Merge tag 'riscv-for-linus-5.20-mw2' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static struct file_operations kvm_chardev_ops;
121
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123                            unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126                                   unsigned long arg);
127 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
128 #else
129 /*
130  * For architectures that don't implement a compat infrastructure,
131  * adopt a double line of defense:
132  * - Prevent a compat task from opening /dev/kvm
133  * - If the open has been done by a 64bit task, and the KVM fd
134  *   passed to a compat task, let the ioctls fail.
135  */
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137                                 unsigned long arg) { return -EINVAL; }
138
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
140 {
141         return is_compat_task() ? -ENODEV : 0;
142 }
143 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
144                         .open           = kvm_no_compat_open
145 #endif
146 static int hardware_enable_all(void);
147 static void hardware_disable_all(void);
148
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
150
151 __visible bool kvm_rebooting;
152 EXPORT_SYMBOL_GPL(kvm_rebooting);
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
161
162 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
163                                                    unsigned long start, unsigned long end)
164 {
165 }
166
167 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
168 {
169 }
170
171 bool kvm_is_zone_device_page(struct page *page)
172 {
173         /*
174          * The metadata used by is_zone_device_page() to determine whether or
175          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
176          * the device has been pinned, e.g. by get_user_pages().  WARN if the
177          * page_count() is zero to help detect bad usage of this helper.
178          */
179         if (WARN_ON_ONCE(!page_count(page)))
180                 return false;
181
182         return is_zone_device_page(page);
183 }
184
185 /*
186  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
187  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
188  * is likely incomplete, it has been compiled purely through people wanting to
189  * back guest with a certain type of memory and encountering issues.
190  */
191 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
192 {
193         struct page *page;
194
195         if (!pfn_valid(pfn))
196                 return NULL;
197
198         page = pfn_to_page(pfn);
199         if (!PageReserved(page))
200                 return page;
201
202         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
203         if (is_zero_pfn(pfn))
204                 return page;
205
206         /*
207          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
208          * perspective they are "normal" pages, albeit with slightly different
209          * usage rules.
210          */
211         if (kvm_is_zone_device_page(page))
212                 return page;
213
214         return NULL;
215 }
216
217 /*
218  * Switches to specified vcpu, until a matching vcpu_put()
219  */
220 void vcpu_load(struct kvm_vcpu *vcpu)
221 {
222         int cpu = get_cpu();
223
224         __this_cpu_write(kvm_running_vcpu, vcpu);
225         preempt_notifier_register(&vcpu->preempt_notifier);
226         kvm_arch_vcpu_load(vcpu, cpu);
227         put_cpu();
228 }
229 EXPORT_SYMBOL_GPL(vcpu_load);
230
231 void vcpu_put(struct kvm_vcpu *vcpu)
232 {
233         preempt_disable();
234         kvm_arch_vcpu_put(vcpu);
235         preempt_notifier_unregister(&vcpu->preempt_notifier);
236         __this_cpu_write(kvm_running_vcpu, NULL);
237         preempt_enable();
238 }
239 EXPORT_SYMBOL_GPL(vcpu_put);
240
241 /* TODO: merge with kvm_arch_vcpu_should_kick */
242 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
243 {
244         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
245
246         /*
247          * We need to wait for the VCPU to reenable interrupts and get out of
248          * READING_SHADOW_PAGE_TABLES mode.
249          */
250         if (req & KVM_REQUEST_WAIT)
251                 return mode != OUTSIDE_GUEST_MODE;
252
253         /*
254          * Need to kick a running VCPU, but otherwise there is nothing to do.
255          */
256         return mode == IN_GUEST_MODE;
257 }
258
259 static void ack_kick(void *_completed)
260 {
261 }
262
263 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
264 {
265         if (cpumask_empty(cpus))
266                 return false;
267
268         smp_call_function_many(cpus, ack_kick, NULL, wait);
269         return true;
270 }
271
272 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
273                                   struct cpumask *tmp, int current_cpu)
274 {
275         int cpu;
276
277         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
278                 __kvm_make_request(req, vcpu);
279
280         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
281                 return;
282
283         /*
284          * Note, the vCPU could get migrated to a different pCPU at any point
285          * after kvm_request_needs_ipi(), which could result in sending an IPI
286          * to the previous pCPU.  But, that's OK because the purpose of the IPI
287          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
288          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
289          * after this point is also OK, as the requirement is only that KVM wait
290          * for vCPUs that were reading SPTEs _before_ any changes were
291          * finalized. See kvm_vcpu_kick() for more details on handling requests.
292          */
293         if (kvm_request_needs_ipi(vcpu, req)) {
294                 cpu = READ_ONCE(vcpu->cpu);
295                 if (cpu != -1 && cpu != current_cpu)
296                         __cpumask_set_cpu(cpu, tmp);
297         }
298 }
299
300 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
301                                  unsigned long *vcpu_bitmap)
302 {
303         struct kvm_vcpu *vcpu;
304         struct cpumask *cpus;
305         int i, me;
306         bool called;
307
308         me = get_cpu();
309
310         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
311         cpumask_clear(cpus);
312
313         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
314                 vcpu = kvm_get_vcpu(kvm, i);
315                 if (!vcpu)
316                         continue;
317                 kvm_make_vcpu_request(vcpu, req, cpus, me);
318         }
319
320         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
321         put_cpu();
322
323         return called;
324 }
325
326 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
327                                       struct kvm_vcpu *except)
328 {
329         struct kvm_vcpu *vcpu;
330         struct cpumask *cpus;
331         unsigned long i;
332         bool called;
333         int me;
334
335         me = get_cpu();
336
337         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
338         cpumask_clear(cpus);
339
340         kvm_for_each_vcpu(i, vcpu, kvm) {
341                 if (vcpu == except)
342                         continue;
343                 kvm_make_vcpu_request(vcpu, req, cpus, me);
344         }
345
346         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
347         put_cpu();
348
349         return called;
350 }
351
352 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
353 {
354         return kvm_make_all_cpus_request_except(kvm, req, NULL);
355 }
356 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
357
358 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
359 void kvm_flush_remote_tlbs(struct kvm *kvm)
360 {
361         ++kvm->stat.generic.remote_tlb_flush_requests;
362
363         /*
364          * We want to publish modifications to the page tables before reading
365          * mode. Pairs with a memory barrier in arch-specific code.
366          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
367          * and smp_mb in walk_shadow_page_lockless_begin/end.
368          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
369          *
370          * There is already an smp_mb__after_atomic() before
371          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
372          * barrier here.
373          */
374         if (!kvm_arch_flush_remote_tlb(kvm)
375             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
376                 ++kvm->stat.generic.remote_tlb_flush;
377 }
378 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
379 #endif
380
381 static void kvm_flush_shadow_all(struct kvm *kvm)
382 {
383         kvm_arch_flush_shadow_all(kvm);
384         kvm_arch_guest_memory_reclaimed(kvm);
385 }
386
387 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
388 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
389                                                gfp_t gfp_flags)
390 {
391         gfp_flags |= mc->gfp_zero;
392
393         if (mc->kmem_cache)
394                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
395         else
396                 return (void *)__get_free_page(gfp_flags);
397 }
398
399 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
400 {
401         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
402         void *obj;
403
404         if (mc->nobjs >= min)
405                 return 0;
406
407         if (unlikely(!mc->objects)) {
408                 if (WARN_ON_ONCE(!capacity))
409                         return -EIO;
410
411                 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
412                 if (!mc->objects)
413                         return -ENOMEM;
414
415                 mc->capacity = capacity;
416         }
417
418         /* It is illegal to request a different capacity across topups. */
419         if (WARN_ON_ONCE(mc->capacity != capacity))
420                 return -EIO;
421
422         while (mc->nobjs < mc->capacity) {
423                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
424                 if (!obj)
425                         return mc->nobjs >= min ? 0 : -ENOMEM;
426                 mc->objects[mc->nobjs++] = obj;
427         }
428         return 0;
429 }
430
431 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
432 {
433         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
434 }
435
436 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
437 {
438         return mc->nobjs;
439 }
440
441 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
442 {
443         while (mc->nobjs) {
444                 if (mc->kmem_cache)
445                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
446                 else
447                         free_page((unsigned long)mc->objects[--mc->nobjs]);
448         }
449
450         kvfree(mc->objects);
451
452         mc->objects = NULL;
453         mc->capacity = 0;
454 }
455
456 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
457 {
458         void *p;
459
460         if (WARN_ON(!mc->nobjs))
461                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
462         else
463                 p = mc->objects[--mc->nobjs];
464         BUG_ON(!p);
465         return p;
466 }
467 #endif
468
469 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
470 {
471         mutex_init(&vcpu->mutex);
472         vcpu->cpu = -1;
473         vcpu->kvm = kvm;
474         vcpu->vcpu_id = id;
475         vcpu->pid = NULL;
476 #ifndef __KVM_HAVE_ARCH_WQP
477         rcuwait_init(&vcpu->wait);
478 #endif
479         kvm_async_pf_vcpu_init(vcpu);
480
481         kvm_vcpu_set_in_spin_loop(vcpu, false);
482         kvm_vcpu_set_dy_eligible(vcpu, false);
483         vcpu->preempted = false;
484         vcpu->ready = false;
485         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
486         vcpu->last_used_slot = NULL;
487
488         /* Fill the stats id string for the vcpu */
489         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
490                  task_pid_nr(current), id);
491 }
492
493 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
494 {
495         kvm_arch_vcpu_destroy(vcpu);
496         kvm_dirty_ring_free(&vcpu->dirty_ring);
497
498         /*
499          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
500          * the vcpu->pid pointer, and at destruction time all file descriptors
501          * are already gone.
502          */
503         put_pid(rcu_dereference_protected(vcpu->pid, 1));
504
505         free_page((unsigned long)vcpu->run);
506         kmem_cache_free(kvm_vcpu_cache, vcpu);
507 }
508
509 void kvm_destroy_vcpus(struct kvm *kvm)
510 {
511         unsigned long i;
512         struct kvm_vcpu *vcpu;
513
514         kvm_for_each_vcpu(i, vcpu, kvm) {
515                 kvm_vcpu_destroy(vcpu);
516                 xa_erase(&kvm->vcpu_array, i);
517         }
518
519         atomic_set(&kvm->online_vcpus, 0);
520 }
521 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
522
523 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
524 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
525 {
526         return container_of(mn, struct kvm, mmu_notifier);
527 }
528
529 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
530                                               struct mm_struct *mm,
531                                               unsigned long start, unsigned long end)
532 {
533         struct kvm *kvm = mmu_notifier_to_kvm(mn);
534         int idx;
535
536         idx = srcu_read_lock(&kvm->srcu);
537         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
538         srcu_read_unlock(&kvm->srcu, idx);
539 }
540
541 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
542
543 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
544                              unsigned long end);
545
546 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
547
548 struct kvm_hva_range {
549         unsigned long start;
550         unsigned long end;
551         pte_t pte;
552         hva_handler_t handler;
553         on_lock_fn_t on_lock;
554         on_unlock_fn_t on_unlock;
555         bool flush_on_ret;
556         bool may_block;
557 };
558
559 /*
560  * Use a dedicated stub instead of NULL to indicate that there is no callback
561  * function/handler.  The compiler technically can't guarantee that a real
562  * function will have a non-zero address, and so it will generate code to
563  * check for !NULL, whereas comparing against a stub will be elided at compile
564  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
565  */
566 static void kvm_null_fn(void)
567 {
568
569 }
570 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
571
572 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
573 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
574         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
575              node;                                                           \
576              node = interval_tree_iter_next(node, start, last))      \
577
578 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
579                                                   const struct kvm_hva_range *range)
580 {
581         bool ret = false, locked = false;
582         struct kvm_gfn_range gfn_range;
583         struct kvm_memory_slot *slot;
584         struct kvm_memslots *slots;
585         int i, idx;
586
587         if (WARN_ON_ONCE(range->end <= range->start))
588                 return 0;
589
590         /* A null handler is allowed if and only if on_lock() is provided. */
591         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
592                          IS_KVM_NULL_FN(range->handler)))
593                 return 0;
594
595         idx = srcu_read_lock(&kvm->srcu);
596
597         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
598                 struct interval_tree_node *node;
599
600                 slots = __kvm_memslots(kvm, i);
601                 kvm_for_each_memslot_in_hva_range(node, slots,
602                                                   range->start, range->end - 1) {
603                         unsigned long hva_start, hva_end;
604
605                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
606                         hva_start = max(range->start, slot->userspace_addr);
607                         hva_end = min(range->end, slot->userspace_addr +
608                                                   (slot->npages << PAGE_SHIFT));
609
610                         /*
611                          * To optimize for the likely case where the address
612                          * range is covered by zero or one memslots, don't
613                          * bother making these conditional (to avoid writes on
614                          * the second or later invocation of the handler).
615                          */
616                         gfn_range.pte = range->pte;
617                         gfn_range.may_block = range->may_block;
618
619                         /*
620                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
621                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
622                          */
623                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
624                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
625                         gfn_range.slot = slot;
626
627                         if (!locked) {
628                                 locked = true;
629                                 KVM_MMU_LOCK(kvm);
630                                 if (!IS_KVM_NULL_FN(range->on_lock))
631                                         range->on_lock(kvm, range->start, range->end);
632                                 if (IS_KVM_NULL_FN(range->handler))
633                                         break;
634                         }
635                         ret |= range->handler(kvm, &gfn_range);
636                 }
637         }
638
639         if (range->flush_on_ret && ret)
640                 kvm_flush_remote_tlbs(kvm);
641
642         if (locked) {
643                 KVM_MMU_UNLOCK(kvm);
644                 if (!IS_KVM_NULL_FN(range->on_unlock))
645                         range->on_unlock(kvm);
646         }
647
648         srcu_read_unlock(&kvm->srcu, idx);
649
650         /* The notifiers are averse to booleans. :-( */
651         return (int)ret;
652 }
653
654 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
655                                                 unsigned long start,
656                                                 unsigned long end,
657                                                 pte_t pte,
658                                                 hva_handler_t handler)
659 {
660         struct kvm *kvm = mmu_notifier_to_kvm(mn);
661         const struct kvm_hva_range range = {
662                 .start          = start,
663                 .end            = end,
664                 .pte            = pte,
665                 .handler        = handler,
666                 .on_lock        = (void *)kvm_null_fn,
667                 .on_unlock      = (void *)kvm_null_fn,
668                 .flush_on_ret   = true,
669                 .may_block      = false,
670         };
671
672         return __kvm_handle_hva_range(kvm, &range);
673 }
674
675 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
676                                                          unsigned long start,
677                                                          unsigned long end,
678                                                          hva_handler_t handler)
679 {
680         struct kvm *kvm = mmu_notifier_to_kvm(mn);
681         const struct kvm_hva_range range = {
682                 .start          = start,
683                 .end            = end,
684                 .pte            = __pte(0),
685                 .handler        = handler,
686                 .on_lock        = (void *)kvm_null_fn,
687                 .on_unlock      = (void *)kvm_null_fn,
688                 .flush_on_ret   = false,
689                 .may_block      = false,
690         };
691
692         return __kvm_handle_hva_range(kvm, &range);
693 }
694 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
695                                         struct mm_struct *mm,
696                                         unsigned long address,
697                                         pte_t pte)
698 {
699         struct kvm *kvm = mmu_notifier_to_kvm(mn);
700
701         trace_kvm_set_spte_hva(address);
702
703         /*
704          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
705          * If mmu_notifier_count is zero, then no in-progress invalidations,
706          * including this one, found a relevant memslot at start(); rechecking
707          * memslots here is unnecessary.  Note, a false positive (count elevated
708          * by a different invalidation) is sub-optimal but functionally ok.
709          */
710         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
711         if (!READ_ONCE(kvm->mmu_notifier_count))
712                 return;
713
714         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
715 }
716
717 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
718                                    unsigned long end)
719 {
720         /*
721          * The count increase must become visible at unlock time as no
722          * spte can be established without taking the mmu_lock and
723          * count is also read inside the mmu_lock critical section.
724          */
725         kvm->mmu_notifier_count++;
726         if (likely(kvm->mmu_notifier_count == 1)) {
727                 kvm->mmu_notifier_range_start = start;
728                 kvm->mmu_notifier_range_end = end;
729         } else {
730                 /*
731                  * Fully tracking multiple concurrent ranges has diminishing
732                  * returns. Keep things simple and just find the minimal range
733                  * which includes the current and new ranges. As there won't be
734                  * enough information to subtract a range after its invalidate
735                  * completes, any ranges invalidated concurrently will
736                  * accumulate and persist until all outstanding invalidates
737                  * complete.
738                  */
739                 kvm->mmu_notifier_range_start =
740                         min(kvm->mmu_notifier_range_start, start);
741                 kvm->mmu_notifier_range_end =
742                         max(kvm->mmu_notifier_range_end, end);
743         }
744 }
745
746 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
747                                         const struct mmu_notifier_range *range)
748 {
749         struct kvm *kvm = mmu_notifier_to_kvm(mn);
750         const struct kvm_hva_range hva_range = {
751                 .start          = range->start,
752                 .end            = range->end,
753                 .pte            = __pte(0),
754                 .handler        = kvm_unmap_gfn_range,
755                 .on_lock        = kvm_inc_notifier_count,
756                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
757                 .flush_on_ret   = true,
758                 .may_block      = mmu_notifier_range_blockable(range),
759         };
760
761         trace_kvm_unmap_hva_range(range->start, range->end);
762
763         /*
764          * Prevent memslot modification between range_start() and range_end()
765          * so that conditionally locking provides the same result in both
766          * functions.  Without that guarantee, the mmu_notifier_count
767          * adjustments will be imbalanced.
768          *
769          * Pairs with the decrement in range_end().
770          */
771         spin_lock(&kvm->mn_invalidate_lock);
772         kvm->mn_active_invalidate_count++;
773         spin_unlock(&kvm->mn_invalidate_lock);
774
775         /*
776          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
777          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
778          * each cache's lock.  There are relatively few caches in existence at
779          * any given time, and the caches themselves can check for hva overlap,
780          * i.e. don't need to rely on memslot overlap checks for performance.
781          * Because this runs without holding mmu_lock, the pfn caches must use
782          * mn_active_invalidate_count (see above) instead of mmu_notifier_count.
783          */
784         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
785                                           hva_range.may_block);
786
787         __kvm_handle_hva_range(kvm, &hva_range);
788
789         return 0;
790 }
791
792 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
793                                    unsigned long end)
794 {
795         /*
796          * This sequence increase will notify the kvm page fault that
797          * the page that is going to be mapped in the spte could have
798          * been freed.
799          */
800         kvm->mmu_notifier_seq++;
801         smp_wmb();
802         /*
803          * The above sequence increase must be visible before the
804          * below count decrease, which is ensured by the smp_wmb above
805          * in conjunction with the smp_rmb in mmu_notifier_retry().
806          */
807         kvm->mmu_notifier_count--;
808 }
809
810 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
811                                         const struct mmu_notifier_range *range)
812 {
813         struct kvm *kvm = mmu_notifier_to_kvm(mn);
814         const struct kvm_hva_range hva_range = {
815                 .start          = range->start,
816                 .end            = range->end,
817                 .pte            = __pte(0),
818                 .handler        = (void *)kvm_null_fn,
819                 .on_lock        = kvm_dec_notifier_count,
820                 .on_unlock      = (void *)kvm_null_fn,
821                 .flush_on_ret   = false,
822                 .may_block      = mmu_notifier_range_blockable(range),
823         };
824         bool wake;
825
826         __kvm_handle_hva_range(kvm, &hva_range);
827
828         /* Pairs with the increment in range_start(). */
829         spin_lock(&kvm->mn_invalidate_lock);
830         wake = (--kvm->mn_active_invalidate_count == 0);
831         spin_unlock(&kvm->mn_invalidate_lock);
832
833         /*
834          * There can only be one waiter, since the wait happens under
835          * slots_lock.
836          */
837         if (wake)
838                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
839
840         BUG_ON(kvm->mmu_notifier_count < 0);
841 }
842
843 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
844                                               struct mm_struct *mm,
845                                               unsigned long start,
846                                               unsigned long end)
847 {
848         trace_kvm_age_hva(start, end);
849
850         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
851 }
852
853 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
854                                         struct mm_struct *mm,
855                                         unsigned long start,
856                                         unsigned long end)
857 {
858         trace_kvm_age_hva(start, end);
859
860         /*
861          * Even though we do not flush TLB, this will still adversely
862          * affect performance on pre-Haswell Intel EPT, where there is
863          * no EPT Access Bit to clear so that we have to tear down EPT
864          * tables instead. If we find this unacceptable, we can always
865          * add a parameter to kvm_age_hva so that it effectively doesn't
866          * do anything on clear_young.
