mm/gup.c: convert to use get_user_{page|pages}_fast_only()
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94  * Ordering of locks:
95  *
96  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 static struct kmem_cache *kvm_vcpu_cache;
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations stat_fops_per_vm;
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133                                 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137         return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
140                         .open           = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                 unsigned long start, unsigned long end, bool blockable)
160 {
161         return 0;
162 }
163
164 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
165 {
166         /*
167          * The metadata used by is_zone_device_page() to determine whether or
168          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
169          * the device has been pinned, e.g. by get_user_pages().  WARN if the
170          * page_count() is zero to help detect bad usage of this helper.
171          */
172         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
173                 return false;
174
175         return is_zone_device_page(pfn_to_page(pfn));
176 }
177
178 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
179 {
180         /*
181          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
182          * perspective they are "normal" pages, albeit with slightly different
183          * usage rules.
184          */
185         if (pfn_valid(pfn))
186                 return PageReserved(pfn_to_page(pfn)) &&
187                        !is_zero_pfn(pfn) &&
188                        !kvm_is_zone_device_pfn(pfn);
189
190         return true;
191 }
192
193 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
194 {
195         struct page *page = pfn_to_page(pfn);
196
197         if (!PageTransCompoundMap(page))
198                 return false;
199
200         return is_transparent_hugepage(compound_head(page));
201 }
202
203 /*
204  * Switches to specified vcpu, until a matching vcpu_put()
205  */
206 void vcpu_load(struct kvm_vcpu *vcpu)
207 {
208         int cpu = get_cpu();
209
210         __this_cpu_write(kvm_running_vcpu, vcpu);
211         preempt_notifier_register(&vcpu->preempt_notifier);
212         kvm_arch_vcpu_load(vcpu, cpu);
213         put_cpu();
214 }
215 EXPORT_SYMBOL_GPL(vcpu_load);
216
217 void vcpu_put(struct kvm_vcpu *vcpu)
218 {
219         preempt_disable();
220         kvm_arch_vcpu_put(vcpu);
221         preempt_notifier_unregister(&vcpu->preempt_notifier);
222         __this_cpu_write(kvm_running_vcpu, NULL);
223         preempt_enable();
224 }
225 EXPORT_SYMBOL_GPL(vcpu_put);
226
227 /* TODO: merge with kvm_arch_vcpu_should_kick */
228 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
229 {
230         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
231
232         /*
233          * We need to wait for the VCPU to reenable interrupts and get out of
234          * READING_SHADOW_PAGE_TABLES mode.
235          */
236         if (req & KVM_REQUEST_WAIT)
237                 return mode != OUTSIDE_GUEST_MODE;
238
239         /*
240          * Need to kick a running VCPU, but otherwise there is nothing to do.
241          */
242         return mode == IN_GUEST_MODE;
243 }
244
245 static void ack_flush(void *_completed)
246 {
247 }
248
249 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
250 {
251         if (unlikely(!cpus))
252                 cpus = cpu_online_mask;
253
254         if (cpumask_empty(cpus))
255                 return false;
256
257         smp_call_function_many(cpus, ack_flush, NULL, wait);
258         return true;
259 }
260
261 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
262                                  struct kvm_vcpu *except,
263                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
264 {
265         int i, cpu, me;
266         struct kvm_vcpu *vcpu;
267         bool called;
268
269         me = get_cpu();
270
271         kvm_for_each_vcpu(i, vcpu, kvm) {
272                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
273                     vcpu == except)
274                         continue;
275
276                 kvm_make_request(req, vcpu);
277                 cpu = vcpu->cpu;
278
279                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
280                         continue;
281
282                 if (tmp != NULL && cpu != -1 && cpu != me &&
283                     kvm_request_needs_ipi(vcpu, req))
284                         __cpumask_set_cpu(cpu, tmp);
285         }
286
287         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
288         put_cpu();
289
290         return called;
291 }
292
293 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
294                                       struct kvm_vcpu *except)
295 {
296         cpumask_var_t cpus;
297         bool called;
298
299         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
300
301         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
302
303         free_cpumask_var(cpus);
304         return called;
305 }
306
307 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
308 {
309         return kvm_make_all_cpus_request_except(kvm, req, NULL);
310 }
311
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315         /*
316          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317          * kvm_make_all_cpus_request.
318          */
319         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320
321         /*
322          * We want to publish modifications to the page tables before reading
323          * mode. Pairs with a memory barrier in arch-specific code.
324          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
325          * and smp_mb in walk_shadow_page_lockless_begin/end.
326          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
327          *
328          * There is already an smp_mb__after_atomic() before
329          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
330          * barrier here.
331          */
332         if (!kvm_arch_flush_remote_tlb(kvm)
333             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
334                 ++kvm->stat.remote_tlb_flush;
335         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
336 }
337 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
338 #endif
339
340 void kvm_reload_remote_mmus(struct kvm *kvm)
341 {
342         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
343 }
344
345 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
346 {
347         mutex_init(&vcpu->mutex);
348         vcpu->cpu = -1;
349         vcpu->kvm = kvm;
350         vcpu->vcpu_id = id;
351         vcpu->pid = NULL;
352         rcuwait_init(&vcpu->wait);
353         kvm_async_pf_vcpu_init(vcpu);
354
355         vcpu->pre_pcpu = -1;
356         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
357
358         kvm_vcpu_set_in_spin_loop(vcpu, false);
359         kvm_vcpu_set_dy_eligible(vcpu, false);
360         vcpu->preempted = false;
361         vcpu->ready = false;
362         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
363 }
364
365 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
366 {
367         kvm_arch_vcpu_destroy(vcpu);
368
369         /*
370          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
371          * the vcpu->pid pointer, and at destruction time all file descriptors
372          * are already gone.
373          */
374         put_pid(rcu_dereference_protected(vcpu->pid, 1));
375
376         free_page((unsigned long)vcpu->run);
377         kmem_cache_free(kvm_vcpu_cache, vcpu);
378 }
379 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
380
381 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
382 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
383 {
384         return container_of(mn, struct kvm, mmu_notifier);
385 }
386
387 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
388                                         struct mm_struct *mm,
389                                         unsigned long address,
390                                         pte_t pte)
391 {
392         struct kvm *kvm = mmu_notifier_to_kvm(mn);
393         int idx;
394
395         idx = srcu_read_lock(&kvm->srcu);
396         spin_lock(&kvm->mmu_lock);
397         kvm->mmu_notifier_seq++;
398
399         if (kvm_set_spte_hva(kvm, address, pte))
400                 kvm_flush_remote_tlbs(kvm);
401
402         spin_unlock(&kvm->mmu_lock);
403         srcu_read_unlock(&kvm->srcu, idx);
404 }
405
406 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
407                                         const struct mmu_notifier_range *range)
408 {
409         struct kvm *kvm = mmu_notifier_to_kvm(mn);
410         int need_tlb_flush = 0, idx;
411         int ret;
412
413         idx = srcu_read_lock(&kvm->srcu);
414         spin_lock(&kvm->mmu_lock);
415         /*
416          * The count increase must become visible at unlock time as no
417          * spte can be established without taking the mmu_lock and
418          * count is also read inside the mmu_lock critical section.
419          */
420         kvm->mmu_notifier_count++;
421         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
422         need_tlb_flush |= kvm->tlbs_dirty;
423         /* we've to flush the tlb before the pages can be freed */
424         if (need_tlb_flush)
425                 kvm_flush_remote_tlbs(kvm);
426
427         spin_unlock(&kvm->mmu_lock);
428
429         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
430                                         range->end,
431                                         mmu_notifier_range_blockable(range));
432
433         srcu_read_unlock(&kvm->srcu, idx);
434
435         return ret;
436 }
437
438 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
439                                         const struct mmu_notifier_range *range)
440 {
441         struct kvm *kvm = mmu_notifier_to_kvm(mn);
442
443         spin_lock(&kvm->mmu_lock);
444         /*
445          * This sequence increase will notify the kvm page fault that
446          * the page that is going to be mapped in the spte could have
447          * been freed.
448          */
449         kvm->mmu_notifier_seq++;
450         smp_wmb();
451         /*
452          * The above sequence increase must be visible before the
453          * below count decrease, which is ensured by the smp_wmb above
454          * in conjunction with the smp_rmb in mmu_notifier_retry().
455          */
456         kvm->mmu_notifier_count--;
457         spin_unlock(&kvm->mmu_lock);
458
459         BUG_ON(kvm->mmu_notifier_count < 0);
460 }
461
462 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
463                                               struct mm_struct *mm,
464                                               unsigned long start,
465                                               unsigned long end)
466 {
467         struct kvm *kvm = mmu_notifier_to_kvm(mn);
468         int young, idx;
469
470         idx = srcu_read_lock(&kvm->srcu);
471         spin_lock(&kvm->mmu_lock);
472
473         young = kvm_age_hva(kvm, start, end);
474         if (young)
475                 kvm_flush_remote_tlbs(kvm);
476
477         spin_unlock(&kvm->mmu_lock);
478         srcu_read_unlock(&kvm->srcu, idx);
479
480         return young;
481 }
482
483 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
484                                         struct mm_struct *mm,
485                                         unsigned long start,
486                                         unsigned long end)
487 {
488         struct kvm *kvm = mmu_notifier_to_kvm(mn);
489         int young, idx;
490
491         idx = srcu_read_lock(&kvm->srcu);
492         spin_lock(&kvm->mmu_lock);
493         /*
494          * Even though we do not flush TLB, this will still adversely
495          * affect performance on pre-Haswell Intel EPT, where there is
496          * no EPT Access Bit to clear so that we have to tear down EPT
497          * tables instead. If we find this unacceptable, we can always
498          * add a parameter to kvm_age_hva so that it effectively doesn't
499          * do anything on clear_young.
500          *
501          * Also note that currently we never issue secondary TLB flushes
502          * from clear_young, leaving this job up to the regular system
503          * cadence. If we find this inaccurate, we might come up with a
504          * more sophisticated heuristic later.
505          */
506         young = kvm_age_hva(kvm, start, end);
507         spin_unlock(&kvm->mmu_lock);
508         srcu_read_unlock(&kvm->srcu, idx);
509
510         return young;
511 }
512
513 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
514                                        struct mm_struct *mm,
515                                        unsigned long address)
516 {
517         struct kvm *kvm = mmu_notifier_to_kvm(mn);
518         int young, idx;
519
520         idx = srcu_read_lock(&kvm->srcu);
521         spin_lock(&kvm->mmu_lock);
522         young = kvm_test_age_hva(kvm, address);
523         spin_unlock(&kvm->mmu_lock);
524         srcu_read_unlock(&kvm->srcu, idx);
525
526         return young;
527 }
528
529 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
530                                      struct mm_struct *mm)
531 {
532         struct kvm *kvm = mmu_notifier_to_kvm(mn);
533         int idx;
534
535         idx = srcu_read_lock(&kvm->srcu);
536         kvm_arch_flush_shadow_all(kvm);
537         srcu_read_unlock(&kvm->srcu, idx);
538 }
539
540 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
541         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
542         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
543         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
544         .clear_young            = kvm_mmu_notifier_clear_young,
545         .test_young             = kvm_mmu_notifier_test_young,
546         .change_pte             = kvm_mmu_notifier_change_pte,
547         .release                = kvm_mmu_notifier_release,
548 };
549
550 static int kvm_init_mmu_notifier(struct kvm *kvm)
551 {
552         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
553         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
554 }
555
556 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
557
558 static int kvm_init_mmu_notifier(struct kvm *kvm)
559 {
560         return 0;
561 }
562
563 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
564
565 static struct kvm_memslots *kvm_alloc_memslots(void)
566 {
567         int i;
568         struct kvm_memslots *slots;
569
570         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
571         if (!slots)
572                 return NULL;
573
574         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
575                 slots->id_to_index[i] = -1;
576
577         return slots;
578 }
579
580 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
581 {
582         if (!memslot->dirty_bitmap)
583                 return;
584
585         kvfree(memslot->dirty_bitmap);
586         memslot->dirty_bitmap = NULL;
587 }
588
589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
590 {
591         kvm_destroy_dirty_bitmap(slot);
592
593         kvm_arch_free_memslot(kvm, slot);
594
595         slot->flags = 0;
596         slot->npages = 0;
597 }
598
599 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
600 {
601         struct kvm_memory_slot *memslot;
602
603         if (!slots)
604                 return;
605
606         kvm_for_each_memslot(memslot, slots)
607                 kvm_free_memslot(kvm, memslot);
608
609         kvfree(slots);
610 }
611
612 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
613 {
614         int i;
615
616         if (!kvm->debugfs_dentry)
617                 return;
618
619         debugfs_remove_recursive(kvm->debugfs_dentry);
620
621         if (kvm->debugfs_stat_data) {
622                 for (i = 0; i < kvm_debugfs_num_entries; i++)
623                         kfree(kvm->debugfs_stat_data[i]);
624                 kfree(kvm->debugfs_stat_data);
625         }
626 }
627
628 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
629 {
630         char dir_name[ITOA_MAX_LEN * 2];
631         struct kvm_stat_data *stat_data;
632         struct kvm_stats_debugfs_item *p;
633
634         if (!debugfs_initialized())
635                 return 0;
636
637         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
638         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
639
640         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
641                                          sizeof(*kvm->debugfs_stat_data),
642                                          GFP_KERNEL_ACCOUNT);
643         if (!kvm->debugfs_stat_data)
644                 return -ENOMEM;
645
646         for (p = debugfs_entries; p->name; p++) {
647                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
648                 if (!stat_data)
649                         return -ENOMEM;
650
651                 stat_data->kvm = kvm;
652                 stat_data->dbgfs_item = p;
653                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
654                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
655                                     kvm->debugfs_dentry, stat_data,
656                                     &stat_fops_per_vm);
657         }
658         return 0;
659 }
660
661 /*
662  * Called after the VM is otherwise initialized, but just before adding it to
663  * the vm_list.
664  */
665 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
666 {
667         return 0;
668 }
669
670 /*
671  * Called just after removing the VM from the vm_list, but before doing any
672  * other destruction.
673  */
674 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
675 {
676 }
677
678 static struct kvm *kvm_create_vm(unsigned long type)
679 {
680         struct kvm *kvm = kvm_arch_alloc_vm();
681         int r = -ENOMEM;
682         int i;
683
684         if (!kvm)
685                 return ERR_PTR(-ENOMEM);
686
687         spin_lock_init(&kvm->mmu_lock);
688         mmgrab(current->mm);
689         kvm->mm = current->mm;
690         kvm_eventfd_init(kvm);
691         mutex_init(&kvm->lock);
692         mutex_init(&kvm->irq_lock);
693         mutex_init(&kvm->slots_lock);
694         INIT_LIST_HEAD(&kvm->devices);
695
696         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
697
698         if (init_srcu_struct(&kvm->srcu))
699                 goto out_err_no_srcu;
700         if (init_srcu_struct(&kvm->irq_srcu))
701                 goto out_err_no_irq_srcu;
702
703         refcount_set(&kvm->users_count, 1);
704         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
705                 struct kvm_memslots *slots = kvm_alloc_memslots();
706
707                 if (!slots)
708                         goto out_err_no_arch_destroy_vm;
709                 /* Generations must be different for each address space. */
710                 slots->generation = i;
711                 rcu_assign_pointer(kvm->memslots[i], slots);
712         }
713
714         for (i = 0; i < KVM_NR_BUSES; i++) {
715                 rcu_assign_pointer(kvm->buses[i],
716                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
717                 if (!kvm->buses[i])
718                         goto out_err_no_arch_destroy_vm;
719         }
720
721         kvm->max_halt_poll_ns = halt_poll_ns;
722
723         r = kvm_arch_init_vm(kvm, type);
724         if (r)
725                 goto out_err_no_arch_destroy_vm;
726
727         r = hardware_enable_all();
728         if (r)
729                 goto out_err_no_disable;
730
731 #ifdef CONFIG_HAVE_KVM_IRQFD
732         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
733 #endif
734
735         r = kvm_init_mmu_notifier(kvm);
736         if (r)
737                 goto out_err_no_mmu_notifier;
738
739         r = kvm_arch_post_init_vm(kvm);
740         if (r)
741                 goto out_err;
742
743         mutex_lock(&kvm_lock);
744         list_add(&kvm->vm_list, &vm_list);
745         mutex_unlock(&kvm_lock);
746
747         preempt_notifier_inc();
748
749         return kvm;
750
751 out_err:
752 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
753         if (kvm->mmu_notifier.ops)
754                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
755 #endif
756 out_err_no_mmu_notifier:
757         hardware_disable_all();
758 out_err_no_disable:
759         kvm_arch_destroy_vm(kvm);
760 out_err_no_arch_destroy_vm:
761         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
762         for (i = 0; i < KVM_NR_BUSES; i++)
763                 kfree(kvm_get_bus(kvm, i));
764         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
765                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
766         cleanup_srcu_struct(&kvm->irq_srcu);
767 out_err_no_irq_srcu:
768         cleanup_srcu_struct(&kvm->srcu);
769 out_err_no_srcu:
770         kvm_arch_free_vm(kvm);
771         mmdrop(current->mm);
772         return ERR_PTR(r);
773 }
774
775 static void kvm_destroy_devices(struct kvm *kvm)
776 {
777         struct kvm_device *dev, *tmp;
778
779         /*
780          * We do not need to take the kvm->lock here, because nobody else
781          * has a reference to the struct kvm at this point and therefore
782          * cannot access the devices list anyhow.
