Linux 6.9-rc1
[linux-2.6-microblaze.git] / tty / rocket.c
1 /*
2  * RocketPort device driver for Linux
3  *
4  * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
5  * 
6  * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
7  * 
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of the
11  * License, or (at your option) any later version.
12  * 
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  * 
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 /*
24  * Kernel Synchronization:
25  *
26  * This driver has 2 kernel control paths - exception handlers (calls into the driver
27  * from user mode) and the timer bottom half (tasklet).  This is a polled driver, interrupts
28  * are not used.
29  *
30  * Critical data: 
31  * -  rp_table[], accessed through passed "info" pointers, is a global (static) array of 
32  *    serial port state information and the xmit_buf circular buffer.  Protected by 
33  *    a per port spinlock.
34  * -  xmit_flags[], an array of ints indexed by line (port) number, indicating that there
35  *    is data to be transmitted.  Protected by atomic bit operations.
36  * -  rp_num_ports, int indicating number of open ports, protected by atomic operations.
37  * 
38  * rp_write() and rp_write_char() functions use a per port semaphore to protect against
39  * simultaneous access to the same port by more than one process.
40  */
41
42 /****** Defines ******/
43 #define ROCKET_PARANOIA_CHECK
44 #define ROCKET_DISABLE_SIMUSAGE
45
46 #undef ROCKET_SOFT_FLOW
47 #undef ROCKET_DEBUG_OPEN
48 #undef ROCKET_DEBUG_INTR
49 #undef ROCKET_DEBUG_WRITE
50 #undef ROCKET_DEBUG_FLOW
51 #undef ROCKET_DEBUG_THROTTLE
52 #undef ROCKET_DEBUG_WAIT_UNTIL_SENT
53 #undef ROCKET_DEBUG_RECEIVE
54 #undef ROCKET_DEBUG_HANGUP
55 #undef REV_PCI_ORDER
56 #undef ROCKET_DEBUG_IO
57
58 #define POLL_PERIOD (HZ/100)    /*  Polling period .01 seconds (10ms) */
59
60 /****** Kernel includes ******/
61
62 #include <linux/module.h>
63 #include <linux/errno.h>
64 #include <linux/major.h>
65 #include <linux/kernel.h>
66 #include <linux/signal.h>
67 #include <linux/slab.h>
68 #include <linux/mm.h>
69 #include <linux/sched.h>
70 #include <linux/timer.h>
71 #include <linux/interrupt.h>
72 #include <linux/tty.h>
73 #include <linux/tty_driver.h>
74 #include <linux/tty_flip.h>
75 #include <linux/serial.h>
76 #include <linux/string.h>
77 #include <linux/fcntl.h>
78 #include <linux/ptrace.h>
79 #include <linux/mutex.h>
80 #include <linux/ioport.h>
81 #include <linux/delay.h>
82 #include <linux/completion.h>
83 #include <linux/wait.h>
84 #include <linux/pci.h>
85 #include <linux/uaccess.h>
86 #include <linux/atomic.h>
87 #include <asm/unaligned.h>
88 #include <linux/bitops.h>
89 #include <linux/spinlock.h>
90 #include <linux/init.h>
91
92 /****** RocketPort includes ******/
93
94 #include "rocket_int.h"
95 #include "rocket.h"
96
97 #define ROCKET_VERSION "2.09"
98 #define ROCKET_DATE "12-June-2003"
99
100 /****** RocketPort Local Variables ******/
101
102 static void rp_do_poll(unsigned long dummy);
103
104 static struct tty_driver *rocket_driver;
105
106 static struct rocket_version driver_version = { 
107         ROCKET_VERSION, ROCKET_DATE
108 };
109
110 static struct r_port *rp_table[MAX_RP_PORTS];          /*  The main repository of serial port state information. */
111 static unsigned int xmit_flags[NUM_BOARDS];            /*  Bit significant, indicates port had data to transmit. */
112                                                        /*  eg.  Bit 0 indicates port 0 has xmit data, ...        */
113 static atomic_t rp_num_ports_open;                     /*  Number of serial ports open                           */
114 static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
115
116 static unsigned long board1;                           /* ISA addresses, retrieved from rocketport.conf          */
117 static unsigned long board2;
118 static unsigned long board3;
119 static unsigned long board4;
120 static unsigned long controller;
121 static bool support_low_speed;
122 static unsigned long modem1;
123 static unsigned long modem2;
124 static unsigned long modem3;
125 static unsigned long modem4;
126 static unsigned long pc104_1[8];
127 static unsigned long pc104_2[8];
128 static unsigned long pc104_3[8];
129 static unsigned long pc104_4[8];
130 static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
131
132 static int rp_baud_base[NUM_BOARDS];                   /*  Board config info (Someday make a per-board structure)  */
133 static unsigned long rcktpt_io_addr[NUM_BOARDS];
134 static int rcktpt_type[NUM_BOARDS];
135 static int is_PCI[NUM_BOARDS];
136 static rocketModel_t rocketModel[NUM_BOARDS];
137 static int max_board;
138 static const struct tty_port_operations rocket_port_ops;
139
140 /*
141  * The following arrays define the interrupt bits corresponding to each AIOP.
142  * These bits are different between the ISA and regular PCI boards and the
143  * Universal PCI boards.
144  */
145
146 static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
147         AIOP_INTR_BIT_0,
148         AIOP_INTR_BIT_1,
149         AIOP_INTR_BIT_2,
150         AIOP_INTR_BIT_3
151 };
152
153 #ifdef CONFIG_PCI
154 static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
155         UPCI_AIOP_INTR_BIT_0,
156         UPCI_AIOP_INTR_BIT_1,
157         UPCI_AIOP_INTR_BIT_2,
158         UPCI_AIOP_INTR_BIT_3
159 };
160 #endif
161
162 static Byte_t RData[RDATASIZE] = {
163         0x00, 0x09, 0xf6, 0x82,
164         0x02, 0x09, 0x86, 0xfb,
165         0x04, 0x09, 0x00, 0x0a,
166         0x06, 0x09, 0x01, 0x0a,
167         0x08, 0x09, 0x8a, 0x13,
168         0x0a, 0x09, 0xc5, 0x11,
169         0x0c, 0x09, 0x86, 0x85,
170         0x0e, 0x09, 0x20, 0x0a,
171         0x10, 0x09, 0x21, 0x0a,
172         0x12, 0x09, 0x41, 0xff,
173         0x14, 0x09, 0x82, 0x00,
174         0x16, 0x09, 0x82, 0x7b,
175         0x18, 0x09, 0x8a, 0x7d,
176         0x1a, 0x09, 0x88, 0x81,
177         0x1c, 0x09, 0x86, 0x7a,
178         0x1e, 0x09, 0x84, 0x81,
179         0x20, 0x09, 0x82, 0x7c,
180         0x22, 0x09, 0x0a, 0x0a
181 };
182
183 static Byte_t RRegData[RREGDATASIZE] = {
184         0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
185         0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
186         0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
187         0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
188         0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
189         0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
190         0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
191         0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
192         0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
193         0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
194         0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
195         0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
196         0x22, 0x09, 0x0a, 0x0a  /* 30: Rx FIFO Enable */
197 };
198
199 static CONTROLLER_T sController[CTL_SIZE] = {
200         {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
201          {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
202         {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
203          {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
204         {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
205          {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
206         {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
207          {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
208 };
209
210 static Byte_t sBitMapClrTbl[8] = {
211         0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
212 };
213
214 static Byte_t sBitMapSetTbl[8] = {
215         0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
216 };
217
218 static int sClockPrescale = 0x14;
219
220 /*
221  *  Line number is the ttySIx number (x), the Minor number.  We 
222  *  assign them sequentially, starting at zero.  The following 
223  *  array keeps track of the line number assigned to a given board/aiop/channel.
224  */
225 static unsigned char lineNumbers[MAX_RP_PORTS];
226 static unsigned long nextLineNumber;
227
228 /*****  RocketPort Static Prototypes   *********/
229 static int __init init_ISA(int i);
230 static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
231 static void rp_flush_buffer(struct tty_struct *tty);
232 static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
233 static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
234 static void rp_start(struct tty_struct *tty);
235 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
236                      int ChanNum);
237 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
238 static void sFlushRxFIFO(CHANNEL_T * ChP);
239 static void sFlushTxFIFO(CHANNEL_T * ChP);
240 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
241 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
242 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
243 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
244 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
245 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
246                            ByteIO_t * AiopIOList, int AiopIOListSize,
247                            int IRQNum, Byte_t Frequency, int PeriodicOnly);
248 static int sReadAiopID(ByteIO_t io);
249 static int sReadAiopNumChan(WordIO_t io);
250
251 MODULE_AUTHOR("Theodore Ts'o");
252 MODULE_DESCRIPTION("Comtrol RocketPort driver");
253 module_param(board1, ulong, 0);
254 MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
255 module_param(board2, ulong, 0);
256 MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
257 module_param(board3, ulong, 0);
258 MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
259 module_param(board4, ulong, 0);
260 MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
261 module_param(controller, ulong, 0);
262 MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
263 module_param(support_low_speed, bool, 0);
264 MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
265 module_param(modem1, ulong, 0);
266 MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
267 module_param(modem2, ulong, 0);
268 MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
269 module_param(modem3, ulong, 0);
270 MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
271 module_param(modem4, ulong, 0);
272 MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
273 module_param_array(pc104_1, ulong, NULL, 0);
274 MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
275 module_param_array(pc104_2, ulong, NULL, 0);
276 MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
277 module_param_array(pc104_3, ulong, NULL, 0);
278 MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
279 module_param_array(pc104_4, ulong, NULL, 0);
280 MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
281
282 static int rp_init(void);
283 static void rp_cleanup_module(void);
284
285 module_init(rp_init);
286 module_exit(rp_cleanup_module);
287
288
289 MODULE_LICENSE("Dual BSD/GPL");
290
291 /*************************************************************************/
292 /*                     Module code starts here                           */
293
294 static inline int rocket_paranoia_check(struct r_port *info,
295                                         const char *routine)
296 {
297 #ifdef ROCKET_PARANOIA_CHECK
298         if (!info)
299                 return 1;
300         if (info->magic != RPORT_MAGIC) {
301                 printk(KERN_WARNING "Warning: bad magic number for rocketport "
302                                 "struct in %s\n", routine);
303                 return 1;
304         }
305 #endif
306         return 0;
307 }
308
309
310 /*  Serial port receive data function.  Called (from timer poll) when an AIOPIC signals 
311  *  that receive data is present on a serial port.  Pulls data from FIFO, moves it into the 
312  *  tty layer.  
313  */
314 static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
315                 unsigned int ChanStatus)
316 {
317         unsigned int CharNStat;
318         int ToRecv, wRecv, space;
319         unsigned char *cbuf;
320
321         ToRecv = sGetRxCnt(cp);
322 #ifdef ROCKET_DEBUG_INTR
323         printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
324 #endif
325         if (ToRecv == 0)
326                 return;
327
328         /*
329          * if status indicates there are errored characters in the
330          * FIFO, then enter status mode (a word in FIFO holds
331          * character and status).
332          */
333         if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
334                 if (!(ChanStatus & STATMODE)) {
335 #ifdef ROCKET_DEBUG_RECEIVE
336                         printk(KERN_INFO "Entering STATMODE...\n");
337 #endif
338                         ChanStatus |= STATMODE;
339                         sEnRxStatusMode(cp);
340                 }
341         }
342
343         /* 
344          * if we previously entered status mode, then read down the
345          * FIFO one word at a time, pulling apart the character and
346          * the status.  Update error counters depending on status
347          */
348         if (ChanStatus & STATMODE) {
349 #ifdef ROCKET_DEBUG_RECEIVE
350                 printk(KERN_INFO "Ignore %x, read %x...\n",
351                         info->ignore_status_mask, info->read_status_mask);
352 #endif
353                 while (ToRecv) {
354                         char flag;
355
356                         CharNStat = sInW(sGetTxRxDataIO(cp));
357 #ifdef ROCKET_DEBUG_RECEIVE
358                         printk(KERN_INFO "%x...\n", CharNStat);
359 #endif
360                         if (CharNStat & STMBREAKH)
361                                 CharNStat &= ~(STMFRAMEH | STMPARITYH);
362                         if (CharNStat & info->ignore_status_mask) {
363                                 ToRecv--;
364                                 continue;
365                         }
366                         CharNStat &= info->read_status_mask;
367                         if (CharNStat & STMBREAKH)
368                                 flag = TTY_BREAK;
369                         else if (CharNStat & STMPARITYH)
370                                 flag = TTY_PARITY;
371                         else if (CharNStat & STMFRAMEH)
372                                 flag = TTY_FRAME;
373                         else if (CharNStat & STMRCVROVRH)
374                                 flag = TTY_OVERRUN;
375                         else
376                                 flag = TTY_NORMAL;
377                         tty_insert_flip_char(&info->port, CharNStat & 0xff,
378                                         flag);
379                         ToRecv--;
380                 }
381
382                 /*
383                  * after we've emptied the FIFO in status mode, turn
384                  * status mode back off
385                  */
386                 if (sGetRxCnt(cp) == 0) {
387 #ifdef ROCKET_DEBUG_RECEIVE
388                         printk(KERN_INFO "Status mode off.\n");
389 #endif
390                         sDisRxStatusMode(cp);
391                 }
392         } else {
393                 /*
394                  * we aren't in status mode, so read down the FIFO two
395                  * characters at time by doing repeated word IO
396                  * transfer.
