nds32: fix build error "relocation truncated to fit: R_NDS32_25_PCREL_RELA" when
[linux-2.6-microblaze.git] / virt / kvm / arm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <linux/sched/signal.h>
24 #include <trace/events/kvm.h>
25 #include <asm/pgalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_mmio.h>
30 #include <asm/kvm_asm.h>
31 #include <asm/kvm_emulate.h>
32 #include <asm/virt.h>
33 #include <asm/system_misc.h>
34
35 #include "trace.h"
36
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
45
46 static unsigned long io_map_base;
47
48 #define S2_PGD_SIZE     (PTRS_PER_S2_PGD * sizeof(pgd_t))
49 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
50
51 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
52 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
53
54 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
55 {
56         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
57 }
58
59 /**
60  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
61  * @kvm:        pointer to kvm structure.
62  *
63  * Interface to HYP function to flush all VM TLB entries
64  */
65 void kvm_flush_remote_tlbs(struct kvm *kvm)
66 {
67         kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
68 }
69
70 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
71 {
72         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
73 }
74
75 /*
76  * D-Cache management functions. They take the page table entries by
77  * value, as they are flushing the cache using the kernel mapping (or
78  * kmap on 32bit).
79  */
80 static void kvm_flush_dcache_pte(pte_t pte)
81 {
82         __kvm_flush_dcache_pte(pte);
83 }
84
85 static void kvm_flush_dcache_pmd(pmd_t pmd)
86 {
87         __kvm_flush_dcache_pmd(pmd);
88 }
89
90 static void kvm_flush_dcache_pud(pud_t pud)
91 {
92         __kvm_flush_dcache_pud(pud);
93 }
94
95 static bool kvm_is_device_pfn(unsigned long pfn)
96 {
97         return !pfn_valid(pfn);
98 }
99
100 /**
101  * stage2_dissolve_pmd() - clear and flush huge PMD entry
102  * @kvm:        pointer to kvm structure.
103  * @addr:       IPA
104  * @pmd:        pmd pointer for IPA
105  *
106  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
107  * pages in the range dirty.
108  */
109 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
110 {
111         if (!pmd_thp_or_huge(*pmd))
112                 return;
113
114         pmd_clear(pmd);
115         kvm_tlb_flush_vmid_ipa(kvm, addr);
116         put_page(virt_to_page(pmd));
117 }
118
119 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
120                                   int min, int max)
121 {
122         void *page;
123
124         BUG_ON(max > KVM_NR_MEM_OBJS);
125         if (cache->nobjs >= min)
126                 return 0;
127         while (cache->nobjs < max) {
128                 page = (void *)__get_free_page(PGALLOC_GFP);
129                 if (!page)
130                         return -ENOMEM;
131                 cache->objects[cache->nobjs++] = page;
132         }
133         return 0;
134 }
135
136 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
137 {
138         while (mc->nobjs)
139                 free_page((unsigned long)mc->objects[--mc->nobjs]);
140 }
141
142 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
143 {
144         void *p;
145
146         BUG_ON(!mc || !mc->nobjs);
147         p = mc->objects[--mc->nobjs];
148         return p;
149 }
150
151 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
152 {
153         pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
154         stage2_pgd_clear(pgd);
155         kvm_tlb_flush_vmid_ipa(kvm, addr);
156         stage2_pud_free(pud_table);
157         put_page(virt_to_page(pgd));
158 }
159
160 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
161 {
162         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
163         VM_BUG_ON(stage2_pud_huge(*pud));
164         stage2_pud_clear(pud);
165         kvm_tlb_flush_vmid_ipa(kvm, addr);
166         stage2_pmd_free(pmd_table);
167         put_page(virt_to_page(pud));
168 }
169
170 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
171 {
172         pte_t *pte_table = pte_offset_kernel(pmd, 0);
173         VM_BUG_ON(pmd_thp_or_huge(*pmd));
174         pmd_clear(pmd);
175         kvm_tlb_flush_vmid_ipa(kvm, addr);
176         pte_free_kernel(NULL, pte_table);
177         put_page(virt_to_page(pmd));
178 }
179
180 /*
181  * Unmapping vs dcache management:
182  *
183  * If a guest maps certain memory pages as uncached, all writes will
184  * bypass the data cache and go directly to RAM.  However, the CPUs
185  * can still speculate reads (not writes) and fill cache lines with
186  * data.
187  *
188  * Those cache lines will be *clean* cache lines though, so a
189  * clean+invalidate operation is equivalent to an invalidate
190  * operation, because no cache lines are marked dirty.
191  *
192  * Those clean cache lines could be filled prior to an uncached write
193  * by the guest, and the cache coherent IO subsystem would therefore
194  * end up writing old data to disk.
195  *
196  * This is why right after unmapping a page/section and invalidating
197  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
198  * the IO subsystem will never hit in the cache.
199  */
200 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
201                        phys_addr_t addr, phys_addr_t end)
202 {
203         phys_addr_t start_addr = addr;
204         pte_t *pte, *start_pte;
205
206         start_pte = pte = pte_offset_kernel(pmd, addr);
207         do {
208                 if (!pte_none(*pte)) {
209                         pte_t old_pte = *pte;
210
211                         kvm_set_pte(pte, __pte(0));
212                         kvm_tlb_flush_vmid_ipa(kvm, addr);
213
214                         /* No need to invalidate the cache for device mappings */
215                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
216                                 kvm_flush_dcache_pte(old_pte);
217
218                         put_page(virt_to_page(pte));
219                 }
220         } while (pte++, addr += PAGE_SIZE, addr != end);
221
222         if (stage2_pte_table_empty(start_pte))
223                 clear_stage2_pmd_entry(kvm, pmd, start_addr);
224 }
225
226 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
227                        phys_addr_t addr, phys_addr_t end)
228 {
229         phys_addr_t next, start_addr = addr;
230         pmd_t *pmd, *start_pmd;
231
232         start_pmd = pmd = stage2_pmd_offset(pud, addr);
233         do {
234                 next = stage2_pmd_addr_end(addr, end);
235                 if (!pmd_none(*pmd)) {
236                         if (pmd_thp_or_huge(*pmd)) {
237                                 pmd_t old_pmd = *pmd;
238
239                                 pmd_clear(pmd);
240                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
241
242                                 kvm_flush_dcache_pmd(old_pmd);
243
244                                 put_page(virt_to_page(pmd));
245                         } else {
246                                 unmap_stage2_ptes(kvm, pmd, addr, next);
247                         }
248                 }
249         } while (pmd++, addr = next, addr != end);
250
251         if (stage2_pmd_table_empty(start_pmd))
252                 clear_stage2_pud_entry(kvm, pud, start_addr);
253 }
254
255 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
256                        phys_addr_t addr, phys_addr_t end)
257 {
258         phys_addr_t next, start_addr = addr;
259         pud_t *pud, *start_pud;
260
261         start_pud = pud = stage2_pud_offset(pgd, addr);
262         do {
263                 next = stage2_pud_addr_end(addr, end);
264                 if (!stage2_pud_none(*pud)) {
265                         if (stage2_pud_huge(*pud)) {
266                                 pud_t old_pud = *pud;
267
268                                 stage2_pud_clear(pud);
269                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
270                                 kvm_flush_dcache_pud(old_pud);
271                                 put_page(virt_to_page(pud));
272                         } else {
273                                 unmap_stage2_pmds(kvm, pud, addr, next);
274                         }
275                 }
276         } while (pud++, addr = next, addr != end);
277
278         if (stage2_pud_table_empty(start_pud))
279                 clear_stage2_pgd_entry(kvm, pgd, start_addr);
280 }
281
282 /**
283  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
284  * @kvm:   The VM pointer
285  * @start: The intermediate physical base address of the range to unmap
286  * @size:  The size of the area to unmap
287  *
288  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
289  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
290  * destroying the VM), otherwise another faulting VCPU may come in and mess
291  * with things behind our backs.
292  */
293 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
294 {
295         pgd_t *pgd;
296         phys_addr_t addr = start, end = start + size;
297         phys_addr_t next;
298
299         assert_spin_locked(&kvm->mmu_lock);
300         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
301         do {
302                 /*
303                  * Make sure the page table is still active, as another thread
304                  * could have possibly freed the page table, while we released
305                  * the lock.