783          */
784         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
785                 list_del(&dev->vm_node);
786                 dev->ops->destroy(dev);
787         }
788 }
789
790 static void kvm_destroy_vm(struct kvm *kvm)
791 {
792         int i;
793         struct mm_struct *mm = kvm->mm;
794
795         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
796         kvm_destroy_vm_debugfs(kvm);
797         kvm_arch_sync_events(kvm);
798         mutex_lock(&kvm_lock);
799         list_del(&kvm->vm_list);
800         mutex_unlock(&kvm_lock);
801         kvm_arch_pre_destroy_vm(kvm);
802
803         kvm_free_irq_routing(kvm);
804         for (i = 0; i < KVM_NR_BUSES; i++) {
805                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
806
807                 if (bus)
808                         kvm_io_bus_destroy(bus);
809                 kvm->buses[i] = NULL;
810         }
811         kvm_coalesced_mmio_free(kvm);
812 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
813         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
814 #else
815         kvm_arch_flush_shadow_all(kvm);
816 #endif
817         kvm_arch_destroy_vm(kvm);
818         kvm_destroy_devices(kvm);
819         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
820                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
821         cleanup_srcu_struct(&kvm->irq_srcu);
822         cleanup_srcu_struct(&kvm->srcu);
823         kvm_arch_free_vm(kvm);
824         preempt_notifier_dec();
825         hardware_disable_all();
826         mmdrop(mm);
827 }
828
829 void kvm_get_kvm(struct kvm *kvm)
830 {
831         refcount_inc(&kvm->users_count);
832 }
833 EXPORT_SYMBOL_GPL(kvm_get_kvm);
834
835 void kvm_put_kvm(struct kvm *kvm)
836 {
837         if (refcount_dec_and_test(&kvm->users_count))
838                 kvm_destroy_vm(kvm);
839 }
840 EXPORT_SYMBOL_GPL(kvm_put_kvm);
841
842 /*
843  * Used to put a reference that was taken on behalf of an object associated
844  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
845  * of the new file descriptor fails and the reference cannot be transferred to
846  * its final owner.  In such cases, the caller is still actively using @kvm and
847  * will fail miserably if the refcount unexpectedly hits zero.
848  */
849 void kvm_put_kvm_no_destroy(struct kvm *kvm)
850 {
851         WARN_ON(refcount_dec_and_test(&kvm->users_count));
852 }
853 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
854
855 static int kvm_vm_release(struct inode *inode, struct file *filp)
856 {
857         struct kvm *kvm = filp->private_data;
858
859         kvm_irqfd_release(kvm);
860
861         kvm_put_kvm(kvm);
862         return 0;
863 }
864
865 /*
866  * Allocation size is twice as large as the actual dirty bitmap size.
867  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
868  */
869 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
870 {
871         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
872
873         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
874         if (!memslot->dirty_bitmap)
875                 return -ENOMEM;
876
877         return 0;
878 }
879
880 /*
881  * Delete a memslot by decrementing the number of used slots and shifting all
882  * other entries in the array forward one spot.
883  */
884 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
885                                       struct kvm_memory_slot *memslot)
886 {
887         struct kvm_memory_slot *mslots = slots->memslots;
888         int i;
889
890         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
891                 return;
892
893         slots->used_slots--;
894
895         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
896                 atomic_set(&slots->lru_slot, 0);
897
898         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
899                 mslots[i] = mslots[i + 1];
900                 slots->id_to_index[mslots[i].id] = i;
901         }
902         mslots[i] = *memslot;
903         slots->id_to_index[memslot->id] = -1;
904 }
905
906 /*
907  * "Insert" a new memslot by incrementing the number of used slots.  Returns
908  * the new slot's initial index into the memslots array.
909  */
910 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
911 {
912         return slots->used_slots++;
913 }
914
915 /*
916  * Move a changed memslot backwards in the array by shifting existing slots
917  * with a higher GFN toward the front of the array.  Note, the changed memslot
918  * itself is not preserved in the array, i.e. not swapped at this time, only
919  * its new index into the array is tracked.  Returns the changed memslot's
920  * current index into the memslots array.
921  */
922 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
923                                             struct kvm_memory_slot *memslot)
924 {
925         struct kvm_memory_slot *mslots = slots->memslots;
926         int i;
927
928         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
929             WARN_ON_ONCE(!slots->used_slots))
930                 return -1;
931
932         /*
933          * Move the target memslot backward in the array by shifting existing
934          * memslots with a higher GFN (than the target memslot) towards the
935          * front of the array.
936          */
937         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
938                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
939                         break;
940
941                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
942
943                 /* Shift the next memslot forward one and update its index. */
944                 mslots[i] = mslots[i + 1];
945                 slots->id_to_index[mslots[i].id] = i;
946         }
947         return i;
948 }
949
950 /*
951  * Move a changed memslot forwards in the array by shifting existing slots with
952  * a lower GFN toward the back of the array.  Note, the changed memslot itself
953  * is not preserved in the array, i.e. not swapped at this time, only its new
954  * index into the array is tracked.  Returns the changed memslot's final index
955  * into the memslots array.
956  */
957 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
958                                            struct kvm_memory_slot *memslot,
959                                            int start)
960 {
961         struct kvm_memory_slot *mslots = slots->memslots;
962         int i;
963
964         for (i = start; i > 0; i--) {
965                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
966                         break;
967
968                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
969
970                 /* Shift the next memslot back one and update its index. */
971                 mslots[i] = mslots[i - 1];
972                 slots->id_to_index[mslots[i].id] = i;
973         }
974         return i;
975 }
976
977 /*
978  * Re-sort memslots based on their GFN to account for an added, deleted, or
979  * moved memslot.  Sorting memslots by GFN allows using a binary search during
980  * memslot lookup.
981  *
982  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
983  * at memslots[0] has the highest GFN.
984  *
985  * The sorting algorithm takes advantage of having initially sorted memslots
986  * and knowing the position of the changed memslot.  Sorting is also optimized
987  * by not swapping the updated memslot and instead only shifting other memslots
988  * and tracking the new index for the update memslot.  Only once its final
989  * index is known is the updated memslot copied into its position in the array.
990  *
991  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
992  *    the end of the array.
993  *
994  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
995  *    end of the array and then it forward to its correct location.
996  *
997  *  - When moving a memslot, the algorithm first moves the updated memslot
998  *    backward to handle the scenario where the memslot's GFN was changed to a
999  *    lower value.  update_memslots() then falls through and runs the same flow
1000  *    as creating a memslot to move the memslot forward to handle the scenario
1001  *    where its GFN was changed to a higher value.
1002  *
1003  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1004  * historical reasons.  Originally, invalid memslots where denoted by having
1005  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1006  * to the end of the array.  The current algorithm uses dedicated logic to
1007  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1008  *
1009  * The other historical motiviation for highest->lowest was to improve the
1010  * performance of memslot lookup.  KVM originally used a linear search starting
1011  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1012  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1013  * single memslot above the 4gb boundary.  As the largest memslot is also the
1014  * most likely to be referenced, sorting it to the front of the array was
1015  * advantageous.  The current binary search starts from the middle of the array
1016  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1017  */
1018 static void update_memslots(struct kvm_memslots *slots,
1019                             struct kvm_memory_slot *memslot,
1020                             enum kvm_mr_change change)
1021 {
1022         int i;
1023
1024         if (change == KVM_MR_DELETE) {
1025                 kvm_memslot_delete(slots, memslot);
1026         } else {
1027                 if (change == KVM_MR_CREATE)
1028                         i = kvm_memslot_insert_back(slots);
1029                 else
1030                         i = kvm_memslot_move_backward(slots, memslot);
1031                 i = kvm_memslot_move_forward(slots, memslot, i);
1032
1033                 /*
1034                  * Copy the memslot to its new position in memslots and update
1035                  * its index accordingly.
1036                  */
1037                 slots->memslots[i] = *memslot;
1038                 slots->id_to_index[memslot->id] = i;
1039         }
1040 }
1041
1042 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1043 {
1044         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1045
1046 #ifdef __KVM_HAVE_READONLY_MEM
1047         valid_flags |= KVM_MEM_READONLY;
1048 #endif
1049
1050         if (mem->flags & ~valid_flags)
1051                 return -EINVAL;
1052
1053         return 0;
1054 }
1055
1056 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1057                 int as_id, struct kvm_memslots *slots)
1058 {
1059         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1060         u64 gen = old_memslots->generation;
1061
1062         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1063         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1064
1065         rcu_assign_pointer(kvm->memslots[as_id], slots);
1066         synchronize_srcu_expedited(&kvm->srcu);
1067
1068         /*
1069          * Increment the new memslot generation a second time, dropping the
1070          * update in-progress flag and incrementing the generation based on
1071          * the number of address spaces.  This provides a unique and easily
1072          * identifiable generation number while the memslots are in flux.
1073          */
1074         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1075
1076         /*
1077          * Generations must be unique even across address spaces.  We do not need
1078          * a global counter for that, instead the generation space is evenly split
1079          * across address spaces.  For example, with two address spaces, address
1080          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1081          * use generations 1, 3, 5, ...
1082          */
1083         gen += KVM_ADDRESS_SPACE_NUM;
1084
1085         kvm_arch_memslots_updated(kvm, gen);
1086
1087         slots->generation = gen;
1088
1089         return old_memslots;
1090 }
1091
1092 /*
1093  * Note, at a minimum, the current number of used slots must be allocated, even
1094  * when deleting a memslot, as we need a complete duplicate of the memslots for
1095  * use when invalidating a memslot prior to deleting/moving the memslot.
1096  */
1097 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1098                                              enum kvm_mr_change change)
1099 {
1100         struct kvm_memslots *slots;
1101         size_t old_size, new_size;
1102
1103         old_size = sizeof(struct kvm_memslots) +
1104                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1105
1106         if (change == KVM_MR_CREATE)
1107                 new_size = old_size + sizeof(struct kvm_memory_slot);
1108         else
1109                 new_size = old_size;
1110
1111         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1112         if (likely(slots))
1113                 memcpy(slots, old, old_size);
1114
1115         return slots;
1116 }
1117
1118 static int kvm_set_memslot(struct kvm *kvm,
1119                            const struct kvm_userspace_memory_region *mem,
1120                            struct kvm_memory_slot *old,
1121                            struct kvm_memory_slot *new, int as_id,
1122                            enum kvm_mr_change change)
1123 {
1124         struct kvm_memory_slot *slot;
1125         struct kvm_memslots *slots;
1126         int r;
1127
1128         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1129         if (!slots)
1130                 return -ENOMEM;
1131
1132         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1133                 /*
1134                  * Note, the INVALID flag needs to be in the appropriate entry
1135                  * in the freshly allocated memslots, not in @old or @new.
1136                  */
1137                 slot = id_to_memslot(slots, old->id);
1138                 slot->flags |= KVM_MEMSLOT_INVALID;
1139
1140                 /*
1141                  * We can re-use the old memslots, the only difference from the
1142                  * newly installed memslots is the invalid flag, which will get
1143                  * dropped by update_memslots anyway.  We'll also revert to the
1144                  * old memslots if preparing the new memory region fails.
1145                  */
1146                 slots = install_new_memslots(kvm, as_id, slots);
1147
1148                 /* From this point no new shadow pages pointing to a deleted,
1149                  * or moved, memslot will be created.
1150                  *
1151                  * validation of sp->gfn happens in:
1152                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1153                  *      - kvm_is_visible_gfn (mmu_check_root)
1154                  */
1155                 kvm_arch_flush_shadow_memslot(kvm, slot);
1156         }
1157
1158         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1159         if (r)
1160                 goto out_slots;
1161
1162         update_memslots(slots, new, change);
1163         slots = install_new_memslots(kvm, as_id, slots);
1164
1165         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1166
1167         kvfree(slots);
1168         return 0;
1169
1170 out_slots:
1171         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1172                 slots = install_new_memslots(kvm, as_id, slots);
1173         kvfree(slots);
1174         return r;
1175 }
1176
1177 static int kvm_delete_memslot(struct kvm *kvm,
1178                               const struct kvm_userspace_memory_region *mem,
1179                               struct kvm_memory_slot *old, int as_id)
1180 {
1181         struct kvm_memory_slot new;
1182         int r;
1183
1184         if (!old->npages)
1185                 return -EINVAL;
1186
1187         memset(&new, 0, sizeof(new));
1188         new.id = old->id;
1189
1190         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1191         if (r)
1192                 return r;
1193
1194         kvm_free_memslot(kvm, old);
1195         return 0;
1196 }
1197
1198 /*
1199  * Allocate some memory and give it an address in the guest physical address
1200  * space.
1201  *
1202  * Discontiguous memory is allowed, mostly for framebuffers.
1203  *
1204  * Must be called holding kvm->slots_lock for write.
1205  */
1206 int __kvm_set_memory_region(struct kvm *kvm,
1207                             const struct kvm_userspace_memory_region *mem)
1208 {
1209         struct kvm_memory_slot old, new;
1210         struct kvm_memory_slot *tmp;
1211         enum kvm_mr_change change;
1212         int as_id, id;
1213         int r;
1214
1215         r = check_memory_region_flags(mem);
1216         if (r)
1217                 return r;
1218
1219         as_id = mem->slot >> 16;
1220         id = (u16)mem->slot;
1221
1222         /* General sanity checks */
1223         if (mem->memory_size & (PAGE_SIZE - 1))
1224                 return -EINVAL;
1225         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1226                 return -EINVAL;
1227         /* We can read the guest memory with __xxx_user() later on. */
1228         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1229              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1230                         mem->memory_size))
1231                 return -EINVAL;
1232         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1233                 return -EINVAL;
1234         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1235                 return -EINVAL;
1236
1237         /*
1238          * Make a full copy of the old memslot, the pointer will become stale
1239          * when the memslots are re-sorted by update_memslots(), and the old
1240          * memslot needs to be referenced after calling update_memslots(), e.g.
1241          * to free its resources and for arch specific behavior.
