305956310174186d56b0dc5c7661c694d9b5f3a4
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "mmu_lock.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 #include <linux/kvm_dirty_ring.h>
69
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
72
73 MODULE_AUTHOR("Qumranet");
74 MODULE_LICENSE("GPL");
75
76 /* Architectures should define their poll value according to the halt latency */
77 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
78 module_param(halt_poll_ns, uint, 0644);
79 EXPORT_SYMBOL_GPL(halt_poll_ns);
80
81 /* Default doubles per-vcpu halt_poll_ns. */
82 unsigned int halt_poll_ns_grow = 2;
83 module_param(halt_poll_ns_grow, uint, 0644);
84 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
85
86 /* The start value to grow halt_poll_ns from */
87 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
88 module_param(halt_poll_ns_grow_start, uint, 0644);
89 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
90
91 /* Default resets per-vcpu halt_poll_ns . */
92 unsigned int halt_poll_ns_shrink;
93 module_param(halt_poll_ns_shrink, uint, 0644);
94 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
95
96 /*
97  * Ordering of locks:
98  *
99  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
100  */
101
102 DEFINE_MUTEX(kvm_lock);
103 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
104 LIST_HEAD(vm_list);
105
106 static cpumask_var_t cpus_hardware_enabled;
107 static int kvm_usage_count;
108 static atomic_t hardware_enable_failed;
109
110 static struct kmem_cache *kvm_vcpu_cache;
111
112 static __read_mostly struct preempt_ops kvm_preempt_ops;
113 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
114
115 struct dentry *kvm_debugfs_dir;
116 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
117
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                                                    unsigned long start, unsigned long end)
160 {
161 }
162
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165         /*
166          * The metadata used by is_zone_device_page() to determine whether or
167          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168          * the device has been pinned, e.g. by get_user_pages().  WARN if the
169          * page_count() is zero to help detect bad usage of this helper.
170          */
171         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172                 return false;
173
174         return is_zone_device_page(pfn_to_page(pfn));
175 }
176
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179         /*
180          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181          * perspective they are "normal" pages, albeit with slightly different
182          * usage rules.
183          */
184         if (pfn_valid(pfn))
185                 return PageReserved(pfn_to_page(pfn)) &&
186                        !is_zero_pfn(pfn) &&
187                        !kvm_is_zone_device_pfn(pfn);
188
189         return true;
190 }
191
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194         struct page *page = pfn_to_page(pfn);
195
196         if (!PageTransCompoundMap(page))
197                 return false;
198
199         return is_transparent_hugepage(compound_head(page));
200 }
201
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207         int cpu = get_cpu();
208
209         __this_cpu_write(kvm_running_vcpu, vcpu);
210         preempt_notifier_register(&vcpu->preempt_notifier);
211         kvm_arch_vcpu_load(vcpu, cpu);
212         put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218         preempt_disable();
219         kvm_arch_vcpu_put(vcpu);
220         preempt_notifier_unregister(&vcpu->preempt_notifier);
221         __this_cpu_write(kvm_running_vcpu, NULL);
222         preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230
231         /*
232          * We need to wait for the VCPU to reenable interrupts and get out of
233          * READING_SHADOW_PAGE_TABLES mode.
234          */
235         if (req & KVM_REQUEST_WAIT)
236                 return mode != OUTSIDE_GUEST_MODE;
237
238         /*
239          * Need to kick a running VCPU, but otherwise there is nothing to do.
240          */
241         return mode == IN_GUEST_MODE;
242 }
243
244 static void ack_flush(void *_completed)
245 {
246 }
247
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250         if (unlikely(!cpus))
251                 cpus = cpu_online_mask;
252
253         if (cpumask_empty(cpus))
254                 return false;
255
256         smp_call_function_many(cpus, ack_flush, NULL, wait);
257         return true;
258 }
259
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261                                  struct kvm_vcpu *except,
262                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264         int i, cpu, me;
265         struct kvm_vcpu *vcpu;
266         bool called;
267
268         me = get_cpu();
269
270         kvm_for_each_vcpu(i, vcpu, kvm) {
271                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272                     vcpu == except)
273                         continue;
274
275                 kvm_make_request(req, vcpu);
276                 cpu = vcpu->cpu;
277
278                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279                         continue;
280
281                 if (tmp != NULL && cpu != -1 && cpu != me &&
282                     kvm_request_needs_ipi(vcpu, req))
283                         __cpumask_set_cpu(cpu, tmp);
284         }
285
286         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287         put_cpu();
288
289         return called;
290 }
291
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293                                       struct kvm_vcpu *except)
294 {
295         cpumask_var_t cpus;
296         bool called;
297
298         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
300         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301
302         free_cpumask_var(cpus);
303         return called;
304 }
305
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308         return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
311
312 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
313 void kvm_flush_remote_tlbs(struct kvm *kvm)
314 {
315         /*
316          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
317          * kvm_make_all_cpus_request.
318          */
319         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
320
321         ++kvm->stat.generic.remote_tlb_flush_requests;
322         /*
323          * We want to publish modifications to the page tables before reading
324          * mode. Pairs with a memory barrier in arch-specific code.
325          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
326          * and smp_mb in walk_shadow_page_lockless_begin/end.
327          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
328          *
329          * There is already an smp_mb__after_atomic() before
330          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
331          * barrier here.
332          */
333         if (!kvm_arch_flush_remote_tlb(kvm)
334             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
335                 ++kvm->stat.generic.remote_tlb_flush;
336         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
337 }
338 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
339 #endif
340
341 void kvm_reload_remote_mmus(struct kvm *kvm)
342 {
343         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
344 }
345
346 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
347 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
348                                                gfp_t gfp_flags)
349 {
350         gfp_flags |= mc->gfp_zero;
351
352         if (mc->kmem_cache)
353                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
354         else
355                 return (void *)__get_free_page(gfp_flags);
356 }
357
358 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
359 {
360         void *obj;
361
362         if (mc->nobjs >= min)
363                 return 0;
364         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
365                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
366                 if (!obj)
367                         return mc->nobjs >= min ? 0 : -ENOMEM;
368                 mc->objects[mc->nobjs++] = obj;
369         }
370         return 0;
371 }
372
373 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
374 {
375         return mc->nobjs;
376 }
377
378 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
379 {
380         while (mc->nobjs) {
381                 if (mc->kmem_cache)
382                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
383                 else
384                         free_page((unsigned long)mc->objects[--mc->nobjs]);
385         }
386 }
387
388 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
389 {
390         void *p;
391
392         if (WARN_ON(!mc->nobjs))
393                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
394         else
395                 p = mc->objects[--mc->nobjs];
396         BUG_ON(!p);
397         return p;
398 }
399 #endif
400
401 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
402 {
403         mutex_init(&vcpu->mutex);
404         vcpu->cpu = -1;
405         vcpu->kvm = kvm;
406         vcpu->vcpu_id = id;
407         vcpu->pid = NULL;
408         rcuwait_init(&vcpu->wait);
409         kvm_async_pf_vcpu_init(vcpu);
410
411         vcpu->pre_pcpu = -1;
412         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
413
414         kvm_vcpu_set_in_spin_loop(vcpu, false);
415         kvm_vcpu_set_dy_eligible(vcpu, false);
416         vcpu->preempted = false;
417         vcpu->ready = false;
418         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
419         vcpu->last_used_slot = 0;
420 }
421
422 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
423 {
424         kvm_dirty_ring_free(&vcpu->dirty_ring);
425         kvm_arch_vcpu_destroy(vcpu);
426
427         /*
428          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
429          * the vcpu->pid pointer, and at destruction time all file descriptors
430          * are already gone.
431          */
432         put_pid(rcu_dereference_protected(vcpu->pid, 1));
433
434         free_page((unsigned long)vcpu->run);
435         kmem_cache_free(kvm_vcpu_cache, vcpu);
436 }
437 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
438
439 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
440 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
441 {
442         return container_of(mn, struct kvm, mmu_notifier);
443 }
444
445 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
446                                               struct mm_struct *mm,
447                                               unsigned long start, unsigned long end)
448 {
449         struct kvm *kvm = mmu_notifier_to_kvm(mn);
450         int idx;
451
452         idx = srcu_read_lock(&kvm->srcu);
453         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
454         srcu_read_unlock(&kvm->srcu, idx);
455 }
456
457 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
458
459 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
460                              unsigned long end);
461
462 struct kvm_hva_range {
463         unsigned long start;
464         unsigned long end;
465         pte_t pte;
466         hva_handler_t handler;
467         on_lock_fn_t on_lock;
468         bool flush_on_ret;
469         bool may_block;
470 };
471
472 /*
473  * Use a dedicated stub instead of NULL to indicate that there is no callback
474  * function/handler.  The compiler technically can't guarantee that a real
475  * function will have a non-zero address, and so it will generate code to
476  * check for !NULL, whereas comparing against a stub will be elided at compile
477  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
478  */
479 static void kvm_null_fn(void)
480 {
481
482 }
483 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
484
485 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
486                                                   const struct kvm_hva_range *range)
487 {
488         bool ret = false, locked = false;
489         struct kvm_gfn_range gfn_range;
490         struct kvm_memory_slot *slot;
491         struct kvm_memslots *slots;
492         int i, idx;
493
494         /* A null handler is allowed if and only if on_lock() is provided. */
495         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
496                          IS_KVM_NULL_FN(range->handler)))
497                 return 0;
498
499         idx = srcu_read_lock(&kvm->srcu);
500
501         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
502                 slots = __kvm_memslots(kvm, i);
503                 kvm_for_each_memslot(slot, slots) {
504                         unsigned long hva_start, hva_end;
505
506                         hva_start = max(range->start, slot->userspace_addr);
507                         hva_end = min(range->end, slot->userspace_addr +
508                                                   (slot->npages << PAGE_SHIFT));
509                         if (hva_start >= hva_end)
510                                 continue;
511
512                         /*
513                          * To optimize for the likely case where the address
514                          * range is covered by zero or one memslots, don't
515                          * bother making these conditional (to avoid writes on
516                          * the second or later invocation of the handler).
517                          */
518                         gfn_range.pte = range->pte;
519                         gfn_range.may_block = range->may_block;
520
521                         /*
522                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
523                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
524                          */
525                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
526                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
527                         gfn_range.slot = slot;
528
529                         if (!locked) {
530                                 locked = true;
531                                 KVM_MMU_LOCK(kvm);
532                                 if (!IS_KVM_NULL_FN(range->on_lock))
533                                         range->on_lock(kvm, range->start, range->end);
534                                 if (IS_KVM_NULL_FN(range->handler))
535                                         break;
536                         }
537                         ret |= range->handler(kvm, &gfn_range);
538                 }
539         }
540
541         if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
542                 kvm_flush_remote_tlbs(kvm);
543
544         if (locked)
545                 KVM_MMU_UNLOCK(kvm);
546
547         srcu_read_unlock(&kvm->srcu, idx);
548
549         /* The notifiers are averse to booleans. :-( */
550         return (int)ret;
551 }
552
553 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
554                                                 unsigned long start,
555                                                 unsigned long end,
556                                                 pte_t pte,
557                                                 hva_handler_t handler)
558 {
559         struct kvm *kvm = mmu_notifier_to_kvm(mn);
560         const struct kvm_hva_range range = {
561                 .start          = start,
562                 .end            = end,
563                 .pte            = pte,
564                 .handler        = handler,
565                 .on_lock        = (void *)kvm_null_fn,
566                 .flush_on_ret   = true,
567                 .may_block      = false,
568         };
569
570         return __kvm_handle_hva_range(kvm, &range);
571 }
572
573 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
574                                                          unsigned long start,
575                                                          unsigned long end,
576                                                          hva_handler_t handler)
577 {
578         struct kvm *kvm = mmu_notifier_to_kvm(mn);
579         const struct kvm_hva_range range = {
580                 .start          = start,
581                 .end            = end,
582                 .pte            = __pte(0),
583                 .handler        = handler,
584                 .on_lock        = (void *)kvm_null_fn,
585                 .flush_on_ret   = false,
586                 .may_block      = false,
587         };
588
589         return __kvm_handle_hva_range(kvm, &range);
590 }
591 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
592                                         struct mm_struct *mm,
593                                         unsigned long address,
594                                         pte_t pte)
595 {
596         struct kvm *kvm = mmu_notifier_to_kvm(mn);
597
598         trace_kvm_set_spte_hva(address);
599
600         /*
601          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
602          * If mmu_notifier_count is zero, then no in-progress invalidations,
603          * including this one, found a relevant memslot at start(); rechecking
604          * memslots here is unnecessary.  Note, a false positive (count elevated
605          * by a different invalidation) is sub-optimal but functionally ok.
606          */
607         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
608         if (!READ_ONCE(kvm->mmu_notifier_count))
609                 return;
610
611         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
612 }
613
614 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
615                                    unsigned long end)
616 {
617         /*
618          * The count increase must become visible at unlock time as no
619          * spte can be established without taking the mmu_lock and
620          * count is also read inside the mmu_lock critical section.
621          */
622         kvm->mmu_notifier_count++;
623         if (likely(kvm->mmu_notifier_count == 1)) {
624                 kvm->mmu_notifier_range_start = start;
625                 kvm->mmu_notifier_range_end = end;
626         } else {
627                 /*
628                  * Fully tracking multiple concurrent ranges has dimishing
629                  * returns. Keep things simple and just find the minimal range
630                  * which includes the current and new ranges. As there won't be
631                  * enough information to subtract a range after its invalidate
632                  * completes, any ranges invalidated concurrently will
633                  * accumulate and persist until all outstanding invalidates
634                  * complete.
635                  */
636                 kvm->mmu_notifier_range_start =
637                         min(kvm->mmu_notifier_range_start, start);
638                 kvm->mmu_notifier_range_end =
639                         max(kvm->mmu_notifier_range_end, end);
640         }
641 }
642
643 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
644                                         const struct mmu_notifier_range *range)
645 {
646         struct kvm *kvm = mmu_notifier_to_kvm(mn);
647         const struct kvm_hva_range hva_range = {
648                 .start          = range->start,
649                 .end            = range->end,
650                 .pte            = __pte(0),
651                 .handler        = kvm_unmap_gfn_range,
652                 .on_lock        = kvm_inc_notifier_count,
653                 .flush_on_ret   = true,
654                 .may_block      = mmu_notifier_range_blockable(range),
655         };
656
657         trace_kvm_unmap_hva_range(range->start, range->end);
658
659         /*
660          * Prevent memslot modification between range_start() and range_end()
661          * so that conditionally locking provides the same result in both
662          * functions.  Without that guarantee, the mmu_notifier_count
663          * adjustments will be imbalanced.
664          *
665          * Pairs with the decrement in range_end().
666          */
667         spin_lock(&kvm->mn_invalidate_lock);
668         kvm->mn_active_invalidate_count++;
669         spin_unlock(&kvm->mn_invalidate_lock);
670
671         __kvm_handle_hva_range(kvm, &hva_range);
672
673         return 0;
674 }
675
676 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
677                                    unsigned long end)
678 {
679         /*
680          * This sequence increase will notify the kvm page fault that
681          * the page that is going to be mapped in the spte could have
682          * been freed.
683          */
684         kvm->mmu_notifier_seq++;
685         smp_wmb();
686         /*
687          * The above sequence increase must be visible before the
688          * below count decrease, which is ensured by the smp_wmb above
689          * in conjunction with the smp_rmb in mmu_notifier_retry().
690          */
691         kvm->mmu_notifier_count--;
692 }
693
694 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
695                                         const struct mmu_notifier_range *range)
696 {
697         struct kvm *kvm = mmu_notifier_to_kvm(mn);
698         const struct kvm_hva_range hva_range = {
699                 .start          = range->start,
700                 .end            = range->end,
701                 .pte            = __pte(0),
702                 .handler        = (void *)kvm_null_fn,
703                 .on_lock        = kvm_dec_notifier_count,
704                 .flush_on_ret   = false,
705                 .may_block      = mmu_notifier_range_blockable(range),
706         };
707         bool wake;
708
709         __kvm_handle_hva_range(kvm, &hva_range);
710
711         /* Pairs with the increment in range_start(). */
712         spin_lock(&kvm->mn_invalidate_lock);
713         wake = (--kvm->mn_active_invalidate_count == 0);
714         spin_unlock(&kvm->mn_invalidate_lock);
715
716         /*
717          * There can only be one waiter, since the wait happens under
718          * slots_lock.
719          */
720         if (wake)
721                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
722
723         BUG_ON(kvm->mmu_notifier_count < 0);
724 }
725
726 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
727                                               struct mm_struct *mm,
728                                               unsigned long start,
729                                               unsigned long end)
730 {
731         trace_kvm_age_hva(start, end);
732
733         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
734 }
735
736 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
737                                         struct mm_struct *mm,
738                                         unsigned long start,
739                                         unsigned long end)
740 {
741         trace_kvm_age_hva(start, end);
742
743         /*
744          * Even though we do not flush TLB, this will still adversely
745          * affect performance on pre-Haswell Intel EPT, where there is
746          * no EPT Access Bit to clear so that we have to tear down EPT
747          * tables instead. If we find this unacceptable, we can always
748          * add a parameter to kvm_age_hva so that it effectively doesn't
749          * do anything on clear_young.
750          *
751          * Also note that currently we never issue secondary TLB flushes
752          * from clear_young, leaving this job up to the regular system
753          * cadence. If we find this inaccurate, we might come up with a
754          * more sophisticated heuristic later.
