KVM: Boost vCPU candidate in user mode which is delivering interrupt
[linux-2.6-microblaze.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "mmu_lock.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 #include <linux/kvm_dirty_ring.h>
68
69 /* Worst case buffer size needed for holding an integer. */
70 #define ITOA_MAX_LEN 12
71
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74
75 /* Architectures should define their poll value according to the halt latency */
76 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
77 module_param(halt_poll_ns, uint, 0644);
78 EXPORT_SYMBOL_GPL(halt_poll_ns);
79
80 /* Default doubles per-vcpu halt_poll_ns. */
81 unsigned int halt_poll_ns_grow = 2;
82 module_param(halt_poll_ns_grow, uint, 0644);
83 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84
85 /* The start value to grow halt_poll_ns from */
86 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
87 module_param(halt_poll_ns_grow_start, uint, 0644);
88 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
89
90 /* Default resets per-vcpu halt_poll_ns . */
91 unsigned int halt_poll_ns_shrink;
92 module_param(halt_poll_ns_shrink, uint, 0644);
93 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
94
95 /*
96  * Ordering of locks:
97  *
98  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
99  */
100
101 DEFINE_MUTEX(kvm_lock);
102 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
103 LIST_HEAD(vm_list);
104
105 static cpumask_var_t cpus_hardware_enabled;
106 static int kvm_usage_count;
107 static atomic_t hardware_enable_failed;
108
109 static struct kmem_cache *kvm_vcpu_cache;
110
111 static __read_mostly struct preempt_ops kvm_preempt_ops;
112 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
113
114 struct dentry *kvm_debugfs_dir;
115 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
116
117 static int kvm_debugfs_num_entries;
118 static const struct file_operations stat_fops_per_vm;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 #define KVM_EVENT_CREATE_VM 0
153 #define KVM_EVENT_DESTROY_VM 1
154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
155 static unsigned long long kvm_createvm_count;
156 static unsigned long long kvm_active_vms;
157
158 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
159                                                    unsigned long start, unsigned long end)
160 {
161 }
162
163 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
164 {
165         /*
166          * The metadata used by is_zone_device_page() to determine whether or
167          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
168          * the device has been pinned, e.g. by get_user_pages().  WARN if the
169          * page_count() is zero to help detect bad usage of this helper.
170          */
171         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
172                 return false;
173
174         return is_zone_device_page(pfn_to_page(pfn));
175 }
176
177 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
178 {
179         /*
180          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
181          * perspective they are "normal" pages, albeit with slightly different
182          * usage rules.
183          */
184         if (pfn_valid(pfn))
185                 return PageReserved(pfn_to_page(pfn)) &&
186                        !is_zero_pfn(pfn) &&
187                        !kvm_is_zone_device_pfn(pfn);
188
189         return true;
190 }
191
192 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
193 {
194         struct page *page = pfn_to_page(pfn);
195
196         if (!PageTransCompoundMap(page))
197                 return false;
198
199         return is_transparent_hugepage(compound_head(page));
200 }
201
202 /*
203  * Switches to specified vcpu, until a matching vcpu_put()
204  */
205 void vcpu_load(struct kvm_vcpu *vcpu)
206 {
207         int cpu = get_cpu();
208
209         __this_cpu_write(kvm_running_vcpu, vcpu);
210         preempt_notifier_register(&vcpu->preempt_notifier);
211         kvm_arch_vcpu_load(vcpu, cpu);
212         put_cpu();
213 }
214 EXPORT_SYMBOL_GPL(vcpu_load);
215
216 void vcpu_put(struct kvm_vcpu *vcpu)
217 {
218         preempt_disable();
219         kvm_arch_vcpu_put(vcpu);
220         preempt_notifier_unregister(&vcpu->preempt_notifier);
221         __this_cpu_write(kvm_running_vcpu, NULL);
222         preempt_enable();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_put);
225
226 /* TODO: merge with kvm_arch_vcpu_should_kick */
227 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
228 {
229         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
230
231         /*
232          * We need to wait for the VCPU to reenable interrupts and get out of
233          * READING_SHADOW_PAGE_TABLES mode.
234          */
235         if (req & KVM_REQUEST_WAIT)
236                 return mode != OUTSIDE_GUEST_MODE;
237
238         /*
239          * Need to kick a running VCPU, but otherwise there is nothing to do.
240          */
241         return mode == IN_GUEST_MODE;
242 }
243
244 static void ack_flush(void *_completed)
245 {
246 }
247
248 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
249 {
250         if (unlikely(!cpus))
251                 cpus = cpu_online_mask;
252
253         if (cpumask_empty(cpus))
254                 return false;
255
256         smp_call_function_many(cpus, ack_flush, NULL, wait);
257         return true;
258 }
259
260 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
261                                  struct kvm_vcpu *except,
262                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
263 {
264         int i, cpu, me;
265         struct kvm_vcpu *vcpu;
266         bool called;
267
268         me = get_cpu();
269
270         kvm_for_each_vcpu(i, vcpu, kvm) {
271                 if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
272                     vcpu == except)
273                         continue;
274
275                 kvm_make_request(req, vcpu);
276                 cpu = vcpu->cpu;
277
278                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
279                         continue;
280
281                 if (tmp != NULL && cpu != -1 && cpu != me &&
282                     kvm_request_needs_ipi(vcpu, req))
283                         __cpumask_set_cpu(cpu, tmp);
284         }
285
286         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
287         put_cpu();
288
289         return called;
290 }
291
292 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
293                                       struct kvm_vcpu *except)
294 {
295         cpumask_var_t cpus;
296         bool called;
297
298         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
299
300         called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
301
302         free_cpumask_var(cpus);
303         return called;
304 }
305
306 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
307 {
308         return kvm_make_all_cpus_request_except(kvm, req, NULL);
309 }
310
311 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
312 void kvm_flush_remote_tlbs(struct kvm *kvm)
313 {
314         /*
315          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
316          * kvm_make_all_cpus_request.
317          */
318         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
319
320         /*
321          * We want to publish modifications to the page tables before reading
322          * mode. Pairs with a memory barrier in arch-specific code.
323          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
324          * and smp_mb in walk_shadow_page_lockless_begin/end.
325          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
326          *
327          * There is already an smp_mb__after_atomic() before
328          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
329          * barrier here.
330          */
331         if (!kvm_arch_flush_remote_tlb(kvm)
332             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
333                 ++kvm->stat.remote_tlb_flush;
334         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
335 }
336 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
337 #endif
338
339 void kvm_reload_remote_mmus(struct kvm *kvm)
340 {
341         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
342 }
343
344 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
345 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
346                                                gfp_t gfp_flags)
347 {
348         gfp_flags |= mc->gfp_zero;
349
350         if (mc->kmem_cache)
351                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
352         else
353                 return (void *)__get_free_page(gfp_flags);
354 }
355
356 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
357 {
358         void *obj;
359
360         if (mc->nobjs >= min)
361                 return 0;
362         while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
363                 obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
364                 if (!obj)
365                         return mc->nobjs >= min ? 0 : -ENOMEM;
366                 mc->objects[mc->nobjs++] = obj;
367         }
368         return 0;
369 }
370
371 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
372 {
373         return mc->nobjs;
374 }
375
376 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
377 {
378         while (mc->nobjs) {
379                 if (mc->kmem_cache)
380                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
381                 else
382                         free_page((unsigned long)mc->objects[--mc->nobjs]);
383         }
384 }
385
386 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
387 {
388         void *p;
389
390         if (WARN_ON(!mc->nobjs))
391                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
392         else
393                 p = mc->objects[--mc->nobjs];
394         BUG_ON(!p);
395         return p;
396 }
397 #endif
398
399 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
400 {
401         mutex_init(&vcpu->mutex);
402         vcpu->cpu = -1;
403         vcpu->kvm = kvm;
404         vcpu->vcpu_id = id;
405         vcpu->pid = NULL;
406         rcuwait_init(&vcpu->wait);
407         kvm_async_pf_vcpu_init(vcpu);
408
409         vcpu->pre_pcpu = -1;
410         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
411
412         kvm_vcpu_set_in_spin_loop(vcpu, false);
413         kvm_vcpu_set_dy_eligible(vcpu, false);
414         vcpu->preempted = false;
415         vcpu->ready = false;
416         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
417 }
418
419 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
420 {
421         kvm_dirty_ring_free(&vcpu->dirty_ring);
422         kvm_arch_vcpu_destroy(vcpu);
423
424         /*
425          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
426          * the vcpu->pid pointer, and at destruction time all file descriptors
427          * are already gone.
428          */
429         put_pid(rcu_dereference_protected(vcpu->pid, 1));
430
431         free_page((unsigned long)vcpu->run);
432         kmem_cache_free(kvm_vcpu_cache, vcpu);
433 }
434 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
435
436 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
437 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
438 {
439         return container_of(mn, struct kvm, mmu_notifier);
440 }
441
442 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
443                                               struct mm_struct *mm,
444                                               unsigned long start, unsigned long end)
445 {
446         struct kvm *kvm = mmu_notifier_to_kvm(mn);
447         int idx;
448
449         idx = srcu_read_lock(&kvm->srcu);
450         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
451         srcu_read_unlock(&kvm->srcu, idx);
452 }
453
454 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
455
456 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
457                              unsigned long end);
458
459 struct kvm_hva_range {
460         unsigned long start;
461         unsigned long end;
462         pte_t pte;
463         hva_handler_t handler;
464         on_lock_fn_t on_lock;
465         bool flush_on_ret;
466         bool may_block;
467 };
468
469 /*
470  * Use a dedicated stub instead of NULL to indicate that there is no callback
471  * function/handler.  The compiler technically can't guarantee that a real
472  * function will have a non-zero address, and so it will generate code to
473  * check for !NULL, whereas comparing against a stub will be elided at compile
474  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
475  */
476 static void kvm_null_fn(void)
477 {
478
479 }
480 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
481
482 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
483                                                   const struct kvm_hva_range *range)
484 {
485         bool ret = false, locked = false;
486         struct kvm_gfn_range gfn_range;
487         struct kvm_memory_slot *slot;
488         struct kvm_memslots *slots;
489         int i, idx;
490
491         /* A null handler is allowed if and only if on_lock() is provided. */
492         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
493                          IS_KVM_NULL_FN(range->handler)))
494                 return 0;
495
496         idx = srcu_read_lock(&kvm->srcu);
497
498         /* The on_lock() path does not yet support lock elision. */
499         if (!IS_KVM_NULL_FN(range->on_lock)) {
500                 locked = true;
501                 KVM_MMU_LOCK(kvm);
502
503                 range->on_lock(kvm, range->start, range->end);
504
505                 if (IS_KVM_NULL_FN(range->handler))
506                         goto out_unlock;
507         }
508
509         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
510                 slots = __kvm_memslots(kvm, i);
511                 kvm_for_each_memslot(slot, slots) {
512                         unsigned long hva_start, hva_end;
513
514                         hva_start = max(range->start, slot->userspace_addr);
515                         hva_end = min(range->end, slot->userspace_addr +
516                                                   (slot->npages << PAGE_SHIFT));
517                         if (hva_start >= hva_end)
518                                 continue;
519
520                         /*
521                          * To optimize for the likely case where the address
522                          * range is covered by zero or one memslots, don't
523                          * bother making these conditional (to avoid writes on
524                          * the second or later invocation of the handler).
525                          */
526                         gfn_range.pte = range->pte;
527                         gfn_range.may_block = range->may_block;
528
529                         /*
530                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
531                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
532                          */
533                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
534                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
535                         gfn_range.slot = slot;
536
537                         if (!locked) {
538                                 locked = true;
539                                 KVM_MMU_LOCK(kvm);
540                         }
541                         ret |= range->handler(kvm, &gfn_range);
542                 }
543         }
544
545         if (range->flush_on_ret && (ret || kvm->tlbs_dirty))
546                 kvm_flush_remote_tlbs(kvm);
547
548 out_unlock:
549         if (locked)
550                 KVM_MMU_UNLOCK(kvm);
551
552         srcu_read_unlock(&kvm->srcu, idx);
553
554         /* The notifiers are averse to booleans. :-( */
555         return (int)ret;
556 }
557
558 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
559                                                 unsigned long start,
560                                                 unsigned long end,
561                                                 pte_t pte,
562                                                 hva_handler_t handler)
563 {
564         struct kvm *kvm = mmu_notifier_to_kvm(mn);
565         const struct kvm_hva_range range = {
566                 .start          = start,
567                 .end            = end,
568                 .pte            = pte,
569                 .handler        = handler,
570                 .on_lock        = (void *)kvm_null_fn,
571                 .flush_on_ret   = true,
572                 .may_block      = false,
573         };
574
575         return __kvm_handle_hva_range(kvm, &range);
576 }
577
578 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
579                                                          unsigned long start,
580                                                          unsigned long end,
581                                                          hva_handler_t handler)
582 {
583         struct kvm *kvm = mmu_notifier_to_kvm(mn);
584         const struct kvm_hva_range range = {
585                 .start          = start,
586                 .end            = end,
587                 .pte            = __pte(0),
588                 .handler        = handler,
589                 .on_lock        = (void *)kvm_null_fn,
590                 .flush_on_ret   = false,
591                 .may_block      = false,
592         };
593
594         return __kvm_handle_hva_range(kvm, &range);
595 }
596 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
597                                         struct mm_struct *mm,
598                                         unsigned long address,
599                                         pte_t pte)
600 {
601         struct kvm *kvm = mmu_notifier_to_kvm(mn);
602
603         trace_kvm_set_spte_hva(address);
604
605         /*
606          * .change_pte() must be surrounded by .invalidate_range_{start,end}(),
607          * and so always runs with an elevated notifier count.  This obviates
608          * the need to bump the sequence count.
609          */
610         WARN_ON_ONCE(!kvm->mmu_notifier_count);
611
612         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
613 }
614
615 static void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
616                                    unsigned long end)
617 {
618         /*
619          * The count increase must become visible at unlock time as no
620          * spte can be established without taking the mmu_lock and
621          * count is also read inside the mmu_lock critical section.
622          */
623         kvm->mmu_notifier_count++;
624         if (likely(kvm->mmu_notifier_count == 1)) {
625                 kvm->mmu_notifier_range_start = start;
626                 kvm->mmu_notifier_range_end = end;
627         } else {
628                 /*
629                  * Fully tracking multiple concurrent ranges has dimishing
630                  * returns. Keep things simple and just find the minimal range
631                  * which includes the current and new ranges. As there won't be
632                  * enough information to subtract a range after its invalidate
633                  * completes, any ranges invalidated concurrently will
634                  * accumulate and persist until all outstanding invalidates
635                  * complete.
636                  */
637                 kvm->mmu_notifier_range_start =
638                         min(kvm->mmu_notifier_range_start, start);
639                 kvm->mmu_notifier_range_end =
640                         max(kvm->mmu_notifier_range_end, end);
641         }
642 }
643
644 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
645                                         const struct mmu_notifier_range *range)
646 {
647         struct kvm *kvm = mmu_notifier_to_kvm(mn);
648         const struct kvm_hva_range hva_range = {
649                 .start          = range->start,
650                 .end            = range->end,
651                 .pte            = __pte(0),
652                 .handler        = kvm_unmap_gfn_range,
653                 .on_lock        = kvm_inc_notifier_count,
654                 .flush_on_ret   = true,
655                 .may_block      = mmu_notifier_range_blockable(range),
656         };
657
658         trace_kvm_unmap_hva_range(range->start, range->end);
659
660         __kvm_handle_hva_range(kvm, &hva_range);
661
662         return 0;
663 }
664
665 static void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
666                                    unsigned long end)
667 {
668         /*
669          * This sequence increase will notify the kvm page fault that
670          * the page that is going to be mapped in the spte could have
671          * been freed.
672          */
673         kvm->mmu_notifier_seq++;
674         smp_wmb();
675         /*
676          * The above sequence increase must be visible before the
677          * below count decrease, which is ensured by the smp_wmb above
678          * in conjunction with the smp_rmb in mmu_notifier_retry().
679          */
680         kvm->mmu_notifier_count--;
681 }
682
683 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
684                                         const struct mmu_notifier_range *range)
685 {
686         struct kvm *kvm = mmu_notifier_to_kvm(mn);
687         const struct kvm_hva_range hva_range = {
688                 .start          = range->start,
689                 .end            = range->end,
690                 .pte            = __pte(0),
691                 .handler        = (void *)kvm_null_fn,
692                 .on_lock        = kvm_dec_notifier_count,
693                 .flush_on_ret   = false,
694                 .may_block      = mmu_notifier_range_blockable(range),
695         };
696
697         __kvm_handle_hva_range(kvm, &hva_range);
698
699         BUG_ON(kvm->mmu_notifier_count < 0);
700 }
701
702 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
703                                               struct mm_struct *mm,
704                                               unsigned long start,
705                                               unsigned long end)
706 {
707         trace_kvm_age_hva(start, end);
708
709         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
710 }
711
712 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
713                                         struct mm_struct *mm,
714                                         unsigned long start,
715                                         unsigned long end)
716 {
717         trace_kvm_age_hva(start, end);
718
719         /*
720          * Even though we do not flush TLB, this will still adversely
721          * affect performance on pre-Haswell Intel EPT, where there is
722          * no EPT Access Bit to clear so that we have to tear down EPT
723          * tables instead. If we find this unacceptable, we can always
724          * add a parameter to kvm_age_hva so that it effectively doesn't
725          * do anything on clear_young.
726          *
727          * Also note that currently we never issue secondary TLB flushes
728          * from clear_young, leaving this job up to the regular system
729          * cadence. If we find this inaccurate, we might come up with a
730          * more sophisticated heuristic later.