1242          */
1243         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1244         if (tmp) {
1245                 old = *tmp;
1246                 tmp = NULL;
1247         } else {
1248                 memset(&old, 0, sizeof(old));
1249                 old.id = id;
1250         }
1251
1252         if (!mem->memory_size)
1253                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1254
1255         new.id = id;
1256         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1257         new.npages = mem->memory_size >> PAGE_SHIFT;
1258         new.flags = mem->flags;
1259         new.userspace_addr = mem->userspace_addr;
1260
1261         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1262                 return -EINVAL;
1263
1264         if (!old.npages) {
1265                 change = KVM_MR_CREATE;
1266                 new.dirty_bitmap = NULL;
1267                 memset(&new.arch, 0, sizeof(new.arch));
1268         } else { /* Modify an existing slot. */
1269                 if ((new.userspace_addr != old.userspace_addr) ||
1270                     (new.npages != old.npages) ||
1271                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1272                         return -EINVAL;
1273
1274                 if (new.base_gfn != old.base_gfn)
1275                         change = KVM_MR_MOVE;
1276                 else if (new.flags != old.flags)
1277                         change = KVM_MR_FLAGS_ONLY;
1278                 else /* Nothing to change. */
1279                         return 0;
1280
1281                 /* Copy dirty_bitmap and arch from the current memslot. */
1282                 new.dirty_bitmap = old.dirty_bitmap;
1283                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1284         }
1285
1286         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1287                 /* Check for overlaps */
1288                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1289                         if (tmp->id == id)
1290                                 continue;
1291                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1292                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1293                                 return -EEXIST;
1294                 }
1295         }
1296
1297         /* Allocate/free page dirty bitmap as needed */
1298         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1299                 new.dirty_bitmap = NULL;
1300         else if (!new.dirty_bitmap) {
1301                 r = kvm_alloc_dirty_bitmap(&new);
1302                 if (r)
1303                         return r;
1304
1305                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1306                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1307         }
1308
1309         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1310         if (r)
1311                 goto out_bitmap;
1312
1313         if (old.dirty_bitmap && !new.dirty_bitmap)
1314                 kvm_destroy_dirty_bitmap(&old);
1315         return 0;
1316
1317 out_bitmap:
1318         if (new.dirty_bitmap && !old.dirty_bitmap)
1319                 kvm_destroy_dirty_bitmap(&new);
1320         return r;
1321 }
1322 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1323
1324 int kvm_set_memory_region(struct kvm *kvm,
1325                           const struct kvm_userspace_memory_region *mem)
1326 {
1327         int r;
1328
1329         mutex_lock(&kvm->slots_lock);
1330         r = __kvm_set_memory_region(kvm, mem);
1331         mutex_unlock(&kvm->slots_lock);
1332         return r;
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1335
1336 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1337                                           struct kvm_userspace_memory_region *mem)
1338 {
1339         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1340                 return -EINVAL;
1341
1342         return kvm_set_memory_region(kvm, mem);
1343 }
1344
1345 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1346 /**
1347  * kvm_get_dirty_log - get a snapshot of dirty pages
1348  * @kvm:        pointer to kvm instance
1349  * @log:        slot id and address to which we copy the log
1350  * @is_dirty:   set to '1' if any dirty pages were found
1351  * @memslot:    set to the associated memslot, always valid on success
1352  */
1353 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1354                       int *is_dirty, struct kvm_memory_slot **memslot)
1355 {
1356         struct kvm_memslots *slots;
1357         int i, as_id, id;
1358         unsigned long n;
1359         unsigned long any = 0;
1360
1361         *memslot = NULL;
1362         *is_dirty = 0;
1363
1364         as_id = log->slot >> 16;
1365         id = (u16)log->slot;
1366         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1367                 return -EINVAL;
1368
1369         slots = __kvm_memslots(kvm, as_id);
1370         *memslot = id_to_memslot(slots, id);
1371         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1372                 return -ENOENT;
1373
1374         kvm_arch_sync_dirty_log(kvm, *memslot);
1375
1376         n = kvm_dirty_bitmap_bytes(*memslot);
1377
1378         for (i = 0; !any && i < n/sizeof(long); ++i)
1379                 any = (*memslot)->dirty_bitmap[i];
1380
1381         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1382                 return -EFAULT;
1383
1384         if (any)
1385                 *is_dirty = 1;
1386         return 0;
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1389
1390 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1391 /**
1392  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1393  *      and reenable dirty page tracking for the corresponding pages.
1394  * @kvm:        pointer to kvm instance
1395  * @log:        slot id and address to which we copy the log
1396  *
1397  * We need to keep it in mind that VCPU threads can write to the bitmap
1398  * concurrently. So, to avoid losing track of dirty pages we keep the
1399  * following order:
1400  *
1401  *    1. Take a snapshot of the bit and clear it if needed.
1402  *    2. Write protect the corresponding page.
1403  *    3. Copy the snapshot to the userspace.
1404  *    4. Upon return caller flushes TLB's if needed.
1405  *
1406  * Between 2 and 4, the guest may write to the page using the remaining TLB
1407  * entry.  This is not a problem because the page is reported dirty using
1408  * the snapshot taken before and step 4 ensures that writes done after
1409  * exiting to userspace will be logged for the next call.
1410  *
1411  */
1412 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1413 {
1414         struct kvm_memslots *slots;
1415         struct kvm_memory_slot *memslot;
1416         int i, as_id, id;
1417         unsigned long n;
1418         unsigned long *dirty_bitmap;
1419         unsigned long *dirty_bitmap_buffer;
1420         bool flush;
1421
1422         as_id = log->slot >> 16;
1423         id = (u16)log->slot;
1424         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1425                 return -EINVAL;
1426
1427         slots = __kvm_memslots(kvm, as_id);
1428         memslot = id_to_memslot(slots, id);
1429         if (!memslot || !memslot->dirty_bitmap)
1430                 return -ENOENT;
1431
1432         dirty_bitmap = memslot->dirty_bitmap;
1433
1434         kvm_arch_sync_dirty_log(kvm, memslot);
1435
1436         n = kvm_dirty_bitmap_bytes(memslot);
1437         flush = false;
1438         if (kvm->manual_dirty_log_protect) {
1439                 /*
1440                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1441                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1442                  * is some code duplication between this function and
1443                  * kvm_get_dirty_log, but hopefully all architecture
1444                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1445                  * can be eliminated.
1446                  */
1447                 dirty_bitmap_buffer = dirty_bitmap;
1448         } else {
1449                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1450                 memset(dirty_bitmap_buffer, 0, n);
1451
1452                 spin_lock(&kvm->mmu_lock);
1453                 for (i = 0; i < n / sizeof(long); i++) {
1454                         unsigned long mask;
1455                         gfn_t offset;
1456
1457                         if (!dirty_bitmap[i])
1458                                 continue;
1459
1460                         flush = true;
1461                         mask = xchg(&dirty_bitmap[i], 0);
1462                         dirty_bitmap_buffer[i] = mask;
1463
1464                         offset = i * BITS_PER_LONG;
1465                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1466                                                                 offset, mask);
1467                 }
1468                 spin_unlock(&kvm->mmu_lock);
1469         }
1470
1471         if (flush)
1472                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1473
1474         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1475                 return -EFAULT;
1476         return 0;
1477 }
1478
1479
1480 /**
1481  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1482  * @kvm: kvm instance
1483  * @log: slot id and address to which we copy the log
1484  *
1485  * Steps 1-4 below provide general overview of dirty page logging. See
1486  * kvm_get_dirty_log_protect() function description for additional details.
1487  *
1488  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1489  * always flush the TLB (step 4) even if previous step failed  and the dirty
1490  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1491  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1492  * writes will be marked dirty for next log read.
1493  *
1494  *   1. Take a snapshot of the bit and clear it if needed.
1495  *   2. Write protect the corresponding page.
1496  *   3. Copy the snapshot to the userspace.
1497  *   4. Flush TLB's if needed.
1498  */
1499 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1500                                       struct kvm_dirty_log *log)
1501 {
1502         int r;
1503
1504         mutex_lock(&kvm->slots_lock);
1505
1506         r = kvm_get_dirty_log_protect(kvm, log);
1507
1508         mutex_unlock(&kvm->slots_lock);
1509         return r;
1510 }
1511
1512 /**
1513  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1514  *      and reenable dirty page tracking for the corresponding pages.
1515  * @kvm:        pointer to kvm instance
1516  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1517  */
1518 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1519                                        struct kvm_clear_dirty_log *log)
1520 {
1521         struct kvm_memslots *slots;
1522         struct kvm_memory_slot *memslot;
1523         int as_id, id;
1524         gfn_t offset;
1525         unsigned long i, n;
1526         unsigned long *dirty_bitmap;
1527         unsigned long *dirty_bitmap_buffer;
1528         bool flush;
1529
1530         as_id = log->slot >> 16;
1531         id = (u16)log->slot;
1532         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1533                 return -EINVAL;
1534
1535         if (log->first_page & 63)
1536                 return -EINVAL;
1537
1538         slots = __kvm_memslots(kvm, as_id);
1539         memslot = id_to_memslot(slots, id);
1540         if (!memslot || !memslot->dirty_bitmap)
1541                 return -ENOENT;
1542
1543         dirty_bitmap = memslot->dirty_bitmap;
1544
1545         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1546
1547         if (log->first_page > memslot->npages ||
1548             log->num_pages > memslot->npages - log->first_page ||
1549             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1550             return -EINVAL;
1551
1552         kvm_arch_sync_dirty_log(kvm, memslot);
1553
1554         flush = false;
1555         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1556         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1557                 return -EFAULT;
1558
1559         spin_lock(&kvm->mmu_lock);
1560         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1561                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1562              i++, offset += BITS_PER_LONG) {
1563                 unsigned long mask = *dirty_bitmap_buffer++;
1564                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1565                 if (!mask)
1566                         continue;
1567
1568                 mask &= atomic_long_fetch_andnot(mask, p);
1569
1570                 /*
1571                  * mask contains the bits that really have been cleared.  This
1572                  * never includes any bits beyond the length of the memslot (if
1573                  * the length is not aligned to 64 pages), therefore it is not
1574                  * a problem if userspace sets them in log->dirty_bitmap.
1575                 */
1576                 if (mask) {
1577                         flush = true;
1578                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1579                                                                 offset, mask);
1580                 }
1581         }
1582         spin_unlock(&kvm->mmu_lock);
1583
1584         if (flush)
1585                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1586
1587         return 0;
1588 }
1589
1590 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1591                                         struct kvm_clear_dirty_log *log)
1592 {
1593         int r;
1594
1595         mutex_lock(&kvm->slots_lock);
1596
1597         r = kvm_clear_dirty_log_protect(kvm, log);
1598
1599         mutex_unlock(&kvm->slots_lock);
1600         return r;
1601 }
1602 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1603
1604 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1605 {
1606         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1607 }
1608 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1609
1610 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1611 {
1612         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1613 }
1614 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1615
1616 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1617 {
1618         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1619
1620         return kvm_is_visible_memslot(memslot);
1621 }
1622 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1623
1624 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1625 {
1626         struct vm_area_struct *vma;
1627         unsigned long addr, size;
1628
1629         size = PAGE_SIZE;
1630
1631         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1632         if (kvm_is_error_hva(addr))
1633                 return PAGE_SIZE;
1634
1635         down_read(&current->mm->mmap_sem);
1636         vma = find_vma(current->mm, addr);
1637         if (!vma)
1638                 goto out;
1639
1640         size = vma_kernel_pagesize(vma);
1641
1642 out:
1643         up_read(&current->mm->mmap_sem);
1644
1645         return size;
1646 }
1647
1648 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1649 {
1650         return slot->flags & KVM_MEM_READONLY;
1651 }
1652
1653 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1654                                        gfn_t *nr_pages, bool write)
1655 {
1656         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1657                 return KVM_HVA_ERR_BAD;
1658
1659         if (memslot_is_readonly(slot) && write)
1660                 return KVM_HVA_ERR_RO_BAD;
1661
1662         if (nr_pages)
1663                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1664
1665         return __gfn_to_hva_memslot(slot, gfn);
1666 }
1667
1668 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1669                                      gfn_t *nr_pages)
1670 {
1671         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1672 }
1673
1674 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1675                                         gfn_t gfn)
1676 {
1677         return gfn_to_hva_many(slot, gfn, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1680
1681 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1682 {
1683         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1684 }
1685 EXPORT_SYMBOL_GPL(gfn_to_hva);
1686
1687 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1688 {
1689         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1692
1693 /*
1694  * Return the hva of a @gfn and the R/W attribute if possible.
1695  *
1696  * @slot: the kvm_memory_slot which contains @gfn
1697  * @gfn: the gfn to be translated
1698  * @writable: used to return the read/write attribute of the @slot if the hva
1699  * is valid and @writable is not NULL
1700  */
1701 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1702                                       gfn_t gfn, bool *writable)
1703 {
1704         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1705
1706         if (!kvm_is_error_hva(hva) && writable)
1707                 *writable = !memslot_is_readonly(slot);
1708
1709         return hva;
1710 }
1711
1712 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1713 {
1714         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1715
1716         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1717 }
1718
1719 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1720 {
1721         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1722
1723         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1724 }
1725
1726 static inline int check_user_page_hwpoison(unsigned long addr)
1727 {
1728         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1729
1730         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1731         return rc == -EHWPOISON;
1732 }
1733
1734 /*
1735  * The fast path to get the writable pfn which will be stored in @pfn,
1736  * true indicates success, otherwise false is returned.  It's also the
1737  * only part that runs if we can in atomic context.
1738  */
1739 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1740                             bool *writable, kvm_pfn_t *pfn)
1741 {
1742         struct page *page[1];
1743
1744         /*
1745          * Fast pin a writable pfn only if it is a write fault request
1746          * or the caller allows to map a writable pfn for a read fault
1747          * request.
1748          */
1749         if (!(write_fault || writable))
1750                 return false;
1751
1752         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1753                 *pfn = page_to_pfn(page[0]);
1754
1755                 if (writable)
1756                         *writable = true;
1757                 return true;
1758         }
1759
1760         return false;
1761 }
1762
1763 /*
1764  * The slow path to get the pfn of the specified host virtual address,
1765  * 1 indicates success, -errno is returned if error is detected.
1766  */
1767 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1768                            bool *writable, kvm_pfn_t *pfn)
1769 {
1770         unsigned int flags = FOLL_HWPOISON;
1771         struct page *page;
1772         int npages = 0;
1773
1774         might_sleep();
1775
1776         if (writable)
1777                 *writable = write_fault;
1778
1779         if (write_fault)
1780                 flags |= FOLL_WRITE;
1781         if (async)
1782                 flags |= FOLL_NOWAIT;
1783
1784         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1785         if (npages != 1)
1786                 return npages;
1787
1788         /* map read fault as writable if possible */
1789         if (unlikely(!write_fault) && writable) {
1790                 struct page *wpage;
1791
1792                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1793                         *writable = true;
1794                         put_page(page);
1795                         page = wpage;
1796                 }
1797         }
1798         *pfn = page_to_pfn(page);
1799         return npages;
1800 }
1801
1802 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1803 {
1804         if (unlikely(!(vma->vm_flags & VM_READ)))
1805                 return false;
1806
1807         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1808                 return false;
1809
1810         return true;
1811 }
1812
1813 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1814                                unsigned long addr, bool *async,
1815                                bool write_fault, bool *writable,
1816                                kvm_pfn_t *p_pfn)
1817 {
1818         unsigned long pfn;
1819         int r;
1820
1821         r = follow_pfn(vma, addr, &pfn);
1822         if (r) {
1823                 /*
1824                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1825                  * not call the fault handler, so do it here.
1826                  */
1827                 bool unlocked = false;
1828                 r = fixup_user_fault(current, current->mm, addr,
1829                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1830                                      &unlocked);
1831                 if (unlocked)
1832                         return -EAGAIN;
1833                 if (r)
1834                         return r;
1835
1836                 r = follow_pfn(vma, addr, &pfn);
1837                 if (r)
1838                         return r;
1839
1840         }
1841
1842         if (writable)
1843                 *writable = true;
1844
1845         /*
1846          * Get a reference here because callers of *hva_to_pfn* and
1847          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1848          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1849          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1850          * simply do nothing for reserved pfns.
1851          *
1852          * Whoever called remap_pfn_range is also going to call e.g.
1853          * unmap_mapping_range before the underlying pages are freed,
1854          * causing a call to our MMU notifier.
1855          */ 
1856         kvm_get_pfn(pfn);
1857
1858         *p_pfn = pfn;
1859         return 0;
1860 }
1861
1862 /*
1863  * Pin guest page in memory and return its pfn.
1864  * @addr: host virtual address which maps memory to the guest
1865  * @atomic: whether this function can sleep
1866  * @async: whether this function need to wait IO complete if the
1867  *         host page is not in the memory
1868  * @write_fault: whether we should get a writable host page
1869  * @writable: whether it allows to map a writable host page for !@write_fault
1870  *
1871  * The function will map a writable host page for these two cases:
1872  * 1): @write_fault = true
1873  * 2): @write_fault = false && @writable, @writable will tell the caller
1874  *     whether the mapping is writable.