306                  */
307                 if (!READ_ONCE(kvm->arch.pgd))
308                         break;
309                 next = stage2_pgd_addr_end(addr, end);
310                 if (!stage2_pgd_none(*pgd))
311                         unmap_stage2_puds(kvm, pgd, addr, next);
312                 /*
313                  * If the range is too large, release the kvm->mmu_lock
314                  * to prevent starvation and lockup detector warnings.
315                  */
316                 if (next != end)
317                         cond_resched_lock(&kvm->mmu_lock);
318         } while (pgd++, addr = next, addr != end);
319 }
320
321 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
322                               phys_addr_t addr, phys_addr_t end)
323 {
324         pte_t *pte;
325
326         pte = pte_offset_kernel(pmd, addr);
327         do {
328                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
329                         kvm_flush_dcache_pte(*pte);
330         } while (pte++, addr += PAGE_SIZE, addr != end);
331 }
332
333 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
334                               phys_addr_t addr, phys_addr_t end)
335 {
336         pmd_t *pmd;
337         phys_addr_t next;
338
339         pmd = stage2_pmd_offset(pud, addr);
340         do {
341                 next = stage2_pmd_addr_end(addr, end);
342                 if (!pmd_none(*pmd)) {
343                         if (pmd_thp_or_huge(*pmd))
344                                 kvm_flush_dcache_pmd(*pmd);
345                         else
346                                 stage2_flush_ptes(kvm, pmd, addr, next);
347                 }
348         } while (pmd++, addr = next, addr != end);
349 }
350
351 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
352                               phys_addr_t addr, phys_addr_t end)
353 {
354         pud_t *pud;
355         phys_addr_t next;
356
357         pud = stage2_pud_offset(pgd, addr);
358         do {
359                 next = stage2_pud_addr_end(addr, end);
360                 if (!stage2_pud_none(*pud)) {
361                         if (stage2_pud_huge(*pud))
362                                 kvm_flush_dcache_pud(*pud);
363                         else
364                                 stage2_flush_pmds(kvm, pud, addr, next);
365                 }
366         } while (pud++, addr = next, addr != end);
367 }
368
369 static void stage2_flush_memslot(struct kvm *kvm,
370                                  struct kvm_memory_slot *memslot)
371 {
372         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
373         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
374         phys_addr_t next;
375         pgd_t *pgd;
376
377         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
378         do {
379                 next = stage2_pgd_addr_end(addr, end);
380                 stage2_flush_puds(kvm, pgd, addr, next);
381         } while (pgd++, addr = next, addr != end);
382 }
383
384 /**
385  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
386  * @kvm: The struct kvm pointer
387  *
388  * Go through the stage 2 page tables and invalidate any cache lines
389  * backing memory already mapped to the VM.
390  */
391 static void stage2_flush_vm(struct kvm *kvm)
392 {
393         struct kvm_memslots *slots;
394         struct kvm_memory_slot *memslot;
395         int idx;
396
397         idx = srcu_read_lock(&kvm->srcu);
398         spin_lock(&kvm->mmu_lock);
399
400         slots = kvm_memslots(kvm);
401         kvm_for_each_memslot(memslot, slots)
402                 stage2_flush_memslot(kvm, memslot);
403
404         spin_unlock(&kvm->mmu_lock);
405         srcu_read_unlock(&kvm->srcu, idx);
406 }
407
408 static void clear_hyp_pgd_entry(pgd_t *pgd)
409 {
410         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
411         pgd_clear(pgd);
412         pud_free(NULL, pud_table);
413         put_page(virt_to_page(pgd));
414 }
415
416 static void clear_hyp_pud_entry(pud_t *pud)
417 {
418         pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
419         VM_BUG_ON(pud_huge(*pud));
420         pud_clear(pud);
421         pmd_free(NULL, pmd_table);
422         put_page(virt_to_page(pud));
423 }
424
425 static void clear_hyp_pmd_entry(pmd_t *pmd)
426 {
427         pte_t *pte_table = pte_offset_kernel(pmd, 0);
428         VM_BUG_ON(pmd_thp_or_huge(*pmd));
429         pmd_clear(pmd);
430         pte_free_kernel(NULL, pte_table);
431         put_page(virt_to_page(pmd));
432 }
433
434 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
435 {
436         pte_t *pte, *start_pte;
437
438         start_pte = pte = pte_offset_kernel(pmd, addr);
439         do {
440                 if (!pte_none(*pte)) {
441                         kvm_set_pte(pte, __pte(0));
442                         put_page(virt_to_page(pte));
443                 }
444         } while (pte++, addr += PAGE_SIZE, addr != end);
445
446         if (hyp_pte_table_empty(start_pte))
447                 clear_hyp_pmd_entry(pmd);
448 }
449
450 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
451 {
452         phys_addr_t next;
453         pmd_t *pmd, *start_pmd;
454
455         start_pmd = pmd = pmd_offset(pud, addr);
456         do {
457                 next = pmd_addr_end(addr, end);
458                 /* Hyp doesn't use huge pmds */
459                 if (!pmd_none(*pmd))
460                         unmap_hyp_ptes(pmd, addr, next);
461         } while (pmd++, addr = next, addr != end);
462
463         if (hyp_pmd_table_empty(start_pmd))
464                 clear_hyp_pud_entry(pud);
465 }
466
467 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
468 {
469         phys_addr_t next;
470         pud_t *pud, *start_pud;
471
472         start_pud = pud = pud_offset(pgd, addr);
473         do {
474                 next = pud_addr_end(addr, end);
475                 /* Hyp doesn't use huge puds */
476                 if (!pud_none(*pud))
477                         unmap_hyp_pmds(pud, addr, next);
478         } while (pud++, addr = next, addr != end);
479
480         if (hyp_pud_table_empty(start_pud))
481                 clear_hyp_pgd_entry(pgd);
482 }
483
484 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
485 {
486         return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
487 }
488
489 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
490                               phys_addr_t start, u64 size)
491 {
492         pgd_t *pgd;
493         phys_addr_t addr = start, end = start + size;
494         phys_addr_t next;
495
496         /*
497          * We don't unmap anything from HYP, except at the hyp tear down.
498          * Hence, we don't have to invalidate the TLBs here.
499          */
500         pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
501         do {
502                 next = pgd_addr_end(addr, end);
503                 if (!pgd_none(*pgd))
504                         unmap_hyp_puds(pgd, addr, next);
505         } while (pgd++, addr = next, addr != end);
506 }
507
508 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
509 {
510         __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
511 }
512
513 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
514 {
515         __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
516 }
517
518 /**
519  * free_hyp_pgds - free Hyp-mode page tables
520  *
521  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
522  * therefore contains either mappings in the kernel memory area (above
523  * PAGE_OFFSET), or device mappings in the idmap range.
524  *
525  * boot_hyp_pgd should only map the idmap range, and is only used in
526  * the extended idmap case.
