Merge tag 'lkdtm-next' of https://git.kernel.org/pub/scm/linux/kernel/git/kees/linux...
[linux-2.6-microblaze.git] / tools / testing / selftests / kvm / lib / riscv / processor.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V code
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  */
7
8 #include <linux/compiler.h>
9 #include <assert.h>
10
11 #include "kvm_util.h"
12 #include "../kvm_util_internal.h"
13 #include "processor.h"
14
15 #define DEFAULT_RISCV_GUEST_STACK_VADDR_MIN     0xac0000
16
17 static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
18 {
19         return (v + vm->page_size) & ~(vm->page_size - 1);
20 }
21
22 static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry)
23 {
24         return ((entry & PGTBL_PTE_ADDR_MASK) >> PGTBL_PTE_ADDR_SHIFT) <<
25                 PGTBL_PAGE_SIZE_SHIFT;
26 }
27
28 static uint64_t ptrs_per_pte(struct kvm_vm *vm)
29 {
30         return PGTBL_PAGE_SIZE / sizeof(uint64_t);
31 }
32
33 static uint64_t pte_index_mask[] = {
34         PGTBL_L0_INDEX_MASK,
35         PGTBL_L1_INDEX_MASK,
36         PGTBL_L2_INDEX_MASK,
37         PGTBL_L3_INDEX_MASK,
38 };
39
40 static uint32_t pte_index_shift[] = {
41         PGTBL_L0_INDEX_SHIFT,
42         PGTBL_L1_INDEX_SHIFT,
43         PGTBL_L2_INDEX_SHIFT,
44         PGTBL_L3_INDEX_SHIFT,
45 };
46
47 static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva, int level)
48 {
49         TEST_ASSERT(level > -1,
50                 "Negative page table level (%d) not possible", level);
51         TEST_ASSERT(level < vm->pgtable_levels,
52                 "Invalid page table level (%d)", level);
53
54         return (gva & pte_index_mask[level]) >> pte_index_shift[level];
55 }
56
57 void virt_pgd_alloc(struct kvm_vm *vm)
58 {
59         if (!vm->pgd_created) {
60                 vm_paddr_t paddr = vm_phy_pages_alloc(vm,
61                         page_align(vm, ptrs_per_pte(vm) * 8) / vm->page_size,
62                         KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
63                 vm->pgd = paddr;
64                 vm->pgd_created = true;
65         }
66 }
67
68 void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
69 {
70         uint64_t *ptep, next_ppn;
71         int level = vm->pgtable_levels - 1;
72
73         TEST_ASSERT((vaddr % vm->page_size) == 0,
74                 "Virtual address not on page boundary,\n"
75                 "  vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
76         TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
77                 (vaddr >> vm->page_shift)),
78                 "Invalid virtual address, vaddr: 0x%lx", vaddr);
79         TEST_ASSERT((paddr % vm->page_size) == 0,
80                 "Physical address not on page boundary,\n"
81                 "  paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
82         TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
83                 "Physical address beyond maximum supported,\n"
84                 "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
85                 paddr, vm->max_gfn, vm->page_size);
86
87         ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, vaddr, level) * 8;
88         if (!*ptep) {
89                 next_ppn = vm_alloc_page_table(vm) >> PGTBL_PAGE_SIZE_SHIFT;
90                 *ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
91                         PGTBL_PTE_VALID_MASK;
92         }
93         level--;
94
95         while (level > -1) {
96                 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
97                        pte_index(vm, vaddr, level) * 8;
98                 if (!*ptep && level > 0) {
99                         next_ppn = vm_alloc_page_table(vm) >>
100                                    PGTBL_PAGE_SIZE_SHIFT;
101                         *ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
102                                 PGTBL_PTE_VALID_MASK;
103                 }
104                 level--;
105         }
106
107         paddr = paddr >> PGTBL_PAGE_SIZE_SHIFT;
108         *ptep = (paddr << PGTBL_PTE_ADDR_SHIFT) |
109                 PGTBL_PTE_PERM_MASK | PGTBL_PTE_VALID_MASK;
110 }
111
112 vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
113 {
114         uint64_t *ptep;
115         int level = vm->pgtable_levels - 1;
116
117         if (!vm->pgd_created)
118                 goto unmapped_gva;
119
120         ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, gva, level) * 8;
121         if (!ptep)
122                 goto unmapped_gva;
123         level--;
124
125         while (level > -1) {
126                 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
127                        pte_index(vm, gva, level) * 8;
128                 if (!ptep)
129                         goto unmapped_gva;
130                 level--;
131         }
132
133         return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
134
135 unmapped_gva:
136         TEST_FAIL("No mapping for vm virtual address gva: 0x%lx level: %d",
137                   gva, level);
138         exit(1);