867          *
868          * Also note that currently we never issue secondary TLB flushes
869          * from clear_young, leaving this job up to the regular system
870          * cadence. If we find this inaccurate, we might come up with a
871          * more sophisticated heuristic later.
872          */
873         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
874 }
875
876 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
877                                        struct mm_struct *mm,
878                                        unsigned long address)
879 {
880         trace_kvm_test_age_hva(address);
881
882         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
883                                              kvm_test_age_gfn);
884 }
885
886 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
887                                      struct mm_struct *mm)
888 {
889         struct kvm *kvm = mmu_notifier_to_kvm(mn);
890         int idx;
891
892         idx = srcu_read_lock(&kvm->srcu);
893         kvm_flush_shadow_all(kvm);
894         srcu_read_unlock(&kvm->srcu, idx);
895 }
896
897 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
898         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
899         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
900         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
901         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
902         .clear_young            = kvm_mmu_notifier_clear_young,
903         .test_young             = kvm_mmu_notifier_test_young,
904         .change_pte             = kvm_mmu_notifier_change_pte,
905         .release                = kvm_mmu_notifier_release,
906 };
907
908 static int kvm_init_mmu_notifier(struct kvm *kvm)
909 {
910         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
911         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
912 }
913
914 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
915
916 static int kvm_init_mmu_notifier(struct kvm *kvm)
917 {
918         return 0;
919 }
920
921 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
922
923 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
924 static int kvm_pm_notifier_call(struct notifier_block *bl,
925                                 unsigned long state,
926                                 void *unused)
927 {
928         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
929
930         return kvm_arch_pm_notifier(kvm, state);
931 }
932
933 static void kvm_init_pm_notifier(struct kvm *kvm)
934 {
935         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
936         /* Suspend KVM before we suspend ftrace, RCU, etc. */
937         kvm->pm_notifier.priority = INT_MAX;
938         register_pm_notifier(&kvm->pm_notifier);
939 }
940
941 static void kvm_destroy_pm_notifier(struct kvm *kvm)
942 {
943         unregister_pm_notifier(&kvm->pm_notifier);
944 }
945 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
946 static void kvm_init_pm_notifier(struct kvm *kvm)
947 {
948 }
949
950 static void kvm_destroy_pm_notifier(struct kvm *kvm)
951 {
952 }
953 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
954
955 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
956 {
957         if (!memslot->dirty_bitmap)
958                 return;
959
960         kvfree(memslot->dirty_bitmap);
961         memslot->dirty_bitmap = NULL;
962 }
963
964 /* This does not remove the slot from struct kvm_memslots data structures */
965 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
966 {
967         kvm_destroy_dirty_bitmap(slot);
968
969         kvm_arch_free_memslot(kvm, slot);
970
971         kfree(slot);
972 }
973
974 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
975 {
976         struct hlist_node *idnode;
977         struct kvm_memory_slot *memslot;
978         int bkt;
979
980         /*
981          * The same memslot objects live in both active and inactive sets,
982          * arbitrarily free using index '1' so the second invocation of this
983          * function isn't operating over a structure with dangling pointers
984          * (even though this function isn't actually touching them).
985          */
986         if (!slots->node_idx)
987                 return;
988
989         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
990                 kvm_free_memslot(kvm, memslot);
991 }
992
993 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
994 {
995         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
996         case KVM_STATS_TYPE_INSTANT:
997                 return 0444;
998         case KVM_STATS_TYPE_CUMULATIVE:
999         case KVM_STATS_TYPE_PEAK:
1000         default:
1001                 return 0644;
1002         }
1003 }
1004
1005
1006 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1007 {
1008         int i;
1009         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1010                                       kvm_vcpu_stats_header.num_desc;
1011
1012         if (IS_ERR(kvm->debugfs_dentry))
1013                 return;
1014
1015         debugfs_remove_recursive(kvm->debugfs_dentry);
1016
1017         if (kvm->debugfs_stat_data) {
1018                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1019                         kfree(kvm->debugfs_stat_data[i]);
1020                 kfree(kvm->debugfs_stat_data);
1021         }
1022 }
1023
1024 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1025 {
1026         static DEFINE_MUTEX(kvm_debugfs_lock);
1027         struct dentry *dent;
1028         char dir_name[ITOA_MAX_LEN * 2];
1029         struct kvm_stat_data *stat_data;
1030         const struct _kvm_stats_desc *pdesc;
1031         int i, ret = -ENOMEM;
1032         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1033                                       kvm_vcpu_stats_header.num_desc;
1034
1035         if (!debugfs_initialized())
1036                 return 0;
1037
1038         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1039         mutex_lock(&kvm_debugfs_lock);
1040         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1041         if (dent) {
1042                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1043                 dput(dent);
1044                 mutex_unlock(&kvm_debugfs_lock);
1045                 return 0;
1046         }
1047         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1048         mutex_unlock(&kvm_debugfs_lock);
1049         if (IS_ERR(dent))
1050                 return 0;
1051
1052         kvm->debugfs_dentry = dent;
1053         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1054                                          sizeof(*kvm->debugfs_stat_data),
1055                                          GFP_KERNEL_ACCOUNT);
1056         if (!kvm->debugfs_stat_data)
1057                 goto out_err;
1058
1059         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1060                 pdesc = &kvm_vm_stats_desc[i];
1061                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1062                 if (!stat_data)
1063                         goto out_err;
1064
1065                 stat_data->kvm = kvm;
1066                 stat_data->desc = pdesc;
1067                 stat_data->kind = KVM_STAT_VM;
1068                 kvm->debugfs_stat_data[i] = stat_data;
1069                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1070                                     kvm->debugfs_dentry, stat_data,
1071                                     &stat_fops_per_vm);
1072         }
1073
1074         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1075                 pdesc = &kvm_vcpu_stats_desc[i];
1076                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1077                 if (!stat_data)
1078                         goto out_err;
1079
1080                 stat_data->kvm = kvm;
1081                 stat_data->desc = pdesc;
1082                 stat_data->kind = KVM_STAT_VCPU;
1083                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1084                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1085                                     kvm->debugfs_dentry, stat_data,
1086                                     &stat_fops_per_vm);
1087         }
1088
1089         ret = kvm_arch_create_vm_debugfs(kvm);
1090         if (ret)
1091                 goto out_err;
1092
1093         return 0;
1094 out_err:
1095         kvm_destroy_vm_debugfs(kvm);
1096         return ret;
1097 }
1098
1099 /*
1100  * Called after the VM is otherwise initialized, but just before adding it to
1101  * the vm_list.
1102  */
1103 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1104 {
1105         return 0;
1106 }
1107
1108 /*
1109  * Called just after removing the VM from the vm_list, but before doing any
1110  * other destruction.
1111  */
1112 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1113 {
1114 }
1115
1116 /*
1117  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1118  * be setup already, so we can create arch-specific debugfs entries under it.
1119  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1120  * a per-arch destroy interface is not needed.
1121  */
1122 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1123 {
1124         return 0;
1125 }
1126
1127 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1128 {
1129         struct kvm *kvm = kvm_arch_alloc_vm();
1130         struct kvm_memslots *slots;
1131         int r = -ENOMEM;
1132         int i, j;
1133
1134         if (!kvm)
1135                 return ERR_PTR(-ENOMEM);
1136
1137         KVM_MMU_LOCK_INIT(kvm);
1138         mmgrab(current->mm);
1139         kvm->mm = current->mm;
1140         kvm_eventfd_init(kvm);
1141         mutex_init(&kvm->lock);
1142         mutex_init(&kvm->irq_lock);
1143         mutex_init(&kvm->slots_lock);
1144         mutex_init(&kvm->slots_arch_lock);
1145         spin_lock_init(&kvm->mn_invalidate_lock);
1146         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1147         xa_init(&kvm->vcpu_array);
1148
1149         INIT_LIST_HEAD(&kvm->gpc_list);
1150         spin_lock_init(&kvm->gpc_lock);
1151
1152         INIT_LIST_HEAD(&kvm->devices);
1153         kvm->max_vcpus = KVM_MAX_VCPUS;
1154
1155         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1156
1157         /*
1158          * Force subsequent debugfs file creations to fail if the VM directory
1159          * is not created (by kvm_create_vm_debugfs()).
1160          */
1161         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1162
1163         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1164                  task_pid_nr(current));
1165
1166         if (init_srcu_struct(&kvm->srcu))
1167                 goto out_err_no_srcu;
1168         if (init_srcu_struct(&kvm->irq_srcu))
1169                 goto out_err_no_irq_srcu;
1170
1171         refcount_set(&kvm->users_count, 1);
1172         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1173                 for (j = 0; j < 2; j++) {
1174                         slots = &kvm->__memslots[i][j];
1175
1176                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1177                         slots->hva_tree = RB_ROOT_CACHED;
1178                         slots->gfn_tree = RB_ROOT;
1179                         hash_init(slots->id_hash);
1180                         slots->node_idx = j;
1181
1182                         /* Generations must be different for each address space. */
1183                         slots->generation = i;
1184                 }
1185
1186                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1187         }
1188
1189         for (i = 0; i < KVM_NR_BUSES; i++) {
1190                 rcu_assign_pointer(kvm->buses[i],
1191                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1192                 if (!kvm->buses[i])
1193                         goto out_err_no_arch_destroy_vm;
1194         }
1195
1196         kvm->max_halt_poll_ns = halt_poll_ns;
1197
1198         r = kvm_arch_init_vm(kvm, type);
1199         if (r)
1200                 goto out_err_no_arch_destroy_vm;
1201
1202         r = hardware_enable_all();
1203         if (r)
1204                 goto out_err_no_disable;
1205
1206 #ifdef CONFIG_HAVE_KVM_IRQFD
1207         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1208 #endif
1209
1210         r = kvm_init_mmu_notifier(kvm);
1211         if (r)
1212                 goto out_err_no_mmu_notifier;
1213
1214         r = kvm_arch_post_init_vm(kvm);
1215         if (r)
1216                 goto out_err_mmu_notifier;
1217
1218         mutex_lock(&kvm_lock);
1219         list_add(&kvm->vm_list, &vm_list);
1220         mutex_unlock(&kvm_lock);
1221
1222         preempt_notifier_inc();
1223         kvm_init_pm_notifier(kvm);
1224
1225         /*
1226          * When the fd passed to this ioctl() is opened it pins the module,
1227          * but try_module_get() also prevents getting a reference if the module
1228          * is in MODULE_STATE_GOING (e.g. if someone ran "rmmod --wait").
1229          */
1230         if (!try_module_get(kvm_chardev_ops.owner)) {
1231                 r = -ENODEV;
1232                 goto out_err_mmu_notifier;
1233         }
1234
1235         r = kvm_create_vm_debugfs(kvm, fdname);
1236         if (r)
1237                 goto out_err;
1238
1239         return kvm;
1240
1241 out_err:
1242         module_put(kvm_chardev_ops.owner);
1243 out_err_mmu_notifier:
1244 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1245         if (kvm->mmu_notifier.ops)
1246                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1247 #endif
1248 out_err_no_mmu_notifier:
1249         hardware_disable_all();
1250 out_err_no_disable:
1251         kvm_arch_destroy_vm(kvm);
1252 out_err_no_arch_destroy_vm:
1253         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1254         for (i = 0; i < KVM_NR_BUSES; i++)
1255                 kfree(kvm_get_bus(kvm, i));
1256         cleanup_srcu_struct(&kvm->irq_srcu);
1257 out_err_no_irq_srcu:
1258         cleanup_srcu_struct(&kvm->srcu);
1259 out_err_no_srcu:
1260         kvm_arch_free_vm(kvm);
1261         mmdrop(current->mm);
1262         return ERR_PTR(r);
1263 }
1264
1265 static void kvm_destroy_devices(struct kvm *kvm)
1266 {
1267         struct kvm_device *dev, *tmp;
1268
1269         /*
1270          * We do not need to take the kvm->lock here, because nobody else
1271          * has a reference to the struct kvm at this point and therefore
1272          * cannot access the devices list anyhow.
1273          */
1274         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1275                 list_del(&dev->vm_node);
1276                 dev->ops->destroy(dev);
1277         }
1278 }
1279
1280 static void kvm_destroy_vm(struct kvm *kvm)
1281 {
1282         int i;
1283         struct mm_struct *mm = kvm->mm;
1284
1285         kvm_destroy_pm_notifier(kvm);
1286         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1287         kvm_destroy_vm_debugfs(kvm);
1288         kvm_arch_sync_events(kvm);
1289         mutex_lock(&kvm_lock);
1290         list_del(&kvm->vm_list);
1291         mutex_unlock(&kvm_lock);
1292         kvm_arch_pre_destroy_vm(kvm);
1293
1294         kvm_free_irq_routing(kvm);
1295         for (i = 0; i < KVM_NR_BUSES; i++) {
1296                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1297
1298                 if (bus)
1299                         kvm_io_bus_destroy(bus);
1300                 kvm->buses[i] = NULL;
1301         }
1302         kvm_coalesced_mmio_free(kvm);
1303 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1304         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1305         /*
1306          * At this point, pending calls to invalidate_range_start()
1307          * have completed but no more MMU notifiers will run, so
1308          * mn_active_invalidate_count may remain unbalanced.
1309          * No threads can be waiting in install_new_memslots as the
1310          * last reference on KVM has been dropped, but freeing
1311          * memslots would deadlock without this manual intervention.
1312          */
1313         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1314         kvm->mn_active_invalidate_count = 0;
1315 #else
1316         kvm_flush_shadow_all(kvm);
1317 #endif
1318         kvm_arch_destroy_vm(kvm);
1319         kvm_destroy_devices(kvm);
1320         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1321                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1322                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1323         }
1324         cleanup_srcu_struct(&kvm->irq_srcu);
1325         cleanup_srcu_struct(&kvm->srcu);
1326         kvm_arch_free_vm(kvm);
1327         preempt_notifier_dec();
1328         hardware_disable_all();
1329         mmdrop(mm);
1330         module_put(kvm_chardev_ops.owner);
1331 }
1332
1333 void kvm_get_kvm(struct kvm *kvm)
1334 {
1335         refcount_inc(&kvm->users_count);
1336 }
1337 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1338
1339 /*
1340  * Make sure the vm is not during destruction, which is a safe version of
1341  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1342  */
1343 bool kvm_get_kvm_safe(struct kvm *kvm)
1344 {
1345         return refcount_inc_not_zero(&kvm->users_count);
1346 }
1347 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1348
1349 void kvm_put_kvm(struct kvm *kvm)
1350 {
1351         if (refcount_dec_and_test(&kvm->users_count))
1352                 kvm_destroy_vm(kvm);
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1355
1356 /*
1357  * Used to put a reference that was taken on behalf of an object associated
1358  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1359  * of the new file descriptor fails and the reference cannot be transferred to
1360  * its final owner.  In such cases, the caller is still actively using @kvm and
1361  * will fail miserably if the refcount unexpectedly hits zero.
1362  */
1363 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1364 {
1365         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1366 }
1367 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1368
1369 static int kvm_vm_release(struct inode *inode, struct file *filp)
1370 {
1371         struct kvm *kvm = filp->private_data;
1372
1373         kvm_irqfd_release(kvm);
1374
1375         kvm_put_kvm(kvm);
1376         return 0;
1377 }
1378
1379 /*
1380  * Allocation size is twice as large as the actual dirty bitmap size.
1381  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1382  */
1383 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1384 {
1385         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1386
1387         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1388         if (!memslot->dirty_bitmap)
1389                 return -ENOMEM;
1390
1391         return 0;
1392 }
1393
1394 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1395 {
1396         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1397         int node_idx_inactive = active->node_idx ^ 1;
1398
1399         return &kvm->__memslots[as_id][node_idx_inactive];
1400 }
1401
1402 /*
1403  * Helper to get the address space ID when one of memslot pointers may be NULL.
1404  * This also serves as a sanity that at least one of the pointers is non-NULL,
1405  * and that their address space IDs don't diverge.
1406  */
1407 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1408                                   struct kvm_memory_slot *b)
1409 {
1410         if (WARN_ON_ONCE(!a && !b))
1411                 return 0;
1412
1413         if (!a)
1414                 return b->as_id;
1415         if (!b)
1416                 return a->as_id;
1417
1418         WARN_ON_ONCE(a->as_id != b->as_id);
1419         return a->as_id;
1420 }
1421
1422 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1423                                 struct kvm_memory_slot *slot)
1424 {
1425         struct rb_root *gfn_tree = &slots->gfn_tree;
1426         struct rb_node **node, *parent;
1427         int idx = slots->node_idx;
1428
1429         parent = NULL;
1430         for (node = &gfn_tree->rb_node; *node; ) {
1431                 struct kvm_memory_slot *tmp;
1432
1433                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1434                 parent = *node;
1435                 if (slot->base_gfn < tmp->base_gfn)
1436                         node = &(*node)->rb_left;
1437                 else if (slot->base_gfn > tmp->base_gfn)
1438                         node = &(*node)->rb_right;
1439                 else
1440                         BUG();
1441         }
1442
1443         rb_link_node(&slot->gfn_node[idx], parent, node);
1444         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1445 }
1446
1447 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1448                                struct kvm_memory_slot *slot)
1449 {
1450         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1451 }
1452
1453 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1454                                  struct kvm_memory_slot *old,
1455                                  struct kvm_memory_slot *new)
1456 {
1457         int idx = slots->node_idx;
1458
1459         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1460
1461         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1462                         &slots->gfn_tree);
1463 }
1464
1465 /*
1466  * Replace @old with @new in the inactive memslots.
1467  *
1468  * With NULL @old this simply adds @new.
1469  * With NULL @new this simply removes @old.
1470  *
1471  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1472  * appropriately.
1473  */
1474 static void kvm_replace_memslot(struct kvm *kvm,
1475                                 struct kvm_memory_slot *old,
1476                                 struct kvm_memory_slot *new)
1477 {
1478         int as_id = kvm_memslots_get_as_id(old, new);
1479         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1480         int idx = slots->node_idx;
1481
1482         if (old) {
1483                 hash_del(&old->id_node[idx]);
1484                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1485
1486                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1487                         atomic_long_set(&slots->last_used_slot, (long)new);
1488
1489                 if (!new) {
1490                         kvm_erase_gfn_node(slots, old);
1491                         return;
1492                 }
1493         }
1494
1495         /*
1496          * Initialize @new's hva range.  Do this even when replacing an @old
1497          * slot, kvm_copy_memslot() deliberately does not touch node data.
1498          */
1499         new->hva_node[idx].start = new->userspace_addr;
1500         new->hva_node[idx].last = new->userspace_addr +
1501                                   (new->npages << PAGE_SHIFT) - 1;
1502
1503         /*
1504          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1505          * hva_node needs to be swapped with remove+insert even though hva can't
1506          * change when replacing an existing slot.
1507          */
1508         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1509         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1510
1511         /*
1512          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1513          * switch the node in the gfn tree instead of removing the old and
1514          * inserting the new as two separate operations. Replacement is a
1515          * single O(1) operation versus two O(log(n)) operations for
1516          * remove+insert.
1517          */
1518         if (old && old->base_gfn == new->base_gfn) {
1519                 kvm_replace_gfn_node(slots, old, new);
1520         } else {
1521                 if (old)
1522                         kvm_erase_gfn_node(slots, old);
1523                 kvm_insert_gfn_node(slots, new);
1524         }
1525 }
1526
1527 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1528 {
1529         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1530
1531 #ifdef __KVM_HAVE_READONLY_MEM
1532         valid_flags |= KVM_MEM_READONLY;
1533 #endif
1534
1535         if (mem->flags & ~valid_flags)
1536                 return -EINVAL;
1537
1538         return 0;
1539 }
1540
1541 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1542 {
1543         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1544
1545         /* Grab the generation from the activate memslots. */
1546         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1547
1548         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1549         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1550
1551         /*
1552          * Do not store the new memslots while there are invalidations in
1553          * progress, otherwise the locking in invalidate_range_start and
1554          * invalidate_range_end will be unbalanced.
1555          */
1556         spin_lock(&kvm->mn_invalidate_lock);
1557         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1558         while (kvm->mn_active_invalidate_count) {
1559                 set_current_state(TASK_UNINTERRUPTIBLE);
1560                 spin_unlock(&kvm->mn_invalidate_lock);
1561                 schedule();
1562                 spin_lock(&kvm->mn_invalidate_lock);
1563         }
1564         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1565         rcu_assign_pointer(kvm->memslots[as_id], slots);
1566         spin_unlock(&kvm->mn_invalidate_lock);
1567
1568         /*
1569          * Acquired in kvm_set_memslot. Must be released before synchronize
1570          * SRCU below in order to avoid deadlock with another thread
1571          * acquiring the slots_arch_lock in an srcu critical section.
1572          */
1573         mutex_unlock(&kvm->slots_arch_lock);
1574
1575         synchronize_srcu_expedited(&kvm->srcu);
1576
1577         /*
1578          * Increment the new memslot generation a second time, dropping the
1579          * update in-progress flag and incrementing the generation based on
1580          * the number of address spaces.  This provides a unique and easily
1581          * identifiable generation number while the memslots are in flux.