527  */
528 void free_hyp_pgds(void)
529 {
530         pgd_t *id_pgd;
531
532         mutex_lock(&kvm_hyp_pgd_mutex);
533
534         id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
535
536         if (id_pgd) {
537                 /* In case we never called hyp_mmu_init() */
538                 if (!io_map_base)
539                         io_map_base = hyp_idmap_start;
540                 unmap_hyp_idmap_range(id_pgd, io_map_base,
541                                       hyp_idmap_start + PAGE_SIZE - io_map_base);
542         }
543
544         if (boot_hyp_pgd) {
545                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
546                 boot_hyp_pgd = NULL;
547         }
548
549         if (hyp_pgd) {
550                 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
551                                 (uintptr_t)high_memory - PAGE_OFFSET);
552
553                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
554                 hyp_pgd = NULL;
555         }
556         if (merged_hyp_pgd) {
557                 clear_page(merged_hyp_pgd);
558                 free_page((unsigned long)merged_hyp_pgd);
559                 merged_hyp_pgd = NULL;
560         }
561
562         mutex_unlock(&kvm_hyp_pgd_mutex);
563 }
564
565 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
566                                     unsigned long end, unsigned long pfn,
567                                     pgprot_t prot)
568 {
569         pte_t *pte;
570         unsigned long addr;
571
572         addr = start;
573         do {
574                 pte = pte_offset_kernel(pmd, addr);
575                 kvm_set_pte(pte, pfn_pte(pfn, prot));
576                 get_page(virt_to_page(pte));
577                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
578                 pfn++;
579         } while (addr += PAGE_SIZE, addr != end);
580 }
581
582 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
583                                    unsigned long end, unsigned long pfn,
584                                    pgprot_t prot)
585 {
586         pmd_t *pmd;
587         pte_t *pte;
588         unsigned long addr, next;
589
590         addr = start;
591         do {
592                 pmd = pmd_offset(pud, addr);
593
594                 BUG_ON(pmd_sect(*pmd));
595
596                 if (pmd_none(*pmd)) {
597                         pte = pte_alloc_one_kernel(NULL, addr);
598                         if (!pte) {
599                                 kvm_err("Cannot allocate Hyp pte\n");
600                                 return -ENOMEM;
601                         }
602                         pmd_populate_kernel(NULL, pmd, pte);
603                         get_page(virt_to_page(pmd));
604                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
605                 }
606
607                 next = pmd_addr_end(addr, end);
608
609                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
610                 pfn += (next - addr) >> PAGE_SHIFT;
611         } while (addr = next, addr != end);
612
613         return 0;
614 }
615
616 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
617                                    unsigned long end, unsigned long pfn,
618                                    pgprot_t prot)
619 {
620         pud_t *pud;
621         pmd_t *pmd;
622         unsigned long addr, next;
623         int ret;
624
625         addr = start;
626         do {
627                 pud = pud_offset(pgd, addr);
628
629                 if (pud_none_or_clear_bad(pud)) {
630                         pmd = pmd_alloc_one(NULL, addr);
631                         if (!pmd) {
632                                 kvm_err("Cannot allocate Hyp pmd\n");
633                                 return -ENOMEM;
634                         }
635                         pud_populate(NULL, pud, pmd);
636                         get_page(virt_to_page(pud));
637                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
638                 }
639
640                 next = pud_addr_end(addr, end);
641                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
642                 if (ret)
643                         return ret;
644                 pfn += (next - addr) >> PAGE_SHIFT;
645         } while (addr = next, addr != end);
646
647         return 0;
648 }
649
650 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
651                                  unsigned long start, unsigned long end,
652                                  unsigned long pfn, pgprot_t prot)
653 {
654         pgd_t *pgd;
655         pud_t *pud;
656         unsigned long addr, next;
657         int err = 0;
658
659         mutex_lock(&kvm_hyp_pgd_mutex);
660         addr = start & PAGE_MASK;
661         end = PAGE_ALIGN(end);
662         do {
663                 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
664
665                 if (pgd_none(*pgd)) {
666                         pud = pud_alloc_one(NULL, addr);
667                         if (!pud) {
668                                 kvm_err("Cannot allocate Hyp pud\n");
669                                 err = -ENOMEM;
670                                 goto out;
671                         }
672                         pgd_populate(NULL, pgd, pud);
673                         get_page(virt_to_page(pgd));
674                         kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
675                 }
676
677                 next = pgd_addr_end(addr, end);
678                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
679                 if (err)
680                         goto out;
681                 pfn += (next - addr) >> PAGE_SHIFT;
682         } while (addr = next, addr != end);
683 out:
684         mutex_unlock(&kvm_hyp_pgd_mutex);
685         return err;
686 }
687
688 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
689 {
690         if (!is_vmalloc_addr(kaddr)) {
691                 BUG_ON(!virt_addr_valid(kaddr));
692                 return __pa(kaddr);
693         } else {
694                 return page_to_phys(vmalloc_to_page(kaddr)) +
695                        offset_in_page(kaddr);
696         }
697 }
698
699 /**
700  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
701  * @from:       The virtual kernel start address of the range
702  * @to:         The virtual kernel end address of the range (exclusive)
703  * @prot:       The protection to be applied to this range
704  *
705  * The same virtual address as the kernel virtual address is also used
706  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
707  * physical pages.
708  */
709 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
710 {
711         phys_addr_t phys_addr;
712         unsigned long virt_addr;
713         unsigned long start = kern_hyp_va((unsigned long)from);
714         unsigned long end = kern_hyp_va((unsigned long)to);
715
716         if (is_kernel_in_hyp_mode())
717                 return 0;
718
719         start = start & PAGE_MASK;
720         end = PAGE_ALIGN(end);
721
722         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
723                 int err;
724
725                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
726                 err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
727                                             virt_addr, virt_addr + PAGE_SIZE,
728                                             __phys_to_pfn(phys_addr),
729                                             prot);
730                 if (err)
731                         return err;
732         }
733
734         return 0;
735 }
736
737 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
738                                         unsigned long *haddr, pgprot_t prot)
739 {
740         pgd_t *pgd = hyp_pgd;
741         unsigned long base;
742         int ret = 0;
743
744         mutex_lock(&kvm_hyp_pgd_mutex);
745
746         /*
747          * This assumes that we we have enough space below the idmap
748          * page to allocate our VAs. If not, the check below will
749          * kick. A potential alternative would be to detect that
750          * overflow and switch to an allocation above the idmap.
751          *
752          * The allocated size is always a multiple of PAGE_SIZE.
753          */
754         size = PAGE_ALIGN(size + offset_in_page(phys_addr));
755         base = io_map_base - size;
756
757         /*
758          * Verify that BIT(VA_BITS - 1) hasn't been flipped by
759          * allocating the new area, as it would indicate we've
760          * overflowed the idmap/IO address range.
761          */
762         if ((base ^ io_map_base) & BIT(VA_BITS - 1))
763                 ret = -ENOMEM;
764         else
765                 io_map_base = base;
766
767         mutex_unlock(&kvm_hyp_pgd_mutex);
768
769         if (ret)
770                 goto out;
771
772         if (__kvm_cpu_uses_extended_idmap())
773                 pgd = boot_hyp_pgd;
774
775         ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
776                                     base, base + size,
777                                     __phys_to_pfn(phys_addr), prot);
778         if (ret)
779                 goto out;
780
781         *haddr = base + offset_in_page(phys_addr);
782
783 out:
784         return ret;
785 }
786
787 /**
788  * create_hyp_io_mappings - Map IO into both kernel and HYP
789  * @phys_addr:  The physical start address which gets mapped
790  * @size:       Size of the region being mapped
791  * @kaddr:      Kernel VA for this mapping
792  * @haddr:      HYP VA for this mapping
793  */
794 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
795                            void __iomem **kaddr,
796                            void __iomem **haddr)
797 {
798         unsigned long addr;
799         int ret;
800
801         *kaddr = ioremap(phys_addr, size);
802         if (!*kaddr)
803                 return -ENOMEM;
804
805         if (is_kernel_in_hyp_mode()) {
806                 *haddr = *kaddr;
807                 return 0;
808         }
809
810         ret = __create_hyp_private_mapping(phys_addr, size,
811                                            &addr, PAGE_HYP_DEVICE);
812         if (ret) {
813                 iounmap(*kaddr);
814                 *kaddr = NULL;
815                 *haddr = NULL;
816                 return ret;
817         }
818
819         *haddr = (void __iomem *)addr;
820         return 0;
821 }
822
823 /**
824  * create_hyp_exec_mappings - Map an executable range into HYP
825  * @phys_addr:  The physical start address which gets mapped
826  * @size:       Size of the region being mapped
827  * @haddr:      HYP VA for this mapping
828  */
829 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
830                              void **haddr)
831 {
832         unsigned long addr;
833         int ret;
834
835         BUG_ON(is_kernel_in_hyp_mode());
836
837         ret = __create_hyp_private_mapping(phys_addr, size,
838                                            &addr, PAGE_HYP_EXEC);
839         if (ret) {
840                 *haddr = NULL;
841                 return ret;
842         }
843
844         *haddr = (void *)addr;
845         return 0;
846 }
847
848 /**
849  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
850  * @kvm:        The KVM struct pointer for the VM.
851  *
852  * Allocates only the stage-2 HW PGD level table(s) (can support either full
853  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
854  * allocated pages.
855  *
856  * Note we don't need locking here as this is only called when the VM is
857  * created, which can only be done once.