1875  */
1876 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1877                         bool write_fault, bool *writable)
1878 {
1879         struct vm_area_struct *vma;
1880         kvm_pfn_t pfn = 0;
1881         int npages, r;
1882
1883         /* we can do it either atomically or asynchronously, not both */
1884         BUG_ON(atomic && async);
1885
1886         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1887                 return pfn;
1888
1889         if (atomic)
1890                 return KVM_PFN_ERR_FAULT;
1891
1892         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1893         if (npages == 1)
1894                 return pfn;
1895
1896         down_read(&current->mm->mmap_sem);
1897         if (npages == -EHWPOISON ||
1898               (!async && check_user_page_hwpoison(addr))) {
1899                 pfn = KVM_PFN_ERR_HWPOISON;
1900                 goto exit;
1901         }
1902
1903 retry:
1904         vma = find_vma_intersection(current->mm, addr, addr + 1);
1905
1906         if (vma == NULL)
1907                 pfn = KVM_PFN_ERR_FAULT;
1908         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1909                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1910                 if (r == -EAGAIN)
1911                         goto retry;
1912                 if (r < 0)
1913                         pfn = KVM_PFN_ERR_FAULT;
1914         } else {
1915                 if (async && vma_is_valid(vma, write_fault))
1916                         *async = true;
1917                 pfn = KVM_PFN_ERR_FAULT;
1918         }
1919 exit:
1920         up_read(&current->mm->mmap_sem);
1921         return pfn;
1922 }
1923
1924 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1925                                bool atomic, bool *async, bool write_fault,
1926                                bool *writable)
1927 {
1928         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1929
1930         if (addr == KVM_HVA_ERR_RO_BAD) {
1931                 if (writable)
1932                         *writable = false;
1933                 return KVM_PFN_ERR_RO_FAULT;
1934         }
1935
1936         if (kvm_is_error_hva(addr)) {
1937                 if (writable)
1938                         *writable = false;
1939                 return KVM_PFN_NOSLOT;
1940         }
1941
1942         /* Do not map writable pfn in the readonly memslot. */
1943         if (writable && memslot_is_readonly(slot)) {
1944                 *writable = false;
1945                 writable = NULL;
1946         }
1947
1948         return hva_to_pfn(addr, atomic, async, write_fault,
1949                           writable);
1950 }
1951 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1952
1953 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1954                       bool *writable)
1955 {
1956         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1957                                     write_fault, writable);
1958 }
1959 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1960
1961 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1962 {
1963         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1964 }
1965 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1966
1967 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1968 {
1969         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1970 }
1971 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1972
1973 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1974 {
1975         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1976 }
1977 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1978
1979 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1980 {
1981         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1982 }
1983 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1984
1985 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1986 {
1987         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1990
1991 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1992                             struct page **pages, int nr_pages)
1993 {
1994         unsigned long addr;
1995         gfn_t entry = 0;
1996
1997         addr = gfn_to_hva_many(slot, gfn, &entry);
1998         if (kvm_is_error_hva(addr))
1999                 return -1;
2000
2001         if (entry < nr_pages)
2002                 return 0;
2003
2004         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2005 }
2006 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2007
2008 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2009 {
2010         if (is_error_noslot_pfn(pfn))
2011                 return KVM_ERR_PTR_BAD_PAGE;
2012
2013         if (kvm_is_reserved_pfn(pfn)) {
2014                 WARN_ON(1);
2015                 return KVM_ERR_PTR_BAD_PAGE;
2016         }
2017
2018         return pfn_to_page(pfn);
2019 }
2020
2021 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2022 {
2023         kvm_pfn_t pfn;
2024
2025         pfn = gfn_to_pfn(kvm, gfn);
2026
2027         return kvm_pfn_to_page(pfn);
2028 }
2029 EXPORT_SYMBOL_GPL(gfn_to_page);
2030
2031 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2032 {
2033         if (pfn == 0)
2034                 return;
2035
2036         if (cache)
2037                 cache->pfn = cache->gfn = 0;
2038
2039         if (dirty)
2040                 kvm_release_pfn_dirty(pfn);
2041         else
2042                 kvm_release_pfn_clean(pfn);
2043 }
2044
2045 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2046                                  struct gfn_to_pfn_cache *cache, u64 gen)
2047 {
2048         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2049
2050         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2051         cache->gfn = gfn;
2052         cache->dirty = false;
2053         cache->generation = gen;
2054 }
2055
2056 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2057                          struct kvm_host_map *map,
2058                          struct gfn_to_pfn_cache *cache,
2059                          bool atomic)
2060 {
2061         kvm_pfn_t pfn;
2062         void *hva = NULL;
2063         struct page *page = KVM_UNMAPPED_PAGE;
2064         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2065         u64 gen = slots->generation;
2066
2067         if (!map)
2068                 return -EINVAL;
2069
2070         if (cache) {
2071                 if (!cache->pfn || cache->gfn != gfn ||
2072                         cache->generation != gen) {
2073                         if (atomic)
2074                                 return -EAGAIN;
2075                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2076                 }
2077                 pfn = cache->pfn;
2078         } else {
2079                 if (atomic)
2080                         return -EAGAIN;
2081                 pfn = gfn_to_pfn_memslot(slot, gfn);
2082         }
2083         if (is_error_noslot_pfn(pfn))
2084                 return -EINVAL;
2085
2086         if (pfn_valid(pfn)) {
2087                 page = pfn_to_page(pfn);
2088                 if (atomic)
2089                         hva = kmap_atomic(page);
2090                 else
2091                         hva = kmap(page);
2092 #ifdef CONFIG_HAS_IOMEM
2093         } else if (!atomic) {
2094                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2095         } else {
2096                 return -EINVAL;
2097 #endif
2098         }
2099
2100         if (!hva)
2101                 return -EFAULT;
2102
2103         map->page = page;
2104         map->hva = hva;
2105         map->pfn = pfn;
2106         map->gfn = gfn;
2107
2108         return 0;
2109 }
2110
2111 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2112                 struct gfn_to_pfn_cache *cache, bool atomic)
2113 {
2114         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2115                         cache, atomic);
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2118
2119 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2120 {
2121         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2122                 NULL, false);
2123 }
2124 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2125
2126 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2127                         struct kvm_host_map *map,
2128                         struct gfn_to_pfn_cache *cache,
2129                         bool dirty, bool atomic)
2130 {
2131         if (!map)
2132                 return;
2133
2134         if (!map->hva)
2135                 return;
2136
2137         if (map->page != KVM_UNMAPPED_PAGE) {
2138                 if (atomic)
2139                         kunmap_atomic(map->hva);
2140                 else
2141                         kunmap(map->page);
2142         }
2143 #ifdef CONFIG_HAS_IOMEM
2144         else if (!atomic)
2145                 memunmap(map->hva);
2146         else
2147                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2148 #endif
2149
2150         if (dirty)
2151                 mark_page_dirty_in_slot(memslot, map->gfn);
2152
2153         if (cache)
2154                 cache->dirty |= dirty;
2155         else
2156                 kvm_release_pfn(map->pfn, dirty, NULL);
2157
2158         map->hva = NULL;
2159         map->page = NULL;
2160 }
2161
2162 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2163                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2164 {
2165         __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2166                         cache, dirty, atomic);
2167         return 0;
2168 }
2169 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2170
2171 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2172 {
2173         __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2174                         dirty, false);
2175 }
2176 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2177
2178 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2179 {
2180         kvm_pfn_t pfn;
2181
2182         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2183
2184         return kvm_pfn_to_page(pfn);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2187
2188 void kvm_release_page_clean(struct page *page)
2189 {
2190         WARN_ON(is_error_page(page));
2191
2192         kvm_release_pfn_clean(page_to_pfn(page));
2193 }
2194 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2195
2196 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2197 {
2198         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2199                 put_page(pfn_to_page(pfn));
2200 }
2201 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2202
2203 void kvm_release_page_dirty(struct page *page)
2204 {
2205         WARN_ON(is_error_page(page));
2206
2207         kvm_release_pfn_dirty(page_to_pfn(page));
2208 }
2209 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2210
2211 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2212 {
2213         kvm_set_pfn_dirty(pfn);
2214         kvm_release_pfn_clean(pfn);
2215 }
2216 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2217
2218 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2219 {
2220         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2221                 SetPageDirty(pfn_to_page(pfn));
2222 }
2223 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2224
2225 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2226 {
2227         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2228                 mark_page_accessed(pfn_to_page(pfn));
2229 }
2230 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2231
2232 void kvm_get_pfn(kvm_pfn_t pfn)
2233 {
2234         if (!kvm_is_reserved_pfn(pfn))
2235                 get_page(pfn_to_page(pfn));
2236 }
2237 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2238
2239 static int next_segment(unsigned long len, int offset)
2240 {
2241         if (len > PAGE_SIZE - offset)
2242                 return PAGE_SIZE - offset;
2243         else
2244                 return len;
2245 }
2246
2247 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2248                                  void *data, int offset, int len)
2249 {
2250         int r;
2251         unsigned long addr;
2252
2253         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2254         if (kvm_is_error_hva(addr))
2255                 return -EFAULT;
2256         r = __copy_from_user(data, (void __user *)addr + offset, len);
2257         if (r)
2258                 return -EFAULT;
2259         return 0;
2260 }
2261
2262 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2263                         int len)
2264 {
2265         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2266
2267         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2270
2271 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2272                              int offset, int len)
2273 {
2274         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2275
2276         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2277 }
2278 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2279
2280 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2281 {
2282         gfn_t gfn = gpa >> PAGE_SHIFT;
2283         int seg;
2284         int offset = offset_in_page(gpa);
2285         int ret;
2286
2287         while ((seg = next_segment(len, offset)) != 0) {
2288                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2289                 if (ret < 0)
2290                         return ret;
2291                 offset = 0;
2292                 len -= seg;
2293                 data += seg;
2294                 ++gfn;
2295         }
2296         return 0;
2297 }
2298 EXPORT_SYMBOL_GPL(kvm_read_guest);
2299
2300 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2301 {
2302         gfn_t gfn = gpa >> PAGE_SHIFT;
2303         int seg;
2304         int offset = offset_in_page(gpa);
2305         int ret;
2306
2307         while ((seg = next_segment(len, offset)) != 0) {
2308                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2309                 if (ret < 0)
2310                         return ret;
2311                 offset = 0;
2312                 len -= seg;
2313                 data += seg;
2314                 ++gfn;
2315         }
2316         return 0;
2317 }
2318 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2319
2320 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2321                                    void *data, int offset, unsigned long len)
2322 {
2323         int r;
2324         unsigned long addr;
2325
2326         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2327         if (kvm_is_error_hva(addr))
2328                 return -EFAULT;
2329         pagefault_disable();
2330         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2331         pagefault_enable();
2332         if (r)
2333                 return -EFAULT;
2334         return 0;
2335 }
2336
2337 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2338                                void *data, unsigned long len)
2339 {
2340         gfn_t gfn = gpa >> PAGE_SHIFT;
2341         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2342         int offset = offset_in_page(gpa);
2343
2344         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2345 }
2346 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2347
2348 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2349                                   const void *data, int offset, int len)
2350 {
2351         int r;
2352         unsigned long addr;
2353
2354         addr = gfn_to_hva_memslot(memslot, gfn);
2355         if (kvm_is_error_hva(addr))
2356                 return -EFAULT;
2357         r = __copy_to_user((void __user *)addr + offset, data, len);
2358         if (r)
2359                 return -EFAULT;
2360         mark_page_dirty_in_slot(memslot, gfn);
2361         return 0;
2362 }
2363
2364 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2365                          const void *data, int offset, int len)
2366 {
2367         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2368
2369         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2370 }
2371 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2372
2373 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2374                               const void *data, int offset, int len)
2375 {
2376         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2377
2378         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2379 }
2380 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2381
2382 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2383                     unsigned long len)
2384 {
2385         gfn_t gfn = gpa >> PAGE_SHIFT;
2386         int seg;
2387         int offset = offset_in_page(gpa);
2388         int ret;
2389
2390         while ((seg = next_segment(len, offset)) != 0) {
2391                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2392                 if (ret < 0)
2393                         return ret;
2394                 offset = 0;
2395                 len -= seg;
2396                 data += seg;
2397                 ++gfn;
2398         }
2399         return 0;
2400 }
2401 EXPORT_SYMBOL_GPL(kvm_write_guest);
2402
2403 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2404                          unsigned long len)
2405 {
2406         gfn_t gfn = gpa >> PAGE_SHIFT;
2407         int seg;
2408         int offset = offset_in_page(gpa);
2409         int ret;
2410
2411         while ((seg = next_segment(len, offset)) != 0) {
2412                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2413                 if (ret < 0)
2414                         return ret;
2415                 offset = 0;
2416                 len -= seg;
2417                 data += seg;
2418                 ++gfn;
2419         }
2420         return 0;
2421 }
2422 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2423
2424 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2425                                        struct gfn_to_hva_cache *ghc,
2426                                        gpa_t gpa, unsigned long len)
2427 {
2428         int offset = offset_in_page(gpa);
2429         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2430         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2431         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2432         gfn_t nr_pages_avail;
2433
2434         /* Update ghc->generation before performing any error checks. */
2435         ghc->generation = slots->generation;
2436
2437         if (start_gfn > end_gfn) {
2438                 ghc->hva = KVM_HVA_ERR_BAD;
2439                 return -EINVAL;
2440         }
2441
2442         /*
2443          * If the requested region crosses two memslots, we still
2444          * verify that the entire region is valid here.
2445          */
2446         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2447                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2448                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2449                                            &nr_pages_avail);
2450                 if (kvm_is_error_hva(ghc->hva))
2451                         return -EFAULT;
2452         }
2453
2454         /* Use the slow path for cross page reads and writes. */
2455         if (nr_pages_needed == 1)
2456                 ghc->hva += offset;
2457         else
2458                 ghc->memslot = NULL;
2459
2460         ghc->gpa = gpa;
2461         ghc->len = len;
2462         return 0;
2463 }
2464
2465 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2466                               gpa_t gpa, unsigned long len)
2467 {
2468         struct kvm_memslots *slots = kvm_memslots(kvm);
2469         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2470 }
2471 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2472
2473 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2474                                   void *data, unsigned int offset,
2475                                   unsigned long len)
2476 {
2477         struct kvm_memslots *slots = kvm_memslots(kvm);
2478         int r;
2479         gpa_t gpa = ghc->gpa + offset;
2480
2481         BUG_ON(len + offset > ghc->len);
2482
2483         if (slots->generation != ghc->generation) {
2484                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2485                         return -EFAULT;
2486         }
2487
2488         if (kvm_is_error_hva(ghc->hva))
2489                 return -EFAULT;
2490
2491         if (unlikely(!ghc->memslot))
2492                 return kvm_write_guest(kvm, gpa, data, len);
2493
2494         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2495         if (r)
2496                 return -EFAULT;
2497         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2498
2499         return 0;
2500 }
2501 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2502
2503 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2504                            void *data, unsigned long len)
2505 {
2506         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2507 }
2508 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2509
2510 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2511                                  void *data, unsigned int offset,
2512                                  unsigned long len)
2513 {
2514         struct kvm_memslots *slots = kvm_memslots(kvm);
2515         int r;
2516         gpa_t gpa = ghc->gpa + offset;
2517
2518         BUG_ON(len + offset > ghc->len);
2519
2520         if (slots->generation != ghc->generation) {
2521                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2522                         return -EFAULT;
2523         }
2524
2525         if (kvm_is_error_hva(ghc->hva))
2526                 return -EFAULT;
2527
2528         if (unlikely(!ghc->memslot))
2529                 return kvm_read_guest(kvm, gpa, data, len);
2530
2531         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2532         if (r)
2533                 return -EFAULT;
2534
2535         return 0;
2536 }
2537 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2538
2539 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2540                           void *data, unsigned long len)
2541 {
2542         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2543 }
2544 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2545
2546 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2547 {
2548         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2549
2550         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2551 }
2552 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2553
2554 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2555 {
2556         gfn_t gfn = gpa >> PAGE_SHIFT;
2557         int seg;
2558         int offset = offset_in_page(gpa);
2559         int ret;
2560
2561         while ((seg = next_segment(len, offset)) != 0) {
2562                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2563                 if (ret < 0)
2564                         return ret;
2565                 offset = 0;
2566                 len -= seg;
2567                 ++gfn;
2568         }
2569         return 0;
2570 }
2571 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2572
2573 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2574                                     gfn_t gfn)
2575 {
2576         if (memslot && memslot->dirty_bitmap) {
2577                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2578
2579                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2580         }
2581 }
2582
2583 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2584 {
2585         struct kvm_memory_slot *memslot;
2586
2587         memslot = gfn_to_memslot(kvm, gfn);
2588         mark_page_dirty_in_slot(memslot, gfn);
2589 }
2590 EXPORT_SYMBOL_GPL(mark_page_dirty);
2591
2592 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2593 {
2594         struct kvm_memory_slot *memslot;
2595
2596         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2597         mark_page_dirty_in_slot(memslot, gfn);
2598 }
2599 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2600
2601 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2602 {
2603         if (!vcpu->sigset_active)
2604                 return;
2605
2606         /*
2607          * This does a lockless modification of ->real_blocked, which is fine
2608          * because, only current can change ->real_blocked and all readers of
2609          * ->real_blocked don't care as long ->real_blocked is always a subset
2610          * of ->blocked.