397                  */
398                 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
399                 if (space < ToRecv) {
400 #ifdef ROCKET_DEBUG_RECEIVE
401                         printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
402 #endif
403                         if (space <= 0)
404                                 return;
405                         ToRecv = space;
406                 }
407                 wRecv = ToRecv >> 1;
408                 if (wRecv)
409                         sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
410                 if (ToRecv & 1)
411                         cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
412         }
413         /*  Push the data up to the tty layer */
414         tty_flip_buffer_push(&info->port);
415 }
416
417 /*
418  *  Serial port transmit data function.  Called from the timer polling loop as a 
419  *  result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
420  *  to be sent out the serial port.  Data is buffered in rp_table[line].xmit_buf, it is 
421  *  moved to the port's xmit FIFO.  *info is critical data, protected by spinlocks.
422  */
423 static void rp_do_transmit(struct r_port *info)
424 {
425         int c;
426         CHANNEL_t *cp = &info->channel;
427         struct tty_struct *tty;
428         unsigned long flags;
429
430 #ifdef ROCKET_DEBUG_INTR
431         printk(KERN_DEBUG "%s\n", __func__);
432 #endif
433         if (!info)
434                 return;
435         tty = tty_port_tty_get(&info->port);
436
437         if (tty == NULL) {
438                 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
439                 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
440                 return;
441         }
442
443         spin_lock_irqsave(&info->slock, flags);
444         info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
445
446         /*  Loop sending data to FIFO until done or FIFO full */
447         while (1) {
448                 if (tty->stopped)
449                         break;
450                 c = min(info->xmit_fifo_room, info->xmit_cnt);
451                 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
452                 if (c <= 0 || info->xmit_fifo_room <= 0)
453                         break;
454                 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
455                 if (c & 1)
456                         sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
457                 info->xmit_tail += c;
458                 info->xmit_tail &= XMIT_BUF_SIZE - 1;
459                 info->xmit_cnt -= c;
460                 info->xmit_fifo_room -= c;
461 #ifdef ROCKET_DEBUG_INTR
462                 printk(KERN_INFO "tx %d chars...\n", c);
463 #endif
464         }
465
466         if (info->xmit_cnt == 0)
467                 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
468
469         if (info->xmit_cnt < WAKEUP_CHARS) {
470                 tty_wakeup(tty);
471 #ifdef ROCKETPORT_HAVE_POLL_WAIT
472                 wake_up_interruptible(&tty->poll_wait);
473 #endif
474         }
475
476         spin_unlock_irqrestore(&info->slock, flags);
477         tty_kref_put(tty);
478
479 #ifdef ROCKET_DEBUG_INTR
480         printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
481                info->xmit_tail, info->xmit_fifo_room);
482 #endif
483 }
484
485 /*
486  *  Called when a serial port signals it has read data in it's RX FIFO.
487  *  It checks what interrupts are pending and services them, including
488  *  receiving serial data.  
489  */
490 static void rp_handle_port(struct r_port *info)
491 {
492         CHANNEL_t *cp;
493         unsigned int IntMask, ChanStatus;
494
495         if (!info)
496                 return;
497
498         if (!tty_port_initialized(&info->port)) {
499                 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
500                                 "info->flags & NOT_INIT\n");
501                 return;
502         }
503
504         cp = &info->channel;
505
506         IntMask = sGetChanIntID(cp) & info->intmask;
507 #ifdef ROCKET_DEBUG_INTR
508         printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
509 #endif
510         ChanStatus = sGetChanStatus(cp);
511         if (IntMask & RXF_TRIG) {       /* Rx FIFO trigger level */
512                 rp_do_receive(info, cp, ChanStatus);
513         }
514         if (IntMask & DELTA_CD) {       /* CD change  */
515 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
516                 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
517                        (ChanStatus & CD_ACT) ? "on" : "off");
518 #endif
519                 if (!(ChanStatus & CD_ACT) && info->cd_status) {
520 #ifdef ROCKET_DEBUG_HANGUP
521                         printk(KERN_INFO "CD drop, calling hangup.\n");
522 #endif
523                         tty_port_tty_hangup(&info->port, false);
524                 }
525                 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
526                 wake_up_interruptible(&info->port.open_wait);
527         }
528 #ifdef ROCKET_DEBUG_INTR
529         if (IntMask & DELTA_CTS) {      /* CTS change */
530                 printk(KERN_INFO "CTS change...\n");
531         }
532         if (IntMask & DELTA_DSR) {      /* DSR change */
533                 printk(KERN_INFO "DSR change...\n");
534         }
535 #endif
536 }
537
538 /*
539  *  The top level polling routine.  Repeats every 1/100 HZ (10ms).
540  */
541 static void rp_do_poll(unsigned long dummy)
542 {
543         CONTROLLER_t *ctlp;
544         int ctrl, aiop, ch, line;
545         unsigned int xmitmask, i;
546         unsigned int CtlMask;
547         unsigned char AiopMask;
548         Word_t bit;
549
550         /*  Walk through all the boards (ctrl's) */
551         for (ctrl = 0; ctrl < max_board; ctrl++) {
552                 if (rcktpt_io_addr[ctrl] <= 0)
553                         continue;
554
555                 /*  Get a ptr to the board's control struct */
556                 ctlp = sCtlNumToCtlPtr(ctrl);
557
558                 /*  Get the interrupt status from the board */
559 #ifdef CONFIG_PCI
560                 if (ctlp->BusType == isPCI)
561                         CtlMask = sPCIGetControllerIntStatus(ctlp);
562                 else
563 #endif
564                         CtlMask = sGetControllerIntStatus(ctlp);
565
566                 /*  Check if any AIOP read bits are set */
567                 for (aiop = 0; CtlMask; aiop++) {
568                         bit = ctlp->AiopIntrBits[aiop];
569                         if (CtlMask & bit) {
570                                 CtlMask &= ~bit;
571                                 AiopMask = sGetAiopIntStatus(ctlp, aiop);
572
573                                 /*  Check if any port read bits are set */
574                                 for (ch = 0; AiopMask;  AiopMask >>= 1, ch++) {
575                                         if (AiopMask & 1) {
576
577                                                 /*  Get the line number (/dev/ttyRx number). */
578                                                 /*  Read the data from the port. */
579                                                 line = GetLineNumber(ctrl, aiop, ch);
580                                                 rp_handle_port(rp_table[line]);
581                                         }
582                                 }
583                         }
584                 }
585
586                 xmitmask = xmit_flags[ctrl];
587
588                 /*
589                  *  xmit_flags contains bit-significant flags, indicating there is data
590                  *  to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 
591                  *  1, ... (32 total possible).  The variable i has the aiop and ch 
592                  *  numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
593                  */
594                 if (xmitmask) {
595                         for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
596                                 if (xmitmask & (1 << i)) {
597                                         aiop = (i & 0x18) >> 3;
598                                         ch = i & 0x07;
599                                         line = GetLineNumber(ctrl, aiop, ch);
600                                         rp_do_transmit(rp_table[line]);
601                                 }
602                         }
603                 }
604         }
605
606         /*
607          * Reset the timer so we get called at the next clock tick (10ms).
608          */
609         if (atomic_read(&rp_num_ports_open))
610                 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
611 }
612
613 /*
614  *  Initializes the r_port structure for a port, as well as enabling the port on 
615  *  the board.  
616  *  Inputs:  board, aiop, chan numbers
617  */
618 static void __init
619 init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
620 {
621         unsigned rocketMode;
622         struct r_port *info;
623         int line;
624         CONTROLLER_T *ctlp;
625
626         /*  Get the next available line number */
627         line = SetLineNumber(board, aiop, chan);
628
629         ctlp = sCtlNumToCtlPtr(board);
630
631         /*  Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
632         info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
633         if (!info) {
634                 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
635                                 line);
636                 return;
637         }
638
639         info->magic = RPORT_MAGIC;
640         info->line = line;
641         info->ctlp = ctlp;
642         info->board = board;
643         info->aiop = aiop;
644         info->chan = chan;
645         tty_port_init(&info->port);
646         info->port.ops = &rocket_port_ops;
647         info->flags &= ~ROCKET_MODE_MASK;
648         switch (pc104[board][line]) {
649         case 422:
650                 info->flags |= ROCKET_MODE_RS422;
651                 break;
652         case 485:
653                 info->flags |= ROCKET_MODE_RS485;
654                 break;
655         case 232:
656         default:
657                 info->flags |= ROCKET_MODE_RS232;
658                 break;
659         }
660
661         info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
662         if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
663                 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
664                                 board, aiop, chan);
665                 tty_port_destroy(&info->port);
666                 kfree(info);
667                 return;
668         }
669
670         rocketMode = info->flags & ROCKET_MODE_MASK;
671
672         if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
673                 sEnRTSToggle(&info->channel);
674         else
675                 sDisRTSToggle(&info->channel);
676
677         if (ctlp->boardType == ROCKET_TYPE_PC104) {
678                 switch (rocketMode) {
679                 case ROCKET_MODE_RS485:
680                         sSetInterfaceMode(&info->channel, InterfaceModeRS485);
681                         break;
682                 case ROCKET_MODE_RS422:
683                         sSetInterfaceMode(&info->channel, InterfaceModeRS422);
684                         break;
685                 case ROCKET_MODE_RS232:
686                 default:
687                         if (info->flags & ROCKET_RTS_TOGGLE)
688                                 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
689                         else
690                                 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
691                         break;
692                 }
693         }
694         spin_lock_init(&info->slock);
695         mutex_init(&info->write_mtx);
696         rp_table[line] = info;
697         tty_port_register_device(&info->port, rocket_driver, line,
698                         pci_dev ? &pci_dev->dev : NULL);
699 }
700
701 /*
702  *  Configures a rocketport port according to its termio settings.  Called from 
703  *  user mode into the driver (exception handler).  *info CD manipulation is spinlock protected.
704  */
705 static void configure_r_port(struct tty_struct *tty, struct r_port *info,
706                              struct ktermios *old_termios)
707 {
708         unsigned cflag;
709         unsigned long flags;
710         unsigned rocketMode;
711         int bits, baud, divisor;
712         CHANNEL_t *cp;
713         struct ktermios *t = &tty->termios;
714
715         cp = &info->channel;
716         cflag = t->c_cflag;
717
718         /* Byte size and parity */
719         if ((cflag & CSIZE) == CS8) {
720                 sSetData8(cp);
721                 bits = 10;
722         } else {
723                 sSetData7(cp);
724                 bits = 9;
725         }
726         if (cflag & CSTOPB) {
727                 sSetStop2(cp);
728                 bits++;
729         } else {
730                 sSetStop1(cp);
731         }
732
733         if (cflag & PARENB) {
734                 sEnParity(cp);
735                 bits++;
736                 if (cflag & PARODD) {
737                         sSetOddParity(cp);
738                 } else {
739                         sSetEvenParity(cp);
740                 }
741         } else {
742                 sDisParity(cp);
743         }
744
745         /* baud rate */
746         baud = tty_get_baud_rate(tty);
747         if (!baud)
748                 baud = 9600;
749         divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
750         if ((divisor >= 8192 || divisor < 0) && old_termios) {
751                 baud = tty_termios_baud_rate(old_termios);
752                 if (!baud)
753                         baud = 9600;
754                 divisor = (rp_baud_base[info->board] / baud) - 1;
755         }
756         if (divisor >= 8192 || divisor < 0) {
757                 baud = 9600;
758                 divisor = (rp_baud_base[info->board] / baud) - 1;
759         }
760         info->cps = baud / bits;
761         sSetBaud(cp, divisor);
762
763         /* FIXME: Should really back compute a baud rate from the divisor */
764         tty_encode_baud_rate(tty, baud, baud);
765
766         if (cflag & CRTSCTS) {
767                 info->intmask |= DELTA_CTS;
768                 sEnCTSFlowCtl(cp);
769         } else {
770                 info->intmask &= ~DELTA_CTS;
771                 sDisCTSFlowCtl(cp);
772         }
773         if (cflag & CLOCAL) {
774                 info->intmask &= ~DELTA_CD;
775         } else {
776                 spin_lock_irqsave(&info->slock, flags);
777                 if (sGetChanStatus(cp) & CD_ACT)
778                         info->cd_status = 1;
779                 else
780                         info->cd_status = 0;
781                 info->intmask |= DELTA_CD;
782                 spin_unlock_irqrestore(&info->slock, flags);
783         }
784
785         /*
786          * Handle software flow control in the board
787          */
788 #ifdef ROCKET_SOFT_FLOW
789         if (I_IXON(tty)) {
790                 sEnTxSoftFlowCtl(cp);
791                 if (I_IXANY(tty)) {
792                         sEnIXANY(cp);
793                 } else {
794                         sDisIXANY(cp);
795                 }
796                 sSetTxXONChar(cp, START_CHAR(tty));
797                 sSetTxXOFFChar(cp, STOP_CHAR(tty));
798         } else {
799                 sDisTxSoftFlowCtl(cp);
800                 sDisIXANY(cp);
801                 sClrTxXOFF(cp);
802         }
803 #endif
804
805         /*
806          * Set up ignore/read mask words
807          */
808         info->read_status_mask = STMRCVROVRH | 0xFF;
809         if (I_INPCK(tty))
810                 info->read_status_mask |= STMFRAMEH | STMPARITYH;
811         if (I_BRKINT(tty) || I_PARMRK(tty))
812                 info->read_status_mask |= STMBREAKH;
813
814         /*
815          * Characters to ignore
816          */
817         info->ignore_status_mask = 0;
818         if (I_IGNPAR(tty))
819                 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
820         if (I_IGNBRK(tty)) {
821                 info->ignore_status_mask |= STMBREAKH;
822                 /*
823                  * If we're ignoring parity and break indicators,
824                  * ignore overruns too.  (For real raw support).