731          */
732         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
733 }
734
735 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
736                                        struct mm_struct *mm,
737                                        unsigned long address)
738 {
739         trace_kvm_test_age_hva(address);
740
741         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
742                                              kvm_test_age_gfn);
743 }
744
745 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
746                                      struct mm_struct *mm)
747 {
748         struct kvm *kvm = mmu_notifier_to_kvm(mn);
749         int idx;
750
751         idx = srcu_read_lock(&kvm->srcu);
752         kvm_arch_flush_shadow_all(kvm);
753         srcu_read_unlock(&kvm->srcu, idx);
754 }
755
756 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
757         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
758         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
759         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
760         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
761         .clear_young            = kvm_mmu_notifier_clear_young,
762         .test_young             = kvm_mmu_notifier_test_young,
763         .change_pte             = kvm_mmu_notifier_change_pte,
764         .release                = kvm_mmu_notifier_release,
765 };
766
767 static int kvm_init_mmu_notifier(struct kvm *kvm)
768 {
769         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
770         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
771 }
772
773 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
774
775 static int kvm_init_mmu_notifier(struct kvm *kvm)
776 {
777         return 0;
778 }
779
780 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
781
782 static struct kvm_memslots *kvm_alloc_memslots(void)
783 {
784         int i;
785         struct kvm_memslots *slots;
786
787         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
788         if (!slots)
789                 return NULL;
790
791         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
792                 slots->id_to_index[i] = -1;
793
794         return slots;
795 }
796
797 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
798 {
799         if (!memslot->dirty_bitmap)
800                 return;
801
802         kvfree(memslot->dirty_bitmap);
803         memslot->dirty_bitmap = NULL;
804 }
805
806 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
807 {
808         kvm_destroy_dirty_bitmap(slot);
809
810         kvm_arch_free_memslot(kvm, slot);
811
812         slot->flags = 0;
813         slot->npages = 0;
814 }
815
816 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
817 {
818         struct kvm_memory_slot *memslot;
819
820         if (!slots)
821                 return;
822
823         kvm_for_each_memslot(memslot, slots)
824                 kvm_free_memslot(kvm, memslot);
825
826         kvfree(slots);
827 }
828
829 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
830 {
831         int i;
832
833         if (!kvm->debugfs_dentry)
834                 return;
835
836         debugfs_remove_recursive(kvm->debugfs_dentry);
837
838         if (kvm->debugfs_stat_data) {
839                 for (i = 0; i < kvm_debugfs_num_entries; i++)
840                         kfree(kvm->debugfs_stat_data[i]);
841                 kfree(kvm->debugfs_stat_data);
842         }
843 }
844
845 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
846 {
847         char dir_name[ITOA_MAX_LEN * 2];
848         struct kvm_stat_data *stat_data;
849         struct kvm_stats_debugfs_item *p;
850
851         if (!debugfs_initialized())
852                 return 0;
853
854         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
855         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
856
857         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
858                                          sizeof(*kvm->debugfs_stat_data),
859                                          GFP_KERNEL_ACCOUNT);
860         if (!kvm->debugfs_stat_data)
861                 return -ENOMEM;
862
863         for (p = debugfs_entries; p->name; p++) {
864                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
865                 if (!stat_data)
866                         return -ENOMEM;
867
868                 stat_data->kvm = kvm;
869                 stat_data->dbgfs_item = p;
870                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
871                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
872                                     kvm->debugfs_dentry, stat_data,
873                                     &stat_fops_per_vm);
874         }
875         return 0;
876 }
877
878 /*
879  * Called after the VM is otherwise initialized, but just before adding it to
880  * the vm_list.
881  */
882 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
883 {
884         return 0;
885 }
886
887 /*
888  * Called just after removing the VM from the vm_list, but before doing any
889  * other destruction.
890  */
891 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
892 {
893 }
894
895 static struct kvm *kvm_create_vm(unsigned long type)
896 {
897         struct kvm *kvm = kvm_arch_alloc_vm();
898         int r = -ENOMEM;
899         int i;
900
901         if (!kvm)
902                 return ERR_PTR(-ENOMEM);
903
904         KVM_MMU_LOCK_INIT(kvm);
905         mmgrab(current->mm);
906         kvm->mm = current->mm;
907         kvm_eventfd_init(kvm);
908         mutex_init(&kvm->lock);
909         mutex_init(&kvm->irq_lock);
910         mutex_init(&kvm->slots_lock);
911         INIT_LIST_HEAD(&kvm->devices);
912
913         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
914
915         if (init_srcu_struct(&kvm->srcu))
916                 goto out_err_no_srcu;
917         if (init_srcu_struct(&kvm->irq_srcu))
918                 goto out_err_no_irq_srcu;
919
920         refcount_set(&kvm->users_count, 1);
921         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
922                 struct kvm_memslots *slots = kvm_alloc_memslots();
923
924                 if (!slots)
925                         goto out_err_no_arch_destroy_vm;
926                 /* Generations must be different for each address space. */
927                 slots->generation = i;
928                 rcu_assign_pointer(kvm->memslots[i], slots);
929         }
930
931         for (i = 0; i < KVM_NR_BUSES; i++) {
932                 rcu_assign_pointer(kvm->buses[i],
933                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
934                 if (!kvm->buses[i])
935                         goto out_err_no_arch_destroy_vm;
936         }
937
938         kvm->max_halt_poll_ns = halt_poll_ns;
939
940         r = kvm_arch_init_vm(kvm, type);
941         if (r)
942                 goto out_err_no_arch_destroy_vm;
943
944         r = hardware_enable_all();
945         if (r)
946                 goto out_err_no_disable;
947
948 #ifdef CONFIG_HAVE_KVM_IRQFD
949         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
950 #endif
951
952         r = kvm_init_mmu_notifier(kvm);
953         if (r)
954                 goto out_err_no_mmu_notifier;
955
956         r = kvm_arch_post_init_vm(kvm);
957         if (r)
958                 goto out_err;
959
960         mutex_lock(&kvm_lock);
961         list_add(&kvm->vm_list, &vm_list);
962         mutex_unlock(&kvm_lock);
963
964         preempt_notifier_inc();
965
966         return kvm;
967
968 out_err:
969 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
970         if (kvm->mmu_notifier.ops)
971                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
972 #endif
973 out_err_no_mmu_notifier:
974         hardware_disable_all();
975 out_err_no_disable:
976         kvm_arch_destroy_vm(kvm);
977 out_err_no_arch_destroy_vm:
978         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
979         for (i = 0; i < KVM_NR_BUSES; i++)
980                 kfree(kvm_get_bus(kvm, i));
981         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
982                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
983         cleanup_srcu_struct(&kvm->irq_srcu);
984 out_err_no_irq_srcu:
985         cleanup_srcu_struct(&kvm->srcu);
986 out_err_no_srcu:
987         kvm_arch_free_vm(kvm);
988         mmdrop(current->mm);
989         return ERR_PTR(r);
990 }
991
992 static void kvm_destroy_devices(struct kvm *kvm)
993 {
994         struct kvm_device *dev, *tmp;
995
996         /*
997          * We do not need to take the kvm->lock here, because nobody else
998          * has a reference to the struct kvm at this point and therefore
999          * cannot access the devices list anyhow.
1000          */
1001         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1002                 list_del(&dev->vm_node);
1003                 dev->ops->destroy(dev);
1004         }
1005 }
1006
1007 static void kvm_destroy_vm(struct kvm *kvm)
1008 {
1009         int i;
1010         struct mm_struct *mm = kvm->mm;
1011
1012         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1013         kvm_destroy_vm_debugfs(kvm);
1014         kvm_arch_sync_events(kvm);
1015         mutex_lock(&kvm_lock);
1016         list_del(&kvm->vm_list);
1017         mutex_unlock(&kvm_lock);
1018         kvm_arch_pre_destroy_vm(kvm);
1019
1020         kvm_free_irq_routing(kvm);
1021         for (i = 0; i < KVM_NR_BUSES; i++) {
1022                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1023
1024                 if (bus)
1025                         kvm_io_bus_destroy(bus);
1026                 kvm->buses[i] = NULL;
1027         }
1028         kvm_coalesced_mmio_free(kvm);
1029 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1030         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1031 #else
1032         kvm_arch_flush_shadow_all(kvm);
1033 #endif
1034         kvm_arch_destroy_vm(kvm);
1035         kvm_destroy_devices(kvm);
1036         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
1037                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
1038         cleanup_srcu_struct(&kvm->irq_srcu);
1039         cleanup_srcu_struct(&kvm->srcu);
1040         kvm_arch_free_vm(kvm);
1041         preempt_notifier_dec();
1042         hardware_disable_all();
1043         mmdrop(mm);
1044 }
1045
1046 void kvm_get_kvm(struct kvm *kvm)
1047 {
1048         refcount_inc(&kvm->users_count);
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1051
1052 void kvm_put_kvm(struct kvm *kvm)
1053 {
1054         if (refcount_dec_and_test(&kvm->users_count))
1055                 kvm_destroy_vm(kvm);
1056 }
1057 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1058
1059 /*
1060  * Used to put a reference that was taken on behalf of an object associated
1061  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1062  * of the new file descriptor fails and the reference cannot be transferred to
1063  * its final owner.  In such cases, the caller is still actively using @kvm and
1064  * will fail miserably if the refcount unexpectedly hits zero.
1065  */
1066 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1067 {
1068         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1069 }
1070 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1071
1072 static int kvm_vm_release(struct inode *inode, struct file *filp)
1073 {
1074         struct kvm *kvm = filp->private_data;
1075
1076         kvm_irqfd_release(kvm);
1077
1078         kvm_put_kvm(kvm);
1079         return 0;
1080 }
1081
1082 /*
1083  * Allocation size is twice as large as the actual dirty bitmap size.
1084  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1085  */
1086 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1087 {
1088         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
1089
1090         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
1091         if (!memslot->dirty_bitmap)
1092                 return -ENOMEM;
1093
1094         return 0;
1095 }
1096
1097 /*
1098  * Delete a memslot by decrementing the number of used slots and shifting all
1099  * other entries in the array forward one spot.
1100  */
1101 static inline void kvm_memslot_delete(struct kvm_memslots *slots,
1102                                       struct kvm_memory_slot *memslot)
1103 {
1104         struct kvm_memory_slot *mslots = slots->memslots;
1105         int i;
1106
1107         if (WARN_ON(slots->id_to_index[memslot->id] == -1))
1108                 return;
1109
1110         slots->used_slots--;
1111
1112         if (atomic_read(&slots->lru_slot) >= slots->used_slots)
1113                 atomic_set(&slots->lru_slot, 0);
1114
1115         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
1116                 mslots[i] = mslots[i + 1];
1117                 slots->id_to_index[mslots[i].id] = i;
1118         }
1119         mslots[i] = *memslot;
1120         slots->id_to_index[memslot->id] = -1;
1121 }
1122
1123 /*
1124  * "Insert" a new memslot by incrementing the number of used slots.  Returns
1125  * the new slot's initial index into the memslots array.
1126  */
1127 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
1128 {
1129         return slots->used_slots++;
1130 }
1131
1132 /*
1133  * Move a changed memslot backwards in the array by shifting existing slots
1134  * with a higher GFN toward the front of the array.  Note, the changed memslot
1135  * itself is not preserved in the array, i.e. not swapped at this time, only
1136  * its new index into the array is tracked.  Returns the changed memslot's
1137  * current index into the memslots array.
1138  */
1139 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
1140                                             struct kvm_memory_slot *memslot)
1141 {
1142         struct kvm_memory_slot *mslots = slots->memslots;
1143         int i;
1144
1145         if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
1146             WARN_ON_ONCE(!slots->used_slots))
1147                 return -1;
1148
1149         /*
1150          * Move the target memslot backward in the array by shifting existing
1151          * memslots with a higher GFN (than the target memslot) towards the
1152          * front of the array.
1153          */
1154         for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
1155                 if (memslot->base_gfn > mslots[i + 1].base_gfn)
1156                         break;
1157
1158                 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1159
1160                 /* Shift the next memslot forward one and update its index. */
1161                 mslots[i] = mslots[i + 1];
1162                 slots->id_to_index[mslots[i].id] = i;
1163         }
1164         return i;
1165 }
1166
1167 /*
1168  * Move a changed memslot forwards in the array by shifting existing slots with
1169  * a lower GFN toward the back of the array.  Note, the changed memslot itself
1170  * is not preserved in the array, i.e. not swapped at this time, only its new
1171  * index into the array is tracked.  Returns the changed memslot's final index
1172  * into the memslots array.
1173  */
1174 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1175                                            struct kvm_memory_slot *memslot,
1176                                            int start)
1177 {
1178         struct kvm_memory_slot *mslots = slots->memslots;
1179         int i;
1180
1181         for (i = start; i > 0; i--) {
1182                 if (memslot->base_gfn < mslots[i - 1].base_gfn)
1183                         break;
1184
1185                 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1186
1187                 /* Shift the next memslot back one and update its index. */
1188                 mslots[i] = mslots[i - 1];
1189                 slots->id_to_index[mslots[i].id] = i;
1190         }
1191         return i;
1192 }
1193
1194 /*
1195  * Re-sort memslots based on their GFN to account for an added, deleted, or
1196  * moved memslot.  Sorting memslots by GFN allows using a binary search during
1197  * memslot lookup.
1198  *
1199  * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1200  * at memslots[0] has the highest GFN.
1201  *
1202  * The sorting algorithm takes advantage of having initially sorted memslots
1203  * and knowing the position of the changed memslot.  Sorting is also optimized
1204  * by not swapping the updated memslot and instead only shifting other memslots
1205  * and tracking the new index for the update memslot.  Only once its final
1206  * index is known is the updated memslot copied into its position in the array.
1207  *
1208  *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1209  *    the end of the array.
1210  *
1211  *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1212  *    end of the array and then it forward to its correct location.
1213  *
1214  *  - When moving a memslot, the algorithm first moves the updated memslot
1215  *    backward to handle the scenario where the memslot's GFN was changed to a
1216  *    lower value.  update_memslots() then falls through and runs the same flow
1217  *    as creating a memslot to move the memslot forward to handle the scenario
1218  *    where its GFN was changed to a higher value.
1219  *
1220  * Note, slots are sorted from highest->lowest instead of lowest->highest for
1221  * historical reasons.  Originally, invalid memslots where denoted by having
1222  * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1223  * to the end of the array.  The current algorithm uses dedicated logic to
1224  * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1225  *
1226  * The other historical motiviation for highest->lowest was to improve the
1227  * performance of memslot lookup.  KVM originally used a linear search starting
1228  * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1229  * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1230  * single memslot above the 4gb boundary.  As the largest memslot is also the
1231  * most likely to be referenced, sorting it to the front of the array was
1232  * advantageous.  The current binary search starts from the middle of the array
1233  * and uses an LRU pointer to improve performance for all memslots and GFNs.
1234  */
1235 static void update_memslots(struct kvm_memslots *slots,
1236                             struct kvm_memory_slot *memslot,
1237                             enum kvm_mr_change change)
1238 {
1239         int i;
1240
1241         if (change == KVM_MR_DELETE) {
1242                 kvm_memslot_delete(slots, memslot);
1243         } else {
1244                 if (change == KVM_MR_CREATE)
1245                         i = kvm_memslot_insert_back(slots);
1246                 else
1247                         i = kvm_memslot_move_backward(slots, memslot);
1248                 i = kvm_memslot_move_forward(slots, memslot, i);
1249
1250                 /*
1251                  * Copy the memslot to its new position in memslots and update
1252                  * its index accordingly.
1253                  */
1254                 slots->memslots[i] = *memslot;
1255                 slots->id_to_index[memslot->id] = i;
1256         }
1257 }
1258
1259 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1260 {
1261         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1262
1263 #ifdef __KVM_HAVE_READONLY_MEM
1264         valid_flags |= KVM_MEM_READONLY;
1265 #endif
1266
1267         if (mem->flags & ~valid_flags)
1268                 return -EINVAL;
1269
1270         return 0;
1271 }
1272
1273 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1274                 int as_id, struct kvm_memslots *slots)
1275 {
1276         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1277         u64 gen = old_memslots->generation;
1278
1279         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1280         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1281
1282         rcu_assign_pointer(kvm->memslots[as_id], slots);
1283         synchronize_srcu_expedited(&kvm->srcu);
1284
1285         /*
1286          * Increment the new memslot generation a second time, dropping the
1287          * update in-progress flag and incrementing the generation based on
1288          * the number of address spaces.  This provides a unique and easily
1289          * identifiable generation number while the memslots are in flux.
1290          */
1291         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1292
1293         /*
1294          * Generations must be unique even across address spaces.  We do not need
1295          * a global counter for that, instead the generation space is evenly split
1296          * across address spaces.  For example, with two address spaces, address
1297          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1298          * use generations 1, 3, 5, ...
1299          */
1300         gen += KVM_ADDRESS_SPACE_NUM;
1301
1302         kvm_arch_memslots_updated(kvm, gen);
1303
1304         slots->generation = gen;
1305
1306         return old_memslots;
1307 }
1308
1309 /*
1310  * Note, at a minimum, the current number of used slots must be allocated, even
1311  * when deleting a memslot, as we need a complete duplicate of the memslots for
1312  * use when invalidating a memslot prior to deleting/moving the memslot.
1313  */
1314 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1315                                              enum kvm_mr_change change)
1316 {
1317         struct kvm_memslots *slots;
1318         size_t old_size, new_size;
1319
1320         old_size = sizeof(struct kvm_memslots) +
1321                    (sizeof(struct kvm_memory_slot) * old->used_slots);
1322
1323         if (change == KVM_MR_CREATE)
1324                 new_size = old_size + sizeof(struct kvm_memory_slot);
1325         else
1326                 new_size = old_size;
1327
1328         slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1329         if (likely(slots))
1330                 memcpy(slots, old, old_size);
1331
1332         return slots;
1333 }
1334
1335 static int kvm_set_memslot(struct kvm *kvm,
1336                            const struct kvm_userspace_memory_region *mem,
1337                            struct kvm_memory_slot *old,
1338                            struct kvm_memory_slot *new, int as_id,
1339                            enum kvm_mr_change change)
1340 {
1341         struct kvm_memory_slot *slot;
1342         struct kvm_memslots *slots;
1343         int r;
1344
1345         slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1346         if (!slots)
1347                 return -ENOMEM;
1348
1349         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1350                 /*
1351                  * Note, the INVALID flag needs to be in the appropriate entry
1352                  * in the freshly allocated memslots, not in @old or @new.
1353                  */
1354                 slot = id_to_memslot(slots, old->id);
1355                 slot->flags |= KVM_MEMSLOT_INVALID;
1356
1357                 /*
1358                  * We can re-use the old memslots, the only difference from the
1359                  * newly installed memslots is the invalid flag, which will get
1360                  * dropped by update_memslots anyway.  We'll also revert to the
1361                  * old memslots if preparing the new memory region fails.
