Merge tag 'nds32-for-linus-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / virt / kvm / arm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <linux/sched/signal.h>
24 #include <trace/events/kvm.h>
25 #include <asm/pgalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_mmio.h>
30 #include <asm/kvm_asm.h>
31 #include <asm/kvm_emulate.h>
32 #include <asm/virt.h>
33 #include <asm/system_misc.h>
34
35 #include "trace.h"
36
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
45
46 static unsigned long io_map_base;
47
48 #define S2_PGD_SIZE     (PTRS_PER_S2_PGD * sizeof(pgd_t))
49 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
50
51 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
52 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
53
54 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
55 {
56         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
57 }
58
59 /**
60  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
61  * @kvm:        pointer to kvm structure.
62  *
63  * Interface to HYP function to flush all VM TLB entries
64  */
65 void kvm_flush_remote_tlbs(struct kvm *kvm)
66 {
67         kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
68 }
69
70 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
71 {
72         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
73 }
74
75 /*
76  * D-Cache management functions. They take the page table entries by
77  * value, as they are flushing the cache using the kernel mapping (or
78  * kmap on 32bit).
79  */
80 static void kvm_flush_dcache_pte(pte_t pte)
81 {
82         __kvm_flush_dcache_pte(pte);
83 }
84
85 static void kvm_flush_dcache_pmd(pmd_t pmd)
86 {
87         __kvm_flush_dcache_pmd(pmd);
88 }
89
90 static void kvm_flush_dcache_pud(pud_t pud)
91 {
92         __kvm_flush_dcache_pud(pud);
93 }
94
95 static bool kvm_is_device_pfn(unsigned long pfn)
96 {
97         return !pfn_valid(pfn);
98 }
99
100 /**
101  * stage2_dissolve_pmd() - clear and flush huge PMD entry
102  * @kvm:        pointer to kvm structure.
103  * @addr:       IPA
104  * @pmd:        pmd pointer for IPA
105  *
106  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
107  * pages in the range dirty.
108  */
109 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
110 {
111         if (!pmd_thp_or_huge(*pmd))
112                 return;
113
114         pmd_clear(pmd);
115         kvm_tlb_flush_vmid_ipa(kvm, addr);
116         put_page(virt_to_page(pmd));
117 }
118
119 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
120                                   int min, int max)
121 {
122         void *page;
123
124         BUG_ON(max > KVM_NR_MEM_OBJS);
125         if (cache->nobjs >= min)
126                 return 0;
127         while (cache->nobjs < max) {
128                 page = (void *)__get_free_page(PGALLOC_GFP);
129                 if (!page)
130                         return -ENOMEM;
131                 cache->objects[cache->nobjs++] = page;
132         }
133         return 0;
134 }
135
136 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
137 {
138         while (mc->nobjs)
139                 free_page((unsigned long)mc->objects[--mc->nobjs]);
140 }
141
142 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
143 {
144         void *p;
145
146         BUG_ON(!mc || !mc->nobjs);
147         p = mc->objects[--mc->nobjs];
148         return p;
149 }
150
151 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
152 {
153         pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
154         stage2_pgd_clear(pgd);
155         kvm_tlb_flush_vmid_ipa(kvm, addr);
156         stage2_pud_free(pud_table);
157         put_page(virt_to_page(pgd));
158 }
159
160 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
161 {
162         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
163         VM_BUG_ON(stage2_pud_huge(*pud));
164         stage2_pud_clear(pud);
165         kvm_tlb_flush_vmid_ipa(kvm, addr);
166         stage2_pmd_free(pmd_table);
167         put_page(virt_to_page(pud));
168 }
169
170 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
171 {
172         pte_t *pte_table = pte_offset_kernel(pmd, 0);
173         VM_BUG_ON(pmd_thp_or_huge(*pmd));
174         pmd_clear(pmd);
175         kvm_tlb_flush_vmid_ipa(kvm, addr);
176         pte_free_kernel(NULL, pte_table);
177         put_page(virt_to_page(pmd));
178 }
179
180 /*
181  * Unmapping vs dcache management:
182  *
183  * If a guest maps certain memory pages as uncached, all writes will
184  * bypass the data cache and go directly to RAM.  However, the CPUs
185  * can still speculate reads (not writes) and fill cache lines with
186  * data.
187  *
188  * Those cache lines will be *clean* cache lines though, so a
189  * clean+invalidate operation is equivalent to an invalidate
190  * operation, because no cache lines are marked dirty.
191  *
192  * Those clean cache lines could be filled prior to an uncached write
193  * by the guest, and the cache coherent IO subsystem would therefore
194  * end up writing old data to disk.
195  *
196  * This is why right after unmapping a page/section and invalidating
197  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
198  * the IO subsystem will never hit in the cache.
199  */
200 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
201                        phys_addr_t addr, phys_addr_t end)
202 {
203         phys_addr_t start_addr = addr;
204         pte_t *pte, *start_pte;
205
206         start_pte = pte = pte_offset_kernel(pmd, addr);
207         do {
208                 if (!pte_none(*pte)) {
209                         pte_t old_pte = *pte;
210
211                         kvm_set_pte(pte, __pte(0));
212                         kvm_tlb_flush_vmid_ipa(kvm, addr);
213
214                         /* No need to invalidate the cache for device mappings */
215                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
216                                 kvm_flush_dcache_pte(old_pte);
217
218                         put_page(virt_to_page(pte));
219                 }
220         } while (pte++, addr += PAGE_SIZE, addr != end);
221
222         if (stage2_pte_table_empty(start_pte))
223                 clear_stage2_pmd_entry(kvm, pmd, start_addr);
224 }
225
226 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
227                        phys_addr_t addr, phys_addr_t end)
228 {
229         phys_addr_t next, start_addr = addr;
230         pmd_t *pmd, *start_pmd;
231
232         start_pmd = pmd = stage2_pmd_offset(pud, addr);
233         do {
234                 next = stage2_pmd_addr_end(addr, end);
235                 if (!pmd_none(*pmd)) {
236                         if (pmd_thp_or_huge(*pmd)) {
237                                 pmd_t old_pmd = *pmd;
238
239                                 pmd_clear(pmd);
240                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
241
242                                 kvm_flush_dcache_pmd(old_pmd);
243
244                                 put_page(virt_to_page(pmd));
245                         } else {
246                                 unmap_stage2_ptes(kvm, pmd, addr, next);
247                         }
248                 }
249         } while (pmd++, addr = next, addr != end);
250
251         if (stage2_pmd_table_empty(start_pmd))
252                 clear_stage2_pud_entry(kvm, pud, start_addr);
253 }
254
255 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
256                        phys_addr_t addr, phys_addr_t end)
257 {
258         phys_addr_t next, start_addr = addr;
259         pud_t *pud, *start_pud;
260
261         start_pud = pud = stage2_pud_offset(pgd, addr);
262         do {
263                 next = stage2_pud_addr_end(addr, end);
264                 if (!stage2_pud_none(*pud)) {
265                         if (stage2_pud_huge(*pud)) {
266                                 pud_t old_pud = *pud;
267
268                                 stage2_pud_clear(pud);
269                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
270                                 kvm_flush_dcache_pud(old_pud);
271                                 put_page(virt_to_page(pud));
272                         } else {
273                                 unmap_stage2_pmds(kvm, pud, addr, next);
274                         }
275                 }
276         } while (pud++, addr = next, addr != end);
277
278         if (stage2_pud_table_empty(start_pud))
279                 clear_stage2_pgd_entry(kvm, pgd, start_addr);
280 }
281
282 /**
283  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
284  * @kvm:   The VM pointer
285  * @start: The intermediate physical base address of the range to unmap
286  * @size:  The size of the area to unmap
287  *
288  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
289  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
290  * destroying the VM), otherwise another faulting VCPU may come in and mess
291  * with things behind our backs.
292  */
293 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
294 {
295         pgd_t *pgd;
296         phys_addr_t addr = start, end = start + size;
297         phys_addr_t next;
298
299         assert_spin_locked(&kvm->mmu_lock);
300         WARN_ON(size & ~PAGE_MASK);
301
302         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
303         do {
304                 /*
305                  * Make sure the page table is still active, as another thread
306                  * could have possibly freed the page table, while we released
307                  * the lock.