825                  */
826                 if (I_IGNPAR(tty))
827                         info->ignore_status_mask |= STMRCVROVRH;
828         }
829
830         rocketMode = info->flags & ROCKET_MODE_MASK;
831
832         if ((info->flags & ROCKET_RTS_TOGGLE)
833             || (rocketMode == ROCKET_MODE_RS485))
834                 sEnRTSToggle(cp);
835         else
836                 sDisRTSToggle(cp);
837
838         sSetRTS(&info->channel);
839
840         if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
841                 switch (rocketMode) {
842                 case ROCKET_MODE_RS485:
843                         sSetInterfaceMode(cp, InterfaceModeRS485);
844                         break;
845                 case ROCKET_MODE_RS422:
846                         sSetInterfaceMode(cp, InterfaceModeRS422);
847                         break;
848                 case ROCKET_MODE_RS232:
849                 default:
850                         if (info->flags & ROCKET_RTS_TOGGLE)
851                                 sSetInterfaceMode(cp, InterfaceModeRS232T);
852                         else
853                                 sSetInterfaceMode(cp, InterfaceModeRS232);
854                         break;
855                 }
856         }
857 }
858
859 static int carrier_raised(struct tty_port *port)
860 {
861         struct r_port *info = container_of(port, struct r_port, port);
862         return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
863 }
864
865 static void dtr_rts(struct tty_port *port, int on)
866 {
867         struct r_port *info = container_of(port, struct r_port, port);
868         if (on) {
869                 sSetDTR(&info->channel);
870                 sSetRTS(&info->channel);
871         } else {
872                 sClrDTR(&info->channel);
873                 sClrRTS(&info->channel);
874         }
875 }
876
877 /*
878  *  Exception handler that opens a serial port.  Creates xmit_buf storage, fills in 
879  *  port's r_port struct.  Initializes the port hardware.  
880  */
881 static int rp_open(struct tty_struct *tty, struct file *filp)
882 {
883         struct r_port *info;
884         struct tty_port *port;
885         int retval;
886         CHANNEL_t *cp;
887         unsigned long page;
888
889         info = rp_table[tty->index];
890         if (info == NULL)
891                 return -ENXIO;
892         port = &info->port;
893         
894         page = __get_free_page(GFP_KERNEL);
895         if (!page)
896                 return -ENOMEM;
897
898         /*
899          * We must not sleep from here until the port is marked fully in use.
900          */
901         if (info->xmit_buf)
902                 free_page(page);
903         else
904                 info->xmit_buf = (unsigned char *) page;
905
906         tty->driver_data = info;
907         tty_port_tty_set(port, tty);
908
909         if (port->count++ == 0) {
910                 atomic_inc(&rp_num_ports_open);
911
912 #ifdef ROCKET_DEBUG_OPEN
913                 printk(KERN_INFO "rocket mod++ = %d...\n",
914                                 atomic_read(&rp_num_ports_open));
915 #endif
916         }
917 #ifdef ROCKET_DEBUG_OPEN
918         printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
919 #endif
920
921         /*
922          * Info->count is now 1; so it's safe to sleep now.
923          */
924         if (!tty_port_initialized(port)) {
925                 cp = &info->channel;
926                 sSetRxTrigger(cp, TRIG_1);
927                 if (sGetChanStatus(cp) & CD_ACT)
928                         info->cd_status = 1;
929                 else
930                         info->cd_status = 0;
931                 sDisRxStatusMode(cp);
932                 sFlushRxFIFO(cp);
933                 sFlushTxFIFO(cp);
934
935                 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
936                 sSetRxTrigger(cp, TRIG_1);
937
938                 sGetChanStatus(cp);
939                 sDisRxStatusMode(cp);
940                 sClrTxXOFF(cp);
941
942                 sDisCTSFlowCtl(cp);
943                 sDisTxSoftFlowCtl(cp);
944
945                 sEnRxFIFO(cp);
946                 sEnTransmit(cp);
947
948                 tty_port_set_initialized(&info->port, 1);
949
950                 /*
951                  * Set up the tty->alt_speed kludge
952                  */
953                 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
954                         tty->alt_speed = 57600;
955                 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
956                         tty->alt_speed = 115200;
957                 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
958                         tty->alt_speed = 230400;
959                 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
960                         tty->alt_speed = 460800;
961
962                 configure_r_port(tty, info, NULL);
963                 if (C_BAUD(tty)) {
964                         sSetDTR(cp);
965                         sSetRTS(cp);
966                 }
967         }
968         /*  Starts (or resets) the maint polling loop */
969         mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
970
971         retval = tty_port_block_til_ready(port, tty, filp);
972         if (retval) {
973 #ifdef ROCKET_DEBUG_OPEN
974                 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
975 #endif
976                 return retval;
977         }
978         return 0;
979 }
980
981 /*
982  *  Exception handler that closes a serial port. info->port.count is considered critical.
983  */
984 static void rp_close(struct tty_struct *tty, struct file *filp)
985 {
986         struct r_port *info = tty->driver_data;
987         struct tty_port *port = &info->port;
988         int timeout;
989         CHANNEL_t *cp;
990         
991         if (rocket_paranoia_check(info, "rp_close"))
992                 return;
993
994 #ifdef ROCKET_DEBUG_OPEN
995         printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
996 #endif
997
998         if (tty_port_close_start(port, tty, filp) == 0)
999                 return;
1000
1001         mutex_lock(&port->mutex);
1002         cp = &info->channel;
1003         /*
1004          * Before we drop DTR, make sure the UART transmitter
1005          * has completely drained; this is especially
1006          * important if there is a transmit FIFO!
1007          */
1008         timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1009         if (timeout == 0)
1010                 timeout = 1;
1011         rp_wait_until_sent(tty, timeout);
1012         clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1013
1014         sDisTransmit(cp);
1015         sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1016         sDisCTSFlowCtl(cp);
1017         sDisTxSoftFlowCtl(cp);
1018         sClrTxXOFF(cp);
1019         sFlushRxFIFO(cp);
1020         sFlushTxFIFO(cp);
1021         sClrRTS(cp);
1022         if (C_HUPCL(tty))
1023                 sClrDTR(cp);
1024
1025         rp_flush_buffer(tty);
1026                 
1027         tty_ldisc_flush(tty);
1028
1029         clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1030
1031         /* We can't yet use tty_port_close_end as the buffer handling in this
1032            driver is a bit different to the usual */
1033
1034         if (port->blocked_open) {
1035                 if (port->close_delay) {
1036                         msleep_interruptible(jiffies_to_msecs(port->close_delay));
1037                 }
1038                 wake_up_interruptible(&port->open_wait);
1039         } else {
1040                 if (info->xmit_buf) {
1041                         free_page((unsigned long) info->xmit_buf);
1042                         info->xmit_buf = NULL;
1043                 }
1044         }
1045         spin_lock_irq(&port->lock);
1046         tty->closing = 0;
1047         spin_unlock_irq(&port->lock);
1048         tty_port_set_initialized(port, 0);
1049         tty_port_set_active(port, 0);
1050         mutex_unlock(&port->mutex);
1051         tty_port_tty_set(port, NULL);
1052
1053         atomic_dec(&rp_num_ports_open);
1054
1055 #ifdef ROCKET_DEBUG_OPEN
1056         printk(KERN_INFO "rocket mod-- = %d...\n",
1057                         atomic_read(&rp_num_ports_open));
1058         printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1059 #endif
1060
1061 }
1062
1063 static void rp_set_termios(struct tty_struct *tty,
1064                            struct ktermios *old_termios)
1065 {
1066         struct r_port *info = tty->driver_data;
1067         CHANNEL_t *cp;
1068         unsigned cflag;
1069
1070         if (rocket_paranoia_check(info, "rp_set_termios"))
1071                 return;
1072
1073         cflag = tty->termios.c_cflag;
1074
1075         /*
1076          * This driver doesn't support CS5 or CS6
1077          */
1078         if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1079                 tty->termios.c_cflag =
1080                     ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1081         /* Or CMSPAR */
1082         tty->termios.c_cflag &= ~CMSPAR;
1083
1084         configure_r_port(tty, info, old_termios);
1085
1086         cp = &info->channel;
1087
1088         /* Handle transition to B0 status */
1089         if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1090                 sClrDTR(cp);
1091                 sClrRTS(cp);
1092         }
1093
1094         /* Handle transition away from B0 status */
1095         if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1096                 sSetRTS(cp);
1097                 sSetDTR(cp);
1098         }
1099
1100         if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1101                 rp_start(tty);
1102 }
1103
1104 static int rp_break(struct tty_struct *tty, int break_state)
1105 {
1106         struct r_port *info = tty->driver_data;
1107         unsigned long flags;
1108
1109         if (rocket_paranoia_check(info, "rp_break"))
1110                 return -EINVAL;
1111
1112         spin_lock_irqsave(&info->slock, flags);
1113         if (break_state == -1)
1114                 sSendBreak(&info->channel);
1115         else
1116                 sClrBreak(&info->channel);
1117         spin_unlock_irqrestore(&info->slock, flags);
1118         return 0;
1119 }
1120
1121 /*
1122  * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1123  * the UPCI boards was added, it was decided to make this a function because
1124  * the macro was getting too complicated. All cases except the first one
1125  * (UPCIRingInd) are taken directly from the original macro.
1126  */
1127 static int sGetChanRI(CHANNEL_T * ChP)
1128 {
1129         CONTROLLER_t *CtlP = ChP->CtlP;
1130         int ChanNum = ChP->ChanNum;
1131         int RingInd = 0;
1132
1133         if (CtlP->UPCIRingInd)
1134                 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1135         else if (CtlP->AltChanRingIndicator)
1136                 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1137         else if (CtlP->boardType == ROCKET_TYPE_PC104)
1138                 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1139
1140         return RingInd;
1141 }
1142
1143 /********************************************************************************************/
1144 /*  Here are the routines used by rp_ioctl.  These are all called from exception handlers.  */
1145
1146 /*
1147  *  Returns the state of the serial modem control lines.  These next 2 functions 
1148  *  are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1149  */
1150 static int rp_tiocmget(struct tty_struct *tty)
1151 {
1152         struct r_port *info = tty->driver_data;
1153         unsigned int control, result, ChanStatus;
1154
1155         ChanStatus = sGetChanStatusLo(&info->channel);
1156         control = info->channel.TxControl[3];
1157         result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 
1158                 ((control & SET_DTR) ?  TIOCM_DTR : 0) |
1159                 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1160                 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1161                 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1162                 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1163
1164         return result;
1165 }
1166
1167 /* 
1168  *  Sets the modem control lines
1169  */
1170 static int rp_tiocmset(struct tty_struct *tty,
1171                                 unsigned int set, unsigned int clear)
1172 {
1173         struct r_port *info = tty->driver_data;
1174
1175         if (set & TIOCM_RTS)
1176                 info->channel.TxControl[3] |= SET_RTS;
1177         if (set & TIOCM_DTR)
1178                 info->channel.TxControl[3] |= SET_DTR;
1179         if (clear & TIOCM_RTS)
1180                 info->channel.TxControl[3] &= ~SET_RTS;
1181         if (clear & TIOCM_DTR)
1182                 info->channel.TxControl[3] &= ~SET_DTR;
1183
1184         out32(info->channel.IndexAddr, info->channel.TxControl);
1185         return 0;
1186 }
1187
1188 static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1189 {
1190         struct rocket_config tmp;
1191
1192         if (!retinfo)
1193                 return -EFAULT;
1194         memset(&tmp, 0, sizeof (tmp));
1195         mutex_lock(&info->port.mutex);
1196         tmp.line = info->line;
1197         tmp.flags = info->flags;
1198         tmp.close_delay = info->port.close_delay;
1199         tmp.closing_wait = info->port.closing_wait;
1200         tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1201         mutex_unlock(&info->port.mutex);
1202
1203         if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1204                 return -EFAULT;
1205         return 0;
1206 }
1207
1208 static int set_config(struct tty_struct *tty, struct r_port *info,
1209                                         struct rocket_config __user *new_info)
1210 {
1211         struct rocket_config new_serial;
1212
1213         if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1214                 return -EFAULT;
1215
1216         mutex_lock(&info->port.mutex);
1217         if (!capable(CAP_SYS_ADMIN))
1218         {
1219                 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1220                         mutex_unlock(&info->port.mutex);
1221                         return -EPERM;
1222                 }
1223                 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1224                 configure_r_port(tty, info, NULL);
1225                 mutex_unlock(&info->port.mutex);
1226                 return 0;
1227         }
1228
1229         info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1230         info->port.close_delay = new_serial.close_delay;
1231         info->port.closing_wait = new_serial.closing_wait;
1232
1233         if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1234                 tty->alt_speed = 57600;
1235         if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1236                 tty->alt_speed = 115200;
1237         if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1238                 tty->alt_speed = 230400;
1239         if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1240                 tty->alt_speed = 460800;
1241         mutex_unlock(&info->port.mutex);
1242
1243         configure_r_port(tty, info, NULL);
1244         return 0;
1245 }
1246
1247 /*
1248  *  This function fills in a rocket_ports struct with information
1249  *  about what boards/ports are in the system.  This info is passed
1250  *  to user space.  See setrocket.c where the info is used to create
1251  *  the /dev/ttyRx ports.