1362                  */
1363                 slots = install_new_memslots(kvm, as_id, slots);
1364
1365                 /* From this point no new shadow pages pointing to a deleted,
1366                  * or moved, memslot will be created.
1367                  *
1368                  * validation of sp->gfn happens in:
1369                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1370                  *      - kvm_is_visible_gfn (mmu_check_root)
1371                  */
1372                 kvm_arch_flush_shadow_memslot(kvm, slot);
1373         }
1374
1375         r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1376         if (r)
1377                 goto out_slots;
1378
1379         update_memslots(slots, new, change);
1380         slots = install_new_memslots(kvm, as_id, slots);
1381
1382         kvm_arch_commit_memory_region(kvm, mem, old, new, change);
1383
1384         kvfree(slots);
1385         return 0;
1386
1387 out_slots:
1388         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1389                 slots = install_new_memslots(kvm, as_id, slots);
1390         kvfree(slots);
1391         return r;
1392 }
1393
1394 static int kvm_delete_memslot(struct kvm *kvm,
1395                               const struct kvm_userspace_memory_region *mem,
1396                               struct kvm_memory_slot *old, int as_id)
1397 {
1398         struct kvm_memory_slot new;
1399         int r;
1400
1401         if (!old->npages)
1402                 return -EINVAL;
1403
1404         memset(&new, 0, sizeof(new));
1405         new.id = old->id;
1406         /*
1407          * This is only for debugging purpose; it should never be referenced
1408          * for a removed memslot.
1409          */
1410         new.as_id = as_id;
1411
1412         r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1413         if (r)
1414                 return r;
1415
1416         kvm_free_memslot(kvm, old);
1417         return 0;
1418 }
1419
1420 /*
1421  * Allocate some memory and give it an address in the guest physical address
1422  * space.
1423  *
1424  * Discontiguous memory is allowed, mostly for framebuffers.
1425  *
1426  * Must be called holding kvm->slots_lock for write.
1427  */
1428 int __kvm_set_memory_region(struct kvm *kvm,
1429                             const struct kvm_userspace_memory_region *mem)
1430 {
1431         struct kvm_memory_slot old, new;
1432         struct kvm_memory_slot *tmp;
1433         enum kvm_mr_change change;
1434         int as_id, id;
1435         int r;
1436
1437         r = check_memory_region_flags(mem);
1438         if (r)
1439                 return r;
1440
1441         as_id = mem->slot >> 16;
1442         id = (u16)mem->slot;
1443
1444         /* General sanity checks */
1445         if (mem->memory_size & (PAGE_SIZE - 1))
1446                 return -EINVAL;
1447         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1448                 return -EINVAL;
1449         /* We can read the guest memory with __xxx_user() later on. */
1450         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1451             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1452              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1453                         mem->memory_size))
1454                 return -EINVAL;
1455         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1456                 return -EINVAL;
1457         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1458                 return -EINVAL;
1459
1460         /*
1461          * Make a full copy of the old memslot, the pointer will become stale
1462          * when the memslots are re-sorted by update_memslots(), and the old
1463          * memslot needs to be referenced after calling update_memslots(), e.g.
1464          * to free its resources and for arch specific behavior.
1465          */
1466         tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1467         if (tmp) {
1468                 old = *tmp;
1469                 tmp = NULL;
1470         } else {
1471                 memset(&old, 0, sizeof(old));
1472                 old.id = id;
1473         }
1474
1475         if (!mem->memory_size)
1476                 return kvm_delete_memslot(kvm, mem, &old, as_id);
1477
1478         new.as_id = as_id;
1479         new.id = id;
1480         new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1481         new.npages = mem->memory_size >> PAGE_SHIFT;
1482         new.flags = mem->flags;
1483         new.userspace_addr = mem->userspace_addr;
1484
1485         if (new.npages > KVM_MEM_MAX_NR_PAGES)
1486                 return -EINVAL;
1487
1488         if (!old.npages) {
1489                 change = KVM_MR_CREATE;
1490                 new.dirty_bitmap = NULL;
1491                 memset(&new.arch, 0, sizeof(new.arch));
1492         } else { /* Modify an existing slot. */
1493                 if ((new.userspace_addr != old.userspace_addr) ||
1494                     (new.npages != old.npages) ||
1495                     ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1496                         return -EINVAL;
1497
1498                 if (new.base_gfn != old.base_gfn)
1499                         change = KVM_MR_MOVE;
1500                 else if (new.flags != old.flags)
1501                         change = KVM_MR_FLAGS_ONLY;
1502                 else /* Nothing to change. */
1503                         return 0;
1504
1505                 /* Copy dirty_bitmap and arch from the current memslot. */
1506                 new.dirty_bitmap = old.dirty_bitmap;
1507                 memcpy(&new.arch, &old.arch, sizeof(new.arch));
1508         }
1509
1510         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1511                 /* Check for overlaps */
1512                 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1513                         if (tmp->id == id)
1514                                 continue;
1515                         if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1516                               (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1517                                 return -EEXIST;
1518                 }
1519         }
1520
1521         /* Allocate/free page dirty bitmap as needed */
1522         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1523                 new.dirty_bitmap = NULL;
1524         else if (!new.dirty_bitmap && !kvm->dirty_ring_size) {
1525                 r = kvm_alloc_dirty_bitmap(&new);
1526                 if (r)
1527                         return r;
1528
1529                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1530                         bitmap_set(new.dirty_bitmap, 0, new.npages);
1531         }
1532
1533         r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1534         if (r)
1535                 goto out_bitmap;
1536
1537         if (old.dirty_bitmap && !new.dirty_bitmap)
1538                 kvm_destroy_dirty_bitmap(&old);
1539         return 0;
1540
1541 out_bitmap:
1542         if (new.dirty_bitmap && !old.dirty_bitmap)
1543                 kvm_destroy_dirty_bitmap(&new);
1544         return r;
1545 }
1546 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1547
1548 int kvm_set_memory_region(struct kvm *kvm,
1549                           const struct kvm_userspace_memory_region *mem)
1550 {
1551         int r;
1552
1553         mutex_lock(&kvm->slots_lock);
1554         r = __kvm_set_memory_region(kvm, mem);
1555         mutex_unlock(&kvm->slots_lock);
1556         return r;
1557 }
1558 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1559
1560 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1561                                           struct kvm_userspace_memory_region *mem)
1562 {
1563         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1564                 return -EINVAL;
1565
1566         return kvm_set_memory_region(kvm, mem);
1567 }
1568
1569 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1570 /**
1571  * kvm_get_dirty_log - get a snapshot of dirty pages
1572  * @kvm:        pointer to kvm instance
1573  * @log:        slot id and address to which we copy the log
1574  * @is_dirty:   set to '1' if any dirty pages were found
1575  * @memslot:    set to the associated memslot, always valid on success
1576  */
1577 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1578                       int *is_dirty, struct kvm_memory_slot **memslot)
1579 {
1580         struct kvm_memslots *slots;
1581         int i, as_id, id;
1582         unsigned long n;
1583         unsigned long any = 0;
1584
1585         /* Dirty ring tracking is exclusive to dirty log tracking */
1586         if (kvm->dirty_ring_size)
1587                 return -ENXIO;
1588
1589         *memslot = NULL;
1590         *is_dirty = 0;
1591
1592         as_id = log->slot >> 16;
1593         id = (u16)log->slot;
1594         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1595                 return -EINVAL;
1596
1597         slots = __kvm_memslots(kvm, as_id);
1598         *memslot = id_to_memslot(slots, id);
1599         if (!(*memslot) || !(*memslot)->dirty_bitmap)
1600                 return -ENOENT;
1601
1602         kvm_arch_sync_dirty_log(kvm, *memslot);
1603
1604         n = kvm_dirty_bitmap_bytes(*memslot);
1605
1606         for (i = 0; !any && i < n/sizeof(long); ++i)
1607                 any = (*memslot)->dirty_bitmap[i];
1608
1609         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1610                 return -EFAULT;
1611
1612         if (any)
1613                 *is_dirty = 1;
1614         return 0;
1615 }
1616 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1617
1618 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1619 /**
1620  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1621  *      and reenable dirty page tracking for the corresponding pages.
1622  * @kvm:        pointer to kvm instance
1623  * @log:        slot id and address to which we copy the log
1624  *
1625  * We need to keep it in mind that VCPU threads can write to the bitmap
1626  * concurrently. So, to avoid losing track of dirty pages we keep the
1627  * following order:
1628  *
1629  *    1. Take a snapshot of the bit and clear it if needed.
1630  *    2. Write protect the corresponding page.
1631  *    3. Copy the snapshot to the userspace.
1632  *    4. Upon return caller flushes TLB's if needed.
1633  *
1634  * Between 2 and 4, the guest may write to the page using the remaining TLB
1635  * entry.  This is not a problem because the page is reported dirty using
1636  * the snapshot taken before and step 4 ensures that writes done after
1637  * exiting to userspace will be logged for the next call.
1638  *
1639  */
1640 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1641 {
1642         struct kvm_memslots *slots;
1643         struct kvm_memory_slot *memslot;
1644         int i, as_id, id;
1645         unsigned long n;
1646         unsigned long *dirty_bitmap;
1647         unsigned long *dirty_bitmap_buffer;
1648         bool flush;
1649
1650         /* Dirty ring tracking is exclusive to dirty log tracking */
1651         if (kvm->dirty_ring_size)
1652                 return -ENXIO;
1653
1654         as_id = log->slot >> 16;
1655         id = (u16)log->slot;
1656         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1657                 return -EINVAL;
1658
1659         slots = __kvm_memslots(kvm, as_id);
1660         memslot = id_to_memslot(slots, id);
1661         if (!memslot || !memslot->dirty_bitmap)
1662                 return -ENOENT;
1663
1664         dirty_bitmap = memslot->dirty_bitmap;
1665
1666         kvm_arch_sync_dirty_log(kvm, memslot);
1667
1668         n = kvm_dirty_bitmap_bytes(memslot);
1669         flush = false;
1670         if (kvm->manual_dirty_log_protect) {
1671                 /*
1672                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1673                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1674                  * is some code duplication between this function and
1675                  * kvm_get_dirty_log, but hopefully all architecture
1676                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1677                  * can be eliminated.
1678                  */
1679                 dirty_bitmap_buffer = dirty_bitmap;
1680         } else {
1681                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1682                 memset(dirty_bitmap_buffer, 0, n);
1683
1684                 KVM_MMU_LOCK(kvm);
1685                 for (i = 0; i < n / sizeof(long); i++) {
1686                         unsigned long mask;
1687                         gfn_t offset;
1688
1689                         if (!dirty_bitmap[i])
1690                                 continue;
1691
1692                         flush = true;
1693                         mask = xchg(&dirty_bitmap[i], 0);
1694                         dirty_bitmap_buffer[i] = mask;
1695
1696                         offset = i * BITS_PER_LONG;
1697                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1698                                                                 offset, mask);
1699                 }
1700                 KVM_MMU_UNLOCK(kvm);
1701         }
1702
1703         if (flush)
1704                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1705
1706         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1707                 return -EFAULT;
1708         return 0;
1709 }
1710
1711
1712 /**
1713  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1714  * @kvm: kvm instance
1715  * @log: slot id and address to which we copy the log
1716  *
1717  * Steps 1-4 below provide general overview of dirty page logging. See
1718  * kvm_get_dirty_log_protect() function description for additional details.
1719  *
1720  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1721  * always flush the TLB (step 4) even if previous step failed  and the dirty
1722  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1723  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1724  * writes will be marked dirty for next log read.
1725  *
1726  *   1. Take a snapshot of the bit and clear it if needed.
1727  *   2. Write protect the corresponding page.
1728  *   3. Copy the snapshot to the userspace.
1729  *   4. Flush TLB's if needed.
1730  */
1731 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1732                                       struct kvm_dirty_log *log)
1733 {
1734         int r;
1735
1736         mutex_lock(&kvm->slots_lock);
1737
1738         r = kvm_get_dirty_log_protect(kvm, log);
1739
1740         mutex_unlock(&kvm->slots_lock);
1741         return r;
1742 }
1743
1744 /**
1745  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1746  *      and reenable dirty page tracking for the corresponding pages.
1747  * @kvm:        pointer to kvm instance
1748  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1749  */
1750 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1751                                        struct kvm_clear_dirty_log *log)
1752 {
1753         struct kvm_memslots *slots;
1754         struct kvm_memory_slot *memslot;
1755         int as_id, id;
1756         gfn_t offset;
1757         unsigned long i, n;
1758         unsigned long *dirty_bitmap;
1759         unsigned long *dirty_bitmap_buffer;
1760         bool flush;
1761
1762         /* Dirty ring tracking is exclusive to dirty log tracking */
1763         if (kvm->dirty_ring_size)
1764                 return -ENXIO;
1765
1766         as_id = log->slot >> 16;
1767         id = (u16)log->slot;
1768         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1769                 return -EINVAL;
1770
1771         if (log->first_page & 63)
1772                 return -EINVAL;
1773
1774         slots = __kvm_memslots(kvm, as_id);
1775         memslot = id_to_memslot(slots, id);
1776         if (!memslot || !memslot->dirty_bitmap)
1777                 return -ENOENT;
1778
1779         dirty_bitmap = memslot->dirty_bitmap;
1780
1781         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1782
1783         if (log->first_page > memslot->npages ||
1784             log->num_pages > memslot->npages - log->first_page ||
1785             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1786             return -EINVAL;
1787
1788         kvm_arch_sync_dirty_log(kvm, memslot);
1789
1790         flush = false;
1791         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1792         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1793                 return -EFAULT;
1794
1795         KVM_MMU_LOCK(kvm);
1796         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1797                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1798              i++, offset += BITS_PER_LONG) {
1799                 unsigned long mask = *dirty_bitmap_buffer++;
1800                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1801                 if (!mask)
1802                         continue;
1803
1804                 mask &= atomic_long_fetch_andnot(mask, p);
1805
1806                 /*
1807                  * mask contains the bits that really have been cleared.  This
1808                  * never includes any bits beyond the length of the memslot (if
1809                  * the length is not aligned to 64 pages), therefore it is not
1810                  * a problem if userspace sets them in log->dirty_bitmap.
1811                 */
1812                 if (mask) {
1813                         flush = true;
1814                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1815                                                                 offset, mask);
1816                 }
1817         }
1818         KVM_MMU_UNLOCK(kvm);
1819
1820         if (flush)
1821                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1822
1823         return 0;
1824 }
1825
1826 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1827                                         struct kvm_clear_dirty_log *log)
1828 {
1829         int r;
1830
1831         mutex_lock(&kvm->slots_lock);
1832
1833         r = kvm_clear_dirty_log_protect(kvm, log);
1834
1835         mutex_unlock(&kvm->slots_lock);
1836         return r;
1837 }
1838 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1839
1840 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1841 {
1842         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1843 }
1844 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1845
1846 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1847 {
1848         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1849 }
1850 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1851
1852 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1853 {
1854         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1855
1856         return kvm_is_visible_memslot(memslot);
1857 }
1858 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1859
1860 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1861 {
1862         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1863
1864         return kvm_is_visible_memslot(memslot);
1865 }
1866 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1867
1868 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1869 {
1870         struct vm_area_struct *vma;
1871         unsigned long addr, size;
1872
1873         size = PAGE_SIZE;
1874
1875         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1876         if (kvm_is_error_hva(addr))
1877                 return PAGE_SIZE;
1878
1879         mmap_read_lock(current->mm);
1880         vma = find_vma(current->mm, addr);
1881         if (!vma)
1882                 goto out;
1883
1884         size = vma_kernel_pagesize(vma);
1885
1886 out:
1887         mmap_read_unlock(current->mm);
1888
1889         return size;
1890 }
1891
1892 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1893 {
1894         return slot->flags & KVM_MEM_READONLY;
1895 }
1896
1897 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1898                                        gfn_t *nr_pages, bool write)
1899 {
1900         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1901                 return KVM_HVA_ERR_BAD;
1902
1903         if (memslot_is_readonly(slot) && write)
1904                 return KVM_HVA_ERR_RO_BAD;
1905
1906         if (nr_pages)
1907                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1908
1909         return __gfn_to_hva_memslot(slot, gfn);
1910 }
1911
1912 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1913                                      gfn_t *nr_pages)
1914 {
1915         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1916 }
1917
1918 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1919                                         gfn_t gfn)
1920 {
1921         return gfn_to_hva_many(slot, gfn, NULL);
1922 }
1923 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1924
1925 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1926 {
1927         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1928 }
1929 EXPORT_SYMBOL_GPL(gfn_to_hva);
1930
1931 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1932 {
1933         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1934 }
1935 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1936
1937 /*
1938  * Return the hva of a @gfn and the R/W attribute if possible.
1939  *
1940  * @slot: the kvm_memory_slot which contains @gfn
1941  * @gfn: the gfn to be translated
1942  * @writable: used to return the read/write attribute of the @slot if the hva
1943  * is valid and @writable is not NULL
1944  */
1945 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1946                                       gfn_t gfn, bool *writable)
1947 {
1948         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1949
1950         if (!kvm_is_error_hva(hva) && writable)
1951                 *writable = !memslot_is_readonly(slot);
1952
1953         return hva;
1954 }
1955
1956 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1957 {
1958         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1959
1960         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1961 }
1962
1963 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1964 {
1965         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1966
1967         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1968 }
1969
1970 static inline int check_user_page_hwpoison(unsigned long addr)
1971 {
1972         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1973
1974         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1975         return rc == -EHWPOISON;
1976 }
1977
1978 /*
1979  * The fast path to get the writable pfn which will be stored in @pfn,
1980  * true indicates success, otherwise false is returned.  It's also the
1981  * only part that runs if we can in atomic context.
1982  */
1983 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1984                             bool *writable, kvm_pfn_t *pfn)
1985 {
1986         struct page *page[1];
1987
1988         /*
1989          * Fast pin a writable pfn only if it is a write fault request
1990          * or the caller allows to map a writable pfn for a read fault
1991          * request.