308                  */
309                 if (!READ_ONCE(kvm->arch.pgd))
310                         break;
311                 next = stage2_pgd_addr_end(addr, end);
312                 if (!stage2_pgd_none(*pgd))
313                         unmap_stage2_puds(kvm, pgd, addr, next);
314                 /*
315                  * If the range is too large, release the kvm->mmu_lock
316                  * to prevent starvation and lockup detector warnings.
317                  */
318                 if (next != end)
319                         cond_resched_lock(&kvm->mmu_lock);
320         } while (pgd++, addr = next, addr != end);
321 }
322
323 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
324                               phys_addr_t addr, phys_addr_t end)
325 {
326         pte_t *pte;
327
328         pte = pte_offset_kernel(pmd, addr);
329         do {
330                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
331                         kvm_flush_dcache_pte(*pte);
332         } while (pte++, addr += PAGE_SIZE, addr != end);
333 }
334
335 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
336                               phys_addr_t addr, phys_addr_t end)
337 {
338         pmd_t *pmd;
339         phys_addr_t next;
340
341         pmd = stage2_pmd_offset(pud, addr);
342         do {
343                 next = stage2_pmd_addr_end(addr, end);
344                 if (!pmd_none(*pmd)) {
345                         if (pmd_thp_or_huge(*pmd))
346                                 kvm_flush_dcache_pmd(*pmd);
347                         else
348                                 stage2_flush_ptes(kvm, pmd, addr, next);
349                 }
350         } while (pmd++, addr = next, addr != end);
351 }
352
353 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
354                               phys_addr_t addr, phys_addr_t end)
355 {
356         pud_t *pud;
357         phys_addr_t next;
358
359         pud = stage2_pud_offset(pgd, addr);
360         do {
361                 next = stage2_pud_addr_end(addr, end);
362                 if (!stage2_pud_none(*pud)) {
363                         if (stage2_pud_huge(*pud))
364                                 kvm_flush_dcache_pud(*pud);
365                         else
366                                 stage2_flush_pmds(kvm, pud, addr, next);
367                 }
368         } while (pud++, addr = next, addr != end);
369 }
370
371 static void stage2_flush_memslot(struct kvm *kvm,
372                                  struct kvm_memory_slot *memslot)
373 {
374         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
375         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
376         phys_addr_t next;
377         pgd_t *pgd;
378
379         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
380         do {
381                 next = stage2_pgd_addr_end(addr, end);
382                 stage2_flush_puds(kvm, pgd, addr, next);
383         } while (pgd++, addr = next, addr != end);
384 }
385
386 /**
387  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
388  * @kvm: The struct kvm pointer
389  *
390  * Go through the stage 2 page tables and invalidate any cache lines
391  * backing memory already mapped to the VM.
392  */
393 static void stage2_flush_vm(struct kvm *kvm)
394 {
395         struct kvm_memslots *slots;
396         struct kvm_memory_slot *memslot;
397         int idx;
398
399         idx = srcu_read_lock(&kvm->srcu);
400         spin_lock(&kvm->mmu_lock);
401
402         slots = kvm_memslots(kvm);
403         kvm_for_each_memslot(memslot, slots)
404                 stage2_flush_memslot(kvm, memslot);
405
406         spin_unlock(&kvm->mmu_lock);
407         srcu_read_unlock(&kvm->srcu, idx);
408 }
409
410 static void clear_hyp_pgd_entry(pgd_t *pgd)
411 {
412         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
413         pgd_clear(pgd);
414         pud_free(NULL, pud_table);
415         put_page(virt_to_page(pgd));
416 }
417
418 static void clear_hyp_pud_entry(pud_t *pud)
419 {
420         pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
421         VM_BUG_ON(pud_huge(*pud));
422         pud_clear(pud);
423         pmd_free(NULL, pmd_table);
424         put_page(virt_to_page(pud));
425 }
426
427 static void clear_hyp_pmd_entry(pmd_t *pmd)
428 {
429         pte_t *pte_table = pte_offset_kernel(pmd, 0);
430         VM_BUG_ON(pmd_thp_or_huge(*pmd));
431         pmd_clear(pmd);
432         pte_free_kernel(NULL, pte_table);
433         put_page(virt_to_page(pmd));
434 }
435
436 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
437 {
438         pte_t *pte, *start_pte;
439
440         start_pte = pte = pte_offset_kernel(pmd, addr);
441         do {
442                 if (!pte_none(*pte)) {
443                         kvm_set_pte(pte, __pte(0));
444                         put_page(virt_to_page(pte));
445                 }
446         } while (pte++, addr += PAGE_SIZE, addr != end);
447
448         if (hyp_pte_table_empty(start_pte))
449                 clear_hyp_pmd_entry(pmd);
450 }
451
452 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
453 {
454         phys_addr_t next;
455         pmd_t *pmd, *start_pmd;
456
457         start_pmd = pmd = pmd_offset(pud, addr);
458         do {
459                 next = pmd_addr_end(addr, end);
460                 /* Hyp doesn't use huge pmds */
461                 if (!pmd_none(*pmd))
462                         unmap_hyp_ptes(pmd, addr, next);
463         } while (pmd++, addr = next, addr != end);
464
465         if (hyp_pmd_table_empty(start_pmd))
466                 clear_hyp_pud_entry(pud);
467 }
468
469 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
470 {
471         phys_addr_t next;
472         pud_t *pud, *start_pud;
473
474         start_pud = pud = pud_offset(pgd, addr);
475         do {
476                 next = pud_addr_end(addr, end);
477                 /* Hyp doesn't use huge puds */
478                 if (!pud_none(*pud))
479                         unmap_hyp_pmds(pud, addr, next);
480         } while (pud++, addr = next, addr != end);
481
482         if (hyp_pud_table_empty(start_pud))
483                 clear_hyp_pgd_entry(pgd);
484 }
485
486 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
487 {
488         return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
489 }
490
491 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
492                               phys_addr_t start, u64 size)
493 {
494         pgd_t *pgd;
495         phys_addr_t addr = start, end = start + size;
496         phys_addr_t next;
497
498         /*
499          * We don't unmap anything from HYP, except at the hyp tear down.
500          * Hence, we don't have to invalidate the TLBs here.
501          */
502         pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
503         do {
504                 next = pgd_addr_end(addr, end);
505                 if (!pgd_none(*pgd))
506                         unmap_hyp_puds(pgd, addr, next);
507         } while (pgd++, addr = next, addr != end);
508 }
509
510 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
511 {
512         __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
513 }
514
515 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
516 {
517         __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
518 }
519
520 /**
521  * free_hyp_pgds - free Hyp-mode page tables
522  *
523  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
524  * therefore contains either mappings in the kernel memory area (above
525  * PAGE_OFFSET), or device mappings in the idmap range.
526  *
527  * boot_hyp_pgd should only map the idmap range, and is only used in
528  * the extended idmap case.