1252  */
1253 static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1254 {
1255         struct rocket_ports tmp;
1256         int board;
1257
1258         if (!retports)
1259                 return -EFAULT;
1260         memset(&tmp, 0, sizeof (tmp));
1261         tmp.tty_major = rocket_driver->major;
1262
1263         for (board = 0; board < 4; board++) {
1264                 tmp.rocketModel[board].model = rocketModel[board].model;
1265                 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1266                 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1267                 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1268                 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1269         }
1270         if (copy_to_user(retports, &tmp, sizeof (*retports)))
1271                 return -EFAULT;
1272         return 0;
1273 }
1274
1275 static int reset_rm2(struct r_port *info, void __user *arg)
1276 {
1277         int reset;
1278
1279         if (!capable(CAP_SYS_ADMIN))
1280                 return -EPERM;
1281
1282         if (copy_from_user(&reset, arg, sizeof (int)))
1283                 return -EFAULT;
1284         if (reset)
1285                 reset = 1;
1286
1287         if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1288             rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1289                 return -EINVAL;
1290
1291         if (info->ctlp->BusType == isISA)
1292                 sModemReset(info->ctlp, info->chan, reset);
1293         else
1294                 sPCIModemReset(info->ctlp, info->chan, reset);
1295
1296         return 0;
1297 }
1298
1299 static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1300 {
1301         if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1302                 return -EFAULT;
1303         return 0;
1304 }
1305
1306 /*  IOCTL call handler into the driver */
1307 static int rp_ioctl(struct tty_struct *tty,
1308                     unsigned int cmd, unsigned long arg)
1309 {
1310         struct r_port *info = tty->driver_data;
1311         void __user *argp = (void __user *)arg;
1312         int ret = 0;
1313
1314         if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1315                 return -ENXIO;
1316
1317         switch (cmd) {
1318         case RCKP_GET_STRUCT:
1319                 if (copy_to_user(argp, info, sizeof (struct r_port)))
1320                         ret = -EFAULT;
1321                 break;
1322         case RCKP_GET_CONFIG:
1323                 ret = get_config(info, argp);
1324                 break;
1325         case RCKP_SET_CONFIG:
1326                 ret = set_config(tty, info, argp);
1327                 break;
1328         case RCKP_GET_PORTS:
1329                 ret = get_ports(info, argp);
1330                 break;
1331         case RCKP_RESET_RM2:
1332                 ret = reset_rm2(info, argp);
1333                 break;
1334         case RCKP_GET_VERSION:
1335                 ret = get_version(info, argp);
1336                 break;
1337         default:
1338                 ret = -ENOIOCTLCMD;
1339         }
1340         return ret;
1341 }
1342
1343 static void rp_send_xchar(struct tty_struct *tty, char ch)
1344 {
1345         struct r_port *info = tty->driver_data;
1346         CHANNEL_t *cp;
1347
1348         if (rocket_paranoia_check(info, "rp_send_xchar"))
1349                 return;
1350
1351         cp = &info->channel;
1352         if (sGetTxCnt(cp))
1353                 sWriteTxPrioByte(cp, ch);
1354         else
1355                 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1356 }
1357
1358 static void rp_throttle(struct tty_struct *tty)
1359 {
1360         struct r_port *info = tty->driver_data;
1361
1362 #ifdef ROCKET_DEBUG_THROTTLE
1363         printk(KERN_INFO "throttle %s ....\n", tty->name);
1364 #endif
1365
1366         if (rocket_paranoia_check(info, "rp_throttle"))
1367                 return;
1368
1369         if (I_IXOFF(tty))
1370                 rp_send_xchar(tty, STOP_CHAR(tty));
1371
1372         sClrRTS(&info->channel);
1373 }
1374
1375 static void rp_unthrottle(struct tty_struct *tty)
1376 {
1377         struct r_port *info = tty->driver_data;
1378 #ifdef ROCKET_DEBUG_THROTTLE
1379         printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1380 #endif
1381
1382         if (rocket_paranoia_check(info, "rp_unthrottle"))
1383                 return;
1384
1385         if (I_IXOFF(tty))
1386                 rp_send_xchar(tty, START_CHAR(tty));
1387
1388         sSetRTS(&info->channel);
1389 }
1390
1391 /*
1392  * ------------------------------------------------------------
1393  * rp_stop() and rp_start()
1394  *
1395  * This routines are called before setting or resetting tty->stopped.
1396  * They enable or disable transmitter interrupts, as necessary.
1397  * ------------------------------------------------------------
1398  */
1399 static void rp_stop(struct tty_struct *tty)
1400 {
1401         struct r_port *info = tty->driver_data;
1402
1403 #ifdef ROCKET_DEBUG_FLOW
1404         printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1405                info->xmit_cnt, info->xmit_fifo_room);
1406 #endif
1407
1408         if (rocket_paranoia_check(info, "rp_stop"))
1409                 return;
1410
1411         if (sGetTxCnt(&info->channel))
1412                 sDisTransmit(&info->channel);
1413 }
1414
1415 static void rp_start(struct tty_struct *tty)
1416 {
1417         struct r_port *info = tty->driver_data;
1418
1419 #ifdef ROCKET_DEBUG_FLOW
1420         printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1421                info->xmit_cnt, info->xmit_fifo_room);
1422 #endif
1423
1424         if (rocket_paranoia_check(info, "rp_stop"))
1425                 return;
1426
1427         sEnTransmit(&info->channel);
1428         set_bit((info->aiop * 8) + info->chan,
1429                 (void *) &xmit_flags[info->board]);
1430 }
1431
1432 /*
1433  * rp_wait_until_sent() --- wait until the transmitter is empty
1434  */
1435 static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1436 {
1437         struct r_port *info = tty->driver_data;
1438         CHANNEL_t *cp;
1439         unsigned long orig_jiffies;
1440         int check_time, exit_time;
1441         int txcnt;
1442
1443         if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1444                 return;
1445
1446         cp = &info->channel;
1447
1448         orig_jiffies = jiffies;
1449 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1450         printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1451                jiffies);
1452         printk(KERN_INFO "cps=%d...\n", info->cps);
1453 #endif
1454         while (1) {
1455                 txcnt = sGetTxCnt(cp);
1456                 if (!txcnt) {
1457                         if (sGetChanStatusLo(cp) & TXSHRMT)
1458                                 break;
1459                         check_time = (HZ / info->cps) / 5;
1460                 } else {
1461                         check_time = HZ * txcnt / info->cps;
1462                 }
1463                 if (timeout) {
1464                         exit_time = orig_jiffies + timeout - jiffies;
1465                         if (exit_time <= 0)
1466                                 break;
1467                         if (exit_time < check_time)
1468                                 check_time = exit_time;
1469                 }
1470                 if (check_time == 0)
1471                         check_time = 1;
1472 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1473                 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1474                                 jiffies, check_time);
1475 #endif
1476                 msleep_interruptible(jiffies_to_msecs(check_time));
1477                 if (signal_pending(current))
1478                         break;
1479         }
1480         __set_current_state(TASK_RUNNING);
1481 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1482         printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1483 #endif
1484 }
1485
1486 /*
1487  * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1488  */
1489 static void rp_hangup(struct tty_struct *tty)
1490 {
1491         CHANNEL_t *cp;
1492         struct r_port *info = tty->driver_data;
1493         unsigned long flags;
1494
1495         if (rocket_paranoia_check(info, "rp_hangup"))
1496                 return;
1497
1498 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1499         printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1500 #endif
1501         rp_flush_buffer(tty);
1502         spin_lock_irqsave(&info->port.lock, flags);
1503         if (info->port.count)
1504                 atomic_dec(&rp_num_ports_open);
1505         clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1506         spin_unlock_irqrestore(&info->port.lock, flags);
1507
1508         tty_port_hangup(&info->port);
1509
1510         cp = &info->channel;
1511         sDisRxFIFO(cp);
1512         sDisTransmit(cp);
1513         sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1514         sDisCTSFlowCtl(cp);
1515         sDisTxSoftFlowCtl(cp);
1516         sClrTxXOFF(cp);
1517         tty_port_set_initialized(&info->port, 0);
1518
1519         wake_up_interruptible(&info->port.open_wait);
1520 }
1521
1522 /*
1523  *  Exception handler - write char routine.  The RocketPort driver uses a
1524  *  double-buffering strategy, with the twist that if the in-memory CPU
1525  *  buffer is empty, and there's space in the transmit FIFO, the
1526  *  writing routines will write directly to transmit FIFO.
1527  *  Write buffer and counters protected by spinlocks
1528  */
1529 static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1530 {
1531         struct r_port *info = tty->driver_data;
1532         CHANNEL_t *cp;
1533         unsigned long flags;
1534
1535         if (rocket_paranoia_check(info, "rp_put_char"))
1536                 return 0;
1537
1538         /*
1539          * Grab the port write mutex, locking out other processes that try to
1540          * write to this port
1541          */
1542         mutex_lock(&info->write_mtx);
1543
1544 #ifdef ROCKET_DEBUG_WRITE
1545         printk(KERN_INFO "rp_put_char %c...\n", ch);
1546 #endif
1547
1548         spin_lock_irqsave(&info->slock, flags);
1549         cp = &info->channel;
1550
1551         if (!tty->stopped && info->xmit_fifo_room == 0)
1552                 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1553
1554         if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1555                 info->xmit_buf[info->xmit_head++] = ch;
1556                 info->xmit_head &= XMIT_BUF_SIZE - 1;
1557                 info->xmit_cnt++;
1558                 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1559         } else {
1560                 sOutB(sGetTxRxDataIO(cp), ch);
1561                 info->xmit_fifo_room--;
1562         }
1563         spin_unlock_irqrestore(&info->slock, flags);
1564         mutex_unlock(&info->write_mtx);
1565         return 1;
1566 }
1567
1568 /*
1569  *  Exception handler - write routine, called when user app writes to the device.
1570  *  A per port write mutex is used to protect from another process writing to
1571  *  this port at the same time.  This other process could be running on the other CPU
1572  *  or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 
1573  *  Spinlocks protect the info xmit members.
1574  */
1575 static int rp_write(struct tty_struct *tty,
1576                     const unsigned char *buf, int count)
1577 {
1578         struct r_port *info = tty->driver_data;
1579         CHANNEL_t *cp;
1580         const unsigned char *b;
1581         int c, retval = 0;
1582         unsigned long flags;
1583
1584         if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1585                 return 0;
1586
1587         if (mutex_lock_interruptible(&info->write_mtx))
1588                 return -ERESTARTSYS;
1589
1590 #ifdef ROCKET_DEBUG_WRITE
1591         printk(KERN_INFO "rp_write %d chars...\n", count);
1592 #endif
1593         cp = &info->channel;
1594
1595         if (!tty->stopped && info->xmit_fifo_room < count)
1596                 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1597
1598         /*
1599          *  If the write queue for the port is empty, and there is FIFO space, stuff bytes 
1600          *  into FIFO.  Use the write queue for temp storage.
1601          */
1602         if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1603                 c = min(count, info->xmit_fifo_room);
1604                 b = buf;
1605
1606                 /*  Push data into FIFO, 2 bytes at a time */
1607                 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1608
1609                 /*  If there is a byte remaining, write it */
1610                 if (c & 1)
1611                         sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1612
1613                 retval += c;
1614                 buf += c;
1615                 count -= c;
1616
1617                 spin_lock_irqsave(&info->slock, flags);
1618                 info->xmit_fifo_room -= c;
1619                 spin_unlock_irqrestore(&info->slock, flags);
1620         }
1621
1622         /* If count is zero, we wrote it all and are done */
1623         if (!count)
1624                 goto end;
1625
1626         /*  Write remaining data into the port's xmit_buf */
1627         while (1) {
1628                 /* Hung up ? */
1629                 if (!tty_port_active(&info->port))
1630                         goto end;
1631                 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1632                 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1633                 if (c <= 0)
1634                         break;
1635
1636                 b = buf;
1637                 memcpy(info->xmit_buf + info->xmit_head, b, c);
1638
1639                 spin_lock_irqsave(&info->slock, flags);
1640                 info->xmit_head =
1641                     (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1642                 info->xmit_cnt += c;
1643                 spin_unlock_irqrestore(&info->slock, flags);
1644
1645                 buf += c;
1646                 count -= c;
1647                 retval += c;
1648         }
1649
1650         if ((retval > 0) && !tty->stopped)
1651                 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1652         
1653 end:
1654         if (info->xmit_cnt < WAKEUP_CHARS) {
1655                 tty_wakeup(tty);
1656 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1657                 wake_up_interruptible(&tty->poll_wait);
1658 #endif
1659         }
1660         mutex_unlock(&info->write_mtx);
1661         return retval;
1662 }
1663
1664 /*
1665  * Return the number of characters that can be sent.  We estimate
1666  * only using the in-memory transmit buffer only, and ignore the
1667  * potential space in the transmit FIFO.