1992          */
1993         if (!(write_fault || writable))
1994                 return false;
1995
1996         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1997                 *pfn = page_to_pfn(page[0]);
1998
1999                 if (writable)
2000                         *writable = true;
2001                 return true;
2002         }
2003
2004         return false;
2005 }
2006
2007 /*
2008  * The slow path to get the pfn of the specified host virtual address,
2009  * 1 indicates success, -errno is returned if error is detected.
2010  */
2011 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2012                            bool *writable, kvm_pfn_t *pfn)
2013 {
2014         unsigned int flags = FOLL_HWPOISON;
2015         struct page *page;
2016         int npages = 0;
2017
2018         might_sleep();
2019
2020         if (writable)
2021                 *writable = write_fault;
2022
2023         if (write_fault)
2024                 flags |= FOLL_WRITE;
2025         if (async)
2026                 flags |= FOLL_NOWAIT;
2027
2028         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2029         if (npages != 1)
2030                 return npages;
2031
2032         /* map read fault as writable if possible */
2033         if (unlikely(!write_fault) && writable) {
2034                 struct page *wpage;
2035
2036                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2037                         *writable = true;
2038                         put_page(page);
2039                         page = wpage;
2040                 }
2041         }
2042         *pfn = page_to_pfn(page);
2043         return npages;
2044 }
2045
2046 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2047 {
2048         if (unlikely(!(vma->vm_flags & VM_READ)))
2049                 return false;
2050
2051         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2052                 return false;
2053
2054         return true;
2055 }
2056
2057 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2058                                unsigned long addr, bool *async,
2059                                bool write_fault, bool *writable,
2060                                kvm_pfn_t *p_pfn)
2061 {
2062         kvm_pfn_t pfn;
2063         pte_t *ptep;
2064         spinlock_t *ptl;
2065         int r;
2066
2067         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2068         if (r) {
2069                 /*
2070                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2071                  * not call the fault handler, so do it here.
2072                  */
2073                 bool unlocked = false;
2074                 r = fixup_user_fault(current->mm, addr,
2075                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2076                                      &unlocked);
2077                 if (unlocked)
2078                         return -EAGAIN;
2079                 if (r)
2080                         return r;
2081
2082                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2083                 if (r)
2084                         return r;
2085         }
2086
2087         if (write_fault && !pte_write(*ptep)) {
2088                 pfn = KVM_PFN_ERR_RO_FAULT;
2089                 goto out;
2090         }
2091
2092         if (writable)
2093                 *writable = pte_write(*ptep);
2094         pfn = pte_pfn(*ptep);
2095
2096         /*
2097          * Get a reference here because callers of *hva_to_pfn* and
2098          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2099          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2100          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
2101          * simply do nothing for reserved pfns.
2102          *
2103          * Whoever called remap_pfn_range is also going to call e.g.
2104          * unmap_mapping_range before the underlying pages are freed,
2105          * causing a call to our MMU notifier.
2106          */ 
2107         kvm_get_pfn(pfn);
2108
2109 out:
2110         pte_unmap_unlock(ptep, ptl);
2111         *p_pfn = pfn;
2112         return 0;
2113 }
2114
2115 /*
2116  * Pin guest page in memory and return its pfn.
2117  * @addr: host virtual address which maps memory to the guest
2118  * @atomic: whether this function can sleep
2119  * @async: whether this function need to wait IO complete if the
2120  *         host page is not in the memory
2121  * @write_fault: whether we should get a writable host page
2122  * @writable: whether it allows to map a writable host page for !@write_fault
2123  *
2124  * The function will map a writable host page for these two cases:
2125  * 1): @write_fault = true
2126  * 2): @write_fault = false && @writable, @writable will tell the caller
2127  *     whether the mapping is writable.
2128  */
2129 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
2130                         bool write_fault, bool *writable)
2131 {
2132         struct vm_area_struct *vma;
2133         kvm_pfn_t pfn = 0;
2134         int npages, r;
2135
2136         /* we can do it either atomically or asynchronously, not both */
2137         BUG_ON(atomic && async);
2138
2139         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2140                 return pfn;
2141
2142         if (atomic)
2143                 return KVM_PFN_ERR_FAULT;
2144
2145         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
2146         if (npages == 1)
2147                 return pfn;
2148
2149         mmap_read_lock(current->mm);
2150         if (npages == -EHWPOISON ||
2151               (!async && check_user_page_hwpoison(addr))) {
2152                 pfn = KVM_PFN_ERR_HWPOISON;
2153                 goto exit;
2154         }
2155
2156 retry:
2157         vma = find_vma_intersection(current->mm, addr, addr + 1);
2158
2159         if (vma == NULL)
2160                 pfn = KVM_PFN_ERR_FAULT;
2161         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2162                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
2163                 if (r == -EAGAIN)
2164                         goto retry;
2165                 if (r < 0)
2166                         pfn = KVM_PFN_ERR_FAULT;
2167         } else {
2168                 if (async && vma_is_valid(vma, write_fault))
2169                         *async = true;
2170                 pfn = KVM_PFN_ERR_FAULT;
2171         }
2172 exit:
2173         mmap_read_unlock(current->mm);
2174         return pfn;
2175 }
2176
2177 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
2178                                bool atomic, bool *async, bool write_fault,
2179                                bool *writable, hva_t *hva)
2180 {
2181         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2182
2183         if (hva)
2184                 *hva = addr;
2185
2186         if (addr == KVM_HVA_ERR_RO_BAD) {
2187                 if (writable)
2188                         *writable = false;
2189                 return KVM_PFN_ERR_RO_FAULT;
2190         }
2191
2192         if (kvm_is_error_hva(addr)) {
2193                 if (writable)
2194                         *writable = false;
2195                 return KVM_PFN_NOSLOT;
2196         }
2197
2198         /* Do not map writable pfn in the readonly memslot. */
2199         if (writable && memslot_is_readonly(slot)) {
2200                 *writable = false;
2201                 writable = NULL;
2202         }
2203
2204         return hva_to_pfn(addr, atomic, async, write_fault,
2205                           writable);
2206 }
2207 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2208
2209 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2210                       bool *writable)
2211 {
2212         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2213                                     write_fault, writable, NULL);
2214 }
2215 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2216
2217 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
2218 {
2219         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL, NULL);
2220 }
2221 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2222
2223 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2224 {
2225         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL, NULL);
2226 }
2227 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2228
2229 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2230 {
2231         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2232 }
2233 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2234
2235 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2236 {
2237         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2238 }
2239 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2240
2241 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2242 {
2243         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2246
2247 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2248                             struct page **pages, int nr_pages)
2249 {
2250         unsigned long addr;
2251         gfn_t entry = 0;
2252
2253         addr = gfn_to_hva_many(slot, gfn, &entry);
2254         if (kvm_is_error_hva(addr))
2255                 return -1;
2256
2257         if (entry < nr_pages)
2258                 return 0;
2259
2260         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2261 }
2262 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2263
2264 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2265 {
2266         if (is_error_noslot_pfn(pfn))
2267                 return KVM_ERR_PTR_BAD_PAGE;
2268
2269         if (kvm_is_reserved_pfn(pfn)) {
2270                 WARN_ON(1);
2271                 return KVM_ERR_PTR_BAD_PAGE;
2272         }
2273
2274         return pfn_to_page(pfn);
2275 }
2276
2277 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2278 {
2279         kvm_pfn_t pfn;
2280
2281         pfn = gfn_to_pfn(kvm, gfn);
2282
2283         return kvm_pfn_to_page(pfn);
2284 }
2285 EXPORT_SYMBOL_GPL(gfn_to_page);
2286
2287 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2288 {
2289         if (pfn == 0)
2290                 return;
2291
2292         if (cache)
2293                 cache->pfn = cache->gfn = 0;
2294
2295         if (dirty)
2296                 kvm_release_pfn_dirty(pfn);
2297         else
2298                 kvm_release_pfn_clean(pfn);
2299 }
2300
2301 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2302                                  struct gfn_to_pfn_cache *cache, u64 gen)
2303 {
2304         kvm_release_pfn(cache->pfn, cache->dirty, cache);
2305
2306         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2307         cache->gfn = gfn;
2308         cache->dirty = false;
2309         cache->generation = gen;
2310 }
2311
2312 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2313                          struct kvm_host_map *map,
2314                          struct gfn_to_pfn_cache *cache,
2315                          bool atomic)
2316 {
2317         kvm_pfn_t pfn;
2318         void *hva = NULL;
2319         struct page *page = KVM_UNMAPPED_PAGE;
2320         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2321         u64 gen = slots->generation;
2322
2323         if (!map)
2324                 return -EINVAL;
2325
2326         if (cache) {
2327                 if (!cache->pfn || cache->gfn != gfn ||
2328                         cache->generation != gen) {
2329                         if (atomic)
2330                                 return -EAGAIN;
2331                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2332                 }
2333                 pfn = cache->pfn;
2334         } else {
2335                 if (atomic)
2336                         return -EAGAIN;
2337                 pfn = gfn_to_pfn_memslot(slot, gfn);
2338         }
2339         if (is_error_noslot_pfn(pfn))
2340                 return -EINVAL;
2341
2342         if (pfn_valid(pfn)) {
2343                 page = pfn_to_page(pfn);
2344                 if (atomic)
2345                         hva = kmap_atomic(page);
2346                 else
2347                         hva = kmap(page);
2348 #ifdef CONFIG_HAS_IOMEM
2349         } else if (!atomic) {
2350                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2351         } else {
2352                 return -EINVAL;
2353 #endif
2354         }
2355
2356         if (!hva)
2357                 return -EFAULT;
2358
2359         map->page = page;
2360         map->hva = hva;
2361         map->pfn = pfn;
2362         map->gfn = gfn;
2363
2364         return 0;
2365 }
2366
2367 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2368                 struct gfn_to_pfn_cache *cache, bool atomic)
2369 {
2370         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2371                         cache, atomic);
2372 }
2373 EXPORT_SYMBOL_GPL(kvm_map_gfn);
2374
2375 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2376 {
2377         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2378                 NULL, false);
2379 }
2380 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2381
2382 static void __kvm_unmap_gfn(struct kvm *kvm,
2383                         struct kvm_memory_slot *memslot,
2384                         struct kvm_host_map *map,
2385                         struct gfn_to_pfn_cache *cache,
2386                         bool dirty, bool atomic)
2387 {
2388         if (!map)
2389                 return;
2390
2391         if (!map->hva)
2392                 return;
2393
2394         if (map->page != KVM_UNMAPPED_PAGE) {
2395                 if (atomic)
2396                         kunmap_atomic(map->hva);
2397                 else
2398                         kunmap(map->page);
2399         }
2400 #ifdef CONFIG_HAS_IOMEM
2401         else if (!atomic)
2402                 memunmap(map->hva);
2403         else
2404                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
2405 #endif
2406
2407         if (dirty)
2408                 mark_page_dirty_in_slot(kvm, memslot, map->gfn);
2409
2410         if (cache)
2411                 cache->dirty |= dirty;
2412         else
2413                 kvm_release_pfn(map->pfn, dirty, NULL);
2414
2415         map->hva = NULL;
2416         map->page = NULL;
2417 }
2418
2419 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2420                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2421 {
2422         __kvm_unmap_gfn(vcpu->kvm, gfn_to_memslot(vcpu->kvm, map->gfn), map,
2423                         cache, dirty, atomic);
2424         return 0;
2425 }
2426 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2427
2428 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2429 {
2430         __kvm_unmap_gfn(vcpu->kvm, kvm_vcpu_gfn_to_memslot(vcpu, map->gfn),
2431                         map, NULL, dirty, false);
2432 }
2433 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2434
2435 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2436 {
2437         kvm_pfn_t pfn;
2438
2439         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2440
2441         return kvm_pfn_to_page(pfn);
2442 }
2443 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2444
2445 void kvm_release_page_clean(struct page *page)
2446 {
2447         WARN_ON(is_error_page(page));
2448
2449         kvm_release_pfn_clean(page_to_pfn(page));
2450 }
2451 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2452
2453 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2454 {
2455         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2456                 put_page(pfn_to_page(pfn));
2457 }
2458 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2459
2460 void kvm_release_page_dirty(struct page *page)
2461 {
2462         WARN_ON(is_error_page(page));
2463
2464         kvm_release_pfn_dirty(page_to_pfn(page));
2465 }
2466 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2467
2468 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2469 {
2470         kvm_set_pfn_dirty(pfn);
2471         kvm_release_pfn_clean(pfn);
2472 }
2473 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2474
2475 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2476 {
2477         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2478                 SetPageDirty(pfn_to_page(pfn));
2479 }
2480 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2481
2482 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2483 {
2484         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2485                 mark_page_accessed(pfn_to_page(pfn));
2486 }
2487 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2488
2489 void kvm_get_pfn(kvm_pfn_t pfn)
2490 {
2491         if (!kvm_is_reserved_pfn(pfn))
2492                 get_page(pfn_to_page(pfn));
2493 }
2494 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2495
2496 static int next_segment(unsigned long len, int offset)
2497 {
2498         if (len > PAGE_SIZE - offset)
2499                 return PAGE_SIZE - offset;
2500         else
2501                 return len;
2502 }
2503
2504 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2505                                  void *data, int offset, int len)
2506 {
2507         int r;
2508         unsigned long addr;
2509
2510         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2511         if (kvm_is_error_hva(addr))
2512                 return -EFAULT;
2513         r = __copy_from_user(data, (void __user *)addr + offset, len);
2514         if (r)
2515                 return -EFAULT;
2516         return 0;
2517 }
2518
2519 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2520                         int len)
2521 {
2522         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2523
2524         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2525 }
2526 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2527
2528 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2529                              int offset, int len)
2530 {
2531         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2532
2533         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2534 }
2535 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2536
2537 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2538 {
2539         gfn_t gfn = gpa >> PAGE_SHIFT;
2540         int seg;
2541         int offset = offset_in_page(gpa);
2542         int ret;
2543
2544         while ((seg = next_segment(len, offset)) != 0) {
2545                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2546                 if (ret < 0)
2547                         return ret;
2548                 offset = 0;
2549                 len -= seg;
2550                 data += seg;
2551                 ++gfn;
2552         }
2553         return 0;
2554 }
2555 EXPORT_SYMBOL_GPL(kvm_read_guest);
2556
2557 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2558 {
2559         gfn_t gfn = gpa >> PAGE_SHIFT;
2560         int seg;
2561         int offset = offset_in_page(gpa);
2562         int ret;
2563
2564         while ((seg = next_segment(len, offset)) != 0) {
2565                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2566                 if (ret < 0)
2567                         return ret;
2568                 offset = 0;
2569                 len -= seg;
2570                 data += seg;
2571                 ++gfn;
2572         }
2573         return 0;
2574 }
2575 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2576
2577 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2578                                    void *data, int offset, unsigned long len)
2579 {
2580         int r;
2581         unsigned long addr;
2582
2583         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2584         if (kvm_is_error_hva(addr))
2585                 return -EFAULT;
2586         pagefault_disable();
2587         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2588         pagefault_enable();
2589         if (r)
2590                 return -EFAULT;
2591         return 0;
2592 }
2593
2594 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2595                                void *data, unsigned long len)
2596 {
2597         gfn_t gfn = gpa >> PAGE_SHIFT;
2598         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2599         int offset = offset_in_page(gpa);
2600
2601         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2602 }
2603 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2604
2605 static int __kvm_write_guest_page(struct kvm *kvm,
2606                                   struct kvm_memory_slot *memslot, gfn_t gfn,
2607                                   const void *data, int offset, int len)
2608 {
2609         int r;
2610         unsigned long addr;
2611
2612         addr = gfn_to_hva_memslot(memslot, gfn);
2613         if (kvm_is_error_hva(addr))
2614                 return -EFAULT;
2615         r = __copy_to_user((void __user *)addr + offset, data, len);
2616         if (r)
2617                 return -EFAULT;
2618         mark_page_dirty_in_slot(kvm, memslot, gfn);
2619         return 0;
2620 }
2621
2622 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2623                          const void *data, int offset, int len)
2624 {
2625         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2626
2627         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
2628 }
2629 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2630
2631 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2632                               const void *data, int offset, int len)
2633 {
2634         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2635
2636         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
2637 }
2638 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2639
2640 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2641                     unsigned long len)
2642 {
2643         gfn_t gfn = gpa >> PAGE_SHIFT;
2644         int seg;
2645         int offset = offset_in_page(gpa);
2646         int ret;
2647
2648         while ((seg = next_segment(len, offset)) != 0) {
2649                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2650                 if (ret < 0)
2651                         return ret;
2652                 offset = 0;
2653                 len -= seg;
2654                 data += seg;
2655                 ++gfn;
2656         }
2657         return 0;
2658 }
2659 EXPORT_SYMBOL_GPL(kvm_write_guest);
2660
2661 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2662                          unsigned long len)
2663 {
2664         gfn_t gfn = gpa >> PAGE_SHIFT;
2665         int seg;
2666         int offset = offset_in_page(gpa);
2667         int ret;
2668
2669         while ((seg = next_segment(len, offset)) != 0) {
2670                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2671                 if (ret < 0)
2672                         return ret;
2673                 offset = 0;
2674                 len -= seg;
2675                 data += seg;
2676                 ++gfn;
2677         }
2678         return 0;
2679 }
2680 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2681
2682 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2683                                        struct gfn_to_hva_cache *ghc,
2684                                        gpa_t gpa, unsigned long len)
2685 {
2686         int offset = offset_in_page(gpa);
2687         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2688         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2689         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2690         gfn_t nr_pages_avail;
2691
2692         /* Update ghc->generation before performing any error checks. */
2693         ghc->generation = slots->generation;
2694
2695         if (start_gfn > end_gfn) {
2696                 ghc->hva = KVM_HVA_ERR_BAD;
2697                 return -EINVAL;
2698         }
2699
2700         /*
2701          * If the requested region crosses two memslots, we still
2702          * verify that the entire region is valid here.