529  */
530 void free_hyp_pgds(void)
531 {
532         pgd_t *id_pgd;
533
534         mutex_lock(&kvm_hyp_pgd_mutex);
535
536         id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
537
538         if (id_pgd) {
539                 /* In case we never called hyp_mmu_init() */
540                 if (!io_map_base)
541                         io_map_base = hyp_idmap_start;
542                 unmap_hyp_idmap_range(id_pgd, io_map_base,
543                                       hyp_idmap_start + PAGE_SIZE - io_map_base);
544         }
545
546         if (boot_hyp_pgd) {
547                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
548                 boot_hyp_pgd = NULL;
549         }
550
551         if (hyp_pgd) {
552                 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
553                                 (uintptr_t)high_memory - PAGE_OFFSET);
554
555                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
556                 hyp_pgd = NULL;
557         }
558         if (merged_hyp_pgd) {
559                 clear_page(merged_hyp_pgd);
560                 free_page((unsigned long)merged_hyp_pgd);
561                 merged_hyp_pgd = NULL;
562         }
563
564         mutex_unlock(&kvm_hyp_pgd_mutex);
565 }
566
567 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
568                                     unsigned long end, unsigned long pfn,
569                                     pgprot_t prot)
570 {
571         pte_t *pte;
572         unsigned long addr;
573
574         addr = start;
575         do {
576                 pte = pte_offset_kernel(pmd, addr);
577                 kvm_set_pte(pte, pfn_pte(pfn, prot));
578                 get_page(virt_to_page(pte));
579                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
580                 pfn++;
581         } while (addr += PAGE_SIZE, addr != end);
582 }
583
584 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
585                                    unsigned long end, unsigned long pfn,
586                                    pgprot_t prot)
587 {
588         pmd_t *pmd;
589         pte_t *pte;
590         unsigned long addr, next;
591
592         addr = start;
593         do {
594                 pmd = pmd_offset(pud, addr);
595
596                 BUG_ON(pmd_sect(*pmd));
597
598                 if (pmd_none(*pmd)) {
599                         pte = pte_alloc_one_kernel(NULL, addr);
600                         if (!pte) {
601                                 kvm_err("Cannot allocate Hyp pte\n");
602                                 return -ENOMEM;
603                         }
604                         pmd_populate_kernel(NULL, pmd, pte);
605                         get_page(virt_to_page(pmd));
606                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
607                 }
608
609                 next = pmd_addr_end(addr, end);
610
611                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
612                 pfn += (next - addr) >> PAGE_SHIFT;
613         } while (addr = next, addr != end);
614
615         return 0;
616 }
617
618 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
619                                    unsigned long end, unsigned long pfn,
620                                    pgprot_t prot)
621 {
622         pud_t *pud;
623         pmd_t *pmd;
624         unsigned long addr, next;
625         int ret;
626
627         addr = start;
628         do {
629                 pud = pud_offset(pgd, addr);
630
631                 if (pud_none_or_clear_bad(pud)) {
632                         pmd = pmd_alloc_one(NULL, addr);
633                         if (!pmd) {
634                                 kvm_err("Cannot allocate Hyp pmd\n");
635                                 return -ENOMEM;
636                         }
637                         pud_populate(NULL, pud, pmd);
638                         get_page(virt_to_page(pud));
639                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
640                 }
641
642                 next = pud_addr_end(addr, end);
643                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
644                 if (ret)
645                         return ret;
646                 pfn += (next - addr) >> PAGE_SHIFT;
647         } while (addr = next, addr != end);
648
649         return 0;
650 }
651
652 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
653                                  unsigned long start, unsigned long end,
654                                  unsigned long pfn, pgprot_t prot)
655 {
656         pgd_t *pgd;
657         pud_t *pud;
658         unsigned long addr, next;
659         int err = 0;
660
661         mutex_lock(&kvm_hyp_pgd_mutex);
662         addr = start & PAGE_MASK;
663         end = PAGE_ALIGN(end);
664         do {
665                 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
666
667                 if (pgd_none(*pgd)) {
668                         pud = pud_alloc_one(NULL, addr);
669                         if (!pud) {
670                                 kvm_err("Cannot allocate Hyp pud\n");
671                                 err = -ENOMEM;
672                                 goto out;
673                         }
674                         pgd_populate(NULL, pgd, pud);
675                         get_page(virt_to_page(pgd));
676                         kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
677                 }
678
679                 next = pgd_addr_end(addr, end);
680                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
681                 if (err)
682                         goto out;
683                 pfn += (next - addr) >> PAGE_SHIFT;
684         } while (addr = next, addr != end);
685 out:
686         mutex_unlock(&kvm_hyp_pgd_mutex);
687         return err;
688 }
689
690 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
691 {
692         if (!is_vmalloc_addr(kaddr)) {
693                 BUG_ON(!virt_addr_valid(kaddr));
694                 return __pa(kaddr);
695         } else {
696                 return page_to_phys(vmalloc_to_page(kaddr)) +
697                        offset_in_page(kaddr);
698         }
699 }
700
701 /**
702  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
703  * @from:       The virtual kernel start address of the range
704  * @to:         The virtual kernel end address of the range (exclusive)
705  * @prot:       The protection to be applied to this range
706  *
707  * The same virtual address as the kernel virtual address is also used
708  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
709  * physical pages.
710  */
711 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
712 {
713         phys_addr_t phys_addr;
714         unsigned long virt_addr;
715         unsigned long start = kern_hyp_va((unsigned long)from);
716         unsigned long end = kern_hyp_va((unsigned long)to);
717
718         if (is_kernel_in_hyp_mode())
719                 return 0;
720
721         start = start & PAGE_MASK;
722         end = PAGE_ALIGN(end);
723
724         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
725                 int err;
726
727                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
728                 err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
729                                             virt_addr, virt_addr + PAGE_SIZE,
730                                             __phys_to_pfn(phys_addr),
731                                             prot);
732                 if (err)
733                         return err;
734         }
735
736         return 0;
737 }
738
739 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
740                                         unsigned long *haddr, pgprot_t prot)
741 {
742         pgd_t *pgd = hyp_pgd;
743         unsigned long base;
744         int ret = 0;
745
746         mutex_lock(&kvm_hyp_pgd_mutex);
747
748         /*
749          * This assumes that we we have enough space below the idmap
750          * page to allocate our VAs. If not, the check below will
751          * kick. A potential alternative would be to detect that
752          * overflow and switch to an allocation above the idmap.
753          *
754          * The allocated size is always a multiple of PAGE_SIZE.
755          */
756         size = PAGE_ALIGN(size + offset_in_page(phys_addr));
757         base = io_map_base - size;
758
759         /*
760          * Verify that BIT(VA_BITS - 1) hasn't been flipped by
761          * allocating the new area, as it would indicate we've
762          * overflowed the idmap/IO address range.
763          */
764         if ((base ^ io_map_base) & BIT(VA_BITS - 1))
765                 ret = -ENOMEM;
766         else
767                 io_map_base = base;
768
769         mutex_unlock(&kvm_hyp_pgd_mutex);
770
771         if (ret)
772                 goto out;
773
774         if (__kvm_cpu_uses_extended_idmap())
775                 pgd = boot_hyp_pgd;
776
777         ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
778                                     base, base + size,
779                                     __phys_to_pfn(phys_addr), prot);
780         if (ret)
781                 goto out;
782
783         *haddr = base + offset_in_page(phys_addr);
784
785 out:
786         return ret;
787 }
788
789 /**
790  * create_hyp_io_mappings - Map IO into both kernel and HYP
791  * @phys_addr:  The physical start address which gets mapped
792  * @size:       Size of the region being mapped
793  * @kaddr:      Kernel VA for this mapping
794  * @haddr:      HYP VA for this mapping
795  */
796 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
797                            void __iomem **kaddr,
798                            void __iomem **haddr)
799 {
800         unsigned long addr;
801         int ret;
802
803         *kaddr = ioremap(phys_addr, size);
804         if (!*kaddr)
805                 return -ENOMEM;
806
807         if (is_kernel_in_hyp_mode()) {
808                 *haddr = *kaddr;
809                 return 0;
810         }
811
812         ret = __create_hyp_private_mapping(phys_addr, size,
813                                            &addr, PAGE_HYP_DEVICE);
814         if (ret) {
815                 iounmap(*kaddr);
816                 *kaddr = NULL;
817                 *haddr = NULL;
818                 return ret;
819         }
820
821         *haddr = (void __iomem *)addr;
822         return 0;
823 }
824
825 /**
826  * create_hyp_exec_mappings - Map an executable range into HYP
827  * @phys_addr:  The physical start address which gets mapped
828  * @size:       Size of the region being mapped
829  * @haddr:      HYP VA for this mapping
830  */
831 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
832                              void **haddr)
833 {
834         unsigned long addr;
835         int ret;
836
837         BUG_ON(is_kernel_in_hyp_mode());
838
839         ret = __create_hyp_private_mapping(phys_addr, size,
840                                            &addr, PAGE_HYP_EXEC);
841         if (ret) {
842                 *haddr = NULL;
843                 return ret;
844         }
845
846         *haddr = (void *)addr;
847         return 0;
848 }
849
850 /**
851  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
852  * @kvm:        The KVM struct pointer for the VM.
853  *
854  * Allocates only the stage-2 HW PGD level table(s) (can support either full
855  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
856  * allocated pages.
857  *
858  * Note we don't need locking here as this is only called when the VM is
859  * created, which can only be done once.