2611          */
2612         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2613 }
2614
2615 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2616 {
2617         if (!vcpu->sigset_active)
2618                 return;
2619
2620         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2621         sigemptyset(&current->real_blocked);
2622 }
2623
2624 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2625 {
2626         unsigned int old, val, grow, grow_start;
2627
2628         old = val = vcpu->halt_poll_ns;
2629         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2630         grow = READ_ONCE(halt_poll_ns_grow);
2631         if (!grow)
2632                 goto out;
2633
2634         val *= grow;
2635         if (val < grow_start)
2636                 val = grow_start;
2637
2638         if (val > halt_poll_ns)
2639                 val = halt_poll_ns;
2640
2641         vcpu->halt_poll_ns = val;
2642 out:
2643         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2644 }
2645
2646 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2647 {
2648         unsigned int old, val, shrink;
2649
2650         old = val = vcpu->halt_poll_ns;
2651         shrink = READ_ONCE(halt_poll_ns_shrink);
2652         if (shrink == 0)
2653                 val = 0;
2654         else
2655                 val /= shrink;
2656
2657         vcpu->halt_poll_ns = val;
2658         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2659 }
2660
2661 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2662 {
2663         int ret = -EINTR;
2664         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2665
2666         if (kvm_arch_vcpu_runnable(vcpu)) {
2667                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2668                 goto out;
2669         }
2670         if (kvm_cpu_has_pending_timer(vcpu))
2671                 goto out;
2672         if (signal_pending(current))
2673                 goto out;
2674
2675         ret = 0;
2676 out:
2677         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2678         return ret;
2679 }
2680
2681 static inline void
2682 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2683 {
2684         if (waited)
2685                 vcpu->stat.halt_poll_fail_ns += poll_ns;
2686         else
2687                 vcpu->stat.halt_poll_success_ns += poll_ns;
2688 }
2689
2690 /*
2691  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2692  */
2693 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2694 {
2695         ktime_t start, cur, poll_end;
2696         bool waited = false;
2697         u64 block_ns;
2698
2699         kvm_arch_vcpu_blocking(vcpu);
2700
2701         start = cur = poll_end = ktime_get();
2702         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2703                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2704
2705                 ++vcpu->stat.halt_attempted_poll;
2706                 do {
2707                         /*
2708                          * This sets KVM_REQ_UNHALT if an interrupt
2709                          * arrives.
2710                          */
2711                         if (kvm_vcpu_check_block(vcpu) < 0) {
2712                                 ++vcpu->stat.halt_successful_poll;
2713                                 if (!vcpu_valid_wakeup(vcpu))
2714                                         ++vcpu->stat.halt_poll_invalid;
2715                                 goto out;
2716                         }
2717                         poll_end = cur = ktime_get();
2718                 } while (single_task_running() && ktime_before(cur, stop));
2719         }
2720
2721         prepare_to_rcuwait(&vcpu->wait);
2722         for (;;) {
2723                 set_current_state(TASK_INTERRUPTIBLE);
2724
2725                 if (kvm_vcpu_check_block(vcpu) < 0)
2726                         break;
2727
2728                 waited = true;
2729                 schedule();
2730         }
2731         finish_rcuwait(&vcpu->wait);
2732         cur = ktime_get();
2733 out:
2734         kvm_arch_vcpu_unblocking(vcpu);
2735         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2736
2737         update_halt_poll_stats(
2738                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2739
2740         if (!kvm_arch_no_poll(vcpu)) {
2741                 if (!vcpu_valid_wakeup(vcpu)) {
2742                         shrink_halt_poll_ns(vcpu);
2743                 } else if (vcpu->kvm->max_halt_poll_ns) {
2744                         if (block_ns <= vcpu->halt_poll_ns)
2745                                 ;
2746                         /* we had a long block, shrink polling */
2747                         else if (vcpu->halt_poll_ns &&
2748                                         block_ns > vcpu->kvm->max_halt_poll_ns)
2749                                 shrink_halt_poll_ns(vcpu);
2750                         /* we had a short halt and our poll time is too small */
2751                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2752                                         block_ns < vcpu->kvm->max_halt_poll_ns)
2753                                 grow_halt_poll_ns(vcpu);
2754                 } else {
2755                         vcpu->halt_poll_ns = 0;
2756                 }
2757         }
2758
2759         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2760         kvm_arch_vcpu_block_finish(vcpu);
2761 }
2762 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2763
2764 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2765 {
2766         struct rcuwait *waitp;
2767
2768         waitp = kvm_arch_vcpu_get_wait(vcpu);
2769         if (rcuwait_wake_up(waitp)) {
2770                 WRITE_ONCE(vcpu->ready, true);
2771                 ++vcpu->stat.halt_wakeup;
2772                 return true;
2773         }
2774
2775         return false;
2776 }
2777 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2778
2779 #ifndef CONFIG_S390
2780 /*
2781  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2782  */
2783 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2784 {
2785         int me;
2786         int cpu = vcpu->cpu;
2787
2788         if (kvm_vcpu_wake_up(vcpu))
2789                 return;
2790
2791         me = get_cpu();
2792         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2793                 if (kvm_arch_vcpu_should_kick(vcpu))
2794                         smp_send_reschedule(cpu);
2795         put_cpu();
2796 }
2797 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2798 #endif /* !CONFIG_S390 */
2799
2800 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2801 {
2802         struct pid *pid;
2803         struct task_struct *task = NULL;
2804         int ret = 0;
2805
2806         rcu_read_lock();
2807         pid = rcu_dereference(target->pid);
2808         if (pid)
2809                 task = get_pid_task(pid, PIDTYPE_PID);
2810         rcu_read_unlock();
2811         if (!task)
2812                 return ret;
2813         ret = yield_to(task, 1);
2814         put_task_struct(task);
2815
2816         return ret;
2817 }
2818 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2819
2820 /*
2821  * Helper that checks whether a VCPU is eligible for directed yield.
2822  * Most eligible candidate to yield is decided by following heuristics:
2823  *
2824  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2825  *  (preempted lock holder), indicated by @in_spin_loop.
2826  *  Set at the beginning and cleared at the end of interception/PLE handler.
2827  *
2828  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2829  *  chance last time (mostly it has become eligible now since we have probably
2830  *  yielded to lockholder in last iteration. This is done by toggling
2831  *  @dy_eligible each time a VCPU checked for eligibility.)
2832  *
2833  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2834  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2835  *  burning. Giving priority for a potential lock-holder increases lock
2836  *  progress.
2837  *
2838  *  Since algorithm is based on heuristics, accessing another VCPU data without
2839  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2840  *  and continue with next VCPU and so on.
2841  */
2842 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2843 {
2844 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2845         bool eligible;
2846
2847         eligible = !vcpu->spin_loop.in_spin_loop ||
2848                     vcpu->spin_loop.dy_eligible;
2849
2850         if (vcpu->spin_loop.in_spin_loop)
2851                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2852
2853         return eligible;
2854 #else
2855         return true;
2856 #endif
2857 }
2858
2859 /*
2860  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2861  * a vcpu_load/vcpu_put pair.  However, for most architectures
2862  * kvm_arch_vcpu_runnable does not require vcpu_load.
2863  */
2864 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2865 {
2866         return kvm_arch_vcpu_runnable(vcpu);
2867 }
2868
2869 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2870 {
2871         if (kvm_arch_dy_runnable(vcpu))
2872                 return true;
2873
2874 #ifdef CONFIG_KVM_ASYNC_PF
2875         if (!list_empty_careful(&vcpu->async_pf.done))
2876                 return true;
2877 #endif
2878
2879         return false;
2880 }
2881
2882 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2883 {
2884         struct kvm *kvm = me->kvm;
2885         struct kvm_vcpu *vcpu;
2886         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2887         int yielded = 0;
2888         int try = 3;
2889         int pass;
2890         int i;
2891
2892         kvm_vcpu_set_in_spin_loop(me, true);
2893         /*
2894          * We boost the priority of a VCPU that is runnable but not
2895          * currently running, because it got preempted by something
2896          * else and called schedule in __vcpu_run.  Hopefully that
2897          * VCPU is holding the lock that we need and will release it.
2898          * We approximate round-robin by starting at the last boosted VCPU.
2899          */
2900         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2901                 kvm_for_each_vcpu(i, vcpu, kvm) {
2902                         if (!pass && i <= last_boosted_vcpu) {
2903                                 i = last_boosted_vcpu;
2904                                 continue;
2905                         } else if (pass && i > last_boosted_vcpu)
2906                                 break;
2907                         if (!READ_ONCE(vcpu->ready))
2908                                 continue;
2909                         if (vcpu == me)
2910                                 continue;
2911                         if (rcuwait_active(&vcpu->wait) &&
2912                             !vcpu_dy_runnable(vcpu))
2913                                 continue;
2914                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2915                                 !kvm_arch_vcpu_in_kernel(vcpu))
2916                                 continue;
2917                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2918                                 continue;
2919
2920                         yielded = kvm_vcpu_yield_to(vcpu);
2921                         if (yielded > 0) {
2922                                 kvm->last_boosted_vcpu = i;
2923                                 break;
2924                         } else if (yielded < 0) {
2925                                 try--;
2926                                 if (!try)
2927                                         break;
2928                         }
2929                 }
2930         }
2931         kvm_vcpu_set_in_spin_loop(me, false);
2932
2933         /* Ensure vcpu is not eligible during next spinloop */
2934         kvm_vcpu_set_dy_eligible(me, false);
2935 }
2936 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2937
2938 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2939 {
2940         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2941         struct page *page;
2942
2943         if (vmf->pgoff == 0)
2944                 page = virt_to_page(vcpu->run);
2945 #ifdef CONFIG_X86
2946         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2947                 page = virt_to_page(vcpu->arch.pio_data);
2948 #endif
2949 #ifdef CONFIG_KVM_MMIO
2950         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2951                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2952 #endif
2953         else
2954                 return kvm_arch_vcpu_fault(vcpu, vmf);
2955         get_page(page);
2956         vmf->page = page;
2957         return 0;
2958 }
2959
2960 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2961         .fault = kvm_vcpu_fault,
2962 };
2963
2964 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2965 {
2966         vma->vm_ops = &kvm_vcpu_vm_ops;
2967         return 0;
2968 }
2969
2970 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2971 {
2972         struct kvm_vcpu *vcpu = filp->private_data;
2973
2974         debugfs_remove_recursive(vcpu->debugfs_dentry);
2975         kvm_put_kvm(vcpu->kvm);
2976         return 0;
2977 }
2978
2979 static struct file_operations kvm_vcpu_fops = {
2980         .release        = kvm_vcpu_release,
2981         .unlocked_ioctl = kvm_vcpu_ioctl,
2982         .mmap           = kvm_vcpu_mmap,
2983         .llseek         = noop_llseek,
2984         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2985 };
2986
2987 /*
2988  * Allocates an inode for the vcpu.
2989  */
2990 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2991 {
2992         char name[8 + 1 + ITOA_MAX_LEN + 1];
2993
2994         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2995         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2996 }
2997
2998 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2999 {
3000 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3001         char dir_name[ITOA_MAX_LEN * 2];
3002
3003         if (!debugfs_initialized())
3004                 return;
3005
3006         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3007         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
3008                                                   vcpu->kvm->debugfs_dentry);
3009
3010         kvm_arch_create_vcpu_debugfs(vcpu);
3011 #endif
3012 }
3013
3014 /*
3015  * Creates some virtual cpus.  Good luck creating more than one.
3016  */
3017 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3018 {
3019         int r;
3020         struct kvm_vcpu *vcpu;
3021         struct page *page;
3022
3023         if (id >= KVM_MAX_VCPU_ID)
3024                 return -EINVAL;
3025
3026         mutex_lock(&kvm->lock);
3027         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3028                 mutex_unlock(&kvm->lock);
3029                 return -EINVAL;
3030         }
3031
3032         kvm->created_vcpus++;
3033         mutex_unlock(&kvm->lock);
3034
3035         r = kvm_arch_vcpu_precreate(kvm, id);
3036         if (r)
3037                 goto vcpu_decrement;
3038
3039         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3040         if (!vcpu) {
3041                 r = -ENOMEM;
3042                 goto vcpu_decrement;
3043         }
3044
3045         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3046         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3047         if (!page) {
3048                 r = -ENOMEM;
3049                 goto vcpu_free;
3050         }
3051         vcpu->run = page_address(page);
3052
3053         kvm_vcpu_init(vcpu, kvm, id);
3054
3055         r = kvm_arch_vcpu_create(vcpu);
3056         if (r)
3057                 goto vcpu_free_run_page;
3058
3059         mutex_lock(&kvm->lock);
3060         if (kvm_get_vcpu_by_id(kvm, id)) {
3061                 r = -EEXIST;
3062                 goto unlock_vcpu_destroy;
3063         }
3064
3065         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3066         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3067
3068         /* Now it's all set up, let userspace reach it */
3069         kvm_get_kvm(kvm);
3070         r = create_vcpu_fd(vcpu);
3071         if (r < 0) {
3072                 kvm_put_kvm_no_destroy(kvm);
3073                 goto unlock_vcpu_destroy;
3074         }
3075
3076         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3077
3078         /*
3079          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3080          * before kvm->online_vcpu's incremented value.
3081          */
3082         smp_wmb();
3083         atomic_inc(&kvm->online_vcpus);
3084
3085         mutex_unlock(&kvm->lock);
3086         kvm_arch_vcpu_postcreate(vcpu);
3087         kvm_create_vcpu_debugfs(vcpu);
3088         return r;
3089
3090 unlock_vcpu_destroy:
3091         mutex_unlock(&kvm->lock);
3092         kvm_arch_vcpu_destroy(vcpu);
3093 vcpu_free_run_page:
3094         free_page((unsigned long)vcpu->run);
3095 vcpu_free:
3096         kmem_cache_free(kvm_vcpu_cache, vcpu);
3097 vcpu_decrement:
3098         mutex_lock(&kvm->lock);
3099         kvm->created_vcpus--;
3100         mutex_unlock(&kvm->lock);
3101         return r;
3102 }
3103
3104 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3105 {
3106         if (sigset) {
3107                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3108                 vcpu->sigset_active = 1;
3109                 vcpu->sigset = *sigset;
3110         } else
3111                 vcpu->sigset_active = 0;
3112         return 0;
3113 }
3114
3115 static long kvm_vcpu_ioctl(struct file *filp,
3116                            unsigned int ioctl, unsigned long arg)
3117 {
3118         struct kvm_vcpu *vcpu = filp->private_data;
3119         void __user *argp = (void __user *)arg;
3120         int r;
3121         struct kvm_fpu *fpu = NULL;
3122         struct kvm_sregs *kvm_sregs = NULL;
3123
3124         if (vcpu->kvm->mm != current->mm)
3125                 return -EIO;
3126
3127         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3128                 return -EINVAL;
3129
3130         /*
3131          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3132          * execution; mutex_lock() would break them.