1668  */
1669 static int rp_write_room(struct tty_struct *tty)
1670 {
1671         struct r_port *info = tty->driver_data;
1672         int ret;
1673
1674         if (rocket_paranoia_check(info, "rp_write_room"))
1675                 return 0;
1676
1677         ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1678         if (ret < 0)
1679                 ret = 0;
1680 #ifdef ROCKET_DEBUG_WRITE
1681         printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1682 #endif
1683         return ret;
1684 }
1685
1686 /*
1687  * Return the number of characters in the buffer.  Again, this only
1688  * counts those characters in the in-memory transmit buffer.
1689  */
1690 static int rp_chars_in_buffer(struct tty_struct *tty)
1691 {
1692         struct r_port *info = tty->driver_data;
1693
1694         if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1695                 return 0;
1696
1697 #ifdef ROCKET_DEBUG_WRITE
1698         printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1699 #endif
1700         return info->xmit_cnt;
1701 }
1702
1703 /*
1704  *  Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1705  *  r_port struct for the port.  Note that spinlock are used to protect info members,
1706  *  do not call this function if the spinlock is already held.
1707  */
1708 static void rp_flush_buffer(struct tty_struct *tty)
1709 {
1710         struct r_port *info = tty->driver_data;
1711         CHANNEL_t *cp;
1712         unsigned long flags;
1713
1714         if (rocket_paranoia_check(info, "rp_flush_buffer"))
1715                 return;
1716
1717         spin_lock_irqsave(&info->slock, flags);
1718         info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1719         spin_unlock_irqrestore(&info->slock, flags);
1720
1721 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1722         wake_up_interruptible(&tty->poll_wait);
1723 #endif
1724         tty_wakeup(tty);
1725
1726         cp = &info->channel;
1727         sFlushTxFIFO(cp);
1728 }
1729
1730 #ifdef CONFIG_PCI
1731
1732 static const struct pci_device_id rocket_pci_ids[] = {
1733         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1734         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1735         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1736         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1737         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1738         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1739         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1740         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1741         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1742         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1743         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1744         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1745         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1746         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1747         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1748         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1749         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1750         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1751         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1752         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1753         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1754         { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1755         { }
1756 };
1757 MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1758
1759 /*  Resets the speaker controller on RocketModem II and III devices */
1760 static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1761 {
1762         ByteIO_t addr;
1763
1764         /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1765         if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1766                 addr = CtlP->AiopIO[0] + 0x4F;
1767                 sOutB(addr, 0);
1768         }
1769
1770         /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1771         if ((model == MODEL_UPCI_RM3_8PORT)
1772             || (model == MODEL_UPCI_RM3_4PORT)) {
1773                 addr = CtlP->AiopIO[0] + 0x88;
1774                 sOutB(addr, 0);
1775         }
1776 }
1777
1778 /***************************************************************************
1779 Function: sPCIInitController
1780 Purpose:  Initialization of controller global registers and controller
1781           structure.
1782 Call:     sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1783                           IRQNum,Frequency,PeriodicOnly)
1784           CONTROLLER_T *CtlP; Ptr to controller structure
1785           int CtlNum; Controller number
1786           ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1787              This list must be in the order the AIOPs will be found on the
1788              controller.  Once an AIOP in the list is not found, it is
1789              assumed that there are no more AIOPs on the controller.
1790           int AiopIOListSize; Number of addresses in AiopIOList
1791           int IRQNum; Interrupt Request number.  Can be any of the following:
1792                          0: Disable global interrupts
1793                          3: IRQ 3
1794                          4: IRQ 4
1795                          5: IRQ 5
1796                          9: IRQ 9
1797                          10: IRQ 10
1798                          11: IRQ 11
1799                          12: IRQ 12
1800                          15: IRQ 15
1801           Byte_t Frequency: A flag identifying the frequency
1802                    of the periodic interrupt, can be any one of the following:
1803                       FREQ_DIS - periodic interrupt disabled
1804                       FREQ_137HZ - 137 Hertz
1805                       FREQ_69HZ - 69 Hertz
1806                       FREQ_34HZ - 34 Hertz
1807                       FREQ_17HZ - 17 Hertz
1808                       FREQ_9HZ - 9 Hertz
1809                       FREQ_4HZ - 4 Hertz
1810                    If IRQNum is set to 0 the Frequency parameter is
1811                    overidden, it is forced to a value of FREQ_DIS.
1812           int PeriodicOnly: 1 if all interrupts except the periodic
1813                                interrupt are to be blocked.
1814                             0 is both the periodic interrupt and
1815                                other channel interrupts are allowed.
1816                             If IRQNum is set to 0 the PeriodicOnly parameter is
1817                                overidden, it is forced to a value of 0.
1818 Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
1819                initialization failed.
1820
1821 Comments:
1822           If periodic interrupts are to be disabled but AIOP interrupts
1823           are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1824
1825           If interrupts are to be completely disabled set IRQNum to 0.
1826
1827           Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1828           invalid combination.
1829
1830           This function performs initialization of global interrupt modes,
1831           but it does not actually enable global interrupts.  To enable
1832           and disable global interrupts use functions sEnGlobalInt() and
1833           sDisGlobalInt().  Enabling of global interrupts is normally not
1834           done until all other initializations are complete.
1835
1836           Even if interrupts are globally enabled, they must also be
1837           individually enabled for each channel that is to generate
1838           interrupts.
1839
1840 Warnings: No range checking on any of the parameters is done.
1841
1842           No context switches are allowed while executing this function.
1843
1844           After this function all AIOPs on the controller are disabled,
1845           they can be enabled with sEnAiop().
1846 */
1847 static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1848                               ByteIO_t * AiopIOList, int AiopIOListSize,
1849                               WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1850                               int PeriodicOnly, int altChanRingIndicator,
1851                               int UPCIRingInd)
1852 {
1853         int i;
1854         ByteIO_t io;
1855
1856         CtlP->AltChanRingIndicator = altChanRingIndicator;
1857         CtlP->UPCIRingInd = UPCIRingInd;
1858         CtlP->CtlNum = CtlNum;
1859         CtlP->CtlID = CTLID_0001;       /* controller release 1 */
1860         CtlP->BusType = isPCI;  /* controller release 1 */
1861
1862         if (ConfigIO) {
1863                 CtlP->isUPCI = 1;
1864                 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1865                 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1866                 CtlP->AiopIntrBits = upci_aiop_intr_bits;
1867         } else {
1868                 CtlP->isUPCI = 0;
1869                 CtlP->PCIIO =
1870                     (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1871                 CtlP->AiopIntrBits = aiop_intr_bits;
1872         }
1873
1874         sPCIControllerEOI(CtlP);        /* clear EOI if warm init */
1875         /* Init AIOPs */
1876         CtlP->NumAiop = 0;
1877         for (i = 0; i < AiopIOListSize; i++) {
1878                 io = AiopIOList[i];
1879                 CtlP->AiopIO[i] = (WordIO_t) io;
1880                 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1881
1882                 CtlP->AiopID[i] = sReadAiopID(io);      /* read AIOP ID */
1883                 if (CtlP->AiopID[i] == AIOPID_NULL)     /* if AIOP does not exist */
1884                         break;  /* done looking for AIOPs */
1885
1886                 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
1887                 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);    /* clock prescaler */
1888                 sOutB(io + _INDX_DATA, sClockPrescale);
1889                 CtlP->NumAiop++;        /* bump count of AIOPs */
1890         }
1891
1892         if (CtlP->NumAiop == 0)
1893                 return (-1);
1894         else
1895                 return (CtlP->NumAiop);
1896 }
1897
1898 /*
1899  *  Called when a PCI card is found.  Retrieves and stores model information,
1900  *  init's aiopic and serial port hardware.
1901  *  Inputs:  i is the board number (0-n)
1902  */
1903 static __init int register_PCI(int i, struct pci_dev *dev)
1904 {
1905         int num_aiops, aiop, max_num_aiops, num_chan, chan;
1906         unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1907         CONTROLLER_t *ctlp;
1908
1909         int fast_clock = 0;
1910         int altChanRingIndicator = 0;
1911         int ports_per_aiop = 8;
1912         WordIO_t ConfigIO = 0;
1913         ByteIO_t UPCIRingInd = 0;
1914
1915         if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1916             pci_enable_device(dev))
1917                 return 0;
1918
1919         rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1920
1921         rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1922         rocketModel[i].loadrm2 = 0;
1923         rocketModel[i].startingPortNumber = nextLineNumber;
1924
1925         /*  Depending on the model, set up some config variables */
1926         switch (dev->device) {
1927         case PCI_DEVICE_ID_RP4QUAD:
1928                 max_num_aiops = 1;
1929                 ports_per_aiop = 4;
1930                 rocketModel[i].model = MODEL_RP4QUAD;
1931                 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1932                 rocketModel[i].numPorts = 4;
1933                 break;
1934         case PCI_DEVICE_ID_RP8OCTA:
1935                 max_num_aiops = 1;
1936                 rocketModel[i].model = MODEL_RP8OCTA;
1937                 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1938                 rocketModel[i].numPorts = 8;
1939                 break;
1940         case PCI_DEVICE_ID_URP8OCTA:
1941                 max_num_aiops = 1;
1942                 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1943                 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1944                 rocketModel[i].numPorts = 8;
1945                 break;
1946         case PCI_DEVICE_ID_RP8INTF:
1947                 max_num_aiops = 1;
1948                 rocketModel[i].model = MODEL_RP8INTF;
1949                 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1950                 rocketModel[i].numPorts = 8;
1951                 break;
1952         case PCI_DEVICE_ID_URP8INTF:
1953                 max_num_aiops = 1;
1954                 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1955                 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1956                 rocketModel[i].numPorts = 8;
1957                 break;
1958         case PCI_DEVICE_ID_RP8J:
1959                 max_num_aiops = 1;
1960                 rocketModel[i].model = MODEL_RP8J;
1961                 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1962                 rocketModel[i].numPorts = 8;
1963                 break;
1964         case PCI_DEVICE_ID_RP4J:
1965                 max_num_aiops = 1;
1966                 ports_per_aiop = 4;
1967                 rocketModel[i].model = MODEL_RP4J;
1968                 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1969                 rocketModel[i].numPorts = 4;
1970                 break;
1971         case PCI_DEVICE_ID_RP8SNI:
1972                 max_num_aiops = 1;
1973                 rocketModel[i].model = MODEL_RP8SNI;
1974                 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1975                 rocketModel[i].numPorts = 8;
1976                 break;
1977         case PCI_DEVICE_ID_RP16SNI:
1978                 max_num_aiops = 2;
1979                 rocketModel[i].model = MODEL_RP16SNI;
1980                 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1981                 rocketModel[i].numPorts = 16;
1982                 break;
1983         case PCI_DEVICE_ID_RP16INTF:
1984                 max_num_aiops = 2;
1985                 rocketModel[i].model = MODEL_RP16INTF;
1986                 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1987                 rocketModel[i].numPorts = 16;
1988                 break;
1989         case PCI_DEVICE_ID_URP16INTF:
1990                 max_num_aiops = 2;
1991                 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1992                 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1993                 rocketModel[i].numPorts = 16;
1994                 break;
1995         case PCI_DEVICE_ID_CRP16INTF:
1996                 max_num_aiops = 2;
1997                 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1998                 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1999                 rocketModel[i].numPorts = 16;
2000                 break;
2001         case PCI_DEVICE_ID_RP32INTF:
2002                 max_num_aiops = 4;
2003                 rocketModel[i].model = MODEL_RP32INTF;
2004                 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
2005                 rocketModel[i].numPorts = 32;
2006                 break;
2007         case PCI_DEVICE_ID_URP32INTF:
2008                 max_num_aiops = 4;
2009                 rocketModel[i].model = MODEL_UPCI_RP32INTF;
2010                 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
2011                 rocketModel[i].numPorts = 32;
2012                 break;
2013         case PCI_DEVICE_ID_RPP4:
2014                 max_num_aiops = 1;
2015                 ports_per_aiop = 4;
2016                 altChanRingIndicator++;
2017                 fast_clock++;
2018                 rocketModel[i].model = MODEL_RPP4;
2019                 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2020                 rocketModel[i].numPorts = 4;
2021                 break;
2022         case PCI_DEVICE_ID_RPP8:
2023                 max_num_aiops = 2;
2024                 ports_per_aiop = 4;
2025                 altChanRingIndicator++;
2026                 fast_clock++;
2027                 rocketModel[i].model = MODEL_RPP8;
2028                 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2029                 rocketModel[i].numPorts = 8;
2030                 break;
2031         case PCI_DEVICE_ID_RP2_232:
2032                 max_num_aiops = 1;
2033                 ports_per_aiop = 2;
2034                 altChanRingIndicator++;
2035                 fast_clock++;
2036                 rocketModel[i].model = MODEL_RP2_232;
2037                 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2038                 rocketModel[i].numPorts = 2;
2039                 break;
2040         case PCI_DEVICE_ID_RP2_422:
2041                 max_num_aiops = 1;
2042                 ports_per_aiop = 2;
2043                 altChanRingIndicator++;
2044                 fast_clock++;
2045                 rocketModel[i].model = MODEL_RP2_422;
2046                 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2047                 rocketModel[i].numPorts = 2;
2048                 break;
2049         case PCI_DEVICE_ID_RP6M:
2050
2051                 max_num_aiops = 1;
2052                 ports_per_aiop = 6;
2053
2054                 /*  If revision is 1, the rocketmodem flash must be loaded.