2703          */
2704         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2705                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2706                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2707                                            &nr_pages_avail);
2708                 if (kvm_is_error_hva(ghc->hva))
2709                         return -EFAULT;
2710         }
2711
2712         /* Use the slow path for cross page reads and writes. */
2713         if (nr_pages_needed == 1)
2714                 ghc->hva += offset;
2715         else
2716                 ghc->memslot = NULL;
2717
2718         ghc->gpa = gpa;
2719         ghc->len = len;
2720         return 0;
2721 }
2722
2723 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2724                               gpa_t gpa, unsigned long len)
2725 {
2726         struct kvm_memslots *slots = kvm_memslots(kvm);
2727         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2728 }
2729 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2730
2731 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2732                                   void *data, unsigned int offset,
2733                                   unsigned long len)
2734 {
2735         struct kvm_memslots *slots = kvm_memslots(kvm);
2736         int r;
2737         gpa_t gpa = ghc->gpa + offset;
2738
2739         BUG_ON(len + offset > ghc->len);
2740
2741         if (slots->generation != ghc->generation) {
2742                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2743                         return -EFAULT;
2744         }
2745
2746         if (kvm_is_error_hva(ghc->hva))
2747                 return -EFAULT;
2748
2749         if (unlikely(!ghc->memslot))
2750                 return kvm_write_guest(kvm, gpa, data, len);
2751
2752         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2753         if (r)
2754                 return -EFAULT;
2755         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
2756
2757         return 0;
2758 }
2759 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2760
2761 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2762                            void *data, unsigned long len)
2763 {
2764         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2765 }
2766 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2767
2768 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2769                                  void *data, unsigned int offset,
2770                                  unsigned long len)
2771 {
2772         struct kvm_memslots *slots = kvm_memslots(kvm);
2773         int r;
2774         gpa_t gpa = ghc->gpa + offset;
2775
2776         BUG_ON(len + offset > ghc->len);
2777
2778         if (slots->generation != ghc->generation) {
2779                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2780                         return -EFAULT;
2781         }
2782
2783         if (kvm_is_error_hva(ghc->hva))
2784                 return -EFAULT;
2785
2786         if (unlikely(!ghc->memslot))
2787                 return kvm_read_guest(kvm, gpa, data, len);
2788
2789         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2790         if (r)
2791                 return -EFAULT;
2792
2793         return 0;
2794 }
2795 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2796
2797 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2798                           void *data, unsigned long len)
2799 {
2800         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2801 }
2802 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2803
2804 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2805 {
2806         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2807         gfn_t gfn = gpa >> PAGE_SHIFT;
2808         int seg;
2809         int offset = offset_in_page(gpa);
2810         int ret;
2811
2812         while ((seg = next_segment(len, offset)) != 0) {
2813                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2814                 if (ret < 0)
2815                         return ret;
2816                 offset = 0;
2817                 len -= seg;
2818                 ++gfn;
2819         }
2820         return 0;
2821 }
2822 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2823
2824 void mark_page_dirty_in_slot(struct kvm *kvm,
2825                              struct kvm_memory_slot *memslot,
2826                              gfn_t gfn)
2827 {
2828         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
2829                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2830                 u32 slot = (memslot->as_id << 16) | memslot->id;
2831
2832                 if (kvm->dirty_ring_size)
2833                         kvm_dirty_ring_push(kvm_dirty_ring_get(kvm),
2834                                             slot, rel_gfn);
2835                 else
2836                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
2837         }
2838 }
2839 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
2840
2841 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2842 {
2843         struct kvm_memory_slot *memslot;
2844
2845         memslot = gfn_to_memslot(kvm, gfn);
2846         mark_page_dirty_in_slot(kvm, memslot, gfn);
2847 }
2848 EXPORT_SYMBOL_GPL(mark_page_dirty);
2849
2850 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2851 {
2852         struct kvm_memory_slot *memslot;
2853
2854         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2855         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
2856 }
2857 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2858
2859 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2860 {
2861         if (!vcpu->sigset_active)
2862                 return;
2863
2864         /*
2865          * This does a lockless modification of ->real_blocked, which is fine
2866          * because, only current can change ->real_blocked and all readers of
2867          * ->real_blocked don't care as long ->real_blocked is always a subset
2868          * of ->blocked.
2869          */
2870         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2871 }
2872
2873 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2874 {
2875         if (!vcpu->sigset_active)
2876                 return;
2877
2878         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2879         sigemptyset(&current->real_blocked);
2880 }
2881
2882 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2883 {
2884         unsigned int old, val, grow, grow_start;
2885
2886         old = val = vcpu->halt_poll_ns;
2887         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2888         grow = READ_ONCE(halt_poll_ns_grow);
2889         if (!grow)
2890                 goto out;
2891
2892         val *= grow;
2893         if (val < grow_start)
2894                 val = grow_start;
2895
2896         if (val > halt_poll_ns)
2897                 val = halt_poll_ns;
2898
2899         vcpu->halt_poll_ns = val;
2900 out:
2901         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2902 }
2903
2904 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2905 {
2906         unsigned int old, val, shrink;
2907
2908         old = val = vcpu->halt_poll_ns;
2909         shrink = READ_ONCE(halt_poll_ns_shrink);
2910         if (shrink == 0)
2911                 val = 0;
2912         else
2913                 val /= shrink;
2914
2915         vcpu->halt_poll_ns = val;
2916         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2917 }
2918
2919 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2920 {
2921         int ret = -EINTR;
2922         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2923
2924         if (kvm_arch_vcpu_runnable(vcpu)) {
2925                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2926                 goto out;
2927         }
2928         if (kvm_cpu_has_pending_timer(vcpu))
2929                 goto out;
2930         if (signal_pending(current))
2931                 goto out;
2932
2933         ret = 0;
2934 out:
2935         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2936         return ret;
2937 }
2938
2939 static inline void
2940 update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2941 {
2942         if (waited)
2943                 vcpu->stat.halt_poll_fail_ns += poll_ns;
2944         else
2945                 vcpu->stat.halt_poll_success_ns += poll_ns;
2946 }
2947
2948 /*
2949  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2950  */
2951 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2952 {
2953         ktime_t start, cur, poll_end;
2954         bool waited = false;
2955         u64 block_ns;
2956
2957         kvm_arch_vcpu_blocking(vcpu);
2958
2959         start = cur = poll_end = ktime_get();
2960         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2961                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2962
2963                 ++vcpu->stat.halt_attempted_poll;
2964                 do {
2965                         /*
2966                          * This sets KVM_REQ_UNHALT if an interrupt
2967                          * arrives.
2968                          */
2969                         if (kvm_vcpu_check_block(vcpu) < 0) {
2970                                 ++vcpu->stat.halt_successful_poll;
2971                                 if (!vcpu_valid_wakeup(vcpu))
2972                                         ++vcpu->stat.halt_poll_invalid;
2973                                 goto out;
2974                         }
2975                         poll_end = cur = ktime_get();
2976                 } while (single_task_running() && ktime_before(cur, stop));
2977         }
2978
2979         prepare_to_rcuwait(&vcpu->wait);
2980         for (;;) {
2981                 set_current_state(TASK_INTERRUPTIBLE);
2982
2983                 if (kvm_vcpu_check_block(vcpu) < 0)
2984                         break;
2985
2986                 waited = true;
2987                 schedule();
2988         }
2989         finish_rcuwait(&vcpu->wait);
2990         cur = ktime_get();
2991 out:
2992         kvm_arch_vcpu_unblocking(vcpu);
2993         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2994
2995         update_halt_poll_stats(
2996                 vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2997
2998         if (!kvm_arch_no_poll(vcpu)) {
2999                 if (!vcpu_valid_wakeup(vcpu)) {
3000                         shrink_halt_poll_ns(vcpu);
3001                 } else if (vcpu->kvm->max_halt_poll_ns) {
3002                         if (block_ns <= vcpu->halt_poll_ns)
3003                                 ;
3004                         /* we had a long block, shrink polling */
3005                         else if (vcpu->halt_poll_ns &&
3006                                         block_ns > vcpu->kvm->max_halt_poll_ns)
3007                                 shrink_halt_poll_ns(vcpu);
3008                         /* we had a short halt and our poll time is too small */
3009                         else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
3010                                         block_ns < vcpu->kvm->max_halt_poll_ns)
3011                                 grow_halt_poll_ns(vcpu);
3012                 } else {
3013                         vcpu->halt_poll_ns = 0;
3014                 }
3015         }
3016
3017         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
3018         kvm_arch_vcpu_block_finish(vcpu);
3019 }
3020 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
3021
3022 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3023 {
3024         struct rcuwait *waitp;
3025
3026         waitp = kvm_arch_vcpu_get_wait(vcpu);
3027         if (rcuwait_wake_up(waitp)) {
3028                 WRITE_ONCE(vcpu->ready, true);
3029                 ++vcpu->stat.halt_wakeup;
3030                 return true;
3031         }
3032
3033         return false;
3034 }
3035 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3036
3037 #ifndef CONFIG_S390
3038 /*
3039  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3040  */
3041 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3042 {
3043         int me;
3044         int cpu = vcpu->cpu;
3045
3046         if (kvm_vcpu_wake_up(vcpu))
3047                 return;
3048
3049         me = get_cpu();
3050         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3051                 if (kvm_arch_vcpu_should_kick(vcpu))
3052                         smp_send_reschedule(cpu);
3053         put_cpu();
3054 }
3055 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3056 #endif /* !CONFIG_S390 */
3057
3058 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3059 {
3060         struct pid *pid;
3061         struct task_struct *task = NULL;
3062         int ret = 0;
3063
3064         rcu_read_lock();
3065         pid = rcu_dereference(target->pid);
3066         if (pid)
3067                 task = get_pid_task(pid, PIDTYPE_PID);
3068         rcu_read_unlock();
3069         if (!task)
3070                 return ret;
3071         ret = yield_to(task, 1);
3072         put_task_struct(task);
3073
3074         return ret;
3075 }
3076 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3077
3078 /*
3079  * Helper that checks whether a VCPU is eligible for directed yield.
3080  * Most eligible candidate to yield is decided by following heuristics:
3081  *
3082  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3083  *  (preempted lock holder), indicated by @in_spin_loop.
3084  *  Set at the beginning and cleared at the end of interception/PLE handler.
3085  *
3086  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3087  *  chance last time (mostly it has become eligible now since we have probably
3088  *  yielded to lockholder in last iteration. This is done by toggling
3089  *  @dy_eligible each time a VCPU checked for eligibility.)
3090  *
3091  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3092  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3093  *  burning. Giving priority for a potential lock-holder increases lock
3094  *  progress.
3095  *
3096  *  Since algorithm is based on heuristics, accessing another VCPU data without
3097  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3098  *  and continue with next VCPU and so on.
3099  */
3100 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3101 {
3102 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3103         bool eligible;
3104
3105         eligible = !vcpu->spin_loop.in_spin_loop ||
3106                     vcpu->spin_loop.dy_eligible;
3107
3108         if (vcpu->spin_loop.in_spin_loop)
3109                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3110
3111         return eligible;
3112 #else
3113         return true;
3114 #endif
3115 }
3116
3117 /*
3118  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3119  * a vcpu_load/vcpu_put pair.  However, for most architectures
3120  * kvm_arch_vcpu_runnable does not require vcpu_load.
3121  */
3122 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3123 {
3124         return kvm_arch_vcpu_runnable(vcpu);
3125 }
3126
3127 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3128 {
3129         if (kvm_arch_dy_runnable(vcpu))
3130                 return true;
3131
3132 #ifdef CONFIG_KVM_ASYNC_PF
3133         if (!list_empty_careful(&vcpu->async_pf.done))
3134                 return true;
3135 #endif
3136
3137         return false;
3138 }
3139
3140 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3141 {
3142         return false;
3143 }
3144
3145 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3146 {
3147         struct kvm *kvm = me->kvm;
3148         struct kvm_vcpu *vcpu;
3149         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3150         int yielded = 0;
3151         int try = 3;
3152         int pass;
3153         int i;
3154
3155         kvm_vcpu_set_in_spin_loop(me, true);
3156         /*
3157          * We boost the priority of a VCPU that is runnable but not
3158          * currently running, because it got preempted by something
3159          * else and called schedule in __vcpu_run.  Hopefully that
3160          * VCPU is holding the lock that we need and will release it.
3161          * We approximate round-robin by starting at the last boosted VCPU.
3162          */
3163         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3164                 kvm_for_each_vcpu(i, vcpu, kvm) {
3165                         if (!pass && i <= last_boosted_vcpu) {
3166                                 i = last_boosted_vcpu;
3167                                 continue;
3168                         } else if (pass && i > last_boosted_vcpu)
3169                                 break;
3170                         if (!READ_ONCE(vcpu->ready))
3171                                 continue;
3172                         if (vcpu == me)
3173                                 continue;
3174                         if (rcuwait_active(&vcpu->wait) &&
3175                             !vcpu_dy_runnable(vcpu))
3176                                 continue;
3177                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3178                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3179                             !kvm_arch_vcpu_in_kernel(vcpu))
3180                                 continue;
3181                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3182                                 continue;
3183
3184                         yielded = kvm_vcpu_yield_to(vcpu);
3185                         if (yielded > 0) {
3186                                 kvm->last_boosted_vcpu = i;
3187                                 break;
3188                         } else if (yielded < 0) {
3189                                 try--;
3190                                 if (!try)
3191                                         break;
3192                         }
3193                 }
3194         }
3195         kvm_vcpu_set_in_spin_loop(me, false);
3196
3197         /* Ensure vcpu is not eligible during next spinloop */
3198         kvm_vcpu_set_dy_eligible(me, false);
3199 }
3200 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3201
3202 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3203 {
3204 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3205         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3206             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3207              kvm->dirty_ring_size / PAGE_SIZE);
3208 #else
3209         return false;
3210 #endif
3211 }
3212
3213 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3214 {
3215         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3216         struct page *page;
3217
3218         if (vmf->pgoff == 0)
3219                 page = virt_to_page(vcpu->run);
3220 #ifdef CONFIG_X86
3221         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3222                 page = virt_to_page(vcpu->arch.pio_data);
3223 #endif
3224 #ifdef CONFIG_KVM_MMIO
3225         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3226                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3227 #endif
3228         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3229                 page = kvm_dirty_ring_get_page(
3230                     &vcpu->dirty_ring,
3231                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3232         else
3233                 return kvm_arch_vcpu_fault(vcpu, vmf);
3234         get_page(page);
3235         vmf->page = page;
3236         return 0;
3237 }
3238
3239 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3240         .fault = kvm_vcpu_fault,
3241 };
3242
3243 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3244 {
3245         struct kvm_vcpu *vcpu = file->private_data;
3246         unsigned long pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3247
3248         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3249              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3250             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3251                 return -EINVAL;
3252
3253         vma->vm_ops = &kvm_vcpu_vm_ops;
3254         return 0;
3255 }
3256
3257 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3258 {
3259         struct kvm_vcpu *vcpu = filp->private_data;
3260
3261         kvm_put_kvm(vcpu->kvm);
3262         return 0;
3263 }
3264
3265 static struct file_operations kvm_vcpu_fops = {
3266         .release        = kvm_vcpu_release,
3267         .unlocked_ioctl = kvm_vcpu_ioctl,
3268         .mmap           = kvm_vcpu_mmap,
3269         .llseek         = noop_llseek,
3270         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3271 };
3272
3273 /*
3274  * Allocates an inode for the vcpu.
3275  */
3276 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3277 {
3278         char name[8 + 1 + ITOA_MAX_LEN + 1];
3279
3280         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3281         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3282 }
3283
3284 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3285 {
3286 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3287         struct dentry *debugfs_dentry;
3288         char dir_name[ITOA_MAX_LEN * 2];
3289
3290         if (!debugfs_initialized())
3291                 return;
3292
3293         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3294         debugfs_dentry = debugfs_create_dir(dir_name,
3295                                             vcpu->kvm->debugfs_dentry);
3296
3297         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3298 #endif
3299 }
3300
3301 /*
3302  * Creates some virtual cpus.  Good luck creating more than one.
3303  */
3304 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3305 {
3306         int r;
3307         struct kvm_vcpu *vcpu;
3308         struct page *page;
3309
3310         if (id >= KVM_MAX_VCPU_ID)
3311                 return -EINVAL;
3312
3313         mutex_lock(&kvm->lock);
3314         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3315                 mutex_unlock(&kvm->lock);
3316                 return -EINVAL;
3317         }
3318
3319         kvm->created_vcpus++;
3320         mutex_unlock(&kvm->lock);
3321
3322         r = kvm_arch_vcpu_precreate(kvm, id);
3323         if (r)
3324                 goto vcpu_decrement;
3325
3326         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3327         if (!vcpu) {
3328                 r = -ENOMEM;
3329                 goto vcpu_decrement;
3330         }
3331
3332         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3333         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3334         if (!page) {
3335                 r = -ENOMEM;
3336                 goto vcpu_free;
3337         }
3338         vcpu->run = page_address(page);
3339
3340         kvm_vcpu_init(vcpu, kvm, id);
3341
3342         r = kvm_arch_vcpu_create(vcpu);
3343         if (r)
3344                 goto vcpu_free_run_page;
3345
3346         if (kvm->dirty_ring_size) {
3347                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3348                                          id, kvm->dirty_ring_size);
3349                 if (r)
3350                         goto arch_vcpu_destroy;
3351         }
3352
3353         mutex_lock(&kvm->lock);
3354         if (kvm_get_vcpu_by_id(kvm, id)) {
3355                 r = -EEXIST;
3356                 goto unlock_vcpu_destroy;
3357         }
3358
3359         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3360         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3361
3362         /* Now it's all set up, let userspace reach it */
3363         kvm_get_kvm(kvm);
3364         r = create_vcpu_fd(vcpu);
3365         if (r < 0) {
3366                 kvm_put_kvm_no_destroy(kvm);
3367                 goto unlock_vcpu_destroy;
3368         }
3369
3370         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3371
3372         /*
3373          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3374          * before kvm->online_vcpu's incremented value.