860  */
861 int kvm_alloc_stage2_pgd(struct kvm *kvm)
862 {
863         pgd_t *pgd;
864
865         if (kvm->arch.pgd != NULL) {
866                 kvm_err("kvm_arch already initialized?\n");
867                 return -EINVAL;
868         }
869
870         /* Allocate the HW PGD, making sure that each page gets its own refcount */
871         pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
872         if (!pgd)
873                 return -ENOMEM;
874
875         kvm->arch.pgd = pgd;
876         return 0;
877 }
878
879 static void stage2_unmap_memslot(struct kvm *kvm,
880                                  struct kvm_memory_slot *memslot)
881 {
882         hva_t hva = memslot->userspace_addr;
883         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
884         phys_addr_t size = PAGE_SIZE * memslot->npages;
885         hva_t reg_end = hva + size;
886
887         /*
888          * A memory region could potentially cover multiple VMAs, and any holes
889          * between them, so iterate over all of them to find out if we should
890          * unmap any of them.
891          *
892          *     +--------------------------------------------+
893          * +---------------+----------------+   +----------------+
894          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
895          * +---------------+----------------+   +----------------+
896          *     |               memory region                |
897          *     +--------------------------------------------+
898          */
899         do {
900                 struct vm_area_struct *vma = find_vma(current->mm, hva);
901                 hva_t vm_start, vm_end;
902
903                 if (!vma || vma->vm_start >= reg_end)
904                         break;
905
906                 /*
907                  * Take the intersection of this VMA with the memory region
908                  */
909                 vm_start = max(hva, vma->vm_start);
910                 vm_end = min(reg_end, vma->vm_end);
911
912                 if (!(vma->vm_flags & VM_PFNMAP)) {
913                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
914                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
915                 }
916                 hva = vm_end;
917         } while (hva < reg_end);
918 }
919
920 /**
921  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
922  * @kvm: The struct kvm pointer
923  *
924  * Go through the memregions and unmap any reguler RAM
925  * backing memory already mapped to the VM.
926  */
927 void stage2_unmap_vm(struct kvm *kvm)
928 {
929         struct kvm_memslots *slots;
930         struct kvm_memory_slot *memslot;
931         int idx;
932
933         idx = srcu_read_lock(&kvm->srcu);
934         down_read(&current->mm->mmap_sem);
935         spin_lock(&kvm->mmu_lock);
936
937         slots = kvm_memslots(kvm);
938         kvm_for_each_memslot(memslot, slots)
939                 stage2_unmap_memslot(kvm, memslot);
940
941         spin_unlock(&kvm->mmu_lock);
942         up_read(&current->mm->mmap_sem);
943         srcu_read_unlock(&kvm->srcu, idx);
944 }
945
946 /**
947  * kvm_free_stage2_pgd - free all stage-2 tables
948  * @kvm:        The KVM struct pointer for the VM.
949  *
950  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
951  * underlying level-2 and level-3 tables before freeing the actual level-1 table
952  * and setting the struct pointer to NULL.
953  */
954 void kvm_free_stage2_pgd(struct kvm *kvm)
955 {
956         void *pgd = NULL;
957
958         spin_lock(&kvm->mmu_lock);
959         if (kvm->arch.pgd) {
960                 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
961                 pgd = READ_ONCE(kvm->arch.pgd);
962                 kvm->arch.pgd = NULL;
963         }
964         spin_unlock(&kvm->mmu_lock);
965
966         /* Free the HW pgd, one page at a time */
967         if (pgd)
968                 free_pages_exact(pgd, S2_PGD_SIZE);
969 }
970
971 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
972                              phys_addr_t addr)
973 {
974         pgd_t *pgd;
975         pud_t *pud;
976
977         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
978         if (WARN_ON(stage2_pgd_none(*pgd))) {
979                 if (!cache)
980                         return NULL;
981                 pud = mmu_memory_cache_alloc(cache);
982                 stage2_pgd_populate(pgd, pud);
983                 get_page(virt_to_page(pgd));
984         }
985
986         return stage2_pud_offset(pgd, addr);
987 }
988
989 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
990                              phys_addr_t addr)
991 {
992         pud_t *pud;
993         pmd_t *pmd;
994
995         pud = stage2_get_pud(kvm, cache, addr);
996         if (!pud)
997                 return NULL;
998
999         if (stage2_pud_none(*pud)) {
1000                 if (!cache)
1001                         return NULL;
1002                 pmd = mmu_memory_cache_alloc(cache);
1003                 stage2_pud_populate(pud, pmd);
1004                 get_page(virt_to_page(pud));
1005         }
1006
1007         return stage2_pmd_offset(pud, addr);
1008 }
1009
1010 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
1011                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
1012 {
1013         pmd_t *pmd, old_pmd;
1014
1015         pmd = stage2_get_pmd(kvm, cache, addr);
1016         VM_BUG_ON(!pmd);
1017
1018         /*
1019          * Mapping in huge pages should only happen through a fault.  If a
1020          * page is merged into a transparent huge page, the individual
1021          * subpages of that huge page should be unmapped through MMU
1022          * notifiers before we get here.
1023          *
1024          * Merging of CompoundPages is not supported; they should become
1025          * splitting first, unmapped, merged, and mapped back in on-demand.
1026          */
1027         VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
1028
1029         old_pmd = *pmd;
1030         if (pmd_present(old_pmd)) {
1031                 pmd_clear(pmd);
1032                 kvm_tlb_flush_vmid_ipa(kvm, addr);
1033         } else {
1034                 get_page(virt_to_page(pmd));
1035         }
1036
1037         kvm_set_pmd(pmd, *new_pmd);
1038         return 0;
1039 }
1040
1041 static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
1042 {
1043         pmd_t *pmdp;
1044         pte_t *ptep;
1045
1046         pmdp = stage2_get_pmd(kvm, NULL, addr);
1047         if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1048                 return false;
1049
1050         if (pmd_thp_or_huge(*pmdp))
1051                 return kvm_s2pmd_exec(pmdp);
1052
1053         ptep = pte_offset_kernel(pmdp, addr);
1054         if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1055                 return false;
1056
1057         return kvm_s2pte_exec(ptep);
1058 }
1059
1060 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1061                           phys_addr_t addr, const pte_t *new_pte,
1062                           unsigned long flags)
1063 {
1064         pmd_t *pmd;
1065         pte_t *pte, old_pte;
1066         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1067         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1068
1069         VM_BUG_ON(logging_active && !cache);
1070
1071         /* Create stage-2 page table mapping - Levels 0 and 1 */
1072         pmd = stage2_get_pmd(kvm, cache, addr);
1073         if (!pmd) {
1074                 /*
1075                  * Ignore calls from kvm_set_spte_hva for unallocated
1076                  * address ranges.
1077                  */
1078                 return 0;
1079         }
1080
1081         /*
1082          * While dirty page logging - dissolve huge PMD, then continue on to
1083          * allocate page.
