Merge tag 'nds32-for-linus-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / virt / kvm / arm / vgic / vgic-v3.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License version 2 as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program. If not, see <http://www.gnu.org/licenses/>.
13  */
14
15 #include <linux/irqchip/arm-gic-v3.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/arm_vgic.h>
19 #include <asm/kvm_hyp.h>
20 #include <asm/kvm_mmu.h>
21 #include <asm/kvm_asm.h>
22
23 #include "vgic.h"
24
25 static bool group0_trap;
26 static bool group1_trap;
27 static bool common_trap;
28 static bool gicv4_enable;
29
30 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
31 {
32         struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
33
34         cpuif->vgic_hcr |= ICH_HCR_UIE;
35 }
36
37 static bool lr_signals_eoi_mi(u64 lr_val)
38 {
39         return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
40                !(lr_val & ICH_LR_HW);
41 }
42
43 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
44 {
45         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
46         struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
47         u32 model = vcpu->kvm->arch.vgic.vgic_model;
48         int lr;
49         unsigned long flags;
50
51         cpuif->vgic_hcr &= ~ICH_HCR_UIE;
52
53         for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
54                 u64 val = cpuif->vgic_lr[lr];
55                 u32 intid, cpuid;
56                 struct vgic_irq *irq;
57                 bool is_v2_sgi = false;
58
59                 cpuid = val & GICH_LR_PHYSID_CPUID;
60                 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
61
62                 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
63                         intid = val & ICH_LR_VIRTUAL_ID_MASK;
64                 } else {
65                         intid = val & GICH_LR_VIRTUALID;
66                         is_v2_sgi = vgic_irq_is_sgi(intid);
67                 }
68
69                 /* Notify fds when the guest EOI'ed a level-triggered IRQ */
70                 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
71                         kvm_notify_acked_irq(vcpu->kvm, 0,
72                                              intid - VGIC_NR_PRIVATE_IRQS);
73
74                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
75                 if (!irq)       /* An LPI could have been unmapped. */
76                         continue;
77
78                 spin_lock_irqsave(&irq->irq_lock, flags);
79
80                 /* Always preserve the active bit */
81                 irq->active = !!(val & ICH_LR_ACTIVE_BIT);
82
83                 if (irq->active && is_v2_sgi)
84                         irq->active_source = cpuid;
85
86                 /* Edge is the only case where we preserve the pending bit */
87                 if (irq->config == VGIC_CONFIG_EDGE &&
88                     (val & ICH_LR_PENDING_BIT)) {
89                         irq->pending_latch = true;
90
91                         if (is_v2_sgi)
92                                 irq->source |= (1 << cpuid);
93                 }
94
95                 /*
96                  * Clear soft pending state when level irqs have been acked.
97                  */
98                 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
99                         irq->pending_latch = false;
100
101                 /*
102                  * Level-triggered mapped IRQs are special because we only
103                  * observe rising edges as input to the VGIC.
104                  *
105                  * If the guest never acked the interrupt we have to sample
106                  * the physical line and set the line level, because the
107                  * device state could have changed or we simply need to
108                  * process the still pending interrupt later.
109                  *
110                  * If this causes us to lower the level, we have to also clear
111                  * the physical active state, since we will otherwise never be
112                  * told when the interrupt becomes asserted again.