3133          */
3134         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3135         if (r != -ENOIOCTLCMD)
3136                 return r;
3137
3138         if (mutex_lock_killable(&vcpu->mutex))
3139                 return -EINTR;
3140         switch (ioctl) {
3141         case KVM_RUN: {
3142                 struct pid *oldpid;
3143                 r = -EINVAL;
3144                 if (arg)
3145                         goto out;
3146                 oldpid = rcu_access_pointer(vcpu->pid);
3147                 if (unlikely(oldpid != task_pid(current))) {
3148                         /* The thread running this VCPU changed. */
3149                         struct pid *newpid;
3150
3151                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3152                         if (r)
3153                                 break;
3154
3155                         newpid = get_task_pid(current, PIDTYPE_PID);
3156                         rcu_assign_pointer(vcpu->pid, newpid);
3157                         if (oldpid)
3158                                 synchronize_rcu();
3159                         put_pid(oldpid);
3160                 }
3161                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3162                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3163                 break;
3164         }
3165         case KVM_GET_REGS: {
3166                 struct kvm_regs *kvm_regs;
3167
3168                 r = -ENOMEM;
3169                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3170                 if (!kvm_regs)
3171                         goto out;
3172                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3173                 if (r)
3174                         goto out_free1;
3175                 r = -EFAULT;
3176                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3177                         goto out_free1;
3178                 r = 0;
3179 out_free1:
3180                 kfree(kvm_regs);
3181                 break;
3182         }
3183         case KVM_SET_REGS: {
3184                 struct kvm_regs *kvm_regs;
3185
3186                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3187                 if (IS_ERR(kvm_regs)) {
3188                         r = PTR_ERR(kvm_regs);
3189                         goto out;
3190                 }
3191                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3192                 kfree(kvm_regs);
3193                 break;
3194         }
3195         case KVM_GET_SREGS: {
3196                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3197                                     GFP_KERNEL_ACCOUNT);
3198                 r = -ENOMEM;
3199                 if (!kvm_sregs)
3200                         goto out;
3201                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3202                 if (r)
3203                         goto out;
3204                 r = -EFAULT;
3205                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3206                         goto out;
3207                 r = 0;
3208                 break;
3209         }
3210         case KVM_SET_SREGS: {
3211                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3212                 if (IS_ERR(kvm_sregs)) {
3213                         r = PTR_ERR(kvm_sregs);
3214                         kvm_sregs = NULL;
3215                         goto out;
3216                 }
3217                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3218                 break;
3219         }
3220         case KVM_GET_MP_STATE: {
3221                 struct kvm_mp_state mp_state;
3222
3223                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3224                 if (r)
3225                         goto out;
3226                 r = -EFAULT;
3227                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3228                         goto out;
3229                 r = 0;
3230                 break;
3231         }
3232         case KVM_SET_MP_STATE: {
3233                 struct kvm_mp_state mp_state;
3234
3235                 r = -EFAULT;
3236                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3237                         goto out;
3238                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3239                 break;
3240         }
3241         case KVM_TRANSLATE: {
3242                 struct kvm_translation tr;
3243
3244                 r = -EFAULT;
3245                 if (copy_from_user(&tr, argp, sizeof(tr)))
3246                         goto out;
3247                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3248                 if (r)
3249                         goto out;
3250                 r = -EFAULT;
3251                 if (copy_to_user(argp, &tr, sizeof(tr)))
3252                         goto out;
3253                 r = 0;
3254                 break;
3255         }
3256         case KVM_SET_GUEST_DEBUG: {
3257                 struct kvm_guest_debug dbg;
3258
3259                 r = -EFAULT;
3260                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3261                         goto out;
3262                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3263                 break;
3264         }
3265         case KVM_SET_SIGNAL_MASK: {
3266                 struct kvm_signal_mask __user *sigmask_arg = argp;
3267                 struct kvm_signal_mask kvm_sigmask;
3268                 sigset_t sigset, *p;
3269
3270                 p = NULL;
3271                 if (argp) {
3272                         r = -EFAULT;
3273                         if (copy_from_user(&kvm_sigmask, argp,
3274                                            sizeof(kvm_sigmask)))
3275                                 goto out;
3276                         r = -EINVAL;
3277                         if (kvm_sigmask.len != sizeof(sigset))
3278                                 goto out;
3279                         r = -EFAULT;
3280                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3281                                            sizeof(sigset)))
3282                                 goto out;
3283                         p = &sigset;
3284                 }
3285                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3286                 break;
3287         }
3288         case KVM_GET_FPU: {
3289                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3290                 r = -ENOMEM;
3291                 if (!fpu)
3292                         goto out;
3293                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3294                 if (r)
3295                         goto out;
3296                 r = -EFAULT;
3297                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3298                         goto out;
3299                 r = 0;
3300                 break;
3301         }
3302         case KVM_SET_FPU: {
3303                 fpu = memdup_user(argp, sizeof(*fpu));
3304                 if (IS_ERR(fpu)) {
3305                         r = PTR_ERR(fpu);
3306                         fpu = NULL;
3307                         goto out;
3308                 }
3309                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3310                 break;
3311         }
3312         default:
3313                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3314         }
3315 out:
3316         mutex_unlock(&vcpu->mutex);
3317         kfree(fpu);
3318         kfree(kvm_sregs);
3319         return r;
3320 }
3321
3322 #ifdef CONFIG_KVM_COMPAT
3323 static long kvm_vcpu_compat_ioctl(struct file *filp,
3324                                   unsigned int ioctl, unsigned long arg)
3325 {
3326         struct kvm_vcpu *vcpu = filp->private_data;
3327         void __user *argp = compat_ptr(arg);
3328         int r;
3329
3330         if (vcpu->kvm->mm != current->mm)
3331                 return -EIO;
3332
3333         switch (ioctl) {
3334         case KVM_SET_SIGNAL_MASK: {
3335                 struct kvm_signal_mask __user *sigmask_arg = argp;
3336                 struct kvm_signal_mask kvm_sigmask;
3337                 sigset_t sigset;
3338
3339                 if (argp) {
3340                         r = -EFAULT;
3341                         if (copy_from_user(&kvm_sigmask, argp,
3342                                            sizeof(kvm_sigmask)))
3343                                 goto out;
3344                         r = -EINVAL;
3345                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3346                                 goto out;
3347                         r = -EFAULT;
3348                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3349                                 goto out;
3350                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3351                 } else
3352                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3353                 break;
3354         }
3355         default:
3356                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3357         }
3358
3359 out:
3360         return r;
3361 }
3362 #endif
3363
3364 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3365 {
3366         struct kvm_device *dev = filp->private_data;
3367
3368         if (dev->ops->mmap)
3369                 return dev->ops->mmap(dev, vma);
3370
3371         return -ENODEV;
3372 }
3373
3374 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3375                                  int (*accessor)(struct kvm_device *dev,
3376                                                  struct kvm_device_attr *attr),
3377                                  unsigned long arg)
3378 {
3379         struct kvm_device_attr attr;
3380
3381         if (!accessor)
3382                 return -EPERM;
3383
3384         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3385                 return -EFAULT;
3386
3387         return accessor(dev, &attr);
3388 }
3389
3390 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3391                              unsigned long arg)
3392 {
3393         struct kvm_device *dev = filp->private_data;
3394
3395         if (dev->kvm->mm != current->mm)
3396                 return -EIO;
3397
3398         switch (ioctl) {
3399         case KVM_SET_DEVICE_ATTR:
3400                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3401         case KVM_GET_DEVICE_ATTR:
3402                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3403         case KVM_HAS_DEVICE_ATTR:
3404                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3405         default:
3406                 if (dev->ops->ioctl)
3407                         return dev->ops->ioctl(dev, ioctl, arg);
3408
3409                 return -ENOTTY;
3410         }
3411 }
3412
3413 static int kvm_device_release(struct inode *inode, struct file *filp)
3414 {
3415         struct kvm_device *dev = filp->private_data;
3416         struct kvm *kvm = dev->kvm;
3417
3418         if (dev->ops->release) {
3419                 mutex_lock(&kvm->lock);
3420                 list_del(&dev->vm_node);
3421                 dev->ops->release(dev);
3422                 mutex_unlock(&kvm->lock);
3423         }
3424
3425         kvm_put_kvm(kvm);
3426         return 0;
3427 }
3428
3429 static const struct file_operations kvm_device_fops = {
3430         .unlocked_ioctl = kvm_device_ioctl,
3431         .release = kvm_device_release,
3432         KVM_COMPAT(kvm_device_ioctl),
3433         .mmap = kvm_device_mmap,
3434 };
3435
3436 struct kvm_device *kvm_device_from_filp(struct file *filp)
3437 {
3438         if (filp->f_op != &kvm_device_fops)
3439                 return NULL;
3440
3441         return filp->private_data;
3442 }
3443
3444 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3445 #ifdef CONFIG_KVM_MPIC
3446         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3447         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3448 #endif
3449 };
3450
3451 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3452 {
3453         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3454                 return -ENOSPC;
3455
3456         if (kvm_device_ops_table[type] != NULL)
3457                 return -EEXIST;
3458
3459         kvm_device_ops_table[type] = ops;
3460         return 0;
3461 }
3462
3463 void kvm_unregister_device_ops(u32 type)
3464 {
3465         if (kvm_device_ops_table[type] != NULL)
3466                 kvm_device_ops_table[type] = NULL;
3467 }
3468
3469 static int kvm_ioctl_create_device(struct kvm *kvm,
3470                                    struct kvm_create_device *cd)
3471 {
3472         const struct kvm_device_ops *ops = NULL;
3473         struct kvm_device *dev;
3474         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3475         int type;
3476         int ret;
3477
3478         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3479                 return -ENODEV;
3480
3481         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3482         ops = kvm_device_ops_table[type];
3483         if (ops == NULL)
3484                 return -ENODEV;
3485
3486         if (test)
3487                 return 0;
3488
3489         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3490         if (!dev)
3491                 return -ENOMEM;
3492
3493         dev->ops = ops;
3494         dev->kvm = kvm;
3495
3496         mutex_lock(&kvm->lock);
3497         ret = ops->create(dev, type);
3498         if (ret < 0) {
3499                 mutex_unlock(&kvm->lock);
3500                 kfree(dev);
3501                 return ret;
3502         }
3503         list_add(&dev->vm_node, &kvm->devices);
3504         mutex_unlock(&kvm->lock);
3505
3506         if (ops->init)
3507                 ops->init(dev);
3508
3509         kvm_get_kvm(kvm);
3510         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3511         if (ret < 0) {
3512                 kvm_put_kvm_no_destroy(kvm);
3513                 mutex_lock(&kvm->lock);
3514                 list_del(&dev->vm_node);
3515                 mutex_unlock(&kvm->lock);
3516                 ops->destroy(dev);
3517                 return ret;
3518         }
3519
3520         cd->fd = ret;
3521         return 0;
3522 }
3523
3524 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3525 {
3526         switch (arg) {
3527         case KVM_CAP_USER_MEMORY:
3528         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3529         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3530         case KVM_CAP_INTERNAL_ERROR_DATA:
3531 #ifdef CONFIG_HAVE_KVM_MSI
3532         case KVM_CAP_SIGNAL_MSI:
3533 #endif
3534 #ifdef CONFIG_HAVE_KVM_IRQFD
3535         case KVM_CAP_IRQFD:
3536         case KVM_CAP_IRQFD_RESAMPLE:
3537 #endif
3538         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3539         case KVM_CAP_CHECK_EXTENSION_VM:
3540         case KVM_CAP_ENABLE_CAP_VM:
3541         case KVM_CAP_HALT_POLL:
3542                 return 1;
3543 #ifdef CONFIG_KVM_MMIO
3544         case KVM_CAP_COALESCED_MMIO:
3545                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3546         case KVM_CAP_COALESCED_PIO:
3547                 return 1;
3548 #endif
3549 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3550         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3551                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3552 #endif
3553 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3554         case KVM_CAP_IRQ_ROUTING:
3555                 return KVM_MAX_IRQ_ROUTES;
3556 #endif
3557 #if KVM_ADDRESS_SPACE_NUM > 1
3558         case KVM_CAP_MULTI_ADDRESS_SPACE:
3559                 return KVM_ADDRESS_SPACE_NUM;
3560 #endif
3561         case KVM_CAP_NR_MEMSLOTS:
3562                 return KVM_USER_MEM_SLOTS;
3563         default:
3564                 break;
3565         }
3566         return kvm_vm_ioctl_check_extension(kvm, arg);
3567 }
3568
3569 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3570                                                   struct kvm_enable_cap *cap)
3571 {
3572         return -EINVAL;
3573 }
3574
3575 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3576                                            struct kvm_enable_cap *cap)
3577 {
3578         switch (cap->cap) {
3579 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3580         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3581                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3582
3583                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3584                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3585
3586                 if (cap->flags || (cap->args[0] & ~allowed_options))
3587                         return -EINVAL;
3588                 kvm->manual_dirty_log_protect = cap->args[0];
3589                 return 0;
3590         }
3591 #endif
3592         case KVM_CAP_HALT_POLL: {
3593                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3594                         return -EINVAL;
3595
3596                 kvm->max_halt_poll_ns = cap->args[0];
3597                 return 0;
3598         }
3599         default:
3600                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3601         }
3602 }
3603
3604 static long kvm_vm_ioctl(struct file *filp,
3605                            unsigned int ioctl, unsigned long arg)
3606 {
3607         struct kvm *kvm = filp->private_data;
3608         void __user *argp = (void __user *)arg;
3609         int r;
3610
3611         if (kvm->mm != current->mm)
3612                 return -EIO;
3613         switch (ioctl) {
3614         case KVM_CREATE_VCPU:
3615                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3616                 break;
3617         case KVM_ENABLE_CAP: {
3618                 struct kvm_enable_cap cap;
3619
3620                 r = -EFAULT;
3621                 if (copy_from_user(&cap, argp, sizeof(cap)))
3622                         goto out;
3623                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3624                 break;
3625         }
3626         case KVM_SET_USER_MEMORY_REGION: {
3627                 struct kvm_userspace_memory_region kvm_userspace_mem;
3628
3629                 r = -EFAULT;
3630                 if (copy_from_user(&kvm_userspace_mem, argp,
3631                                                 sizeof(kvm_userspace_mem)))
3632                         goto out;
3633
3634                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3635                 break;
3636         }
3637         case KVM_GET_DIRTY_LOG: {
3638                 struct kvm_dirty_log log;
3639
3640                 r = -EFAULT;
3641                 if (copy_from_user(&log, argp, sizeof(log)))
3642                         goto out;
3643                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3644                 break;
3645         }
3646 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3647         case KVM_CLEAR_DIRTY_LOG: {
3648                 struct kvm_clear_dirty_log log;
3649
3650                 r = -EFAULT;
3651                 if (copy_from_user(&log, argp, sizeof(log)))
3652                         goto out;
3653                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3654                 break;
3655         }
3656 #endif
3657 #ifdef CONFIG_KVM_MMIO
3658         case KVM_REGISTER_COALESCED_MMIO: {
3659                 struct kvm_coalesced_mmio_zone zone;
3660
3661                 r = -EFAULT;
3662                 if (copy_from_user(&zone, argp, sizeof(zone)))
3663                         goto out;
3664                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3665                 break;
3666         }
3667         case KVM_UNREGISTER_COALESCED_MMIO: {
3668                 struct kvm_coalesced_mmio_zone zone;
3669
3670                 r = -EFAULT;
3671                 if (copy_from_user(&zone, argp, sizeof(zone)))
3672                         goto out;
3673                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3674                 break;
3675         }
3676 #endif
3677         case KVM_IRQFD: {
3678                 struct kvm_irqfd data;
3679
3680                 r = -EFAULT;
3681                 if (copy_from_user(&data, argp, sizeof(data)))
3682                         goto out;
3683                 r = kvm_irqfd(kvm, &data);
3684                 break;
3685         }
3686         case KVM_IOEVENTFD: {
3687                 struct kvm_ioeventfd data;
3688
3689                 r = -EFAULT;
3690                 if (copy_from_user(&data, argp, sizeof(data)))
3691                         goto out;
3692                 r = kvm_ioeventfd(kvm, &data);
3693                 break;
3694         }
3695 #ifdef CONFIG_HAVE_KVM_MSI
3696         case KVM_SIGNAL_MSI: {
3697                 struct kvm_msi msi;
3698
3699                 r = -EFAULT;
3700                 if (copy_from_user(&msi, argp, sizeof(msi)))
3701                         goto out;
3702                 r = kvm_send_userspace_msi(kvm, &msi);
3703                 break;
3704         }
3705 #endif
3706 #ifdef __KVM_HAVE_IRQ_LINE
3707         case KVM_IRQ_LINE_STATUS:
3708         case KVM_IRQ_LINE: {
3709                 struct kvm_irq_level irq_event;
3710
3711                 r = -EFAULT;
3712                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3713                         goto out;
3714
3715                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3716                                         ioctl == KVM_IRQ_LINE_STATUS);
3717                 if (r)
3718                         goto out;
3719
3720                 r = -EFAULT;
3721                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3722                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3723                                 goto out;
3724                 }
3725
3726                 r = 0;
3727                 break;
3728         }
3729 #endif
3730 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3731         case KVM_SET_GSI_ROUTING: {
3732                 struct kvm_irq_routing routing;
3733                 struct kvm_irq_routing __user *urouting;
3734                 struct kvm_irq_routing_entry *entries = NULL;
3735
3736                 r = -EFAULT;
3737                 if (copy_from_user(&routing, argp, sizeof(routing)))
3738                         goto out;
3739                 r = -EINVAL;
3740                 if (!kvm_arch_can_set_irq_routing(kvm))
3741                         goto out;
3742                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3743                         goto out;
3744                 if (routing.flags)
3745                         goto out;
3746                 if (routing.nr) {
3747                         r = -ENOMEM;
3748                         entries = vmalloc(array_size(sizeof(*entries),
3749                                                      routing.nr));
3750                         if (!entries)
3751                                 goto out;
3752                         r = -EFAULT;
3753                         urouting = argp;
3754                         if (copy_from_user(entries, urouting->entries,
3755                                            routing.nr * sizeof(*entries)))
3756                                 goto out_free_irq_routing;
3757                 }
3758                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3759                                         routing.flags);
3760 out_free_irq_routing:
3761                 vfree(entries);
3762                 break;
3763         }
3764 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3765         case KVM_CREATE_DEVICE: {
3766                 struct kvm_create_device cd;
3767
3768                 r = -EFAULT;
3769                 if (copy_from_user(&cd, argp, sizeof(cd)))
3770                         goto out;
3771
3772                 r = kvm_ioctl_create_device(kvm, &cd);
3773                 if (r)
3774                         goto out;
3775
3776                 r = -EFAULT;
3777                 if (copy_to_user(argp, &cd, sizeof(cd)))
3778                         goto out;
3779
3780                 r = 0;
3781                 break;
3782         }
3783         case KVM_CHECK_EXTENSION:
3784                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3785                 break;
3786         default:
3787                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3788         }
3789 out:
3790         return r;
3791 }
3792
3793 #ifdef CONFIG_KVM_COMPAT
3794 struct compat_kvm_dirty_log {
3795         __u32 slot;
3796         __u32 padding1;
3797         union {
3798                 compat_uptr_t dirty_bitmap; /* one bit per page */
3799                 __u64 padding2;
3800         };
3801 };
3802
3803 static long kvm_vm_compat_ioctl(struct file *filp,
3804                            unsigned int ioctl, unsigned long arg)
3805 {
3806         struct kvm *kvm = filp->private_data;
3807         int r;
3808
3809         if (kvm->mm != current->mm)
3810                 return -EIO;
3811         switch (ioctl) {
3812         case KVM_GET_DIRTY_LOG: {
3813                 struct compat_kvm_dirty_log compat_log;
3814                 struct kvm_dirty_log log;
3815
3816                 if (copy_from_user(&compat_log, (void __user *)arg,
3817                                    sizeof(compat_log)))
3818                         return -EFAULT;
3819                 log.slot         = compat_log.slot;
3820                 log.padding1     = compat_log.padding1;
3821                 log.padding2     = compat_log.padding2;
3822                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3823
3824                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3825                 break;
3826         }
3827         default:
3828                 r = kvm_vm_ioctl(filp, ioctl, arg);
3829         }
3830         return r;
3831 }
3832 #endif
3833
3834 static struct file_operations kvm_vm_fops = {
3835         .release        = kvm_vm_release,
3836         .unlocked_ioctl = kvm_vm_ioctl,
3837         .llseek         = noop_llseek,
3838         KVM_COMPAT(kvm_vm_compat_ioctl),
3839 };
3840
3841 static int kvm_dev_ioctl_create_vm(unsigned long type)
3842 {
3843         int r;
3844         struct kvm *kvm;
3845         struct file *file;
3846
3847         kvm = kvm_create_vm(type);
3848         if (IS_ERR(kvm))
3849                 return PTR_ERR(kvm);
3850 #ifdef CONFIG_KVM_MMIO
3851         r = kvm_coalesced_mmio_init(kvm);
3852         if (r < 0)
3853                 goto put_kvm;
3854 #endif
3855         r = get_unused_fd_flags(O_CLOEXEC);
3856         if (r < 0)
3857                 goto put_kvm;
3858
3859         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3860         if (IS_ERR(file)) {
3861                 put_unused_fd(r);
3862                 r = PTR_ERR(file);
3863                 goto put_kvm;
3864         }
3865
3866         /*
3867          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3868          * already set, with ->release() being kvm_vm_release().  In error
3869          * cases it will be called by the final fput(file) and will take
3870          * care of doing kvm_put_kvm(kvm).