139 }
140
141 static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent,
142                      uint64_t page, int level)
143 {
144 #ifdef DEBUG
145         static const char *const type[] = { "pte", "pmd", "pud", "p4d"};
146         uint64_t pte, *ptep;
147
148         if (level < 0)
149                 return;
150
151         for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
152                 ptep = addr_gpa2hva(vm, pte);
153                 if (!*ptep)
154                         continue;
155                 fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "",
156                         type[level], pte, *ptep, ptep);
157                 pte_dump(stream, vm, indent + 1,
158                          pte_addr(vm, *ptep), level - 1);
159         }
160 #endif
161 }
162
163 void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
164 {
165         int level = vm->pgtable_levels - 1;
166         uint64_t pgd, *ptep;
167
168         if (!vm->pgd_created)
169                 return;
170
171         for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pte(vm) * 8; pgd += 8) {
172                 ptep = addr_gpa2hva(vm, pgd);
173                 if (!*ptep)
174                         continue;
175                 fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "",
176                         pgd, *ptep, ptep);
177                 pte_dump(stream, vm, indent + 1,
178                          pte_addr(vm, *ptep), level - 1);
179         }
180 }
181
182 void riscv_vcpu_mmu_setup(struct kvm_vm *vm, int vcpuid)
183 {
184         unsigned long satp;
185
186         /*
187          * The RISC-V Sv48 MMU mode supports 56-bit physical address
188          * for 48-bit virtual address with 4KB last level page size.
189          */
190         switch (vm->mode) {
191         case VM_MODE_P52V48_4K:
192         case VM_MODE_P48V48_4K:
193         case VM_MODE_P40V48_4K:
194                 break;
195         default:
196                 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
197         }
198
199         satp = (vm->pgd >> PGTBL_PAGE_SIZE_SHIFT) & SATP_PPN;
200         satp |= SATP_MODE_48;
201
202         set_reg(vm, vcpuid, RISCV_CSR_REG(satp), satp);
203 }
204
205 void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
206 {
207         struct kvm_riscv_core core;
208
209         get_reg(vm, vcpuid, RISCV_CORE_REG(mode), &core.mode);
210         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.pc), &core.regs.pc);
211         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.ra), &core.regs.ra);
212         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.sp), &core.regs.sp);
213         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.gp), &core.regs.gp);
214         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.tp), &core.regs.tp);
215         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t0), &core.regs.t0);
216         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t1), &core.regs.t1);
217         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t2), &core.regs.t2);
218         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s0), &core.regs.s0);
219         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s1), &core.regs.s1);
220         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a0), &core.regs.a0);
221         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a1), &core.regs.a1);
222         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a2), &core.regs.a2);
223         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a3), &core.regs.a3);
224         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a4), &core.regs.a4);
225         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a5), &core.regs.a5);
226         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a6), &core.regs.a6);
227         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.a7), &core.regs.a7);
228         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s2), &core.regs.s2);
229         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s3), &core.regs.s3);
230         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s4), &core.regs.s4);
231         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s5), &core.regs.s5);
232         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s6), &core.regs.s6);
233         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s7), &core.regs.s7);
234         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s8), &core.regs.s8);
235         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s9), &core.regs.s9);
236         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s10), &core.regs.s10);
237         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.s11), &core.regs.s11);
238         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t3), &core.regs.t3);
239         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t4), &core.regs.t4);
240         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t5), &core.regs.t5);