1582          */
1583         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1584
1585         /*
1586          * Generations must be unique even across address spaces.  We do not need
1587          * a global counter for that, instead the generation space is evenly split
1588          * across address spaces.  For example, with two address spaces, address
1589          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1590          * use generations 1, 3, 5, ...
1591          */
1592         gen += KVM_ADDRESS_SPACE_NUM;
1593
1594         kvm_arch_memslots_updated(kvm, gen);
1595
1596         slots->generation = gen;
1597 }
1598
1599 static int kvm_prepare_memory_region(struct kvm *kvm,
1600                                      const struct kvm_memory_slot *old,
1601                                      struct kvm_memory_slot *new,
1602                                      enum kvm_mr_change change)
1603 {
1604         int r;
1605
1606         /*
1607          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1608          * will be freed on "commit".  If logging is enabled in both old and
1609          * new, reuse the existing bitmap.  If logging is enabled only in the
1610          * new and KVM isn't using a ring buffer, allocate and initialize a
1611          * new bitmap.
1612          */
1613         if (change != KVM_MR_DELETE) {
1614                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1615                         new->dirty_bitmap = NULL;
1616                 else if (old && old->dirty_bitmap)
1617                         new->dirty_bitmap = old->dirty_bitmap;
1618                 else if (!kvm->dirty_ring_size) {
1619                         r = kvm_alloc_dirty_bitmap(new);
1620                         if (r)
1621                                 return r;
1622
1623                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1624                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1625                 }
1626         }
1627
1628         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1629
1630         /* Free the bitmap on failure if it was allocated above. */
1631         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1632                 kvm_destroy_dirty_bitmap(new);
1633
1634         return r;
1635 }
1636
1637 static void kvm_commit_memory_region(struct kvm *kvm,
1638                                      struct kvm_memory_slot *old,
1639                                      const struct kvm_memory_slot *new,
1640                                      enum kvm_mr_change change)
1641 {
1642         /*
1643          * Update the total number of memslot pages before calling the arch
1644          * hook so that architectures can consume the result directly.
1645          */
1646         if (change == KVM_MR_DELETE)
1647                 kvm->nr_memslot_pages -= old->npages;
1648         else if (change == KVM_MR_CREATE)
1649                 kvm->nr_memslot_pages += new->npages;
1650
1651         kvm_arch_commit_memory_region(kvm, old, new, change);
1652
1653         switch (change) {
1654         case KVM_MR_CREATE:
1655                 /* Nothing more to do. */
1656                 break;
1657         case KVM_MR_DELETE:
1658                 /* Free the old memslot and all its metadata. */
1659                 kvm_free_memslot(kvm, old);
1660                 break;
1661         case KVM_MR_MOVE:
1662         case KVM_MR_FLAGS_ONLY:
1663                 /*
1664                  * Free the dirty bitmap as needed; the below check encompasses
1665                  * both the flags and whether a ring buffer is being used)
1666                  */
1667                 if (old->dirty_bitmap && !new->dirty_bitmap)
1668                         kvm_destroy_dirty_bitmap(old);
1669
1670                 /*
1671                  * The final quirk.  Free the detached, old slot, but only its
1672                  * memory, not any metadata.  Metadata, including arch specific
1673                  * data, may be reused by @new.
1674                  */
1675                 kfree(old);
1676                 break;
1677         default:
1678                 BUG();
1679         }
1680 }
1681
1682 /*
1683  * Activate @new, which must be installed in the inactive slots by the caller,
1684  * by swapping the active slots and then propagating @new to @old once @old is
1685  * unreachable and can be safely modified.
1686  *
1687  * With NULL @old this simply adds @new to @active (while swapping the sets).
1688  * With NULL @new this simply removes @old from @active and frees it
1689  * (while also swapping the sets).
1690  */
1691 static void kvm_activate_memslot(struct kvm *kvm,
1692                                  struct kvm_memory_slot *old,
1693                                  struct kvm_memory_slot *new)
1694 {
1695         int as_id = kvm_memslots_get_as_id(old, new);
1696
1697         kvm_swap_active_memslots(kvm, as_id);
1698
1699         /* Propagate the new memslot to the now inactive memslots. */
1700         kvm_replace_memslot(kvm, old, new);
1701 }
1702
1703 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1704                              const struct kvm_memory_slot *src)
1705 {
1706         dest->base_gfn = src->base_gfn;
1707         dest->npages = src->npages;
1708         dest->dirty_bitmap = src->dirty_bitmap;
1709         dest->arch = src->arch;
1710         dest->userspace_addr = src->userspace_addr;
1711         dest->flags = src->flags;
1712         dest->id = src->id;
1713         dest->as_id = src->as_id;
1714 }
1715
1716 static void kvm_invalidate_memslot(struct kvm *kvm,
1717                                    struct kvm_memory_slot *old,
1718                                    struct kvm_memory_slot *invalid_slot)
1719 {
1720         /*
1721          * Mark the current slot INVALID.  As with all memslot modifications,
1722          * this must be done on an unreachable slot to avoid modifying the
1723          * current slot in the active tree.
1724          */
1725         kvm_copy_memslot(invalid_slot, old);
1726         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1727         kvm_replace_memslot(kvm, old, invalid_slot);
1728
1729         /*
1730          * Activate the slot that is now marked INVALID, but don't propagate
1731          * the slot to the now inactive slots. The slot is either going to be
1732          * deleted or recreated as a new slot.
1733          */
1734         kvm_swap_active_memslots(kvm, old->as_id);
1735
1736         /*
1737          * From this point no new shadow pages pointing to a deleted, or moved,
1738          * memslot will be created.  Validation of sp->gfn happens in:
1739          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1740          *      - kvm_is_visible_gfn (mmu_check_root)
1741          */
1742         kvm_arch_flush_shadow_memslot(kvm, old);
1743         kvm_arch_guest_memory_reclaimed(kvm);
1744
1745         /* Was released by kvm_swap_active_memslots, reacquire. */
1746         mutex_lock(&kvm->slots_arch_lock);
1747
1748         /*
1749          * Copy the arch-specific field of the newly-installed slot back to the
1750          * old slot as the arch data could have changed between releasing
1751          * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1752          * above.  Writers are required to retrieve memslots *after* acquiring
1753          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1754          */
1755         old->arch = invalid_slot->arch;
1756 }
1757
1758 static void kvm_create_memslot(struct kvm *kvm,
1759                                struct kvm_memory_slot *new)
1760 {
1761         /* Add the new memslot to the inactive set and activate. */
1762         kvm_replace_memslot(kvm, NULL, new);
1763         kvm_activate_memslot(kvm, NULL, new);
1764 }
1765
1766 static void kvm_delete_memslot(struct kvm *kvm,
1767                                struct kvm_memory_slot *old,
1768                                struct kvm_memory_slot *invalid_slot)
1769 {
1770         /*
1771          * Remove the old memslot (in the inactive memslots) by passing NULL as
1772          * the "new" slot, and for the invalid version in the active slots.
1773          */
1774         kvm_replace_memslot(kvm, old, NULL);
1775         kvm_activate_memslot(kvm, invalid_slot, NULL);
1776 }
1777
1778 static void kvm_move_memslot(struct kvm *kvm,
1779                              struct kvm_memory_slot *old,
1780                              struct kvm_memory_slot *new,
1781                              struct kvm_memory_slot *invalid_slot)
1782 {
1783         /*
1784          * Replace the old memslot in the inactive slots, and then swap slots
1785          * and replace the current INVALID with the new as well.
1786          */
1787         kvm_replace_memslot(kvm, old, new);
1788         kvm_activate_memslot(kvm, invalid_slot, new);
1789 }
1790
1791 static void kvm_update_flags_memslot(struct kvm *kvm,
1792                                      struct kvm_memory_slot *old,
1793                                      struct kvm_memory_slot *new)
1794 {
1795         /*
1796          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1797          * an intermediate step. Instead, the old memslot is simply replaced
1798          * with a new, updated copy in both memslot sets.
1799          */
1800         kvm_replace_memslot(kvm, old, new);
1801         kvm_activate_memslot(kvm, old, new);
1802 }
1803
1804 static int kvm_set_memslot(struct kvm *kvm,
1805                            struct kvm_memory_slot *old,
1806                            struct kvm_memory_slot *new,
1807                            enum kvm_mr_change change)
1808 {
1809         struct kvm_memory_slot *invalid_slot;
1810         int r;
1811
1812         /*
1813          * Released in kvm_swap_active_memslots.
1814          *
1815          * Must be held from before the current memslots are copied until
1816          * after the new memslots are installed with rcu_assign_pointer,
1817          * then released before the synchronize srcu in kvm_swap_active_memslots.
1818          *
1819          * When modifying memslots outside of the slots_lock, must be held
1820          * before reading the pointer to the current memslots until after all
1821          * changes to those memslots are complete.
1822          *
1823          * These rules ensure that installing new memslots does not lose
1824          * changes made to the previous memslots.
1825          */
1826         mutex_lock(&kvm->slots_arch_lock);
1827
1828         /*
1829          * Invalidate the old slot if it's being deleted or moved.  This is
1830          * done prior to actually deleting/moving the memslot to allow vCPUs to
1831          * continue running by ensuring there are no mappings or shadow pages
1832          * for the memslot when it is deleted/moved.  Without pre-invalidation
1833          * (and without a lock), a window would exist between effecting the
1834          * delete/move and committing the changes in arch code where KVM or a
1835          * guest could access a non-existent memslot.
1836          *
1837          * Modifications are done on a temporary, unreachable slot.  The old
1838          * slot needs to be preserved in case a later step fails and the
1839          * invalidation needs to be reverted.
1840          */
1841         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1842                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1843                 if (!invalid_slot) {
1844                         mutex_unlock(&kvm->slots_arch_lock);
1845                         return -ENOMEM;
1846                 }
1847                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1848         }
1849
1850         r = kvm_prepare_memory_region(kvm, old, new, change);
1851         if (r) {
1852                 /*
1853                  * For DELETE/MOVE, revert the above INVALID change.  No
1854                  * modifications required since the original slot was preserved
1855                  * in the inactive slots.  Changing the active memslots also
1856                  * release slots_arch_lock.
1857                  */
1858                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1859                         kvm_activate_memslot(kvm, invalid_slot, old);
1860                         kfree(invalid_slot);
1861                 } else {
1862                         mutex_unlock(&kvm->slots_arch_lock);
1863                 }
1864                 return r;
1865         }
1866
1867         /*
1868          * For DELETE and MOVE, the working slot is now active as the INVALID
1869          * version of the old slot.  MOVE is particularly special as it reuses
1870          * the old slot and returns a copy of the old slot (in working_slot).
1871          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1872          * old slot is detached but otherwise preserved.
1873          */
1874         if (change == KVM_MR_CREATE)
1875                 kvm_create_memslot(kvm, new);
1876         else if (change == KVM_MR_DELETE)
1877                 kvm_delete_memslot(kvm, old, invalid_slot);
1878         else if (change == KVM_MR_MOVE)
1879                 kvm_move_memslot(kvm, old, new, invalid_slot);
1880         else if (change == KVM_MR_FLAGS_ONLY)
1881                 kvm_update_flags_memslot(kvm, old, new);
1882         else
1883                 BUG();
1884
1885         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1886         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1887                 kfree(invalid_slot);
1888
1889         /*
1890          * No need to refresh new->arch, changes after dropping slots_arch_lock
1891          * will directly hit the final, active memslot.  Architectures are
1892          * responsible for knowing that new->arch may be stale.
1893          */
1894         kvm_commit_memory_region(kvm, old, new, change);
1895
1896         return 0;
1897 }
1898
1899 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1900                                       gfn_t start, gfn_t end)
1901 {
1902         struct kvm_memslot_iter iter;
1903
1904         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1905                 if (iter.slot->id != id)
1906                         return true;
1907         }
1908
1909         return false;
1910 }
1911
1912 /*
1913  * Allocate some memory and give it an address in the guest physical address
1914  * space.
1915  *
1916  * Discontiguous memory is allowed, mostly for framebuffers.
1917  *
1918  * Must be called holding kvm->slots_lock for write.
1919  */
1920 int __kvm_set_memory_region(struct kvm *kvm,
1921                             const struct kvm_userspace_memory_region *mem)
1922 {
1923         struct kvm_memory_slot *old, *new;
1924         struct kvm_memslots *slots;
1925         enum kvm_mr_change change;
1926         unsigned long npages;
1927         gfn_t base_gfn;
1928         int as_id, id;
1929         int r;
1930
1931         r = check_memory_region_flags(mem);
1932         if (r)
1933                 return r;
1934
1935         as_id = mem->slot >> 16;
1936         id = (u16)mem->slot;
1937
1938         /* General sanity checks */
1939         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1940             (mem->memory_size != (unsigned long)mem->memory_size))
1941                 return -EINVAL;
1942         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1943                 return -EINVAL;
1944         /* We can read the guest memory with __xxx_user() later on. */
1945         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1946             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1947              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1948                         mem->memory_size))
1949                 return -EINVAL;
1950         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1951                 return -EINVAL;
1952         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1953                 return -EINVAL;
1954         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1955                 return -EINVAL;
1956
1957         slots = __kvm_memslots(kvm, as_id);
1958
1959         /*
1960          * Note, the old memslot (and the pointer itself!) may be invalidated
1961          * and/or destroyed by kvm_set_memslot().
1962          */
1963         old = id_to_memslot(slots, id);
1964
1965         if (!mem->memory_size) {
1966                 if (!old || !old->npages)
1967                         return -EINVAL;
1968
1969                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1970                         return -EIO;
1971
1972                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1973         }
1974
1975         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1976         npages = (mem->memory_size >> PAGE_SHIFT);
1977
1978         if (!old || !old->npages) {
1979                 change = KVM_MR_CREATE;
1980
1981                 /*
1982                  * To simplify KVM internals, the total number of pages across
1983                  * all memslots must fit in an unsigned long.
1984                  */
1985                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1986                         return -EINVAL;
1987         } else { /* Modify an existing slot. */
1988                 if ((mem->userspace_addr != old->userspace_addr) ||
1989                     (npages != old->npages) ||
1990                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1991                         return -EINVAL;
1992
1993                 if (base_gfn != old->base_gfn)
1994                         change = KVM_MR_MOVE;
1995                 else if (mem->flags != old->flags)
1996                         change = KVM_MR_FLAGS_ONLY;
1997                 else /* Nothing to change. */
1998                         return 0;
1999         }
2000
2001         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2002             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2003                 return -EEXIST;
2004
2005         /* Allocate a slot that will persist in the memslot. */
2006         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2007         if (!new)
2008                 return -ENOMEM;
2009
2010         new->as_id = as_id;
2011         new->id = id;
2012         new->base_gfn = base_gfn;
2013         new->npages = npages;
2014         new->flags = mem->flags;
2015         new->userspace_addr = mem->userspace_addr;
2016
2017         r = kvm_set_memslot(kvm, old, new, change);
2018         if (r)
2019                 kfree(new);
2020         return r;
2021 }
2022 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2023
2024 int kvm_set_memory_region(struct kvm *kvm,
2025                           const struct kvm_userspace_memory_region *mem)
2026 {
2027         int r;
2028
2029         mutex_lock(&kvm->slots_lock);
2030         r = __kvm_set_memory_region(kvm, mem);
2031         mutex_unlock(&kvm->slots_lock);
2032         return r;
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2035
2036 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2037                                           struct kvm_userspace_memory_region *mem)
2038 {
2039         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2040                 return -EINVAL;
2041
2042         return kvm_set_memory_region(kvm, mem);
2043 }
2044
2045 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2046 /**
2047  * kvm_get_dirty_log - get a snapshot of dirty pages
2048  * @kvm:        pointer to kvm instance
2049  * @log:        slot id and address to which we copy the log
2050  * @is_dirty:   set to '1' if any dirty pages were found
2051  * @memslot:    set to the associated memslot, always valid on success
2052  */
2053 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2054                       int *is_dirty, struct kvm_memory_slot **memslot)
2055 {
2056         struct kvm_memslots *slots;
2057         int i, as_id, id;
2058         unsigned long n;
2059         unsigned long any = 0;
2060
2061         /* Dirty ring tracking is exclusive to dirty log tracking */
2062         if (kvm->dirty_ring_size)
2063                 return -ENXIO;
2064
2065         *memslot = NULL;
2066         *is_dirty = 0;
2067
2068         as_id = log->slot >> 16;
2069         id = (u16)log->slot;
2070         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2071                 return -EINVAL;
2072
2073         slots = __kvm_memslots(kvm, as_id);
2074         *memslot = id_to_memslot(slots, id);
2075         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2076                 return -ENOENT;
2077
2078         kvm_arch_sync_dirty_log(kvm, *memslot);
2079
2080         n = kvm_dirty_bitmap_bytes(*memslot);
2081
2082         for (i = 0; !any && i < n/sizeof(long); ++i)
2083                 any = (*memslot)->dirty_bitmap[i];
2084
2085         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2086                 return -EFAULT;
2087
2088         if (any)
2089                 *is_dirty = 1;
2090         return 0;
2091 }
2092 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2093
2094 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2095 /**
2096  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2097  *      and reenable dirty page tracking for the corresponding pages.
2098  * @kvm:        pointer to kvm instance
2099  * @log:        slot id and address to which we copy the log
2100  *
2101  * We need to keep it in mind that VCPU threads can write to the bitmap
2102  * concurrently. So, to avoid losing track of dirty pages we keep the
2103  * following order:
2104  *
2105  *    1. Take a snapshot of the bit and clear it if needed.
2106  *    2. Write protect the corresponding page.
2107  *    3. Copy the snapshot to the userspace.
2108  *    4. Upon return caller flushes TLB's if needed.
2109  *
2110  * Between 2 and 4, the guest may write to the page using the remaining TLB
2111  * entry.  This is not a problem because the page is reported dirty using
2112  * the snapshot taken before and step 4 ensures that writes done after
2113  * exiting to userspace will be logged for the next call.
2114  *
2115  */
2116 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2117 {
2118         struct kvm_memslots *slots;
2119         struct kvm_memory_slot *memslot;
2120         int i, as_id, id;
2121         unsigned long n;
2122         unsigned long *dirty_bitmap;
2123         unsigned long *dirty_bitmap_buffer;
2124         bool flush;
2125
2126         /* Dirty ring tracking is exclusive to dirty log tracking */
2127         if (kvm->dirty_ring_size)
2128                 return -ENXIO;
2129
2130         as_id = log->slot >> 16;
2131         id = (u16)log->slot;
2132         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2133                 return -EINVAL;
2134
2135         slots = __kvm_memslots(kvm, as_id);
2136         memslot = id_to_memslot(slots, id);
2137         if (!memslot || !memslot->dirty_bitmap)
2138                 return -ENOENT;
2139
2140         dirty_bitmap = memslot->dirty_bitmap;
2141
2142         kvm_arch_sync_dirty_log(kvm, memslot);
2143
2144         n = kvm_dirty_bitmap_bytes(memslot);
2145         flush = false;
2146         if (kvm->manual_dirty_log_protect) {
2147                 /*
2148                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2149                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2150                  * is some code duplication between this function and
2151                  * kvm_get_dirty_log, but hopefully all architecture
2152                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2153                  * can be eliminated.
2154                  */
2155                 dirty_bitmap_buffer = dirty_bitmap;
2156         } else {
2157                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2158                 memset(dirty_bitmap_buffer, 0, n);
2159
2160                 KVM_MMU_LOCK(kvm);
2161                 for (i = 0; i < n / sizeof(long); i++) {
2162                         unsigned long mask;
2163                         gfn_t offset;
2164
2165                         if (!dirty_bitmap[i])
2166                                 continue;
2167
2168                         flush = true;
2169                         mask = xchg(&dirty_bitmap[i], 0);
2170                         dirty_bitmap_buffer[i] = mask;
2171
2172                         offset = i * BITS_PER_LONG;
2173                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2174                                                                 offset, mask);
2175                 }
2176                 KVM_MMU_UNLOCK(kvm);
2177         }
2178
2179         if (flush)
2180                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2181
2182         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2183                 return -EFAULT;
2184         return 0;
2185 }
2186
2187
2188 /**
2189  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2190  * @kvm: kvm instance
2191  * @log: slot id and address to which we copy the log
2192  *
2193  * Steps 1-4 below provide general overview of dirty page logging. See
2194  * kvm_get_dirty_log_protect() function description for additional details.
2195  *
2196  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2197  * always flush the TLB (step 4) even if previous step failed  and the dirty
2198  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2199  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2200  * writes will be marked dirty for next log read.
2201  *
2202  *   1. Take a snapshot of the bit and clear it if needed.