755          */
756         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
757 }
758
759 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
760                                        struct mm_struct *mm,
761                                        unsigned long address)
762 {
763         trace_kvm_test_age_hva(address);
764
765         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
766                                              kvm_test_age_gfn);
767 }
768
769 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
770                                      struct mm_struct *mm)
771 {
772         struct kvm *kvm = mmu_notifier_to_kvm(mn);
773         int idx;
774
775         idx = srcu_read_lock(&kvm->srcu);
776         kvm_arch_flush_shadow_all(kvm);
777         srcu_read_unlock(&kvm->srcu, idx);
778 }
779
780 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
781         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
782         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
783         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
784         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
785         .clear_young            = kvm_mmu_notifier_clear_young,
786         .test_young             = kvm_mmu_notifier_test_young,
787         .change_pte             = kvm_mmu_notifier_change_pte,
788         .release                = kvm_mmu_notifier_release,
789 };
790
791 static int kvm_init_mmu_notifier(struct kvm *kvm)
792 {
793         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
794         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
795 }
796
797 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
798
799 static int kvm_init_mmu_notifier(struct kvm *kvm)
800 {
801         return 0;
802 }
803
804 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
805
806 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
807 static int kvm_pm_notifier_call(struct notifier_block *bl,
808                                 unsigned long state,
809                                 void *unused)
810 {
811         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
812
813         return kvm_arch_pm_notifier(kvm, state);
814 }
815
816 static void kvm_init_pm_notifier(struct kvm *kvm)
817 {
818         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
819         /* Suspend KVM before we suspend ftrace, RCU, etc. */
820         kvm->pm_notifier.priority = INT_MAX;
821         register_pm_notifier(&kvm->pm_notifier);
822 }
823
824 static void kvm_destroy_pm_notifier(struct kvm *kvm)
825 {
826         unregister_pm_notifier(&kvm->pm_notifier);
827 }
828 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
829 static void kvm_init_pm_notifier(struct kvm *kvm)
830 {
831 }
832
833 static void kvm_destroy_pm_notifier(struct kvm *kvm)
834 {
835 }
836 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
837
838 static struct kvm_memslots *kvm_alloc_memslots(void)
839 {
840         int i;
841         struct kvm_memslots *slots;
842
843         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
844         if (!slots)
845                 return NULL;
846
847         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
848                 slots->id_to_index[i] = -1;
849
850         return slots;
851 }
852
853 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
854 {
855         if (!memslot->dirty_bitmap)
856                 return;
857
858         kvfree(memslot->dirty_bitmap);
859         memslot->dirty_bitmap = NULL;
860 }
861
862 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
863 {
864         kvm_destroy_dirty_bitmap(slot);
865
866         kvm_arch_free_memslot(kvm, slot);
867
868         slot->flags = 0;
869         slot->npages = 0;
870 }
871
872 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
873 {
874         struct kvm_memory_slot *memslot;
875
876         if (!slots)
877                 return;
878
879         kvm_for_each_memslot(memslot, slots)
880                 kvm_free_memslot(kvm, memslot);
881
882         kvfree(slots);
883 }
884
885 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
886 {
887         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
888         case KVM_STATS_TYPE_INSTANT:
889                 return 0444;
890         case KVM_STATS_TYPE_CUMULATIVE:
891         case KVM_STATS_TYPE_PEAK:
892         default:
893                 return 0644;
894         }
895 }
896
897
898 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
899 {
900         int i;
901         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
902                                       kvm_vcpu_stats_header.num_desc;
903
904         if (!kvm->debugfs_dentry)
905                 return;
906
907         debugfs_remove_recursive(kvm->debugfs_dentry);
908
909         if (kvm->debugfs_stat_data) {
910                 for (i = 0; i < kvm_debugfs_num_entries; i++)
911                         kfree(kvm->debugfs_stat_data[i]);
912                 kfree(kvm->debugfs_stat_data);
913         }
914 }
915
916 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
917 {
918         static DEFINE_MUTEX(kvm_debugfs_lock);
919         struct dentry *dent;
920         char dir_name[ITOA_MAX_LEN * 2];
921         struct kvm_stat_data *stat_data;
922         const struct _kvm_stats_desc *pdesc;
923         int i, ret;
924         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
925                                       kvm_vcpu_stats_header.num_desc;
926
927         if (!debugfs_initialized())
928                 return 0;
929
930         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
931         mutex_lock(&kvm_debugfs_lock);
932         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
933         if (dent) {
934                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
935                 dput(dent);
936                 mutex_unlock(&kvm_debugfs_lock);
937                 return 0;
938         }
939         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
940         mutex_unlock(&kvm_debugfs_lock);
941         if (IS_ERR(dent))
942                 return 0;
943
944         kvm->debugfs_dentry = dent;
945         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
946                                          sizeof(*kvm->debugfs_stat_data),
947                                          GFP_KERNEL_ACCOUNT);
948         if (!kvm->debugfs_stat_data)
949                 return -ENOMEM;
950
951         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
952                 pdesc = &kvm_vm_stats_desc[i];
953                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
954                 if (!stat_data)
955                         return -ENOMEM;
956
957                 stat_data->kvm = kvm;
958                 stat_data->desc = pdesc;
959                 stat_data->kind = KVM_STAT_VM;
960                 kvm->debugfs_stat_data[i] = stat_data;
961                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
962                                     kvm->debugfs_dentry, stat_data,
963                                     &stat_fops_per_vm);
964         }
965
966         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
967                 pdesc = &kvm_vcpu_stats_desc[i];
968                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
969                 if (!stat_data)
970                         return -ENOMEM;
971
972                 stat_data->kvm = kvm;
973                 stat_data->desc = pdesc;
974                 stat_data->kind = KVM_STAT_VCPU;
975                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
976                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
977                                     kvm->debugfs_dentry, stat_data,
978                                     &stat_fops_per_vm);
979         }
980
981         ret = kvm_arch_create_vm_debugfs(kvm);
982         if (ret) {
983                 kvm_destroy_vm_debugfs(kvm);
984                 return i;
985         }
986
987         return 0;
988 }
989
990 /*
991  * Called after the VM is otherwise initialized, but just before adding it to
992  * the vm_list.
993  */
994 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
995 {
996         return 0;
997 }
998
999 /*
1000  * Called just after removing the VM from the vm_list, but before doing any
1001  * other destruction.
1002  */
1003 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1004 {
1005 }
1006
1007 /*
1008  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1009  * be setup already, so we can create arch-specific debugfs entries under it.
1010  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1011  * a per-arch destroy interface is not needed.
1012  */
1013 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1014 {
1015         return 0;
1016 }
1017
1018 static struct kvm *kvm_create_vm(unsigned long type)
1019 {
1020         struct kvm *kvm = kvm_arch_alloc_vm();
1021         int r = -ENOMEM;
1022         int i;
1023
1024         if (!kvm)
1025                 return ERR_PTR(-ENOMEM);
1026
1027         KVM_MMU_LOCK_INIT(kvm);
1028         mmgrab(current->mm);
1029         kvm->mm = current->mm;
1030         kvm_eventfd_init(kvm);
1031         mutex_init(&kvm->lock);
1032         mutex_init(&kvm->irq_lock);
1033         mutex_init(&kvm->slots_lock);
1034         mutex_init(&kvm->slots_arch_lock);
1035         spin_lock_init(&kvm->mn_invalidate_lock);
1036         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1037
1038         INIT_LIST_HEAD(&kvm->devices);
1039
1040         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1041
1042         if (init_srcu_struct(&kvm->srcu))
1043                 goto out_err_no_srcu;
1044         if (init_srcu_struct(&kvm->irq_srcu))
1045                 goto out_err_no_irq_srcu;
1046
1047         refcount_set(&kvm->users_count, 1);
1048         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1049                 struct kvm_memslots *slots = kvm_alloc_memslots();
1050
1051                 if (!slots)
1052                         goto out_err_no_arch_destroy_vm;
1053                 /* Generations must be different for each address space. */
1054                 slots->generation = i;
1055                 rcu_assign_pointer(kvm->memslots[i], slots);
1056         }
1057
1058         for (i = 0; i < KVM_NR_BUSES; i++) {
1059                 rcu_assign_pointer(kvm->buses[i],
1060                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1061                 if (!kvm->buses[i])
1062                         goto out_err_no_arch_destroy_vm;
1063         }
1064
1065         kvm->max_halt_poll_ns = halt_poll_ns;
1066
1067         r = kvm_arch_init_vm(kvm, type);
1068         if (r)
1069                 goto out_err_no_arch_destroy_vm;
1070
1071         r = hardware_enable_all();
1072         if (r)
1073                 goto out_err_no_disable;
1074
1075 #ifdef CONFIG_HAVE_KVM_IRQFD
1076         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1077 #endif
1078
1079         r = kvm_init_mmu_notifier(kvm);
1080         if (r)
1081                 goto out_err_no_mmu_notifier;
1082
1083         r = kvm_arch_post_init_vm(kvm);
1084         if (r)
1085                 goto out_err;
1086
1087         mutex_lock(&kvm_lock);
1088         list_add(&kvm->vm_list, &vm_list);
1089         mutex_unlock(&kvm_lock);
1090
1091         preempt_notifier_inc();
1092         kvm_init_pm_notifier(kvm);
1093
1094         return kvm;
1095
1096 out_err:
1097 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1098         if (kvm->mmu_notifier.ops)
1099                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1100 #endif
1101 out_err_no_mmu_notifier:
1102         hardware_disable_all();
1103 out_err_no_disable:
1104         kvm_arch_destroy_vm(kvm);
1105 out_err_no_arch_destroy_vm:
1106         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1107         for (i = 0; i < KVM_NR_BUSES; i++)
1108                 kfree(kvm_get_bus(kvm, i));
1109         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1110                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1111         cleanup_srcu_struct(&kvm->irq_srcu);
1112 out_err_no_irq_srcu:
1113         cleanup_srcu_struct(&kvm->srcu);
1114 out_err_no_srcu:
1115         kvm_arch_free_vm(kvm);
1116         mmdrop(current->mm);
1117         return ERR_PTR(r);
1118 }
1119
1120 static void kvm_destroy_devices(struct kvm *kvm)
1121 {
1122         struct kvm_device *dev, *tmp;
1123
1124         /*
1125          * We do not need to take the kvm->lock here, because nobody else
1126          * has a reference to the struct kvm at this point and therefore
1127          * cannot access the devices list anyhow.
1128          */
1129         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1130                 list_del(&dev->vm_node);
1131                 dev->ops->destroy(dev);
1132         }
1133 }
1134
1135 static void kvm_destroy_vm(struct kvm *kvm)
1136 {
1137         int i;
1138         struct mm_struct *mm = kvm->mm;
1139
1140         kvm_destroy_pm_notifier(kvm);
1141         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1142         kvm_destroy_vm_debugfs(kvm);
1143         kvm_arch_sync_events(kvm);
1144         mutex_lock(&kvm_lock);
1145         list_del(&kvm->vm_list);
1146         mutex_unlock(&kvm_lock);
1147         kvm_arch_pre_destroy_vm(kvm);
1148
1149         kvm_free_irq_routing(kvm);
1150         for (i = 0; i < KVM_NR_BUSES; i++) {
1151                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1152
1153                 if (bus)
1154                         kvm_io_bus_destroy(bus);
1155                 kvm->buses[i] = NULL;
1156         }
1157         kvm_coalesced_mmio_free(kvm);
1158 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1159         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1160         /*
1161          * At this point, pending calls to invalidate_range_start()
1162          * have completed but no more MMU notifiers will run, so
1163          * mn_active_invalidate_count may remain unbalanced.
1164          * No threads can be waiting in install_new_memslots as the
1165          * last reference on KVM has been dropped, but freeing
1166          * memslots would deadlock without this manual intervention.
1167          */
1168         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1169         kvm->mn_active_invalidate_count = 0;
1170 #else
1171         kvm_arch_flush_shadow_all(kvm);
1172 #endif
1173         kvm_arch_destroy_vm(kvm);
1174         kvm_destroy_devices(kvm);
1175         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1176                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1177         cleanup_srcu_struct(&kvm->irq_srcu);
1178         cleanup_srcu_struct(&kvm->srcu);
1179         kvm_arch_free_vm(kvm);
1180         preempt_notifier_dec();
1181         hardware_disable_all();
1182         mmdrop(mm);
1183 }
1184
1185 void kvm_get_kvm(struct kvm *kvm)
1186 {
1187         refcount_inc(&kvm->users_count);
1188 }
1189 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1190
1191 /*
1192  * Make sure the vm is not during destruction, which is a safe version of
1193  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1194  */
1195 bool kvm_get_kvm_safe(struct kvm *kvm)
1196 {
1197         return refcount_inc_not_zero(&kvm->users_count);
1198 }
1199 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1200
1201 void kvm_put_kvm(struct kvm *kvm)
1202 {
1203         if (refcount_dec_and_test(&kvm->users_count))
1204                 kvm_destroy_vm(kvm);
1205 }
1206 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1207
1208 /*
1209  * Used to put a reference that was taken on behalf of an object associated
1210  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1211  * of the new file descriptor fails and the reference cannot be transferred to
1212  * its final owner.  In such cases, the caller is still actively using @kvm and
1213  * will fail miserably if the refcount unexpectedly hits zero.
1214  */
1215 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1216 {
1217         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1220
1221 static int kvm_vm_release(struct inode *inode, struct file *filp)
1222 {
1223         struct kvm *kvm = filp->private_data;
1224
1225         kvm_irqfd_release(kvm);
1226
1227         kvm_put_kvm(kvm);
1228         return 0;
1229 }
1230
1231 /*
1232  * Allocation size is twice as large as the actual dirty bitmap size.
1233  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1234  */
1235 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1236 {
1237         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1238
1239         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1240         if (!memslot->dirty_bitmap)
1241                 return -ENOMEM;
1242
1243         return 0;
1244 }
1245
1246 /*
1247  * Delete a memslot by decrementing the number of used slots and shifting all
1248  * other entries in the array forward one spot.
1249  */
1250 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1251                                       struct kvm_memory_slot *memslot)
1252 {
1253         struct kvm_memory_slot *mslots = slots->memslots;
1254         int i;
1255
1256         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1257                 return;
1258
1259         slots->used_slots--;
1260
1261         if (atomic_read(&slots->last_used_slot) >= slots->used_slots)
1262                 atomic_set(&slots->last_used_slot, 0);
1263
1264         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1265                 mslots[i] = mslots[i + 1];
1266                 slots->id_to_index[mslots[i].id] = i;
1267         }
1268         mslots[i] = *memslot;
1269         slots->id_to_index[memslot->id] = -1;
1270 }
1271
1272 /*
1273  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1274  * the new slot's initial index into the memslots array.
1275  */
1276 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1277 {
1278         return slots->used_slots++;
1279 }
1280
1281 /*
1282  * Move a changed memslot backwards in the array by shifting existing slots
1283  * with a higher GFN toward the front of the array.  Note, the changed memslot
1284  * itself is not preserved in the array, i.e. not swapped at this time, only
1285  * its new index into the array is tracked.  Returns the changed memslot's
1286  * current index into the memslots array.
1287  */
1288 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1289                                             struct kvm_memory_slot *memslot)
1290 {
1291         struct kvm_memory_slot *mslots = slots->memslots;
1292         int i;
1293
1294         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1295             WARN_ON_ONCE(!slots->used_slots))
1296                 return -1;
1297
1298         /*
1299          * Move the target memslot backward in the array by shifting existing
1300          * memslots with a higher GFN (than the target memslot) towards the
1301          * front of the array.
1302          */
1303         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1304                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1305                         break;
1306
1307                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1308
1309                 /* Shift the next memslot forward one and update its index. */
1310                 mslots[i] = mslots[i + 1];
1311                 slots->id_to_index[mslots[i].id] = i;
1312         }
1313         return i;
1314 }
1315
1316 /*
1317  * Move a changed memslot forwards in the array by shifting existing slots with
1318  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1319  * is not preserved in the array, i.e. not swapped at this time, only its new
1320  * index into the array is tracked.  Returns the changed memslot's final index
1321  * into the memslots array.
1322  */
1323 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1324                                            struct kvm_memory_slot *memslot,
1325                                            int start)
1326 {
1327         struct kvm_memory_slot *mslots = slots->memslots;
1328         int i;
1329
1330         for (i = start; i > 0; i--) {
1331                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1332                         break;
1333
1334                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1335
1336                 /* Shift the next memslot back one and update its index. */
1337                 mslots[i] = mslots[i - 1];
1338                 slots->id_to_index[mslots[i].id] = i;
1339         }
1340         return i;
1341 }
1342
1343 /*
1344  * Re-sort memslots based on their GFN to account for an added, deleted, or
1345  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1346  * memslot lookup.
1347  *
1348  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1349  * at memslots[0] has the highest GFN.
1350  *
1351  * The sorting algorithm takes advantage of having initially sorted memslots
1352  * and knowing the position of the changed memslot.  Sorting is also optimized
1353  * by not swapping the updated memslot and instead only shifting other memslots
1354  * and tracking the new index for the update memslot.  Only once its final
1355  * index is known is the updated memslot copied into its position in the array.
1356  *
1357  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1358  *    the end of the array.
1359  *
1360  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1361  *    end of the array and then it forward to its correct location.
1362  *
1363  *  - When moving a memslot, the algorithm first moves the updated memslot
1364  *    backward to handle the scenario where the memslot's GFN was changed to a
1365  *    lower value.  update_memslots() then falls through and runs the same flow
1366  *    as creating a memslot to move the memslot forward to handle the scenario
1367  *    where its GFN was changed to a higher value.
1368  *
1369  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1370  * historical reasons.  Originally, invalid memslots where denoted by having
1371  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1372  * to the end of the array.  The current algorithm uses dedicated logic to
1373  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1374  *
1375  * The other historical motiviation for highest->lowest was to improve the
1376  * performance of memslot lookup.  KVM originally used a linear search starting
1377  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1378  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1379  * single memslot above the 4gb boundary.  As the largest memslot is also the
1380  * most likely to be referenced, sorting it to the front of the array was
1381  * advantageous.  The current binary search starts from the middle of the array
1382  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1383  */
1384 static void update_memslots(struct kvm_memslots *slots,
1385                             struct kvm_memory_slot *memslot,
1386                             enum kvm_mr_change change)
1387 {
1388         int i;
1389
1390         if (change == KVM_MR_DELETE) {
1391                 kvm_memslot_delete(slots, memslot);
1392         } else {
1393                 if (change == KVM_MR_CREATE)
1394                         i = kvm_memslot_insert_back(slots);
1395                 else
1396                         i = kvm_memslot_move_backward(slots, memslot);
1397                 i = kvm_memslot_move_forward(slots, memslot, i);
1398
1399                 /*
1400                  * Copy the memslot to its new position in memslots and update
1401                  * its index accordingly.
1402                  */
1403                 slots->memslots[i] = *memslot;
1404                 slots->id_to_index[memslot->id] = i;
1405         }
1406 }
1407
1408 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1409 {
1410         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1411
1412 #ifdef __KVM_HAVE_READONLY_MEM
1413         valid_flags |= KVM_MEM_READONLY;
1414 #endif
1415
1416         if (mem->flags & ~valid_flags)
1417                 return -EINVAL;
1418
1419         return 0;
1420 }
1421
1422 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1423                 int as_id, struct kvm_memslots *slots)
1424 {
1425         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1426         u64 gen = old_memslots->generation;
1427
1428         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1429         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1430
1431         /*
1432          * Do not store the new memslots while there are invalidations in
1433          * progress, otherwise the locking in invalidate_range_start and
1434          * invalidate_range_end will be unbalanced.
1435          */
1436         spin_lock(&kvm->mn_invalidate_lock);
1437         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1438         while (kvm->mn_active_invalidate_count) {
1439                 set_current_state(TASK_UNINTERRUPTIBLE);
1440                 spin_unlock(&kvm->mn_invalidate_lock);
1441                 schedule();
1442                 spin_lock(&kvm->mn_invalidate_lock);
1443         }
1444         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1445         rcu_assign_pointer(kvm->memslots[as_id], slots);
1446         spin_unlock(&kvm->mn_invalidate_lock);
1447
1448         /*
1449          * Acquired in kvm_set_memslot. Must be released before synchronize
1450          * SRCU below in order to avoid deadlock with another thread
1451          * acquiring the slots_arch_lock in an srcu critical section.
1452          */
1453         mutex_unlock(&kvm->slots_arch_lock);
1454
1455         synchronize_srcu_expedited(&kvm->srcu);
1456
1457         /*
1458          * Increment the new memslot generation a second time, dropping the
1459          * update in-progress flag and incrementing the generation based on
1460          * the number of address spaces.  This provides a unique and easily
1461          * identifiable generation number while the memslots are in flux.
1462          */
1463         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1464
1465         /*
1466          * Generations must be unique even across address spaces.  We do not need
1467          * a global counter for that, instead the generation space is evenly split
1468          * across address spaces.  For example, with two address spaces, address
1469          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1470          * use generations 1, 3, 5, ...