2055                  *  If it is 2 it is a "socketed" version. */
2056                 if (dev->revision == 1) {
2057                         rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2058                         rocketModel[i].loadrm2 = 1;
2059                 } else {
2060                         rcktpt_type[i] = ROCKET_TYPE_MODEM;
2061                 }
2062
2063                 rocketModel[i].model = MODEL_RP6M;
2064                 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2065                 rocketModel[i].numPorts = 6;
2066                 break;
2067         case PCI_DEVICE_ID_RP4M:
2068                 max_num_aiops = 1;
2069                 ports_per_aiop = 4;
2070                 if (dev->revision == 1) {
2071                         rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2072                         rocketModel[i].loadrm2 = 1;
2073                 } else {
2074                         rcktpt_type[i] = ROCKET_TYPE_MODEM;
2075                 }
2076
2077                 rocketModel[i].model = MODEL_RP4M;
2078                 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2079                 rocketModel[i].numPorts = 4;
2080                 break;
2081         default:
2082                 max_num_aiops = 0;
2083                 break;
2084         }
2085
2086         /*
2087          * Check for UPCI boards.
2088          */
2089
2090         switch (dev->device) {
2091         case PCI_DEVICE_ID_URP32INTF:
2092         case PCI_DEVICE_ID_URP8INTF:
2093         case PCI_DEVICE_ID_URP16INTF:
2094         case PCI_DEVICE_ID_CRP16INTF:
2095         case PCI_DEVICE_ID_URP8OCTA:
2096                 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2097                 ConfigIO = pci_resource_start(dev, 1);
2098                 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2099                         UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2100
2101                         /*
2102                          * Check for octa or quad cable.
2103                          */
2104                         if (!
2105                             (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2106                              PCI_GPIO_CTRL_8PORT)) {
2107                                 ports_per_aiop = 4;
2108                                 rocketModel[i].numPorts = 4;
2109                         }
2110                 }
2111                 break;
2112         case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2113                 max_num_aiops = 1;
2114                 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2115                 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2116                 rocketModel[i].numPorts = 8;
2117                 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2118                 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2119                 ConfigIO = pci_resource_start(dev, 1);
2120                 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2121                 break;
2122         case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2123                 max_num_aiops = 1;
2124                 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2125                 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2126                 rocketModel[i].numPorts = 4;
2127                 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2128                 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2129                 ConfigIO = pci_resource_start(dev, 1);
2130                 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2131                 break;
2132         default:
2133                 break;
2134         }
2135
2136         if (fast_clock) {
2137                 sClockPrescale = 0x12;  /* mod 2 (divide by 3) */
2138                 rp_baud_base[i] = 921600;
2139         } else {
2140                 /*
2141                  * If support_low_speed is set, use the slow clock
2142                  * prescale, which supports 50 bps
2143                  */
2144                 if (support_low_speed) {
2145                         /* mod 9 (divide by 10) prescale */
2146                         sClockPrescale = 0x19;
2147                         rp_baud_base[i] = 230400;
2148                 } else {
2149                         /* mod 4 (divide by 5) prescale */
2150                         sClockPrescale = 0x14;
2151                         rp_baud_base[i] = 460800;
2152                 }
2153         }
2154
2155         for (aiop = 0; aiop < max_num_aiops; aiop++)
2156                 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2157         ctlp = sCtlNumToCtlPtr(i);
2158         num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2159         for (aiop = 0; aiop < max_num_aiops; aiop++)
2160                 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2161
2162         dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2163                 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2164                 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2165                 rocketModel[i].startingPortNumber,
2166                 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2167
2168         if (num_aiops <= 0) {
2169                 rcktpt_io_addr[i] = 0;
2170                 return (0);
2171         }
2172         is_PCI[i] = 1;
2173
2174         /*  Reset the AIOPIC, init the serial ports */
2175         for (aiop = 0; aiop < num_aiops; aiop++) {
2176                 sResetAiopByNum(ctlp, aiop);
2177                 num_chan = ports_per_aiop;
2178                 for (chan = 0; chan < num_chan; chan++)
2179                         init_r_port(i, aiop, chan, dev);
2180         }
2181
2182         /*  Rocket modems must be reset */
2183         if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2184             (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2185             (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2186                 num_chan = ports_per_aiop;
2187                 for (chan = 0; chan < num_chan; chan++)
2188                         sPCIModemReset(ctlp, chan, 1);
2189                 msleep(500);
2190                 for (chan = 0; chan < num_chan; chan++)
2191                         sPCIModemReset(ctlp, chan, 0);
2192                 msleep(500);
2193                 rmSpeakerReset(ctlp, rocketModel[i].model);
2194         }
2195         return (1);
2196 }
2197
2198 /*
2199  *  Probes for PCI cards, inits them if found
2200  *  Input:   board_found = number of ISA boards already found, or the
2201  *           starting board number
2202  *  Returns: Number of PCI boards found
2203  */
2204 static int __init init_PCI(int boards_found)
2205 {
2206         struct pci_dev *dev = NULL;
2207         int count = 0;
2208
2209         /*  Work through the PCI device list, pulling out ours */
2210         while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2211                 if (register_PCI(count + boards_found, dev))
2212                         count++;
2213         }
2214         return (count);
2215 }
2216
2217 #endif                          /* CONFIG_PCI */
2218
2219 /*
2220  *  Probes for ISA cards
2221  *  Input:   i = the board number to look for
2222  *  Returns: 1 if board found, 0 else
2223  */
2224 static int __init init_ISA(int i)
2225 {
2226         int num_aiops, num_chan = 0, total_num_chan = 0;
2227         int aiop, chan;
2228         unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2229         CONTROLLER_t *ctlp;
2230         char *type_string;
2231
2232         /*  If io_addr is zero, no board configured */
2233         if (rcktpt_io_addr[i] == 0)
2234                 return (0);
2235
2236         /*  Reserve the IO region */
2237         if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2238                 printk(KERN_ERR "Unable to reserve IO region for configured "
2239                                 "ISA RocketPort at address 0x%lx, board not "
2240                                 "installed...\n", rcktpt_io_addr[i]);
2241                 rcktpt_io_addr[i] = 0;
2242                 return (0);
2243         }
2244
2245         ctlp = sCtlNumToCtlPtr(i);
2246
2247         ctlp->boardType = rcktpt_type[i];
2248
2249         switch (rcktpt_type[i]) {
2250         case ROCKET_TYPE_PC104:
2251                 type_string = "(PC104)";
2252                 break;
2253         case ROCKET_TYPE_MODEM:
2254                 type_string = "(RocketModem)";
2255                 break;
2256         case ROCKET_TYPE_MODEMII:
2257                 type_string = "(RocketModem II)";
2258                 break;
2259         default:
2260                 type_string = "";
2261                 break;
2262         }
2263
2264         /*
2265          * If support_low_speed is set, use the slow clock prescale,
2266          * which supports 50 bps
2267          */
2268         if (support_low_speed) {
2269                 sClockPrescale = 0x19;  /* mod 9 (divide by 10) prescale */
2270                 rp_baud_base[i] = 230400;
2271         } else {
2272                 sClockPrescale = 0x14;  /* mod 4 (divide by 5) prescale */
2273                 rp_baud_base[i] = 460800;
2274         }
2275
2276         for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2277                 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2278
2279         num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio,  MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2280
2281         if (ctlp->boardType == ROCKET_TYPE_PC104) {
2282                 sEnAiop(ctlp, 2);       /* only one AIOPIC, but these */
2283                 sEnAiop(ctlp, 3);       /* CSels used for other stuff */
2284         }
2285
2286         /*  If something went wrong initing the AIOP's release the ISA IO memory */
2287         if (num_aiops <= 0) {
2288                 release_region(rcktpt_io_addr[i], 64);
2289                 rcktpt_io_addr[i] = 0;
2290                 return (0);
2291         }
2292   
2293         rocketModel[i].startingPortNumber = nextLineNumber;
2294
2295         for (aiop = 0; aiop < num_aiops; aiop++) {
2296                 sResetAiopByNum(ctlp, aiop);
2297                 sEnAiop(ctlp, aiop);
2298                 num_chan = sGetAiopNumChan(ctlp, aiop);
2299                 total_num_chan += num_chan;
2300                 for (chan = 0; chan < num_chan; chan++)
2301                         init_r_port(i, aiop, chan, NULL);
2302         }
2303         is_PCI[i] = 0;
2304         if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2305                 num_chan = sGetAiopNumChan(ctlp, 0);
2306                 total_num_chan = num_chan;
2307                 for (chan = 0; chan < num_chan; chan++)
2308                         sModemReset(ctlp, chan, 1);
2309                 msleep(500);
2310                 for (chan = 0; chan < num_chan; chan++)
2311                         sModemReset(ctlp, chan, 0);
2312                 msleep(500);
2313                 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2314         } else {
2315                 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2316         }
2317         rocketModel[i].numPorts = total_num_chan;
2318         rocketModel[i].model = MODEL_ISA;
2319
2320         printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 
2321                i, rcktpt_io_addr[i], num_aiops, type_string);
2322
2323         printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2324                rocketModel[i].modelString,
2325                rocketModel[i].startingPortNumber,
2326                rocketModel[i].startingPortNumber +
2327                rocketModel[i].numPorts - 1);
2328
2329         return (1);
2330 }
2331
2332 static const struct tty_operations rocket_ops = {
2333         .open = rp_open,
2334         .close = rp_close,
2335         .write = rp_write,
2336         .put_char = rp_put_char,
2337         .write_room = rp_write_room,
2338         .chars_in_buffer = rp_chars_in_buffer,
2339         .flush_buffer = rp_flush_buffer,
2340         .ioctl = rp_ioctl,
2341         .throttle = rp_throttle,
2342         .unthrottle = rp_unthrottle,
2343         .set_termios = rp_set_termios,
2344         .stop = rp_stop,
2345         .start = rp_start,
2346         .hangup = rp_hangup,
2347         .break_ctl = rp_break,
2348         .send_xchar = rp_send_xchar,
2349         .wait_until_sent = rp_wait_until_sent,
2350         .tiocmget = rp_tiocmget,
2351         .tiocmset = rp_tiocmset,
2352 };
2353
2354 static const struct tty_port_operations rocket_port_ops = {
2355         .carrier_raised = carrier_raised,
2356         .dtr_rts = dtr_rts,
2357 };
2358
2359 /*
2360  * The module "startup" routine; it's run when the module is loaded.
2361  */
2362 static int __init rp_init(void)
2363 {
2364         int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2365
2366         printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2367                ROCKET_VERSION, ROCKET_DATE);
2368
2369         rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2370         if (!rocket_driver)
2371                 goto err;
2372
2373         /*
2374          *  If board 1 is non-zero, there is at least one ISA configured.  If controller is 
2375          *  zero, use the default controller IO address of board1 + 0x40.
2376          */
2377         if (board1) {
2378                 if (controller == 0)
2379                         controller = board1 + 0x40;
2380         } else {
2381                 controller = 0;  /*  Used as a flag, meaning no ISA boards */
2382         }
2383
2384         /*  If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2385         if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2386                 printk(KERN_ERR "Unable to reserve IO region for first "
2387                         "configured ISA RocketPort controller 0x%lx.  "
2388                         "Driver exiting\n", controller);
2389                 ret = -EBUSY;
2390                 goto err_tty;
2391         }
2392
2393         /*  Store ISA variable retrieved from command line or .conf file. */
2394         rcktpt_io_addr[0] = board1;
2395         rcktpt_io_addr[1] = board2;
2396         rcktpt_io_addr[2] = board3;
2397         rcktpt_io_addr[3] = board4;
2398
2399         rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2400         rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2401         rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2402         rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2403         rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2404         rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2405         rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2406         rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2407
2408         /*
2409          * Set up the tty driver structure and then register this
2410          * driver with the tty layer.
2411          */
2412
2413         rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2414         rocket_driver->name = "ttyR";
2415         rocket_driver->driver_name = "Comtrol RocketPort";
2416         rocket_driver->major = TTY_ROCKET_MAJOR;
2417         rocket_driver->minor_start = 0;
2418         rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2419         rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2420         rocket_driver->init_termios = tty_std_termios;
2421         rocket_driver->init_termios.c_cflag =
2422             B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2423         rocket_driver->init_termios.c_ispeed = 9600;
2424         rocket_driver->init_termios.c_ospeed = 9600;
2425 #ifdef ROCKET_SOFT_FLOW
2426         rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2427 #endif
2428         tty_set_operations(rocket_driver, &rocket_ops);
2429
2430         ret = tty_register_driver(rocket_driver);
2431         if (ret < 0) {
2432                 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2433                 goto err_controller;
2434         }
2435
2436 #ifdef ROCKET_DEBUG_OPEN
2437         printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2438 #endif
2439
2440         /*
2441          *  OK, let's probe each of the controllers looking for boards.  Any boards found
2442          *  will be initialized here.