2203  *   2. Write protect the corresponding page.
2204  *   3. Copy the snapshot to the userspace.
2205  *   4. Flush TLB's if needed.
2206  */
2207 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2208                                       struct kvm_dirty_log *log)
2209 {
2210         int r;
2211
2212         mutex_lock(&kvm->slots_lock);
2213
2214         r = kvm_get_dirty_log_protect(kvm, log);
2215
2216         mutex_unlock(&kvm->slots_lock);
2217         return r;
2218 }
2219
2220 /**
2221  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2222  *      and reenable dirty page tracking for the corresponding pages.
2223  * @kvm:        pointer to kvm instance
2224  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2225  */
2226 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2227                                        struct kvm_clear_dirty_log *log)
2228 {
2229         struct kvm_memslots *slots;
2230         struct kvm_memory_slot *memslot;
2231         int as_id, id;
2232         gfn_t offset;
2233         unsigned long i, n;
2234         unsigned long *dirty_bitmap;
2235         unsigned long *dirty_bitmap_buffer;
2236         bool flush;
2237
2238         /* Dirty ring tracking is exclusive to dirty log tracking */
2239         if (kvm->dirty_ring_size)
2240                 return -ENXIO;
2241
2242         as_id = log->slot >> 16;
2243         id = (u16)log->slot;
2244         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2245                 return -EINVAL;
2246
2247         if (log->first_page & 63)
2248                 return -EINVAL;
2249
2250         slots = __kvm_memslots(kvm, as_id);
2251         memslot = id_to_memslot(slots, id);
2252         if (!memslot || !memslot->dirty_bitmap)
2253                 return -ENOENT;
2254
2255         dirty_bitmap = memslot->dirty_bitmap;
2256
2257         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2258
2259         if (log->first_page > memslot->npages ||
2260             log->num_pages > memslot->npages - log->first_page ||
2261             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2262             return -EINVAL;
2263
2264         kvm_arch_sync_dirty_log(kvm, memslot);
2265
2266         flush = false;
2267         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2268         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2269                 return -EFAULT;
2270
2271         KVM_MMU_LOCK(kvm);
2272         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2273                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2274              i++, offset += BITS_PER_LONG) {
2275                 unsigned long mask = *dirty_bitmap_buffer++;
2276                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2277                 if (!mask)
2278                         continue;
2279
2280                 mask &= atomic_long_fetch_andnot(mask, p);
2281
2282                 /*
2283                  * mask contains the bits that really have been cleared.  This
2284                  * never includes any bits beyond the length of the memslot (if
2285                  * the length is not aligned to 64 pages), therefore it is not
2286                  * a problem if userspace sets them in log->dirty_bitmap.
2287                 */
2288                 if (mask) {
2289                         flush = true;
2290                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2291                                                                 offset, mask);
2292                 }
2293         }
2294         KVM_MMU_UNLOCK(kvm);
2295
2296         if (flush)
2297                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2298
2299         return 0;
2300 }
2301
2302 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2303                                         struct kvm_clear_dirty_log *log)
2304 {
2305         int r;
2306
2307         mutex_lock(&kvm->slots_lock);
2308
2309         r = kvm_clear_dirty_log_protect(kvm, log);
2310
2311         mutex_unlock(&kvm->slots_lock);
2312         return r;
2313 }
2314 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2315
2316 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2317 {
2318         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2319 }
2320 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2321
2322 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2323 {
2324         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2325         u64 gen = slots->generation;
2326         struct kvm_memory_slot *slot;
2327
2328         /*
2329          * This also protects against using a memslot from a different address space,
2330          * since different address spaces have different generation numbers.
2331          */
2332         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2333                 vcpu->last_used_slot = NULL;
2334                 vcpu->last_used_slot_gen = gen;
2335         }
2336
2337         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2338         if (slot)
2339                 return slot;
2340
2341         /*
2342          * Fall back to searching all memslots. We purposely use
2343          * search_memslots() instead of __gfn_to_memslot() to avoid
2344          * thrashing the VM-wide last_used_slot in kvm_memslots.
2345          */
2346         slot = search_memslots(slots, gfn, false);
2347         if (slot) {
2348                 vcpu->last_used_slot = slot;
2349                 return slot;
2350         }
2351
2352         return NULL;
2353 }
2354
2355 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2356 {
2357         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2358
2359         return kvm_is_visible_memslot(memslot);
2360 }
2361 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2362
2363 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2364 {
2365         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2366
2367         return kvm_is_visible_memslot(memslot);
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2370
2371 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2372 {
2373         struct vm_area_struct *vma;
2374         unsigned long addr, size;
2375
2376         size = PAGE_SIZE;
2377
2378         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2379         if (kvm_is_error_hva(addr))
2380                 return PAGE_SIZE;
2381
2382         mmap_read_lock(current->mm);
2383         vma = find_vma(current->mm, addr);
2384         if (!vma)
2385                 goto out;
2386
2387         size = vma_kernel_pagesize(vma);
2388
2389 out:
2390         mmap_read_unlock(current->mm);
2391
2392         return size;
2393 }
2394
2395 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2396 {
2397         return slot->flags & KVM_MEM_READONLY;
2398 }
2399
2400 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2401                                        gfn_t *nr_pages, bool write)
2402 {
2403         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2404                 return KVM_HVA_ERR_BAD;
2405
2406         if (memslot_is_readonly(slot) && write)
2407                 return KVM_HVA_ERR_RO_BAD;
2408
2409         if (nr_pages)
2410                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2411
2412         return __gfn_to_hva_memslot(slot, gfn);
2413 }
2414
2415 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2416                                      gfn_t *nr_pages)
2417 {
2418         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2419 }
2420
2421 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2422                                         gfn_t gfn)
2423 {
2424         return gfn_to_hva_many(slot, gfn, NULL);
2425 }
2426 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2427
2428 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2429 {
2430         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2431 }
2432 EXPORT_SYMBOL_GPL(gfn_to_hva);
2433
2434 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2435 {
2436         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2437 }
2438 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2439
2440 /*
2441  * Return the hva of a @gfn and the R/W attribute if possible.
2442  *
2443  * @slot: the kvm_memory_slot which contains @gfn
2444  * @gfn: the gfn to be translated
2445  * @writable: used to return the read/write attribute of the @slot if the hva
2446  * is valid and @writable is not NULL
2447  */
2448 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2449                                       gfn_t gfn, bool *writable)
2450 {
2451         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2452
2453         if (!kvm_is_error_hva(hva) && writable)
2454                 *writable = !memslot_is_readonly(slot);
2455
2456         return hva;
2457 }
2458
2459 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2460 {
2461         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2462
2463         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2464 }
2465
2466 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2467 {
2468         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2469
2470         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2471 }
2472
2473 static inline int check_user_page_hwpoison(unsigned long addr)
2474 {
2475         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2476
2477         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2478         return rc == -EHWPOISON;
2479 }
2480
2481 /*
2482  * The fast path to get the writable pfn which will be stored in @pfn,
2483  * true indicates success, otherwise false is returned.  It's also the
2484  * only part that runs if we can in atomic context.
2485  */
2486 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2487                             bool *writable, kvm_pfn_t *pfn)
2488 {
2489         struct page *page[1];
2490
2491         /*
2492          * Fast pin a writable pfn only if it is a write fault request
2493          * or the caller allows to map a writable pfn for a read fault
2494          * request.
2495          */
2496         if (!(write_fault || writable))
2497                 return false;
2498
2499         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2500                 *pfn = page_to_pfn(page[0]);
2501
2502                 if (writable)
2503                         *writable = true;
2504                 return true;
2505         }
2506
2507         return false;
2508 }
2509
2510 /*
2511  * The slow path to get the pfn of the specified host virtual address,
2512  * 1 indicates success, -errno is returned if error is detected.
2513  */
2514 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2515                            bool *writable, kvm_pfn_t *pfn)
2516 {
2517         unsigned int flags = FOLL_HWPOISON;
2518         struct page *page;
2519         int npages = 0;
2520
2521         might_sleep();
2522
2523         if (writable)
2524                 *writable = write_fault;
2525
2526         if (write_fault)
2527                 flags |= FOLL_WRITE;
2528         if (async)
2529                 flags |= FOLL_NOWAIT;
2530
2531         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2532         if (npages != 1)
2533                 return npages;
2534
2535         /* map read fault as writable if possible */
2536         if (unlikely(!write_fault) && writable) {
2537                 struct page *wpage;
2538
2539                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2540                         *writable = true;
2541                         put_page(page);
2542                         page = wpage;
2543                 }
2544         }
2545         *pfn = page_to_pfn(page);
2546         return npages;
2547 }
2548
2549 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2550 {
2551         if (unlikely(!(vma->vm_flags & VM_READ)))
2552                 return false;
2553
2554         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2555                 return false;
2556
2557         return true;
2558 }
2559
2560 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2561 {
2562         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2563
2564         if (!page)
2565                 return 1;
2566
2567         return get_page_unless_zero(page);
2568 }
2569
2570 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2571                                unsigned long addr, bool write_fault,
2572                                bool *writable, kvm_pfn_t *p_pfn)
2573 {
2574         kvm_pfn_t pfn;
2575         pte_t *ptep;
2576         spinlock_t *ptl;
2577         int r;
2578
2579         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2580         if (r) {
2581                 /*
2582                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2583                  * not call the fault handler, so do it here.
2584                  */
2585                 bool unlocked = false;
2586                 r = fixup_user_fault(current->mm, addr,
2587                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2588                                      &unlocked);
2589                 if (unlocked)
2590                         return -EAGAIN;
2591                 if (r)
2592                         return r;
2593
2594                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2595                 if (r)
2596                         return r;
2597         }
2598
2599         if (write_fault && !pte_write(*ptep)) {
2600                 pfn = KVM_PFN_ERR_RO_FAULT;
2601                 goto out;
2602         }
2603
2604         if (writable)
2605                 *writable = pte_write(*ptep);
2606         pfn = pte_pfn(*ptep);
2607
2608         /*
2609          * Get a reference here because callers of *hva_to_pfn* and
2610          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2611          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2612          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2613          * simply do nothing for reserved pfns.
2614          *
2615          * Whoever called remap_pfn_range is also going to call e.g.
2616          * unmap_mapping_range before the underlying pages are freed,
2617          * causing a call to our MMU notifier.
2618          *
2619          * Certain IO or PFNMAP mappings can be backed with valid
2620          * struct pages, but be allocated without refcounting e.g.,
2621          * tail pages of non-compound higher order allocations, which
2622          * would then underflow the refcount when the caller does the
2623          * required put_page. Don't allow those pages here.
2624          */ 
2625         if (!kvm_try_get_pfn(pfn))
2626                 r = -EFAULT;
2627
2628 out:
2629         pte_unmap_unlock(ptep, ptl);
2630         *p_pfn = pfn;
2631
2632         return r;
2633 }
2634
2635 /*
2636  * Pin guest page in memory and return its pfn.
2637  * @addr: host virtual address which maps memory to the guest
2638  * @atomic: whether this function can sleep
2639  * @async: whether this function need to wait IO complete if the
2640  *         host page is not in the memory
2641  * @write_fault: whether we should get a writable host page
2642  * @writable: whether it allows to map a writable host page for !@write_fault
2643  *
2644  * The function will map a writable host page for these two cases:
2645  * 1): @write_fault = true
2646  * 2): @write_fault = false && @writable, @writable will tell the caller
2647  *     whether the mapping is writable.
2648  */
2649 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2650                      bool write_fault, bool *writable)
2651 {
2652         struct vm_area_struct *vma;
2653         kvm_pfn_t pfn;
2654         int npages, r;
2655
2656         /* we can do it either atomically or asynchronously, not both */
2657         BUG_ON(atomic && async);
2658
2659         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2660                 return pfn;
2661
2662         if (atomic)
2663                 return KVM_PFN_ERR_FAULT;
2664
2665         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2666         if (npages == 1)
2667                 return pfn;
2668
2669         mmap_read_lock(current->mm);
2670         if (npages == -EHWPOISON ||
2671               (!async && check_user_page_hwpoison(addr))) {
2672                 pfn = KVM_PFN_ERR_HWPOISON;
2673                 goto exit;
2674         }
2675
2676 retry:
2677         vma = vma_lookup(current->mm, addr);
2678
2679         if (vma == NULL)
2680                 pfn = KVM_PFN_ERR_FAULT;
2681         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2682                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2683                 if (r == -EAGAIN)
2684                         goto retry;
2685                 if (r < 0)
2686                         pfn = KVM_PFN_ERR_FAULT;
2687         } else {
2688                 if (async && vma_is_valid(vma, write_fault))
2689                         *async = true;
2690                 pfn = KVM_PFN_ERR_FAULT;
2691         }
2692 exit:
2693         mmap_read_unlock(current->mm);
2694         return pfn;
2695 }
2696
2697 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2698                                bool atomic, bool *async, bool write_fault,
2699                                bool *writable, hva_t *hva)
2700 {
2701         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2702
2703         if (hva)
2704                 *hva = addr;
2705
2706         if (addr == KVM_HVA_ERR_RO_BAD) {
2707                 if (writable)
2708                         *writable = false;
2709                 return KVM_PFN_ERR_RO_FAULT;
2710         }
2711
2712         if (kvm_is_error_hva(addr)) {
2713                 if (writable)
2714                         *writable = false;
2715                 return KVM_PFN_NOSLOT;
2716         }
2717
2718         /* Do not map writable pfn in the readonly memslot. */
2719         if (writable && memslot_is_readonly(slot)) {
2720                 *writable = false;
2721                 writable = NULL;
2722         }
2723
2724         return hva_to_pfn(addr, atomic, async, write_fault,
2725                           writable);
2726 }
2727 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2728
2729 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2730                       bool *writable)
2731 {
2732         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2733                                     write_fault, writable, NULL);
2734 }
2735 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2736
2737 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2738 {
2739         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2740 }
2741 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2742
2743 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2744 {
2745         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2746 }
2747 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2748
2749 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2750 {
2751         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2752 }
2753 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2754
2755 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2756 {
2757         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2758 }
2759 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2760
2761 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2762 {
2763         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2764 }
2765 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2766
2767 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2768                             struct page **pages, int nr_pages)
2769 {
2770         unsigned long addr;
2771         gfn_t entry = 0;
2772
2773         addr = gfn_to_hva_many(slot, gfn, &entry);
2774         if (kvm_is_error_hva(addr))
2775                 return -1;
2776
2777         if (entry < nr_pages)
2778                 return 0;
2779
2780         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2781 }
2782 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2783
2784 /*
2785  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2786  * backed by 'struct page'.  A valid example is if the backing memslot is
2787  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2788  * been elevated by gfn_to_pfn().
2789  */
2790 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2791 {
2792         struct page *page;
2793         kvm_pfn_t pfn;
2794
2795         pfn = gfn_to_pfn(kvm, gfn);
2796
2797         if (is_error_noslot_pfn(pfn))
2798                 return KVM_ERR_PTR_BAD_PAGE;
2799
2800         page = kvm_pfn_to_refcounted_page(pfn);
2801         if (!page)
2802                 return KVM_ERR_PTR_BAD_PAGE;
2803
2804         return page;
2805 }
2806 EXPORT_SYMBOL_GPL(gfn_to_page);
2807
2808 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2809 {
2810         if (dirty)
2811                 kvm_release_pfn_dirty(pfn);
2812         else
2813                 kvm_release_pfn_clean(pfn);
2814 }
2815
2816 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2817 {
2818         kvm_pfn_t pfn;
2819         void *hva = NULL;
2820         struct page *page = KVM_UNMAPPED_PAGE;
2821
2822         if (!map)
2823                 return -EINVAL;
2824
2825         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2826         if (is_error_noslot_pfn(pfn))
2827                 return -EINVAL;
2828
2829         if (pfn_valid(pfn)) {
2830                 page = pfn_to_page(pfn);
2831                 hva = kmap(page);
2832 #ifdef CONFIG_HAS_IOMEM
2833         } else {
2834                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2835 #endif
2836         }
2837
2838         if (!hva)
2839                 return -EFAULT;
2840
2841         map->page = page;
2842         map->hva = hva;
2843         map->pfn = pfn;
2844         map->gfn = gfn;
2845
2846         return 0;
2847 }
2848 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2849
2850 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2851 {
2852         if (!map)
2853                 return;
2854
2855         if (!map->hva)
2856                 return;
2857
2858         if (map->page != KVM_UNMAPPED_PAGE)
2859                 kunmap(map->page);
2860 #ifdef CONFIG_HAS_IOMEM
2861         else
2862                 memunmap(map->hva);
2863 #endif
2864
2865         if (dirty)
2866                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2867
2868         kvm_release_pfn(map->pfn, dirty);
2869
2870         map->hva = NULL;
2871         map->page = NULL;
2872 }
2873 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2874
2875 static bool kvm_is_ad_tracked_page(struct page *page)
2876 {
2877         /*
2878          * Per page-flags.h, pages tagged PG_reserved "should in general not be
2879          * touched (e.g. set dirty) except by its owner".
2880          */
2881         return !PageReserved(page);
2882 }
2883
2884 static void kvm_set_page_dirty(struct page *page)
2885 {
2886         if (kvm_is_ad_tracked_page(page))
2887                 SetPageDirty(page);
2888 }
2889
2890 static void kvm_set_page_accessed(struct page *page)
2891 {
2892         if (kvm_is_ad_tracked_page(page))
2893                 mark_page_accessed(page);
2894 }
2895
2896 void kvm_release_page_clean(struct page *page)
2897 {
2898         WARN_ON(is_error_page(page));
2899
2900         kvm_set_page_accessed(page);
2901         put_page(page);
2902 }
2903 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2904
2905 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2906 {
2907         struct page *page;
2908
2909         if (is_error_noslot_pfn(pfn))
2910                 return;
2911
2912         page = kvm_pfn_to_refcounted_page(pfn);
2913         if (!page)
2914                 return;
2915
2916         kvm_release_page_clean(page);
2917 }
2918 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2919
2920 void kvm_release_page_dirty(struct page *page)
2921 {
2922         WARN_ON(is_error_page(page));
2923
2924         kvm_set_page_dirty(page);
2925         kvm_release_page_clean(page);
2926 }
2927 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2928
2929 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2930 {
2931         struct page *page;
2932
2933         if (is_error_noslot_pfn(pfn))
2934                 return;
2935
2936         page = kvm_pfn_to_refcounted_page(pfn);
2937         if (!page)
2938                 return;
2939
2940         kvm_release_page_dirty(page);
2941 }
2942 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2943
2944 /*
2945  * Note, checking for an error/noslot pfn is the caller's responsibility when
2946  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2947  * "set" helpers are not to be used when the pfn might point at garbage.
