x86/platform/uv: Recognize UV5 hubless system identifier
[linux-2.6-microblaze.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 #include "cgroup.h"
37
38 #include <linux/ctype.h>
39 #include <symbol/kallsyms.h>
40 #include <linux/mman.h>
41 #include <linux/string.h>
42 #include <linux/zalloc.h>
43
44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
45
46 static struct dso *machine__kernel_dso(struct machine *machine)
47 {
48         return machine->vmlinux_map->dso;
49 }
50
51 static void dsos__init(struct dsos *dsos)
52 {
53         INIT_LIST_HEAD(&dsos->head);
54         dsos->root = RB_ROOT;
55         init_rwsem(&dsos->lock);
56 }
57
58 static void machine__threads_init(struct machine *machine)
59 {
60         int i;
61
62         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63                 struct threads *threads = &machine->threads[i];
64                 threads->entries = RB_ROOT_CACHED;
65                 init_rwsem(&threads->lock);
66                 threads->nr = 0;
67                 INIT_LIST_HEAD(&threads->dead);
68                 threads->last_match = NULL;
69         }
70 }
71
72 static int machine__set_mmap_name(struct machine *machine)
73 {
74         if (machine__is_host(machine))
75                 machine->mmap_name = strdup("[kernel.kallsyms]");
76         else if (machine__is_default_guest(machine))
77                 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78         else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79                           machine->pid) < 0)
80                 machine->mmap_name = NULL;
81
82         return machine->mmap_name ? 0 : -ENOMEM;
83 }
84
85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
86 {
87         int err = -ENOMEM;
88
89         memset(machine, 0, sizeof(*machine));
90         maps__init(&machine->kmaps, machine);
91         RB_CLEAR_NODE(&machine->rb_node);
92         dsos__init(&machine->dsos);
93
94         machine__threads_init(machine);
95
96         machine->vdso_info = NULL;
97         machine->env = NULL;
98
99         machine->pid = pid;
100
101         machine->id_hdr_size = 0;
102         machine->kptr_restrict_warned = false;
103         machine->comm_exec = false;
104         machine->kernel_start = 0;
105         machine->vmlinux_map = NULL;
106
107         machine->root_dir = strdup(root_dir);
108         if (machine->root_dir == NULL)
109                 return -ENOMEM;
110
111         if (machine__set_mmap_name(machine))
112                 goto out;
113
114         if (pid != HOST_KERNEL_ID) {
115                 struct thread *thread = machine__findnew_thread(machine, -1,
116                                                                 pid);
117                 char comm[64];
118
119                 if (thread == NULL)
120                         goto out;
121
122                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123                 thread__set_comm(thread, comm, 0);
124                 thread__put(thread);
125         }
126
127         machine->current_tid = NULL;
128         err = 0;
129
130 out:
131         if (err) {
132                 zfree(&machine->root_dir);
133                 zfree(&machine->mmap_name);
134         }
135         return 0;
136 }
137
138 struct machine *machine__new_host(void)
139 {
140         struct machine *machine = malloc(sizeof(*machine));
141
142         if (machine != NULL) {
143                 machine__init(machine, "", HOST_KERNEL_ID);
144
145                 if (machine__create_kernel_maps(machine) < 0)
146                         goto out_delete;
147         }
148
149         return machine;
150 out_delete:
151         free(machine);
152         return NULL;
153 }
154
155 struct machine *machine__new_kallsyms(void)
156 {
157         struct machine *machine = machine__new_host();
158         /*
159          * FIXME:
160          * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161          *    ask for not using the kcore parsing code, once this one is fixed
162          *    to create a map per module.
163          */
164         if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165                 machine__delete(machine);
166                 machine = NULL;
167         }
168
169         return machine;
170 }
171
172 static void dsos__purge(struct dsos *dsos)
173 {
174         struct dso *pos, *n;
175
176         down_write(&dsos->lock);
177
178         list_for_each_entry_safe(pos, n, &dsos->head, node) {
179                 RB_CLEAR_NODE(&pos->rb_node);
180                 pos->root = NULL;
181                 list_del_init(&pos->node);
182                 dso__put(pos);
183         }
184
185         up_write(&dsos->lock);
186 }
187
188 static void dsos__exit(struct dsos *dsos)
189 {
190         dsos__purge(dsos);
191         exit_rwsem(&dsos->lock);
192 }
193
194 void machine__delete_threads(struct machine *machine)
195 {
196         struct rb_node *nd;
197         int i;
198
199         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200                 struct threads *threads = &machine->threads[i];
201                 down_write(&threads->lock);
202                 nd = rb_first_cached(&threads->entries);
203                 while (nd) {
204                         struct thread *t = rb_entry(nd, struct thread, rb_node);
205
206                         nd = rb_next(nd);
207                         __machine__remove_thread(machine, t, false);
208                 }
209                 up_write(&threads->lock);
210         }
211 }
212
213 void machine__exit(struct machine *machine)
214 {
215         int i;
216
217         if (machine == NULL)
218                 return;
219
220         machine__destroy_kernel_maps(machine);
221         maps__exit(&machine->kmaps);
222         dsos__exit(&machine->dsos);
223         machine__exit_vdso(machine);
224         zfree(&machine->root_dir);
225         zfree(&machine->mmap_name);
226         zfree(&machine->current_tid);
227
228         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229                 struct threads *threads = &machine->threads[i];
230                 struct thread *thread, *n;
231                 /*
232                  * Forget about the dead, at this point whatever threads were
233                  * left in the dead lists better have a reference count taken
234                  * by who is using them, and then, when they drop those references
235                  * and it finally hits zero, thread__put() will check and see that
236                  * its not in the dead threads list and will not try to remove it
237                  * from there, just calling thread__delete() straight away.