3871          */
3872         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3873                 put_unused_fd(r);
3874                 fput(file);
3875                 return -ENOMEM;
3876         }
3877         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3878
3879         fd_install(r, file);
3880         return r;
3881
3882 put_kvm:
3883         kvm_put_kvm(kvm);
3884         return r;
3885 }
3886
3887 static long kvm_dev_ioctl(struct file *filp,
3888                           unsigned int ioctl, unsigned long arg)
3889 {
3890         long r = -EINVAL;
3891
3892         switch (ioctl) {
3893         case KVM_GET_API_VERSION:
3894                 if (arg)
3895                         goto out;
3896                 r = KVM_API_VERSION;
3897                 break;
3898         case KVM_CREATE_VM:
3899                 r = kvm_dev_ioctl_create_vm(arg);
3900                 break;
3901         case KVM_CHECK_EXTENSION:
3902                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3903                 break;
3904         case KVM_GET_VCPU_MMAP_SIZE:
3905                 if (arg)
3906                         goto out;
3907                 r = PAGE_SIZE;     /* struct kvm_run */
3908 #ifdef CONFIG_X86
3909                 r += PAGE_SIZE;    /* pio data page */
3910 #endif
3911 #ifdef CONFIG_KVM_MMIO
3912                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3913 #endif
3914                 break;
3915         case KVM_TRACE_ENABLE:
3916         case KVM_TRACE_PAUSE:
3917         case KVM_TRACE_DISABLE:
3918                 r = -EOPNOTSUPP;
3919                 break;
3920         default:
3921                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3922         }
3923 out:
3924         return r;
3925 }
3926
3927 static struct file_operations kvm_chardev_ops = {
3928         .unlocked_ioctl = kvm_dev_ioctl,
3929         .llseek         = noop_llseek,
3930         KVM_COMPAT(kvm_dev_ioctl),
3931 };
3932
3933 static struct miscdevice kvm_dev = {
3934         KVM_MINOR,
3935         "kvm",
3936         &kvm_chardev_ops,
3937 };
3938
3939 static void hardware_enable_nolock(void *junk)
3940 {
3941         int cpu = raw_smp_processor_id();
3942         int r;
3943
3944         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3945                 return;
3946
3947         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3948
3949         r = kvm_arch_hardware_enable();
3950
3951         if (r) {
3952                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3953                 atomic_inc(&hardware_enable_failed);
3954                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3955         }
3956 }
3957
3958 static int kvm_starting_cpu(unsigned int cpu)
3959 {
3960         raw_spin_lock(&kvm_count_lock);
3961         if (kvm_usage_count)
3962                 hardware_enable_nolock(NULL);
3963         raw_spin_unlock(&kvm_count_lock);
3964         return 0;
3965 }
3966
3967 static void hardware_disable_nolock(void *junk)
3968 {
3969         int cpu = raw_smp_processor_id();
3970
3971         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3972                 return;
3973         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3974         kvm_arch_hardware_disable();
3975 }
3976
3977 static int kvm_dying_cpu(unsigned int cpu)
3978 {
3979         raw_spin_lock(&kvm_count_lock);
3980         if (kvm_usage_count)
3981                 hardware_disable_nolock(NULL);
3982         raw_spin_unlock(&kvm_count_lock);
3983         return 0;
3984 }
3985
3986 static void hardware_disable_all_nolock(void)
3987 {
3988         BUG_ON(!kvm_usage_count);
3989
3990         kvm_usage_count--;
3991         if (!kvm_usage_count)
3992                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3993 }
3994
3995 static void hardware_disable_all(void)
3996 {
3997         raw_spin_lock(&kvm_count_lock);
3998         hardware_disable_all_nolock();
3999         raw_spin_unlock(&kvm_count_lock);
4000 }
4001
4002 static int hardware_enable_all(void)
4003 {
4004         int r = 0;
4005
4006         raw_spin_lock(&kvm_count_lock);
4007
4008         kvm_usage_count++;
4009         if (kvm_usage_count == 1) {
4010                 atomic_set(&hardware_enable_failed, 0);
4011                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4012
4013                 if (atomic_read(&hardware_enable_failed)) {
4014                         hardware_disable_all_nolock();
4015                         r = -EBUSY;
4016                 }
4017         }
4018
4019         raw_spin_unlock(&kvm_count_lock);
4020
4021         return r;
4022 }
4023
4024 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4025                       void *v)
4026 {
4027         /*
4028          * Some (well, at least mine) BIOSes hang on reboot if
4029          * in vmx root mode.
4030          *
4031          * And Intel TXT required VMX off for all cpu when system shutdown.
4032          */
4033         pr_info("kvm: exiting hardware virtualization\n");
4034         kvm_rebooting = true;
4035         on_each_cpu(hardware_disable_nolock, NULL, 1);
4036         return NOTIFY_OK;
4037 }
4038
4039 static struct notifier_block kvm_reboot_notifier = {
4040         .notifier_call = kvm_reboot,
4041         .priority = 0,
4042 };
4043
4044 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4045 {
4046         int i;
4047
4048         for (i = 0; i < bus->dev_count; i++) {
4049                 struct kvm_io_device *pos = bus->range[i].dev;
4050
4051                 kvm_iodevice_destructor(pos);
4052         }
4053         kfree(bus);
4054 }
4055
4056 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4057                                  const struct kvm_io_range *r2)
4058 {
4059         gpa_t addr1 = r1->addr;
4060         gpa_t addr2 = r2->addr;
4061
4062         if (addr1 < addr2)
4063                 return -1;
4064
4065         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4066          * accept any overlapping write.  Any order is acceptable for
4067          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4068          * we process all of them.
4069          */
4070         if (r2->len) {
4071                 addr1 += r1->len;
4072                 addr2 += r2->len;
4073         }
4074
4075         if (addr1 > addr2)
4076                 return 1;
4077
4078         return 0;
4079 }
4080
4081 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4082 {
4083         return kvm_io_bus_cmp(p1, p2);
4084 }
4085
4086 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4087                              gpa_t addr, int len)
4088 {
4089         struct kvm_io_range *range, key;
4090         int off;
4091
4092         key = (struct kvm_io_range) {
4093                 .addr = addr,
4094                 .len = len,
4095         };
4096
4097         range = bsearch(&key, bus->range, bus->dev_count,
4098                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4099         if (range == NULL)
4100                 return -ENOENT;
4101
4102         off = range - bus->range;
4103
4104         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4105                 off--;
4106
4107         return off;
4108 }
4109
4110 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4111                               struct kvm_io_range *range, const void *val)
4112 {
4113         int idx;
4114
4115         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4116         if (idx < 0)
4117                 return -EOPNOTSUPP;
4118
4119         while (idx < bus->dev_count &&
4120                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4121                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4122                                         range->len, val))
4123                         return idx;
4124                 idx++;
4125         }
4126
4127         return -EOPNOTSUPP;
4128 }
4129
4130 /* kvm_io_bus_write - called under kvm->slots_lock */
4131 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4132                      int len, const void *val)
4133 {
4134         struct kvm_io_bus *bus;
4135         struct kvm_io_range range;
4136         int r;
4137
4138         range = (struct kvm_io_range) {
4139                 .addr = addr,
4140                 .len = len,
4141         };
4142
4143         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4144         if (!bus)
4145                 return -ENOMEM;
4146         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4147         return r < 0 ? r : 0;
4148 }
4149 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4150
4151 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4152 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4153                             gpa_t addr, int len, const void *val, long cookie)
4154 {
4155         struct kvm_io_bus *bus;
4156         struct kvm_io_range range;
4157
4158         range = (struct kvm_io_range) {
4159                 .addr = addr,
4160                 .len = len,
4161         };
4162
4163         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4164         if (!bus)
4165                 return -ENOMEM;
4166
4167         /* First try the device referenced by cookie. */
4168         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4169             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4170                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4171                                         val))
4172                         return cookie;
4173
4174         /*
4175          * cookie contained garbage; fall back to search and return the
4176          * correct cookie value.
4177          */
4178         return __kvm_io_bus_write(vcpu, bus, &range, val);
4179 }
4180
4181 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4182                              struct kvm_io_range *range, void *val)
4183 {
4184         int idx;
4185
4186         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4187         if (idx < 0)
4188                 return -EOPNOTSUPP;
4189
4190         while (idx < bus->dev_count &&
4191                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4192                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4193                                        range->len, val))
4194                         return idx;
4195                 idx++;
4196         }
4197
4198         return -EOPNOTSUPP;
4199 }
4200
4201 /* kvm_io_bus_read - called under kvm->slots_lock */
4202 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4203                     int len, void *val)
4204 {
4205         struct kvm_io_bus *bus;
4206         struct kvm_io_range range;
4207         int r;
4208
4209         range = (struct kvm_io_range) {
4210                 .addr = addr,
4211                 .len = len,
4212         };
4213
4214         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4215         if (!bus)
4216                 return -ENOMEM;
4217         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4218         return r < 0 ? r : 0;
4219 }
4220
4221 /* Caller must hold slots_lock. */
4222 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4223                             int len, struct kvm_io_device *dev)
4224 {
4225         int i;
4226         struct kvm_io_bus *new_bus, *bus;
4227         struct kvm_io_range range;
4228
4229         bus = kvm_get_bus(kvm, bus_idx);
4230         if (!bus)
4231                 return -ENOMEM;
4232
4233         /* exclude ioeventfd which is limited by maximum fd */
4234         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4235                 return -ENOSPC;
4236
4237         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4238                           GFP_KERNEL_ACCOUNT);
4239         if (!new_bus)
4240                 return -ENOMEM;
4241
4242         range = (struct kvm_io_range) {
4243                 .addr = addr,
4244                 .len = len,
4245                 .dev = dev,
4246         };
4247
4248         for (i = 0; i < bus->dev_count; i++)
4249                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4250                         break;
4251
4252         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4253         new_bus->dev_count++;
4254         new_bus->range[i] = range;
4255         memcpy(new_bus->range + i + 1, bus->range + i,
4256                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4257         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4258         synchronize_srcu_expedited(&kvm->srcu);
4259         kfree(bus);
4260
4261         return 0;
4262 }
4263
4264 /* Caller must hold slots_lock. */
4265 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4266                                struct kvm_io_device *dev)
4267 {
4268         int i;
4269         struct kvm_io_bus *new_bus, *bus;
4270
4271         bus = kvm_get_bus(kvm, bus_idx);
4272         if (!bus)
4273                 return;
4274
4275         for (i = 0; i < bus->dev_count; i++)
4276                 if (bus->range[i].dev == dev) {
4277                         break;
4278                 }
4279
4280         if (i == bus->dev_count)
4281                 return;
4282
4283         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4284                           GFP_KERNEL_ACCOUNT);
4285         if (!new_bus)  {
4286                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4287                 goto broken;
4288         }
4289
4290         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4291         new_bus->dev_count--;
4292         memcpy(new_bus->range + i, bus->range + i + 1,
4293                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4294
4295 broken:
4296         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4297         synchronize_srcu_expedited(&kvm->srcu);
4298         kfree(bus);
4299         return;
4300 }
4301
4302 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4303                                          gpa_t addr)
4304 {
4305         struct kvm_io_bus *bus;
4306         int dev_idx, srcu_idx;
4307         struct kvm_io_device *iodev = NULL;
4308
4309         srcu_idx = srcu_read_lock(&kvm->srcu);
4310
4311         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4312         if (!bus)
4313                 goto out_unlock;
4314
4315         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4316         if (dev_idx < 0)
4317                 goto out_unlock;
4318
4319         iodev = bus->range[dev_idx].dev;
4320
4321 out_unlock:
4322         srcu_read_unlock(&kvm->srcu, srcu_idx);
4323
4324         return iodev;
4325 }
4326 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4327
4328 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4329                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4330                            const char *fmt)
4331 {
4332         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4333                                           inode->i_private;
4334
4335         /* The debugfs files are a reference to the kvm struct which
4336          * is still valid when kvm_destroy_vm is called.