1471          */
1472         gen += KVM_ADDRESS_SPACE_NUM;
1473
1474         kvm_arch_memslots_updated(kvm, gen);
1475
1476         slots->generation = gen;
1477
1478         return old_memslots;
1479 }
1480
1481 static size_t kvm_memslots_size(int slots)
1482 {
1483         return sizeof(struct kvm_memslots) +
1484                (sizeof(struct kvm_memory_slot) * slots);
1485 }
1486
1487 static void kvm_copy_memslots(struct kvm_memslots *to,
1488                               struct kvm_memslots *from)
1489 {
1490         memcpy(to, from, kvm_memslots_size(from->used_slots));
1491 }
1492
1493 /*
1494  * Note, at a minimum, the current number of used slots must be allocated, even
1495  * when deleting a memslot, as we need a complete duplicate of the memslots for
1496  * use when invalidating a memslot prior to deleting/moving the memslot.
1497  */
1498 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1499                                              enum kvm_mr_change change)
1500 {
1501         struct kvm_memslots *slots;
1502         size_t new_size;
1503
1504         if (change == KVM_MR_CREATE)
1505                 new_size = kvm_memslots_size(old->used_slots + 1);
1506         else
1507                 new_size = kvm_memslots_size(old->used_slots);
1508
1509         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1510         if (likely(slots))
1511                 kvm_copy_memslots(slots, old);
1512
1513         return slots;
1514 }
1515
1516 static int kvm_set_memslot(struct kvm *kvm,
1517                            const struct kvm_userspace_memory_region *mem,
1518                            struct kvm_memory_slot *old,
1519                            struct kvm_memory_slot *new, int as_id,
1520                            enum kvm_mr_change change)
1521 {
1522         struct kvm_memory_slot *slot;
1523         struct kvm_memslots *slots;
1524         int r;
1525
1526         /*
1527          * Released in install_new_memslots.
1528          *
1529          * Must be held from before the current memslots are copied until
1530          * after the new memslots are installed with rcu_assign_pointer,
1531          * then released before the synchronize srcu in install_new_memslots.
1532          *
1533          * When modifying memslots outside of the slots_lock, must be held
1534          * before reading the pointer to the current memslots until after all
1535          * changes to those memslots are complete.
1536          *
1537          * These rules ensure that installing new memslots does not lose
1538          * changes made to the previous memslots.
1539          */
1540         mutex_lock(&kvm->slots_arch_lock);
1541
1542         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1543         if (!slots) {
1544                 mutex_unlock(&kvm->slots_arch_lock);
1545                 return -ENOMEM;
1546         }
1547
1548         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1549                 /*
1550                  * Note, the INVALID flag needs to be in the appropriate entry
1551                  * in the freshly allocated memslots, not in @old or @new.
1552                  */
1553                 slot = id_to_memslot(slots, old->id);
1554                 slot->flags |= KVM_MEMSLOT_INVALID;
1555
1556                 /*
1557                  * We can re-use the memory from the old memslots.
1558                  * It will be overwritten with a copy of the new memslots
1559                  * after reacquiring the slots_arch_lock below.
1560                  */
1561                 slots = install_new_memslots(kvm, as_id, slots);
1562
1563                 /* From this point no new shadow pages pointing to a deleted,
1564                  * or moved, memslot will be created.
1565                  *
1566                  * validation of sp->gfn happens in:
1567                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1568                  *      - kvm_is_visible_gfn (mmu_check_root)
1569                  */
1570                 kvm_arch_flush_shadow_memslot(kvm, slot);
1571
1572                 /* Released in install_new_memslots. */
1573                 mutex_lock(&kvm->slots_arch_lock);
1574
1575                 /*
1576                  * The arch-specific fields of the memslots could have changed
1577                  * between releasing the slots_arch_lock in
1578                  * install_new_memslots and here, so get a fresh copy of the
1579                  * slots.
1580                  */
1581                 kvm_copy_memslots(slots, __kvm_memslots(kvm, as_id));
1582         }
1583
1584         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1585         if (r)
1586                 goto out_slots;
1587
1588         update_memslots(slots, new, change);
1589         slots = install_new_memslots(kvm, as_id, slots);
1590
1591         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1592
1593         kvfree(slots);
1594         return 0;
1595
1596 out_slots:
1597         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1598                 slot = id_to_memslot(slots, old->id);
1599                 slot->flags &= ~KVM_MEMSLOT_INVALID;
1600                 slots = install_new_memslots(kvm, as_id, slots);
1601         } else {
1602                 mutex_unlock(&kvm->slots_arch_lock);
1603         }
1604         kvfree(slots);
1605         return r;
1606 }
1607
1608 static int kvm_delete_memslot(struct kvm *kvm,
1609                               const struct kvm_userspace_memory_region *mem,
1610                               struct kvm_memory_slot *old, int as_id)
1611 {
1612         struct kvm_memory_slot new;
1613         int r;
1614
1615         if (!old->npages)
1616                 return -EINVAL;
1617
1618         memset(&new, 0, sizeof(new));
1619         new.id = old->id;
1620         /*
1621          * This is only for debugging purpose; it should never be referenced
1622          * for a removed memslot.
1623          */
1624         new.as_id = as_id;
1625
1626         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1627         if (r)
1628                 return r;
1629
1630         kvm_free_memslot(kvm, old);
1631         return 0;
1632 }
1633
1634 /*
1635  * Allocate some memory and give it an address in the guest physical address
1636  * space.
1637  *
1638  * Discontiguous memory is allowed, mostly for framebuffers.
1639  *
1640  * Must be called holding kvm->slots_lock for write.
1641  */
1642 int __kvm_set_memory_region(struct kvm *kvm,
1643                             const struct kvm_userspace_memory_region *mem)
1644 {
1645         struct kvm_memory_slot old, new;
1646         struct kvm_memory_slot *tmp;
1647         enum kvm_mr_change change;
1648         int as_id, id;
1649         int r;
1650
1651         r = check_memory_region_flags(mem);
1652         if (r)
1653                 return r;
1654
1655         as_id = mem->slot >> 16;
1656         id = (u16)mem->slot;
1657
1658         /* General sanity checks */
1659         if (mem->memory_size & (PAGE_SIZE - 1))
1660                 return -EINVAL;
1661         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1662                 return -EINVAL;
1663         /* We can read the guest memory with __xxx_user() later on. */
1664         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1665             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1666              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1667                         mem->memory_size))
1668                 return -EINVAL;
1669         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1670                 return -EINVAL;
1671         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1672                 return -EINVAL;
1673
1674         /*
1675          * Make a full copy of the old memslot, the pointer will become stale
1676          * when the memslots are re-sorted by update_memslots(), and the old
1677          * memslot needs to be referenced after calling update_memslots(), e.g.
1678          * to free its resources and for arch specific behavior.
1679          */
1680         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1681         if (tmp) {
1682                 old = *tmp;
1683                 tmp = NULL;
1684         } else {
1685                 memset(&old, 0, sizeof(old));
1686                 old.id = id;
1687         }
1688
1689         if (!mem->memory_size)
1690                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1691
1692         new.as_id = as_id;
1693         new.id = id;
1694         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1695         new.npages = mem->memory_size >> PAGE_SHIFT;
1696         new.flags = mem->flags;
1697         new.userspace_addr = mem->userspace_addr;
1698
1699         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1700                 return -EINVAL;
1701
1702         if (!old.npages) {
1703                 change = KVM_MR_CREATE;
1704                 new.dirty_bitmap = NULL;
1705                 memset(&new.arch, 0, sizeof(new.arch));
1706         } else { /* Modify an existing slot. */
1707                 if ((new.userspace_addr != old.userspace_addr) ||
1708                     (new.npages != old.npages) ||
1709                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1710                         return -EINVAL;
1711
1712                 if (new.base_gfn != old.base_gfn)
1713                         change = KVM_MR_MOVE;
1714                 else if (new.flags != old.flags)
1715                         change = KVM_MR_FLAGS_ONLY;
1716                 else /* Nothing to change. */
1717                         return 0;
1718
1719                 /* Copy dirty_bitmap and arch from the current memslot. */
1720                 new.dirty_bitmap = old.dirty_bitmap;
1721                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1722         }
1723
1724         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1725                 /* Check for overlaps */
1726                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1727                         if (tmp->id == id)
1728                                 continue;
1729                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1730                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1731                                 return -EEXIST;
1732                 }
1733         }
1734
1735         /* Allocate/free page dirty bitmap as needed */
1736         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1737                 new.dirty_bitmap = NULL;
1738         else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1739                 r = kvm_alloc_dirty_bitmap(&new);
1740                 if (r)
1741                         return r;
1742
1743                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1744                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1745         }
1746
1747         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1748         if (r)
1749                 goto out_bitmap;
1750
1751         if (old.dirty_bitmap && !new.dirty_bitmap)
1752                 kvm_destroy_dirty_bitmap(&old);
1753         return 0;
1754
1755 out_bitmap:
1756         if (new.dirty_bitmap && !old.dirty_bitmap)
1757                 kvm_destroy_dirty_bitmap(&new);
1758         return r;
1759 }
1760 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1761
1762 int kvm_set_memory_region(struct kvm *kvm,
1763                           const struct kvm_userspace_memory_region *mem)
1764 {
1765         int r;
1766
1767         mutex_lock(&kvm->slots_lock);
1768         r = __kvm_set_memory_region(kvm, mem);
1769         mutex_unlock(&kvm->slots_lock);
1770         return r;
1771 }
1772 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1773
1774 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1775                                           struct kvm_userspace_memory_region *mem)
1776 {
1777         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1778                 return -EINVAL;
1779
1780         return kvm_set_memory_region(kvm, mem);
1781 }
1782
1783 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1784 /**
1785  * kvm_get_dirty_log - get a snapshot of dirty pages
1786  * @kvm:        pointer to kvm instance
1787  * @log:        slot id and address to which we copy the log
1788  * @is_dirty:   set to '1' if any dirty pages were found
1789  * @memslot:    set to the associated memslot, always valid on success
1790  */
1791 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1792                       int *is_dirty, struct kvm_memory_slot **memslot)
1793 {
1794         struct kvm_memslots *slots;
1795         int i, as_id, id;
1796         unsigned long n;
1797         unsigned long any = 0;
1798
1799         /* Dirty ring tracking is exclusive to dirty log tracking */
1800         if (kvm->dirty_ring_size)
1801                 return -ENXIO;
1802
1803         *memslot = NULL;
1804         *is_dirty = 0;
1805
1806         as_id = log->slot >> 16;
1807         id = (u16)log->slot;
1808         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1809                 return -EINVAL;
1810
1811         slots = __kvm_memslots(kvm, as_id);
1812         *memslot = id_to_memslot(slots, id);
1813         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1814                 return -ENOENT;
1815
1816         kvm_arch_sync_dirty_log(kvm, *memslot);
1817
1818         n = kvm_dirty_bitmap_bytes(*memslot);
1819
1820         for (i = 0; !any && i < n/sizeof(long); ++i)
1821                 any = (*memslot)->dirty_bitmap[i];
1822
1823         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1824                 return -EFAULT;
1825
1826         if (any)
1827                 *is_dirty = 1;
1828         return 0;
1829 }
1830 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1831
1832 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1833 /**
1834  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1835  *      and reenable dirty page tracking for the corresponding pages.
1836  * @kvm:        pointer to kvm instance
1837  * @log:        slot id and address to which we copy the log
1838  *
1839  * We need to keep it in mind that VCPU threads can write to the bitmap
1840  * concurrently. So, to avoid losing track of dirty pages we keep the
1841  * following order:
1842  *
1843  *    1. Take a snapshot of the bit and clear it if needed.
1844  *    2. Write protect the corresponding page.
1845  *    3. Copy the snapshot to the userspace.
1846  *    4. Upon return caller flushes TLB's if needed.
1847  *
1848  * Between 2 and 4, the guest may write to the page using the remaining TLB
1849  * entry.  This is not a problem because the page is reported dirty using
1850  * the snapshot taken before and step 4 ensures that writes done after
1851  * exiting to userspace will be logged for the next call.
1852  *
1853  */
1854 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1855 {
1856         struct kvm_memslots *slots;
1857         struct kvm_memory_slot *memslot;
1858         int i, as_id, id;
1859         unsigned long n;
1860         unsigned long *dirty_bitmap;
1861         unsigned long *dirty_bitmap_buffer;
1862         bool flush;
1863
1864         /* Dirty ring tracking is exclusive to dirty log tracking */
1865         if (kvm->dirty_ring_size)
1866                 return -ENXIO;
1867
1868         as_id = log->slot >> 16;
1869         id = (u16)log->slot;
1870         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1871                 return -EINVAL;
1872
1873         slots = __kvm_memslots(kvm, as_id);
1874         memslot = id_to_memslot(slots, id);
1875         if (!memslot || !memslot->dirty_bitmap)
1876                 return -ENOENT;
1877
1878         dirty_bitmap = memslot->dirty_bitmap;
1879
1880         kvm_arch_sync_dirty_log(kvm, memslot);
1881
1882         n = kvm_dirty_bitmap_bytes(memslot);
1883         flush = false;
1884         if (kvm->manual_dirty_log_protect) {
1885                 /*
1886                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1887                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1888                  * is some code duplication between this function and
1889                  * kvm_get_dirty_log, but hopefully all architecture
1890                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1891                  * can be eliminated.
1892                  */
1893                 dirty_bitmap_buffer = dirty_bitmap;
1894         } else {
1895                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1896                 memset(dirty_bitmap_buffer, 0, n);
1897
1898                 KVM_MMU_LOCK(kvm);
1899                 for (i = 0; i < n / sizeof(long); i++) {
1900                         unsigned long mask;
1901                         gfn_t offset;
1902
1903                         if (!dirty_bitmap[i])
1904                                 continue;
1905
1906                         flush = true;
1907                         mask = xchg(&dirty_bitmap[i], 0);
1908                         dirty_bitmap_buffer[i] = mask;
1909
1910                         offset = i * BITS_PER_LONG;
1911                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1912                                                                 offset, mask);
1913                 }
1914                 KVM_MMU_UNLOCK(kvm);
1915         }
1916
1917         if (flush)
1918                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1919
1920         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1921                 return -EFAULT;
1922         return 0;
1923 }
1924
1925
1926 /**
1927  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1928  * @kvm: kvm instance
1929  * @log: slot id and address to which we copy the log
1930  *
1931  * Steps 1-4 below provide general overview of dirty page logging. See
1932  * kvm_get_dirty_log_protect() function description for additional details.
1933  *
1934  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1935  * always flush the TLB (step 4) even if previous step failed  and the dirty
1936  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1937  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1938  * writes will be marked dirty for next log read.
1939  *
1940  *   1. Take a snapshot of the bit and clear it if needed.
1941  *   2. Write protect the corresponding page.
1942  *   3. Copy the snapshot to the userspace.
1943  *   4. Flush TLB's if needed.
1944  */
1945 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1946                                       struct kvm_dirty_log *log)
1947 {
1948         int r;
1949
1950         mutex_lock(&kvm->slots_lock);
1951
1952         r = kvm_get_dirty_log_protect(kvm, log);
1953
1954         mutex_unlock(&kvm->slots_lock);
1955         return r;
1956 }
1957
1958 /**
1959  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1960  *      and reenable dirty page tracking for the corresponding pages.
1961  * @kvm:        pointer to kvm instance
1962  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1963  */
1964 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1965                                        struct kvm_clear_dirty_log *log)
1966 {
1967         struct kvm_memslots *slots;
1968         struct kvm_memory_slot *memslot;
1969         int as_id, id;
1970         gfn_t offset;
1971         unsigned long i, n;
1972         unsigned long *dirty_bitmap;
1973         unsigned long *dirty_bitmap_buffer;
1974         bool flush;
1975
1976         /* Dirty ring tracking is exclusive to dirty log tracking */
1977         if (kvm->dirty_ring_size)
1978                 return -ENXIO;
1979
1980         as_id = log->slot >> 16;
1981         id = (u16)log->slot;
1982         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1983                 return -EINVAL;
1984
1985         if (log->first_page & 63)
1986                 return -EINVAL;
1987
1988         slots = __kvm_memslots(kvm, as_id);
1989         memslot = id_to_memslot(slots, id);
1990         if (!memslot || !memslot->dirty_bitmap)
1991                 return -ENOENT;
1992
1993         dirty_bitmap = memslot->dirty_bitmap;
1994
1995         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1996
1997         if (log->first_page > memslot->npages ||
1998             log->num_pages > memslot->npages - log->first_page ||
1999             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2000             return -EINVAL;
2001
2002         kvm_arch_sync_dirty_log(kvm, memslot);
2003
2004         flush = false;
2005         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2006         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2007                 return -EFAULT;
2008
2009         KVM_MMU_LOCK(kvm);
2010         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2011                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2012              i++, offset += BITS_PER_LONG) {
2013                 unsigned long mask = *dirty_bitmap_buffer++;
2014                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2015                 if (!mask)
2016                         continue;
2017
2018                 mask &= atomic_long_fetch_andnot(mask, p);
2019
2020                 /*
2021                  * mask contains the bits that really have been cleared.  This
2022                  * never includes any bits beyond the length of the memslot (if
2023                  * the length is not aligned to 64 pages), therefore it is not
2024                  * a problem if userspace sets them in log->dirty_bitmap.
2025                 */
2026                 if (mask) {
2027                         flush = true;
2028                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2029                                                                 offset, mask);
2030                 }
2031         }
2032         KVM_MMU_UNLOCK(kvm);
2033
2034         if (flush)
2035                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2036
2037         return 0;
2038 }
2039
2040 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2041                                         struct kvm_clear_dirty_log *log)
2042 {
2043         int r;
2044
2045         mutex_lock(&kvm->slots_lock);
2046
2047         r = kvm_clear_dirty_log_protect(kvm, log);
2048
2049         mutex_unlock(&kvm->slots_lock);
2050         return r;
2051 }
2052 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2053
2054 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2055 {
2056         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2057 }
2058 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2059
2060 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2061 {
2062         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2063         struct kvm_memory_slot *slot;
2064         int slot_index;
2065
2066         slot = try_get_memslot(slots, vcpu->last_used_slot, gfn);
2067         if (slot)
2068                 return slot;
2069
2070         /*
2071          * Fall back to searching all memslots. We purposely use
2072          * search_memslots() instead of __gfn_to_memslot() to avoid
2073          * thrashing the VM-wide last_used_index in kvm_memslots.