1084          */
1085         if (logging_active)
1086                 stage2_dissolve_pmd(kvm, addr, pmd);
1087
1088         /* Create stage-2 page mappings - Level 2 */
1089         if (pmd_none(*pmd)) {
1090                 if (!cache)
1091                         return 0; /* ignore calls from kvm_set_spte_hva */
1092                 pte = mmu_memory_cache_alloc(cache);
1093                 pmd_populate_kernel(NULL, pmd, pte);
1094                 get_page(virt_to_page(pmd));
1095         }
1096
1097         pte = pte_offset_kernel(pmd, addr);
1098
1099         if (iomap && pte_present(*pte))
1100                 return -EFAULT;
1101
1102         /* Create 2nd stage page table mapping - Level 3 */
1103         old_pte = *pte;
1104         if (pte_present(old_pte)) {
1105                 kvm_set_pte(pte, __pte(0));
1106                 kvm_tlb_flush_vmid_ipa(kvm, addr);
1107         } else {
1108                 get_page(virt_to_page(pte));
1109         }
1110
1111         kvm_set_pte(pte, *new_pte);
1112         return 0;
1113 }
1114
1115 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1116 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1117 {
1118         if (pte_young(*pte)) {
1119                 *pte = pte_mkold(*pte);
1120                 return 1;
1121         }
1122         return 0;
1123 }
1124 #else
1125 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1126 {
1127         return __ptep_test_and_clear_young(pte);
1128 }
1129 #endif
1130
1131 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1132 {
1133         return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1134 }
1135
1136 /**
1137  * kvm_phys_addr_ioremap - map a device range to guest IPA
1138  *
1139  * @kvm:        The KVM pointer
1140  * @guest_ipa:  The IPA at which to insert the mapping
1141  * @pa:         The physical address of the device
1142  * @size:       The size of the mapping
1143  */
1144 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1145                           phys_addr_t pa, unsigned long size, bool writable)
1146 {
1147         phys_addr_t addr, end;
1148         int ret = 0;
1149         unsigned long pfn;
1150         struct kvm_mmu_memory_cache cache = { 0, };
1151
1152         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1153         pfn = __phys_to_pfn(pa);
1154
1155         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1156                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1157
1158                 if (writable)
1159                         pte = kvm_s2pte_mkwrite(pte);
1160
1161                 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1162                                                 KVM_NR_MEM_OBJS);
1163                 if (ret)
1164                         goto out;
1165                 spin_lock(&kvm->mmu_lock);
1166                 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1167                                                 KVM_S2PTE_FLAG_IS_IOMAP);
1168                 spin_unlock(&kvm->mmu_lock);
1169                 if (ret)
1170                         goto out;
1171
1172                 pfn++;
1173         }
1174
1175 out:
1176         mmu_free_memory_cache(&cache);
1177         return ret;
1178 }
1179
1180 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1181 {
1182         kvm_pfn_t pfn = *pfnp;
1183         gfn_t gfn = *ipap >> PAGE_SHIFT;
1184
1185         if (PageTransCompoundMap(pfn_to_page(pfn))) {
1186                 unsigned long mask;
1187                 /*
1188                  * The address we faulted on is backed by a transparent huge
1189                  * page.  However, because we map the compound huge page and
1190                  * not the individual tail page, we need to transfer the
1191                  * refcount to the head page.  We have to be careful that the
1192                  * THP doesn't start to split while we are adjusting the
1193                  * refcounts.
1194                  *
1195                  * We are sure this doesn't happen, because mmu_notifier_retry
1196                  * was successful and we are holding the mmu_lock, so if this
1197                  * THP is trying to split, it will be blocked in the mmu
1198                  * notifier before touching any of the pages, specifically
1199                  * before being able to call __split_huge_page_refcount().
1200                  *
1201                  * We can therefore safely transfer the refcount from PG_tail
1202                  * to PG_head and switch the pfn from a tail page to the head
1203                  * page accordingly.
1204                  */
1205                 mask = PTRS_PER_PMD - 1;
1206                 VM_BUG_ON((gfn & mask) != (pfn & mask));
1207                 if (pfn & mask) {
1208                         *ipap &= PMD_MASK;
1209                         kvm_release_pfn_clean(pfn);
1210                         pfn &= ~mask;
1211                         kvm_get_pfn(pfn);
1212                         *pfnp = pfn;
1213                 }
1214
1215                 return true;
1216         }
1217
1218         return false;
1219 }
1220
1221 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1222 {
1223         if (kvm_vcpu_trap_is_iabt(vcpu))
1224                 return false;
1225
1226         return kvm_vcpu_dabt_iswrite(vcpu);
1227 }
1228
1229 /**
1230  * stage2_wp_ptes - write protect PMD range
1231  * @pmd:        pointer to pmd entry
1232  * @addr:       range start address
1233  * @end:        range end address
1234  */
1235 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1236 {
1237         pte_t *pte;
1238
1239         pte = pte_offset_kernel(pmd, addr);
1240         do {
1241                 if (!pte_none(*pte)) {
1242                         if (!kvm_s2pte_readonly(pte))
1243                                 kvm_set_s2pte_readonly(pte);
1244                 }
1245         } while (pte++, addr += PAGE_SIZE, addr != end);
1246 }
1247
1248 /**
1249  * stage2_wp_pmds - write protect PUD range
1250  * @pud:        pointer to pud entry
1251  * @addr:       range start address
1252  * @end:        range end address
1253  */
1254 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1255 {
1256         pmd_t *pmd;
1257         phys_addr_t next;
1258
1259         pmd = stage2_pmd_offset(pud, addr);
1260
1261         do {
1262                 next = stage2_pmd_addr_end(addr, end);
1263                 if (!pmd_none(*pmd)) {
1264                         if (pmd_thp_or_huge(*pmd)) {
1265                                 if (!kvm_s2pmd_readonly(pmd))
1266                                         kvm_set_s2pmd_readonly(pmd);
1267                         } else {
1268                                 stage2_wp_ptes(pmd, addr, next);
1269                         }
1270                 }
1271         } while (pmd++, addr = next, addr != end);
1272 }
1273
1274 /**
1275   * stage2_wp_puds - write protect PGD range
1276   * @pgd:       pointer to pgd entry
1277   * @addr:      range start address
1278   * @end:       range end address
1279   *
1280   * Process PUD entries, for a huge PUD we cause a panic.
1281   */
1282 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1283 {
1284         pud_t *pud;
1285         phys_addr_t next;
1286
1287         pud = stage2_pud_offset(pgd, addr);
1288         do {
1289                 next = stage2_pud_addr_end(addr, end);
1290                 if (!stage2_pud_none(*pud)) {
1291                         /* TODO:PUD not supported, revisit later if supported */
1292                         BUG_ON(stage2_pud_huge(*pud));
1293                         stage2_wp_pmds(pud, addr, next);
1294                 }
1295         } while (pud++, addr = next, addr != end);
1296 }
1297
1298 /**
1299  * stage2_wp_range() - write protect stage2 memory region range
1300  * @kvm:        The KVM pointer
1301  * @addr:       Start address of range
1302  * @end:        End address of range
1303  */
1304 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1305 {
1306         pgd_t *pgd;
1307         phys_addr_t next;
1308
1309         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1310         do {
1311                 /*
1312                  * Release kvm_mmu_lock periodically if the memory region is
1313                  * large. Otherwise, we may see kernel panics with
1314                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1315                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1316                  * will also starve other vCPUs. We have to also make sure
1317                  * that the page tables are not freed while we released
1318                  * the lock.
1319                  */
1320                 cond_resched_lock(&kvm->mmu_lock);
1321                 if (!READ_ONCE(kvm->arch.pgd))
1322                         break;
1323                 next = stage2_pgd_addr_end(addr, end);
1324                 if (stage2_pgd_present(*pgd))
1325                         stage2_wp_puds(pgd, addr, next);
1326         } while (pgd++, addr = next, addr != end);
1327 }
1328
1329 /**
1330  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1331  * @kvm:        The KVM pointer
1332  * @slot:       The memory slot to write protect
1333  *
1334  * Called to start logging dirty pages after memory region
1335  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1336  * all present PMD and PTEs are write protected in the memory region.
1337  * Afterwards read of dirty page log can be called.
1338  *
1339  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1340  * serializing operations for VM memory regions.
1341  */
1342 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1343 {
1344         struct kvm_memslots *slots = kvm_memslots(kvm);
1345         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1346         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1347         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1348
1349         spin_lock(&kvm->mmu_lock);
1350         stage2_wp_range(kvm, start, end);
1351         spin_unlock(&kvm->mmu_lock);
1352         kvm_flush_remote_tlbs(kvm);
1353 }
1354
1355 /**
1356  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1357  * @kvm:        The KVM pointer
1358  * @slot:       The memory slot associated with mask
1359  * @gfn_offset: The gfn offset in memory slot
1360  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1361  *              slot to be write protected
1362  *
1363  * Walks bits set in mask write protects the associated pte's. Caller must
1364  * acquire kvm_mmu_lock.
1365  */
1366 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1367                 struct kvm_memory_slot *slot,
1368                 gfn_t gfn_offset, unsigned long mask)
1369 {
1370         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1371         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1372         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1373
1374         stage2_wp_range(kvm, start, end);
1375 }
1376
1377 /*
1378  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1379  * dirty pages.
1380  *
1381  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1382  * enable dirty logging for them.