858  */
859 int kvm_alloc_stage2_pgd(struct kvm *kvm)
860 {
861         pgd_t *pgd;
862
863         if (kvm->arch.pgd != NULL) {
864                 kvm_err("kvm_arch already initialized?\n");
865                 return -EINVAL;
866         }
867
868         /* Allocate the HW PGD, making sure that each page gets its own refcount */
869         pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
870         if (!pgd)
871                 return -ENOMEM;
872
873         kvm->arch.pgd = pgd;
874         return 0;
875 }
876
877 static void stage2_unmap_memslot(struct kvm *kvm,
878                                  struct kvm_memory_slot *memslot)
879 {
880         hva_t hva = memslot->userspace_addr;
881         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
882         phys_addr_t size = PAGE_SIZE * memslot->npages;
883         hva_t reg_end = hva + size;
884
885         /*
886          * A memory region could potentially cover multiple VMAs, and any holes
887          * between them, so iterate over all of them to find out if we should
888          * unmap any of them.
889          *
890          *     +--------------------------------------------+
891          * +---------------+----------------+   +----------------+
892          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
893          * +---------------+----------------+   +----------------+
894          *     |               memory region                |
895          *     +--------------------------------------------+
896          */
897         do {
898                 struct vm_area_struct *vma = find_vma(current->mm, hva);
899                 hva_t vm_start, vm_end;
900
901                 if (!vma || vma->vm_start >= reg_end)
902                         break;
903
904                 /*
905                  * Take the intersection of this VMA with the memory region
906                  */
907                 vm_start = max(hva, vma->vm_start);
908                 vm_end = min(reg_end, vma->vm_end);
909
910                 if (!(vma->vm_flags & VM_PFNMAP)) {
911                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
912                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
913                 }
914                 hva = vm_end;
915         } while (hva < reg_end);
916 }
917
918 /**
919  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
920  * @kvm: The struct kvm pointer
921  *
922  * Go through the memregions and unmap any reguler RAM
923  * backing memory already mapped to the VM.
924  */
925 void stage2_unmap_vm(struct kvm *kvm)
926 {
927         struct kvm_memslots *slots;
928         struct kvm_memory_slot *memslot;
929         int idx;
930
931         idx = srcu_read_lock(&kvm->srcu);
932         down_read(&current->mm->mmap_sem);
933         spin_lock(&kvm->mmu_lock);
934
935         slots = kvm_memslots(kvm);
936         kvm_for_each_memslot(memslot, slots)
937                 stage2_unmap_memslot(kvm, memslot);
938
939         spin_unlock(&kvm->mmu_lock);
940         up_read(&current->mm->mmap_sem);
941         srcu_read_unlock(&kvm->srcu, idx);
942 }
943
944 /**
945  * kvm_free_stage2_pgd - free all stage-2 tables
946  * @kvm:        The KVM struct pointer for the VM.
947  *
948  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
949  * underlying level-2 and level-3 tables before freeing the actual level-1 table
950  * and setting the struct pointer to NULL.
951  */
952 void kvm_free_stage2_pgd(struct kvm *kvm)
953 {
954         void *pgd = NULL;
955
956         spin_lock(&kvm->mmu_lock);
957         if (kvm->arch.pgd) {
958                 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
959                 pgd = READ_ONCE(kvm->arch.pgd);
960                 kvm->arch.pgd = NULL;
961         }
962         spin_unlock(&kvm->mmu_lock);
963
964         /* Free the HW pgd, one page at a time */
965         if (pgd)
966                 free_pages_exact(pgd, S2_PGD_SIZE);
967 }
968
969 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
970                              phys_addr_t addr)
971 {
972         pgd_t *pgd;
973         pud_t *pud;
974
975         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
976         if (WARN_ON(stage2_pgd_none(*pgd))) {
977                 if (!cache)
978                         return NULL;
979                 pud = mmu_memory_cache_alloc(cache);
980                 stage2_pgd_populate(pgd, pud);
981                 get_page(virt_to_page(pgd));
982         }
983
984         return stage2_pud_offset(pgd, addr);
985 }
986
987 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
988                              phys_addr_t addr)
989 {
990         pud_t *pud;
991         pmd_t *pmd;
992
993         pud = stage2_get_pud(kvm, cache, addr);
994         if (!pud)
995                 return NULL;
996
997         if (stage2_pud_none(*pud)) {
998                 if (!cache)
999                         return NULL;
1000                 pmd = mmu_memory_cache_alloc(cache);
1001                 stage2_pud_populate(pud, pmd);
1002                 get_page(virt_to_page(pud));
1003         }
1004
1005         return stage2_pmd_offset(pud, addr);
1006 }
1007
1008 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1009                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
1010 {
1011         pmd_t *pmd, old_pmd;
1012
1013         pmd = stage2_get_pmd(kvm, cache, addr);
1014         VM_BUG_ON(!pmd);
1015
1016         /*
1017          * Mapping in huge pages should only happen through a fault.  If a
1018          * page is merged into a transparent huge page, the individual
1019          * subpages of that huge page should be unmapped through MMU
1020          * notifiers before we get here.
1021          *
1022          * Merging of CompoundPages is not supported; they should become
1023          * splitting first, unmapped, merged, and mapped back in on-demand.
1024          */
1025         VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
1026
1027         old_pmd = *pmd;
1028         if (pmd_present(old_pmd)) {
1029                 pmd_clear(pmd);
1030                 kvm_tlb_flush_vmid_ipa(kvm, addr);
1031         } else {
1032                 get_page(virt_to_page(pmd));
1033         }
1034
1035         kvm_set_pmd(pmd, *new_pmd);
1036         return 0;
1037 }
1038
1039 static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
1040 {
1041         pmd_t *pmdp;
1042         pte_t *ptep;
1043
1044         pmdp = stage2_get_pmd(kvm, NULL, addr);
1045         if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1046                 return false;
1047
1048         if (pmd_thp_or_huge(*pmdp))
1049                 return kvm_s2pmd_exec(pmdp);
1050
1051         ptep = pte_offset_kernel(pmdp, addr);
1052         if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1053                 return false;
1054
1055         return kvm_s2pte_exec(ptep);
1056 }
1057
1058 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1059                           phys_addr_t addr, const pte_t *new_pte,
1060                           unsigned long flags)
1061 {
1062         pmd_t *pmd;
1063         pte_t *pte, old_pte;
1064         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1065         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1066
1067         VM_BUG_ON(logging_active && !cache);
1068
1069         /* Create stage-2 page table mapping - Levels 0 and 1 */
1070         pmd = stage2_get_pmd(kvm, cache, addr);
1071         if (!pmd) {
1072                 /*
1073                  * Ignore calls from kvm_set_spte_hva for unallocated
1074                  * address ranges.
1075                  */
1076                 return 0;
1077         }
1078
1079         /*
1080          * While dirty page logging - dissolve huge PMD, then continue on to
1081          * allocate page.