2074          */
2075         slot = search_memslots(slots, gfn, &slot_index);
2076         if (slot) {
2077                 vcpu->last_used_slot = slot_index;
2078                 return slot;
2079         }
2080
2081         return NULL;
2082 }
2083 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
2084
2085 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2086 {
2087         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2088
2089         return kvm_is_visible_memslot(memslot);
2090 }
2091 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2092
2093 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2094 {
2095         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2096
2097         return kvm_is_visible_memslot(memslot);
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2100
2101 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2102 {
2103         struct vm_area_struct *vma;
2104         unsigned long addr, size;
2105
2106         size = PAGE_SIZE;
2107
2108         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2109         if (kvm_is_error_hva(addr))
2110                 return PAGE_SIZE;
2111
2112         mmap_read_lock(current->mm);
2113         vma = find_vma(current->mm, addr);
2114         if (!vma)
2115                 goto out;
2116
2117         size = vma_kernel_pagesize(vma);
2118
2119 out:
2120         mmap_read_unlock(current->mm);
2121
2122         return size;
2123 }
2124
2125 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
2126 {
2127         return slot->flags & KVM_MEM_READONLY;
2128 }
2129
2130 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2131                                        gfn_t *nr_pages, bool write)
2132 {
2133         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2134                 return KVM_HVA_ERR_BAD;
2135
2136         if (memslot_is_readonly(slot) && write)
2137                 return KVM_HVA_ERR_RO_BAD;
2138
2139         if (nr_pages)
2140                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2141
2142         return __gfn_to_hva_memslot(slot, gfn);
2143 }
2144
2145 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2146                                      gfn_t *nr_pages)
2147 {
2148         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2149 }
2150
2151 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2152                                         gfn_t gfn)
2153 {
2154         return gfn_to_hva_many(slot, gfn, NULL);
2155 }
2156 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2157
2158 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2159 {
2160         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2161 }
2162 EXPORT_SYMBOL_GPL(gfn_to_hva);
2163
2164 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2165 {
2166         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2167 }
2168 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2169
2170 /*
2171  * Return the hva of a @gfn and the R/W attribute if possible.
2172  *
2173  * @slot: the kvm_memory_slot which contains @gfn
2174  * @gfn: the gfn to be translated
2175  * @writable: used to return the read/write attribute of the @slot if the hva
2176  * is valid and @writable is not NULL
2177  */
2178 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2179                                       gfn_t gfn, bool *writable)
2180 {
2181         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2182
2183         if (!kvm_is_error_hva(hva) && writable)
2184                 *writable = !memslot_is_readonly(slot);
2185
2186         return hva;
2187 }
2188
2189 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2190 {
2191         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2192
2193         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2194 }
2195
2196 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2197 {
2198         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2199
2200         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2201 }
2202
2203 static inline int check_user_page_hwpoison(unsigned long addr)
2204 {
2205         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2206
2207         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2208         return rc == -EHWPOISON;
2209 }
2210
2211 /*
2212  * The fast path to get the writable pfn which will be stored in @pfn,
2213  * true indicates success, otherwise false is returned.  It's also the
2214  * only part that runs if we can in atomic context.
2215  */
2216 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2217                             bool *writable, kvm_pfn_t *pfn)
2218 {
2219         struct page *page[1];
2220
2221         /*
2222          * Fast pin a writable pfn only if it is a write fault request
2223          * or the caller allows to map a writable pfn for a read fault
2224          * request.
2225          */
2226         if (!(write_fault || writable))
2227                 return false;
2228
2229         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2230                 *pfn = page_to_pfn(page[0]);
2231
2232                 if (writable)
2233                         *writable = true;
2234                 return true;
2235         }
2236
2237         return false;
2238 }
2239
2240 /*
2241  * The slow path to get the pfn of the specified host virtual address,
2242  * 1 indicates success, -errno is returned if error is detected.
2243  */
2244 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2245                            bool *writable, kvm_pfn_t *pfn)
2246 {
2247         unsigned int flags = FOLL_HWPOISON;
2248         struct page *page;
2249         int npages = 0;
2250
2251         might_sleep();
2252
2253         if (writable)
2254                 *writable = write_fault;
2255
2256         if (write_fault)
2257                 flags |= FOLL_WRITE;
2258         if (async)
2259                 flags |= FOLL_NOWAIT;
2260
2261         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2262         if (npages != 1)
2263                 return npages;
2264
2265         /* map read fault as writable if possible */
2266         if (unlikely(!write_fault) && writable) {
2267                 struct page *wpage;
2268
2269                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2270                         *writable = true;
2271                         put_page(page);
2272                         page = wpage;
2273                 }
2274         }
2275         *pfn = page_to_pfn(page);
2276         return npages;
2277 }
2278
2279 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2280 {
2281         if (unlikely(!(vma->vm_flags & VM_READ)))
2282                 return false;
2283
2284         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2285                 return false;
2286
2287         return true;
2288 }
2289
2290 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2291 {
2292         if (kvm_is_reserved_pfn(pfn))
2293                 return 1;
2294         return get_page_unless_zero(pfn_to_page(pfn));
2295 }
2296
2297 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2298                                unsigned long addr, bool *async,
2299                                bool write_fault, bool *writable,
2300                                kvm_pfn_t *p_pfn)
2301 {
2302         kvm_pfn_t pfn;
2303         pte_t *ptep;
2304         spinlock_t *ptl;
2305         int r;
2306
2307         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2308         if (r) {
2309                 /*
2310                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2311                  * not call the fault handler, so do it here.
2312                  */
2313                 bool unlocked = false;
2314                 r = fixup_user_fault(current->mm, addr,
2315                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2316                                      &unlocked);
2317                 if (unlocked)
2318                         return -EAGAIN;
2319                 if (r)
2320                         return r;
2321
2322                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2323                 if (r)
2324                         return r;
2325         }
2326
2327         if (write_fault && !pte_write(*ptep)) {
2328                 pfn = KVM_PFN_ERR_RO_FAULT;
2329                 goto out;
2330         }
2331
2332         if (writable)
2333                 *writable = pte_write(*ptep);
2334         pfn = pte_pfn(*ptep);
2335
2336         /*
2337          * Get a reference here because callers of *hva_to_pfn* and
2338          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2339          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2340          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2341          * simply do nothing for reserved pfns.
2342          *
2343          * Whoever called remap_pfn_range is also going to call e.g.
2344          * unmap_mapping_range before the underlying pages are freed,
2345          * causing a call to our MMU notifier.
2346          *
2347          * Certain IO or PFNMAP mappings can be backed with valid
2348          * struct pages, but be allocated without refcounting e.g.,
2349          * tail pages of non-compound higher order allocations, which
2350          * would then underflow the refcount when the caller does the
2351          * required put_page. Don't allow those pages here.
2352          */ 
2353         if (!kvm_try_get_pfn(pfn))
2354                 r = -EFAULT;
2355
2356 out:
2357         pte_unmap_unlock(ptep, ptl);
2358         *p_pfn = pfn;
2359
2360         return r;
2361 }
2362
2363 /*
2364  * Pin guest page in memory and return its pfn.
2365  * @addr: host virtual address which maps memory to the guest
2366  * @atomic: whether this function can sleep
2367  * @async: whether this function need to wait IO complete if the
2368  *         host page is not in the memory
2369  * @write_fault: whether we should get a writable host page
2370  * @writable: whether it allows to map a writable host page for !@write_fault
2371  *
2372  * The function will map a writable host page for these two cases:
2373  * 1): @write_fault = true
2374  * 2): @write_fault = false && @writable, @writable will tell the caller
2375  *     whether the mapping is writable.
2376  */
2377 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2378                         bool write_fault, bool *writable)
2379 {
2380         struct vm_area_struct *vma;
2381         kvm_pfn_t pfn = 0;
2382         int npages, r;
2383
2384         /* we can do it either atomically or asynchronously, not both */
2385         BUG_ON(atomic && async);
2386
2387         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2388                 return pfn;
2389
2390         if (atomic)
2391                 return KVM_PFN_ERR_FAULT;
2392
2393         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2394         if (npages == 1)
2395                 return pfn;
2396
2397         mmap_read_lock(current->mm);
2398         if (npages == -EHWPOISON ||
2399               (!async && check_user_page_hwpoison(addr))) {
2400                 pfn = KVM_PFN_ERR_HWPOISON;
2401                 goto exit;
2402         }
2403
2404 retry:
2405         vma = vma_lookup(current->mm, addr);
2406
2407         if (vma == NULL)
2408                 pfn = KVM_PFN_ERR_FAULT;
2409         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2410                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2411                 if (r == -EAGAIN)
2412                         goto retry;
2413                 if (r < 0)
2414                         pfn = KVM_PFN_ERR_FAULT;
2415         } else {
2416                 if (async && vma_is_valid(vma, write_fault))
2417                         *async = true;
2418                 pfn = KVM_PFN_ERR_FAULT;
2419         }
2420 exit:
2421         mmap_read_unlock(current->mm);
2422         return pfn;
2423 }
2424
2425 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2426                                bool atomic, bool *async, bool write_fault,
2427                                bool *writable, hva_t *hva)
2428 {
2429         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2430
2431         if (hva)
2432                 *hva = addr;
2433
2434         if (addr == KVM_HVA_ERR_RO_BAD) {
2435                 if (writable)
2436                         *writable = false;
2437                 return KVM_PFN_ERR_RO_FAULT;
2438         }
2439
2440         if (kvm_is_error_hva(addr)) {
2441                 if (writable)
2442                         *writable = false;
2443                 return KVM_PFN_NOSLOT;
2444         }
2445
2446         /* Do not map writable pfn in the readonly memslot. */
2447         if (writable && memslot_is_readonly(slot)) {
2448                 *writable = false;
2449                 writable = NULL;
2450         }
2451
2452         return hva_to_pfn(addr, atomic, async, write_fault,
2453                           writable);
2454 }
2455 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2456
2457 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2458                       bool *writable)
2459 {
2460         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2461                                     write_fault, writable, NULL);
2462 }
2463 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2464
2465 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2466 {
2467         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2468 }
2469 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2470
2471 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2472 {
2473         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2474 }
2475 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2476
2477 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2478 {
2479         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2480 }
2481 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2482
2483 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2484 {
2485         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2486 }
2487 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2488
2489 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2490 {
2491         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2492 }
2493 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2494
2495 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2496                             struct page **pages, int nr_pages)
2497 {
2498         unsigned long addr;
2499         gfn_t entry = 0;
2500
2501         addr = gfn_to_hva_many(slot, gfn, &entry);
2502         if (kvm_is_error_hva(addr))
2503                 return -1;
2504
2505         if (entry < nr_pages)
2506                 return 0;
2507
2508         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2509 }
2510 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2511
2512 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2513 {
2514         if (is_error_noslot_pfn(pfn))
2515                 return KVM_ERR_PTR_BAD_PAGE;
2516
2517         if (kvm_is_reserved_pfn(pfn)) {
2518                 WARN_ON(1);
2519                 return KVM_ERR_PTR_BAD_PAGE;
2520         }
2521
2522         return pfn_to_page(pfn);
2523 }
2524
2525 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2526 {
2527         kvm_pfn_t pfn;
2528
2529         pfn = gfn_to_pfn(kvm, gfn);
2530
2531         return kvm_pfn_to_page(pfn);
2532 }
2533 EXPORT_SYMBOL_GPL(gfn_to_page);
2534
2535 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2536 {
2537         if (pfn == 0)
2538                 return;
2539
2540         if (cache)
2541                 cache->pfn = cache->gfn = 0;
2542
2543         if (dirty)
2544                 kvm_release_pfn_dirty(pfn);
2545         else
2546                 kvm_release_pfn_clean(pfn);
2547 }
2548
2549 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2550                                  struct gfn_to_pfn_cache *cache, u64 gen)
2551 {
2552         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2553
2554         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2555         cache->gfn = gfn;
2556         cache->dirty = false;
2557         cache->generation = gen;
2558 }
2559
2560 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2561                          struct kvm_host_map *map,
2562                          struct gfn_to_pfn_cache *cache,
2563                          bool atomic)
2564 {
2565         kvm_pfn_t pfn;
2566         void *hva = NULL;
2567         struct page *page = KVM_UNMAPPED_PAGE;
2568         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2569         u64 gen = slots->generation;
2570
2571         if (!map)
2572                 return -EINVAL;
2573
2574         if (cache) {
2575                 if (!cache->pfn || cache->gfn != gfn ||
2576                         cache->generation != gen) {
2577                         if (atomic)
2578                                 return -EAGAIN;
2579                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2580                 }
2581                 pfn = cache->pfn;
2582         } else {
2583                 if (atomic)
2584                         return -EAGAIN;
2585                 pfn = gfn_to_pfn_memslot(slot, gfn);
2586         }
2587         if (is_error_noslot_pfn(pfn))
2588                 return -EINVAL;
2589
2590         if (pfn_valid(pfn)) {
2591                 page = pfn_to_page(pfn);
2592                 if (atomic)
2593                         hva = kmap_atomic(page);
2594                 else
2595                         hva = kmap(page);
2596 #ifdef CONFIG_HAS_IOMEM
2597         } else if (!atomic) {
2598                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2599         } else {
2600                 return -EINVAL;
2601 #endif
2602         }
2603
2604         if (!hva)
2605                 return -EFAULT;
2606
2607         map->page = page;
2608         map->hva = hva;
2609         map->pfn = pfn;
2610         map->gfn = gfn;
2611
2612         return 0;
2613 }
2614
2615 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2616                 struct gfn_to_pfn_cache *cache, bool atomic)
2617 {
2618         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2619                         cache, atomic);
2620 }
2621 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2622
2623 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2624 {
2625         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2626                 NULL, false);
2627 }
2628 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2629
2630 static void __kvm_unmap_gfn(struct kvm *kvm,
2631                         struct kvm_memory_slot *memslot,
2632                         struct kvm_host_map *map,
2633                         struct gfn_to_pfn_cache *cache,
2634                         bool dirty, bool atomic)
2635 {
2636         if (!map)
2637                 return;
2638
2639         if (!map->hva)
2640                 return;
2641
2642         if (map->page != KVM_UNMAPPED_PAGE) {
2643                 if (atomic)
2644                         kunmap_atomic(map->hva);
2645                 else
2646                         kunmap(map->page);
2647         }
2648 #ifdef CONFIG_HAS_IOMEM
2649         else if (!atomic)
2650                 memunmap(map->hva);
2651         else
2652                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2653 #endif
2654
2655         if (dirty)
2656                 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2657
2658         if (cache)
2659                 cache->dirty |= dirty;
2660         else
2661                 kvm_release_pfn(map->pfn, dirty, NULL);
2662
2663         map->hva = NULL;
2664         map->page = NULL;
2665 }
2666
2667 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2668                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2669 {
2670         __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2671                         cache, dirty, atomic);
2672         return 0;
2673 }
2674 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2675
2676 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2677 {
2678         __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2679                         map, NULL, dirty, false);
2680 }
2681 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2682
2683 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2684 {
2685         kvm_pfn_t pfn;
2686
2687         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2688
2689         return kvm_pfn_to_page(pfn);
2690 }
2691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2692
2693 void kvm_release_page_clean(struct page *page)
2694 {
2695         WARN_ON(is_error_page(page));
2696
2697         kvm_release_pfn_clean(page_to_pfn(page));
2698 }
2699 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2700
2701 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2702 {
2703         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2704                 put_page(pfn_to_page(pfn));
2705 }
2706 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2707
2708 void kvm_release_page_dirty(struct page *page)
2709 {
2710         WARN_ON(is_error_page(page));
2711
2712         kvm_release_pfn_dirty(page_to_pfn(page));
2713 }
2714 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2715
2716 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2717 {
2718         kvm_set_pfn_dirty(pfn);
2719         kvm_release_pfn_clean(pfn);
2720 }
2721 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2722
2723 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2724 {
2725         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2726                 SetPageDirty(pfn_to_page(pfn));
2727 }
2728 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2729
2730 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2731 {
2732         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2733                 mark_page_accessed(pfn_to_page(pfn));
2734 }
2735 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2736
2737 void kvm_get_pfn(kvm_pfn_t pfn)
2738 {
2739         if (!kvm_is_reserved_pfn(pfn))
2740                 get_page(pfn_to_page(pfn));
2741 }
2742 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2743
2744 static int next_segment(unsigned long len, int offset)
2745 {
2746         if (len > PAGE_SIZE - offset)
2747                 return PAGE_SIZE - offset;
2748         else
2749                 return len;
2750 }
2751
2752 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2753                                  void *data, int offset, int len)
2754 {
2755         int r;
2756         unsigned long addr;
2757
2758         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2759         if (kvm_is_error_hva(addr))
2760                 return -EFAULT;
2761         r = __copy_from_user(data, (void __user *)addr + offset, len);
2762         if (r)
2763                 return -EFAULT;
2764         return 0;
2765 }
2766
2767 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2768                         int len)
2769 {
2770         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2771
2772         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2773 }
2774 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2775
2776 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2777                              int offset, int len)
2778 {
2779         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2780
2781         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2782 }
2783 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2784
2785 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2786 {
2787         gfn_t gfn = gpa >> PAGE_SHIFT;
2788         int seg;
2789         int offset = offset_in_page(gpa);
2790         int ret;
2791
2792         while ((seg = next_segment(len, offset)) != 0) {
2793                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2794                 if (ret < 0)
2795                         return ret;
2796                 offset = 0;
2797                 len -= seg;
2798                 data += seg;
2799                 ++gfn;
2800         }
2801         return 0;
2802 }
2803 EXPORT_SYMBOL_GPL(kvm_read_guest);
2804
2805 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2806 {
2807         gfn_t gfn = gpa >> PAGE_SHIFT;
2808         int seg;
2809         int offset = offset_in_page(gpa);
2810         int ret;
2811
2812         while ((seg = next_segment(len, offset)) != 0) {
2813                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2814                 if (ret < 0)
2815                         return ret;
2816                 offset = 0;
2817                 len -= seg;
2818                 data += seg;
2819                 ++gfn;
2820         }
2821         return 0;
2822 }
2823 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2824
2825 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2826                                    void *data, int offset, unsigned long len)
2827 {
2828         int r;
2829         unsigned long addr;
2830
2831         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2832         if (kvm_is_error_hva(addr))
2833                 return -EFAULT;
2834         pagefault_disable();
2835         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2836         pagefault_enable();
2837         if (r)
2838                 return -EFAULT;
2839         return 0;
2840 }
2841
2842 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2843                                void *data, unsigned long len)
2844 {
2845         gfn_t gfn = gpa >> PAGE_SHIFT;
2846         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2847         int offset = offset_in_page(gpa);
2848
2849         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2850 }
2851 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2852
2853 static int __kvm_write_guest_page(struct kvm *kvm,
2854                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2855                                   const void *data, int offset, int len)
2856 {
2857         int r;
2858         unsigned long addr;
2859
2860         addr = gfn_to_hva_memslot(memslot, gfn);
2861         if (kvm_is_error_hva(addr))
2862                 return -EFAULT;
2863         r = __copy_to_user((void __user *)addr + offset, data, len);
2864         if (r)
2865                 return -EFAULT;
2866         mark_page_dirty_in_slot(kvm, memslot, gfn);
2867         return 0;
2868 }
2869
2870 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2871                          const void *data, int offset, int len)
2872 {
2873         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2874
2875         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2876 }
2877 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2878
2879 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2880                               const void *data, int offset, int len)
2881 {
2882         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2883
2884         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2885 }
2886 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2887
2888 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2889                     unsigned long len)
2890 {
2891         gfn_t gfn = gpa >> PAGE_SHIFT;
2892         int seg;
2893         int offset = offset_in_page(gpa);
2894         int ret;
2895
2896         while ((seg = next_segment(len, offset)) != 0) {
2897                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2898                 if (ret < 0)
2899                         return ret;
2900                 offset = 0;
2901                 len -= seg;
2902                 data += seg;
2903                 ++gfn;
2904         }
2905         return 0;
2906 }
2907 EXPORT_SYMBOL_GPL(kvm_write_guest);
2908
2909 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2910                          unsigned long len)
2911 {
2912         gfn_t gfn = gpa >> PAGE_SHIFT;
2913         int seg;
2914         int offset = offset_in_page(gpa);
2915         int ret;
2916
2917         while ((seg = next_segment(len, offset)) != 0) {
2918                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2919                 if (ret < 0)
2920                         return ret;
2921                 offset = 0;
2922                 len -= seg;
2923                 data += seg;
2924                 ++gfn;
2925         }
2926         return 0;
2927 }
2928 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2929
2930 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2931                                        struct gfn_to_hva_cache *ghc,
2932                                        gpa_t gpa, unsigned long len)
2933 {
2934         int offset = offset_in_page(gpa);
2935         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2936         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2937         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2938         gfn_t nr_pages_avail;
2939
2940         /* Update ghc->generation before performing any error checks. */
2941         ghc->generation = slots->generation;
2942
2943         if (start_gfn > end_gfn) {
2944                 ghc->hva = KVM_HVA_ERR_BAD;
2945                 return -EINVAL;
2946         }
2947
2948         /*
2949          * If the requested region crosses two memslots, we still
2950          * verify that the entire region is valid here.