113                  */
114                 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
115                         irq->line_level = vgic_get_phys_line_level(irq);
116
117                         if (!irq->line_level)
118                                 vgic_irq_set_phys_active(irq, false);
119                 }
120
121                 spin_unlock_irqrestore(&irq->irq_lock, flags);
122                 vgic_put_irq(vcpu->kvm, irq);
123         }
124
125         vgic_cpu->used_lrs = 0;
126 }
127
128 /* Requires the irq to be locked already */
129 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
130 {
131         u32 model = vcpu->kvm->arch.vgic.vgic_model;
132         u64 val = irq->intid;
133         bool allow_pending = true, is_v2_sgi;
134
135         is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
136                      model == KVM_DEV_TYPE_ARM_VGIC_V2);
137
138         if (irq->active) {
139                 val |= ICH_LR_ACTIVE_BIT;
140                 if (is_v2_sgi)
141                         val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
142                 if (vgic_irq_is_multi_sgi(irq)) {
143                         allow_pending = false;
144                         val |= ICH_LR_EOI;
145                 }
146         }
147
148         if (irq->hw) {
149                 val |= ICH_LR_HW;
150                 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
151                 /*
152                  * Never set pending+active on a HW interrupt, as the
153                  * pending state is kept at the physical distributor
154                  * level.
155                  */
156                 if (irq->active)
157                         allow_pending = false;
158         } else {
159                 if (irq->config == VGIC_CONFIG_LEVEL) {
160                         val |= ICH_LR_EOI;
161
162                         /*
163                          * Software resampling doesn't work very well
164                          * if we allow P+A, so let's not do that.
165                          */
166                         if (irq->active)
167                                 allow_pending = false;
168                 }
169         }
170
171         if (allow_pending && irq_is_pending(irq)) {
172                 val |= ICH_LR_PENDING_BIT;
173
174                 if (irq->config == VGIC_CONFIG_EDGE)
175                         irq->pending_latch = false;
176
177                 if (vgic_irq_is_sgi(irq->intid) &&
178                     model == KVM_DEV_TYPE_ARM_VGIC_V2) {
179                         u32 src = ffs(irq->source);
180
181                         BUG_ON(!src);
182                         val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
183                         irq->source &= ~(1 << (src - 1));
184                         if (irq->source) {
185                                 irq->pending_latch = true;
186                                 val |= ICH_LR_EOI;
187                         }
188                 }
189         }
190
191         /*
192          * Level-triggered mapped IRQs are special because we only observe
193          * rising edges as input to the VGIC.  We therefore lower the line
194          * level here, so that we can take new virtual IRQs.  See
195          * vgic_v3_fold_lr_state for more info.
196          */
197         if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
198                 irq->line_level = false;
199
200         /*
201          * We currently only support Group1 interrupts, which is a
202          * known defect. This needs to be addressed at some point.
203          */
204         if (model == KVM_DEV_TYPE_ARM_VGIC_V3)
205                 val |= ICH_LR_GROUP;
206
207         val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
208
209         vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
210 }
211
212 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
213 {
214         vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
215 }
216
217 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
218 {
219         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
220         u32 model = vcpu->kvm->arch.vgic.vgic_model;
221         u32 vmcr;
222
223         if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
224                 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
225                         ICH_VMCR_ACK_CTL_MASK;
226                 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
227                         ICH_VMCR_FIQ_EN_MASK;
228         } else {
229                 /*
230                  * When emulating GICv3 on GICv3 with SRE=1 on the
231                  * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
232                  */
233                 vmcr = ICH_VMCR_FIQ_EN_MASK;
234         }
235
236         vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
237         vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
238         vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
239         vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
240         vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
241         vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
242         vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
243
244         cpu_if->vgic_vmcr = vmcr;
245 }
246
247 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
248 {
249         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
250         u32 model = vcpu->kvm->arch.vgic.vgic_model;
251         u32 vmcr;
252
253         vmcr = cpu_if->vgic_vmcr;
254
255         if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
256                 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
257                         ICH_VMCR_ACK_CTL_SHIFT;
258                 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
259                         ICH_VMCR_FIQ_EN_SHIFT;
260         } else {
261                 /*
262                  * When emulating GICv3 on GICv3 with SRE=1 on the
263                  * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
264                  */
265                 vmcrp->fiqen = 1;
266                 vmcrp->ackctl = 0;
267         }
268
269         vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
270         vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
271         vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
272         vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
273         vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
274         vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
275         vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
276 }
277
278 #define INITIAL_PENDBASER_VALUE                                           \
279         (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)            | \
280         GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)      | \
281         GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
282
283 void vgic_v3_enable(struct kvm_vcpu *vcpu)
284 {
285         struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
286
287         /*
288          * By forcing VMCR to zero, the GIC will restore the binary
289          * points to their reset values. Anything else resets to zero
290          * anyway.