3375          */
3376         smp_wmb();
3377         atomic_inc(&kvm->online_vcpus);
3378
3379         mutex_unlock(&kvm->lock);
3380         kvm_arch_vcpu_postcreate(vcpu);
3381         kvm_create_vcpu_debugfs(vcpu);
3382         return r;
3383
3384 unlock_vcpu_destroy:
3385         mutex_unlock(&kvm->lock);
3386         kvm_dirty_ring_free(&vcpu->dirty_ring);
3387 arch_vcpu_destroy:
3388         kvm_arch_vcpu_destroy(vcpu);
3389 vcpu_free_run_page:
3390         free_page((unsigned long)vcpu->run);
3391 vcpu_free:
3392         kmem_cache_free(kvm_vcpu_cache, vcpu);
3393 vcpu_decrement:
3394         mutex_lock(&kvm->lock);
3395         kvm->created_vcpus--;
3396         mutex_unlock(&kvm->lock);
3397         return r;
3398 }
3399
3400 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3401 {
3402         if (sigset) {
3403                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3404                 vcpu->sigset_active = 1;
3405                 vcpu->sigset = *sigset;
3406         } else
3407                 vcpu->sigset_active = 0;
3408         return 0;
3409 }
3410
3411 static long kvm_vcpu_ioctl(struct file *filp,
3412                            unsigned int ioctl, unsigned long arg)
3413 {
3414         struct kvm_vcpu *vcpu = filp->private_data;
3415         void __user *argp = (void __user *)arg;
3416         int r;
3417         struct kvm_fpu *fpu = NULL;
3418         struct kvm_sregs *kvm_sregs = NULL;
3419
3420         if (vcpu->kvm->mm != current->mm)
3421                 return -EIO;
3422
3423         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3424                 return -EINVAL;
3425
3426         /*
3427          * Some architectures have vcpu ioctls that are asynchronous to vcpu
3428          * execution; mutex_lock() would break them.
3429          */
3430         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3431         if (r != -ENOIOCTLCMD)
3432                 return r;
3433
3434         if (mutex_lock_killable(&vcpu->mutex))
3435                 return -EINTR;
3436         switch (ioctl) {
3437         case KVM_RUN: {
3438                 struct pid *oldpid;
3439                 r = -EINVAL;
3440                 if (arg)
3441                         goto out;
3442                 oldpid = rcu_access_pointer(vcpu->pid);
3443                 if (unlikely(oldpid != task_pid(current))) {
3444                         /* The thread running this VCPU changed. */
3445                         struct pid *newpid;
3446
3447                         r = kvm_arch_vcpu_run_pid_change(vcpu);
3448                         if (r)
3449                                 break;
3450
3451                         newpid = get_task_pid(current, PIDTYPE_PID);
3452                         rcu_assign_pointer(vcpu->pid, newpid);
3453                         if (oldpid)
3454                                 synchronize_rcu();
3455                         put_pid(oldpid);
3456                 }
3457                 r = kvm_arch_vcpu_ioctl_run(vcpu);
3458                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3459                 break;
3460         }
3461         case KVM_GET_REGS: {
3462                 struct kvm_regs *kvm_regs;
3463
3464                 r = -ENOMEM;
3465                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3466                 if (!kvm_regs)
3467                         goto out;
3468                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3469                 if (r)
3470                         goto out_free1;
3471                 r = -EFAULT;
3472                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3473                         goto out_free1;
3474                 r = 0;
3475 out_free1:
3476                 kfree(kvm_regs);
3477                 break;
3478         }
3479         case KVM_SET_REGS: {
3480                 struct kvm_regs *kvm_regs;
3481
3482                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3483                 if (IS_ERR(kvm_regs)) {
3484                         r = PTR_ERR(kvm_regs);
3485                         goto out;
3486                 }
3487                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
3488                 kfree(kvm_regs);
3489                 break;
3490         }
3491         case KVM_GET_SREGS: {
3492                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3493                                     GFP_KERNEL_ACCOUNT);
3494                 r = -ENOMEM;
3495                 if (!kvm_sregs)
3496                         goto out;
3497                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3498                 if (r)
3499                         goto out;
3500                 r = -EFAULT;
3501                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3502                         goto out;
3503                 r = 0;
3504                 break;
3505         }
3506         case KVM_SET_SREGS: {
3507                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3508                 if (IS_ERR(kvm_sregs)) {
3509                         r = PTR_ERR(kvm_sregs);
3510                         kvm_sregs = NULL;
3511                         goto out;
3512                 }
3513                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
3514                 break;
3515         }
3516         case KVM_GET_MP_STATE: {
3517                 struct kvm_mp_state mp_state;
3518
3519                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3520                 if (r)
3521                         goto out;
3522                 r = -EFAULT;
3523                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3524                         goto out;
3525                 r = 0;
3526                 break;
3527         }
3528         case KVM_SET_MP_STATE: {
3529                 struct kvm_mp_state mp_state;
3530
3531                 r = -EFAULT;
3532                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3533                         goto out;
3534                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3535                 break;
3536         }
3537         case KVM_TRANSLATE: {
3538                 struct kvm_translation tr;
3539
3540                 r = -EFAULT;
3541                 if (copy_from_user(&tr, argp, sizeof(tr)))
3542                         goto out;
3543                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3544                 if (r)
3545                         goto out;
3546                 r = -EFAULT;
3547                 if (copy_to_user(argp, &tr, sizeof(tr)))
3548                         goto out;
3549                 r = 0;
3550                 break;
3551         }
3552         case KVM_SET_GUEST_DEBUG: {
3553                 struct kvm_guest_debug dbg;
3554
3555                 r = -EFAULT;
3556                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3557                         goto out;
3558                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3559                 break;
3560         }
3561         case KVM_SET_SIGNAL_MASK: {
3562                 struct kvm_signal_mask __user *sigmask_arg = argp;
3563                 struct kvm_signal_mask kvm_sigmask;
3564                 sigset_t sigset, *p;
3565
3566                 p = NULL;
3567                 if (argp) {
3568                         r = -EFAULT;
3569                         if (copy_from_user(&kvm_sigmask, argp,
3570                                            sizeof(kvm_sigmask)))
3571                                 goto out;
3572                         r = -EINVAL;
3573                         if (kvm_sigmask.len != sizeof(sigset))
3574                                 goto out;
3575                         r = -EFAULT;
3576                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3577                                            sizeof(sigset)))
3578                                 goto out;
3579                         p = &sigset;
3580                 }
3581                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3582                 break;
3583         }
3584         case KVM_GET_FPU: {
3585                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3586                 r = -ENOMEM;
3587                 if (!fpu)
3588                         goto out;
3589                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3590                 if (r)
3591                         goto out;
3592                 r = -EFAULT;
3593                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3594                         goto out;
3595                 r = 0;
3596                 break;
3597         }
3598         case KVM_SET_FPU: {
3599                 fpu = memdup_user(argp, sizeof(*fpu));
3600                 if (IS_ERR(fpu)) {
3601                         r = PTR_ERR(fpu);
3602                         fpu = NULL;
3603                         goto out;
3604                 }
3605                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3606                 break;
3607         }
3608         default:
3609                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3610         }
3611 out:
3612         mutex_unlock(&vcpu->mutex);
3613         kfree(fpu);
3614         kfree(kvm_sregs);
3615         return r;
3616 }
3617
3618 #ifdef CONFIG_KVM_COMPAT
3619 static long kvm_vcpu_compat_ioctl(struct file *filp,
3620                                   unsigned int ioctl, unsigned long arg)
3621 {
3622         struct kvm_vcpu *vcpu = filp->private_data;
3623         void __user *argp = compat_ptr(arg);
3624         int r;
3625
3626         if (vcpu->kvm->mm != current->mm)
3627                 return -EIO;
3628
3629         switch (ioctl) {
3630         case KVM_SET_SIGNAL_MASK: {
3631                 struct kvm_signal_mask __user *sigmask_arg = argp;
3632                 struct kvm_signal_mask kvm_sigmask;
3633                 sigset_t sigset;
3634
3635                 if (argp) {
3636                         r = -EFAULT;
3637                         if (copy_from_user(&kvm_sigmask, argp,
3638                                            sizeof(kvm_sigmask)))
3639                                 goto out;
3640                         r = -EINVAL;
3641                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3642                                 goto out;
3643                         r = -EFAULT;
3644                         if (get_compat_sigset(&sigset,
3645                                               (compat_sigset_t __user *)sigmask_arg->sigset))
3646                                 goto out;
3647                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3648                 } else
3649                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3650                 break;
3651         }
3652         default:
3653                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3654         }
3655
3656 out:
3657         return r;
3658 }
3659 #endif
3660
3661 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3662 {
3663         struct kvm_device *dev = filp->private_data;
3664
3665         if (dev->ops->mmap)
3666                 return dev->ops->mmap(dev, vma);
3667
3668         return -ENODEV;
3669 }
3670
3671 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3672                                  int (*accessor)(struct kvm_device *dev,
3673                                                  struct kvm_device_attr *attr),
3674                                  unsigned long arg)
3675 {
3676         struct kvm_device_attr attr;
3677
3678         if (!accessor)
3679                 return -EPERM;
3680
3681         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3682                 return -EFAULT;
3683
3684         return accessor(dev, &attr);
3685 }
3686
3687 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3688                              unsigned long arg)
3689 {
3690         struct kvm_device *dev = filp->private_data;
3691
3692         if (dev->kvm->mm != current->mm)
3693                 return -EIO;
3694
3695         switch (ioctl) {
3696         case KVM_SET_DEVICE_ATTR:
3697                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3698         case KVM_GET_DEVICE_ATTR:
3699                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3700         case KVM_HAS_DEVICE_ATTR:
3701                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3702         default:
3703                 if (dev->ops->ioctl)
3704                         return dev->ops->ioctl(dev, ioctl, arg);
3705
3706                 return -ENOTTY;
3707         }
3708 }
3709
3710 static int kvm_device_release(struct inode *inode, struct file *filp)
3711 {
3712         struct kvm_device *dev = filp->private_data;
3713         struct kvm *kvm = dev->kvm;
3714
3715         if (dev->ops->release) {
3716                 mutex_lock(&kvm->lock);
3717                 list_del(&dev->vm_node);
3718                 dev->ops->release(dev);
3719                 mutex_unlock(&kvm->lock);
3720         }
3721
3722         kvm_put_kvm(kvm);
3723         return 0;
3724 }
3725
3726 static const struct file_operations kvm_device_fops = {
3727         .unlocked_ioctl = kvm_device_ioctl,
3728         .release = kvm_device_release,
3729         KVM_COMPAT(kvm_device_ioctl),
3730         .mmap = kvm_device_mmap,
3731 };
3732
3733 struct kvm_device *kvm_device_from_filp(struct file *filp)
3734 {
3735         if (filp->f_op != &kvm_device_fops)
3736                 return NULL;
3737
3738         return filp->private_data;
3739 }
3740
3741 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3742 #ifdef CONFIG_KVM_MPIC
3743         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3744         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3745 #endif
3746 };
3747
3748 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3749 {
3750         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3751                 return -ENOSPC;
3752
3753         if (kvm_device_ops_table[type] != NULL)
3754                 return -EEXIST;
3755
3756         kvm_device_ops_table[type] = ops;
3757         return 0;
3758 }
3759
3760 void kvm_unregister_device_ops(u32 type)
3761 {
3762         if (kvm_device_ops_table[type] != NULL)
3763                 kvm_device_ops_table[type] = NULL;
3764 }
3765
3766 static int kvm_ioctl_create_device(struct kvm *kvm,
3767                                    struct kvm_create_device *cd)
3768 {
3769         const struct kvm_device_ops *ops = NULL;
3770         struct kvm_device *dev;
3771         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3772         int type;
3773         int ret;
3774
3775         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3776                 return -ENODEV;
3777
3778         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3779         ops = kvm_device_ops_table[type];
3780         if (ops == NULL)
3781                 return -ENODEV;
3782
3783         if (test)
3784                 return 0;
3785
3786         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3787         if (!dev)
3788                 return -ENOMEM;
3789
3790         dev->ops = ops;
3791         dev->kvm = kvm;
3792
3793         mutex_lock(&kvm->lock);
3794         ret = ops->create(dev, type);
3795         if (ret < 0) {
3796                 mutex_unlock(&kvm->lock);
3797                 kfree(dev);
3798                 return ret;
3799         }
3800         list_add(&dev->vm_node, &kvm->devices);
3801         mutex_unlock(&kvm->lock);
3802
3803         if (ops->init)
3804                 ops->init(dev);
3805
3806         kvm_get_kvm(kvm);
3807         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3808         if (ret < 0) {
3809                 kvm_put_kvm_no_destroy(kvm);
3810                 mutex_lock(&kvm->lock);
3811                 list_del(&dev->vm_node);
3812                 mutex_unlock(&kvm->lock);
3813                 ops->destroy(dev);
3814                 return ret;
3815         }
3816
3817         cd->fd = ret;
3818         return 0;
3819 }
3820
3821 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3822 {
3823         switch (arg) {
3824         case KVM_CAP_USER_MEMORY:
3825         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3826         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3827         case KVM_CAP_INTERNAL_ERROR_DATA:
3828 #ifdef CONFIG_HAVE_KVM_MSI
3829         case KVM_CAP_SIGNAL_MSI:
3830 #endif
3831 #ifdef CONFIG_HAVE_KVM_IRQFD
3832         case KVM_CAP_IRQFD:
3833         case KVM_CAP_IRQFD_RESAMPLE:
3834 #endif
3835         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3836         case KVM_CAP_CHECK_EXTENSION_VM:
3837         case KVM_CAP_ENABLE_CAP_VM:
3838         case KVM_CAP_HALT_POLL:
3839                 return 1;
3840 #ifdef CONFIG_KVM_MMIO
3841         case KVM_CAP_COALESCED_MMIO:
3842                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3843         case KVM_CAP_COALESCED_PIO:
3844                 return 1;
3845 #endif
3846 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3847         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3848                 return KVM_DIRTY_LOG_MANUAL_CAPS;
3849 #endif
3850 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3851         case KVM_CAP_IRQ_ROUTING:
3852                 return KVM_MAX_IRQ_ROUTES;
3853 #endif
3854 #if KVM_ADDRESS_SPACE_NUM > 1
3855         case KVM_CAP_MULTI_ADDRESS_SPACE:
3856                 return KVM_ADDRESS_SPACE_NUM;
3857 #endif
3858         case KVM_CAP_NR_MEMSLOTS:
3859                 return KVM_USER_MEM_SLOTS;
3860         case KVM_CAP_DIRTY_LOG_RING:
3861 #if KVM_DIRTY_LOG_PAGE_OFFSET > 0
3862                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
3863 #else
3864                 return 0;
3865 #endif
3866         default:
3867                 break;
3868         }
3869         return kvm_vm_ioctl_check_extension(kvm, arg);
3870 }
3871
3872 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
3873 {
3874         int r;
3875
3876         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
3877                 return -EINVAL;
3878
3879         /* the size should be power of 2 */
3880         if (!size || (size & (size - 1)))
3881                 return -EINVAL;
3882
3883         /* Should be bigger to keep the reserved entries, or a page */
3884         if (size < kvm_dirty_ring_get_rsvd_entries() *
3885             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
3886                 return -EINVAL;
3887
3888         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
3889             sizeof(struct kvm_dirty_gfn))
3890                 return -E2BIG;
3891
3892         /* We only allow it to set once */
3893         if (kvm->dirty_ring_size)
3894                 return -EINVAL;
3895
3896         mutex_lock(&kvm->lock);
3897
3898         if (kvm->created_vcpus) {
3899                 /* We don't allow to change this value after vcpu created */
3900                 r = -EINVAL;
3901         } else {
3902                 kvm->dirty_ring_size = size;
3903                 r = 0;
3904         }
3905
3906         mutex_unlock(&kvm->lock);
3907         return r;
3908 }
3909
3910 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
3911 {
3912         int i;
3913         struct kvm_vcpu *vcpu;
3914         int cleared = 0;
3915
3916         if (!kvm->dirty_ring_size)
3917                 return -EINVAL;
3918
3919         mutex_lock(&kvm->slots_lock);
3920
3921         kvm_for_each_vcpu(i, vcpu, kvm)
3922                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
3923
3924         mutex_unlock(&kvm->slots_lock);
3925
3926         if (cleared)
3927                 kvm_flush_remote_tlbs(kvm);
3928
3929         return cleared;
3930 }
3931
3932 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3933                                                   struct kvm_enable_cap *cap)
3934 {
3935         return -EINVAL;
3936 }
3937
3938 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3939                                            struct kvm_enable_cap *cap)
3940 {
3941         switch (cap->cap) {
3942 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3943         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3944                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3945
3946                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3947                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3948
3949                 if (cap->flags || (cap->args[0] & ~allowed_options))
3950                         return -EINVAL;
3951                 kvm->manual_dirty_log_protect = cap->args[0];
3952                 return 0;
3953         }
3954 #endif
3955         case KVM_CAP_HALT_POLL: {
3956                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3957                         return -EINVAL;
3958
3959                 kvm->max_halt_poll_ns = cap->args[0];
3960                 return 0;
3961         }
3962         case KVM_CAP_DIRTY_LOG_RING:
3963                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
3964         default:
3965                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3966         }
3967 }
3968
3969 static long kvm_vm_ioctl(struct file *filp,
3970                            unsigned int ioctl, unsigned long arg)
3971 {
3972         struct kvm *kvm = filp->private_data;
3973         void __user *argp = (void __user *)arg;
3974         int r;
3975
3976         if (kvm->mm != current->mm)
3977                 return -EIO;
3978         switch (ioctl) {
3979         case KVM_CREATE_VCPU:
3980                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3981                 break;
3982         case KVM_ENABLE_CAP: {
3983                 struct kvm_enable_cap cap;
3984
3985                 r = -EFAULT;
3986                 if (copy_from_user(&cap, argp, sizeof(cap)))
3987                         goto out;
3988                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3989                 break;
3990         }
3991         case KVM_SET_USER_MEMORY_REGION: {
3992                 struct kvm_userspace_memory_region kvm_userspace_mem;
3993
3994                 r = -EFAULT;
3995                 if (copy_from_user(&kvm_userspace_mem, argp,
3996                                                 sizeof(kvm_userspace_mem)))
3997                         goto out;
3998
3999                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4000                 break;
4001         }
4002         case KVM_GET_DIRTY_LOG: {
4003                 struct kvm_dirty_log log;
4004
4005                 r = -EFAULT;
4006                 if (copy_from_user(&log, argp, sizeof(log)))
4007                         goto out;
4008                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4009                 break;
4010         }
4011 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4012         case KVM_CLEAR_DIRTY_LOG: {
4013                 struct kvm_clear_dirty_log log;
4014
4015                 r = -EFAULT;
4016                 if (copy_from_user(&log, argp, sizeof(log)))
4017                         goto out;
4018                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4019                 break;
4020         }
4021 #endif
4022 #ifdef CONFIG_KVM_MMIO
4023         case KVM_REGISTER_COALESCED_MMIO: {
4024                 struct kvm_coalesced_mmio_zone zone;