241         get_reg(vm, vcpuid, RISCV_CORE_REG(regs.t6), &core.regs.t6);
242
243         fprintf(stream,
244                 " MODE:  0x%lx\n", core.mode);
245         fprintf(stream,
246                 " PC: 0x%016lx   RA: 0x%016lx SP: 0x%016lx GP: 0x%016lx\n",
247                 core.regs.pc, core.regs.ra, core.regs.sp, core.regs.gp);
248         fprintf(stream,
249                 " TP: 0x%016lx   T0: 0x%016lx T1: 0x%016lx T2: 0x%016lx\n",
250                 core.regs.tp, core.regs.t0, core.regs.t1, core.regs.t2);
251         fprintf(stream,
252                 " S0: 0x%016lx   S1: 0x%016lx A0: 0x%016lx A1: 0x%016lx\n",
253                 core.regs.s0, core.regs.s1, core.regs.a0, core.regs.a1);
254         fprintf(stream,
255                 " A2: 0x%016lx   A3: 0x%016lx A4: 0x%016lx A5: 0x%016lx\n",
256                 core.regs.a2, core.regs.a3, core.regs.a4, core.regs.a5);
257         fprintf(stream,
258                 " A6: 0x%016lx   A7: 0x%016lx S2: 0x%016lx S3: 0x%016lx\n",
259                 core.regs.a6, core.regs.a7, core.regs.s2, core.regs.s3);
260         fprintf(stream,
261                 " S4: 0x%016lx   S5: 0x%016lx S6: 0x%016lx S7: 0x%016lx\n",
262                 core.regs.s4, core.regs.s5, core.regs.s6, core.regs.s7);
263         fprintf(stream,
264                 " S8: 0x%016lx   S9: 0x%016lx S10: 0x%016lx S11: 0x%016lx\n",
265                 core.regs.s8, core.regs.s9, core.regs.s10, core.regs.s11);
266         fprintf(stream,
267                 " T3: 0x%016lx   T4: 0x%016lx T5: 0x%016lx T6: 0x%016lx\n",
268                 core.regs.t3, core.regs.t4, core.regs.t5, core.regs.t6);
269 }
270
271 static void __aligned(16) guest_hang(void)
272 {
273         while (1)
274                 ;
275 }
276
277 void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
278 {
279         int r;
280         size_t stack_size = vm->page_size == 4096 ?
281                                         DEFAULT_STACK_PGS * vm->page_size :
282                                         vm->page_size;
283         unsigned long stack_vaddr = vm_vaddr_alloc(vm, stack_size,
284                                         DEFAULT_RISCV_GUEST_STACK_VADDR_MIN);
285         unsigned long current_gp = 0;
286         struct kvm_mp_state mps;
287
288         vm_vcpu_add(vm, vcpuid);
289         riscv_vcpu_mmu_setup(vm, vcpuid);
290
291         /*
292          * With SBI HSM support in KVM RISC-V, all secondary VCPUs are
293          * powered-off by default so we ensure that all secondary VCPUs
294          * are powered-on using KVM_SET_MP_STATE ioctl().
295          */
296         mps.mp_state = KVM_MP_STATE_RUNNABLE;
297         r = _vcpu_ioctl(vm, vcpuid, KVM_SET_MP_STATE, &mps);
298         TEST_ASSERT(!r, "IOCTL KVM_SET_MP_STATE failed (error %d)", r);
299
300         /* Setup global pointer of guest to be same as the host */
301         asm volatile (
302                 "add %0, gp, zero" : "=r" (current_gp) : : "memory");
303         set_reg(vm, vcpuid, RISCV_CORE_REG(regs.gp), current_gp);
304
305         /* Setup stack pointer and program counter of guest */
306         set_reg(vm, vcpuid, RISCV_CORE_REG(regs.sp),
307                 stack_vaddr + stack_size);
308         set_reg(vm, vcpuid, RISCV_CORE_REG(regs.pc),
309                 (unsigned long)guest_code);
310
311         /* Setup default exception vector of guest */
312         set_reg(vm, vcpuid, RISCV_CSR_REG(stvec),
313                 (unsigned long)guest_hang);
314 }
315
316 void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
317 {
318         va_list ap;
319         uint64_t id = RISCV_CORE_REG(regs.a0);
320         int i;
321
322         TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
323                     "  num: %u\n", num);
324
325         va_start(ap, num);
326
327         for (i = 0; i < num; i++) {
328                 switch (i) {
329                 case 0:
330                         id = RISCV_CORE_REG(regs.a0);
331                         break;
332                 case 1:
333                         id = RISCV_CORE_REG(regs.a1);
334                         break;
335                 case 2:
336                         id = RISCV_CORE_REG(regs.a2);
337                         break;
338                 case 3:
339                         id = RISCV_CORE_REG(regs.a3);
340                         break;
341                 case 4:
342                         id = RISCV_CORE_REG(regs.a4);
343                         break;
344                 case 5:
345                         id = RISCV_CORE_REG(regs.a5);
346                         break;
347                 case 6:
348                         id = RISCV_CORE_REG(regs.a6);
349                         break;
350                 case 7:
351                         id = RISCV_CORE_REG(regs.a7);
352                         break;
353                 };
354                 set_reg(vm, vcpuid, id, va_arg(ap, uint64_t));
355         }
356
357         va_end(ap);
358 }
359
360 void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
361 {
362 }