4337          * To avoid the race between open and the removal of the debugfs
4338          * directory we test against the users count.
4339          */
4340         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4341                 return -ENOENT;
4342
4343         if (simple_attr_open(inode, file, get,
4344                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4345                     ? set : NULL,
4346                     fmt)) {
4347                 kvm_put_kvm(stat_data->kvm);
4348                 return -ENOMEM;
4349         }
4350
4351         return 0;
4352 }
4353
4354 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4355 {
4356         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4357                                           inode->i_private;
4358
4359         simple_attr_release(inode, file);
4360         kvm_put_kvm(stat_data->kvm);
4361
4362         return 0;
4363 }
4364
4365 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4366 {
4367         *val = *(ulong *)((void *)kvm + offset);
4368
4369         return 0;
4370 }
4371
4372 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4373 {
4374         *(ulong *)((void *)kvm + offset) = 0;
4375
4376         return 0;
4377 }
4378
4379 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4380 {
4381         int i;
4382         struct kvm_vcpu *vcpu;
4383
4384         *val = 0;
4385
4386         kvm_for_each_vcpu(i, vcpu, kvm)
4387                 *val += *(u64 *)((void *)vcpu + offset);
4388
4389         return 0;
4390 }
4391
4392 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4393 {
4394         int i;
4395         struct kvm_vcpu *vcpu;
4396
4397         kvm_for_each_vcpu(i, vcpu, kvm)
4398                 *(u64 *)((void *)vcpu + offset) = 0;
4399
4400         return 0;
4401 }
4402
4403 static int kvm_stat_data_get(void *data, u64 *val)
4404 {
4405         int r = -EFAULT;
4406         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4407
4408         switch (stat_data->dbgfs_item->kind) {
4409         case KVM_STAT_VM:
4410                 r = kvm_get_stat_per_vm(stat_data->kvm,
4411                                         stat_data->dbgfs_item->offset, val);
4412                 break;
4413         case KVM_STAT_VCPU:
4414                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4415                                           stat_data->dbgfs_item->offset, val);
4416                 break;
4417         }
4418
4419         return r;
4420 }
4421
4422 static int kvm_stat_data_clear(void *data, u64 val)
4423 {
4424         int r = -EFAULT;
4425         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4426
4427         if (val)
4428                 return -EINVAL;
4429
4430         switch (stat_data->dbgfs_item->kind) {
4431         case KVM_STAT_VM:
4432                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4433                                           stat_data->dbgfs_item->offset);
4434                 break;
4435         case KVM_STAT_VCPU:
4436                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4437                                             stat_data->dbgfs_item->offset);
4438                 break;
4439         }
4440
4441         return r;
4442 }
4443
4444 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4445 {
4446         __simple_attr_check_format("%llu\n", 0ull);
4447         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4448                                 kvm_stat_data_clear, "%llu\n");
4449 }
4450
4451 static const struct file_operations stat_fops_per_vm = {
4452         .owner = THIS_MODULE,
4453         .open = kvm_stat_data_open,
4454         .release = kvm_debugfs_release,
4455         .read = simple_attr_read,
4456         .write = simple_attr_write,
4457         .llseek = no_llseek,
4458 };
4459
4460 static int vm_stat_get(void *_offset, u64 *val)
4461 {
4462         unsigned offset = (long)_offset;
4463         struct kvm *kvm;
4464         u64 tmp_val;
4465
4466         *val = 0;
4467         mutex_lock(&kvm_lock);
4468         list_for_each_entry(kvm, &vm_list, vm_list) {
4469                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4470                 *val += tmp_val;
4471         }
4472         mutex_unlock(&kvm_lock);
4473         return 0;
4474 }
4475
4476 static int vm_stat_clear(void *_offset, u64 val)
4477 {
4478         unsigned offset = (long)_offset;
4479         struct kvm *kvm;
4480
4481         if (val)
4482                 return -EINVAL;
4483
4484         mutex_lock(&kvm_lock);
4485         list_for_each_entry(kvm, &vm_list, vm_list) {
4486                 kvm_clear_stat_per_vm(kvm, offset);
4487         }
4488         mutex_unlock(&kvm_lock);
4489
4490         return 0;
4491 }
4492
4493 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4494
4495 static int vcpu_stat_get(void *_offset, u64 *val)
4496 {
4497         unsigned offset = (long)_offset;
4498         struct kvm *kvm;
4499         u64 tmp_val;
4500
4501         *val = 0;
4502         mutex_lock(&kvm_lock);
4503         list_for_each_entry(kvm, &vm_list, vm_list) {
4504                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4505                 *val += tmp_val;
4506         }
4507         mutex_unlock(&kvm_lock);
4508         return 0;
4509 }
4510
4511 static int vcpu_stat_clear(void *_offset, u64 val)
4512 {
4513         unsigned offset = (long)_offset;
4514         struct kvm *kvm;
4515
4516         if (val)
4517                 return -EINVAL;
4518
4519         mutex_lock(&kvm_lock);
4520         list_for_each_entry(kvm, &vm_list, vm_list) {
4521                 kvm_clear_stat_per_vcpu(kvm, offset);
4522         }
4523         mutex_unlock(&kvm_lock);
4524
4525         return 0;
4526 }
4527
4528 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4529                         "%llu\n");
4530
4531 static const struct file_operations *stat_fops[] = {
4532         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4533         [KVM_STAT_VM]   = &vm_stat_fops,
4534 };
4535
4536 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4537 {
4538         struct kobj_uevent_env *env;
4539         unsigned long long created, active;
4540
4541         if (!kvm_dev.this_device || !kvm)
4542                 return;
4543
4544         mutex_lock(&kvm_lock);
4545         if (type == KVM_EVENT_CREATE_VM) {
4546                 kvm_createvm_count++;
4547                 kvm_active_vms++;
4548         } else if (type == KVM_EVENT_DESTROY_VM) {
4549                 kvm_active_vms--;
4550         }
4551         created = kvm_createvm_count;
4552         active = kvm_active_vms;
4553         mutex_unlock(&kvm_lock);
4554
4555         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4556         if (!env)
4557                 return;
4558
4559         add_uevent_var(env, "CREATED=%llu", created);
4560         add_uevent_var(env, "COUNT=%llu", active);
4561
4562         if (type == KVM_EVENT_CREATE_VM) {
4563                 add_uevent_var(env, "EVENT=create");
4564                 kvm->userspace_pid = task_pid_nr(current);
4565         } else if (type == KVM_EVENT_DESTROY_VM) {
4566                 add_uevent_var(env, "EVENT=destroy");
4567         }
4568         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4569
4570         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4571                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4572
4573                 if (p) {
4574                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4575                         if (!IS_ERR(tmp))
4576                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4577                         kfree(p);
4578                 }
4579         }
4580         /* no need for checks, since we are adding at most only 5 keys */
4581         env->envp[env->envp_idx++] = NULL;
4582         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4583         kfree(env);
4584 }
4585
4586 static void kvm_init_debug(void)
4587 {
4588         struct kvm_stats_debugfs_item *p;
4589
4590         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4591
4592         kvm_debugfs_num_entries = 0;
4593         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4594                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4595                                     kvm_debugfs_dir, (void *)(long)p->offset,
4596                                     stat_fops[p->kind]);
4597         }
4598 }
4599
4600 static int kvm_suspend(void)
4601 {
4602         if (kvm_usage_count)
4603                 hardware_disable_nolock(NULL);
4604         return 0;
4605 }
4606
4607 static void kvm_resume(void)
4608 {
4609         if (kvm_usage_count) {
4610 #ifdef CONFIG_LOCKDEP
4611                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4612 #endif
4613                 hardware_enable_nolock(NULL);
4614         }
4615 }
4616
4617 static struct syscore_ops kvm_syscore_ops = {
4618         .suspend = kvm_suspend,
4619         .resume = kvm_resume,
4620 };
4621
4622 static inline
4623 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4624 {
4625         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4626 }
4627
4628 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4629 {
4630         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4631
4632         WRITE_ONCE(vcpu->preempted, false);
4633         WRITE_ONCE(vcpu->ready, false);
4634
4635         __this_cpu_write(kvm_running_vcpu, vcpu);
4636         kvm_arch_sched_in(vcpu, cpu);
4637         kvm_arch_vcpu_load(vcpu, cpu);
4638 }
4639
4640 static void kvm_sched_out(struct preempt_notifier *pn,
4641                           struct task_struct *next)
4642 {
4643         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4644
4645         if (current->state == TASK_RUNNING) {
4646                 WRITE_ONCE(vcpu->preempted, true);
4647                 WRITE_ONCE(vcpu->ready, true);
4648         }
4649         kvm_arch_vcpu_put(vcpu);
4650         __this_cpu_write(kvm_running_vcpu, NULL);
4651 }
4652
4653 /**
4654  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4655  *
4656  * We can disable preemption locally around accessing the per-CPU variable,
4657  * and use the resolved vcpu pointer after enabling preemption again,
4658  * because even if the current thread is migrated to another CPU, reading
4659  * the per-CPU value later will give us the same value as we update the
4660  * per-CPU variable in the preempt notifier handlers.
4661  */
4662 struct kvm_vcpu *kvm_get_running_vcpu(void)
4663 {
4664         struct kvm_vcpu *vcpu;
4665
4666         preempt_disable();
4667         vcpu = __this_cpu_read(kvm_running_vcpu);
4668         preempt_enable();
4669
4670         return vcpu;
4671 }
4672 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
4673
4674 /**
4675  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4676  */
4677 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4678 {
4679         return &kvm_running_vcpu;
4680 }
4681
4682 struct kvm_cpu_compat_check {
4683         void *opaque;
4684         int *ret;
4685 };
4686
4687 static void check_processor_compat(void *data)
4688 {
4689         struct kvm_cpu_compat_check *c = data;
4690
4691         *c->ret = kvm_arch_check_processor_compat(c->opaque);
4692 }
4693
4694 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4695                   struct module *module)
4696 {
4697         struct kvm_cpu_compat_check c;
4698         int r;
4699         int cpu;
4700
4701         r = kvm_arch_init(opaque);
4702         if (r)
4703                 goto out_fail;
4704
4705         /*
4706          * kvm_arch_init makes sure there's at most one caller
4707          * for architectures that support multiple implementations,
4708          * like intel and amd on x86.
4709          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4710          * conflicts in case kvm is already setup for another implementation.
4711          */
4712         r = kvm_irqfd_init();
4713         if (r)
4714                 goto out_irqfd;
4715
4716         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4717                 r = -ENOMEM;
4718                 goto out_free_0;
4719         }
4720
4721         r = kvm_arch_hardware_setup(opaque);
4722         if (r < 0)
4723                 goto out_free_1;
4724
4725         c.ret = &r;
4726         c.opaque = opaque;
4727         for_each_online_cpu(cpu) {
4728                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
4729                 if (r < 0)
4730                         goto out_free_2;
4731         }
4732
4733         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4734                                       kvm_starting_cpu, kvm_dying_cpu);
4735         if (r)
4736                 goto out_free_2;
4737         register_reboot_notifier(&kvm_reboot_notifier);
4738
4739         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4740         if (!vcpu_align)
4741                 vcpu_align = __alignof__(struct kvm_vcpu);
4742         kvm_vcpu_cache =
4743                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4744                                            SLAB_ACCOUNT,
4745                                            offsetof(struct kvm_vcpu, arch),
4746                                            sizeof_field(struct kvm_vcpu, arch),
4747                                            NULL);
4748         if (!kvm_vcpu_cache) {
4749                 r = -ENOMEM;
4750                 goto out_free_3;
4751         }
4752
4753         r = kvm_async_pf_init();
4754         if (r)
4755                 goto out_free;
4756
4757         kvm_chardev_ops.owner = module;
4758         kvm_vm_fops.owner = module;
4759         kvm_vcpu_fops.owner = module;
4760
4761         r = misc_register(&kvm_dev);
4762         if (r) {
4763                 pr_err("kvm: misc device register failed\n");
4764                 goto out_unreg;
4765         }
4766
4767         register_syscore_ops(&kvm_syscore_ops);
4768
4769         kvm_preempt_ops.sched_in = kvm_sched_in;
4770         kvm_preempt_ops.sched_out = kvm_sched_out;
4771
4772         kvm_init_debug();
4773
4774         r = kvm_vfio_ops_init();
4775         WARN_ON(r);
4776
4777         return 0;
4778
4779 out_unreg:
4780         kvm_async_pf_deinit();
4781 out_free:
4782         kmem_cache_destroy(kvm_vcpu_cache);
4783 out_free_3:
4784         unregister_reboot_notifier(&kvm_reboot_notifier);
4785         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4786 out_free_2:
4787         kvm_arch_hardware_unsetup();
4788 out_free_1:
4789         free_cpumask_var(cpus_hardware_enabled);
4790 out_free_0:
4791         kvm_irqfd_exit();
4792 out_irqfd:
4793         kvm_arch_exit();
4794 out_fail:
4795         return r;
4796 }
4797 EXPORT_SYMBOL_GPL(kvm_init);
4798
4799 void kvm_exit(void)
4800 {
4801         debugfs_remove_recursive(kvm_debugfs_dir);
4802         misc_deregister(&kvm_dev);
4803         kmem_cache_destroy(kvm_vcpu_cache);
4804         kvm_async_pf_deinit();
4805         unregister_syscore_ops(&kvm_syscore_ops);
4806         unregister_reboot_notifier(&kvm_reboot_notifier);
4807         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4808         on_each_cpu(hardware_disable_nolock, NULL, 1);
4809         kvm_arch_hardware_unsetup();
4810         kvm_arch_exit();
4811         kvm_irqfd_exit();
4812         free_cpumask_var(cpus_hardware_enabled);
4813         kvm_vfio_ops_exit();
4814 }
4815 EXPORT_SYMBOL_GPL(kvm_exit);
4816
4817 struct kvm_vm_worker_thread_context {
4818         struct kvm *kvm;
4819         struct task_struct *parent;
4820         struct completion init_done;
4821         kvm_vm_thread_fn_t thread_fn;
4822         uintptr_t data;
4823         int err;
4824 };
4825
4826 static int kvm_vm_worker_thread(void *context)
4827 {
4828         /*
4829          * The init_context is allocated on the stack of the parent thread, so
4830          * we have to locally copy anything that is needed beyond initialization
4831          */
4832         struct kvm_vm_worker_thread_context *init_context = context;
4833         struct kvm *kvm = init_context->kvm;
4834         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4835         uintptr_t data = init_context->data;
4836         int err;
4837
4838         err = kthread_park(current);
4839         /* kthread_park(current) is never supposed to return an error */
4840         WARN_ON(err != 0);
4841         if (err)
4842                 goto init_complete;
4843
4844         err = cgroup_attach_task_all(init_context->parent, current);
4845         if (err) {
4846                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4847                         __func__, err);
4848                 goto init_complete;
4849         }
4850
4851         set_user_nice(current, task_nice(init_context->parent));
4852
4853 init_complete:
4854         init_context->err = err;
4855         complete(&init_context->init_done);
4856         init_context = NULL;
4857
4858         if (err)
4859                 return err;
4860
4861         /* Wait to be woken up by the spawner before proceeding. */
4862         kthread_parkme();
4863
4864         if (!kthread_should_stop())
4865                 err = thread_fn(kvm, data);
4866
4867         return err;
4868 }
4869
4870 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4871                                 uintptr_t data, const char *name,
4872                                 struct task_struct **thread_ptr)
4873 {
4874         struct kvm_vm_worker_thread_context init_context = {};
4875         struct task_struct *thread;
4876
4877         *thread_ptr = NULL;
4878         init_context.kvm = kvm;
4879         init_context.parent = current;
4880         init_context.thread_fn = thread_fn;
4881         init_context.data = data;
4882         init_completion(&init_context.init_done);
4883
4884         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4885                              "%s-%d", name, task_pid_nr(current));
4886         if (IS_ERR(thread))
4887                 return PTR_ERR(thread);
4888
4889         /* kthread_run is never supposed to return NULL */
4890         WARN_ON(thread == NULL);
4891
4892         wait_for_completion(&init_context.init_done);
4893
4894         if (!init_context.err)
4895                 *thread_ptr = thread;
4896
4897         return init_context.err;
4898 }