4025
4026                 r = -EFAULT;
4027                 if (copy_from_user(&zone, argp, sizeof(zone)))
4028                         goto out;
4029                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4030                 break;
4031         }
4032         case KVM_UNREGISTER_COALESCED_MMIO: {
4033                 struct kvm_coalesced_mmio_zone zone;
4034
4035                 r = -EFAULT;
4036                 if (copy_from_user(&zone, argp, sizeof(zone)))
4037                         goto out;
4038                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4039                 break;
4040         }
4041 #endif
4042         case KVM_IRQFD: {
4043                 struct kvm_irqfd data;
4044
4045                 r = -EFAULT;
4046                 if (copy_from_user(&data, argp, sizeof(data)))
4047                         goto out;
4048                 r = kvm_irqfd(kvm, &data);
4049                 break;
4050         }
4051         case KVM_IOEVENTFD: {
4052                 struct kvm_ioeventfd data;
4053
4054                 r = -EFAULT;
4055                 if (copy_from_user(&data, argp, sizeof(data)))
4056                         goto out;
4057                 r = kvm_ioeventfd(kvm, &data);
4058                 break;
4059         }
4060 #ifdef CONFIG_HAVE_KVM_MSI
4061         case KVM_SIGNAL_MSI: {
4062                 struct kvm_msi msi;
4063
4064                 r = -EFAULT;
4065                 if (copy_from_user(&msi, argp, sizeof(msi)))
4066                         goto out;
4067                 r = kvm_send_userspace_msi(kvm, &msi);
4068                 break;
4069         }
4070 #endif
4071 #ifdef __KVM_HAVE_IRQ_LINE
4072         case KVM_IRQ_LINE_STATUS:
4073         case KVM_IRQ_LINE: {
4074                 struct kvm_irq_level irq_event;
4075
4076                 r = -EFAULT;
4077                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4078                         goto out;
4079
4080                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4081                                         ioctl == KVM_IRQ_LINE_STATUS);
4082                 if (r)
4083                         goto out;
4084
4085                 r = -EFAULT;
4086                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4087                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4088                                 goto out;
4089                 }
4090
4091                 r = 0;
4092                 break;
4093         }
4094 #endif
4095 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4096         case KVM_SET_GSI_ROUTING: {
4097                 struct kvm_irq_routing routing;
4098                 struct kvm_irq_routing __user *urouting;
4099                 struct kvm_irq_routing_entry *entries = NULL;
4100
4101                 r = -EFAULT;
4102                 if (copy_from_user(&routing, argp, sizeof(routing)))
4103                         goto out;
4104                 r = -EINVAL;
4105                 if (!kvm_arch_can_set_irq_routing(kvm))
4106                         goto out;
4107                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4108                         goto out;
4109                 if (routing.flags)
4110                         goto out;
4111                 if (routing.nr) {
4112                         urouting = argp;
4113                         entries = vmemdup_user(urouting->entries,
4114                                                array_size(sizeof(*entries),
4115                                                           routing.nr));
4116                         if (IS_ERR(entries)) {
4117                                 r = PTR_ERR(entries);
4118                                 goto out;
4119                         }
4120                 }
4121                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4122                                         routing.flags);
4123                 kvfree(entries);
4124                 break;
4125         }
4126 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4127         case KVM_CREATE_DEVICE: {
4128                 struct kvm_create_device cd;
4129
4130                 r = -EFAULT;
4131                 if (copy_from_user(&cd, argp, sizeof(cd)))
4132                         goto out;
4133
4134                 r = kvm_ioctl_create_device(kvm, &cd);
4135                 if (r)
4136                         goto out;
4137
4138                 r = -EFAULT;
4139                 if (copy_to_user(argp, &cd, sizeof(cd)))
4140                         goto out;
4141
4142                 r = 0;
4143                 break;
4144         }
4145         case KVM_CHECK_EXTENSION:
4146                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4147                 break;
4148         case KVM_RESET_DIRTY_RINGS:
4149                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4150                 break;
4151         default:
4152                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4153         }
4154 out:
4155         return r;
4156 }
4157
4158 #ifdef CONFIG_KVM_COMPAT
4159 struct compat_kvm_dirty_log {
4160         __u32 slot;
4161         __u32 padding1;
4162         union {
4163                 compat_uptr_t dirty_bitmap; /* one bit per page */
4164                 __u64 padding2;
4165         };
4166 };
4167
4168 static long kvm_vm_compat_ioctl(struct file *filp,
4169                            unsigned int ioctl, unsigned long arg)
4170 {
4171         struct kvm *kvm = filp->private_data;
4172         int r;
4173
4174         if (kvm->mm != current->mm)
4175                 return -EIO;
4176         switch (ioctl) {
4177         case KVM_GET_DIRTY_LOG: {
4178                 struct compat_kvm_dirty_log compat_log;
4179                 struct kvm_dirty_log log;
4180
4181                 if (copy_from_user(&compat_log, (void __user *)arg,
4182                                    sizeof(compat_log)))
4183                         return -EFAULT;
4184                 log.slot         = compat_log.slot;
4185                 log.padding1     = compat_log.padding1;
4186                 log.padding2     = compat_log.padding2;
4187                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4188
4189                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4190                 break;
4191         }
4192         default:
4193                 r = kvm_vm_ioctl(filp, ioctl, arg);
4194         }
4195         return r;
4196 }
4197 #endif
4198
4199 static struct file_operations kvm_vm_fops = {
4200         .release        = kvm_vm_release,
4201         .unlocked_ioctl = kvm_vm_ioctl,
4202         .llseek         = noop_llseek,
4203         KVM_COMPAT(kvm_vm_compat_ioctl),
4204 };
4205
4206 bool file_is_kvm(struct file *file)
4207 {
4208         return file && file->f_op == &kvm_vm_fops;
4209 }
4210 EXPORT_SYMBOL_GPL(file_is_kvm);
4211
4212 static int kvm_dev_ioctl_create_vm(unsigned long type)
4213 {
4214         int r;
4215         struct kvm *kvm;
4216         struct file *file;
4217
4218         kvm = kvm_create_vm(type);
4219         if (IS_ERR(kvm))
4220                 return PTR_ERR(kvm);
4221 #ifdef CONFIG_KVM_MMIO
4222         r = kvm_coalesced_mmio_init(kvm);
4223         if (r < 0)
4224                 goto put_kvm;
4225 #endif
4226         r = get_unused_fd_flags(O_CLOEXEC);
4227         if (r < 0)
4228                 goto put_kvm;
4229
4230         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
4231         if (IS_ERR(file)) {
4232                 put_unused_fd(r);
4233                 r = PTR_ERR(file);
4234                 goto put_kvm;
4235         }
4236
4237         /*
4238          * Don't call kvm_put_kvm anymore at this point; file->f_op is
4239          * already set, with ->release() being kvm_vm_release().  In error
4240          * cases it will be called by the final fput(file) and will take
4241          * care of doing kvm_put_kvm(kvm).
4242          */
4243         if (kvm_create_vm_debugfs(kvm, r) < 0) {
4244                 put_unused_fd(r);
4245                 fput(file);
4246                 return -ENOMEM;
4247         }
4248         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
4249
4250         fd_install(r, file);
4251         return r;
4252
4253 put_kvm:
4254         kvm_put_kvm(kvm);
4255         return r;
4256 }
4257
4258 static long kvm_dev_ioctl(struct file *filp,
4259                           unsigned int ioctl, unsigned long arg)
4260 {
4261         long r = -EINVAL;
4262
4263         switch (ioctl) {
4264         case KVM_GET_API_VERSION:
4265                 if (arg)
4266                         goto out;
4267                 r = KVM_API_VERSION;
4268                 break;
4269         case KVM_CREATE_VM:
4270                 r = kvm_dev_ioctl_create_vm(arg);
4271                 break;
4272         case KVM_CHECK_EXTENSION:
4273                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
4274                 break;
4275         case KVM_GET_VCPU_MMAP_SIZE:
4276                 if (arg)
4277                         goto out;
4278                 r = PAGE_SIZE;     /* struct kvm_run */
4279 #ifdef CONFIG_X86
4280                 r += PAGE_SIZE;    /* pio data page */
4281 #endif
4282 #ifdef CONFIG_KVM_MMIO
4283                 r += PAGE_SIZE;    /* coalesced mmio ring page */
4284 #endif
4285                 break;
4286         case KVM_TRACE_ENABLE:
4287         case KVM_TRACE_PAUSE:
4288         case KVM_TRACE_DISABLE:
4289                 r = -EOPNOTSUPP;
4290                 break;
4291         default:
4292                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
4293         }
4294 out:
4295         return r;
4296 }
4297
4298 static struct file_operations kvm_chardev_ops = {
4299         .unlocked_ioctl = kvm_dev_ioctl,
4300         .llseek         = noop_llseek,
4301         KVM_COMPAT(kvm_dev_ioctl),
4302 };
4303
4304 static struct miscdevice kvm_dev = {
4305         KVM_MINOR,
4306         "kvm",
4307         &kvm_chardev_ops,
4308 };
4309
4310 static void hardware_enable_nolock(void *junk)
4311 {
4312         int cpu = raw_smp_processor_id();
4313         int r;
4314
4315         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4316                 return;
4317
4318         cpumask_set_cpu(cpu, cpus_hardware_enabled);
4319
4320         r = kvm_arch_hardware_enable();
4321
4322         if (r) {
4323                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4324                 atomic_inc(&hardware_enable_failed);
4325                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
4326         }
4327 }
4328
4329 static int kvm_starting_cpu(unsigned int cpu)
4330 {
4331         raw_spin_lock(&kvm_count_lock);
4332         if (kvm_usage_count)
4333                 hardware_enable_nolock(NULL);
4334         raw_spin_unlock(&kvm_count_lock);
4335         return 0;
4336 }
4337
4338 static void hardware_disable_nolock(void *junk)
4339 {
4340         int cpu = raw_smp_processor_id();
4341
4342         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4343                 return;
4344         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4345         kvm_arch_hardware_disable();
4346 }
4347
4348 static int kvm_dying_cpu(unsigned int cpu)
4349 {
4350         raw_spin_lock(&kvm_count_lock);
4351         if (kvm_usage_count)
4352                 hardware_disable_nolock(NULL);
4353         raw_spin_unlock(&kvm_count_lock);
4354         return 0;
4355 }
4356
4357 static void hardware_disable_all_nolock(void)
4358 {
4359         BUG_ON(!kvm_usage_count);
4360
4361         kvm_usage_count--;
4362         if (!kvm_usage_count)
4363                 on_each_cpu(hardware_disable_nolock, NULL, 1);
4364 }
4365
4366 static void hardware_disable_all(void)
4367 {
4368         raw_spin_lock(&kvm_count_lock);
4369         hardware_disable_all_nolock();
4370         raw_spin_unlock(&kvm_count_lock);
4371 }
4372
4373 static int hardware_enable_all(void)
4374 {
4375         int r = 0;
4376
4377         raw_spin_lock(&kvm_count_lock);
4378
4379         kvm_usage_count++;
4380         if (kvm_usage_count == 1) {
4381                 atomic_set(&hardware_enable_failed, 0);
4382                 on_each_cpu(hardware_enable_nolock, NULL, 1);
4383
4384                 if (atomic_read(&hardware_enable_failed)) {
4385                         hardware_disable_all_nolock();
4386                         r = -EBUSY;
4387                 }
4388         }
4389
4390         raw_spin_unlock(&kvm_count_lock);
4391
4392         return r;
4393 }
4394
4395 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4396                       void *v)
4397 {
4398         /*
4399          * Some (well, at least mine) BIOSes hang on reboot if
4400          * in vmx root mode.
4401          *
4402          * And Intel TXT required VMX off for all cpu when system shutdown.
4403          */
4404         pr_info("kvm: exiting hardware virtualization\n");
4405         kvm_rebooting = true;
4406         on_each_cpu(hardware_disable_nolock, NULL, 1);
4407         return NOTIFY_OK;
4408 }
4409
4410 static struct notifier_block kvm_reboot_notifier = {
4411         .notifier_call = kvm_reboot,
4412         .priority = 0,
4413 };
4414
4415 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4416 {
4417         int i;
4418
4419         for (i = 0; i < bus->dev_count; i++) {
4420                 struct kvm_io_device *pos = bus->range[i].dev;
4421
4422                 kvm_iodevice_destructor(pos);
4423         }
4424         kfree(bus);
4425 }
4426
4427 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4428                                  const struct kvm_io_range *r2)
4429 {
4430         gpa_t addr1 = r1->addr;
4431         gpa_t addr2 = r2->addr;
4432
4433         if (addr1 < addr2)
4434                 return -1;
4435
4436         /* If r2->len == 0, match the exact address.  If r2->len != 0,
4437          * accept any overlapping write.  Any order is acceptable for
4438          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4439          * we process all of them.
4440          */
4441         if (r2->len) {
4442                 addr1 += r1->len;
4443                 addr2 += r2->len;
4444         }
4445
4446         if (addr1 > addr2)
4447                 return 1;
4448
4449         return 0;
4450 }
4451
4452 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
4453 {
4454         return kvm_io_bus_cmp(p1, p2);
4455 }
4456
4457 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4458                              gpa_t addr, int len)
4459 {
4460         struct kvm_io_range *range, key;
4461         int off;
4462
4463         key = (struct kvm_io_range) {
4464                 .addr = addr,
4465                 .len = len,
4466         };
4467
4468         range = bsearch(&key, bus->range, bus->dev_count,
4469                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4470         if (range == NULL)
4471                 return -ENOENT;
4472
4473         off = range - bus->range;
4474
4475         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4476                 off--;
4477
4478         return off;
4479 }
4480
4481 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4482                               struct kvm_io_range *range, const void *val)
4483 {
4484         int idx;
4485
4486         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4487         if (idx < 0)
4488                 return -EOPNOTSUPP;
4489
4490         while (idx < bus->dev_count &&
4491                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4492                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4493                                         range->len, val))
4494                         return idx;
4495                 idx++;
4496         }
4497
4498         return -EOPNOTSUPP;
4499 }
4500
4501 /* kvm_io_bus_write - called under kvm->slots_lock */
4502 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4503                      int len, const void *val)
4504 {
4505         struct kvm_io_bus *bus;
4506         struct kvm_io_range range;
4507         int r;
4508
4509         range = (struct kvm_io_range) {
4510                 .addr = addr,
4511                 .len = len,
4512         };
4513
4514         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4515         if (!bus)
4516                 return -ENOMEM;
4517         r = __kvm_io_bus_write(vcpu, bus, &range, val);
4518         return r < 0 ? r : 0;
4519 }
4520 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4521
4522 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4523 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4524                             gpa_t addr, int len, const void *val, long cookie)
4525 {
4526         struct kvm_io_bus *bus;
4527         struct kvm_io_range range;
4528
4529         range = (struct kvm_io_range) {
4530                 .addr = addr,
4531                 .len = len,
4532         };
4533
4534         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4535         if (!bus)
4536                 return -ENOMEM;
4537
4538         /* First try the device referenced by cookie. */
4539         if ((cookie >= 0) && (cookie < bus->dev_count) &&
4540             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4541                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4542                                         val))
4543                         return cookie;
4544
4545         /*
4546          * cookie contained garbage; fall back to search and return the
4547          * correct cookie value.
4548          */
4549         return __kvm_io_bus_write(vcpu, bus, &range, val);
4550 }
4551
4552 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4553                              struct kvm_io_range *range, void *val)
4554 {
4555         int idx;
4556
4557         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4558         if (idx < 0)
4559                 return -EOPNOTSUPP;
4560
4561         while (idx < bus->dev_count &&
4562                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4563                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4564                                        range->len, val))
4565                         return idx;
4566                 idx++;
4567         }
4568
4569         return -EOPNOTSUPP;
4570 }
4571
4572 /* kvm_io_bus_read - called under kvm->slots_lock */
4573 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4574                     int len, void *val)
4575 {
4576         struct kvm_io_bus *bus;
4577         struct kvm_io_range range;
4578         int r;
4579
4580         range = (struct kvm_io_range) {
4581                 .addr = addr,
4582                 .len = len,
4583         };
4584
4585         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4586         if (!bus)
4587                 return -ENOMEM;
4588         r = __kvm_io_bus_read(vcpu, bus, &range, val);
4589         return r < 0 ? r : 0;
4590 }
4591
4592 /* Caller must hold slots_lock. */
4593 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4594                             int len, struct kvm_io_device *dev)
4595 {
4596         int i;
4597         struct kvm_io_bus *new_bus, *bus;
4598         struct kvm_io_range range;
4599
4600         bus = kvm_get_bus(kvm, bus_idx);
4601         if (!bus)
4602                 return -ENOMEM;
4603
4604         /* exclude ioeventfd which is limited by maximum fd */
4605         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4606                 return -ENOSPC;
4607
4608         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4609                           GFP_KERNEL_ACCOUNT);
4610         if (!new_bus)
4611                 return -ENOMEM;
4612
4613         range = (struct kvm_io_range) {
4614                 .addr = addr,
4615                 .len = len,
4616                 .dev = dev,
4617         };
4618
4619         for (i = 0; i < bus->dev_count; i++)
4620                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4621                         break;
4622
4623         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4624         new_bus->dev_count++;
4625         new_bus->range[i] = range;
4626         memcpy(new_bus->range + i + 1, bus->range + i,
4627                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4628         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4629         synchronize_srcu_expedited(&kvm->srcu);
4630         kfree(bus);
4631
4632         return 0;
4633 }
4634
4635 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4636                               struct kvm_io_device *dev)
4637 {
4638         int i, j;
4639         struct kvm_io_bus *new_bus, *bus;
4640
4641         lockdep_assert_held(&kvm->slots_lock);
4642
4643         bus = kvm_get_bus(kvm, bus_idx);
4644         if (!bus)
4645                 return 0;
4646
4647         for (i = 0; i < bus->dev_count; i++) {
4648                 if (bus->range[i].dev == dev) {
4649                         break;
4650                 }
4651         }
4652
4653         if (i == bus->dev_count)
4654                 return 0;
4655
4656         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4657                           GFP_KERNEL_ACCOUNT);
4658         if (new_bus) {
4659                 memcpy(new_bus, bus, struct_size(bus, range, i));
4660                 new_bus->dev_count--;
4661                 memcpy(new_bus->range + i, bus->range + i + 1,
4662                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
4663         }
4664
4665         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4666         synchronize_srcu_expedited(&kvm->srcu);
4667
4668         /* Destroy the old bus _after_ installing the (null) bus. */
4669         if (!new_bus) {
4670                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4671                 for (j = 0; j < bus->dev_count; j++) {
4672                         if (j == i)
4673                                 continue;
4674                         kvm_iodevice_destructor(bus->range[j].dev);
4675                 }
4676         }
4677
4678         kfree(bus);
4679         return new_bus ? 0 : -ENOMEM;
4680 }
4681
4682 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4683                                          gpa_t addr)
4684 {
4685         struct kvm_io_bus *bus;
4686         int dev_idx, srcu_idx;
4687         struct kvm_io_device *iodev = NULL;
4688
4689         srcu_idx = srcu_read_lock(&kvm->srcu);
4690
4691         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4692         if (!bus)
4693                 goto out_unlock;
4694
4695         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4696         if (dev_idx < 0)
4697                 goto out_unlock;
4698
4699         iodev = bus->range[dev_idx].dev;
4700
4701 out_unlock:
4702         srcu_read_unlock(&kvm->srcu, srcu_idx);
4703
4704         return iodev;
4705 }
4706 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4707
4708 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4709                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4710                            const char *fmt)
4711 {
4712         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4713                                           inode->i_private;
4714
4715         /* The debugfs files are a reference to the kvm struct which
4716          * is still valid when kvm_destroy_vm is called.