1082          */
1083         if (logging_active)
1084                 stage2_dissolve_pmd(kvm, addr, pmd);
1085
1086         /* Create stage-2 page mappings - Level 2 */
1087         if (pmd_none(*pmd)) {
1088                 if (!cache)
1089                         return 0; /* ignore calls from kvm_set_spte_hva */
1090                 pte = mmu_memory_cache_alloc(cache);
1091                 pmd_populate_kernel(NULL, pmd, pte);
1092                 get_page(virt_to_page(pmd));
1093         }
1094
1095         pte = pte_offset_kernel(pmd, addr);
1096
1097         if (iomap && pte_present(*pte))
1098                 return -EFAULT;
1099
1100         /* Create 2nd stage page table mapping - Level 3 */
1101         old_pte = *pte;
1102         if (pte_present(old_pte)) {
1103                 kvm_set_pte(pte, __pte(0));
1104                 kvm_tlb_flush_vmid_ipa(kvm, addr);
1105         } else {
1106                 get_page(virt_to_page(pte));
1107         }
1108
1109         kvm_set_pte(pte, *new_pte);
1110         return 0;
1111 }
1112
1113 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1114 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1115 {
1116         if (pte_young(*pte)) {
1117                 *pte = pte_mkold(*pte);
1118                 return 1;
1119         }
1120         return 0;
1121 }
1122 #else
1123 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1124 {
1125         return __ptep_test_and_clear_young(pte);
1126 }
1127 #endif
1128
1129 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1130 {
1131         return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1132 }
1133
1134 /**
1135  * kvm_phys_addr_ioremap - map a device range to guest IPA
1136  *
1137  * @kvm:        The KVM pointer
1138  * @guest_ipa:  The IPA at which to insert the mapping
1139  * @pa:         The physical address of the device
1140  * @size:       The size of the mapping
1141  */
1142 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1143                           phys_addr_t pa, unsigned long size, bool writable)
1144 {
1145         phys_addr_t addr, end;
1146         int ret = 0;
1147         unsigned long pfn;
1148         struct kvm_mmu_memory_cache cache = { 0, };
1149
1150         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1151         pfn = __phys_to_pfn(pa);
1152
1153         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1154                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1155
1156                 if (writable)
1157                         pte = kvm_s2pte_mkwrite(pte);
1158
1159                 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1160                                                 KVM_NR_MEM_OBJS);
1161                 if (ret)
1162                         goto out;
1163                 spin_lock(&kvm->mmu_lock);
1164                 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1165                                                 KVM_S2PTE_FLAG_IS_IOMAP);
1166                 spin_unlock(&kvm->mmu_lock);
1167                 if (ret)
1168                         goto out;
1169
1170                 pfn++;
1171         }
1172
1173 out:
1174         mmu_free_memory_cache(&cache);
1175         return ret;
1176 }
1177
1178 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1179 {
1180         kvm_pfn_t pfn = *pfnp;
1181         gfn_t gfn = *ipap >> PAGE_SHIFT;
1182
1183         if (PageTransCompoundMap(pfn_to_page(pfn))) {
1184                 unsigned long mask;
1185                 /*
1186                  * The address we faulted on is backed by a transparent huge
1187                  * page.  However, because we map the compound huge page and
1188                  * not the individual tail page, we need to transfer the
1189                  * refcount to the head page.  We have to be careful that the
1190                  * THP doesn't start to split while we are adjusting the
1191                  * refcounts.
1192                  *
1193                  * We are sure this doesn't happen, because mmu_notifier_retry
1194                  * was successful and we are holding the mmu_lock, so if this
1195                  * THP is trying to split, it will be blocked in the mmu
1196                  * notifier before touching any of the pages, specifically
1197                  * before being able to call __split_huge_page_refcount().
1198                  *
1199                  * We can therefore safely transfer the refcount from PG_tail
1200                  * to PG_head and switch the pfn from a tail page to the head
1201                  * page accordingly.
1202                  */
1203                 mask = PTRS_PER_PMD - 1;
1204                 VM_BUG_ON((gfn & mask) != (pfn & mask));
1205                 if (pfn & mask) {
1206                         *ipap &= PMD_MASK;
1207                         kvm_release_pfn_clean(pfn);
1208                         pfn &= ~mask;
1209                         kvm_get_pfn(pfn);
1210                         *pfnp = pfn;
1211                 }
1212
1213                 return true;
1214         }
1215
1216         return false;
1217 }
1218
1219 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1220 {
1221         if (kvm_vcpu_trap_is_iabt(vcpu))
1222                 return false;
1223
1224         return kvm_vcpu_dabt_iswrite(vcpu);
1225 }
1226
1227 /**
1228  * stage2_wp_ptes - write protect PMD range
1229  * @pmd:        pointer to pmd entry
1230  * @addr:       range start address
1231  * @end:        range end address
1232  */
1233 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1234 {
1235         pte_t *pte;
1236
1237         pte = pte_offset_kernel(pmd, addr);
1238         do {
1239                 if (!pte_none(*pte)) {
1240                         if (!kvm_s2pte_readonly(pte))
1241                                 kvm_set_s2pte_readonly(pte);
1242                 }
1243         } while (pte++, addr += PAGE_SIZE, addr != end);
1244 }
1245
1246 /**
1247  * stage2_wp_pmds - write protect PUD range
1248  * @pud:        pointer to pud entry
1249  * @addr:       range start address
1250  * @end:        range end address
1251  */
1252 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1253 {
1254         pmd_t *pmd;
1255         phys_addr_t next;
1256
1257         pmd = stage2_pmd_offset(pud, addr);
1258
1259         do {
1260                 next = stage2_pmd_addr_end(addr, end);
1261                 if (!pmd_none(*pmd)) {
1262                         if (pmd_thp_or_huge(*pmd)) {
1263                                 if (!kvm_s2pmd_readonly(pmd))
1264                                         kvm_set_s2pmd_readonly(pmd);
1265                         } else {
1266                                 stage2_wp_ptes(pmd, addr, next);
1267                         }
1268                 }
1269         } while (pmd++, addr = next, addr != end);
1270 }
1271
1272 /**
1273   * stage2_wp_puds - write protect PGD range
1274   * @pgd:       pointer to pgd entry
1275   * @addr:      range start address
1276   * @end:       range end address
1277   *
1278   * Process PUD entries, for a huge PUD we cause a panic.
1279   */
1280 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1281 {
1282         pud_t *pud;
1283         phys_addr_t next;
1284
1285         pud = stage2_pud_offset(pgd, addr);
1286         do {
1287                 next = stage2_pud_addr_end(addr, end);
1288                 if (!stage2_pud_none(*pud)) {
1289                         /* TODO:PUD not supported, revisit later if supported */
1290                         BUG_ON(stage2_pud_huge(*pud));
1291                         stage2_wp_pmds(pud, addr, next);
1292                 }
1293         } while (pud++, addr = next, addr != end);
1294 }
1295
1296 /**
1297  * stage2_wp_range() - write protect stage2 memory region range
1298  * @kvm:        The KVM pointer
1299  * @addr:       Start address of range
1300  * @end:        End address of range
1301  */
1302 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1303 {
1304         pgd_t *pgd;
1305         phys_addr_t next;
1306
1307         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1308         do {
1309                 /*
1310                  * Release kvm_mmu_lock periodically if the memory region is
1311                  * large. Otherwise, we may see kernel panics with
1312                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1313                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1314                  * will also starve other vCPUs. We have to also make sure
1315                  * that the page tables are not freed while we released
1316                  * the lock.
1317                  */
1318                 cond_resched_lock(&kvm->mmu_lock);
1319                 if (!READ_ONCE(kvm->arch.pgd))
1320                         break;
1321                 next = stage2_pgd_addr_end(addr, end);
1322                 if (stage2_pgd_present(*pgd))
1323                         stage2_wp_puds(pgd, addr, next);
1324         } while (pgd++, addr = next, addr != end);
1325 }
1326
1327 /**
1328  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1329  * @kvm:        The KVM pointer
1330  * @slot:       The memory slot to write protect
1331  *
1332  * Called to start logging dirty pages after memory region
1333  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1334  * all present PMD and PTEs are write protected in the memory region.
1335  * Afterwards read of dirty page log can be called.
1336  *
1337  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1338  * serializing operations for VM memory regions.
1339  */
1340 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1341 {
1342         struct kvm_memslots *slots = kvm_memslots(kvm);
1343         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1344         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1345         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1346
1347         spin_lock(&kvm->mmu_lock);
1348         stage2_wp_range(kvm, start, end);
1349         spin_unlock(&kvm->mmu_lock);
1350         kvm_flush_remote_tlbs(kvm);
1351 }
1352
1353 /**
1354  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1355  * @kvm:        The KVM pointer
1356  * @slot:       The memory slot associated with mask
1357  * @gfn_offset: The gfn offset in memory slot
1358  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1359  *              slot to be write protected
1360  *
1361  * Walks bits set in mask write protects the associated pte's. Caller must
1362  * acquire kvm_mmu_lock.
1363  */
1364 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1365                 struct kvm_memory_slot *slot,
1366                 gfn_t gfn_offset, unsigned long mask)
1367 {
1368         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1369         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1370         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1371
1372         stage2_wp_range(kvm, start, end);
1373 }
1374
1375 /*
1376  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1377  * dirty pages.
1378  *
1379  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1380  * enable dirty logging for them.