2948  */
2949 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2950 {
2951         if (WARN_ON(is_error_noslot_pfn(pfn)))
2952                 return;
2953
2954         if (pfn_valid(pfn))
2955                 kvm_set_page_dirty(pfn_to_page(pfn));
2956 }
2957 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2958
2959 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2960 {
2961         if (WARN_ON(is_error_noslot_pfn(pfn)))
2962                 return;
2963
2964         if (pfn_valid(pfn))
2965                 kvm_set_page_accessed(pfn_to_page(pfn));
2966 }
2967 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2968
2969 static int next_segment(unsigned long len, int offset)
2970 {
2971         if (len > PAGE_SIZE - offset)
2972                 return PAGE_SIZE - offset;
2973         else
2974                 return len;
2975 }
2976
2977 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2978                                  void *data, int offset, int len)
2979 {
2980         int r;
2981         unsigned long addr;
2982
2983         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2984         if (kvm_is_error_hva(addr))
2985                 return -EFAULT;
2986         r = __copy_from_user(data, (void __user *)addr + offset, len);
2987         if (r)
2988                 return -EFAULT;
2989         return 0;
2990 }
2991
2992 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2993                         int len)
2994 {
2995         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2996
2997         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2998 }
2999 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3000
3001 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3002                              int offset, int len)
3003 {
3004         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3005
3006         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3007 }
3008 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3009
3010 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3011 {
3012         gfn_t gfn = gpa >> PAGE_SHIFT;
3013         int seg;
3014         int offset = offset_in_page(gpa);
3015         int ret;
3016
3017         while ((seg = next_segment(len, offset)) != 0) {
3018                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3019                 if (ret < 0)
3020                         return ret;
3021                 offset = 0;
3022                 len -= seg;
3023                 data += seg;
3024                 ++gfn;
3025         }
3026         return 0;
3027 }
3028 EXPORT_SYMBOL_GPL(kvm_read_guest);
3029
3030 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3031 {
3032         gfn_t gfn = gpa >> PAGE_SHIFT;
3033         int seg;
3034         int offset = offset_in_page(gpa);
3035         int ret;
3036
3037         while ((seg = next_segment(len, offset)) != 0) {
3038                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3039                 if (ret < 0)
3040                         return ret;
3041                 offset = 0;
3042                 len -= seg;
3043                 data += seg;
3044                 ++gfn;
3045         }
3046         return 0;
3047 }
3048 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3049
3050 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3051                                    void *data, int offset, unsigned long len)
3052 {
3053         int r;
3054         unsigned long addr;
3055
3056         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3057         if (kvm_is_error_hva(addr))
3058                 return -EFAULT;
3059         pagefault_disable();
3060         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3061         pagefault_enable();
3062         if (r)
3063                 return -EFAULT;
3064         return 0;
3065 }
3066
3067 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3068                                void *data, unsigned long len)
3069 {
3070         gfn_t gfn = gpa >> PAGE_SHIFT;
3071         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3072         int offset = offset_in_page(gpa);
3073
3074         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3075 }
3076 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3077
3078 static int __kvm_write_guest_page(struct kvm *kvm,
3079                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3080                                   const void *data, int offset, int len)
3081 {
3082         int r;
3083         unsigned long addr;
3084
3085         addr = gfn_to_hva_memslot(memslot, gfn);
3086         if (kvm_is_error_hva(addr))
3087                 return -EFAULT;
3088         r = __copy_to_user((void __user *)addr + offset, data, len);
3089         if (r)
3090                 return -EFAULT;
3091         mark_page_dirty_in_slot(kvm, memslot, gfn);
3092         return 0;
3093 }
3094
3095 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3096                          const void *data, int offset, int len)
3097 {
3098         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3099
3100         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3101 }
3102 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3103
3104 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3105                               const void *data, int offset, int len)
3106 {
3107         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3108
3109         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3110 }
3111 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3112
3113 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3114                     unsigned long len)
3115 {
3116         gfn_t gfn = gpa >> PAGE_SHIFT;
3117         int seg;
3118         int offset = offset_in_page(gpa);
3119         int ret;
3120
3121         while ((seg = next_segment(len, offset)) != 0) {
3122                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3123                 if (ret < 0)
3124                         return ret;
3125                 offset = 0;
3126                 len -= seg;
3127                 data += seg;
3128                 ++gfn;
3129         }
3130         return 0;
3131 }
3132 EXPORT_SYMBOL_GPL(kvm_write_guest);
3133
3134 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3135                          unsigned long len)
3136 {
3137         gfn_t gfn = gpa >> PAGE_SHIFT;
3138         int seg;
3139         int offset = offset_in_page(gpa);
3140         int ret;
3141
3142         while ((seg = next_segment(len, offset)) != 0) {
3143                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3144                 if (ret < 0)
3145                         return ret;
3146                 offset = 0;
3147                 len -= seg;
3148                 data += seg;
3149                 ++gfn;
3150         }
3151         return 0;
3152 }
3153 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3154
3155 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3156                                        struct gfn_to_hva_cache *ghc,
3157                                        gpa_t gpa, unsigned long len)
3158 {
3159         int offset = offset_in_page(gpa);
3160         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3161         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3162         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3163         gfn_t nr_pages_avail;
3164
3165         /* Update ghc->generation before performing any error checks. */
3166         ghc->generation = slots->generation;
3167
3168         if (start_gfn > end_gfn) {
3169                 ghc->hva = KVM_HVA_ERR_BAD;
3170                 return -EINVAL;
3171         }
3172
3173         /*
3174          * If the requested region crosses two memslots, we still
3175          * verify that the entire region is valid here.
3176          */
3177         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3178                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3179                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3180                                            &nr_pages_avail);
3181                 if (kvm_is_error_hva(ghc->hva))
3182                         return -EFAULT;
3183         }
3184
3185         /* Use the slow path for cross page reads and writes. */
3186         if (nr_pages_needed == 1)
3187                 ghc->hva += offset;
3188         else
3189                 ghc->memslot = NULL;
3190
3191         ghc->gpa = gpa;
3192         ghc->len = len;
3193         return 0;
3194 }
3195
3196 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3197                               gpa_t gpa, unsigned long len)
3198 {
3199         struct kvm_memslots *slots = kvm_memslots(kvm);
3200         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3201 }
3202 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3203
3204 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3205                                   void *data, unsigned int offset,
3206                                   unsigned long len)
3207 {
3208         struct kvm_memslots *slots = kvm_memslots(kvm);
3209         int r;
3210         gpa_t gpa = ghc->gpa + offset;
3211
3212         if (WARN_ON_ONCE(len + offset > ghc->len))
3213                 return -EINVAL;
3214
3215         if (slots->generation != ghc->generation) {
3216                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3217                         return -EFAULT;
3218         }
3219
3220         if (kvm_is_error_hva(ghc->hva))
3221                 return -EFAULT;
3222
3223         if (unlikely(!ghc->memslot))
3224                 return kvm_write_guest(kvm, gpa, data, len);
3225
3226         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3227         if (r)
3228                 return -EFAULT;
3229         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3230
3231         return 0;
3232 }
3233 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3234
3235 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3236                            void *data, unsigned long len)
3237 {
3238         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3239 }
3240 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3241
3242 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3243                                  void *data, unsigned int offset,
3244                                  unsigned long len)
3245 {
3246         struct kvm_memslots *slots = kvm_memslots(kvm);
3247         int r;
3248         gpa_t gpa = ghc->gpa + offset;
3249
3250         if (WARN_ON_ONCE(len + offset > ghc->len))
3251                 return -EINVAL;
3252
3253         if (slots->generation != ghc->generation) {
3254                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3255                         return -EFAULT;
3256         }
3257
3258         if (kvm_is_error_hva(ghc->hva))
3259                 return -EFAULT;
3260
3261         if (unlikely(!ghc->memslot))
3262                 return kvm_read_guest(kvm, gpa, data, len);
3263
3264         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3265         if (r)
3266                 return -EFAULT;
3267
3268         return 0;
3269 }
3270 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3271
3272 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3273                           void *data, unsigned long len)
3274 {
3275         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3276 }
3277 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3278
3279 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3280 {
3281         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3282         gfn_t gfn = gpa >> PAGE_SHIFT;
3283         int seg;
3284         int offset = offset_in_page(gpa);
3285         int ret;
3286
3287         while ((seg = next_segment(len, offset)) != 0) {
3288                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3289                 if (ret < 0)
3290                         return ret;
3291                 offset = 0;
3292                 len -= seg;
3293                 ++gfn;
3294         }
3295         return 0;
3296 }
3297 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3298
3299 void mark_page_dirty_in_slot(struct kvm *kvm,
3300                              const struct kvm_memory_slot *memslot,
3301                              gfn_t gfn)
3302 {
3303         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3304
3305 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3306         if (WARN_ON_ONCE(!vcpu) || WARN_ON_ONCE(vcpu->kvm != kvm))
3307                 return;
3308 #endif
3309
3310         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3311                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3312                 u32 slot = (memslot->as_id << 16) | memslot->id;
3313
3314                 if (kvm->dirty_ring_size)
3315                         kvm_dirty_ring_push(&vcpu->dirty_ring,
3316                                             slot, rel_gfn);
3317                 else
3318                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3319         }
3320 }
3321 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3322
3323 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3324 {
3325         struct kvm_memory_slot *memslot;
3326
3327         memslot = gfn_to_memslot(kvm, gfn);
3328         mark_page_dirty_in_slot(kvm, memslot, gfn);
3329 }
3330 EXPORT_SYMBOL_GPL(mark_page_dirty);
3331
3332 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3333 {
3334         struct kvm_memory_slot *memslot;
3335
3336         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3337         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3338 }
3339 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3340
3341 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3342 {
3343         if (!vcpu->sigset_active)
3344                 return;
3345
3346         /*
3347          * This does a lockless modification of ->real_blocked, which is fine
3348          * because, only current can change ->real_blocked and all readers of
3349          * ->real_blocked don't care as long ->real_blocked is always a subset
3350          * of ->blocked.
3351          */
3352         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3353 }
3354
3355 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3356 {
3357         if (!vcpu->sigset_active)
3358                 return;
3359
3360         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3361         sigemptyset(&current->real_blocked);
3362 }
3363
3364 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3365 {
3366         unsigned int old, val, grow, grow_start;
3367
3368         old = val = vcpu->halt_poll_ns;
3369         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3370         grow = READ_ONCE(halt_poll_ns_grow);
3371         if (!grow)
3372                 goto out;
3373
3374         val *= grow;
3375         if (val < grow_start)
3376                 val = grow_start;
3377
3378         if (val > vcpu->kvm->max_halt_poll_ns)
3379                 val = vcpu->kvm->max_halt_poll_ns;
3380
3381         vcpu->halt_poll_ns = val;
3382 out:
3383         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3384 }
3385
3386 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3387 {
3388         unsigned int old, val, shrink, grow_start;
3389
3390         old = val = vcpu->halt_poll_ns;
3391         shrink = READ_ONCE(halt_poll_ns_shrink);
3392         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3393         if (shrink == 0)
3394                 val = 0;
3395         else
3396                 val /= shrink;
3397
3398         if (val < grow_start)
3399                 val = 0;
3400
3401         vcpu->halt_poll_ns = val;
3402         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3403 }
3404
3405 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3406 {
3407         int ret = -EINTR;
3408         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3409
3410         if (kvm_arch_vcpu_runnable(vcpu)) {
3411                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3412                 goto out;
3413         }
3414         if (kvm_cpu_has_pending_timer(vcpu))
3415                 goto out;
3416         if (signal_pending(current))
3417                 goto out;
3418         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3419                 goto out;
3420
3421         ret = 0;
3422 out:
3423         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3424         return ret;
3425 }
3426
3427 /*
3428  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3429  * pending.  This is mostly used when halting a vCPU, but may also be used
3430  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3431  */
3432 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3433 {
3434         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3435         bool waited = false;
3436
3437         vcpu->stat.generic.blocking = 1;
3438
3439         preempt_disable();
3440         kvm_arch_vcpu_blocking(vcpu);
3441         prepare_to_rcuwait(wait);
3442         preempt_enable();
3443
3444         for (;;) {
3445                 set_current_state(TASK_INTERRUPTIBLE);
3446
3447                 if (kvm_vcpu_check_block(vcpu) < 0)
3448                         break;
3449
3450                 waited = true;
3451                 schedule();
3452         }
3453
3454         preempt_disable();
3455         finish_rcuwait(wait);
3456         kvm_arch_vcpu_unblocking(vcpu);
3457         preempt_enable();
3458
3459         vcpu->stat.generic.blocking = 0;
3460
3461         return waited;
3462 }
3463
3464 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3465                                           ktime_t end, bool success)
3466 {
3467         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3468         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3469
3470         ++vcpu->stat.generic.halt_attempted_poll;
3471
3472         if (success) {
3473                 ++vcpu->stat.generic.halt_successful_poll;
3474
3475                 if (!vcpu_valid_wakeup(vcpu))
3476                         ++vcpu->stat.generic.halt_poll_invalid;
3477
3478                 stats->halt_poll_success_ns += poll_ns;
3479                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3480         } else {
3481                 stats->halt_poll_fail_ns += poll_ns;
3482                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3483         }
3484 }
3485
3486 /*
3487  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3488  * polling is enabled, busy wait for a short time before blocking to avoid the
3489  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3490  * is halted.
3491  */
3492 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3493 {
3494         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3495         bool do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3496         ktime_t start, cur, poll_end;
3497         bool waited = false;
3498         u64 halt_ns;
3499
3500         start = cur = poll_end = ktime_get();
3501         if (do_halt_poll) {
3502                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3503
3504                 do {
3505                         /*
3506                          * This sets KVM_REQ_UNHALT if an interrupt
3507                          * arrives.
3508                          */
3509                         if (kvm_vcpu_check_block(vcpu) < 0)
3510                                 goto out;
3511                         cpu_relax();
3512                         poll_end = cur = ktime_get();
3513                 } while (kvm_vcpu_can_poll(cur, stop));
3514         }
3515
3516         waited = kvm_vcpu_block(vcpu);
3517
3518         cur = ktime_get();
3519         if (waited) {
3520                 vcpu->stat.generic.halt_wait_ns +=
3521                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3522                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3523                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3524         }
3525 out:
3526         /* The total time the vCPU was "halted", including polling time. */
3527         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3528
3529         /*
3530          * Note, halt-polling is considered successful so long as the vCPU was
3531          * never actually scheduled out, i.e. even if the wake event arrived
3532          * after of the halt-polling loop itself, but before the full wait.
3533          */
3534         if (do_halt_poll)
3535                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3536
3537         if (halt_poll_allowed) {
3538                 if (!vcpu_valid_wakeup(vcpu)) {
3539                         shrink_halt_poll_ns(vcpu);
3540                 } else if (vcpu->kvm->max_halt_poll_ns) {
3541                         if (halt_ns <= vcpu->halt_poll_ns)
3542                                 ;
3543                         /* we had a long block, shrink polling */
3544                         else if (vcpu->halt_poll_ns &&
3545                                  halt_ns > vcpu->kvm->max_halt_poll_ns)
3546                                 shrink_halt_poll_ns(vcpu);
3547                         /* we had a short halt and our poll time is too small */
3548                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3549                                  halt_ns < vcpu->kvm->max_halt_poll_ns)
3550                                 grow_halt_poll_ns(vcpu);
3551                 } else {
3552                         vcpu->halt_poll_ns = 0;
3553                 }
3554         }
3555
3556         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3557 }
3558 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3559
3560 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3561 {
3562         if (__kvm_vcpu_wake_up(vcpu)) {
3563                 WRITE_ONCE(vcpu->ready, true);
3564                 ++vcpu->stat.generic.halt_wakeup;
3565                 return true;
3566         }
3567
3568         return false;
3569 }
3570 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3571
3572 #ifndef CONFIG_S390
3573 /*
3574  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3575  */
3576 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3577 {
3578         int me, cpu;
3579
3580         if (kvm_vcpu_wake_up(vcpu))
3581                 return;
3582
3583         me = get_cpu();
3584         /*
3585          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3586          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3587          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3588          * within the vCPU thread itself.
3589          */
3590         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3591                 if (vcpu->mode == IN_GUEST_MODE)
3592                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3593                 goto out;
3594         }
3595
3596         /*
3597          * Note, the vCPU could get migrated to a different pCPU at any point
3598          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3599          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3600          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3601          * vCPU also requires it to leave IN_GUEST_MODE.
3602          */
3603         if (kvm_arch_vcpu_should_kick(vcpu)) {
3604                 cpu = READ_ONCE(vcpu->cpu);
3605                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3606                         smp_send_reschedule(cpu);
3607         }
3608 out:
3609         put_cpu();
3610 }
3611 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3612 #endif /* !CONFIG_S390 */
3613
3614 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3615 {
3616         struct pid *pid;
3617         struct task_struct *task = NULL;
3618         int ret = 0;
3619
3620         rcu_read_lock();
3621         pid = rcu_dereference(target->pid);
3622         if (pid)
3623                 task = get_pid_task(pid, PIDTYPE_PID);
3624         rcu_read_unlock();
3625         if (!task)
3626                 return ret;
3627         ret = yield_to(task, 1);
3628         put_task_struct(task);
3629
3630         return ret;
3631 }
3632 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3633
3634 /*
3635  * Helper that checks whether a VCPU is eligible for directed yield.
3636  * Most eligible candidate to yield is decided by following heuristics:
3637  *
3638  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3639  *  (preempted lock holder), indicated by @in_spin_loop.
3640  *  Set at the beginning and cleared at the end of interception/PLE handler.
3641  *
3642  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3643  *  chance last time (mostly it has become eligible now since we have probably
3644  *  yielded to lockholder in last iteration. This is done by toggling
3645  *  @dy_eligible each time a VCPU checked for eligibility.)
3646  *
3647  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3648  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3649  *  burning. Giving priority for a potential lock-holder increases lock
3650  *  progress.
3651  *
3652  *  Since algorithm is based on heuristics, accessing another VCPU data without
3653  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3654  *  and continue with next VCPU and so on.
3655  */
3656 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3657 {
3658 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3659         bool eligible;
3660
3661         eligible = !vcpu->spin_loop.in_spin_loop ||
3662                     vcpu->spin_loop.dy_eligible;
3663
3664         if (vcpu->spin_loop.in_spin_loop)
3665                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3666
3667         return eligible;
3668 #else
3669         return true;
3670 #endif
3671 }
3672
3673 /*
3674  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3675  * a vcpu_load/vcpu_put pair.  However, for most architectures
3676  * kvm_arch_vcpu_runnable does not require vcpu_load.
3677  */
3678 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3679 {
3680         return kvm_arch_vcpu_runnable(vcpu);
3681 }
3682
3683 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3684 {
3685         if (kvm_arch_dy_runnable(vcpu))
3686                 return true;
3687
3688 #ifdef CONFIG_KVM_ASYNC_PF
3689         if (!list_empty_careful(&vcpu->async_pf.done))
3690                 return true;
3691 #endif
3692
3693         return false;
3694 }
3695
3696 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3697 {
3698         return false;
3699 }
3700
3701 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3702 {
3703         struct kvm *kvm = me->kvm;
3704         struct kvm_vcpu *vcpu;
3705         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3706         unsigned long i;
3707         int yielded = 0;
3708         int try = 3;
3709         int pass;
3710
3711         kvm_vcpu_set_in_spin_loop(me, true);
3712         /*
3713          * We boost the priority of a VCPU that is runnable but not
3714          * currently running, because it got preempted by something
3715          * else and called schedule in __vcpu_run.  Hopefully that
3716          * VCPU is holding the lock that we need and will release it.
3717          * We approximate round-robin by starting at the last boosted VCPU.
3718          */
3719         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3720                 kvm_for_each_vcpu(i, vcpu, kvm) {
3721                         if (!pass && i <= last_boosted_vcpu) {
3722                                 i = last_boosted_vcpu;
3723                                 continue;
3724                         } else if (pass && i > last_boosted_vcpu)
3725                                 break;
3726                         if (!READ_ONCE(vcpu->ready))
3727                                 continue;
3728                         if (vcpu == me)
3729                                 continue;
3730                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3731                                 continue;
3732                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3733                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3734                             !kvm_arch_vcpu_in_kernel(vcpu))
3735                                 continue;
3736                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3737                                 continue;
3738
3739                         yielded = kvm_vcpu_yield_to(vcpu);
3740                         if (yielded > 0) {
3741                                 kvm->last_boosted_vcpu = i;
3742                                 break;
3743                         } else if (yielded < 0) {
3744                                 try--;
3745                                 if (!try)
3746                                         break;
3747                         }
3748                 }
3749         }
3750         kvm_vcpu_set_in_spin_loop(me, false);
3751
3752         /* Ensure vcpu is not eligible during next spinloop */
3753         kvm_vcpu_set_dy_eligible(me, false);
3754 }
3755 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3756
3757 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3758 {
3759 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3760         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3761             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3762              kvm->dirty_ring_size / PAGE_SIZE);
3763 #else
3764         return false;
3765 #endif
3766 }
3767
3768 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3769 {
3770         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3771         struct page *page;
3772
3773         if (vmf->pgoff == 0)
3774                 page = virt_to_page(vcpu->run);
3775 #ifdef CONFIG_X86
3776         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3777                 page = virt_to_page(vcpu->arch.pio_data);
3778 #endif
3779 #ifdef CONFIG_KVM_MMIO
3780         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3781                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3782 #endif
3783         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3784                 page = kvm_dirty_ring_get_page(
3785                     &vcpu->dirty_ring,
3786                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3787         else
3788                 return kvm_arch_vcpu_fault(vcpu, vmf);
3789         get_page(page);
3790         vmf->page = page;
3791         return 0;
3792 }
3793
3794 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3795         .fault = kvm_vcpu_fault,
3796 };
3797
3798 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3799 {
3800         struct kvm_vcpu *vcpu = file->private_data;
3801         unsigned long pages = vma_pages(vma);
3802
3803         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3804              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3805             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3806                 return -EINVAL;
3807
3808         vma->vm_ops = &kvm_vcpu_vm_ops;
3809         return 0;
3810 }
3811
3812 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3813 {
3814         struct kvm_vcpu *vcpu = filp->private_data;
3815
3816         kvm_put_kvm(vcpu->kvm);
3817         return 0;
3818 }
3819
3820 static const struct file_operations kvm_vcpu_fops = {
3821         .release        = kvm_vcpu_release,
3822         .unlocked_ioctl = kvm_vcpu_ioctl,
3823         .mmap           = kvm_vcpu_mmap,
3824         .llseek         = noop_llseek,
3825         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3826 };
3827
3828 /*
3829  * Allocates an inode for the vcpu.