238                  */
239                 list_for_each_entry_safe(thread, n, &threads->dead, node)
240                         list_del_init(&thread->node);
241
242                 exit_rwsem(&threads->lock);
243         }
244 }
245
246 void machine__delete(struct machine *machine)
247 {
248         if (machine) {
249                 machine__exit(machine);
250                 free(machine);
251         }
252 }
253
254 void machines__init(struct machines *machines)
255 {
256         machine__init(&machines->host, "", HOST_KERNEL_ID);
257         machines->guests = RB_ROOT_CACHED;
258 }
259
260 void machines__exit(struct machines *machines)
261 {
262         machine__exit(&machines->host);
263         /* XXX exit guest */
264 }
265
266 struct machine *machines__add(struct machines *machines, pid_t pid,
267                               const char *root_dir)
268 {
269         struct rb_node **p = &machines->guests.rb_root.rb_node;
270         struct rb_node *parent = NULL;
271         struct machine *pos, *machine = malloc(sizeof(*machine));
272         bool leftmost = true;
273
274         if (machine == NULL)
275                 return NULL;
276
277         if (machine__init(machine, root_dir, pid) != 0) {
278                 free(machine);
279                 return NULL;
280         }
281
282         while (*p != NULL) {
283                 parent = *p;
284                 pos = rb_entry(parent, struct machine, rb_node);
285                 if (pid < pos->pid)
286                         p = &(*p)->rb_left;
287                 else {
288                         p = &(*p)->rb_right;
289                         leftmost = false;
290                 }
291         }
292
293         rb_link_node(&machine->rb_node, parent, p);
294         rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295
296         return machine;
297 }
298
299 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
300 {
301         struct rb_node *nd;
302
303         machines->host.comm_exec = comm_exec;
304
305         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
307
308                 machine->comm_exec = comm_exec;
309         }
310 }
311
312 struct machine *machines__find(struct machines *machines, pid_t pid)
313 {
314         struct rb_node **p = &machines->guests.rb_root.rb_node;
315         struct rb_node *parent = NULL;
316         struct machine *machine;
317         struct machine *default_machine = NULL;
318
319         if (pid == HOST_KERNEL_ID)
320                 return &machines->host;
321
322         while (*p != NULL) {
323                 parent = *p;
324                 machine = rb_entry(parent, struct machine, rb_node);
325                 if (pid < machine->pid)
326                         p = &(*p)->rb_left;
327                 else if (pid > machine->pid)
328                         p = &(*p)->rb_right;
329                 else
330                         return machine;
331                 if (!machine->pid)
332                         default_machine = machine;
333         }
334
335         return default_machine;
336 }
337
338 struct machine *machines__findnew(struct machines *machines, pid_t pid)
339 {
340         char path[PATH_MAX];
341         const char *root_dir = "";
342         struct machine *machine = machines__find(machines, pid);
343
344         if (machine && (machine->pid == pid))
345                 goto out;
346
347         if ((pid != HOST_KERNEL_ID) &&
348             (pid != DEFAULT_GUEST_KERNEL_ID) &&
349             (symbol_conf.guestmount)) {
350                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351                 if (access(path, R_OK)) {
352                         static struct strlist *seen;
353
354                         if (!seen)
355                                 seen = strlist__new(NULL, NULL);
356
357                         if (!strlist__has_entry(seen, path)) {
358                                 pr_err("Can't access file %s\n", path);
359                                 strlist__add(seen, path);
360                         }
361                         machine = NULL;
362                         goto out;
363                 }
364                 root_dir = path;
365         }
366
367         machine = machines__add(machines, pid, root_dir);
368 out:
369         return machine;
370 }
371
372 void machines__process_guests(struct machines *machines,
373                               machine__process_t process, void *data)
374 {
375         struct rb_node *nd;
376
377         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
378                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
379                 process(pos, data);
380         }
381 }
382
383 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
384 {
385         struct rb_node *node;
386         struct machine *machine;
387
388         machines->host.id_hdr_size = id_hdr_size;
389
390         for (node = rb_first_cached(&machines->guests); node;
391              node = rb_next(node)) {
392                 machine = rb_entry(node, struct machine, rb_node);
393                 machine->id_hdr_size = id_hdr_size;
394         }
395
396         return;
397 }
398
399 static void machine__update_thread_pid(struct machine *machine,
400                                        struct thread *th, pid_t pid)
401 {
402         struct thread *leader;
403
404         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
405                 return;
406
407         th->pid_ = pid;
408
409         if (th->pid_ == th->tid)
410                 return;
411
412         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
413         if (!leader)
414                 goto out_err;
415
416         if (!leader->maps)
417                 leader->maps = maps__new(machine);
418
419         if (!leader->maps)
420                 goto out_err;
421
422         if (th->maps == leader->maps)
423                 return;
424
425         if (th->maps) {
426                 /*
427                  * Maps are created from MMAP events which provide the pid and
428                  * tid.  Consequently there never should be any maps on a thread
429                  * with an unknown pid.  Just print an error if there are.