2443          */
2444         isa_boards_found = 0;
2445         pci_boards_found = 0;
2446
2447         for (i = 0; i < NUM_BOARDS; i++) {
2448                 if (init_ISA(i))
2449                         isa_boards_found++;
2450         }
2451
2452 #ifdef CONFIG_PCI
2453         if (isa_boards_found < NUM_BOARDS)
2454                 pci_boards_found = init_PCI(isa_boards_found);
2455 #endif
2456
2457         max_board = pci_boards_found + isa_boards_found;
2458
2459         if (max_board == 0) {
2460                 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2461                 ret = -ENXIO;
2462                 goto err_ttyu;
2463         }
2464
2465         return 0;
2466 err_ttyu:
2467         tty_unregister_driver(rocket_driver);
2468 err_controller:
2469         if (controller)
2470                 release_region(controller, 4);
2471 err_tty:
2472         put_tty_driver(rocket_driver);
2473 err:
2474         return ret;
2475 }
2476
2477
2478 static void rp_cleanup_module(void)
2479 {
2480         int retval;
2481         int i;
2482
2483         del_timer_sync(&rocket_timer);
2484
2485         retval = tty_unregister_driver(rocket_driver);
2486         if (retval)
2487                 printk(KERN_ERR "Error %d while trying to unregister "
2488                        "rocketport driver\n", -retval);
2489
2490         for (i = 0; i < MAX_RP_PORTS; i++)
2491                 if (rp_table[i]) {
2492                         tty_unregister_device(rocket_driver, i);
2493                         tty_port_destroy(&rp_table[i]->port);
2494                         kfree(rp_table[i]);
2495                 }
2496
2497         put_tty_driver(rocket_driver);
2498
2499         for (i = 0; i < NUM_BOARDS; i++) {
2500                 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2501                         continue;
2502                 release_region(rcktpt_io_addr[i], 64);
2503         }
2504         if (controller)
2505                 release_region(controller, 4);
2506 }
2507
2508 /***************************************************************************
2509 Function: sInitController
2510 Purpose:  Initialization of controller global registers and controller
2511           structure.
2512 Call:     sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2513                           IRQNum,Frequency,PeriodicOnly)
2514           CONTROLLER_T *CtlP; Ptr to controller structure
2515           int CtlNum; Controller number
2516           ByteIO_t MudbacIO; Mudbac base I/O address.
2517           ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2518              This list must be in the order the AIOPs will be found on the
2519              controller.  Once an AIOP in the list is not found, it is
2520              assumed that there are no more AIOPs on the controller.
2521           int AiopIOListSize; Number of addresses in AiopIOList
2522           int IRQNum; Interrupt Request number.  Can be any of the following:
2523                          0: Disable global interrupts
2524                          3: IRQ 3
2525                          4: IRQ 4
2526                          5: IRQ 5
2527                          9: IRQ 9
2528                          10: IRQ 10
2529                          11: IRQ 11
2530                          12: IRQ 12
2531                          15: IRQ 15
2532           Byte_t Frequency: A flag identifying the frequency
2533                    of the periodic interrupt, can be any one of the following:
2534                       FREQ_DIS - periodic interrupt disabled
2535                       FREQ_137HZ - 137 Hertz
2536                       FREQ_69HZ - 69 Hertz
2537                       FREQ_34HZ - 34 Hertz
2538                       FREQ_17HZ - 17 Hertz
2539                       FREQ_9HZ - 9 Hertz
2540                       FREQ_4HZ - 4 Hertz
2541                    If IRQNum is set to 0 the Frequency parameter is
2542                    overidden, it is forced to a value of FREQ_DIS.
2543           int PeriodicOnly: 1 if all interrupts except the periodic
2544                                interrupt are to be blocked.
2545                             0 is both the periodic interrupt and
2546                                other channel interrupts are allowed.
2547                             If IRQNum is set to 0 the PeriodicOnly parameter is
2548                                overidden, it is forced to a value of 0.
2549 Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
2550                initialization failed.
2551
2552 Comments:
2553           If periodic interrupts are to be disabled but AIOP interrupts
2554           are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2555
2556           If interrupts are to be completely disabled set IRQNum to 0.
2557
2558           Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2559           invalid combination.
2560
2561           This function performs initialization of global interrupt modes,
2562           but it does not actually enable global interrupts.  To enable
2563           and disable global interrupts use functions sEnGlobalInt() and
2564           sDisGlobalInt().  Enabling of global interrupts is normally not
2565           done until all other initializations are complete.
2566
2567           Even if interrupts are globally enabled, they must also be
2568           individually enabled for each channel that is to generate
2569           interrupts.
2570
2571 Warnings: No range checking on any of the parameters is done.
2572
2573           No context switches are allowed while executing this function.
2574
2575           After this function all AIOPs on the controller are disabled,
2576           they can be enabled with sEnAiop().
2577 */
2578 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2579                            ByteIO_t * AiopIOList, int AiopIOListSize,
2580                            int IRQNum, Byte_t Frequency, int PeriodicOnly)
2581 {
2582         int i;
2583         ByteIO_t io;
2584         int done;
2585
2586         CtlP->AiopIntrBits = aiop_intr_bits;
2587         CtlP->AltChanRingIndicator = 0;
2588         CtlP->CtlNum = CtlNum;
2589         CtlP->CtlID = CTLID_0001;       /* controller release 1 */
2590         CtlP->BusType = isISA;
2591         CtlP->MBaseIO = MudbacIO;
2592         CtlP->MReg1IO = MudbacIO + 1;
2593         CtlP->MReg2IO = MudbacIO + 2;
2594         CtlP->MReg3IO = MudbacIO + 3;
2595 #if 1
2596         CtlP->MReg2 = 0;        /* interrupt disable */
2597         CtlP->MReg3 = 0;        /* no periodic interrupts */
2598 #else
2599         if (sIRQMap[IRQNum] == 0) {     /* interrupts globally disabled */
2600                 CtlP->MReg2 = 0;        /* interrupt disable */
2601                 CtlP->MReg3 = 0;        /* no periodic interrupts */
2602         } else {
2603                 CtlP->MReg2 = sIRQMap[IRQNum];  /* set IRQ number */
2604                 CtlP->MReg3 = Frequency;        /* set frequency */
2605                 if (PeriodicOnly) {     /* periodic interrupt only */
2606                         CtlP->MReg3 |= PERIODIC_ONLY;
2607                 }
2608         }
2609 #endif
2610         sOutB(CtlP->MReg2IO, CtlP->MReg2);
2611         sOutB(CtlP->MReg3IO, CtlP->MReg3);
2612         sControllerEOI(CtlP);   /* clear EOI if warm init */
2613         /* Init AIOPs */
2614         CtlP->NumAiop = 0;
2615         for (i = done = 0; i < AiopIOListSize; i++) {
2616                 io = AiopIOList[i];
2617                 CtlP->AiopIO[i] = (WordIO_t) io;
2618                 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2619                 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2620                 sOutB(MudbacIO, (Byte_t) (io >> 6));    /* set up AIOP I/O in MUDBAC */
2621                 if (done)
2622                         continue;
2623                 sEnAiop(CtlP, i);       /* enable the AIOP */
2624                 CtlP->AiopID[i] = sReadAiopID(io);      /* read AIOP ID */
2625                 if (CtlP->AiopID[i] == AIOPID_NULL)     /* if AIOP does not exist */
2626                         done = 1;       /* done looking for AIOPs */
2627                 else {
2628                         CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2629                         sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);    /* clock prescaler */
2630                         sOutB(io + _INDX_DATA, sClockPrescale);
2631                         CtlP->NumAiop++;        /* bump count of AIOPs */
2632                 }
2633                 sDisAiop(CtlP, i);      /* disable AIOP */
2634         }
2635
2636         if (CtlP->NumAiop == 0)
2637                 return (-1);
2638         else
2639                 return (CtlP->NumAiop);
2640 }
2641
2642 /***************************************************************************
2643 Function: sReadAiopID
2644 Purpose:  Read the AIOP idenfication number directly from an AIOP.
2645 Call:     sReadAiopID(io)
2646           ByteIO_t io: AIOP base I/O address
2647 Return:   int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2648                  is replace by an identifying number.
2649           Flag AIOPID_NULL if no valid AIOP is found
2650 Warnings: No context switches are allowed while executing this function.
2651
2652 */
2653 static int sReadAiopID(ByteIO_t io)
2654 {
2655         Byte_t AiopID;          /* ID byte from AIOP */
2656
2657         sOutB(io + _CMD_REG, RESET_ALL);        /* reset AIOP */
2658         sOutB(io + _CMD_REG, 0x0);
2659         AiopID = sInW(io + _CHN_STAT0) & 0x07;
2660         if (AiopID == 0x06)
2661                 return (1);
2662         else                    /* AIOP does not exist */
2663                 return (-1);
2664 }
2665
2666 /***************************************************************************
2667 Function: sReadAiopNumChan
2668 Purpose:  Read the number of channels available in an AIOP directly from
2669           an AIOP.
2670 Call:     sReadAiopNumChan(io)
2671           WordIO_t io: AIOP base I/O address
2672 Return:   int: The number of channels available
2673 Comments: The number of channels is determined by write/reads from identical
2674           offsets within the SRAM address spaces for channels 0 and 4.
2675           If the channel 4 space is mirrored to channel 0 it is a 4 channel
2676           AIOP, otherwise it is an 8 channel.
2677 Warnings: No context switches are allowed while executing this function.
2678 */
2679 static int sReadAiopNumChan(WordIO_t io)
2680 {
2681         Word_t x;
2682         static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2683
2684         /* write to chan 0 SRAM */
2685         out32((DWordIO_t) io + _INDX_ADDR, R);
2686         sOutW(io + _INDX_ADDR, 0);      /* read from SRAM, chan 0 */
2687         x = sInW(io + _INDX_DATA);
2688         sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2689         if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2690                 return (8);
2691         else
2692                 return (4);
2693 }
2694
2695 /***************************************************************************
2696 Function: sInitChan
2697 Purpose:  Initialization of a channel and channel structure
2698 Call:     sInitChan(CtlP,ChP,AiopNum,ChanNum)
2699           CONTROLLER_T *CtlP; Ptr to controller structure
2700           CHANNEL_T *ChP; Ptr to channel structure
2701           int AiopNum; AIOP number within controller
2702           int ChanNum; Channel number within AIOP
2703 Return:   int: 1 if initialization succeeded, 0 if it fails because channel
2704                number exceeds number of channels available in AIOP.
2705 Comments: This function must be called before a channel can be used.
2706 Warnings: No range checking on any of the parameters is done.
2707
2708           No context switches are allowed while executing this function.
2709 */
2710 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2711                      int ChanNum)
2712 {
2713         int i;
2714         WordIO_t AiopIO;
2715         WordIO_t ChIOOff;
2716         Byte_t *ChR;
2717         Word_t ChOff;
2718         static Byte_t R[4];
2719         int brd9600;
2720
2721         if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2722                 return 0;       /* exceeds num chans in AIOP */
2723
2724         /* Channel, AIOP, and controller identifiers */
2725         ChP->CtlP = CtlP;
2726         ChP->ChanID = CtlP->AiopID[AiopNum];
2727         ChP->AiopNum = AiopNum;
2728         ChP->ChanNum = ChanNum;
2729
2730         /* Global direct addresses */
2731         AiopIO = CtlP->AiopIO[AiopNum];
2732         ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2733         ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2734         ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2735         ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2736         ChP->IndexData = AiopIO + _INDX_DATA;
2737
2738         /* Channel direct addresses */
2739         ChIOOff = AiopIO + ChP->ChanNum * 2;
2740         ChP->TxRxData = ChIOOff + _TD0;
2741         ChP->ChanStat = ChIOOff + _CHN_STAT0;
2742         ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2743         ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2744
2745         /* Initialize the channel from the RData array */
2746         for (i = 0; i < RDATASIZE; i += 4) {
2747                 R[0] = RData[i];
2748                 R[1] = RData[i + 1] + 0x10 * ChanNum;
2749                 R[2] = RData[i + 2];
2750                 R[3] = RData[i + 3];
2751                 out32(ChP->IndexAddr, R);
2752         }
2753
2754         ChR = ChP->R;
2755         for (i = 0; i < RREGDATASIZE; i += 4) {
2756                 ChR[i] = RRegData[i];
2757                 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2758                 ChR[i + 2] = RRegData[i + 2];
2759                 ChR[i + 3] = RRegData[i + 3];
2760         }
2761
2762         /* Indexed registers */
2763         ChOff = (Word_t) ChanNum *0x1000;
2764
2765         if (sClockPrescale == 0x14)
2766                 brd9600 = 47;
2767         else
2768                 brd9600 = 23;
2769
2770         ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2771         ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2772         ChP->BaudDiv[2] = (Byte_t) brd9600;
2773         ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2774         out32(ChP->IndexAddr, ChP->BaudDiv);
2775
2776         ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2777         ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2778         ChP->TxControl[2] = 0;
2779         ChP->TxControl[3] = 0;
2780         out32(ChP->IndexAddr, ChP->TxControl);
2781
2782         ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2783         ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2784         ChP->RxControl[2] = 0;
2785         ChP->RxControl[3] = 0;
2786         out32(ChP->IndexAddr, ChP->RxControl);
2787
2788         ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2789         ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2790         ChP->TxEnables[2] = 0;
2791         ChP->TxEnables[3] = 0;
2792         out32(ChP->IndexAddr, ChP->TxEnables);
2793
2794         ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2795         ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2796         ChP->TxCompare[2] = 0;
2797         ChP->TxCompare[3] = 0;
2798         out32(ChP->IndexAddr, ChP->TxCompare);
2799
2800         ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2801         ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2802         ChP->TxReplace1[2] = 0;
2803         ChP->TxReplace1[3] = 0;
2804         out32(ChP->IndexAddr, ChP->TxReplace1);
2805
2806         ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2807         ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2808         ChP->TxReplace2[2] = 0;
2809         ChP->TxReplace2[3] = 0;
2810         out32(ChP->IndexAddr, ChP->TxReplace2);
2811
2812         ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2813         ChP->TxFIFO = ChOff + _TX_FIFO;
2814
2815         sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT);  /* apply reset Tx FIFO count */
2816         sOutB(ChP->Cmd, (Byte_t) ChanNum);      /* remove reset Tx FIFO count */
2817         sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);      /* clear Tx in/out ptrs */
2818         sOutW(ChP->IndexData, 0);
2819         ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2820         ChP->RxFIFO = ChOff + _RX_FIFO;
2821
2822         sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT);  /* apply reset Rx FIFO count */
2823         sOutB(ChP->Cmd, (Byte_t) ChanNum);      /* remove reset Rx FIFO count */
2824         sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);      /* clear Rx out ptr */
2825         sOutW(ChP->IndexData, 0);
2826         sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);  /* clear Rx in ptr */
2827         sOutW(ChP->IndexData, 0);
2828         ChP->TxPrioCnt = ChOff + _TXP_CNT;
2829         sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2830         sOutB(ChP->IndexData, 0);
2831         ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2832         sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2833         sOutB(ChP->IndexData, 0);
2834         ChP->TxPrioBuf = ChOff + _TXP_BUF;
2835         sEnRxProcessor(ChP);    /* start the Rx processor */
2836
2837         return 1;
2838 }
2839
2840 /***************************************************************************
2841 Function: sStopRxProcessor
2842 Purpose:  Stop the receive processor from processing a channel.
2843 Call:     sStopRxProcessor(ChP)
2844           CHANNEL_T *ChP; Ptr to channel structure
2845
2846 Comments: The receive processor can be started again with sStartRxProcessor().
2847           This function causes the receive processor to skip over the
2848           stopped channel.  It does not stop it from processing other channels.