1381  */
1382 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1383                 struct kvm_memory_slot *slot,
1384                 gfn_t gfn_offset, unsigned long mask)
1385 {
1386         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1387 }
1388
1389 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1390 {
1391         __clean_dcache_guest_page(pfn, size);
1392 }
1393
1394 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1395 {
1396         __invalidate_icache_guest_page(pfn, size);
1397 }
1398
1399 static void kvm_send_hwpoison_signal(unsigned long address,
1400                                      struct vm_area_struct *vma)
1401 {
1402         siginfo_t info;
1403
1404         clear_siginfo(&info);
1405         info.si_signo   = SIGBUS;
1406         info.si_errno   = 0;
1407         info.si_code    = BUS_MCEERR_AR;
1408         info.si_addr    = (void __user *)address;
1409
1410         if (is_vm_hugetlb_page(vma))
1411                 info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
1412         else
1413                 info.si_addr_lsb = PAGE_SHIFT;
1414
1415         send_sig_info(SIGBUS, &info, current);
1416 }
1417
1418 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1419                           struct kvm_memory_slot *memslot, unsigned long hva,
1420                           unsigned long fault_status)
1421 {
1422         int ret;
1423         bool write_fault, exec_fault, writable, hugetlb = false, force_pte = false;
1424         unsigned long mmu_seq;
1425         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1426         struct kvm *kvm = vcpu->kvm;
1427         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1428         struct vm_area_struct *vma;
1429         kvm_pfn_t pfn;
1430         pgprot_t mem_type = PAGE_S2;
1431         bool logging_active = memslot_is_logging(memslot);
1432         unsigned long flags = 0;
1433
1434         write_fault = kvm_is_write_fault(vcpu);
1435         exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1436         VM_BUG_ON(write_fault && exec_fault);
1437
1438         if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1439                 kvm_err("Unexpected L2 read permission error\n");
1440                 return -EFAULT;
1441         }
1442
1443         /* Let's check if we will get back a huge page backed by hugetlbfs */
1444         down_read(&current->mm->mmap_sem);
1445         vma = find_vma_intersection(current->mm, hva, hva + 1);
1446         if (unlikely(!vma)) {
1447                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1448                 up_read(&current->mm->mmap_sem);
1449                 return -EFAULT;
1450         }
1451
1452         if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1453                 hugetlb = true;
1454                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1455         } else {
1456                 /*
1457                  * Pages belonging to memslots that don't have the same
1458                  * alignment for userspace and IPA cannot be mapped using
1459                  * block descriptors even if the pages belong to a THP for
1460                  * the process, because the stage-2 block descriptor will
1461                  * cover more than a single THP and we loose atomicity for
1462                  * unmapping, updates, and splits of the THP or other pages
1463                  * in the stage-2 block range.
1464                  */
1465                 if ((memslot->userspace_addr & ~PMD_MASK) !=
1466                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1467                         force_pte = true;
1468         }
1469         up_read(&current->mm->mmap_sem);
1470
1471         /* We need minimum second+third level pages */
1472         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1473                                      KVM_NR_MEM_OBJS);
1474         if (ret)
1475                 return ret;
1476
1477         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1478         /*
1479          * Ensure the read of mmu_notifier_seq happens before we call
1480          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1481          * the page we just got a reference to gets unmapped before we have a
1482          * chance to grab the mmu_lock, which ensure that if the page gets
1483          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1484          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1485          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1486          */
1487         smp_rmb();
1488
1489         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1490         if (pfn == KVM_PFN_ERR_HWPOISON) {
1491                 kvm_send_hwpoison_signal(hva, vma);
1492                 return 0;
1493         }
1494         if (is_error_noslot_pfn(pfn))
1495                 return -EFAULT;
1496
1497         if (kvm_is_device_pfn(pfn)) {
1498                 mem_type = PAGE_S2_DEVICE;
1499                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1500         } else if (logging_active) {
1501                 /*
1502                  * Faults on pages in a memslot with logging enabled
1503                  * should not be mapped with huge pages (it introduces churn
1504                  * and performance degradation), so force a pte mapping.
1505                  */
1506                 force_pte = true;
1507                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1508
1509                 /*
1510                  * Only actually map the page as writable if this was a write
1511                  * fault.
1512                  */
1513                 if (!write_fault)
1514                         writable = false;
1515         }
1516
1517         spin_lock(&kvm->mmu_lock);
1518         if (mmu_notifier_retry(kvm, mmu_seq))
1519                 goto out_unlock;
1520
1521         if (!hugetlb && !force_pte)
1522                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1523
1524         if (hugetlb) {
1525                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1526                 new_pmd = pmd_mkhuge(new_pmd);
1527                 if (writable) {
1528                         new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1529                         kvm_set_pfn_dirty(pfn);
1530                 }
1531
1532                 if (fault_status != FSC_PERM)
1533                         clean_dcache_guest_page(pfn, PMD_SIZE);
1534
1535                 if (exec_fault) {
1536                         new_pmd = kvm_s2pmd_mkexec(new_pmd);
1537                         invalidate_icache_guest_page(pfn, PMD_SIZE);
1538                 } else if (fault_status == FSC_PERM) {
1539                         /* Preserve execute if XN was already cleared */
1540                         if (stage2_is_exec(kvm, fault_ipa))
1541                                 new_pmd = kvm_s2pmd_mkexec(new_pmd);
1542                 }
1543
1544                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1545         } else {
1546                 pte_t new_pte = pfn_pte(pfn, mem_type);
1547
1548                 if (writable) {
1549                         new_pte = kvm_s2pte_mkwrite(new_pte);
1550                         kvm_set_pfn_dirty(pfn);
1551                         mark_page_dirty(kvm, gfn);
1552                 }
1553
1554                 if (fault_status != FSC_PERM)
1555                         clean_dcache_guest_page(pfn, PAGE_SIZE);
1556
1557                 if (exec_fault) {
1558                         new_pte = kvm_s2pte_mkexec(new_pte);
1559                         invalidate_icache_guest_page(pfn, PAGE_SIZE);
1560                 } else if (fault_status == FSC_PERM) {
1561                         /* Preserve execute if XN was already cleared */
1562                         if (stage2_is_exec(kvm, fault_ipa))
1563                                 new_pte = kvm_s2pte_mkexec(new_pte);
1564                 }
1565
1566                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1567         }
1568
1569 out_unlock:
1570         spin_unlock(&kvm->mmu_lock);
1571         kvm_set_pfn_accessed(pfn);
1572         kvm_release_pfn_clean(pfn);
1573         return ret;
1574 }
1575
1576 /*
1577  * Resolve the access fault by making the page young again.
1578  * Note that because the faulting entry is guaranteed not to be
1579  * cached in the TLB, we don't need to invalidate anything.
1580  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1581  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1582  */
1583 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1584 {
1585         pmd_t *pmd;
1586         pte_t *pte;
1587         kvm_pfn_t pfn;
1588         bool pfn_valid = false;
1589
1590         trace_kvm_access_fault(fault_ipa);
1591
1592         spin_lock(&vcpu->kvm->mmu_lock);
1593
1594         pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1595         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1596                 goto out;
1597
1598         if (pmd_thp_or_huge(*pmd)) {    /* THP, HugeTLB */
1599                 *pmd = pmd_mkyoung(*pmd);
1600                 pfn = pmd_pfn(*pmd);
1601                 pfn_valid = true;
1602                 goto out;
1603         }
1604
1605         pte = pte_offset_kernel(pmd, fault_ipa);
1606         if (pte_none(*pte))             /* Nothing there either */
1607                 goto out;
1608
1609         *pte = pte_mkyoung(*pte);       /* Just a page... */
1610         pfn = pte_pfn(*pte);
1611         pfn_valid = true;
1612 out:
1613         spin_unlock(&vcpu->kvm->mmu_lock);
1614         if (pfn_valid)
1615                 kvm_set_pfn_accessed(pfn);
1616 }
1617
1618 /**
1619  * kvm_handle_guest_abort - handles all 2nd stage aborts
1620  * @vcpu:       the VCPU pointer
1621  * @run:        the kvm_run structure
1622  *
1623  * Any abort that gets to the host is almost guaranteed to be caused by a
1624  * missing second stage translation table entry, which can mean that either the
1625  * guest simply needs more memory and we must allocate an appropriate page or it
1626  * can mean that the guest tried to access I/O memory, which is emulated by user
1627  * space. The distinction is based on the IPA causing the fault and whether this
1628  * memory region has been registered as standard RAM by user space.