430                  */
431                 if (!maps__empty(th->maps))
432                         pr_err("Discarding thread maps for %d:%d\n",
433                                th->pid_, th->tid);
434                 maps__put(th->maps);
435         }
436
437         th->maps = maps__get(leader->maps);
438 out_put:
439         thread__put(leader);
440         return;
441 out_err:
442         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
443         goto out_put;
444 }
445
446 /*
447  * Front-end cache - TID lookups come in blocks,
448  * so most of the time we dont have to look up
449  * the full rbtree:
450  */
451 static struct thread*
452 __threads__get_last_match(struct threads *threads, struct machine *machine,
453                           int pid, int tid)
454 {
455         struct thread *th;
456
457         th = threads->last_match;
458         if (th != NULL) {
459                 if (th->tid == tid) {
460                         machine__update_thread_pid(machine, th, pid);
461                         return thread__get(th);
462                 }
463
464                 threads->last_match = NULL;
465         }
466
467         return NULL;
468 }
469
470 static struct thread*
471 threads__get_last_match(struct threads *threads, struct machine *machine,
472                         int pid, int tid)
473 {
474         struct thread *th = NULL;
475
476         if (perf_singlethreaded)
477                 th = __threads__get_last_match(threads, machine, pid, tid);
478
479         return th;
480 }
481
482 static void
483 __threads__set_last_match(struct threads *threads, struct thread *th)
484 {
485         threads->last_match = th;
486 }
487
488 static void
489 threads__set_last_match(struct threads *threads, struct thread *th)
490 {
491         if (perf_singlethreaded)
492                 __threads__set_last_match(threads, th);
493 }
494
495 /*
496  * Caller must eventually drop thread->refcnt returned with a successful
497  * lookup/new thread inserted.
498  */
499 static struct thread *____machine__findnew_thread(struct machine *machine,
500                                                   struct threads *threads,
501                                                   pid_t pid, pid_t tid,
502                                                   bool create)
503 {
504         struct rb_node **p = &threads->entries.rb_root.rb_node;
505         struct rb_node *parent = NULL;
506         struct thread *th;
507         bool leftmost = true;
508
509         th = threads__get_last_match(threads, machine, pid, tid);
510         if (th)
511                 return th;
512
513         while (*p != NULL) {
514                 parent = *p;
515                 th = rb_entry(parent, struct thread, rb_node);
516
517                 if (th->tid == tid) {
518                         threads__set_last_match(threads, th);
519                         machine__update_thread_pid(machine, th, pid);
520                         return thread__get(th);
521                 }
522
523                 if (tid < th->tid)
524                         p = &(*p)->rb_left;
525                 else {
526                         p = &(*p)->rb_right;
527                         leftmost = false;
528                 }
529         }
530
531         if (!create)
532                 return NULL;
533
534         th = thread__new(pid, tid);
535         if (th != NULL) {
536                 rb_link_node(&th->rb_node, parent, p);
537                 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
538
539                 /*
540                  * We have to initialize maps separately after rb tree is updated.
541                  *
542                  * The reason is that we call machine__findnew_thread
543                  * within thread__init_maps to find the thread
544                  * leader and that would screwed the rb tree.