2849
2850 Warnings: No context switches are allowed while executing this function.
2851
2852           Do not leave the receive processor stopped for more than one
2853           character time.
2854
2855           After calling this function a delay of 4 uS is required to ensure
2856           that the receive processor is no longer processing this channel.
2857 */
2858 static void sStopRxProcessor(CHANNEL_T * ChP)
2859 {
2860         Byte_t R[4];
2861
2862         R[0] = ChP->R[0];
2863         R[1] = ChP->R[1];
2864         R[2] = 0x0a;
2865         R[3] = ChP->R[3];
2866         out32(ChP->IndexAddr, R);
2867 }
2868
2869 /***************************************************************************
2870 Function: sFlushRxFIFO
2871 Purpose:  Flush the Rx FIFO
2872 Call:     sFlushRxFIFO(ChP)
2873           CHANNEL_T *ChP; Ptr to channel structure
2874 Return:   void
2875 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2876           while it is being flushed the receive processor is stopped
2877           and the transmitter is disabled.  After these operations a
2878           4 uS delay is done before clearing the pointers to allow
2879           the receive processor to stop.  These items are handled inside
2880           this function.
2881 Warnings: No context switches are allowed while executing this function.
2882 */
2883 static void sFlushRxFIFO(CHANNEL_T * ChP)
2884 {
2885         int i;
2886         Byte_t Ch;              /* channel number within AIOP */
2887         int RxFIFOEnabled;      /* 1 if Rx FIFO enabled */
2888
2889         if (sGetRxCnt(ChP) == 0)        /* Rx FIFO empty */
2890                 return;         /* don't need to flush */
2891
2892         RxFIFOEnabled = 0;
2893         if (ChP->R[0x32] == 0x08) {     /* Rx FIFO is enabled */
2894                 RxFIFOEnabled = 1;
2895                 sDisRxFIFO(ChP);        /* disable it */
2896                 for (i = 0; i < 2000 / 200; i++)        /* delay 2 uS to allow proc to disable FIFO */
2897                         sInB(ChP->IntChan);     /* depends on bus i/o timing */
2898         }
2899         sGetChanStatus(ChP);    /* clear any pending Rx errors in chan stat */
2900         Ch = (Byte_t) sGetChanNum(ChP);
2901         sOutB(ChP->Cmd, Ch | RESRXFCNT);        /* apply reset Rx FIFO count */
2902         sOutB(ChP->Cmd, Ch);    /* remove reset Rx FIFO count */
2903         sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);      /* clear Rx out ptr */
2904         sOutW(ChP->IndexData, 0);
2905         sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);  /* clear Rx in ptr */
2906         sOutW(ChP->IndexData, 0);
2907         if (RxFIFOEnabled)
2908                 sEnRxFIFO(ChP); /* enable Rx FIFO */
2909 }
2910
2911 /***************************************************************************
2912 Function: sFlushTxFIFO
2913 Purpose:  Flush the Tx FIFO
2914 Call:     sFlushTxFIFO(ChP)
2915           CHANNEL_T *ChP; Ptr to channel structure
2916 Return:   void
2917 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2918           while it is being flushed the receive processor is stopped
2919           and the transmitter is disabled.  After these operations a
2920           4 uS delay is done before clearing the pointers to allow
2921           the receive processor to stop.  These items are handled inside
2922           this function.
2923 Warnings: No context switches are allowed while executing this function.
2924 */
2925 static void sFlushTxFIFO(CHANNEL_T * ChP)
2926 {
2927         int i;
2928         Byte_t Ch;              /* channel number within AIOP */
2929         int TxEnabled;          /* 1 if transmitter enabled */
2930
2931         if (sGetTxCnt(ChP) == 0)        /* Tx FIFO empty */
2932                 return;         /* don't need to flush */
2933
2934         TxEnabled = 0;
2935         if (ChP->TxControl[3] & TX_ENABLE) {
2936                 TxEnabled = 1;
2937                 sDisTransmit(ChP);      /* disable transmitter */
2938         }
2939         sStopRxProcessor(ChP);  /* stop Rx processor */
2940         for (i = 0; i < 4000 / 200; i++)        /* delay 4 uS to allow proc to stop */
2941                 sInB(ChP->IntChan);     /* depends on bus i/o timing */
2942         Ch = (Byte_t) sGetChanNum(ChP);
2943         sOutB(ChP->Cmd, Ch | RESTXFCNT);        /* apply reset Tx FIFO count */
2944         sOutB(ChP->Cmd, Ch);    /* remove reset Tx FIFO count */
2945         sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);      /* clear Tx in/out ptrs */
2946         sOutW(ChP->IndexData, 0);
2947         if (TxEnabled)
2948                 sEnTransmit(ChP);       /* enable transmitter */
2949         sStartRxProcessor(ChP); /* restart Rx processor */
2950 }
2951
2952 /***************************************************************************
2953 Function: sWriteTxPrioByte
2954 Purpose:  Write a byte of priority transmit data to a channel
2955 Call:     sWriteTxPrioByte(ChP,Data)
2956           CHANNEL_T *ChP; Ptr to channel structure
2957           Byte_t Data; The transmit data byte
2958
2959 Return:   int: 1 if the bytes is successfully written, otherwise 0.
2960
2961 Comments: The priority byte is transmitted before any data in the Tx FIFO.
2962
2963 Warnings: No context switches are allowed while executing this function.
2964 */
2965 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2966 {
2967         Byte_t DWBuf[4];        /* buffer for double word writes */
2968         Word_t *WordPtr;        /* must be far because Win SS != DS */
2969         register DWordIO_t IndexAddr;
2970
2971         if (sGetTxCnt(ChP) > 1) {       /* write it to Tx priority buffer */
2972                 IndexAddr = ChP->IndexAddr;
2973                 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt);    /* get priority buffer status */
2974                 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2975                         return (0);     /* nothing sent */
2976
2977                 WordPtr = (Word_t *) (&DWBuf[0]);
2978                 *WordPtr = ChP->TxPrioBuf;      /* data byte address */
2979
2980                 DWBuf[2] = Data;        /* data byte value */
2981                 out32(IndexAddr, DWBuf);        /* write it out */
2982
2983                 *WordPtr = ChP->TxPrioCnt;      /* Tx priority count address */
2984
2985                 DWBuf[2] = PRI_PEND + 1;        /* indicate 1 byte pending */
2986                 DWBuf[3] = 0;   /* priority buffer pointer */
2987                 out32(IndexAddr, DWBuf);        /* write it out */
2988         } else {                /* write it to Tx FIFO */
2989
2990                 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2991         }
2992         return (1);             /* 1 byte sent */
2993 }
2994
2995 /***************************************************************************
2996 Function: sEnInterrupts
2997 Purpose:  Enable one or more interrupts for a channel
2998 Call:     sEnInterrupts(ChP,Flags)
2999           CHANNEL_T *ChP; Ptr to channel structure
3000           Word_t Flags: Interrupt enable flags, can be any combination
3001              of the following flags:
3002                 TXINT_EN:   Interrupt on Tx FIFO empty
3003                 RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
3004                             sSetRxTrigger())
3005                 SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
3006                 MCINT_EN:   Interrupt on modem input change
3007                 CHANINT_EN: Allow channel interrupt signal to the AIOP's
3008                             Interrupt Channel Register.
3009 Return:   void
3010 Comments: If an interrupt enable flag is set in Flags, that interrupt will be
3011           enabled.  If an interrupt enable flag is not set in Flags, that
3012           interrupt will not be changed.  Interrupts can be disabled with
3013           function sDisInterrupts().
3014
3015           This function sets the appropriate bit for the channel in the AIOP's
3016           Interrupt Mask Register if the CHANINT_EN flag is set.  This allows
3017           this channel's bit to be set in the AIOP's Interrupt Channel Register.
3018
3019           Interrupts must also be globally enabled before channel interrupts
3020           will be passed on to the host.  This is done with function
3021           sEnGlobalInt().
3022
3023           In some cases it may be desirable to disable interrupts globally but
3024           enable channel interrupts.  This would allow the global interrupt
3025           status register to be used to determine which AIOPs need service.
3026 */
3027 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3028 {
3029         Byte_t Mask;            /* Interrupt Mask Register */
3030
3031         ChP->RxControl[2] |=
3032             ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3033
3034         out32(ChP->IndexAddr, ChP->RxControl);
3035
3036         ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3037
3038         out32(ChP->IndexAddr, ChP->TxControl);
3039
3040         if (Flags & CHANINT_EN) {
3041                 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3042                 sOutB(ChP->IntMask, Mask);
3043         }
3044 }
3045
3046 /***************************************************************************
3047 Function: sDisInterrupts
3048 Purpose:  Disable one or more interrupts for a channel
3049 Call:     sDisInterrupts(ChP,Flags)
3050           CHANNEL_T *ChP; Ptr to channel structure
3051           Word_t Flags: Interrupt flags, can be any combination
3052              of the following flags:
3053                 TXINT_EN:   Interrupt on Tx FIFO empty
3054                 RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
3055                             sSetRxTrigger())
3056                 SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
3057                 MCINT_EN:   Interrupt on modem input change
3058                 CHANINT_EN: Disable channel interrupt signal to the
3059                             AIOP's Interrupt Channel Register.
3060 Return:   void
3061 Comments: If an interrupt flag is set in Flags, that interrupt will be
3062           disabled.  If an interrupt flag is not set in Flags, that
3063           interrupt will not be changed.  Interrupts can be enabled with
3064           function sEnInterrupts().
3065
3066           This function clears the appropriate bit for the channel in the AIOP's
3067           Interrupt Mask Register if the CHANINT_EN flag is set.  This blocks
3068           this channel's bit from being set in the AIOP's Interrupt Channel
3069           Register.
3070 */
3071 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3072 {
3073         Byte_t Mask;            /* Interrupt Mask Register */
3074
3075         ChP->RxControl[2] &=
3076             ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3077         out32(ChP->IndexAddr, ChP->RxControl);
3078         ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3079         out32(ChP->IndexAddr, ChP->TxControl);
3080
3081         if (Flags & CHANINT_EN) {
3082                 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3083                 sOutB(ChP->IntMask, Mask);
3084         }
3085 }
3086
3087 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3088 {
3089         sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3090 }
3091
3092 /*
3093  *  Not an official SSCI function, but how to reset RocketModems.
3094  *  ISA bus version
3095  */
3096 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3097 {
3098         ByteIO_t addr;
3099         Byte_t val;
3100
3101         addr = CtlP->AiopIO[0] + 0x400;
3102         val = sInB(CtlP->MReg3IO);
3103         /* if AIOP[1] is not enabled, enable it */
3104         if ((val & 2) == 0) {
3105                 val = sInB(CtlP->MReg2IO);
3106                 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3107                 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3108         }
3109
3110         sEnAiop(CtlP, 1);
3111         if (!on)
3112                 addr += 8;
3113         sOutB(addr + chan, 0);  /* apply or remove reset */
3114         sDisAiop(CtlP, 1);
3115 }
3116
3117 /*
3118  *  Not an official SSCI function, but how to reset RocketModems.
3119  *  PCI bus version
3120  */
3121 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3122 {
3123         ByteIO_t addr;
3124
3125         addr = CtlP->AiopIO[0] + 0x40;  /* 2nd AIOP */
3126         if (!on)
3127                 addr += 8;
3128         sOutB(addr + chan, 0);  /* apply or remove reset */
3129 }
3130
3131 /*  Returns the line number given the controller (board), aiop and channel number */
3132 static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3133 {
3134         return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3135 }
3136
3137 /*
3138  *  Stores the line number associated with a given controller (board), aiop
3139  *  and channel number.  
3140  *  Returns:  The line number assigned 
3141  */
3142 static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3143 {
3144         lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3145         return (nextLineNumber - 1);
3146 }