291          */
292         vgic_v3->vgic_vmcr = 0;
293
294         /*
295          * If we are emulating a GICv3, we do it in an non-GICv2-compatible
296          * way, so we force SRE to 1 to demonstrate this to the guest.
297          * Also, we don't support any form of IRQ/FIQ bypass.
298          * This goes with the spec allowing the value to be RAO/WI.
299          */
300         if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
301                 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
302                                      ICC_SRE_EL1_DFB |
303                                      ICC_SRE_EL1_SRE);
304                 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
305         } else {
306                 vgic_v3->vgic_sre = 0;
307         }
308
309         vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
310                                            ICH_VTR_ID_BITS_MASK) >>
311                                            ICH_VTR_ID_BITS_SHIFT;
312         vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
313                                             ICH_VTR_PRI_BITS_MASK) >>
314                                             ICH_VTR_PRI_BITS_SHIFT) + 1;
315
316         /* Get the show on the road... */
317         vgic_v3->vgic_hcr = ICH_HCR_EN;
318         if (group0_trap)
319                 vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
320         if (group1_trap)
321                 vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
322         if (common_trap)
323                 vgic_v3->vgic_hcr |= ICH_HCR_TC;
324 }
325
326 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
327 {
328         struct kvm_vcpu *vcpu;
329         int byte_offset, bit_nr;
330         gpa_t pendbase, ptr;
331         bool status;
332         u8 val;
333         int ret;
334         unsigned long flags;
335
336 retry:
337         vcpu = irq->target_vcpu;
338         if (!vcpu)
339                 return 0;
340
341         pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
342
343         byte_offset = irq->intid / BITS_PER_BYTE;
344         bit_nr = irq->intid % BITS_PER_BYTE;
345         ptr = pendbase + byte_offset;
346
347         ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
348         if (ret)
349                 return ret;
350
351         status = val & (1 << bit_nr);
352
353         spin_lock_irqsave(&irq->irq_lock, flags);
354         if (irq->target_vcpu != vcpu) {
355                 spin_unlock_irqrestore(&irq->irq_lock, flags);
356                 goto retry;
357         }
358         irq->pending_latch = status;
359         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
360
361         if (status) {
362                 /* clear consumed data */
363                 val &= ~(1 << bit_nr);
364                 ret = kvm_write_guest(kvm, ptr, &val, 1);
365                 if (ret)
366                         return ret;
367         }
368         return 0;
369 }
370
371 /**
372  * vgic_its_save_pending_tables - Save the pending tables into guest RAM
373  * kvm lock and all vcpu lock must be held
374  */
375 int vgic_v3_save_pending_tables(struct kvm *kvm)
376 {
377         struct vgic_dist *dist = &kvm->arch.vgic;
378         int last_byte_offset = -1;
379         struct vgic_irq *irq;
380         int ret;
381         u8 val;
382
383         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
384                 int byte_offset, bit_nr;
385                 struct kvm_vcpu *vcpu;
386                 gpa_t pendbase, ptr;
387                 bool stored;
388
389                 vcpu = irq->target_vcpu;
390                 if (!vcpu)
391                         continue;
392
393                 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
394
395                 byte_offset = irq->intid / BITS_PER_BYTE;
396                 bit_nr = irq->intid % BITS_PER_BYTE;
397                 ptr = pendbase + byte_offset;
398
399                 if (byte_offset != last_byte_offset) {
400                         ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
401                         if (ret)
402                                 return ret;
403                         last_byte_offset = byte_offset;
404                 }
405
406                 stored = val & (1U << bit_nr);
407                 if (stored == irq->pending_latch)
408                         continue;
409
410                 if (irq->pending_latch)
411                         val |= 1 << bit_nr;
412                 else
413                         val &= ~(1 << bit_nr);
414
415                 ret = kvm_write_guest(kvm, ptr, &val, 1);
416                 if (ret)
417                         return ret;
418         }
419         return 0;
420 }
421
422 /**
423  * vgic_v3_rdist_overlap - check if a region overlaps with any
424  * existing redistributor region
425  *
426  * @kvm: kvm handle
427  * @base: base of the region
428  * @size: size of region
429  *
430  * Return: true if there is an overlap
431  */
432 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
433 {
434         struct vgic_dist *d = &kvm->arch.vgic;
435         struct vgic_redist_region *rdreg;
436
437         list_for_each_entry(rdreg, &d->rd_regions, list) {
438                 if ((base + size > rdreg->base) &&
439                         (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
440                         return true;
441         }
442         return false;
443 }
444
445 /*
446  * Check for overlapping regions and for regions crossing the end of memory
447  * for base addresses which have already been set.