1383  */
1384 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1385                 struct kvm_memory_slot *slot,
1386                 gfn_t gfn_offset, unsigned long mask)
1387 {
1388         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1389 }
1390
1391 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1392 {
1393         __clean_dcache_guest_page(pfn, size);
1394 }
1395
1396 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1397 {
1398         __invalidate_icache_guest_page(pfn, size);
1399 }
1400
1401 static void kvm_send_hwpoison_signal(unsigned long address,
1402                                      struct vm_area_struct *vma)
1403 {
1404         siginfo_t info;
1405
1406         clear_siginfo(&info);
1407         info.si_signo   = SIGBUS;
1408         info.si_errno   = 0;
1409         info.si_code    = BUS_MCEERR_AR;
1410         info.si_addr    = (void __user *)address;
1411
1412         if (is_vm_hugetlb_page(vma))
1413                 info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
1414         else
1415                 info.si_addr_lsb = PAGE_SHIFT;
1416
1417         send_sig_info(SIGBUS, &info, current);
1418 }
1419
1420 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1421                           struct kvm_memory_slot *memslot, unsigned long hva,
1422                           unsigned long fault_status)
1423 {
1424         int ret;
1425         bool write_fault, exec_fault, writable, hugetlb = false, force_pte = false;
1426         unsigned long mmu_seq;
1427         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1428         struct kvm *kvm = vcpu->kvm;
1429         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1430         struct vm_area_struct *vma;
1431         kvm_pfn_t pfn;
1432         pgprot_t mem_type = PAGE_S2;
1433         bool logging_active = memslot_is_logging(memslot);
1434         unsigned long flags = 0;
1435
1436         write_fault = kvm_is_write_fault(vcpu);
1437         exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
1438         VM_BUG_ON(write_fault && exec_fault);
1439
1440         if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1441                 kvm_err("Unexpected L2 read permission error\n");
1442                 return -EFAULT;
1443         }
1444
1445         /* Let's check if we will get back a huge page backed by hugetlbfs */
1446         down_read(&current->mm->mmap_sem);
1447         vma = find_vma_intersection(current->mm, hva, hva + 1);
1448         if (unlikely(!vma)) {
1449                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1450                 up_read(&current->mm->mmap_sem);
1451                 return -EFAULT;
1452         }
1453
1454         if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1455                 hugetlb = true;
1456                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1457         } else {
1458                 /*
1459                  * Pages belonging to memslots that don't have the same
1460                  * alignment for userspace and IPA cannot be mapped using
1461                  * block descriptors even if the pages belong to a THP for
1462                  * the process, because the stage-2 block descriptor will
1463                  * cover more than a single THP and we loose atomicity for
1464                  * unmapping, updates, and splits of the THP or other pages
1465                  * in the stage-2 block range.
1466                  */
1467                 if ((memslot->userspace_addr & ~PMD_MASK) !=
1468                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1469                         force_pte = true;
1470         }
1471         up_read(&current->mm->mmap_sem);
1472
1473         /* We need minimum second+third level pages */
1474         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1475                                      KVM_NR_MEM_OBJS);
1476         if (ret)
1477                 return ret;
1478
1479         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1480         /*
1481          * Ensure the read of mmu_notifier_seq happens before we call
1482          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1483          * the page we just got a reference to gets unmapped before we have a
1484          * chance to grab the mmu_lock, which ensure that if the page gets
1485          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1486          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1487          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1488          */
1489         smp_rmb();
1490
1491         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1492         if (pfn == KVM_PFN_ERR_HWPOISON) {
1493                 kvm_send_hwpoison_signal(hva, vma);
1494                 return 0;
1495         }
1496         if (is_error_noslot_pfn(pfn))
1497                 return -EFAULT;
1498
1499         if (kvm_is_device_pfn(pfn)) {
1500                 mem_type = PAGE_S2_DEVICE;
1501                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1502         } else if (logging_active) {
1503                 /*
1504                  * Faults on pages in a memslot with logging enabled
1505                  * should not be mapped with huge pages (it introduces churn
1506                  * and performance degradation), so force a pte mapping.
1507                  */
1508                 force_pte = true;
1509                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1510
1511                 /*
1512                  * Only actually map the page as writable if this was a write
1513                  * fault.
1514                  */
1515                 if (!write_fault)
1516                         writable = false;
1517         }
1518
1519         spin_lock(&kvm->mmu_lock);
1520         if (mmu_notifier_retry(kvm, mmu_seq))
1521                 goto out_unlock;
1522
1523         if (!hugetlb && !force_pte)
1524                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1525
1526         if (hugetlb) {
1527                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1528                 new_pmd = pmd_mkhuge(new_pmd);
1529                 if (writable) {
1530                         new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1531                         kvm_set_pfn_dirty(pfn);
1532                 }
1533
1534                 if (fault_status != FSC_PERM)
1535                         clean_dcache_guest_page(pfn, PMD_SIZE);
1536
1537                 if (exec_fault) {
1538                         new_pmd = kvm_s2pmd_mkexec(new_pmd);
1539                         invalidate_icache_guest_page(pfn, PMD_SIZE);
1540                 } else if (fault_status == FSC_PERM) {
1541                         /* Preserve execute if XN was already cleared */
1542                         if (stage2_is_exec(kvm, fault_ipa))
1543                                 new_pmd = kvm_s2pmd_mkexec(new_pmd);
1544                 }
1545
1546                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1547         } else {
1548                 pte_t new_pte = pfn_pte(pfn, mem_type);
1549
1550                 if (writable) {
1551                         new_pte = kvm_s2pte_mkwrite(new_pte);
1552                         kvm_set_pfn_dirty(pfn);
1553                         mark_page_dirty(kvm, gfn);
1554                 }
1555
1556                 if (fault_status != FSC_PERM)
1557                         clean_dcache_guest_page(pfn, PAGE_SIZE);
1558
1559                 if (exec_fault) {
1560                         new_pte = kvm_s2pte_mkexec(new_pte);
1561                         invalidate_icache_guest_page(pfn, PAGE_SIZE);
1562                 } else if (fault_status == FSC_PERM) {
1563                         /* Preserve execute if XN was already cleared */
1564                         if (stage2_is_exec(kvm, fault_ipa))
1565                                 new_pte = kvm_s2pte_mkexec(new_pte);
1566                 }
1567
1568                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1569         }
1570
1571 out_unlock:
1572         spin_unlock(&kvm->mmu_lock);
1573         kvm_set_pfn_accessed(pfn);
1574         kvm_release_pfn_clean(pfn);
1575         return ret;
1576 }
1577
1578 /*
1579  * Resolve the access fault by making the page young again.
1580  * Note that because the faulting entry is guaranteed not to be
1581  * cached in the TLB, we don't need to invalidate anything.
1582  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1583  * so there is no need for atomic (pte|pmd)_mkyoung operations.
1584  */
1585 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1586 {
1587         pmd_t *pmd;
1588         pte_t *pte;
1589         kvm_pfn_t pfn;
1590         bool pfn_valid = false;
1591
1592         trace_kvm_access_fault(fault_ipa);
1593
1594         spin_lock(&vcpu->kvm->mmu_lock);
1595
1596         pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1597         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1598                 goto out;
1599
1600         if (pmd_thp_or_huge(*pmd)) {    /* THP, HugeTLB */
1601                 *pmd = pmd_mkyoung(*pmd);
1602                 pfn = pmd_pfn(*pmd);
1603                 pfn_valid = true;
1604                 goto out;
1605         }
1606
1607         pte = pte_offset_kernel(pmd, fault_ipa);
1608         if (pte_none(*pte))             /* Nothing there either */
1609                 goto out;
1610
1611         *pte = pte_mkyoung(*pte);       /* Just a page... */
1612         pfn = pte_pfn(*pte);
1613         pfn_valid = true;
1614 out:
1615         spin_unlock(&vcpu->kvm->mmu_lock);
1616         if (pfn_valid)
1617                 kvm_set_pfn_accessed(pfn);
1618 }
1619
1620 /**
1621  * kvm_handle_guest_abort - handles all 2nd stage aborts
1622  * @vcpu:       the VCPU pointer
1623  * @run:        the kvm_run structure
1624  *
1625  * Any abort that gets to the host is almost guaranteed to be caused by a
1626  * missing second stage translation table entry, which can mean that either the
1627  * guest simply needs more memory and we must allocate an appropriate page or it
1628  * can mean that the guest tried to access I/O memory, which is emulated by user
1629  * space. The distinction is based on the IPA causing the fault and whether this
1630  * memory region has been registered as standard RAM by user space.