1629  */
1630 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1631 {
1632         unsigned long fault_status;
1633         phys_addr_t fault_ipa;
1634         struct kvm_memory_slot *memslot;
1635         unsigned long hva;
1636         bool is_iabt, write_fault, writable;
1637         gfn_t gfn;
1638         int ret, idx;
1639
1640         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1641
1642         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1643         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1644
1645         /* Synchronous External Abort? */
1646         if (kvm_vcpu_dabt_isextabt(vcpu)) {
1647                 /*
1648                  * For RAS the host kernel may handle this abort.
1649                  * There is no need to pass the error into the guest.
1650                  */
1651                 if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1652                         return 1;
1653
1654                 if (unlikely(!is_iabt)) {
1655                         kvm_inject_vabt(vcpu);
1656                         return 1;
1657                 }
1658         }
1659
1660         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1661                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1662
1663         /* Check the stage-2 fault is trans. fault or write fault */
1664         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1665             fault_status != FSC_ACCESS) {
1666                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1667                         kvm_vcpu_trap_get_class(vcpu),
1668                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1669                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1670                 return -EFAULT;
1671         }
1672
1673         idx = srcu_read_lock(&vcpu->kvm->srcu);
1674
1675         gfn = fault_ipa >> PAGE_SHIFT;
1676         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1677         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1678         write_fault = kvm_is_write_fault(vcpu);
1679         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1680                 if (is_iabt) {
1681                         /* Prefetch Abort on I/O address */
1682                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1683                         ret = 1;
1684                         goto out_unlock;
1685                 }
1686
1687                 /*
1688                  * Check for a cache maintenance operation. Since we
1689                  * ended-up here, we know it is outside of any memory
1690                  * slot. But we can't find out if that is for a device,
1691                  * or if the guest is just being stupid. The only thing
1692                  * we know for sure is that this range cannot be cached.
1693                  *
1694                  * So let's assume that the guest is just being
1695                  * cautious, and skip the instruction.
1696                  */
1697                 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1698                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1699                         ret = 1;
1700                         goto out_unlock;
1701                 }
1702
1703                 /*
1704                  * The IPA is reported as [MAX:12], so we need to
1705                  * complement it with the bottom 12 bits from the
1706                  * faulting VA. This is always 12 bits, irrespective
1707                  * of the page size.
1708                  */
1709                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1710                 ret = io_mem_abort(vcpu, run, fault_ipa);
1711                 goto out_unlock;
1712         }
1713
1714         /* Userspace should not be able to register out-of-bounds IPAs */
1715         VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1716
1717         if (fault_status == FSC_ACCESS) {
1718                 handle_access_fault(vcpu, fault_ipa);
1719                 ret = 1;
1720                 goto out_unlock;
1721         }
1722
1723         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1724         if (ret == 0)
1725                 ret = 1;
1726 out_unlock:
1727         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1728         return ret;
1729 }
1730
1731 static int handle_hva_to_gpa(struct kvm *kvm,
1732                              unsigned long start,
1733                              unsigned long end,
1734                              int (*handler)(struct kvm *kvm,
1735                                             gpa_t gpa, u64 size,
1736                                             void *data),
1737                              void *data)
1738 {
1739         struct kvm_memslots *slots;
1740         struct kvm_memory_slot *memslot;
1741         int ret = 0;
1742
1743         slots = kvm_memslots(kvm);
1744
1745         /* we only care about the pages that the guest sees */
1746         kvm_for_each_memslot(memslot, slots) {
1747                 unsigned long hva_start, hva_end;
1748                 gfn_t gpa;
1749
1750                 hva_start = max(start, memslot->userspace_addr);
1751                 hva_end = min(end, memslot->userspace_addr +
1752                                         (memslot->npages << PAGE_SHIFT));
1753                 if (hva_start >= hva_end)
1754                         continue;
1755
1756                 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1757                 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1758         }
1759
1760         return ret;
1761 }
1762
1763 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1764 {
1765         unmap_stage2_range(kvm, gpa, size);
1766         return 0;
1767 }
1768
1769 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1770 {
1771         unsigned long end = hva + PAGE_SIZE;
1772
1773         if (!kvm->arch.pgd)
1774                 return 0;
1775
1776         trace_kvm_unmap_hva(hva);
1777         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1778         return 0;
1779 }
1780
1781 int kvm_unmap_hva_range(struct kvm *kvm,
1782                         unsigned long start, unsigned long end)
1783 {
1784         if (!kvm->arch.pgd)
1785                 return 0;
1786
1787         trace_kvm_unmap_hva_range(start, end);
1788         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1789         return 0;
1790 }
1791
1792 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1793 {
1794         pte_t *pte = (pte_t *)data;
1795
1796         WARN_ON(size != PAGE_SIZE);
1797         /*
1798          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1799          * flag clear because MMU notifiers will have unmapped a huge PMD before
1800          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1801          * therefore stage2_set_pte() never needs to clear out a huge PMD
1802          * through this calling path.
1803          */
1804         stage2_set_pte(kvm, NULL, gpa, pte, 0);
1805         return 0;
1806 }
1807
1808
1809 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1810 {
1811         unsigned long end = hva + PAGE_SIZE;
1812         pte_t stage2_pte;
1813
1814         if (!kvm->arch.pgd)
1815                 return;
1816
1817         trace_kvm_set_spte_hva(hva);
1818         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1819         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1820 }
1821
1822 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1823 {
1824         pmd_t *pmd;
1825         pte_t *pte;
1826
1827         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1828         pmd = stage2_get_pmd(kvm, NULL, gpa);
1829         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1830                 return 0;
1831
1832         if (pmd_thp_or_huge(*pmd))      /* THP, HugeTLB */
1833                 return stage2_pmdp_test_and_clear_young(pmd);
1834
1835         pte = pte_offset_kernel(pmd, gpa);
1836         if (pte_none(*pte))
1837                 return 0;
1838
1839         return stage2_ptep_test_and_clear_young(pte);
1840 }
1841
1842 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1843 {
1844         pmd_t *pmd;
1845         pte_t *pte;
1846
1847         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1848         pmd = stage2_get_pmd(kvm, NULL, gpa);
1849         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1850                 return 0;
1851
1852         if (pmd_thp_or_huge(*pmd))              /* THP, HugeTLB */
1853                 return pmd_young(*pmd);
1854
1855         pte = pte_offset_kernel(pmd, gpa);
1856         if (!pte_none(*pte))            /* Just a page... */
1857                 return pte_young(*pte);
1858
1859         return 0;
1860 }
1861
1862 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1863 {
1864         if (!kvm->arch.pgd)
1865                 return 0;
1866         trace_kvm_age_hva(start, end);
1867         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1868 }
1869
1870 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1871 {
1872         if (!kvm->arch.pgd)
1873                 return 0;
1874         trace_kvm_test_age_hva(hva);
1875         return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1876 }
1877
1878 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1879 {
1880         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1881 }
1882
1883 phys_addr_t kvm_mmu_get_httbr(void)
1884 {
1885         if (__kvm_cpu_uses_extended_idmap())
1886                 return virt_to_phys(merged_hyp_pgd);
1887         else
1888                 return virt_to_phys(hyp_pgd);
1889 }
1890
1891 phys_addr_t kvm_get_idmap_vector(void)
1892 {
1893         return hyp_idmap_vector;
1894 }
1895
1896 static int kvm_map_idmap_text(pgd_t *pgd)
1897 {
1898         int err;
1899
1900         /* Create the idmap in the boot page tables */
1901         err =   __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
1902                                       hyp_idmap_start, hyp_idmap_end,
1903                                       __phys_to_pfn(hyp_idmap_start),
1904                                       PAGE_HYP_EXEC);
1905         if (err)
1906                 kvm_err("Failed to idmap %lx-%lx\n",
1907                         hyp_idmap_start, hyp_idmap_end);
1908
1909         return err;
1910 }
1911
1912 int kvm_mmu_init(void)
1913 {
1914         int err;
1915
1916         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1917         hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1918         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1919         hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1920         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1921
1922         /*
1923          * We rely on the linker script to ensure at build time that the HYP
1924          * init code does not cross a page boundary.