3830  */
3831 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3832 {
3833         char name[8 + 1 + ITOA_MAX_LEN + 1];
3834
3835         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3836         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3837 }
3838
3839 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3840 static int vcpu_get_pid(void *data, u64 *val)
3841 {
3842         struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3843         *val = pid_nr(rcu_access_pointer(vcpu->pid));
3844         return 0;
3845 }
3846
3847 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3848
3849 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3850 {
3851         struct dentry *debugfs_dentry;
3852         char dir_name[ITOA_MAX_LEN * 2];
3853
3854         if (!debugfs_initialized())
3855                 return;
3856
3857         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3858         debugfs_dentry = debugfs_create_dir(dir_name,
3859                                             vcpu->kvm->debugfs_dentry);
3860         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3861                             &vcpu_get_pid_fops);
3862
3863         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3864 }
3865 #endif
3866
3867 /*
3868  * Creates some virtual cpus.  Good luck creating more than one.
3869  */
3870 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3871 {
3872         int r;
3873         struct kvm_vcpu *vcpu;
3874         struct page *page;
3875
3876         if (id >= KVM_MAX_VCPU_IDS)
3877                 return -EINVAL;
3878
3879         mutex_lock(&kvm->lock);
3880         if (kvm->created_vcpus >= kvm->max_vcpus) {
3881                 mutex_unlock(&kvm->lock);
3882                 return -EINVAL;
3883         }
3884
3885         r = kvm_arch_vcpu_precreate(kvm, id);
3886         if (r) {
3887                 mutex_unlock(&kvm->lock);
3888                 return r;
3889         }
3890
3891         kvm->created_vcpus++;
3892         mutex_unlock(&kvm->lock);
3893
3894         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3895         if (!vcpu) {
3896                 r = -ENOMEM;
3897                 goto vcpu_decrement;
3898         }
3899
3900         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3901         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3902         if (!page) {
3903                 r = -ENOMEM;
3904                 goto vcpu_free;
3905         }
3906         vcpu->run = page_address(page);
3907
3908         kvm_vcpu_init(vcpu, kvm, id);
3909
3910         r = kvm_arch_vcpu_create(vcpu);
3911         if (r)
3912                 goto vcpu_free_run_page;
3913
3914         if (kvm->dirty_ring_size) {
3915                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3916                                          id, kvm->dirty_ring_size);
3917                 if (r)
3918                         goto arch_vcpu_destroy;
3919         }
3920
3921         mutex_lock(&kvm->lock);
3922         if (kvm_get_vcpu_by_id(kvm, id)) {
3923                 r = -EEXIST;
3924                 goto unlock_vcpu_destroy;
3925         }
3926
3927         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3928         r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3929         BUG_ON(r == -EBUSY);
3930         if (r)
3931                 goto unlock_vcpu_destroy;
3932
3933         /* Now it's all set up, let userspace reach it */
3934         kvm_get_kvm(kvm);
3935         r = create_vcpu_fd(vcpu);
3936         if (r < 0) {
3937                 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3938                 kvm_put_kvm_no_destroy(kvm);
3939                 goto unlock_vcpu_destroy;
3940         }
3941
3942         /*
3943          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3944          * pointer before kvm->online_vcpu's incremented value.
3945          */
3946         smp_wmb();
3947         atomic_inc(&kvm->online_vcpus);
3948
3949         mutex_unlock(&kvm->lock);
3950         kvm_arch_vcpu_postcreate(vcpu);
3951         kvm_create_vcpu_debugfs(vcpu);
3952         return r;
3953
3954 unlock_vcpu_destroy:
3955         mutex_unlock(&kvm->lock);
3956         kvm_dirty_ring_free(&vcpu->dirty_ring);
3957 arch_vcpu_destroy:
3958         kvm_arch_vcpu_destroy(vcpu);
3959 vcpu_free_run_page:
3960         free_page((unsigned long)vcpu->run);
3961 vcpu_free:
3962         kmem_cache_free(kvm_vcpu_cache, vcpu);
3963 vcpu_decrement:
3964         mutex_lock(&kvm->lock);
3965         kvm->created_vcpus--;
3966         mutex_unlock(&kvm->lock);
3967         return r;
3968 }
3969
3970 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3971 {
3972         if (sigset) {
3973                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3974                 vcpu->sigset_active = 1;
3975                 vcpu->sigset = *sigset;
3976         } else
3977                 vcpu->sigset_active = 0;
3978         return 0;
3979 }
3980
3981 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3982                               size_t size, loff_t *offset)
3983 {
3984         struct kvm_vcpu *vcpu = file->private_data;
3985
3986         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3987                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3988                         sizeof(vcpu->stat), user_buffer, size, offset);
3989 }
3990
3991 static const struct file_operations kvm_vcpu_stats_fops = {
3992         .read = kvm_vcpu_stats_read,
3993         .llseek = noop_llseek,
3994 };
3995
3996 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3997 {
3998         int fd;
3999         struct file *file;
4000         char name[15 + ITOA_MAX_LEN + 1];
4001
4002         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4003
4004         fd = get_unused_fd_flags(O_CLOEXEC);
4005         if (fd < 0)
4006                 return fd;
4007
4008         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4009         if (IS_ERR(file)) {
4010                 put_unused_fd(fd);
4011                 return PTR_ERR(file);
4012         }
4013         file->f_mode |= FMODE_PREAD;
4014         fd_install(fd, file);
4015
4016         return fd;
4017 }
4018
4019 static long kvm_vcpu_ioctl(struct file *filp,
4020                            unsigned int ioctl, unsigned long arg)
4021 {
4022         struct kvm_vcpu *vcpu = filp->private_data;
4023         void __user *argp = (void __user *)arg;
4024         int r;
4025         struct kvm_fpu *fpu = NULL;
4026         struct kvm_sregs *kvm_sregs = NULL;
4027
4028         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4029                 return -EIO;
4030
4031         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4032                 return -EINVAL;
4033
4034         /*
4035          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4036          * execution; mutex_lock() would break them.
4037          */
4038         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4039         if (r != -ENOIOCTLCMD)
4040                 return r;
4041
4042         if (mutex_lock_killable(&vcpu->mutex))
4043                 return -EINTR;
4044         switch (ioctl) {
4045         case KVM_RUN: {
4046                 struct pid *oldpid;
4047                 r = -EINVAL;
4048                 if (arg)
4049                         goto out;
4050                 oldpid = rcu_access_pointer(vcpu->pid);
4051                 if (unlikely(oldpid != task_pid(current))) {
4052                         /* The thread running this VCPU changed. */
4053                         struct pid *newpid;
4054
4055                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4056                         if (r)
4057                                 break;
4058
4059                         newpid = get_task_pid(current, PIDTYPE_PID);
4060                         rcu_assign_pointer(vcpu->pid, newpid);
4061                         if (oldpid)
4062                                 synchronize_rcu();
4063                         put_pid(oldpid);
4064                 }
4065                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4066                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4067                 break;
4068         }
4069         case KVM_GET_REGS: {
4070                 struct kvm_regs *kvm_regs;
4071
4072                 r = -ENOMEM;
4073                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4074                 if (!kvm_regs)
4075                         goto out;
4076                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4077                 if (r)
4078                         goto out_free1;
4079                 r = -EFAULT;
4080                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4081                         goto out_free1;
4082                 r = 0;
4083 out_free1:
4084                 kfree(kvm_regs);
4085                 break;
4086         }
4087         case KVM_SET_REGS: {
4088                 struct kvm_regs *kvm_regs;
4089
4090                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4091                 if (IS_ERR(kvm_regs)) {
4092                         r = PTR_ERR(kvm_regs);
4093                         goto out;
4094                 }
4095                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4096                 kfree(kvm_regs);
4097                 break;
4098         }
4099         case KVM_GET_SREGS: {
4100                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4101                                     GFP_KERNEL_ACCOUNT);
4102                 r = -ENOMEM;
4103                 if (!kvm_sregs)
4104                         goto out;
4105                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4106                 if (r)
4107                         goto out;
4108                 r = -EFAULT;
4109                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4110                         goto out;
4111                 r = 0;
4112                 break;
4113         }
4114         case KVM_SET_SREGS: {
4115                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4116                 if (IS_ERR(kvm_sregs)) {
4117                         r = PTR_ERR(kvm_sregs);
4118                         kvm_sregs = NULL;
4119                         goto out;
4120                 }
4121                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4122                 break;
4123         }
4124         case KVM_GET_MP_STATE: {
4125                 struct kvm_mp_state mp_state;
4126
4127                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4128                 if (r)
4129                         goto out;
4130                 r = -EFAULT;
4131                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4132                         goto out;
4133                 r = 0;
4134                 break;
4135         }
4136         case KVM_SET_MP_STATE: {
4137                 struct kvm_mp_state mp_state;
4138
4139                 r = -EFAULT;
4140                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4141                         goto out;
4142                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4143                 break;
4144         }
4145         case KVM_TRANSLATE: {
4146                 struct kvm_translation tr;
4147
4148                 r = -EFAULT;
4149                 if (copy_from_user(&tr, argp, sizeof(tr)))
4150                         goto out;
4151                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4152                 if (r)
4153                         goto out;
4154                 r = -EFAULT;
4155                 if (copy_to_user(argp, &tr, sizeof(tr)))
4156                         goto out;
4157                 r = 0;
4158                 break;
4159         }
4160         case KVM_SET_GUEST_DEBUG: {
4161                 struct kvm_guest_debug dbg;
4162
4163                 r = -EFAULT;
4164                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4165                         goto out;
4166                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4167                 break;
4168         }
4169         case KVM_SET_SIGNAL_MASK: {
4170                 struct kvm_signal_mask __user *sigmask_arg = argp;
4171                 struct kvm_signal_mask kvm_sigmask;
4172                 sigset_t sigset, *p;
4173
4174                 p = NULL;
4175                 if (argp) {
4176                         r = -EFAULT;
4177                         if (copy_from_user(&kvm_sigmask, argp,
4178                                            sizeof(kvm_sigmask)))
4179                                 goto out;
4180                         r = -EINVAL;
4181                         if (kvm_sigmask.len != sizeof(sigset))
4182                                 goto out;
4183                         r = -EFAULT;
4184                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4185                                            sizeof(sigset)))
4186                                 goto out;
4187                         p = &sigset;
4188                 }
4189                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4190                 break;
4191         }
4192         case KVM_GET_FPU: {
4193                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4194                 r = -ENOMEM;
4195                 if (!fpu)
4196                         goto out;
4197                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4198                 if (r)
4199                         goto out;
4200                 r = -EFAULT;
4201                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4202                         goto out;
4203                 r = 0;
4204                 break;
4205         }
4206         case KVM_SET_FPU: {
4207                 fpu = memdup_user(argp, sizeof(*fpu));
4208                 if (IS_ERR(fpu)) {
4209                         r = PTR_ERR(fpu);
4210                         fpu = NULL;
4211                         goto out;
4212                 }
4213                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4214                 break;
4215         }
4216         case KVM_GET_STATS_FD: {
4217                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4218                 break;
4219         }
4220         default:
4221                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4222         }
4223 out:
4224         mutex_unlock(&vcpu->mutex);
4225         kfree(fpu);
4226         kfree(kvm_sregs);
4227         return r;
4228 }
4229
4230 #ifdef CONFIG_KVM_COMPAT
4231 static long kvm_vcpu_compat_ioctl(struct file *filp,
4232                                   unsigned int ioctl, unsigned long arg)
4233 {
4234         struct kvm_vcpu *vcpu = filp->private_data;
4235         void __user *argp = compat_ptr(arg);
4236         int r;
4237
4238         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4239                 return -EIO;
4240
4241         switch (ioctl) {
4242         case KVM_SET_SIGNAL_MASK: {
4243                 struct kvm_signal_mask __user *sigmask_arg = argp;
4244                 struct kvm_signal_mask kvm_sigmask;
4245                 sigset_t sigset;
4246
4247                 if (argp) {
4248                         r = -EFAULT;
4249                         if (copy_from_user(&kvm_sigmask, argp,
4250                                            sizeof(kvm_sigmask)))
4251                                 goto out;
4252                         r = -EINVAL;
4253                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4254                                 goto out;
4255                         r = -EFAULT;
4256                         if (get_compat_sigset(&sigset,
4257                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4258                                 goto out;
4259                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4260                 } else
4261                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4262                 break;
4263         }
4264         default:
4265                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4266         }
4267
4268 out:
4269         return r;
4270 }
4271 #endif
4272
4273 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4274 {
4275         struct kvm_device *dev = filp->private_data;
4276
4277         if (dev->ops->mmap)
4278                 return dev->ops->mmap(dev, vma);
4279
4280         return -ENODEV;
4281 }
4282
4283 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4284                                  int (*accessor)(struct kvm_device *dev,
4285                                                  struct kvm_device_attr *attr),
4286                                  unsigned long arg)
4287 {
4288         struct kvm_device_attr attr;
4289
4290         if (!accessor)
4291                 return -EPERM;
4292
4293         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4294                 return -EFAULT;
4295
4296         return accessor(dev, &attr);
4297 }
4298
4299 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4300                              unsigned long arg)
4301 {
4302         struct kvm_device *dev = filp->private_data;
4303
4304         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4305                 return -EIO;
4306
4307         switch (ioctl) {
4308         case KVM_SET_DEVICE_ATTR:
4309                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4310         case KVM_GET_DEVICE_ATTR:
4311                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4312         case KVM_HAS_DEVICE_ATTR:
4313                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4314         default:
4315                 if (dev->ops->ioctl)
4316                         return dev->ops->ioctl(dev, ioctl, arg);
4317
4318                 return -ENOTTY;
4319         }
4320 }
4321
4322 static int kvm_device_release(struct inode *inode, struct file *filp)
4323 {
4324         struct kvm_device *dev = filp->private_data;
4325         struct kvm *kvm = dev->kvm;
4326
4327         if (dev->ops->release) {
4328                 mutex_lock(&kvm->lock);
4329                 list_del(&dev->vm_node);
4330                 dev->ops->release(dev);
4331                 mutex_unlock(&kvm->lock);
4332         }
4333
4334         kvm_put_kvm(kvm);
4335         return 0;
4336 }
4337
4338 static const struct file_operations kvm_device_fops = {
4339         .unlocked_ioctl = kvm_device_ioctl,
4340         .release = kvm_device_release,
4341         KVM_COMPAT(kvm_device_ioctl),
4342         .mmap = kvm_device_mmap,
4343 };
4344
4345 struct kvm_device *kvm_device_from_filp(struct file *filp)
4346 {
4347         if (filp->f_op != &kvm_device_fops)
4348                 return NULL;
4349
4350         return filp->private_data;
4351 }
4352
4353 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4354 #ifdef CONFIG_KVM_MPIC
4355         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4356         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4357 #endif
4358 };
4359
4360 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4361 {
4362         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4363                 return -ENOSPC;
4364
4365         if (kvm_device_ops_table[type] != NULL)
4366                 return -EEXIST;
4367
4368         kvm_device_ops_table[type] = ops;
4369         return 0;
4370 }
4371
4372 void kvm_unregister_device_ops(u32 type)
4373 {
4374         if (kvm_device_ops_table[type] != NULL)
4375                 kvm_device_ops_table[type] = NULL;
4376 }
4377
4378 static int kvm_ioctl_create_device(struct kvm *kvm,
4379                                    struct kvm_create_device *cd)
4380 {
4381         const struct kvm_device_ops *ops = NULL;
4382         struct kvm_device *dev;
4383         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4384         int type;
4385         int ret;
4386
4387         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4388                 return -ENODEV;
4389
4390         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4391         ops = kvm_device_ops_table[type];
4392         if (ops == NULL)
4393                 return -ENODEV;
4394
4395         if (test)
4396                 return 0;
4397
4398         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4399         if (!dev)
4400                 return -ENOMEM;
4401
4402         dev->ops = ops;
4403         dev->kvm = kvm;
4404
4405         mutex_lock(&kvm->lock);
4406         ret = ops->create(dev, type);
4407         if (ret < 0) {
4408                 mutex_unlock(&kvm->lock);
4409                 kfree(dev);
4410                 return ret;
4411         }
4412         list_add(&dev->vm_node, &kvm->devices);
4413         mutex_unlock(&kvm->lock);
4414
4415         if (ops->init)
4416                 ops->init(dev);
4417
4418         kvm_get_kvm(kvm);
4419         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4420         if (ret < 0) {
4421                 kvm_put_kvm_no_destroy(kvm);
4422                 mutex_lock(&kvm->lock);
4423                 list_del(&dev->vm_node);
4424                 if (ops->release)
4425                         ops->release(dev);
4426                 mutex_unlock(&kvm->lock);
4427                 if (ops->destroy)
4428                         ops->destroy(dev);
4429                 return ret;
4430         }
4431
4432         cd->fd = ret;
4433         return 0;
4434 }
4435
4436 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4437 {
4438         switch (arg) {
4439         case KVM_CAP_USER_MEMORY:
4440         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4441         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4442         case KVM_CAP_INTERNAL_ERROR_DATA:
4443 #ifdef CONFIG_HAVE_KVM_MSI
4444         case KVM_CAP_SIGNAL_MSI:
4445 #endif
4446 #ifdef CONFIG_HAVE_KVM_IRQFD
4447         case KVM_CAP_IRQFD:
4448         case KVM_CAP_IRQFD_RESAMPLE:
4449 #endif
4450         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4451         case KVM_CAP_CHECK_EXTENSION_VM:
4452         case KVM_CAP_ENABLE_CAP_VM:
4453         case KVM_CAP_HALT_POLL:
4454                 return 1;
4455 #ifdef CONFIG_KVM_MMIO
4456         case KVM_CAP_COALESCED_MMIO:
4457                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4458         case KVM_CAP_COALESCED_PIO:
4459                 return 1;
4460 #endif
4461 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4462         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4463                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4464 #endif
4465 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4466         case KVM_CAP_IRQ_ROUTING:
4467                 return KVM_MAX_IRQ_ROUTES;
4468 #endif
4469 #if KVM_ADDRESS_SPACE_NUM > 1
4470         case KVM_CAP_MULTI_ADDRESS_SPACE:
4471                 return KVM_ADDRESS_SPACE_NUM;
4472 #endif
4473         case KVM_CAP_NR_MEMSLOTS:
4474                 return KVM_USER_MEM_SLOTS;
4475         case KVM_CAP_DIRTY_LOG_RING:
4476 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4477                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4478 #else
4479                 return 0;
4480 #endif
4481         case KVM_CAP_BINARY_STATS_FD:
4482         case KVM_CAP_SYSTEM_EVENT_DATA:
4483                 return 1;
4484         default:
4485                 break;
4486         }
4487         return kvm_vm_ioctl_check_extension(kvm, arg);
4488 }
4489
4490 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4491 {
4492         int r;
4493
4494         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4495                 return -EINVAL;
4496
4497         /* the size should be power of 2 */
4498         if (!size || (size & (size - 1)))
4499                 return -EINVAL;
4500
4501         /* Should be bigger to keep the reserved entries, or a page */
4502         if (size < kvm_dirty_ring_get_rsvd_entries() *
4503             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4504                 return -EINVAL;
4505
4506         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4507             sizeof(struct kvm_dirty_gfn))
4508                 return -E2BIG;
4509
4510         /* We only allow it to set once */
4511         if (kvm->dirty_ring_size)
4512                 return -EINVAL;
4513
4514         mutex_lock(&kvm->lock);
4515
4516         if (kvm->created_vcpus) {