1631  */
1632 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1633 {
1634         unsigned long fault_status;
1635         phys_addr_t fault_ipa;
1636         struct kvm_memory_slot *memslot;
1637         unsigned long hva;
1638         bool is_iabt, write_fault, writable;
1639         gfn_t gfn;
1640         int ret, idx;
1641
1642         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1643
1644         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1645         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1646
1647         /* Synchronous External Abort? */
1648         if (kvm_vcpu_dabt_isextabt(vcpu)) {
1649                 /*
1650                  * For RAS the host kernel may handle this abort.
1651                  * There is no need to pass the error into the guest.
1652                  */
1653                 if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
1654                         return 1;
1655
1656                 if (unlikely(!is_iabt)) {
1657                         kvm_inject_vabt(vcpu);
1658                         return 1;
1659                 }
1660         }
1661
1662         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1663                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1664
1665         /* Check the stage-2 fault is trans. fault or write fault */
1666         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1667             fault_status != FSC_ACCESS) {
1668                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1669                         kvm_vcpu_trap_get_class(vcpu),
1670                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1671                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1672                 return -EFAULT;
1673         }
1674
1675         idx = srcu_read_lock(&vcpu->kvm->srcu);
1676
1677         gfn = fault_ipa >> PAGE_SHIFT;
1678         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1679         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1680         write_fault = kvm_is_write_fault(vcpu);
1681         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1682                 if (is_iabt) {
1683                         /* Prefetch Abort on I/O address */
1684                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1685                         ret = 1;
1686                         goto out_unlock;
1687                 }
1688
1689                 /*
1690                  * Check for a cache maintenance operation. Since we
1691                  * ended-up here, we know it is outside of any memory
1692                  * slot. But we can't find out if that is for a device,
1693                  * or if the guest is just being stupid. The only thing
1694                  * we know for sure is that this range cannot be cached.
1695                  *
1696                  * So let's assume that the guest is just being
1697                  * cautious, and skip the instruction.
1698                  */
1699                 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1700                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1701                         ret = 1;
1702                         goto out_unlock;
1703                 }
1704
1705                 /*
1706                  * The IPA is reported as [MAX:12], so we need to
1707                  * complement it with the bottom 12 bits from the
1708                  * faulting VA. This is always 12 bits, irrespective
1709                  * of the page size.
1710                  */
1711                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1712                 ret = io_mem_abort(vcpu, run, fault_ipa);
1713                 goto out_unlock;
1714         }
1715
1716         /* Userspace should not be able to register out-of-bounds IPAs */
1717         VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1718
1719         if (fault_status == FSC_ACCESS) {
1720                 handle_access_fault(vcpu, fault_ipa);
1721                 ret = 1;
1722                 goto out_unlock;
1723         }
1724
1725         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1726         if (ret == 0)
1727                 ret = 1;
1728 out_unlock:
1729         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1730         return ret;
1731 }
1732
1733 static int handle_hva_to_gpa(struct kvm *kvm,
1734                              unsigned long start,
1735                              unsigned long end,
1736                              int (*handler)(struct kvm *kvm,
1737                                             gpa_t gpa, u64 size,
1738                                             void *data),
1739                              void *data)
1740 {
1741         struct kvm_memslots *slots;
1742         struct kvm_memory_slot *memslot;
1743         int ret = 0;
1744
1745         slots = kvm_memslots(kvm);
1746
1747         /* we only care about the pages that the guest sees */
1748         kvm_for_each_memslot(memslot, slots) {
1749                 unsigned long hva_start, hva_end;
1750                 gfn_t gpa;
1751
1752                 hva_start = max(start, memslot->userspace_addr);
1753                 hva_end = min(end, memslot->userspace_addr +
1754                                         (memslot->npages << PAGE_SHIFT));
1755                 if (hva_start >= hva_end)
1756                         continue;
1757
1758                 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1759                 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1760         }
1761
1762         return ret;
1763 }
1764
1765 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1766 {
1767         unmap_stage2_range(kvm, gpa, size);
1768         return 0;
1769 }
1770
1771 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1772 {
1773         unsigned long end = hva + PAGE_SIZE;
1774
1775         if (!kvm->arch.pgd)
1776                 return 0;
1777
1778         trace_kvm_unmap_hva(hva);
1779         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1780         return 0;
1781 }
1782
1783 int kvm_unmap_hva_range(struct kvm *kvm,
1784                         unsigned long start, unsigned long end)
1785 {
1786         if (!kvm->arch.pgd)
1787                 return 0;
1788
1789         trace_kvm_unmap_hva_range(start, end);
1790         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1791         return 0;
1792 }
1793
1794 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1795 {
1796         pte_t *pte = (pte_t *)data;
1797
1798         WARN_ON(size != PAGE_SIZE);
1799         /*
1800          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1801          * flag clear because MMU notifiers will have unmapped a huge PMD before
1802          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1803          * therefore stage2_set_pte() never needs to clear out a huge PMD
1804          * through this calling path.
1805          */
1806         stage2_set_pte(kvm, NULL, gpa, pte, 0);
1807         return 0;
1808 }
1809
1810
1811 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1812 {
1813         unsigned long end = hva + PAGE_SIZE;
1814         pte_t stage2_pte;
1815
1816         if (!kvm->arch.pgd)
1817                 return;
1818
1819         trace_kvm_set_spte_hva(hva);
1820         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1821         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1822 }
1823
1824 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1825 {
1826         pmd_t *pmd;
1827         pte_t *pte;
1828
1829         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1830         pmd = stage2_get_pmd(kvm, NULL, gpa);
1831         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1832                 return 0;
1833
1834         if (pmd_thp_or_huge(*pmd))      /* THP, HugeTLB */
1835                 return stage2_pmdp_test_and_clear_young(pmd);
1836
1837         pte = pte_offset_kernel(pmd, gpa);
1838         if (pte_none(*pte))
1839                 return 0;
1840
1841         return stage2_ptep_test_and_clear_young(pte);
1842 }
1843
1844 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1845 {
1846         pmd_t *pmd;
1847         pte_t *pte;
1848
1849         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1850         pmd = stage2_get_pmd(kvm, NULL, gpa);
1851         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1852                 return 0;
1853
1854         if (pmd_thp_or_huge(*pmd))              /* THP, HugeTLB */
1855                 return pmd_young(*pmd);
1856
1857         pte = pte_offset_kernel(pmd, gpa);
1858         if (!pte_none(*pte))            /* Just a page... */
1859                 return pte_young(*pte);
1860
1861         return 0;
1862 }
1863
1864 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1865 {
1866         if (!kvm->arch.pgd)
1867                 return 0;
1868         trace_kvm_age_hva(start, end);
1869         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1870 }
1871
1872 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1873 {
1874         if (!kvm->arch.pgd)
1875                 return 0;
1876         trace_kvm_test_age_hva(hva);
1877         return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1878 }
1879
1880 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1881 {
1882         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1883 }
1884
1885 phys_addr_t kvm_mmu_get_httbr(void)
1886 {
1887         if (__kvm_cpu_uses_extended_idmap())
1888                 return virt_to_phys(merged_hyp_pgd);
1889         else
1890                 return virt_to_phys(hyp_pgd);
1891 }
1892
1893 phys_addr_t kvm_get_idmap_vector(void)
1894 {
1895         return hyp_idmap_vector;
1896 }
1897
1898 static int kvm_map_idmap_text(pgd_t *pgd)
1899 {
1900         int err;
1901
1902         /* Create the idmap in the boot page tables */
1903         err =   __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
1904                                       hyp_idmap_start, hyp_idmap_end,
1905                                       __phys_to_pfn(hyp_idmap_start),
1906                                       PAGE_HYP_EXEC);
1907         if (err)
1908                 kvm_err("Failed to idmap %lx-%lx\n",
1909                         hyp_idmap_start, hyp_idmap_end);
1910
1911         return err;
1912 }
1913
1914 int kvm_mmu_init(void)
1915 {
1916         int err;
1917
1918         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1919         hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1920         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1921         hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1922         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1923
1924         /*
1925          * We rely on the linker script to ensure at build time that the HYP
1926          * init code does not cross a page boundary.