448  */
449 bool vgic_v3_check_base(struct kvm *kvm)
450 {
451         struct vgic_dist *d = &kvm->arch.vgic;
452         struct vgic_redist_region *rdreg;
453
454         if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
455             d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
456                 return false;
457
458         list_for_each_entry(rdreg, &d->rd_regions, list) {
459                 if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
460                         rdreg->base)
461                         return false;
462         }
463
464         if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
465                 return true;
466
467         return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
468                                       KVM_VGIC_V3_DIST_SIZE);
469 }
470
471 /**
472  * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
473  * which has free space to put a new rdist region.
474  *
475  * @rd_regions: redistributor region list head
476  *
477  * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
478  * Stride between redistributors is 0 and regions are filled in the index order.
479  *
480  * Return: the redist region handle, if any, that has space to map a new rdist
481  * region.
482  */
483 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
484 {
485         struct vgic_redist_region *rdreg;
486
487         list_for_each_entry(rdreg, rd_regions, list) {
488                 if (!vgic_v3_redist_region_full(rdreg))
489                         return rdreg;
490         }
491         return NULL;
492 }
493
494 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
495                                                            u32 index)
496 {
497         struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
498         struct vgic_redist_region *rdreg;
499
500         list_for_each_entry(rdreg, rd_regions, list) {
501                 if (rdreg->index == index)
502                         return rdreg;
503         }
504         return NULL;
505 }
506
507
508 int vgic_v3_map_resources(struct kvm *kvm)
509 {
510         struct vgic_dist *dist = &kvm->arch.vgic;
511         struct kvm_vcpu *vcpu;
512         int ret = 0;
513         int c;
514
515         if (vgic_ready(kvm))
516                 goto out;
517
518         kvm_for_each_vcpu(c, vcpu, kvm) {
519                 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
520
521                 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
522                         kvm_debug("vcpu %d redistributor base not set\n", c);
523                         ret = -ENXIO;
524                         goto out;
525                 }
526         }
527
528         if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
529                 kvm_err("Need to set vgic distributor addresses first\n");
530                 ret = -ENXIO;
531                 goto out;
532         }
533
534         if (!vgic_v3_check_base(kvm)) {
535                 kvm_err("VGIC redist and dist frames overlap\n");
536                 ret = -EINVAL;
537                 goto out;
538         }
539
540         /*
541          * For a VGICv3 we require the userland to explicitly initialize
542          * the VGIC before we need to use it.