4517                 /* We don't allow to change this value after vcpu created */
4518                 r = -EINVAL;
4519         } else {
4520                 kvm->dirty_ring_size = size;
4521                 r = 0;
4522         }
4523
4524         mutex_unlock(&kvm->lock);
4525         return r;
4526 }
4527
4528 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4529 {
4530         unsigned long i;
4531         struct kvm_vcpu *vcpu;
4532         int cleared = 0;
4533
4534         if (!kvm->dirty_ring_size)
4535                 return -EINVAL;
4536
4537         mutex_lock(&kvm->slots_lock);
4538
4539         kvm_for_each_vcpu(i, vcpu, kvm)
4540                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4541
4542         mutex_unlock(&kvm->slots_lock);
4543
4544         if (cleared)
4545                 kvm_flush_remote_tlbs(kvm);
4546
4547         return cleared;
4548 }
4549
4550 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4551                                                   struct kvm_enable_cap *cap)
4552 {
4553         return -EINVAL;
4554 }
4555
4556 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4557                                            struct kvm_enable_cap *cap)
4558 {
4559         switch (cap->cap) {
4560 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4561         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4562                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4563
4564                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4565                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4566
4567                 if (cap->flags || (cap->args[0] & ~allowed_options))
4568                         return -EINVAL;
4569                 kvm->manual_dirty_log_protect = cap->args[0];
4570                 return 0;
4571         }
4572 #endif
4573         case KVM_CAP_HALT_POLL: {
4574                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4575                         return -EINVAL;
4576
4577                 kvm->max_halt_poll_ns = cap->args[0];
4578                 return 0;
4579         }
4580         case KVM_CAP_DIRTY_LOG_RING:
4581                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4582         default:
4583                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4584         }
4585 }
4586
4587 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4588                               size_t size, loff_t *offset)
4589 {
4590         struct kvm *kvm = file->private_data;
4591
4592         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4593                                 &kvm_vm_stats_desc[0], &kvm->stat,
4594                                 sizeof(kvm->stat), user_buffer, size, offset);
4595 }
4596
4597 static const struct file_operations kvm_vm_stats_fops = {
4598         .read = kvm_vm_stats_read,
4599         .llseek = noop_llseek,
4600 };
4601
4602 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4603 {
4604         int fd;
4605         struct file *file;
4606
4607         fd = get_unused_fd_flags(O_CLOEXEC);
4608         if (fd < 0)
4609                 return fd;
4610
4611         file = anon_inode_getfile("kvm-vm-stats",
4612                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4613         if (IS_ERR(file)) {
4614                 put_unused_fd(fd);
4615                 return PTR_ERR(file);
4616         }
4617         file->f_mode |= FMODE_PREAD;
4618         fd_install(fd, file);
4619
4620         return fd;
4621 }
4622
4623 static long kvm_vm_ioctl(struct file *filp,
4624                            unsigned int ioctl, unsigned long arg)
4625 {
4626         struct kvm *kvm = filp->private_data;
4627         void __user *argp = (void __user *)arg;
4628         int r;
4629
4630         if (kvm->mm != current->mm || kvm->vm_dead)
4631                 return -EIO;
4632         switch (ioctl) {
4633         case KVM_CREATE_VCPU:
4634                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4635                 break;
4636         case KVM_ENABLE_CAP: {
4637                 struct kvm_enable_cap cap;
4638
4639                 r = -EFAULT;
4640                 if (copy_from_user(&cap, argp, sizeof(cap)))
4641                         goto out;
4642                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4643                 break;
4644         }
4645         case KVM_SET_USER_MEMORY_REGION: {
4646                 struct kvm_userspace_memory_region kvm_userspace_mem;
4647
4648                 r = -EFAULT;
4649                 if (copy_from_user(&kvm_userspace_mem, argp,
4650                                                 sizeof(kvm_userspace_mem)))
4651                         goto out;
4652
4653                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4654                 break;
4655         }
4656         case KVM_GET_DIRTY_LOG: {
4657                 struct kvm_dirty_log log;
4658
4659                 r = -EFAULT;
4660                 if (copy_from_user(&log, argp, sizeof(log)))
4661                         goto out;
4662                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4663                 break;
4664         }
4665 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4666         case KVM_CLEAR_DIRTY_LOG: {
4667                 struct kvm_clear_dirty_log log;
4668
4669                 r = -EFAULT;
4670                 if (copy_from_user(&log, argp, sizeof(log)))
4671                         goto out;
4672                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4673                 break;
4674         }
4675 #endif
4676 #ifdef CONFIG_KVM_MMIO
4677         case KVM_REGISTER_COALESCED_MMIO: {
4678                 struct kvm_coalesced_mmio_zone zone;
4679
4680                 r = -EFAULT;
4681                 if (copy_from_user(&zone, argp, sizeof(zone)))
4682                         goto out;
4683                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4684                 break;
4685         }
4686         case KVM_UNREGISTER_COALESCED_MMIO: {
4687                 struct kvm_coalesced_mmio_zone zone;
4688
4689                 r = -EFAULT;
4690                 if (copy_from_user(&zone, argp, sizeof(zone)))
4691                         goto out;
4692                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4693                 break;
4694         }
4695 #endif
4696         case KVM_IRQFD: {
4697                 struct kvm_irqfd data;
4698
4699                 r = -EFAULT;
4700                 if (copy_from_user(&data, argp, sizeof(data)))
4701                         goto out;
4702                 r = kvm_irqfd(kvm, &data);
4703                 break;
4704         }
4705         case KVM_IOEVENTFD: {
4706                 struct kvm_ioeventfd data;
4707
4708                 r = -EFAULT;
4709                 if (copy_from_user(&data, argp, sizeof(data)))
4710                         goto out;
4711                 r = kvm_ioeventfd(kvm, &data);
4712                 break;
4713         }
4714 #ifdef CONFIG_HAVE_KVM_MSI
4715         case KVM_SIGNAL_MSI: {
4716                 struct kvm_msi msi;
4717
4718                 r = -EFAULT;
4719                 if (copy_from_user(&msi, argp, sizeof(msi)))
4720                         goto out;
4721                 r = kvm_send_userspace_msi(kvm, &msi);
4722                 break;
4723         }
4724 #endif
4725 #ifdef __KVM_HAVE_IRQ_LINE
4726         case KVM_IRQ_LINE_STATUS:
4727         case KVM_IRQ_LINE: {
4728                 struct kvm_irq_level irq_event;
4729
4730                 r = -EFAULT;
4731                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4732                         goto out;
4733
4734                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4735                                         ioctl == KVM_IRQ_LINE_STATUS);
4736                 if (r)
4737                         goto out;
4738
4739                 r = -EFAULT;
4740                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4741                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4742                                 goto out;
4743                 }
4744
4745                 r = 0;
4746                 break;
4747         }
4748 #endif
4749 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4750         case KVM_SET_GSI_ROUTING: {
4751                 struct kvm_irq_routing routing;
4752                 struct kvm_irq_routing __user *urouting;
4753                 struct kvm_irq_routing_entry *entries = NULL;
4754
4755                 r = -EFAULT;
4756                 if (copy_from_user(&routing, argp, sizeof(routing)))
4757                         goto out;
4758                 r = -EINVAL;
4759                 if (!kvm_arch_can_set_irq_routing(kvm))
4760                         goto out;
4761                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4762                         goto out;
4763                 if (routing.flags)
4764                         goto out;
4765                 if (routing.nr) {
4766                         urouting = argp;
4767                         entries = vmemdup_user(urouting->entries,
4768                                                array_size(sizeof(*entries),
4769                                                           routing.nr));
4770                         if (IS_ERR(entries)) {
4771                                 r = PTR_ERR(entries);
4772                                 goto out;
4773                         }
4774                 }
4775                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4776                                         routing.flags);
4777                 kvfree(entries);
4778                 break;
4779         }
4780 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4781         case KVM_CREATE_DEVICE: {
4782                 struct kvm_create_device cd;
4783
4784                 r = -EFAULT;
4785                 if (copy_from_user(&cd, argp, sizeof(cd)))
4786                         goto out;
4787
4788                 r = kvm_ioctl_create_device(kvm, &cd);
4789                 if (r)
4790                         goto out;
4791
4792                 r = -EFAULT;
4793                 if (copy_to_user(argp, &cd, sizeof(cd)))
4794                         goto out;
4795
4796                 r = 0;
4797                 break;
4798         }
4799         case KVM_CHECK_EXTENSION:
4800                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4801                 break;
4802         case KVM_RESET_DIRTY_RINGS:
4803                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4804                 break;
4805         case KVM_GET_STATS_FD:
4806                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4807                 break;
4808         default:
4809                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4810         }
4811 out:
4812         return r;
4813 }
4814
4815 #ifdef CONFIG_KVM_COMPAT
4816 struct compat_kvm_dirty_log {
4817         __u32 slot;
4818         __u32 padding1;
4819         union {
4820                 compat_uptr_t dirty_bitmap; /* one bit per page */
4821                 __u64 padding2;
4822         };
4823 };
4824
4825 struct compat_kvm_clear_dirty_log {
4826         __u32 slot;
4827         __u32 num_pages;
4828         __u64 first_page;
4829         union {
4830                 compat_uptr_t dirty_bitmap; /* one bit per page */
4831                 __u64 padding2;
4832         };
4833 };
4834
4835 static long kvm_vm_compat_ioctl(struct file *filp,
4836                            unsigned int ioctl, unsigned long arg)
4837 {
4838         struct kvm *kvm = filp->private_data;
4839         int r;
4840
4841         if (kvm->mm != current->mm || kvm->vm_dead)
4842                 return -EIO;
4843         switch (ioctl) {
4844 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4845         case KVM_CLEAR_DIRTY_LOG: {
4846                 struct compat_kvm_clear_dirty_log compat_log;
4847                 struct kvm_clear_dirty_log log;
4848
4849                 if (copy_from_user(&compat_log, (void __user *)arg,
4850                                    sizeof(compat_log)))
4851                         return -EFAULT;
4852                 log.slot         = compat_log.slot;
4853                 log.num_pages    = compat_log.num_pages;
4854                 log.first_page   = compat_log.first_page;
4855                 log.padding2     = compat_log.padding2;
4856                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4857
4858                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4859                 break;
4860         }
4861 #endif
4862         case KVM_GET_DIRTY_LOG: {
4863                 struct compat_kvm_dirty_log compat_log;
4864                 struct kvm_dirty_log log;
4865
4866                 if (copy_from_user(&compat_log, (void __user *)arg,
4867                                    sizeof(compat_log)))
4868                         return -EFAULT;
4869                 log.slot         = compat_log.slot;
4870                 log.padding1     = compat_log.padding1;
4871                 log.padding2     = compat_log.padding2;
4872                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4873
4874                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4875                 break;
4876         }
4877         default:
4878                 r = kvm_vm_ioctl(filp, ioctl, arg);
4879         }
4880         return r;
4881 }
4882 #endif
4883
4884 static const struct file_operations kvm_vm_fops = {
4885         .release        = kvm_vm_release,
4886         .unlocked_ioctl = kvm_vm_ioctl,
4887         .llseek         = noop_llseek,
4888         KVM_COMPAT(kvm_vm_compat_ioctl),
4889 };
4890
4891 bool file_is_kvm(struct file *file)
4892 {
4893         return file && file->f_op == &kvm_vm_fops;
4894 }
4895 EXPORT_SYMBOL_GPL(file_is_kvm);
4896
4897 static int kvm_dev_ioctl_create_vm(unsigned long type)
4898 {
4899         char fdname[ITOA_MAX_LEN + 1];
4900         int r, fd;
4901         struct kvm *kvm;
4902         struct file *file;
4903
4904         fd = get_unused_fd_flags(O_CLOEXEC);
4905         if (fd < 0)
4906                 return fd;
4907
4908         snprintf(fdname, sizeof(fdname), "%d", fd);
4909
4910         kvm = kvm_create_vm(type, fdname);
4911         if (IS_ERR(kvm)) {
4912                 r = PTR_ERR(kvm);
4913                 goto put_fd;
4914         }
4915
4916 #ifdef CONFIG_KVM_MMIO
4917         r = kvm_coalesced_mmio_init(kvm);
4918         if (r < 0)
4919                 goto put_kvm;
4920 #endif
4921         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4922         if (IS_ERR(file)) {
4923                 r = PTR_ERR(file);
4924                 goto put_kvm;
4925         }
4926
4927         /*
4928          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4929          * already set, with ->release() being kvm_vm_release().  In error
4930          * cases it will be called by the final fput(file) and will take
4931          * care of doing kvm_put_kvm(kvm).
4932          */
4933         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4934
4935         fd_install(fd, file);
4936         return fd;
4937
4938 put_kvm:
4939         kvm_put_kvm(kvm);
4940 put_fd:
4941         put_unused_fd(fd);
4942         return r;
4943 }
4944
4945 static long kvm_dev_ioctl(struct file *filp,
4946                           unsigned int ioctl, unsigned long arg)
4947 {
4948         long r = -EINVAL;
4949
4950         switch (ioctl) {
4951         case KVM_GET_API_VERSION:
4952                 if (arg)
4953                         goto out;
4954                 r = KVM_API_VERSION;
4955                 break;
4956         case KVM_CREATE_VM:
4957                 r = kvm_dev_ioctl_create_vm(arg);
4958                 break;
4959         case KVM_CHECK_EXTENSION:
4960                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4961                 break;
4962         case KVM_GET_VCPU_MMAP_SIZE:
4963                 if (arg)
4964                         goto out;
4965                 r = PAGE_SIZE;     /* struct kvm_run */
4966 #ifdef CONFIG_X86
4967                 r += PAGE_SIZE;    /* pio data page */
4968 #endif
4969 #ifdef CONFIG_KVM_MMIO
4970                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4971 #endif
4972                 break;
4973         case KVM_TRACE_ENABLE:
4974         case KVM_TRACE_PAUSE:
4975         case KVM_TRACE_DISABLE:
4976                 r = -EOPNOTSUPP;
4977                 break;
4978         default:
4979                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4980         }
4981 out:
4982         return r;
4983 }
4984
4985 static struct file_operations kvm_chardev_ops = {
4986         .unlocked_ioctl = kvm_dev_ioctl,
4987         .llseek         = noop_llseek,
4988         KVM_COMPAT(kvm_dev_ioctl),
4989 };
4990
4991 static struct miscdevice kvm_dev = {
4992         KVM_MINOR,
4993         "kvm",
4994         &kvm_chardev_ops,
4995 };
4996
4997 static void hardware_enable_nolock(void *junk)
4998 {
4999         int cpu = raw_smp_processor_id();
5000         int r;
5001
5002         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
5003                 return;
5004
5005         cpumask_set_cpu(cpu, cpus_hardware_enabled);
5006
5007         r = kvm_arch_hardware_enable();
5008
5009         if (r) {
5010                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5011                 atomic_inc(&hardware_enable_failed);
5012                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
5013         }
5014 }
5015
5016 static int kvm_starting_cpu(unsigned int cpu)
5017 {
5018         raw_spin_lock(&kvm_count_lock);
5019         if (kvm_usage_count)
5020                 hardware_enable_nolock(NULL);
5021         raw_spin_unlock(&kvm_count_lock);
5022         return 0;
5023 }
5024
5025 static void hardware_disable_nolock(void *junk)
5026 {
5027         int cpu = raw_smp_processor_id();
5028
5029         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
5030                 return;
5031         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
5032         kvm_arch_hardware_disable();
5033 }
5034
5035 static int kvm_dying_cpu(unsigned int cpu)
5036 {
5037         raw_spin_lock(&kvm_count_lock);
5038         if (kvm_usage_count)
5039                 hardware_disable_nolock(NULL);
5040         raw_spin_unlock(&kvm_count_lock);
5041         return 0;
5042 }
5043
5044 static void hardware_disable_all_nolock(void)
5045 {
5046         BUG_ON(!kvm_usage_count);
5047
5048         kvm_usage_count--;
5049         if (!kvm_usage_count)
5050                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5051 }
5052
5053 static void hardware_disable_all(void)
5054 {
5055         raw_spin_lock(&kvm_count_lock);
5056         hardware_disable_all_nolock();
5057         raw_spin_unlock(&kvm_count_lock);
5058 }
5059
5060 static int hardware_enable_all(void)
5061 {
5062         int r = 0;
5063
5064         raw_spin_lock(&kvm_count_lock);
5065
5066         kvm_usage_count++;
5067         if (kvm_usage_count == 1) {
5068                 atomic_set(&hardware_enable_failed, 0);
5069                 on_each_cpu(hardware_enable_nolock, NULL, 1);
5070
5071                 if (atomic_read(&hardware_enable_failed)) {
5072                         hardware_disable_all_nolock();
5073                         r = -EBUSY;
5074                 }
5075         }
5076
5077         raw_spin_unlock(&kvm_count_lock);
5078
5079         return r;
5080 }
5081
5082 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5083                       void *v)
5084 {
5085         /*
5086          * Some (well, at least mine) BIOSes hang on reboot if
5087          * in vmx root mode.
5088          *
5089          * And Intel TXT required VMX off for all cpu when system shutdown.
5090          */
5091         pr_info("kvm: exiting hardware virtualization\n");
5092         kvm_rebooting = true;
5093         on_each_cpu(hardware_disable_nolock, NULL, 1);
5094         return NOTIFY_OK;
5095 }
5096
5097 static struct notifier_block kvm_reboot_notifier = {
5098         .notifier_call = kvm_reboot,
5099         .priority = 0,
5100 };
5101
5102 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5103 {
5104         int i;
5105
5106         for (i = 0; i < bus->dev_count; i++) {
5107                 struct kvm_io_device *pos = bus->range[i].dev;
5108
5109                 kvm_iodevice_destructor(pos);
5110         }
5111         kfree(bus);
5112 }
5113
5114 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5115                                  const struct kvm_io_range *r2)
5116 {
5117         gpa_t addr1 = r1->addr;
5118         gpa_t addr2 = r2->addr;
5119
5120         if (addr1 < addr2)
5121                 return -1;
5122
5123         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5124          * accept any overlapping write.  Any order is acceptable for
5125          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5126          * we process all of them.
5127          */
5128         if (r2->len) {
5129                 addr1 += r1->len;
5130                 addr2 += r2->len;
5131         }
5132
5133         if (addr1 > addr2)
5134                 return 1;
5135
5136         return 0;
5137 }
5138
5139 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5140 {
5141         return kvm_io_bus_cmp(p1, p2);
5142 }
5143
5144 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5145                              gpa_t addr, int len)
5146 {
5147         struct kvm_io_range *range, key;
5148         int off;
5149
5150         key = (struct kvm_io_range) {
5151                 .addr = addr,
5152                 .len = len,
5153         };
5154
5155         range = bsearch(&key, bus->range, bus->dev_count,
5156                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5157         if (range == NULL)
5158                 return -ENOENT;
5159
5160         off = range - bus->range;
5161
5162         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5163                 off--;
5164
5165         return off;
5166 }
5167
5168 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5169                               struct kvm_io_range *range, const void *val)
5170 {
5171         int idx;
5172
5173         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5174         if (idx < 0)
5175                 return -EOPNOTSUPP;
5176
5177         while (idx < bus->dev_count &&
5178                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5179                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5180                                         range->len, val))
5181                         return idx;
5182                 idx++;
5183         }
5184
5185         return -EOPNOTSUPP;
5186 }
5187
5188 /* kvm_io_bus_write - called under kvm->slots_lock */
5189 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5190                      int len, const void *val)
5191 {
5192         struct kvm_io_bus *bus;
5193         struct kvm_io_range range;
5194         int r;
5195
5196         range = (struct kvm_io_range) {
5197                 .addr = addr,
5198                 .len = len,
5199         };
5200
5201         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5202         if (!bus)
5203                 return -ENOMEM;
5204         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5205         return r < 0 ? r : 0;
5206 }
5207 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5208
5209 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5210 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5211                             gpa_t addr, int len, const void *val, long cookie)
5212 {
5213         struct kvm_io_bus *bus;
5214         struct kvm_io_range range;
5215
5216         range = (struct kvm_io_range) {
5217                 .addr = addr,
5218                 .len = len,
5219         };
5220
5221         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5222         if (!bus)
5223                 return -ENOMEM;
5224
5225         /* First try the device referenced by cookie. */
5226         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5227             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5228                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5229                                         val))
5230                         return cookie;
5231
5232         /*
5233          * cookie contained garbage; fall back to search and return the
5234          * correct cookie value.