1927          */
1928         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1929
1930         kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1931         kvm_debug("HYP VA range: %lx:%lx\n",
1932                   kern_hyp_va(PAGE_OFFSET),
1933                   kern_hyp_va((unsigned long)high_memory - 1));
1934
1935         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1936             hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1937             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1938                 /*
1939                  * The idmap page is intersecting with the VA space,
1940                  * it is not safe to continue further.
1941                  */
1942                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1943                 err = -EINVAL;
1944                 goto out;
1945         }
1946
1947         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1948         if (!hyp_pgd) {
1949                 kvm_err("Hyp mode PGD not allocated\n");
1950                 err = -ENOMEM;
1951                 goto out;
1952         }
1953
1954         if (__kvm_cpu_uses_extended_idmap()) {
1955                 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1956                                                          hyp_pgd_order);
1957                 if (!boot_hyp_pgd) {
1958                         kvm_err("Hyp boot PGD not allocated\n");
1959                         err = -ENOMEM;
1960                         goto out;
1961                 }
1962
1963                 err = kvm_map_idmap_text(boot_hyp_pgd);
1964                 if (err)
1965                         goto out;
1966
1967                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1968                 if (!merged_hyp_pgd) {
1969                         kvm_err("Failed to allocate extra HYP pgd\n");
1970                         goto out;
1971                 }
1972                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1973                                     hyp_idmap_start);
1974         } else {
1975                 err = kvm_map_idmap_text(hyp_pgd);
1976                 if (err)
1977                         goto out;
1978         }
1979
1980         io_map_base = hyp_idmap_start;
1981         return 0;
1982 out:
1983         free_hyp_pgds();
1984         return err;
1985 }
1986
1987 void kvm_arch_commit_memory_region(struct kvm *kvm,
1988                                    const struct kvm_userspace_memory_region *mem,
1989                                    const struct kvm_memory_slot *old,
1990                                    const struct kvm_memory_slot *new,
1991                                    enum kvm_mr_change change)
1992 {
1993         /*
1994          * At this point memslot has been committed and there is an
1995          * allocated dirty_bitmap[], dirty pages will be be tracked while the
1996          * memory slot is write protected.
1997          */
1998         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1999                 kvm_mmu_wp_memory_region(kvm, mem->slot);
2000 }
2001
2002 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2003                                    struct kvm_memory_slot *memslot,
2004                                    const struct kvm_userspace_memory_region *mem,
2005                                    enum kvm_mr_change change)
2006 {
2007         hva_t hva = mem->userspace_addr;
2008         hva_t reg_end = hva + mem->memory_size;
2009         bool writable = !(mem->flags & KVM_MEM_READONLY);
2010         int ret = 0;
2011
2012         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2013                         change != KVM_MR_FLAGS_ONLY)
2014                 return 0;
2015
2016         /*
2017          * Prevent userspace from creating a memory region outside of the IPA
2018          * space addressable by the KVM guest IPA space.
2019          */
2020         if (memslot->base_gfn + memslot->npages >=
2021             (KVM_PHYS_SIZE >> PAGE_SHIFT))
2022                 return -EFAULT;
2023
2024         down_read(&current->mm->mmap_sem);
2025         /*
2026          * A memory region could potentially cover multiple VMAs, and any holes
2027          * between them, so iterate over all of them to find out if we can map
2028          * any of them right now.
2029          *
2030          *     +--------------------------------------------+
2031          * +---------------+----------------+   +----------------+
2032          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2033          * +---------------+----------------+   +----------------+
2034          *     |               memory region                |
2035          *     +--------------------------------------------+
2036          */
2037         do {
2038                 struct vm_area_struct *vma = find_vma(current->mm, hva);
2039                 hva_t vm_start, vm_end;
2040
2041                 if (!vma || vma->vm_start >= reg_end)
2042                         break;
2043
2044                 /*
2045                  * Mapping a read-only VMA is only allowed if the
2046                  * memory region is configured as read-only.
2047                  */
2048                 if (writable && !(vma->vm_flags & VM_WRITE)) {
2049                         ret = -EPERM;
2050                         break;
2051                 }
2052
2053                 /*
2054                  * Take the intersection of this VMA with the memory region
2055                  */
2056                 vm_start = max(hva, vma->vm_start);
2057                 vm_end = min(reg_end, vma->vm_end);
2058
2059                 if (vma->vm_flags & VM_PFNMAP) {
2060                         gpa_t gpa = mem->guest_phys_addr +
2061                                     (vm_start - mem->userspace_addr);
2062                         phys_addr_t pa;
2063
2064                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2065                         pa += vm_start - vma->vm_start;
2066
2067                         /* IO region dirty page logging not allowed */
2068                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2069                                 ret = -EINVAL;
2070                                 goto out;
2071                         }
2072
2073                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2074                                                     vm_end - vm_start,
2075                                                     writable);
2076                         if (ret)
2077                                 break;
2078                 }
2079                 hva = vm_end;
2080         } while (hva < reg_end);
2081
2082         if (change == KVM_MR_FLAGS_ONLY)
2083                 goto out;
2084
2085         spin_lock(&kvm->mmu_lock);
2086         if (ret)
2087                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2088         else
2089                 stage2_flush_memslot(kvm, memslot);
2090         spin_unlock(&kvm->mmu_lock);
2091 out:
2092         up_read(&current->mm->mmap_sem);
2093         return ret;
2094 }
2095
2096 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
2097                            struct kvm_memory_slot *dont)
2098 {
2099 }
2100
2101 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2102                             unsigned long npages)
2103 {
2104         return 0;
2105 }
2106
2107 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
2108 {
2109 }
2110
2111 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2112 {
2113         kvm_free_stage2_pgd(kvm);
2114 }
2115
2116 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2117                                    struct kvm_memory_slot *slot)
2118 {
2119         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2120         phys_addr_t size = slot->npages << PAGE_SHIFT;
2121
2122         spin_lock(&kvm->mmu_lock);
2123         unmap_stage2_range(kvm, gpa, size);
2124         spin_unlock(&kvm->mmu_lock);
2125 }
2126
2127 /*
2128  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2129  *
2130  * Main problems:
2131  * - S/W ops are local to a CPU (not broadcast)
2132  * - We have line migration behind our back (speculation)
2133  * - System caches don't support S/W at all (damn!)
2134  *
2135  * In the face of the above, the best we can do is to try and convert
2136  * S/W ops to VA ops. Because the guest is not allowed to infer the
2137  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2138  * which is a rather good thing for us.
2139  *
2140  * Also, it is only used when turning caches on/off ("The expected
2141  * usage of the cache maintenance instructions that operate by set/way
2142  * is associated with the cache maintenance instructions associated
2143  * with the powerdown and powerup of caches, if this is required by
2144  * the implementation.").
2145  *
2146  * We use the following policy:
2147  *
2148  * - If we trap a S/W operation, we enable VM trapping to detect
2149  *   caches being turned on/off, and do a full clean.
2150  *
2151  * - We flush the caches on both caches being turned on and off.
2152  *
2153  * - Once the caches are enabled, we stop trapping VM ops.
2154  */
2155 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2156 {
2157         unsigned long hcr = *vcpu_hcr(vcpu);
2158
2159         /*
2160          * If this is the first time we do a S/W operation
2161          * (i.e. HCR_TVM not set) flush the whole memory, and set the
2162          * VM trapping.
2163          *
2164          * Otherwise, rely on the VM trapping to wait for the MMU +
2165          * Caches to be turned off. At that point, we'll be able to
2166          * clean the caches again.
2167          */
2168         if (!(hcr & HCR_TVM)) {
2169                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2170                                         vcpu_has_cache_enabled(vcpu));
2171                 stage2_flush_vm(vcpu->kvm);
2172                 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2173         }
2174 }
2175
2176 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2177 {
2178         bool now_enabled = vcpu_has_cache_enabled(vcpu);
2179
2180         /*
2181          * If switching the MMU+caches on, need to invalidate the caches.
2182          * If switching it off, need to clean the caches.
2183          * Clean + invalidate does the trick always.
2184          */
2185         if (now_enabled != was_enabled)
2186                 stage2_flush_vm(vcpu->kvm);
2187
2188         /* Caches are now on, stop trapping VM ops (until a S/W op) */
2189         if (now_enabled)
2190                 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2191
2192         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2193 }