1925          */
1926         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1927
1928         kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1929         kvm_debug("HYP VA range: %lx:%lx\n",
1930                   kern_hyp_va(PAGE_OFFSET),
1931                   kern_hyp_va((unsigned long)high_memory - 1));
1932
1933         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1934             hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1935             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1936                 /*
1937                  * The idmap page is intersecting with the VA space,
1938                  * it is not safe to continue further.
1939                  */
1940                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1941                 err = -EINVAL;
1942                 goto out;
1943         }
1944
1945         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1946         if (!hyp_pgd) {
1947                 kvm_err("Hyp mode PGD not allocated\n");
1948                 err = -ENOMEM;
1949                 goto out;
1950         }
1951
1952         if (__kvm_cpu_uses_extended_idmap()) {
1953                 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1954                                                          hyp_pgd_order);
1955                 if (!boot_hyp_pgd) {
1956                         kvm_err("Hyp boot PGD not allocated\n");
1957                         err = -ENOMEM;
1958                         goto out;
1959                 }
1960
1961                 err = kvm_map_idmap_text(boot_hyp_pgd);
1962                 if (err)
1963                         goto out;
1964
1965                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1966                 if (!merged_hyp_pgd) {
1967                         kvm_err("Failed to allocate extra HYP pgd\n");
1968                         goto out;
1969                 }
1970                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1971                                     hyp_idmap_start);
1972         } else {
1973                 err = kvm_map_idmap_text(hyp_pgd);
1974                 if (err)
1975                         goto out;
1976         }
1977
1978         io_map_base = hyp_idmap_start;
1979         return 0;
1980 out:
1981         free_hyp_pgds();
1982         return err;
1983 }
1984
1985 void kvm_arch_commit_memory_region(struct kvm *kvm,
1986                                    const struct kvm_userspace_memory_region *mem,
1987                                    const struct kvm_memory_slot *old,
1988                                    const struct kvm_memory_slot *new,
1989                                    enum kvm_mr_change change)
1990 {
1991         /*
1992          * At this point memslot has been committed and there is an
1993          * allocated dirty_bitmap[], dirty pages will be be tracked while the
1994          * memory slot is write protected.
1995          */
1996         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1997                 kvm_mmu_wp_memory_region(kvm, mem->slot);
1998 }
1999
2000 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2001                                    struct kvm_memory_slot *memslot,
2002                                    const struct kvm_userspace_memory_region *mem,
2003                                    enum kvm_mr_change change)
2004 {
2005         hva_t hva = mem->userspace_addr;
2006         hva_t reg_end = hva + mem->memory_size;
2007         bool writable = !(mem->flags & KVM_MEM_READONLY);
2008         int ret = 0;
2009
2010         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2011                         change != KVM_MR_FLAGS_ONLY)
2012                 return 0;
2013
2014         /*
2015          * Prevent userspace from creating a memory region outside of the IPA
2016          * space addressable by the KVM guest IPA space.
2017          */
2018         if (memslot->base_gfn + memslot->npages >=
2019             (KVM_PHYS_SIZE >> PAGE_SHIFT))
2020                 return -EFAULT;
2021
2022         down_read(&current->mm->mmap_sem);
2023         /*
2024          * A memory region could potentially cover multiple VMAs, and any holes
2025          * between them, so iterate over all of them to find out if we can map
2026          * any of them right now.
2027          *
2028          *     +--------------------------------------------+
2029          * +---------------+----------------+   +----------------+
2030          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2031          * +---------------+----------------+   +----------------+
2032          *     |               memory region                |
2033          *     +--------------------------------------------+
2034          */
2035         do {
2036                 struct vm_area_struct *vma = find_vma(current->mm, hva);
2037                 hva_t vm_start, vm_end;
2038
2039                 if (!vma || vma->vm_start >= reg_end)
2040                         break;
2041
2042                 /*
2043                  * Mapping a read-only VMA is only allowed if the
2044                  * memory region is configured as read-only.
2045                  */
2046                 if (writable && !(vma->vm_flags & VM_WRITE)) {
2047                         ret = -EPERM;
2048                         break;
2049                 }
2050
2051                 /*
2052                  * Take the intersection of this VMA with the memory region
2053                  */
2054                 vm_start = max(hva, vma->vm_start);
2055                 vm_end = min(reg_end, vma->vm_end);
2056
2057                 if (vma->vm_flags & VM_PFNMAP) {
2058                         gpa_t gpa = mem->guest_phys_addr +
2059                                     (vm_start - mem->userspace_addr);
2060                         phys_addr_t pa;
2061
2062                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2063                         pa += vm_start - vma->vm_start;
2064
2065                         /* IO region dirty page logging not allowed */
2066                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2067                                 ret = -EINVAL;
2068                                 goto out;
2069                         }
2070
2071                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2072                                                     vm_end - vm_start,
2073                                                     writable);
2074                         if (ret)
2075                                 break;
2076                 }
2077                 hva = vm_end;
2078         } while (hva < reg_end);
2079
2080         if (change == KVM_MR_FLAGS_ONLY)
2081                 goto out;
2082
2083         spin_lock(&kvm->mmu_lock);
2084         if (ret)
2085                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2086         else
2087                 stage2_flush_memslot(kvm, memslot);
2088         spin_unlock(&kvm->mmu_lock);
2089 out:
2090         up_read(&current->mm->mmap_sem);
2091         return ret;
2092 }
2093
2094 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
2095                            struct kvm_memory_slot *dont)
2096 {
2097 }
2098
2099 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2100                             unsigned long npages)
2101 {
2102         return 0;
2103 }
2104
2105 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
2106 {
2107 }
2108
2109 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2110 {
2111         kvm_free_stage2_pgd(kvm);
2112 }
2113
2114 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2115                                    struct kvm_memory_slot *slot)
2116 {
2117         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2118         phys_addr_t size = slot->npages << PAGE_SHIFT;
2119
2120         spin_lock(&kvm->mmu_lock);
2121         unmap_stage2_range(kvm, gpa, size);
2122         spin_unlock(&kvm->mmu_lock);
2123 }
2124
2125 /*
2126  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2127  *
2128  * Main problems:
2129  * - S/W ops are local to a CPU (not broadcast)
2130  * - We have line migration behind our back (speculation)
2131  * - System caches don't support S/W at all (damn!)
2132  *
2133  * In the face of the above, the best we can do is to try and convert
2134  * S/W ops to VA ops. Because the guest is not allowed to infer the
2135  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2136  * which is a rather good thing for us.
2137  *
2138  * Also, it is only used when turning caches on/off ("The expected
2139  * usage of the cache maintenance instructions that operate by set/way
2140  * is associated with the cache maintenance instructions associated
2141  * with the powerdown and powerup of caches, if this is required by
2142  * the implementation.").
2143  *
2144  * We use the following policy:
2145  *
2146  * - If we trap a S/W operation, we enable VM trapping to detect
2147  *   caches being turned on/off, and do a full clean.
2148  *
2149  * - We flush the caches on both caches being turned on and off.
2150  *
2151  * - Once the caches are enabled, we stop trapping VM ops.
2152  */
2153 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2154 {
2155         unsigned long hcr = *vcpu_hcr(vcpu);
2156
2157         /*
2158          * If this is the first time we do a S/W operation
2159          * (i.e. HCR_TVM not set) flush the whole memory, and set the
2160          * VM trapping.
2161          *
2162          * Otherwise, rely on the VM trapping to wait for the MMU +
2163          * Caches to be turned off. At that point, we'll be able to
2164          * clean the caches again.
2165          */
2166         if (!(hcr & HCR_TVM)) {
2167                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2168                                         vcpu_has_cache_enabled(vcpu));
2169                 stage2_flush_vm(vcpu->kvm);
2170                 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2171         }
2172 }
2173
2174 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2175 {
2176         bool now_enabled = vcpu_has_cache_enabled(vcpu);
2177
2178         /*
2179          * If switching the MMU+caches on, need to invalidate the caches.
2180          * If switching it off, need to clean the caches.
2181          * Clean + invalidate does the trick always.
2182          */
2183         if (now_enabled != was_enabled)
2184                 stage2_flush_vm(vcpu->kvm);
2185
2186         /* Caches are now on, stop trapping VM ops (until a S/W op) */
2187         if (now_enabled)
2188                 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2189
2190         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2191 }