5235          */
5236         return __kvm_io_bus_write(vcpu, bus, &range, val);
5237 }
5238
5239 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5240                              struct kvm_io_range *range, void *val)
5241 {
5242         int idx;
5243
5244         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5245         if (idx < 0)
5246                 return -EOPNOTSUPP;
5247
5248         while (idx < bus->dev_count &&
5249                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5250                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5251                                        range->len, val))
5252                         return idx;
5253                 idx++;
5254         }
5255
5256         return -EOPNOTSUPP;
5257 }
5258
5259 /* kvm_io_bus_read - called under kvm->slots_lock */
5260 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5261                     int len, void *val)
5262 {
5263         struct kvm_io_bus *bus;
5264         struct kvm_io_range range;
5265         int r;
5266
5267         range = (struct kvm_io_range) {
5268                 .addr = addr,
5269                 .len = len,
5270         };
5271
5272         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5273         if (!bus)
5274                 return -ENOMEM;
5275         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5276         return r < 0 ? r : 0;
5277 }
5278
5279 /* Caller must hold slots_lock. */
5280 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5281                             int len, struct kvm_io_device *dev)
5282 {
5283         int i;
5284         struct kvm_io_bus *new_bus, *bus;
5285         struct kvm_io_range range;
5286
5287         bus = kvm_get_bus(kvm, bus_idx);
5288         if (!bus)
5289                 return -ENOMEM;
5290
5291         /* exclude ioeventfd which is limited by maximum fd */
5292         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5293                 return -ENOSPC;
5294
5295         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5296                           GFP_KERNEL_ACCOUNT);
5297         if (!new_bus)
5298                 return -ENOMEM;
5299
5300         range = (struct kvm_io_range) {
5301                 .addr = addr,
5302                 .len = len,
5303                 .dev = dev,
5304         };
5305
5306         for (i = 0; i < bus->dev_count; i++)
5307                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5308                         break;
5309
5310         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5311         new_bus->dev_count++;
5312         new_bus->range[i] = range;
5313         memcpy(new_bus->range + i + 1, bus->range + i,
5314                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5315         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5316         synchronize_srcu_expedited(&kvm->srcu);
5317         kfree(bus);
5318
5319         return 0;
5320 }
5321
5322 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5323                               struct kvm_io_device *dev)
5324 {
5325         int i, j;
5326         struct kvm_io_bus *new_bus, *bus;
5327
5328         lockdep_assert_held(&kvm->slots_lock);
5329
5330         bus = kvm_get_bus(kvm, bus_idx);
5331         if (!bus)
5332                 return 0;
5333
5334         for (i = 0; i < bus->dev_count; i++) {
5335                 if (bus->range[i].dev == dev) {
5336                         break;
5337                 }
5338         }
5339
5340         if (i == bus->dev_count)
5341                 return 0;
5342
5343         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5344                           GFP_KERNEL_ACCOUNT);
5345         if (new_bus) {
5346                 memcpy(new_bus, bus, struct_size(bus, range, i));
5347                 new_bus->dev_count--;
5348                 memcpy(new_bus->range + i, bus->range + i + 1,
5349                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5350         }
5351
5352         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5353         synchronize_srcu_expedited(&kvm->srcu);
5354
5355         /* Destroy the old bus _after_ installing the (null) bus. */
5356         if (!new_bus) {
5357                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5358                 for (j = 0; j < bus->dev_count; j++) {
5359                         if (j == i)
5360                                 continue;
5361                         kvm_iodevice_destructor(bus->range[j].dev);
5362                 }
5363         }
5364
5365         kfree(bus);
5366         return new_bus ? 0 : -ENOMEM;
5367 }
5368
5369 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5370                                          gpa_t addr)
5371 {
5372         struct kvm_io_bus *bus;
5373         int dev_idx, srcu_idx;
5374         struct kvm_io_device *iodev = NULL;
5375
5376         srcu_idx = srcu_read_lock(&kvm->srcu);
5377
5378         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5379         if (!bus)
5380                 goto out_unlock;
5381
5382         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5383         if (dev_idx < 0)
5384                 goto out_unlock;
5385
5386         iodev = bus->range[dev_idx].dev;
5387
5388 out_unlock:
5389         srcu_read_unlock(&kvm->srcu, srcu_idx);
5390
5391         return iodev;
5392 }
5393 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5394
5395 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5396                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5397                            const char *fmt)
5398 {
5399         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5400                                           inode->i_private;
5401
5402         /*
5403          * The debugfs files are a reference to the kvm struct which
5404         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5405         * avoids the race between open and the removal of the debugfs directory.
5406          */
5407         if (!kvm_get_kvm_safe(stat_data->kvm))
5408                 return -ENOENT;
5409
5410         if (simple_attr_open(inode, file, get,
5411                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5412                     ? set : NULL,
5413                     fmt)) {
5414                 kvm_put_kvm(stat_data->kvm);
5415                 return -ENOMEM;
5416         }
5417
5418         return 0;
5419 }
5420
5421 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5422 {
5423         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5424                                           inode->i_private;
5425
5426         simple_attr_release(inode, file);
5427         kvm_put_kvm(stat_data->kvm);
5428
5429         return 0;
5430 }
5431
5432 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5433 {
5434         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5435
5436         return 0;
5437 }
5438
5439 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5440 {
5441         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5442
5443         return 0;
5444 }
5445
5446 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5447 {
5448         unsigned long i;
5449         struct kvm_vcpu *vcpu;
5450
5451         *val = 0;
5452
5453         kvm_for_each_vcpu(i, vcpu, kvm)
5454                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5455
5456         return 0;
5457 }
5458
5459 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5460 {
5461         unsigned long i;
5462         struct kvm_vcpu *vcpu;
5463
5464         kvm_for_each_vcpu(i, vcpu, kvm)
5465                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5466
5467         return 0;
5468 }
5469
5470 static int kvm_stat_data_get(void *data, u64 *val)
5471 {
5472         int r = -EFAULT;
5473         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5474
5475         switch (stat_data->kind) {
5476         case KVM_STAT_VM:
5477                 r = kvm_get_stat_per_vm(stat_data->kvm,
5478                                         stat_data->desc->desc.offset, val);
5479                 break;
5480         case KVM_STAT_VCPU:
5481                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5482                                           stat_data->desc->desc.offset, val);
5483                 break;
5484         }
5485
5486         return r;
5487 }
5488
5489 static int kvm_stat_data_clear(void *data, u64 val)
5490 {
5491         int r = -EFAULT;
5492         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5493
5494         if (val)
5495                 return -EINVAL;
5496
5497         switch (stat_data->kind) {
5498         case KVM_STAT_VM:
5499                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5500                                           stat_data->desc->desc.offset);
5501                 break;
5502         case KVM_STAT_VCPU:
5503                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5504                                             stat_data->desc->desc.offset);
5505                 break;
5506         }
5507
5508         return r;
5509 }
5510
5511 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5512 {
5513         __simple_attr_check_format("%llu\n", 0ull);
5514         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5515                                 kvm_stat_data_clear, "%llu\n");
5516 }
5517
5518 static const struct file_operations stat_fops_per_vm = {
5519         .owner = THIS_MODULE,
5520         .open = kvm_stat_data_open,
5521         .release = kvm_debugfs_release,
5522         .read = simple_attr_read,
5523         .write = simple_attr_write,
5524         .llseek = no_llseek,
5525 };
5526
5527 static int vm_stat_get(void *_offset, u64 *val)
5528 {
5529         unsigned offset = (long)_offset;
5530         struct kvm *kvm;
5531         u64 tmp_val;
5532
5533         *val = 0;
5534         mutex_lock(&kvm_lock);
5535         list_for_each_entry(kvm, &vm_list, vm_list) {
5536                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5537                 *val += tmp_val;
5538         }
5539         mutex_unlock(&kvm_lock);
5540         return 0;
5541 }
5542
5543 static int vm_stat_clear(void *_offset, u64 val)
5544 {
5545         unsigned offset = (long)_offset;
5546         struct kvm *kvm;
5547
5548         if (val)
5549                 return -EINVAL;
5550
5551         mutex_lock(&kvm_lock);
5552         list_for_each_entry(kvm, &vm_list, vm_list) {
5553                 kvm_clear_stat_per_vm(kvm, offset);
5554         }
5555         mutex_unlock(&kvm_lock);
5556
5557         return 0;
5558 }
5559
5560 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5561 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5562
5563 static int vcpu_stat_get(void *_offset, u64 *val)
5564 {
5565         unsigned offset = (long)_offset;
5566         struct kvm *kvm;
5567         u64 tmp_val;
5568
5569         *val = 0;
5570         mutex_lock(&kvm_lock);
5571         list_for_each_entry(kvm, &vm_list, vm_list) {
5572                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5573                 *val += tmp_val;
5574         }
5575         mutex_unlock(&kvm_lock);
5576         return 0;
5577 }
5578
5579 static int vcpu_stat_clear(void *_offset, u64 val)
5580 {
5581         unsigned offset = (long)_offset;
5582         struct kvm *kvm;
5583
5584         if (val)
5585                 return -EINVAL;
5586
5587         mutex_lock(&kvm_lock);
5588         list_for_each_entry(kvm, &vm_list, vm_list) {
5589                 kvm_clear_stat_per_vcpu(kvm, offset);
5590         }
5591         mutex_unlock(&kvm_lock);
5592
5593         return 0;
5594 }
5595
5596 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5597                         "%llu\n");
5598 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5599
5600 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5601 {
5602         struct kobj_uevent_env *env;
5603         unsigned long long created, active;
5604
5605         if (!kvm_dev.this_device || !kvm)
5606                 return;
5607
5608         mutex_lock(&kvm_lock);
5609         if (type == KVM_EVENT_CREATE_VM) {
5610                 kvm_createvm_count++;
5611                 kvm_active_vms++;
5612         } else if (type == KVM_EVENT_DESTROY_VM) {
5613                 kvm_active_vms--;
5614         }
5615         created = kvm_createvm_count;
5616         active = kvm_active_vms;
5617         mutex_unlock(&kvm_lock);
5618
5619         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5620         if (!env)
5621                 return;
5622
5623         add_uevent_var(env, "CREATED=%llu", created);
5624         add_uevent_var(env, "COUNT=%llu", active);
5625
5626         if (type == KVM_EVENT_CREATE_VM) {
5627                 add_uevent_var(env, "EVENT=create");
5628                 kvm->userspace_pid = task_pid_nr(current);
5629         } else if (type == KVM_EVENT_DESTROY_VM) {
5630                 add_uevent_var(env, "EVENT=destroy");
5631         }
5632         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5633
5634         if (!IS_ERR(kvm->debugfs_dentry)) {
5635                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5636
5637                 if (p) {
5638                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5639                         if (!IS_ERR(tmp))
5640                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5641                         kfree(p);
5642                 }
5643         }
5644         /* no need for checks, since we are adding at most only 5 keys */
5645         env->envp[env->envp_idx++] = NULL;
5646         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5647         kfree(env);
5648 }
5649
5650 static void kvm_init_debug(void)
5651 {
5652         const struct file_operations *fops;
5653         const struct _kvm_stats_desc *pdesc;
5654         int i;
5655
5656         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5657
5658         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5659                 pdesc = &kvm_vm_stats_desc[i];
5660                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5661                         fops = &vm_stat_fops;
5662                 else
5663                         fops = &vm_stat_readonly_fops;
5664                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5665                                 kvm_debugfs_dir,
5666                                 (void *)(long)pdesc->desc.offset, fops);
5667         }
5668
5669         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5670                 pdesc = &kvm_vcpu_stats_desc[i];
5671                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5672                         fops = &vcpu_stat_fops;
5673                 else
5674                         fops = &vcpu_stat_readonly_fops;
5675                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5676                                 kvm_debugfs_dir,
5677                                 (void *)(long)pdesc->desc.offset, fops);
5678         }
5679 }
5680
5681 static int kvm_suspend(void)
5682 {
5683         if (kvm_usage_count)
5684                 hardware_disable_nolock(NULL);
5685         return 0;
5686 }
5687
5688 static void kvm_resume(void)
5689 {
5690         if (kvm_usage_count) {
5691                 lockdep_assert_not_held(&kvm_count_lock);
5692                 hardware_enable_nolock(NULL);
5693         }
5694 }
5695
5696 static struct syscore_ops kvm_syscore_ops = {
5697         .suspend = kvm_suspend,
5698         .resume = kvm_resume,
5699 };
5700
5701 static inline
5702 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5703 {
5704         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5705 }
5706
5707 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5708 {
5709         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5710
5711         WRITE_ONCE(vcpu->preempted, false);
5712         WRITE_ONCE(vcpu->ready, false);
5713
5714         __this_cpu_write(kvm_running_vcpu, vcpu);
5715         kvm_arch_sched_in(vcpu, cpu);
5716         kvm_arch_vcpu_load(vcpu, cpu);
5717 }
5718
5719 static void kvm_sched_out(struct preempt_notifier *pn,
5720                           struct task_struct *next)
5721 {
5722         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5723
5724         if (current->on_rq) {
5725                 WRITE_ONCE(vcpu->preempted, true);
5726                 WRITE_ONCE(vcpu->ready, true);
5727         }
5728         kvm_arch_vcpu_put(vcpu);
5729         __this_cpu_write(kvm_running_vcpu, NULL);
5730 }
5731
5732 /**
5733  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5734  *
5735  * We can disable preemption locally around accessing the per-CPU variable,
5736  * and use the resolved vcpu pointer after enabling preemption again,
5737  * because even if the current thread is migrated to another CPU, reading
5738  * the per-CPU value later will give us the same value as we update the
5739  * per-CPU variable in the preempt notifier handlers.
5740  */
5741 struct kvm_vcpu *kvm_get_running_vcpu(void)
5742 {
5743         struct kvm_vcpu *vcpu;
5744
5745         preempt_disable();
5746         vcpu = __this_cpu_read(kvm_running_vcpu);
5747         preempt_enable();
5748
5749         return vcpu;
5750 }
5751 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5752
5753 /**
5754  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5755  */
5756 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5757 {
5758         return &kvm_running_vcpu;
5759 }
5760
5761 #ifdef CONFIG_GUEST_PERF_EVENTS
5762 static unsigned int kvm_guest_state(void)
5763 {
5764         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5765         unsigned int state;
5766
5767         if (!kvm_arch_pmi_in_guest(vcpu))
5768                 return 0;
5769
5770         state = PERF_GUEST_ACTIVE;
5771         if (!kvm_arch_vcpu_in_kernel(vcpu))
5772                 state |= PERF_GUEST_USER;
5773
5774         return state;
5775 }
5776
5777 static unsigned long kvm_guest_get_ip(void)
5778 {
5779         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5780
5781         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5782         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5783                 return 0;
5784
5785         return kvm_arch_vcpu_get_ip(vcpu);
5786 }
5787
5788 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5789         .state                  = kvm_guest_state,
5790         .get_ip                 = kvm_guest_get_ip,
5791         .handle_intel_pt_intr   = NULL,
5792 };
5793
5794 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5795 {
5796         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5797         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5798 }
5799 void kvm_unregister_perf_callbacks(void)
5800 {
5801         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5802 }
5803 #endif
5804
5805 struct kvm_cpu_compat_check {
5806         void *opaque;
5807         int *ret;
5808 };
5809
5810 static void check_processor_compat(void *data)
5811 {
5812         struct kvm_cpu_compat_check *c = data;
5813
5814         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5815 }
5816
5817 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5818                   struct module *module)
5819 {
5820         struct kvm_cpu_compat_check c;
5821         int r;
5822         int cpu;
5823
5824         r = kvm_arch_init(opaque);
5825         if (r)
5826                 goto out_fail;
5827
5828         /*
5829          * kvm_arch_init makes sure there's at most one caller
5830          * for architectures that support multiple implementations,
5831          * like intel and amd on x86.
5832          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5833          * conflicts in case kvm is already setup for another implementation.
5834          */
5835         r = kvm_irqfd_init();
5836         if (r)
5837                 goto out_irqfd;
5838
5839         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5840                 r = -ENOMEM;
5841                 goto out_free_0;
5842         }
5843
5844         r = kvm_arch_hardware_setup(opaque);
5845         if (r < 0)
5846                 goto out_free_1;
5847
5848         c.ret = &r;
5849         c.opaque = opaque;
5850         for_each_online_cpu(cpu) {
5851                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5852                 if (r < 0)
5853                         goto out_free_2;
5854         }
5855
5856         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5857                                       kvm_starting_cpu, kvm_dying_cpu);
5858         if (r)
5859                 goto out_free_2;
5860         register_reboot_notifier(&kvm_reboot_notifier);
5861
5862         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5863         if (!vcpu_align)
5864                 vcpu_align = __alignof__(struct kvm_vcpu);
5865         kvm_vcpu_cache =
5866                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5867                                            SLAB_ACCOUNT,
5868                                            offsetof(struct kvm_vcpu, arch),
5869                                            offsetofend(struct kvm_vcpu, stats_id)
5870                                            - offsetof(struct kvm_vcpu, arch),
5871                                            NULL);
5872         if (!kvm_vcpu_cache) {
5873                 r = -ENOMEM;
5874                 goto out_free_3;
5875         }
5876
5877         for_each_possible_cpu(cpu) {
5878                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5879                                             GFP_KERNEL, cpu_to_node(cpu))) {
5880                         r = -ENOMEM;
5881                         goto out_free_4;
5882                 }
5883         }
5884
5885         r = kvm_async_pf_init();
5886         if (r)
5887                 goto out_free_5;
5888
5889         kvm_chardev_ops.owner = module;
5890
5891         r = misc_register(&kvm_dev);
5892         if (r) {
5893                 pr_err("kvm: misc device register failed\n");
5894                 goto out_unreg;
5895         }
5896
5897         register_syscore_ops(&kvm_syscore_ops);
5898
5899         kvm_preempt_ops.sched_in = kvm_sched_in;
5900         kvm_preempt_ops.sched_out = kvm_sched_out;
5901
5902         kvm_init_debug();
5903
5904         r = kvm_vfio_ops_init();
5905         WARN_ON(r);
5906
5907         return 0;
5908
5909 out_unreg:
5910         kvm_async_pf_deinit();
5911 out_free_5:
5912         for_each_possible_cpu(cpu)
5913                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5914 out_free_4:
5915         kmem_cache_destroy(kvm_vcpu_cache);
5916 out_free_3:
5917         unregister_reboot_notifier(&kvm_reboot_notifier);
5918         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5919 out_free_2:
5920         kvm_arch_hardware_unsetup();
5921 out_free_1:
5922         free_cpumask_var(cpus_hardware_enabled);
5923 out_free_0:
5924         kvm_irqfd_exit();
5925 out_irqfd:
5926         kvm_arch_exit();
5927 out_fail:
5928         return r;
5929 }
5930 EXPORT_SYMBOL_GPL(kvm_init);
5931
5932 void kvm_exit(void)
5933 {
5934         int cpu;
5935
5936         debugfs_remove_recursive(kvm_debugfs_dir);
5937         misc_deregister(&kvm_dev);
5938         for_each_possible_cpu(cpu)
5939                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
5940         kmem_cache_destroy(kvm_vcpu_cache);
5941         kvm_async_pf_deinit();
5942         unregister_syscore_ops(&kvm_syscore_ops);
5943         unregister_reboot_notifier(&kvm_reboot_notifier);
5944         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5945         on_each_cpu(hardware_disable_nolock, NULL, 1);
5946         kvm_arch_hardware_unsetup();
5947         kvm_arch_exit();
5948         kvm_irqfd_exit();
5949         free_cpumask_var(cpus_hardware_enabled);
5950         kvm_vfio_ops_exit();
5951 }
5952 EXPORT_SYMBOL_GPL(kvm_exit);
5953
5954 struct kvm_vm_worker_thread_context {
5955         struct kvm *kvm;
5956         struct task_struct *parent;
5957         struct completion init_done;
5958         kvm_vm_thread_fn_t thread_fn;
5959         uintptr_t data;
5960         int err;
5961 };
5962
5963 static int kvm_vm_worker_thread(void *context)
5964 {
5965         /*
5966          * The init_context is allocated on the stack of the parent thread, so
5967          * we have to locally copy anything that is needed beyond initialization
5968          */
5969         struct kvm_vm_worker_thread_context *init_context = context;
5970         struct task_struct *parent;
5971         struct kvm *kvm = init_context->kvm;
5972         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5973         uintptr_t data = init_context->data;
5974         int err;
5975
5976         err = kthread_park(current);
5977         /* kthread_park(current) is never supposed to return an error */
5978         WARN_ON(err != 0);
5979         if (err)
5980                 goto init_complete;
5981
5982         err = cgroup_attach_task_all(init_context->parent, current);
5983         if (err) {
5984                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5985                         __func__, err);
5986                 goto init_complete;
5987         }
5988
5989         set_user_nice(current, task_nice(init_context->parent));
5990
5991 init_complete:
5992         init_context->err = err;
5993         complete(&init_context->init_done);
5994         init_context = NULL;
5995
5996         if (err)
5997                 goto out;
5998
5999         /* Wait to be woken up by the spawner before proceeding. */
6000         kthread_parkme();
6001
6002         if (!kthread_should_stop())
6003                 err = thread_fn(kvm, data);
6004
6005 out:
6006         /*
6007          * Move kthread back to its original cgroup to prevent it lingering in
6008          * the cgroup of the VM process, after the latter finishes its
6009          * execution.
6010          *
6011          * kthread_stop() waits on the 'exited' completion condition which is
6012          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6013          * kthread is removed from the cgroup in the cgroup_exit() which is
6014          * called after the exit_mm(). This causes the kthread_stop() to return
6015          * before the kthread actually quits the cgroup.
6016          */
6017         rcu_read_lock();
6018         parent = rcu_dereference(current->real_parent);
6019         get_task_struct(parent);
6020         rcu_read_unlock();
6021         cgroup_attach_task_all(parent, current);
6022         put_task_struct(parent);
6023
6024         return err;
6025 }
6026
6027 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6028                                 uintptr_t data, const char *name,
6029                                 struct task_struct **thread_ptr)
6030 {
6031         struct kvm_vm_worker_thread_context init_context = {};
6032         struct task_struct *thread;
6033
6034         *thread_ptr = NULL;
6035         init_context.kvm = kvm;
6036         init_context.parent = current;
6037         init_context.thread_fn = thread_fn;
6038         init_context.data = data;
6039         init_completion(&init_context.init_done);
6040
6041         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6042                              "%s-%d", name, task_pid_nr(current));
6043         if (IS_ERR(thread))
6044                 return PTR_ERR(thread);
6045
6046         /* kthread_run is never supposed to return NULL */
6047         WARN_ON(thread == NULL);
6048
6049         wait_for_completion(&init_context.init_done);
6050
6051         if (!init_context.err)
6052                 *thread_ptr = thread;
6053
6054         return init_context.err;
6055 }