envp_idx++] = NULL;
3913         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3914         kfree(env);
3915 }
3916
3917 static void kvm_init_debug(void)
3918 {
3919         struct kvm_stats_debugfs_item *p;
3920
3921         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3922
3923         kvm_debugfs_num_entries = 0;
3924         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3925                 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3926                                     (void *)(long)p->offset,
3927                                     stat_fops[p->kind]);
3928         }
3929 }
3930
3931 static int kvm_suspend(void)
3932 {
3933         if (kvm_usage_count)
3934                 hardware_disable_nolock(NULL);
3935         return 0;
3936 }
3937
3938 static void kvm_resume(void)
3939 {
3940         if (kvm_usage_count) {
3941                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3942                 hardware_enable_nolock(NULL);
3943         }
3944 }
3945
3946 static struct syscore_ops kvm_syscore_ops = {
3947         .suspend = kvm_suspend,
3948         .resume = kvm_resume,
3949 };
3950
3951 static inline
3952 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3953 {
3954         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3955 }
3956
3957 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3958 {
3959         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3960
3961         if (vcpu->preempted)
3962                 vcpu->preempted = false;
3963
3964         kvm_arch_sched_in(vcpu, cpu);
3965
3966         kvm_arch_vcpu_load(vcpu, cpu);
3967 }
3968
3969 static void kvm_sched_out(struct preempt_notifier *pn,
3970                           struct task_struct *next)
3971 {
3972         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3973
3974         if (current->state == TASK_RUNNING)
3975                 vcpu->preempted = true;
3976         kvm_arch_vcpu_put(vcpu);
3977 }
3978
3979 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3980                   struct module *module)
3981 {
3982         int r;
3983         int cpu;
3984
3985         r = kvm_arch_init(opaque);
3986         if (r)
3987                 goto out_fail;
3988
3989         /*
3990          * kvm_arch_init makes sure there's at most one caller
3991          * for architectures that support multiple implementations,
3992          * like intel and amd on x86.
3993          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3994          * conflicts in case kvm is already setup for another implementation.
3995          */
3996         r = kvm_irqfd_init();
3997         if (r)
3998                 goto out_irqfd;
3999
4000         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4001                 r = -ENOMEM;
4002                 goto out_free_0;
4003         }
4004
4005         r = kvm_arch_hardware_setup();
4006         if (r < 0)
4007                 goto out_free_0a;
4008
4009         for_each_online_cpu(cpu) {
4010                 smp_call_function_single(cpu,
4011                                 kvm_arch_check_processor_compat,
4012                                 &r, 1);
4013                 if (r < 0)
4014                         goto out_free_1;
4015         }
4016
4017         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4018                                       kvm_starting_cpu, kvm_dying_cpu);
4019         if (r)
4020                 goto out_free_2;
4021         register_reboot_notifier(&kvm_reboot_notifier);
4022
4023         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4024         if (!vcpu_align)
4025                 vcpu_align = __alignof__(struct kvm_vcpu);
4026         kvm_vcpu_cache =
4027                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4028                                            SLAB_ACCOUNT,
4029                                            offsetof(struct kvm_vcpu, arch),
4030                                            sizeof_field(struct kvm_vcpu, arch),
4031                                            NULL);
4032         if (!kvm_vcpu_cache) {
4033                 r = -ENOMEM;
4034                 goto out_free_3;
4035         }
4036
4037         r = kvm_async_pf_init();
4038         if (r)
4039                 goto out_free;
4040
4041         kvm_chardev_ops.owner = module;
4042         kvm_vm_fops.owner = module;
4043         kvm_vcpu_fops.owner = module;
4044
4045         r = misc_register(&kvm_dev);
4046         if (r) {
4047                 pr_err("kvm: misc device register failed\n");
4048                 goto out_unreg;
4049         }
4050
4051         register_syscore_ops(&kvm_syscore_ops);
4052
4053         kvm_preempt_ops.sched_in = kvm_sched_in;
4054         kvm_preempt_ops.sched_out = kvm_sched_out;
4055
4056         kvm_init_debug();
4057
4058         r = kvm_vfio_ops_init();
4059         WARN_ON(r);
4060
4061         return 0;
4062
4063 out_unreg:
4064         kvm_async_pf_deinit();
4065 out_free:
4066         kmem_cache_destroy(kvm_vcpu_cache);
4067 out_free_3:
4068         unregister_reboot_notifier(&kvm_reboot_notifier);
4069         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4070 out_free_2:
4071 out_free_1:
4072         kvm_arch_hardware_unsetup();
4073 out_free_0a:
4074         free_cpumask_var(cpus_hardware_enabled);
4075 out_free_0:
4076         kvm_irqfd_exit();
4077 out_irqfd:
4078         kvm_arch_exit();
4079 out_fail:
4080         return r;
4081 }
4082 EXPORT_SYMBOL_GPL(kvm_init);
4083
4084 void kvm_exit(void)
4085 {
4086         debugfs_remove_recursive(kvm_debugfs_dir);
4087         misc_deregister(&kvm_dev);
4088         kmem_cache_destroy(kvm_vcpu_cache);
4089         kvm_async_pf_deinit();
4090         unregister_syscore_ops(&kvm_syscore_ops);
4091         unregister_reboot_notifier(&kvm_reboot_notifier);
4092         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4093         on_each_cpu(hardware_disable_nolock, NULL, 1);
4094         kvm_arch_hardware_unsetup();
4095         kvm_arch_exit();
4096         kvm_irqfd_exit();
4097         free_cpumask_var(cpus_hardware_enabled);
4098         kvm_vfio_ops_exit();
4099 }
4100 EXPORT_SYMBOL_GPL(kvm_exit);