2951          */
2952         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2953                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2954                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2955                                            &nr_pages_avail);
2956                 if (kvm_is_error_hva(ghc->hva))
2957                         return -EFAULT;
2958         }
2959
2960         /* Use the slow path for cross page reads and writes. */
2961         if (nr_pages_needed == 1)
2962                 ghc->hva += offset;
2963         else
2964                 ghc->memslot = NULL;
2965
2966         ghc->gpa = gpa;
2967         ghc->len = len;
2968         return 0;
2969 }
2970
2971 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2972                               gpa_t gpa, unsigned long len)
2973 {
2974         struct kvm_memslots *slots = kvm_memslots(kvm);
2975         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2976 }
2977 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2978
2979 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2980                                   void *data, unsigned int offset,
2981                                   unsigned long len)
2982 {
2983         struct kvm_memslots *slots = kvm_memslots(kvm);
2984         int r;
2985         gpa_t gpa = ghc->gpa + offset;
2986
2987         BUG_ON(len + offset > ghc->len);
2988
2989         if (slots->generation != ghc->generation) {
2990                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2991                         return -EFAULT;
2992         }
2993
2994         if (kvm_is_error_hva(ghc->hva))
2995                 return -EFAULT;
2996
2997         if (unlikely(!ghc->memslot))
2998                 return kvm_write_guest(kvm, gpa, data, len);
2999
3000         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3001         if (r)
3002                 return -EFAULT;
3003         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3004
3005         return 0;
3006 }
3007 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3008
3009 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3010                            void *data, unsigned long len)
3011 {
3012         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3013 }
3014 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3015
3016 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3017                                  void *data, unsigned int offset,
3018                                  unsigned long len)
3019 {
3020         struct kvm_memslots *slots = kvm_memslots(kvm);
3021         int r;
3022         gpa_t gpa = ghc->gpa + offset;
3023
3024         BUG_ON(len + offset > ghc->len);
3025
3026         if (slots->generation != ghc->generation) {
3027                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3028                         return -EFAULT;
3029         }
3030
3031         if (kvm_is_error_hva(ghc->hva))
3032                 return -EFAULT;
3033
3034         if (unlikely(!ghc->memslot))
3035                 return kvm_read_guest(kvm, gpa, data, len);
3036
3037         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3038         if (r)
3039                 return -EFAULT;
3040
3041         return 0;
3042 }
3043 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3044
3045 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3046                           void *data, unsigned long len)
3047 {
3048         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3049 }
3050 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3051
3052 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3053 {
3054         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3055         gfn_t gfn = gpa >> PAGE_SHIFT;
3056         int seg;
3057         int offset = offset_in_page(gpa);
3058         int ret;
3059
3060         while ((seg = next_segment(len, offset)) != 0) {
3061                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3062                 if (ret < 0)
3063                         return ret;
3064                 offset = 0;
3065                 len -= seg;
3066                 ++gfn;
3067         }
3068         return 0;
3069 }
3070 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3071
3072 void mark_page_dirty_in_slot(struct kvm *kvm,
3073                              struct kvm_memory_slot *memslot,
3074                              gfn_t gfn)
3075 {
3076         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3077                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3078                 u32 slot = (memslot->as_id << 16) | memslot->id;
3079
3080                 if (kvm->dirty_ring_size)
3081                         kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
3082                                             slot, rel_gfn);
3083                 else
3084                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3085         }
3086 }
3087 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3088
3089 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3090 {
3091         struct kvm_memory_slot *memslot;
3092
3093         memslot = gfn_to_memslot(kvm, gfn);
3094         mark_page_dirty_in_slot(kvm, memslot, gfn);
3095 }
3096 EXPORT_SYMBOL_GPL(mark_page_dirty);
3097
3098 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3099 {
3100         struct kvm_memory_slot *memslot;
3101
3102         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3103         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3104 }
3105 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3106
3107 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3108 {
3109         if (!vcpu->sigset_active)
3110                 return;
3111
3112         /*
3113          * This does a lockless modification of ->real_blocked, which is fine
3114          * because, only current can change ->real_blocked and all readers of
3115          * ->real_blocked don't care as long ->real_blocked is always a subset
3116          * of ->blocked.
3117          */
3118         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3119 }
3120
3121 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3122 {
3123         if (!vcpu->sigset_active)
3124                 return;
3125
3126         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3127         sigemptyset(&current->real_blocked);
3128 }
3129
3130 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3131 {
3132         unsigned int old, val, grow, grow_start;
3133
3134         old = val = vcpu->halt_poll_ns;
3135         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3136         grow = READ_ONCE(halt_poll_ns_grow);
3137         if (!grow)
3138                 goto out;
3139
3140         val *= grow;
3141         if (val < grow_start)
3142                 val = grow_start;
3143
3144         if (val > vcpu->kvm->max_halt_poll_ns)
3145                 val = vcpu->kvm->max_halt_poll_ns;
3146
3147         vcpu->halt_poll_ns = val;
3148 out:
3149         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3150 }
3151
3152 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3153 {
3154         unsigned int old, val, shrink;
3155
3156         old = val = vcpu->halt_poll_ns;
3157         shrink = READ_ONCE(halt_poll_ns_shrink);
3158         if (shrink == 0)
3159                 val = 0;
3160         else
3161                 val /= shrink;
3162
3163         vcpu->halt_poll_ns = val;
3164         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3165 }
3166
3167 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3168 {
3169         int ret = -EINTR;
3170         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3171
3172         if (kvm_arch_vcpu_runnable(vcpu)) {
3173                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
3174                 goto out;
3175         }
3176         if (kvm_cpu_has_pending_timer(vcpu))
3177                 goto out;
3178         if (signal_pending(current))
3179                 goto out;
3180         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3181                 goto out;
3182
3183         ret = 0;
3184 out:
3185         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3186         return ret;
3187 }
3188
3189 static inline void
3190 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
3191 {
3192         if (waited)
3193                 vcpu->stat.generic.halt_poll_fail_ns += poll_ns;
3194         else
3195                 vcpu->stat.generic.halt_poll_success_ns += poll_ns;
3196 }
3197
3198 /*
3199  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
3200  */
3201 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
3202 {
3203         ktime_t start, cur, poll_end;
3204         bool waited = false;
3205         u64 block_ns;
3206
3207         kvm_arch_vcpu_blocking(vcpu);
3208
3209         start = cur = poll_end = ktime_get();
3210         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
3211                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
3212
3213                 ++vcpu->stat.generic.halt_attempted_poll;
3214                 do {
3215                         /*
3216                          * This sets KVM_REQ_UNHALT if an interrupt
3217                          * arrives.
3218                          */
3219                         if (kvm_vcpu_check_block(vcpu) < 0) {
3220                                 ++vcpu->stat.generic.halt_successful_poll;
3221                                 if (!vcpu_valid_wakeup(vcpu))
3222                                         ++vcpu->stat.generic.halt_poll_invalid;
3223
3224                                 KVM_STATS_LOG_HIST_UPDATE(
3225                                       vcpu->stat.generic.halt_poll_success_hist,
3226                                       ktime_to_ns(ktime_get()) -
3227                                       ktime_to_ns(start));
3228                                 goto out;
3229                         }
3230                         cpu_relax();
3231                         poll_end = cur = ktime_get();
3232                 } while (kvm_vcpu_can_poll(cur, stop));
3233
3234                 KVM_STATS_LOG_HIST_UPDATE(
3235                                 vcpu->stat.generic.halt_poll_fail_hist,
3236                                 ktime_to_ns(ktime_get()) - ktime_to_ns(start));
3237         }
3238
3239
3240         prepare_to_rcuwait(&vcpu->wait);
3241         for (;;) {
3242                 set_current_state(TASK_INTERRUPTIBLE);
3243
3244                 if (kvm_vcpu_check_block(vcpu) < 0)
3245                         break;
3246
3247                 waited = true;
3248                 schedule();
3249         }
3250         finish_rcuwait(&vcpu->wait);
3251         cur = ktime_get();
3252         if (waited) {
3253                 vcpu->stat.generic.halt_wait_ns +=
3254                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3255                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3256                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3257         }
3258 out:
3259         kvm_arch_vcpu_unblocking(vcpu);
3260         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3261
3262         update_halt_poll_stats(
3263                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
3264
3265         if (!kvm_arch_no_poll(vcpu)) {
3266                 if (!vcpu_valid_wakeup(vcpu)) {
3267                         shrink_halt_poll_ns(vcpu);
3268                 } else if (vcpu->kvm->max_halt_poll_ns) {
3269                         if (block_ns <= vcpu->halt_poll_ns)
3270                                 ;
3271                         /* we had a long block, shrink polling */
3272                         else if (vcpu->halt_poll_ns &&
3273                                         block_ns > vcpu->kvm->max_halt_poll_ns)
3274                                 shrink_halt_poll_ns(vcpu);
3275                         /* we had a short halt and our poll time is too small */
3276                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3277                                         block_ns < vcpu->kvm->max_halt_poll_ns)
3278                                 grow_halt_poll_ns(vcpu);
3279                 } else {
3280                         vcpu->halt_poll_ns = 0;
3281                 }
3282         }
3283
3284         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3285         kvm_arch_vcpu_block_finish(vcpu);
3286 }
3287 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3288
3289 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3290 {
3291         struct rcuwait *waitp;
3292
3293         waitp = kvm_arch_vcpu_get_wait(vcpu);
3294         if (rcuwait_wake_up(waitp)) {
3295                 WRITE_ONCE(vcpu->ready, true);
3296                 ++vcpu->stat.generic.halt_wakeup;
3297                 return true;
3298         }
3299
3300         return false;
3301 }
3302 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3303
3304 #ifndef CONFIG_S390
3305 /*
3306  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3307  */
3308 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3309 {
3310         int me;
3311         int cpu = vcpu->cpu;
3312
3313         if (kvm_vcpu_wake_up(vcpu))
3314                 return;
3315
3316         me = get_cpu();
3317         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3318                 if (kvm_arch_vcpu_should_kick(vcpu))
3319                         smp_send_reschedule(cpu);
3320         put_cpu();
3321 }
3322 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3323 #endif /* !CONFIG_S390 */
3324
3325 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3326 {
3327         struct pid *pid;
3328         struct task_struct *task = NULL;
3329         int ret = 0;
3330
3331         rcu_read_lock();
3332         pid = rcu_dereference(target->pid);
3333         if (pid)
3334                 task = get_pid_task(pid, PIDTYPE_PID);
3335         rcu_read_unlock();
3336         if (!task)
3337                 return ret;
3338         ret = yield_to(task, 1);
3339         put_task_struct(task);
3340
3341         return ret;
3342 }
3343 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3344
3345 /*
3346  * Helper that checks whether a VCPU is eligible for directed yield.
3347  * Most eligible candidate to yield is decided by following heuristics:
3348  *
3349  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3350  *  (preempted lock holder), indicated by @in_spin_loop.
3351  *  Set at the beginning and cleared at the end of interception/PLE handler.
3352  *
3353  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3354  *  chance last time (mostly it has become eligible now since we have probably
3355  *  yielded to lockholder in last iteration. This is done by toggling
3356  *  @dy_eligible each time a VCPU checked for eligibility.)
3357  *
3358  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3359  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3360  *  burning. Giving priority for a potential lock-holder increases lock
3361  *  progress.
3362  *
3363  *  Since algorithm is based on heuristics, accessing another VCPU data without
3364  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3365  *  and continue with next VCPU and so on.
3366  */
3367 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3368 {
3369 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3370         bool eligible;
3371
3372         eligible = !vcpu->spin_loop.in_spin_loop ||
3373                     vcpu->spin_loop.dy_eligible;
3374
3375         if (vcpu->spin_loop.in_spin_loop)
3376                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3377
3378         return eligible;
3379 #else
3380         return true;
3381 #endif
3382 }
3383
3384 /*
3385  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3386  * a vcpu_load/vcpu_put pair.  However, for most architectures
3387  * kvm_arch_vcpu_runnable does not require vcpu_load.
3388  */
3389 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3390 {
3391         return kvm_arch_vcpu_runnable(vcpu);
3392 }
3393
3394 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3395 {
3396         if (kvm_arch_dy_runnable(vcpu))
3397                 return true;
3398
3399 #ifdef CONFIG_KVM_ASYNC_PF
3400         if (!list_empty_careful(&vcpu->async_pf.done))
3401                 return true;
3402 #endif
3403
3404         return false;
3405 }
3406
3407 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3408 {
3409         return false;
3410 }
3411
3412 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3413 {
3414         struct kvm *kvm = me->kvm;
3415         struct kvm_vcpu *vcpu;
3416         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3417         int yielded = 0;
3418         int try = 3;
3419         int pass;
3420         int i;
3421
3422         kvm_vcpu_set_in_spin_loop(me, true);
3423         /*
3424          * We boost the priority of a VCPU that is runnable but not
3425          * currently running, because it got preempted by something
3426          * else and called schedule in __vcpu_run.  Hopefully that
3427          * VCPU is holding the lock that we need and will release it.
3428          * We approximate round-robin by starting at the last boosted VCPU.
3429          */
3430         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3431                 kvm_for_each_vcpu(i, vcpu, kvm) {
3432                         if (!pass && i <= last_boosted_vcpu) {
3433                                 i = last_boosted_vcpu;
3434                                 continue;
3435                         } else if (pass && i > last_boosted_vcpu)
3436                                 break;
3437                         if (!READ_ONCE(vcpu->ready))
3438                                 continue;
3439                         if (vcpu == me)
3440                                 continue;
3441                         if (rcuwait_active(&vcpu->wait) &&
3442                             !vcpu_dy_runnable(vcpu))
3443                                 continue;
3444                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3445                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3446                             !kvm_arch_vcpu_in_kernel(vcpu))
3447                                 continue;
3448                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3449                                 continue;
3450
3451                         yielded = kvm_vcpu_yield_to(vcpu);
3452                         if (yielded > 0) {
3453                                 kvm->last_boosted_vcpu = i;
3454                                 break;
3455                         } else if (yielded < 0) {
3456                                 try--;
3457                                 if (!try)
3458                                         break;
3459                         }
3460                 }
3461         }
3462         kvm_vcpu_set_in_spin_loop(me, false);
3463
3464         /* Ensure vcpu is not eligible during next spinloop */
3465         kvm_vcpu_set_dy_eligible(me, false);
3466 }
3467 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3468
3469 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3470 {
3471 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3472         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3473             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3474              kvm->dirty_ring_size / PAGE_SIZE);
3475 #else
3476         return false;
3477 #endif
3478 }
3479
3480 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3481 {
3482         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3483         struct page *page;
3484
3485         if (vmf->pgoff == 0)
3486                 page = virt_to_page(vcpu->run);
3487 #ifdef CONFIG_X86
3488         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3489                 page = virt_to_page(vcpu->arch.pio_data);
3490 #endif
3491 #ifdef CONFIG_KVM_MMIO
3492         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3493                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3494 #endif
3495         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3496                 page = kvm_dirty_ring_get_page(
3497                     &vcpu->dirty_ring,
3498                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3499         else
3500                 return kvm_arch_vcpu_fault(vcpu, vmf);
3501         get_page(page);
3502         vmf->page = page;
3503         return 0;
3504 }
3505
3506 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3507         .fault = kvm_vcpu_fault,
3508 };
3509
3510 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3511 {
3512         struct kvm_vcpu *vcpu = file->private_data;
3513         unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3514
3515         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3516              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3517             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3518                 return -EINVAL;
3519
3520         vma->vm_ops = &kvm_vcpu_vm_ops;
3521         return 0;
3522 }
3523
3524 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3525 {
3526         struct kvm_vcpu *vcpu = filp->private_data;
3527
3528         kvm_put_kvm(vcpu->kvm);
3529         return 0;
3530 }
3531
3532 static struct file_operations kvm_vcpu_fops = {
3533         .release        = kvm_vcpu_release,
3534         .unlocked_ioctl = kvm_vcpu_ioctl,
3535         .mmap           = kvm_vcpu_mmap,
3536         .llseek         = noop_llseek,
3537         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3538 };
3539
3540 /*
3541  * Allocates an inode for the vcpu.
3542  */
3543 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3544 {
3545         char name[8 + 1 + ITOA_MAX_LEN + 1];
3546
3547         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3548         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3549 }
3550
3551 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3552 {
3553 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3554         struct dentry *debugfs_dentry;
3555         char dir_name[ITOA_MAX_LEN * 2];
3556
3557         if (!debugfs_initialized())
3558                 return;
3559
3560         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3561         debugfs_dentry = debugfs_create_dir(dir_name,
3562                                             vcpu->kvm->debugfs_dentry);
3563
3564         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3565 #endif
3566 }
3567
3568 /*
3569  * Creates some virtual cpus.  Good luck creating more than one.
3570  */
3571 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3572 {
3573         int r;
3574         struct kvm_vcpu *vcpu;
3575         struct page *page;
3576
3577         if (id >= KVM_MAX_VCPU_ID)
3578                 return -EINVAL;
3579
3580         mutex_lock(&kvm->lock);
3581         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3582                 mutex_unlock(&kvm->lock);
3583                 return -EINVAL;
3584         }
3585
3586         kvm->created_vcpus++;
3587         mutex_unlock(&kvm->lock);
3588
3589         r = kvm_arch_vcpu_precreate(kvm, id);
3590         if (r)
3591                 goto vcpu_decrement;
3592
3593         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3594         if (!vcpu) {
3595                 r = -ENOMEM;
3596                 goto vcpu_decrement;
3597         }
3598
3599         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3600         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3601         if (!page) {
3602                 r = -ENOMEM;
3603                 goto vcpu_free;
3604         }
3605         vcpu->run = page_address(page);
3606
3607         kvm_vcpu_init(vcpu, kvm, id);
3608
3609         r = kvm_arch_vcpu_create(vcpu);
3610         if (r)
3611                 goto vcpu_free_run_page;
3612
3613         if (kvm->dirty_ring_size) {
3614                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3615                                          id, kvm->dirty_ring_size);
3616                 if (r)
3617                         goto arch_vcpu_destroy;
3618         }
3619
3620         mutex_lock(&kvm->lock);
3621         if (kvm_get_vcpu_by_id(kvm, id)) {
3622                 r = -EEXIST;
3623                 goto unlock_vcpu_destroy;
3624         }
3625
3626         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3627         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3628
3629         /* Fill the stats id string for the vcpu */
3630         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
3631                  task_pid_nr(current), id);
3632
3633         /* Now it's all set up, let userspace reach it */
3634         kvm_get_kvm(kvm);
3635         r = create_vcpu_fd(vcpu);
3636         if (r < 0) {
3637                 kvm_put_kvm_no_destroy(kvm);
3638                 goto unlock_vcpu_destroy;
3639         }
3640
3641         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3642
3643         /*
3644          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3645          * before kvm->online_vcpu's incremented value.