543          */
544         if (!vgic_initialized(kvm)) {
545                 ret = -EBUSY;
546                 goto out;
547         }
548
549         ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
550         if (ret) {
551                 kvm_err("Unable to register VGICv3 dist MMIO regions\n");
552                 goto out;
553         }
554
555         dist->ready = true;
556
557 out:
558         return ret;
559 }
560
561 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
562
563 static int __init early_group0_trap_cfg(char *buf)
564 {
565         return strtobool(buf, &group0_trap);
566 }
567 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
568
569 static int __init early_group1_trap_cfg(char *buf)
570 {
571         return strtobool(buf, &group1_trap);
572 }
573 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
574
575 static int __init early_common_trap_cfg(char *buf)
576 {
577         return strtobool(buf, &common_trap);
578 }
579 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
580
581 static int __init early_gicv4_enable(char *buf)
582 {
583         return strtobool(buf, &gicv4_enable);
584 }
585 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
586
587 /**
588  * vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT
589  * @node:       pointer to the DT node
590  *
591  * Returns 0 if a GICv3 has been found, returns an error code otherwise
592  */
593 int vgic_v3_probe(const struct gic_kvm_info *info)
594 {
595         u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2);
596         int ret;
597
598         /*
599          * The ListRegs field is 5 bits, but there is a architectural
600          * maximum of 16 list registers. Just ignore bit 4...
601          */
602         kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
603         kvm_vgic_global_state.can_emulate_gicv2 = false;
604         kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
605
606         /* GICv4 support? */
607         if (info->has_v4) {
608                 kvm_vgic_global_state.has_gicv4 = gicv4_enable;
609                 kvm_info("GICv4 support %sabled\n",
610                          gicv4_enable ? "en" : "dis");
611         }
612
613         if (!info->vcpu.start) {
614                 kvm_info("GICv3: no GICV resource entry\n");
615                 kvm_vgic_global_state.vcpu_base = 0;
616         } else if (!PAGE_ALIGNED(info->vcpu.start)) {
617                 pr_warn("GICV physical address 0x%llx not page aligned\n",
618                         (unsigned long long)info->vcpu.start);
619                 kvm_vgic_global_state.vcpu_base = 0;
620         } else {
621                 kvm_vgic_global_state.vcpu_base = info->vcpu.start;
622                 kvm_vgic_global_state.can_emulate_gicv2 = true;
623                 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
624                 if (ret) {
625                         kvm_err("Cannot register GICv2 KVM device.\n");
626                         return ret;
627                 }
628                 kvm_info("vgic-v2@%llx\n", info->vcpu.start);
629         }
630         ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
631         if (ret) {
632                 kvm_err("Cannot register GICv3 KVM device.\n");
633                 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
634                 return ret;
635         }
636
637         if (kvm_vgic_global_state.vcpu_base == 0)
638                 kvm_info("disabling GICv2 emulation\n");
639
640 #ifdef CONFIG_ARM64
641         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
642                 group0_trap = true;
643                 group1_trap = true;
644         }
645 #endif
646
647         if (group0_trap || group1_trap || common_trap) {
648                 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
649                          group0_trap ? "G0" : "",
650                          group1_trap ? "G1" : "",
651                          common_trap ? "C"  : "");
652                 static_branch_enable(&vgic_v3_cpuif_trap);
653         }
654
655         kvm_vgic_global_state.vctrl_base = NULL;
656         kvm_vgic_global_state.type = VGIC_V3;
657         kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
658
659         return 0;
660 }
661
662 void vgic_v3_load(struct kvm_vcpu *vcpu)
663 {
664         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
665
666         /*
667          * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
668          * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
669          * VMCR_EL2 save/restore in the world switch.
670          */
671         if (likely(cpu_if->vgic_sre))
672                 kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
673
674         kvm_call_hyp(__vgic_v3_restore_aprs, vcpu);
675
676         if (has_vhe())
677                 __vgic_v3_activate_traps(vcpu);
678 }
679
680 void vgic_v3_put(struct kvm_vcpu *vcpu)
681 {
682         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
683
684         if (likely(cpu_if->vgic_sre))
685                 cpu_if->vgic_vmcr = kvm_call_hyp(__vgic_v3_read_vmcr);
686
687         kvm_call_hyp(__vgic_v3_save_aprs, vcpu);
688
689         if (has_vhe())
690                 __vgic_v3_deactivate_traps(vcpu);
691 }