4717          * To avoid the race between open and the removal of the debugfs
4718          * directory we test against the users count.
4719          */
4720         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4721                 return -ENOENT;
4722
4723         if (simple_attr_open(inode, file, get,
4724                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4725                     ? set : NULL,
4726                     fmt)) {
4727                 kvm_put_kvm(stat_data->kvm);
4728                 return -ENOMEM;
4729         }
4730
4731         return 0;
4732 }
4733
4734 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4735 {
4736         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4737                                           inode->i_private;
4738
4739         simple_attr_release(inode, file);
4740         kvm_put_kvm(stat_data->kvm);
4741
4742         return 0;
4743 }
4744
4745 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4746 {
4747         *val = *(ulong *)((void *)kvm + offset);
4748
4749         return 0;
4750 }
4751
4752 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4753 {
4754         *(ulong *)((void *)kvm + offset) = 0;
4755
4756         return 0;
4757 }
4758
4759 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4760 {
4761         int i;
4762         struct kvm_vcpu *vcpu;
4763
4764         *val = 0;
4765
4766         kvm_for_each_vcpu(i, vcpu, kvm)
4767                 *val += *(u64 *)((void *)vcpu + offset);
4768
4769         return 0;
4770 }
4771
4772 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4773 {
4774         int i;
4775         struct kvm_vcpu *vcpu;
4776
4777         kvm_for_each_vcpu(i, vcpu, kvm)
4778                 *(u64 *)((void *)vcpu + offset) = 0;
4779
4780         return 0;
4781 }
4782
4783 static int kvm_stat_data_get(void *data, u64 *val)
4784 {
4785         int r = -EFAULT;
4786         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4787
4788         switch (stat_data->dbgfs_item->kind) {
4789         case KVM_STAT_VM:
4790                 r = kvm_get_stat_per_vm(stat_data->kvm,
4791                                         stat_data->dbgfs_item->offset, val);
4792                 break;
4793         case KVM_STAT_VCPU:
4794                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4795                                           stat_data->dbgfs_item->offset, val);
4796                 break;
4797         }
4798
4799         return r;
4800 }
4801
4802 static int kvm_stat_data_clear(void *data, u64 val)
4803 {
4804         int r = -EFAULT;
4805         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4806
4807         if (val)
4808                 return -EINVAL;
4809
4810         switch (stat_data->dbgfs_item->kind) {
4811         case KVM_STAT_VM:
4812                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4813                                           stat_data->dbgfs_item->offset);
4814                 break;
4815         case KVM_STAT_VCPU:
4816                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4817                                             stat_data->dbgfs_item->offset);
4818                 break;
4819         }
4820
4821         return r;
4822 }
4823
4824 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4825 {
4826         __simple_attr_check_format("%llu\n", 0ull);
4827         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4828                                 kvm_stat_data_clear, "%llu\n");
4829 }
4830
4831 static const struct file_operations stat_fops_per_vm = {
4832         .owner = THIS_MODULE,
4833         .open = kvm_stat_data_open,
4834         .release = kvm_debugfs_release,
4835         .read = simple_attr_read,
4836         .write = simple_attr_write,
4837         .llseek = no_llseek,
4838 };
4839
4840 static int vm_stat_get(void *_offset, u64 *val)
4841 {
4842         unsigned offset = (long)_offset;
4843         struct kvm *kvm;
4844         u64 tmp_val;
4845
4846         *val = 0;
4847         mutex_lock(&kvm_lock);
4848         list_for_each_entry(kvm, &vm_list, vm_list) {
4849                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4850                 *val += tmp_val;
4851         }
4852         mutex_unlock(&kvm_lock);
4853         return 0;
4854 }
4855
4856 static int vm_stat_clear(void *_offset, u64 val)
4857 {
4858         unsigned offset = (long)_offset;
4859         struct kvm *kvm;
4860
4861         if (val)
4862                 return -EINVAL;
4863
4864         mutex_lock(&kvm_lock);
4865         list_for_each_entry(kvm, &vm_list, vm_list) {
4866                 kvm_clear_stat_per_vm(kvm, offset);
4867         }
4868         mutex_unlock(&kvm_lock);
4869
4870         return 0;
4871 }
4872
4873 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4874
4875 static int vcpu_stat_get(void *_offset, u64 *val)
4876 {
4877         unsigned offset = (long)_offset;
4878         struct kvm *kvm;
4879         u64 tmp_val;
4880
4881         *val = 0;
4882         mutex_lock(&kvm_lock);
4883         list_for_each_entry(kvm, &vm_list, vm_list) {
4884                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4885                 *val += tmp_val;
4886         }
4887         mutex_unlock(&kvm_lock);
4888         return 0;
4889 }
4890
4891 static int vcpu_stat_clear(void *_offset, u64 val)
4892 {
4893         unsigned offset = (long)_offset;
4894         struct kvm *kvm;
4895
4896         if (val)
4897                 return -EINVAL;
4898
4899         mutex_lock(&kvm_lock);
4900         list_for_each_entry(kvm, &vm_list, vm_list) {
4901                 kvm_clear_stat_per_vcpu(kvm, offset);
4902         }
4903         mutex_unlock(&kvm_lock);
4904
4905         return 0;
4906 }
4907
4908 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4909                         "%llu\n");
4910
4911 static const struct file_operations *stat_fops[] = {
4912         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4913         [KVM_STAT_VM]   = &vm_stat_fops,
4914 };
4915
4916 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4917 {
4918         struct kobj_uevent_env *env;
4919         unsigned long long created, active;
4920
4921         if (!kvm_dev.this_device || !kvm)
4922                 return;
4923
4924         mutex_lock(&kvm_lock);
4925         if (type == KVM_EVENT_CREATE_VM) {
4926                 kvm_createvm_count++;
4927                 kvm_active_vms++;
4928         } else if (type == KVM_EVENT_DESTROY_VM) {
4929                 kvm_active_vms--;
4930         }
4931         created = kvm_createvm_count;
4932         active = kvm_active_vms;
4933         mutex_unlock(&kvm_lock);
4934
4935         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4936         if (!env)
4937                 return;
4938
4939         add_uevent_var(env, "CREATED=%llu", created);
4940         add_uevent_var(env, "COUNT=%llu", active);
4941
4942         if (type == KVM_EVENT_CREATE_VM) {
4943                 add_uevent_var(env, "EVENT=create");
4944                 kvm->userspace_pid = task_pid_nr(current);
4945         } else if (type == KVM_EVENT_DESTROY_VM) {
4946                 add_uevent_var(env, "EVENT=destroy");
4947         }
4948         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4949
4950         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4951                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4952
4953                 if (p) {
4954                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4955                         if (!IS_ERR(tmp))
4956                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4957                         kfree(p);
4958                 }
4959         }
4960         /* no need for checks, since we are adding at most only 5 keys */
4961         env->envp[env->envp_idx++] = NULL;
4962         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4963         kfree(env);
4964 }
4965
4966 static void kvm_init_debug(void)
4967 {
4968         struct kvm_stats_debugfs_item *p;
4969
4970         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4971
4972         kvm_debugfs_num_entries = 0;
4973         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4974                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4975                                     kvm_debugfs_dir, (void *)(long)p->offset,
4976                                     stat_fops[p->kind]);
4977         }
4978 }
4979
4980 static int kvm_suspend(void)
4981 {
4982         if (kvm_usage_count)
4983                 hardware_disable_nolock(NULL);
4984         return 0;
4985 }
4986
4987 static void kvm_resume(void)
4988 {
4989         if (kvm_usage_count) {
4990 #ifdef CONFIG_LOCKDEP
4991                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4992 #endif
4993                 hardware_enable_nolock(NULL);
4994         }
4995 }
4996
4997 static struct syscore_ops kvm_syscore_ops = {
4998         .suspend = kvm_suspend,
4999         .resume = kvm_resume,
5000 };
5001
5002 static inline
5003 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5004 {
5005         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5006 }
5007
5008 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5009 {
5010         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5011
5012         WRITE_ONCE(vcpu->preempted, false);
5013         WRITE_ONCE(vcpu->ready, false);
5014
5015         __this_cpu_write(kvm_running_vcpu, vcpu);
5016         kvm_arch_sched_in(vcpu, cpu);
5017         kvm_arch_vcpu_load(vcpu, cpu);
5018 }
5019
5020 static void kvm_sched_out(struct preempt_notifier *pn,
5021                           struct task_struct *next)
5022 {
5023         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5024
5025         if (current->state == TASK_RUNNING) {
5026                 WRITE_ONCE(vcpu->preempted, true);
5027                 WRITE_ONCE(vcpu->ready, true);
5028         }
5029         kvm_arch_vcpu_put(vcpu);
5030         __this_cpu_write(kvm_running_vcpu, NULL);
5031 }
5032
5033 /**
5034  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5035  *
5036  * We can disable preemption locally around accessing the per-CPU variable,
5037  * and use the resolved vcpu pointer after enabling preemption again,
5038  * because even if the current thread is migrated to another CPU, reading
5039  * the per-CPU value later will give us the same value as we update the
5040  * per-CPU variable in the preempt notifier handlers.
5041  */
5042 struct kvm_vcpu *kvm_get_running_vcpu(void)
5043 {
5044         struct kvm_vcpu *vcpu;
5045
5046         preempt_disable();
5047         vcpu = __this_cpu_read(kvm_running_vcpu);
5048         preempt_enable();
5049
5050         return vcpu;
5051 }
5052 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5053
5054 /**
5055  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5056  */
5057 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5058 {
5059         return &kvm_running_vcpu;
5060 }
5061
5062 struct kvm_cpu_compat_check {
5063         void *opaque;
5064         int *ret;
5065 };
5066
5067 static void check_processor_compat(void *data)
5068 {
5069         struct kvm_cpu_compat_check *c = data;
5070
5071         *c->ret = kvm_arch_check_processor_compat(c->opaque);
5072 }
5073
5074 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
5075                   struct module *module)
5076 {
5077         struct kvm_cpu_compat_check c;
5078         int r;
5079         int cpu;
5080
5081         r = kvm_arch_init(opaque);
5082         if (r)
5083                 goto out_fail;
5084
5085         /*
5086          * kvm_arch_init makes sure there's at most one caller
5087          * for architectures that support multiple implementations,
5088          * like intel and amd on x86.
5089          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
5090          * conflicts in case kvm is already setup for another implementation.
5091          */
5092         r = kvm_irqfd_init();
5093         if (r)
5094                 goto out_irqfd;
5095
5096         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
5097                 r = -ENOMEM;
5098                 goto out_free_0;
5099         }
5100
5101         r = kvm_arch_hardware_setup(opaque);
5102         if (r < 0)
5103                 goto out_free_1;
5104
5105         c.ret = &r;
5106         c.opaque = opaque;
5107         for_each_online_cpu(cpu) {
5108                 smp_call_function_single(cpu, check_processor_compat, &c, 1);
5109                 if (r < 0)
5110                         goto out_free_2;
5111         }
5112
5113         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
5114                                       kvm_starting_cpu, kvm_dying_cpu);
5115         if (r)
5116                 goto out_free_2;
5117         register_reboot_notifier(&kvm_reboot_notifier);
5118
5119         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5120         if (!vcpu_align)
5121                 vcpu_align = __alignof__(struct kvm_vcpu);
5122         kvm_vcpu_cache =
5123                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5124                                            SLAB_ACCOUNT,
5125                                            offsetof(struct kvm_vcpu, arch),
5126                                            sizeof_field(struct kvm_vcpu, arch),
5127                                            NULL);
5128         if (!kvm_vcpu_cache) {
5129                 r = -ENOMEM;
5130                 goto out_free_3;
5131         }
5132
5133         r = kvm_async_pf_init();
5134         if (r)
5135                 goto out_free;
5136
5137         kvm_chardev_ops.owner = module;
5138         kvm_vm_fops.owner = module;
5139         kvm_vcpu_fops.owner = module;
5140
5141         r = misc_register(&kvm_dev);
5142         if (r) {
5143                 pr_err("kvm: misc device register failed\n");
5144                 goto out_unreg;
5145         }
5146
5147         register_syscore_ops(&kvm_syscore_ops);
5148
5149         kvm_preempt_ops.sched_in = kvm_sched_in;
5150         kvm_preempt_ops.sched_out = kvm_sched_out;
5151
5152         kvm_init_debug();
5153
5154         r = kvm_vfio_ops_init();
5155         WARN_ON(r);
5156
5157         return 0;
5158
5159 out_unreg:
5160         kvm_async_pf_deinit();
5161 out_free:
5162         kmem_cache_destroy(kvm_vcpu_cache);
5163 out_free_3:
5164         unregister_reboot_notifier(&kvm_reboot_notifier);
5165         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5166 out_free_2:
5167         kvm_arch_hardware_unsetup();
5168 out_free_1:
5169         free_cpumask_var(cpus_hardware_enabled);
5170 out_free_0:
5171         kvm_irqfd_exit();
5172 out_irqfd:
5173         kvm_arch_exit();
5174 out_fail:
5175         return r;
5176 }
5177 EXPORT_SYMBOL_GPL(kvm_init);
5178
5179 void kvm_exit(void)
5180 {
5181         debugfs_remove_recursive(kvm_debugfs_dir);
5182         misc_deregister(&kvm_dev);
5183         kmem_cache_destroy(kvm_vcpu_cache);
5184         kvm_async_pf_deinit();
5185         unregister_syscore_ops(&kvm_syscore_ops);
5186         unregister_reboot_notifier(&kvm_reboot_notifier);
5187         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
5188         on_each_cpu(hardware_disable_nolock, NULL, 1);
5189         kvm_arch_hardware_unsetup();
5190         kvm_arch_exit();
5191         kvm_irqfd_exit();
5192         free_cpumask_var(cpus_hardware_enabled);
5193         kvm_vfio_ops_exit();
5194 }
5195 EXPORT_SYMBOL_GPL(kvm_exit);
5196
5197 struct kvm_vm_worker_thread_context {
5198         struct kvm *kvm;
5199         struct task_struct *parent;
5200         struct completion init_done;
5201         kvm_vm_thread_fn_t thread_fn;
5202         uintptr_t data;
5203         int err;
5204 };
5205
5206 static int kvm_vm_worker_thread(void *context)
5207 {
5208         /*
5209          * The init_context is allocated on the stack of the parent thread, so
5210          * we have to locally copy anything that is needed beyond initialization
5211          */
5212         struct kvm_vm_worker_thread_context *init_context = context;
5213         struct kvm *kvm = init_context->kvm;
5214         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
5215         uintptr_t data = init_context->data;
5216         int err;
5217
5218         err = kthread_park(current);
5219         /* kthread_park(current) is never supposed to return an error */
5220         WARN_ON(err != 0);
5221         if (err)
5222                 goto init_complete;
5223
5224         err = cgroup_attach_task_all(init_context->parent, current);
5225         if (err) {
5226                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
5227                         __func__, err);
5228                 goto init_complete;
5229         }
5230
5231         set_user_nice(current, task_nice(init_context->parent));
5232
5233 init_complete:
5234         init_context->err = err;
5235         complete(&init_context->init_done);
5236         init_context = NULL;
5237
5238         if (err)
5239                 return err;
5240
5241         /* Wait to be woken up by the spawner before proceeding. */
5242         kthread_parkme();
5243
5244         if (!kthread_should_stop())
5245                 err = thread_fn(kvm, data);
5246
5247         return err;
5248 }
5249
5250 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
5251                                 uintptr_t data, const char *name,
5252                                 struct task_struct **thread_ptr)
5253 {
5254         struct kvm_vm_worker_thread_context init_context = {};
5255         struct task_struct *thread;
5256
5257         *thread_ptr = NULL;
5258         init_context.kvm = kvm;
5259         init_context.parent = current;
5260         init_context.thread_fn = thread_fn;
5261         init_context.data = data;
5262         init_completion(&init_context.init_done);
5263
5264         thread = kthread_run(kvm_vm_worker_thread, &init_context,
5265                              "%s-%d", name, task_pid_nr(current));
5266         if (IS_ERR(thread))
5267                 return PTR_ERR(thread);
5268
5269         /* kthread_run is never supposed to return NULL */
5270         WARN_ON(thread == NULL);
5271
5272         wait_for_completion(&init_context.init_done);
5273
5274         if (!init_context.err)
5275                 *thread_ptr = thread;
5276
5277         return init_context.err;
5278 }