3646          */
3647         smp_wmb();
3648         atomic_inc(&kvm->online_vcpus);
3649
3650         mutex_unlock(&kvm->lock);
3651         kvm_arch_vcpu_postcreate(vcpu);
3652         kvm_create_vcpu_debugfs(vcpu);
3653         return r;
3654
3655 unlock_vcpu_destroy:
3656         mutex_unlock(&kvm->lock);
3657         kvm_dirty_ring_free(&vcpu->dirty_ring);
3658 arch_vcpu_destroy:
3659         kvm_arch_vcpu_destroy(vcpu);
3660 vcpu_free_run_page:
3661         free_page((unsigned long)vcpu->run);
3662 vcpu_free:
3663         kmem_cache_free(kvm_vcpu_cache, vcpu);
3664 vcpu_decrement:
3665         mutex_lock(&kvm->lock);
3666         kvm->created_vcpus--;
3667         mutex_unlock(&kvm->lock);
3668         return r;
3669 }
3670
3671 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3672 {
3673         if (sigset) {
3674                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3675                 vcpu->sigset_active = 1;
3676                 vcpu->sigset = *sigset;
3677         } else
3678                 vcpu->sigset_active = 0;
3679         return 0;
3680 }
3681
3682 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
3683                               size_t size, loff_t *offset)
3684 {
3685         struct kvm_vcpu *vcpu = file->private_data;
3686
3687         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
3688                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
3689                         sizeof(vcpu->stat), user_buffer, size, offset);
3690 }
3691
3692 static const struct file_operations kvm_vcpu_stats_fops = {
3693         .read = kvm_vcpu_stats_read,
3694         .llseek = noop_llseek,
3695 };
3696
3697 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
3698 {
3699         int fd;
3700         struct file *file;
3701         char name[15 + ITOA_MAX_LEN + 1];
3702
3703         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
3704
3705         fd = get_unused_fd_flags(O_CLOEXEC);
3706         if (fd < 0)
3707                 return fd;
3708
3709         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
3710         if (IS_ERR(file)) {
3711                 put_unused_fd(fd);
3712                 return PTR_ERR(file);
3713         }
3714         file->f_mode |= FMODE_PREAD;
3715         fd_install(fd, file);
3716
3717         return fd;
3718 }
3719
3720 static long kvm_vcpu_ioctl(struct file *filp,
3721                            unsigned int ioctl, unsigned long arg)
3722 {
3723         struct kvm_vcpu *vcpu = filp->private_data;
3724         void __user *argp = (void __user *)arg;
3725         int r;
3726         struct kvm_fpu *fpu = NULL;
3727         struct kvm_sregs *kvm_sregs = NULL;
3728
3729         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3730                 return -EIO;
3731
3732         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3733                 return -EINVAL;
3734
3735         /*
3736          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3737          * execution; mutex_lock() would break them.
3738          */
3739         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3740         if (r != -ENOIOCTLCMD)
3741                 return r;
3742
3743         if (mutex_lock_killable(&vcpu->mutex))
3744                 return -EINTR;
3745         switch (ioctl) {
3746         case KVM_RUN: {
3747                 struct pid *oldpid;
3748                 r = -EINVAL;
3749                 if (arg)
3750                         goto out;
3751                 oldpid = rcu_access_pointer(vcpu->pid);
3752                 if (unlikely(oldpid != task_pid(current))) {
3753                         /* The thread running this VCPU changed. */
3754                         struct pid *newpid;
3755
3756                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3757                         if (r)
3758                                 break;
3759
3760                         newpid = get_task_pid(current, PIDTYPE_PID);
3761                         rcu_assign_pointer(vcpu->pid, newpid);
3762                         if (oldpid)
3763                                 synchronize_rcu();
3764                         put_pid(oldpid);
3765                 }
3766                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3767                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3768                 break;
3769         }
3770         case KVM_GET_REGS: {
3771                 struct kvm_regs *kvm_regs;
3772
3773                 r = -ENOMEM;
3774                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3775                 if (!kvm_regs)
3776                         goto out;
3777                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3778                 if (r)
3779                         goto out_free1;
3780                 r = -EFAULT;
3781                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3782                         goto out_free1;
3783                 r = 0;
3784 out_free1:
3785                 kfree(kvm_regs);
3786                 break;
3787         }
3788         case KVM_SET_REGS: {
3789                 struct kvm_regs *kvm_regs;
3790
3791                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3792                 if (IS_ERR(kvm_regs)) {
3793                         r = PTR_ERR(kvm_regs);
3794                         goto out;
3795                 }
3796                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3797                 kfree(kvm_regs);
3798                 break;
3799         }
3800         case KVM_GET_SREGS: {
3801                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3802                                     GFP_KERNEL_ACCOUNT);
3803                 r = -ENOMEM;
3804                 if (!kvm_sregs)
3805                         goto out;
3806                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3807                 if (r)
3808                         goto out;
3809                 r = -EFAULT;
3810                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3811                         goto out;
3812                 r = 0;
3813                 break;
3814         }
3815         case KVM_SET_SREGS: {
3816                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3817                 if (IS_ERR(kvm_sregs)) {
3818                         r = PTR_ERR(kvm_sregs);
3819                         kvm_sregs = NULL;
3820                         goto out;
3821                 }
3822                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3823                 break;
3824         }
3825         case KVM_GET_MP_STATE: {
3826                 struct kvm_mp_state mp_state;
3827
3828                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3829                 if (r)
3830                         goto out;
3831                 r = -EFAULT;
3832                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3833                         goto out;
3834                 r = 0;
3835                 break;
3836         }
3837         case KVM_SET_MP_STATE: {
3838                 struct kvm_mp_state mp_state;
3839
3840                 r = -EFAULT;
3841                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3842                         goto out;
3843                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3844                 break;
3845         }
3846         case KVM_TRANSLATE: {
3847                 struct kvm_translation tr;
3848
3849                 r = -EFAULT;
3850                 if (copy_from_user(&tr, argp, sizeof(tr)))
3851                         goto out;
3852                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3853                 if (r)
3854                         goto out;
3855                 r = -EFAULT;
3856                 if (copy_to_user(argp, &tr, sizeof(tr)))
3857                         goto out;
3858                 r = 0;
3859                 break;
3860         }
3861         case KVM_SET_GUEST_DEBUG: {
3862                 struct kvm_guest_debug dbg;
3863
3864                 r = -EFAULT;
3865                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3866                         goto out;
3867                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3868                 break;
3869         }
3870         case KVM_SET_SIGNAL_MASK: {
3871                 struct kvm_signal_mask __user *sigmask_arg = argp;
3872                 struct kvm_signal_mask kvm_sigmask;
3873                 sigset_t sigset, *p;
3874
3875                 p = NULL;
3876                 if (argp) {
3877                         r = -EFAULT;
3878                         if (copy_from_user(&kvm_sigmask, argp,
3879                                            sizeof(kvm_sigmask)))
3880                                 goto out;
3881                         r = -EINVAL;
3882                         if (kvm_sigmask.len != sizeof(sigset))
3883                                 goto out;
3884                         r = -EFAULT;
3885                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3886                                            sizeof(sigset)))
3887                                 goto out;
3888                         p = &sigset;
3889                 }
3890                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3891                 break;
3892         }
3893         case KVM_GET_FPU: {
3894                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3895                 r = -ENOMEM;
3896                 if (!fpu)
3897                         goto out;
3898                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3899                 if (r)
3900                         goto out;
3901                 r = -EFAULT;
3902                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3903                         goto out;
3904                 r = 0;
3905                 break;
3906         }
3907         case KVM_SET_FPU: {
3908                 fpu = memdup_user(argp, sizeof(*fpu));
3909                 if (IS_ERR(fpu)) {
3910                         r = PTR_ERR(fpu);
3911                         fpu = NULL;
3912                         goto out;
3913                 }
3914                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3915                 break;
3916         }
3917         case KVM_GET_STATS_FD: {
3918                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
3919                 break;
3920         }
3921         default:
3922                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3923         }
3924 out:
3925         mutex_unlock(&vcpu->mutex);
3926         kfree(fpu);
3927         kfree(kvm_sregs);
3928         return r;
3929 }
3930
3931 #ifdef CONFIG_KVM_COMPAT
3932 static long kvm_vcpu_compat_ioctl(struct file *filp,
3933                                   unsigned int ioctl, unsigned long arg)
3934 {
3935         struct kvm_vcpu *vcpu = filp->private_data;
3936         void __user *argp = compat_ptr(arg);
3937         int r;
3938
3939         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_bugged)
3940                 return -EIO;
3941
3942         switch (ioctl) {
3943         case KVM_SET_SIGNAL_MASK: {
3944                 struct kvm_signal_mask __user *sigmask_arg = argp;
3945                 struct kvm_signal_mask kvm_sigmask;
3946                 sigset_t sigset;
3947
3948                 if (argp) {
3949                         r = -EFAULT;
3950                         if (copy_from_user(&kvm_sigmask, argp,
3951                                            sizeof(kvm_sigmask)))
3952                                 goto out;
3953                         r = -EINVAL;
3954                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3955                                 goto out;
3956                         r = -EFAULT;
3957                         if (get_compat_sigset(&sigset,
3958                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3959                                 goto out;
3960                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3961                 } else
3962                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3963                 break;
3964         }
3965         default:
3966                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3967         }
3968
3969 out:
3970         return r;
3971 }
3972 #endif
3973
3974 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3975 {
3976         struct kvm_device *dev = filp->private_data;
3977
3978         if (dev->ops->mmap)
3979                 return dev->ops->mmap(dev, vma);
3980
3981         return -ENODEV;
3982 }
3983
3984 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3985                                  int (*accessor)(struct kvm_device *dev,
3986                                                  struct kvm_device_attr *attr),
3987                                  unsigned long arg)
3988 {
3989         struct kvm_device_attr attr;
3990
3991         if (!accessor)
3992                 return -EPERM;
3993
3994         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3995                 return -EFAULT;
3996
3997         return accessor(dev, &attr);
3998 }
3999
4000 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4001                              unsigned long arg)
4002 {
4003         struct kvm_device *dev = filp->private_data;
4004
4005         if (dev->kvm->mm != current->mm || dev->kvm->vm_bugged)
4006                 return -EIO;
4007
4008         switch (ioctl) {
4009         case KVM_SET_DEVICE_ATTR:
4010                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4011         case KVM_GET_DEVICE_ATTR:
4012                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4013         case KVM_HAS_DEVICE_ATTR:
4014                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4015         default:
4016                 if (dev->ops->ioctl)
4017                         return dev->ops->ioctl(dev, ioctl, arg);
4018
4019                 return -ENOTTY;
4020         }
4021 }
4022
4023 static int kvm_device_release(struct inode *inode, struct file *filp)
4024 {
4025         struct kvm_device *dev = filp->private_data;
4026         struct kvm *kvm = dev->kvm;
4027
4028         if (dev->ops->release) {
4029                 mutex_lock(&kvm->lock);
4030                 list_del(&dev->vm_node);
4031                 dev->ops->release(dev);
4032                 mutex_unlock(&kvm->lock);
4033         }
4034
4035         kvm_put_kvm(kvm);
4036         return 0;
4037 }
4038
4039 static const struct file_operations kvm_device_fops = {
4040         .unlocked_ioctl = kvm_device_ioctl,
4041         .release = kvm_device_release,
4042         KVM_COMPAT(kvm_device_ioctl),
4043         .mmap = kvm_device_mmap,
4044 };
4045
4046 struct kvm_device *kvm_device_from_filp(struct file *filp)
4047 {
4048         if (filp->f_op != &kvm_device_fops)
4049                 return NULL;
4050
4051         return filp->private_data;
4052 }
4053
4054 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4055 #ifdef CONFIG_KVM_MPIC
4056         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4057         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4058 #endif
4059 };
4060
4061 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4062 {
4063         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4064                 return -ENOSPC;
4065
4066         if (kvm_device_ops_table[type] != NULL)
4067                 return -EEXIST;
4068
4069         kvm_device_ops_table[type] = ops;
4070         return 0;
4071 }
4072
4073 void kvm_unregister_device_ops(u32 type)
4074 {
4075         if (kvm_device_ops_table[type] != NULL)
4076                 kvm_device_ops_table[type] = NULL;
4077 }
4078
4079 static int kvm_ioctl_create_device(struct kvm *kvm,
4080                                    struct kvm_create_device *cd)
4081 {
4082         const struct kvm_device_ops *ops = NULL;
4083         struct kvm_device *dev;
4084         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4085         int type;
4086         int ret;
4087
4088         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4089                 return -ENODEV;
4090
4091         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4092         ops = kvm_device_ops_table[type];
4093         if (ops == NULL)
4094                 return -ENODEV;
4095
4096         if (test)
4097                 return 0;
4098
4099         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4100         if (!dev)
4101                 return -ENOMEM;
4102
4103         dev->ops = ops;
4104         dev->kvm = kvm;
4105
4106         mutex_lock(&kvm->lock);
4107         ret = ops->create(dev, type);
4108         if (ret < 0) {
4109                 mutex_unlock(&kvm->lock);
4110                 kfree(dev);
4111                 return ret;
4112         }
4113         list_add(&dev->vm_node, &kvm->devices);
4114         mutex_unlock(&kvm->lock);
4115
4116         if (ops->init)
4117                 ops->init(dev);
4118
4119         kvm_get_kvm(kvm);
4120         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4121         if (ret < 0) {
4122                 kvm_put_kvm_no_destroy(kvm);
4123                 mutex_lock(&kvm->lock);
4124                 list_del(&dev->vm_node);
4125                 mutex_unlock(&kvm->lock);
4126                 ops->destroy(dev);
4127                 return ret;
4128         }
4129
4130         cd->fd = ret;
4131         return 0;
4132 }
4133
4134 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4135 {
4136         switch (arg) {
4137         case KVM_CAP_USER_MEMORY:
4138         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4139         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4140         case KVM_CAP_INTERNAL_ERROR_DATA:
4141 #ifdef CONFIG_HAVE_KVM_MSI
4142         case KVM_CAP_SIGNAL_MSI:
4143 #endif
4144 #ifdef CONFIG_HAVE_KVM_IRQFD
4145         case KVM_CAP_IRQFD:
4146         case KVM_CAP_IRQFD_RESAMPLE:
4147 #endif
4148         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4149         case KVM_CAP_CHECK_EXTENSION_VM:
4150         case KVM_CAP_ENABLE_CAP_VM:
4151         case KVM_CAP_HALT_POLL:
4152                 return 1;
4153 #ifdef CONFIG_KVM_MMIO
4154         case KVM_CAP_COALESCED_MMIO:
4155                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4156         case KVM_CAP_COALESCED_PIO:
4157                 return 1;
4158 #endif
4159 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4160         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4161                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4162 #endif
4163 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4164         case KVM_CAP_IRQ_ROUTING:
4165                 return KVM_MAX_IRQ_ROUTES;
4166 #endif
4167 #if KVM_ADDRESS_SPACE_NUM > 1
4168         case KVM_CAP_MULTI_ADDRESS_SPACE:
4169                 return KVM_ADDRESS_SPACE_NUM;
4170 #endif
4171         case KVM_CAP_NR_MEMSLOTS:
4172                 return KVM_USER_MEM_SLOTS;
4173         case KVM_CAP_DIRTY_LOG_RING:
4174 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
4175                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4176 #else
4177                 return 0;
4178 #endif
4179         case KVM_CAP_BINARY_STATS_FD:
4180                 return 1;
4181         default:
4182                 break;
4183         }
4184         return kvm_vm_ioctl_check_extension(kvm, arg);
4185 }
4186
4187 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4188 {
4189         int r;
4190
4191         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4192                 return -EINVAL;
4193
4194         /* the size should be power of 2 */
4195         if (!size || (size & (size - 1)))
4196                 return -EINVAL;
4197
4198         /* Should be bigger to keep the reserved entries, or a page */
4199         if (size < kvm_dirty_ring_get_rsvd_entries() *
4200             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4201                 return -EINVAL;
4202
4203         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4204             sizeof(struct kvm_dirty_gfn))
4205                 return -E2BIG;
4206
4207         /* We only allow it to set once */
4208         if (kvm->dirty_ring_size)
4209                 return -EINVAL;
4210
4211         mutex_lock(&kvm->lock);
4212
4213         if (kvm->created_vcpus) {
4214                 /* We don't allow to change this value after vcpu created */
4215                 r = -EINVAL;
4216         } else {
4217                 kvm->dirty_ring_size = size;
4218                 r = 0;
4219         }
4220
4221         mutex_unlock(&kvm->lock);
4222         return r;
4223 }
4224
4225 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4226 {
4227         int i;
4228         struct kvm_vcpu *vcpu;
4229         int cleared = 0;
4230
4231         if (!kvm->dirty_ring_size)
4232                 return -EINVAL;
4233
4234         mutex_lock(&kvm->slots_lock);
4235
4236         kvm_for_each_vcpu(i, vcpu, kvm)
4237                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4238
4239         mutex_unlock(&kvm->slots_lock);
4240
4241         if (cleared)
4242                 kvm_flush_remote_tlbs(kvm);
4243
4244         return cleared;
4245 }
4246
4247 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4248                                                   struct kvm_enable_cap *cap)
4249 {
4250         return -EINVAL;
4251 }
4252
4253 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4254                                            struct kvm_enable_cap *cap)
4255 {
4256         switch (cap->cap) {
4257 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4258         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4259                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4260
4261                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4262                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4263
4264                 if (cap->flags || (cap->args[0] & ~allowed_options))
4265                         return -EINVAL;
4266                 kvm->manual_dirty_log_protect = cap->args[0];
4267                 return 0;
4268         }
4269 #endif
4270         case KVM_CAP_HALT_POLL: {
4271                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4272                         return -EINVAL;
4273
4274                 kvm->max_halt_poll_ns = cap->args[0];
4275                 return 0;
4276         }
4277         case KVM_CAP_DIRTY_LOG_RING:
4278                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4279         default:
4280                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4281         }
4282 }
4283
4284 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4285                               size_t size, loff_t *offset)
4286 {
4287         struct kvm *kvm = file->private_data;
4288
4289         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4290                                 &kvm_vm_stats_desc[0], &kvm->stat,
4291                                 sizeof(kvm->stat), user_buffer, size, offset);
4292 }
4293
4294 static const struct file_operations kvm_vm_stats_fops = {
4295         .read = kvm_vm_stats_read,
4296         .llseek = noop_llseek,
4297 };
4298
4299 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4300 {
4301         int fd;
4302         struct file *file;
4303
4304         fd = get_unused_fd_flags(O_CLOEXEC);
4305         if (fd < 0)
4306                 return fd;
4307
4308         file = anon_inode_getfile("kvm-vm-stats",
4309                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4310         if (IS_ERR(file)) {
4311                 put_unused_fd(fd);
4312                 return PTR_ERR(file);
4313         }
4314         file->f_mode |= FMODE_PREAD;
4315         fd_install(fd, file);
4316
4317         return fd;
4318 }
4319
4320 static long kvm_vm_ioctl(struct file *filp,
4321                            unsigned int ioctl, unsigned long arg)
4322 {
4323         struct kvm *kvm = filp->private_data;
4324         void __user *argp = (void __user *)arg;
4325         int r;
4326
4327         if (kvm->mm != current->mm || kvm->vm_bugged)
4328                 return -EIO;
4329         switch (ioctl) {
4330         case KVM_CREATE_VCPU:
4331                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4332                 break;
4333         case KVM_ENABLE_CAP: {
4334                 struct kvm_enable_cap cap;
4335
4336                 r = -EFAULT;
4337                 if (copy_from_user(&cap, argp, sizeof(cap)))
4338                         goto out;
4339                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4340                 break;
4341         }
4342         case KVM_SET_USER_MEMORY_REGION: {
4343                 struct kvm_userspace_memory_region kvm_userspace_mem;
4344
4345                 r = -EFAULT;
4346                 if (copy_from_user(&kvm_userspace_mem, argp,
4347                                                 sizeof(kvm_userspace_mem)))
4348                         goto out;
4349
4350                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4351                 break;
4352         }
4353         case KVM_GET_DIRTY_LOG: {
4354                 struct kvm_dirty_log log;
4355
4356                 r = -EFAULT;
4357                 if (copy_from_user(&log, argp, sizeof(log)))
4358                         goto out;
4359                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4360                 break;
4361         }
4362 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4363         case KVM_CLEAR_DIRTY_LOG: {
4364                 struct kvm_clear_dirty_log log;
4365
4366                 r = -EFAULT;
4367                 if (copy_from_user(&log, argp, sizeof(log)))
4368                         goto out;
4369                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4370                 break;
4371         }
4372 #endif
4373 #ifdef CONFIG_KVM_MMIO
4374         case KVM_REGISTER_COALESCED_MMIO: {
4375                 struct kvm_coalesced_mmio_zone zone;
4376
4377                 r = -EFAULT;
4378                 if (copy_from_user(&zone, argp, sizeof(zone)))
4379                         goto out;
4380                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4381                 break;
4382         }
4383         case KVM_UNREGISTER_COALESCED_MMIO: {
4384                 struct kvm_coalesced_mmio_zone zone;
4385
4386                 r = -EFAULT;
4387                 if (copy_from_user(&zone, argp, sizeof(zone)))
4388                         goto out;
4389                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4390                 break;
4391         }
4392 #endif
4393         case KVM_IRQFD: {
4394                 struct kvm_irqfd data;
4395
4396                 r = -EFAULT;
4397                 if (copy_from_user(&data, argp, sizeof(data)))
4398                         goto out;
4399                 r = kvm_irqfd(kvm, &data);
4400                 break;
4401         }
4402         case KVM_IOEVENTFD: {
4403                 struct kvm_ioeventfd data;
4404
4405                 r = -EFAULT;
4406                 if (copy_from_user(&data, argp, sizeof(data)))
4407                         goto out;
4408                 r = kvm_ioeventfd(kvm, &data);
4409                 break;
4410         }
4411 #ifdef CONFIG_HAVE_KVM_MSI
4412         case KVM_SIGNAL_MSI: {
4413                 struct kvm_msi msi;
4414
4415                 r = -EFAULT;
4416                 if (copy_from_user(&msi, argp, sizeof(msi)))
4417                         goto out;
4418                 r = kvm_send_userspace_msi(kvm, &msi);
4419                 break;
4420         }
4421 #endif
4422 #ifdef __KVM_HAVE_IRQ_LINE
4423         case KVM_IRQ_LINE_STATUS:
4424         case KVM_IRQ_LINE: {
4425                 struct kvm_irq_level irq_event;
4426
4427                 r = -EFAULT;
4428                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4429                         goto out;
4430
4431                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4432                                         ioctl == KVM_IRQ_LINE_STATUS);
4433                 if (r)
4434                         goto out;
4435
4436                 r = -EFAULT;
4437                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4438                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4439                                 goto out;
4440                 }
4441
4442                 r = 0;
4443                 break;
4444         }
4445 #endif
4446 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4447         case KVM_SET_GSI_ROUTING: {
4448                 struct kvm_irq_routing routing;
4449                 struct kvm_irq_routing __user *urouting;
4450                 struct kvm_irq_routing_entry *entries = NULL;
4451
4452                 r = -EFAULT;
4453                 if (copy_from_user(&routing, argp, sizeof(routing)))
4454                         goto out;
4455                 r = -EINVAL;
4456                 if (!kvm_arch_can_set_irq_routing(kvm))
4457                         goto out;
4458                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4459                         goto out;
4460                 if (routing.flags)
4461                         goto out;
4462                 if (routing.nr) {
4463                         urouting = argp;
4464                         entries = vmemdup_user(urouting->entries,
4465                                                array_size(sizeof(*entries),
4466                                                           routing.nr));
4467                         if (IS_ERR(entries)) {
4468                                 r = PTR_ERR(entries);
4469                                 goto out;
4470                         }
4471                 }
4472                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4473                                         routing.flags);
4474                 kvfree(entries);
4475                 break;
4476         }
4477 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4478         case KVM_CREATE_DEVICE: {
4479                 struct kvm_create_device cd;
4480
4481                 r = -EFAULT;
4482                 if (copy_from_user(&cd, argp, sizeof(cd)))
4483                         goto out;
4484
4485                 r = kvm_ioctl_create_device(kvm, &cd);
4486                 if (r)
4487                         goto out;
4488
4489                 r = -EFAULT;
4490                 if (copy_to_user(argp, &cd, sizeof(cd)))
4491                         goto out;
4492
4493                 r = 0;
4494                 break;
4495         }
4496         case KVM_CHECK_EXTENSION:
4497                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4498                 break;
4499         case KVM_RESET_DIRTY_RINGS:
4500                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4501                 break;
4502         case KVM_GET_STATS_FD:
4503                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4504                 break;
4505         default:
4506                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4507         }
4508 out:
4509         return r;
4510 }
4511
4512 #ifdef CONFIG_KVM_COMPAT
4513 struct compat_kvm_dirty_log {
4514         __u32 slot;
4515         __u32 padding1;
4516         union {
4517                 compat_uptr_t dirty_bitmap; /* one bit per page */
4518                 __u64 padding2;
4519         };
4520 };
4521
4522 struct compat_kvm_clear_dirty_log {
4523         __u32 slot;
4524         __u32 num_pages;
4525         __u64 first_page;
4526         union {
4527                 compat_uptr_t dirty_bitmap; /* one bit per page */
4528                 __u64 padding2;
4529         };
4530 };
4531
4532 static long kvm_vm_compat_ioctl(struct file *filp,
4533                            unsigned int ioctl, unsigned long arg)
4534 {
4535         struct kvm *kvm = filp->private_data;
4536         int r;
4537
4538         if (kvm->mm != current->mm || kvm->vm_bugged)
4539                 return -EIO;
4540         switch (ioctl) {
4541 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4542         case KVM_CLEAR_DIRTY_LOG: {
4543                 struct compat_kvm_clear_dirty_log compat_log;
4544                 struct kvm_clear_dirty_log log;
4545
4546                 if (copy_from_user(&compat_log, (void __user *)arg,
4547                                    sizeof(compat_log)))
4548                         return -EFAULT;
4549                 log.slot         = compat_log.slot;
4550                 log.num_pages    = compat_log.num_pages;
4551                 log.first_page   = compat_log.first_page;
4552                 log.padding2     = compat_log.padding2;
4553                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4554
4555                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4556                 break;
4557         }
4558 #endif
4559         case KVM_GET_DIRTY_LOG: {
4560                 struct compat_kvm_dirty_log compat_log;
4561                 struct kvm_dirty_log log;
4562
4563                 if (copy_from_user(&compat_log, (void __user *)arg,
4564                                    sizeof(compat_log)))
4565                         return -EFAULT;
4566                 log.slot         = compat_log.slot;
4567                 log.padding1     = compat_log.padding1;
4568                 log.padding2     = compat_log.padding2;
4569                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4570
4571                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4572                 break;
4573         }
4574         default:
4575                 r = kvm_vm_ioctl(filp, ioctl, arg);
4576         }
4577         return r;
4578 }
4579 #endif
4580
4581 static struct file_operations kvm_vm_fops = {
4582         .release        = kvm_vm_release,
4583         .unlocked_ioctl = kvm_vm_ioctl,
4584         .llseek         = noop_llseek,
4585         KVM_COMPAT(kvm_vm_compat_ioctl),
4586 };
4587
4588 bool file_is_kvm(struct file *file)
4589 {
4590         return file && file->f_op == &kvm_vm_fops;
4591 }
4592 EXPORT_SYMBOL_GPL(file_is_kvm);
4593
4594 static int kvm_dev_ioctl_create_vm(unsigned long type)
4595 {
4596         int r;
4597         struct kvm *kvm;
4598         struct file *file;
4599
4600         kvm = kvm_create_vm(type);
4601         if (IS_ERR(kvm))
4602                 return PTR_ERR(kvm);
4603 #ifdef CONFIG_KVM_MMIO
4604         r = kvm_coalesced_mmio_init(kvm);
4605         if (r < 0)
4606                 goto put_kvm;
4607 #endif
4608         r = get_unused_fd_flags(O_CLOEXEC);
4609         if (r < 0)
4610                 goto put_kvm;
4611
4612         snprintf(kvm->stats_id, sizeof(kvm->stats_id),
4613                         "kvm-%d", task_pid_nr(current));
4614
4615         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4616         if (IS_ERR(file)) {
4617                 put_unused_fd(r);
4618                 r = PTR_ERR(file);
4619                 goto put_kvm;
4620         }
4621
4622         /*
4623          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4624          * already set, with ->release() being kvm_vm_release().  In error
4625          * cases it will be called by the final fput(file) and will take
4626          * care of doing kvm_put_kvm(kvm).
4627          */
4628         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4629                 put_unused_fd(r);
4630                 fput(file);
4631                 return -ENOMEM;
4632         }
4633         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4634
4635         fd_install(r, file);
4636         return r;
4637
4638 put_kvm:
4639         kvm_put_kvm(kvm);
4640         return r;
4641 }
4642
4643 static long kvm_dev_ioctl(struct file *filp,
4644                           unsigned int ioctl, unsigned long arg)
4645 {
4646         long r = -EINVAL;
4647
4648         switch (ioctl) {
4649         case KVM_GET_API_VERSION:
4650                 if (arg)
4651                         goto out;
4652                 r = KVM_API_VERSION;
4653                 break;
4654         case KVM_CREATE_VM:
4655                 r = kvm_dev_ioctl_create_vm(arg);
4656                 break;
4657         case KVM_CHECK_EXTENSION:
4658                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4659                 break;
4660         case KVM_GET_VCPU_MMAP_SIZE:
4661                 if (arg)
4662                         goto out;
4663                 r = PAGE_SIZE;     /* struct kvm_run */
4664 #ifdef CONFIG_X86
4665                 r += PAGE_SIZE;    /* pio data page */
4666 #endif
4667 #ifdef CONFIG_KVM_MMIO
4668                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4669 #endif
4670                 break;
4671         case KVM_TRACE_ENABLE:
4672         case KVM_TRACE_PAUSE:
4673         case KVM_TRACE_DISABLE:
4674                 r = -EOPNOTSUPP;
4675                 break;
4676         default:
4677                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4678         }
4679 out:
4680         return r;
4681 }
4682
4683 static struct file_operations kvm_chardev_ops = {
4684         .unlocked_ioctl = kvm_dev_ioctl,
4685         .llseek         = noop_llseek,
4686         KVM_COMPAT(kvm_dev_ioctl),
4687 };
4688
4689 static struct miscdevice kvm_dev = {
4690         KVM_MINOR,
4691         "kvm",
4692         &kvm_chardev_ops,
4693 };
4694
4695 static void hardware_enable_nolock(void *junk)
4696 {
4697         int cpu = raw_smp_processor_id();
4698         int r;
4699
4700         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4701                 return;
4702
4703         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4704
4705         r = kvm_arch_hardware_enable();
4706
4707         if (r) {
4708                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4709                 atomic_inc(&hardware_enable_failed);
4710                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4711         }
4712 }
4713
4714 static int kvm_starting_cpu(unsigned int cpu)
4715 {
4716         raw_spin_lock(&kvm_count_lock);
4717         if (kvm_usage_count)
4718                 hardware_enable_nolock(NULL);
4719         raw_spin_unlock(&kvm_count_lock);
4720         return 0;
4721 }
4722
4723 static void hardware_disable_nolock(void *junk)
4724 {
4725         int cpu = raw_smp_processor_id();
4726
4727         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4728                 return;
4729         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4730         kvm_arch_hardware_disable();
4731 }
4732
4733 static int kvm_dying_cpu(unsigned int cpu)
4734 {
4735         raw_spin_lock(&kvm_count_lock);
4736         if (kvm_usage_count)
4737                 hardware_disable_nolock(NULL);
4738         raw_spin_unlock(&kvm_count_lock);
4739         return 0;
4740 }
4741
4742 static void hardware_disable_all_nolock(void)
4743 {
4744         BUG_ON(!kvm_usage_count);
4745
4746         kvm_usage_count--;
4747         if (!kvm_usage_count)
4748                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4749 }
4750
4751 static void hardware_disable_all(void)
4752 {
4753         raw_spin_lock(&kvm_count_lock);
4754         hardware_disable_all_nolock();
4755         raw_spin_unlock(&kvm_count_lock);
4756 }
4757
4758 static int hardware_enable_all(void)
4759 {
4760         int r = 0;
4761
4762         raw_spin_lock(&kvm_count_lock);
4763
4764         kvm_usage_count++;
4765         if (kvm_usage_count == 1) {
4766                 atomic_set(&hardware_enable_failed, 0);
4767                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4768
4769                 if (atomic_read(&hardware_enable_failed)) {
4770                         hardware_disable_all_nolock();
4771                         r = -EBUSY;
4772                 }
4773         }
4774
4775         raw_spin_unlock(&kvm_count_lock);
4776
4777         return r;
4778 }
4779
4780 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4781                       void *v)
4782 {
4783         /*
4784          * Some (well, at least mine) BIOSes hang on reboot if
4785          * in vmx root mode.
4786          *
4787          * And Intel TXT required VMX off for all cpu when system shutdown.
4788          */
4789         pr_info("kvm: exiting hardware virtualization\n");
4790         kvm_rebooting = true;
4791         on_each_cpu(hardware_disable_nolock, NULL, 1);
4792         return NOTIFY_OK;
4793 }
4794
4795 static struct notifier_block kvm_reboot_notifier = {
4796         .notifier_call = kvm_reboot,
4797         .priority = 0,
4798 };
4799
4800 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4801 {
4802         int i;
4803
4804         for (i = 0; i < bus->dev_count; i++) {
4805                 struct kvm_io_device *pos = bus->range[i].dev;
4806
4807                 kvm_iodevice_destructor(pos);
4808         }
4809         kfree(bus);
4810 }
4811
4812 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4813                                  const struct kvm_io_range *r2)
4814 {
4815         gpa_t addr1 = r1->addr;
4816         gpa_t addr2 = r2->addr;
4817
4818         if (addr1 < addr2)
4819                 return -1;
4820
4821         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4822          * accept any overlapping write.  Any order is acceptable for
4823          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4824          * we process all of them.
4825          */
4826         if (r2->len) {
4827                 addr1 += r1->len;
4828                 addr2 += r2->len;
4829         }
4830
4831         if (addr1 > addr2)
4832                 return 1;
4833
4834         return 0;
4835 }
4836
4837 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4838 {
4839         return kvm_io_bus_cmp(p1, p2);
4840 }
4841
4842 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4843                              gpa_t addr, int len)
4844 {
4845         struct kvm_io_range *range, key;
4846         int off;
4847
4848         key = (struct kvm_io_range) {
4849                 .addr = addr,
4850                 .len = len,
4851         };
4852
4853         range = bsearch(&key, bus->range, bus->dev_count,
4854                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4855         if (range == NULL)
4856                 return -ENOENT;
4857
4858         off = range - bus->range;
4859
4860         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4861                 off--;
4862
4863         return off;
4864 }
4865
4866 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4867                               struct kvm_io_range *range, const void *val)
4868 {
4869         int idx;
4870
4871         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4872         if (idx < 0)
4873                 return -EOPNOTSUPP;
4874
4875         while (idx < bus->dev_count &&
4876                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4877                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4878                                         range->len, val))
4879                         return idx;
4880                 idx++;
4881         }
4882
4883         return -EOPNOTSUPP;
4884 }
4885
4886 /* kvm_io_bus_write - called under kvm->slots_lock */
4887 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4888                      int len, const void *val)
4889 {
4890         struct kvm_io_bus *bus;
4891         struct kvm_io_range range;
4892         int r;
4893
4894         range = (struct kvm_io_range) {
4895                 .addr = addr,
4896                 .len = len,
4897         };
4898
4899         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4900         if (!bus)
4901                 return -ENOMEM;
4902         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4903         return r < 0 ? r : 0;
4904 }
4905 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4906
4907 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4908 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4909                             gpa_t addr, int len, const void *val, long cookie)
4910 {
4911         struct kvm_io_bus *bus;
4912         struct kvm_io_range range;
4913
4914         range = (struct kvm_io_range) {
4915                 .addr = addr,
4916                 .len = len,
4917         };
4918
4919         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4920         if (!bus)
4921                 return -ENOMEM;
4922
4923         /* First try the device referenced by cookie. */
4924         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4925             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4926                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4927                                         val))
4928                         return cookie;
4929
4930         /*
4931          * cookie contained garbage; fall back to search and return the
4932          * correct cookie value.
4933          */
4934         return __kvm_io_bus_write(vcpu, bus, &range, val);
4935 }
4936
4937 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4938                              struct kvm_io_range *range, void *val)
4939 {
4940         int idx;
4941
4942         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4943         if (idx < 0)
4944                 return -EOPNOTSUPP;
4945
4946         while (idx < bus->dev_count &&
4947                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4948                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4949                                        range->len, val))
4950                         return idx;
4951                 idx++;
4952         }
4953
4954         return -EOPNOTSUPP;
4955 }
4956
4957 /* kvm_io_bus_read - called under kvm->slots_lock */
4958 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4959                     int len, void *val)
4960 {
4961         struct kvm_io_bus *bus;
4962         struct kvm_io_range range;
4963         int r;
4964
4965         range = (struct kvm_io_range) {
4966                 .addr = addr,
4967                 .len = len,
4968         };
4969
4970         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4971         if (!bus)
4972                 return -ENOMEM;
4973         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4974         return r < 0 ? r : 0;
4975 }
4976
4977 /* Caller must hold slots_lock. */
4978 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4979                             int len, struct kvm_io_device *dev)
4980 {
4981         int i;
4982         struct kvm_io_bus *new_bus, *bus;
4983         struct kvm_io_range range;
4984
4985         bus = kvm_get_bus(kvm, bus_idx);
4986         if (!bus)
4987                 return -ENOMEM;
4988
4989         /* exclude ioeventfd which is limited by maximum fd */
4990         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4991                 return -ENOSPC;
4992
4993         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4994                           GFP_KERNEL_ACCOUNT);
4995         if (!new_bus)
4996                 return -ENOMEM;
4997
4998         range = (struct kvm_io_range) {
4999                 .addr = addr,
5000                 .len = len,
5001                 .dev = dev,
5002         };
5003
5004         for (i = 0; i < bus->dev_count; i++)
5005                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5006                         break;
5007
5008         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5009         new_bus->dev_count++;
5010         new_bus->range[i] = range;
5011         memcpy(new_bus->range + i + 1, bus->range + i,
5012                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5013         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5014         synchronize_srcu_expedited(&kvm->srcu);
5015         kfree(bus);
5016
5017         return 0;
5018 }
5019
5020 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5021                               struct kvm_io_device *dev)
5022 {
5023         int i, j;
5024         struct kvm_io_bus *new_bus, *bus;
5025
5026         lockdep_assert_held(&kvm->slots_lock);
5027
5028         bus = kvm_get_bus(kvm, bus_idx);
5029         if (!bus)
5030                 return 0;
5031
5032         for (i = 0; i < bus->dev_count; i++) {
5033                 if (bus->range[i].dev == dev) {
5034                         break;
5035                 }
5036         }
5037
5038         if (i == bus->dev_count)
5039                 return 0;
5040
5041         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5042                           GFP_KERNEL_ACCOUNT);
5043         if (new_bus) {
5044                 memcpy(new_bus, bus, struct_size(bus, range, i));
5045                 new_bus->dev_count--;
5046                 memcpy(new_bus->range + i, bus->range + i + 1,
5047                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5048         }
5049
5050         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5051         synchronize_srcu_expedited(&kvm->srcu);
5052
5053         /* Destroy the old bus _after_ installing the (null) bus. */
5054         if (!new_bus) {
5055                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5056                 for (j = 0; j < bus->dev_count; j++) {
5057                         if (j == i)
5058                                 continue;
5059                         kvm_iodevice_destructor(bus->range[j].dev);
5060                 }
5061         }
5062
5063         kfree(bus);
5064         return new_bus ? 0 : -ENOMEM;
5065 }
5066
5067 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5068                                          gpa_t addr)
5069 {
5070         struct kvm_io_bus *bus;
5071         int dev_idx, srcu_idx;
5072         struct kvm_io_device *iodev = NULL;
5073
5074         srcu_idx = srcu_read_lock(&kvm->srcu);
5075
5076         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5077         if (!bus)
5078                 goto out_unlock;
5079
5080         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5081         if (dev_idx < 0)
5082                 goto out_unlock;
5083
5084         iodev = bus->range[dev_idx].dev;
5085
5086 out_unlock:
5087         srcu_read_unlock(&kvm->srcu, srcu_idx);
5088
5089         return iodev;
5090 }
5091 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5092
5093 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5094                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5095                            const char *fmt)
5096 {
5097         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5098                                           inode->i_private;
5099
5100         /*
5101          * The debugfs files are a reference to the kvm struct which
5102         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5103         * avoids the race between open and the removal of the debugfs directory.
5104          */
5105         if (!kvm_get_kvm_safe(stat_data->kvm))
5106                 return -ENOENT;
5107
5108         if (simple_attr_open(inode, file, get,
5109                     kvm_stats_debugfs_mode(stat_data->desc) & 0222
5110                     ? set : NULL,
5111                     fmt)) {
5112                 kvm_put_kvm(stat_data->kvm);
5113                 return -ENOMEM;
5114         }
5115
5116         return 0;
5117 }
5118
5119 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5120 {
5121         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5122                                           inode->i_private;
5123
5124         simple_attr_release(inode, file);
5125         kvm_put_kvm(stat_data->kvm);
5126
5127         return 0;
5128 }
5129
5130 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5131 {
5132         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5133
5134         return 0;
5135 }
5136
5137 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5138 {
5139         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5140
5141         return 0;
5142 }
5143
5144 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5145 {
5146         int i;
5147         struct kvm_vcpu *vcpu;
5148
5149         *val = 0;
5150
5151         kvm_for_each_vcpu(i, vcpu, kvm)
5152                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5153
5154         return 0;
5155 }
5156
5157 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5158 {
5159         int i;
5160         struct kvm_vcpu *vcpu;
5161
5162         kvm_for_each_vcpu(i, vcpu, kvm)
5163                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5164
5165         return 0;
5166 }
5167
5168 static int kvm_stat_data_get(void *data, u64 *val)
5169 {
5170         int r = -EFAULT;
5171         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5172
5173         switch (stat_data->kind) {
5174         case KVM_STAT_VM:
5175                 r = kvm_get_stat_per_vm(stat_data->kvm,
5176                                         stat_data->desc->desc.offset, val);
5177                 break;
5178         case KVM_STAT_VCPU:
5179                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5180                                           stat_data->desc->desc.offset, val);
5181                 break;
5182         }
5183
5184         return r;
5185 }
5186
5187 static int kvm_stat_data_clear(void *data, u64 val)
5188 {
5189         int r = -EFAULT;
5190         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5191
5192         if (val)
5193                 return -EINVAL;
5194
5195         switch (stat_data->kind) {
5196         case KVM_STAT_VM:
5197                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5198                                           stat_data->desc->desc.offset);
5199                 break;
5200         case KVM_STAT_VCPU:
5201                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5202                                             stat_data->desc->desc.offset);
5203                 break;
5204         }
5205
5206         return r;
5207 }
5208
5209 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5210 {
5211         __simple_attr_check_format("%llu\n", 0ull);
5212         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5213                                 kvm_stat_data_clear, "%llu\n");
5214 }
5215
5216 static const struct file_operations stat_fops_per_vm = {
5217         .owner = THIS_MODULE,
5218         .open = kvm_stat_data_open,
5219         .release = kvm_debugfs_release,
5220         .read = simple_attr_read,
5221         .write = simple_attr_write,
5222         .llseek = no_llseek,
5223 };
5224
5225 static int vm_stat_get(void *_offset, u64 *val)
5226 {
5227         unsigned offset = (long)_offset;
5228         struct kvm *kvm;
5229         u64 tmp_val;
5230
5231         *val = 0;
5232         mutex_lock(&kvm_lock);
5233         list_for_each_entry(kvm, &vm_list, vm_list) {
5234                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5235                 *val += tmp_val;
5236         }
5237         mutex_unlock(&kvm_lock);
5238         return 0;
5239 }
5240
5241 static int vm_stat_clear(void *_offset, u64 val)
5242 {
5243         unsigned offset = (long)_offset;
5244         struct kvm *kvm;
5245
5246         if (val)
5247                 return -EINVAL;
5248
5249         mutex_lock(&kvm_lock);
5250         list_for_each_entry(kvm, &vm_list, vm_list) {
5251                 kvm_clear_stat_per_vm(kvm, offset);
5252         }
5253         mutex_unlock(&kvm_lock);
5254
5255         return 0;
5256 }
5257
5258 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5259 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5260
5261 static int vcpu_stat_get(void *_offset, u64 *val)
5262 {
5263         unsigned offset = (long)_offset;
5264         struct kvm *kvm;
5265         u64 tmp_val;
5266
5267         *val = 0;
5268         mutex_lock(&kvm_lock);
5269         list_for_each_entry(kvm, &vm_list, vm_list) {
5270                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5271                 *val += tmp_val;
5272         }
5273         mutex_unlock(&kvm_lock);
5274         return 0;
5275 }
5276
5277 static int vcpu_stat_clear(void *_offset, u64 val)
5278 {
5279         unsigned offset = (long)_offset;
5280         struct kvm *kvm;
5281
5282         if (val)
5283                 return -EINVAL;
5284
5285         mutex_lock(&kvm_lock);
5286         list_for_each_entry(kvm, &vm_list, vm_list) {
5287                 kvm_clear_stat_per_vcpu(kvm, offset);
5288         }
5289         mutex_unlock(&kvm_lock);
5290
5291         return 0;
5292 }
5293
5294 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5295                         "%llu\n");
5296 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5297
5298 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5299 {
5300         struct kobj_uevent_env *env;
5301         unsigned long long created, active;
5302
5303         if (!kvm_dev.this_device || !kvm)
5304                 return;
5305
5306         mutex_lock(&kvm_lock);
5307         if (type == KVM_EVENT_CREATE_VM) {
5308                 kvm_createvm_count++;
5309                 kvm_active_vms++;
5310         } else if (type == KVM_EVENT_DESTROY_VM) {
5311                 kvm_active_vms--;
5312         }
5313         created = kvm_createvm_count;
5314         active = kvm_active_vms;
5315         mutex_unlock(&kvm_lock);
5316
5317         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5318         if (!env)
5319                 return;
5320
5321         add_uevent_var(env, "CREATED=%llu", created);
5322         add_uevent_var(env, "COUNT=%llu", active);
5323
5324         if (type == KVM_EVENT_CREATE_VM) {
5325                 add_uevent_var(env, "EVENT=create");
5326                 kvm->userspace_pid = task_pid_nr(current);
5327         } else if (type == KVM_EVENT_DESTROY_VM) {
5328                 add_uevent_var(env, "EVENT=destroy");
5329         }
5330         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5331
5332         if (kvm->debugfs_dentry) {
5333                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5334
5335                 if (p) {
5336                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5337                         if (!IS_ERR(tmp))
5338                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5339                         kfree(p);
5340                 }
5341         }
5342         /* no need for checks, since we are adding at most only 5 keys */
5343         env->envp[env->envp_idx++] = NULL;
5344         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5345         kfree(env);
5346 }
5347
5348 static void kvm_init_debug(void)
5349 {
5350         const struct file_operations *fops;
5351         const struct _kvm_stats_desc *pdesc;
5352         int i;
5353
5354         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5355
5356         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5357                 pdesc = &kvm_vm_stats_desc[i];
5358                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5359                         fops = &vm_stat_fops;
5360                 else
5361                         fops = &vm_stat_readonly_fops;
5362                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5363                                 kvm_debugfs_dir,
5364                                 (void *)(long)pdesc->desc.offset, fops);
5365         }
5366
5367         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5368                 pdesc = &kvm_vcpu_stats_desc[i];
5369                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5370                         fops = &vcpu_stat_fops;
5371                 else
5372                         fops = &vcpu_stat_readonly_fops;
5373                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5374                                 kvm_debugfs_dir,
5375                                 (void *)(long)pdesc->desc.offset, fops);
5376         }
5377 }
5378
5379 static int kvm_suspend(void)
5380 {
5381         if (kvm_usage_count)
5382                 hardware_disable_nolock(NULL);
5383         return 0;
5384 }
5385
5386 static void kvm_resume(void)
5387 {
5388         if (kvm_usage_count) {
5389 #ifdef CONFIG_LOCKDEP
5390                 WARN_ON(lockdep_is_held(&kvm_count_lock));
5391 #endif
5392                 hardware_enable_nolock(NULL);
5393         }
5394 }
5395
5396 static struct syscore_ops kvm_syscore_ops = {
5397         .suspend = kvm_suspend,
5398         .resume = kvm_resume,
5399 };
5400
5401 static inline
5402 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5403 {
5404         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5405 }
5406
5407 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5408 {
5409         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5410
5411         WRITE_ONCE(vcpu->preempted, false);
5412         WRITE_ONCE(vcpu->ready, false);
5413
5414         __this_cpu_write(kvm_running_vcpu, vcpu);
5415         kvm_arch_sched_in(vcpu, cpu);
5416         kvm_arch_vcpu_load(vcpu, cpu);
5417 }
5418
5419 static void kvm_sched_out(struct preempt_notifier *pn,
5420                           struct task_struct *next)
5421 {
5422         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5423
5424         if (current->on_rq) {
5425                 WRITE_ONCE(vcpu->preempted, true);
5426                 WRITE_ONCE(vcpu->ready, true);
5427         }
5428         kvm_arch_vcpu_put(vcpu);
5429         __this_cpu_write(kvm_running_vcpu, NULL);
5430 }
5431
5432 /**
5433  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5434  *
5435  * We can disable preemption locally around accessing the per-CPU variable,
5436  * and use the resolved vcpu pointer after enabling preemption again,
5437  * because even if the current thread is migrated to another CPU, reading
5438  * the per-CPU value later will give us the same value as we update the
5439  * per-CPU variable in the preempt notifier handlers.
5440  */
5441 struct kvm_vcpu *kvm_get_running_vcpu(void)
5442 {
5443         struct kvm_vcpu *vcpu;
5444
5445         preempt_disable();
5446         vcpu = __this_cpu_read(kvm_running_vcpu);
5447         preempt_enable();
5448
5449         return vcpu;
5450 }
5451 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5452
5453 /**
5454  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5455  */
5456 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5457 {
5458         return &kvm_running_vcpu;
5459 }
5460
5461 struct kvm_cpu_compat_check {
5462         void *opaque;
5463         int *ret;
5464 };
5465
5466 static void check_processor_compat(void *data)
5467 {
5468         struct kvm_cpu_compat_check *c = data;
5469
5470         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5471 }
5472
5473 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5474                   struct module *module)
5475 {
5476         struct kvm_cpu_compat_check c;
5477         int r;
5478         int cpu;
5479
5480         r = kvm_arch_init(opaque);
5481         if (r)
5482                 goto out_fail;
5483
5484         /*
5485          * kvm_arch_init makes sure there's at most one caller
5486          * for architectures that support multiple implementations,
5487          * like intel and amd on x86.
5488          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5489          * conflicts in case kvm is already setup for another implementation.
5490          */
5491         r = kvm_irqfd_init();
5492         if (r)
5493                 goto out_irqfd;
5494
5495         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5496                 r = -ENOMEM;
5497                 goto out_free_0;
5498         }
5499
5500         r = kvm_arch_hardware_setup(opaque);
5501         if (r < 0)
5502                 goto out_free_1;
5503
5504         c.ret = &r;
5505         c.opaque = opaque;
5506         for_each_online_cpu(cpu) {
5507                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5508                 if (r < 0)
5509                         goto out_free_2;
5510         }
5511
5512         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5513                                       kvm_starting_cpu, kvm_dying_cpu);
5514         if (r)
5515                 goto out_free_2;
5516         register_reboot_notifier(&kvm_reboot_notifier);
5517
5518         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5519         if (!vcpu_align)
5520                 vcpu_align = __alignof__(struct kvm_vcpu);
5521         kvm_vcpu_cache =
5522                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5523                                            SLAB_ACCOUNT,
5524                                            offsetof(struct kvm_vcpu, arch),
5525                                            offsetofend(struct kvm_vcpu, stats_id)
5526                                            - offsetof(struct kvm_vcpu, arch),
5527                                            NULL);
5528         if (!kvm_vcpu_cache) {
5529                 r = -ENOMEM;
5530                 goto out_free_3;
5531         }
5532
5533         r = kvm_async_pf_init();
5534         if (r)
5535                 goto out_free;
5536
5537         kvm_chardev_ops.owner = module;
5538         kvm_vm_fops.owner = module;
5539         kvm_vcpu_fops.owner = module;
5540
5541         r = misc_register(&kvm_dev);
5542         if (r) {
5543                 pr_err("kvm: misc device register failed\n");
5544                 goto out_unreg;
5545         }
5546
5547         register_syscore_ops(&kvm_syscore_ops);
5548
5549         kvm_preempt_ops.sched_in = kvm_sched_in;
5550         kvm_preempt_ops.sched_out = kvm_sched_out;
5551
5552         kvm_init_debug();
5553
5554         r = kvm_vfio_ops_init();
5555         WARN_ON(r);
5556
5557         return 0;
5558
5559 out_unreg:
5560         kvm_async_pf_deinit();
5561 out_free:
5562         kmem_cache_destroy(kvm_vcpu_cache);
5563 out_free_3:
5564         unregister_reboot_notifier(&kvm_reboot_notifier);
5565         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5566 out_free_2:
5567         kvm_arch_hardware_unsetup();
5568 out_free_1:
5569         free_cpumask_var(cpus_hardware_enabled);
5570 out_free_0:
5571         kvm_irqfd_exit();
5572 out_irqfd:
5573         kvm_arch_exit();
5574 out_fail:
5575         return r;
5576 }
5577 EXPORT_SYMBOL_GPL(kvm_init);
5578
5579 void kvm_exit(void)
5580 {
5581         debugfs_remove_recursive(kvm_debugfs_dir);
5582         misc_deregister(&kvm_dev);
5583         kmem_cache_destroy(kvm_vcpu_cache);
5584         kvm_async_pf_deinit();
5585         unregister_syscore_ops(&kvm_syscore_ops);
5586         unregister_reboot_notifier(&kvm_reboot_notifier);
5587         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5588         on_each_cpu(hardware_disable_nolock, NULL, 1);
5589         kvm_arch_hardware_unsetup();
5590         kvm_arch_exit();
5591         kvm_irqfd_exit();
5592         free_cpumask_var(cpus_hardware_enabled);
5593         kvm_vfio_ops_exit();
5594 }
5595 EXPORT_SYMBOL_GPL(kvm_exit);
5596
5597 struct kvm_vm_worker_thread_context {
5598         struct kvm *kvm;
5599         struct task_struct *parent;
5600         struct completion init_done;
5601         kvm_vm_thread_fn_t thread_fn;
5602         uintptr_t data;
5603         int err;
5604 };
5605
5606 static int kvm_vm_worker_thread(void *context)
5607 {
5608         /*
5609          * The init_context is allocated on the stack of the parent thread, so
5610          * we have to locally copy anything that is needed beyond initialization
5611          */
5612         struct kvm_vm_worker_thread_context *init_context = context;
5613         struct kvm *kvm = init_context->kvm;
5614         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5615         uintptr_t data = init_context->data;
5616         int err;
5617
5618         err = kthread_park(current);
5619         /* kthread_park(current) is never supposed to return an error */
5620         WARN_ON(err != 0);
5621         if (err)
5622                 goto init_complete;
5623
5624         err = cgroup_attach_task_all(init_context->parent, current);
5625         if (err) {
5626                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5627                         __func__, err);
5628                 goto init_complete;
5629         }
5630
5631         set_user_nice(current, task_nice(init_context->parent));
5632
5633 init_complete:
5634         init_context->err = err;
5635         complete(&init_context->init_done);
5636         init_context = NULL;
5637
5638         if (err)
5639                 return err;
5640
5641         /* Wait to be woken up by the spawner before proceeding. */
5642         kthread_parkme();
5643
5644         if (!kthread_should_stop())
5645                 err = thread_fn(kvm, data);
5646
5647         return err;
5648 }
5649
5650 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5651                                 uintptr_t data, const char *name,
5652                                 struct task_struct **thread_ptr)
5653 {
5654         struct kvm_vm_worker_thread_context init_context = {};
5655         struct task_struct *thread;
5656
5657         *thread_ptr = NULL;
5658         init_context.kvm = kvm;
5659         init_context.parent = current;
5660         init_context.thread_fn = thread_fn;
5661         init_context.data = data;
5662         init_completion(&init_context.init_done);
5663
5664         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5665                              "%s-%d", name, task_pid_nr(current));
5666         if (IS_ERR(thread))
5667                 return PTR_ERR(thread);
5668
5669         /* kthread_run is never supposed to return NULL */
5670         WARN_ON(thread == NULL);
5671
5672         wait_for_completion(&init_context.init_done);
5673
5674         if (!init_context.err)
5675                 *thread_ptr = thread;
5676
5677         return init_context.err;
5678 }