545                  */
546                 if (thread__init_maps(th, machine)) {
547                         rb_erase_cached(&th->rb_node, &threads->entries);
548                         RB_CLEAR_NODE(&th->rb_node);
549                         thread__put(th);
550                         return NULL;
551                 }
552                 /*
553                  * It is now in the rbtree, get a ref
554                  */
555                 thread__get(th);
556                 threads__set_last_match(threads, th);
557                 ++threads->nr;
558         }
559
560         return th;
561 }
562
563 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
564 {
565         return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566 }
567
568 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
569                                        pid_t tid)
570 {
571         struct threads *threads = machine__threads(machine, tid);
572         struct thread *th;
573
574         down_write(&threads->lock);
575         th = __machine__findnew_thread(machine, pid, tid);
576         up_write(&threads->lock);
577         return th;
578 }
579
580 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
581                                     pid_t tid)
582 {
583         struct threads *threads = machine__threads(machine, tid);
584         struct thread *th;
585
586         down_read(&threads->lock);
587         th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
588         up_read(&threads->lock);
589         return th;
590 }
591
592 struct comm *machine__thread_exec_comm(struct machine *machine,
593                                        struct thread *thread)
594 {
595         if (machine->comm_exec)
596                 return thread__exec_comm(thread);
597         else
598                 return thread__comm(thread);
599 }
600
601 int machine__process_comm_event(struct machine *machine, union perf_event *event,
602                                 struct perf_sample *sample)
603 {
604         struct thread *thread = machine__findnew_thread(machine,
605                                                         event->comm.pid,
606                                                         event->comm.tid);
607         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608         int err = 0;
609
610         if (exec)
611                 machine->comm_exec = true;
612
613         if (dump_trace)
614                 perf_event__fprintf_comm(event, stdout);
615
616         if (thread == NULL ||
617             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619                 err = -1;
620         }
621
622         thread__put(thread);
623
624         return err;
625 }
626
627 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
628                                       union perf_event *event,
629                                       struct perf_sample *sample __maybe_unused)
630 {
631         struct thread *thread = machine__findnew_thread(machine,
632                                                         event->namespaces.pid,
633                                                         event->namespaces.tid);
634         int err = 0;
635
636         WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
637                   "\nWARNING: kernel seems to support more namespaces than perf"
638                   " tool.\nTry updating the perf tool..\n\n");
639
640         WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
641                   "\nWARNING: perf tool seems to support more namespaces than"
642                   " the kernel.\nTry updating the kernel..\n\n");
643
644         if (dump_trace)
645                 perf_event__fprintf_namespaces(event, stdout);
646
647         if (thread == NULL ||
648             thread__set_namespaces(thread, sample->time, &event->namespaces)) {
649                 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
650                 err = -1;
651         }
652
653         thread__put(thread);
654
655         return err;
656 }
657
658 int machine__process_cgroup_event(struct machine *machine,
659                                   union perf_event *event,
660                                   struct perf_sample *sample __maybe_unused)
661 {
662         struct cgroup *cgrp;
663
664         if (dump_trace)
665                 perf_event__fprintf_cgroup(event, stdout);
666
667         cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
668         if (cgrp == NULL)
669                 return -ENOMEM;
670
671         return 0;
672 }
673
674 int machine__process_lost_event(struct machine *machine __maybe_unused,
675                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
676 {
677         dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678                     event->lost.id, event->lost.lost);
679         return 0;
680 }
681
682 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
683                                         union perf_event *event, struct perf_sample *sample)
684 {
685         dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
686                     sample->id, event->lost_samples.lost);
687         return 0;
688 }
689
690 static struct dso *machine__findnew_module_dso(struct machine *machine,
691                                                struct kmod_path *m,
692                                                const char *filename)
693 {
694         struct dso *dso;
695
696         down_write(&machine->dsos.lock);
697
698         dso = __dsos__find(&machine->dsos, m->name, true);
699         if (!dso) {
700                 dso = __dsos__addnew(&machine->dsos, m->name);
701                 if (dso == NULL)
702                         goto out_unlock;
703
704                 dso__set_module_info(dso, m, machine);
705                 dso__set_long_name(dso, strdup(filename), true);
706                 dso->kernel = DSO_SPACE__KERNEL;
707         }
708
709         dso__get(dso);
710 out_unlock:
711         up_write(&machine->dsos.lock);
712         return dso;
713 }
714
715 int machine__process_aux_event(struct machine *machine __maybe_unused,
716                                union perf_event *event)
717 {
718         if (dump_trace)
719                 perf_event__fprintf_aux(event, stdout);
720         return 0;
721 }
722
723 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
724                                         union perf_event *event)
725 {
726         if (dump_trace)
727                 perf_event__fprintf_itrace_start(event, stdout);
728         return 0;
729 }
730
731 int machine__process_switch_event(struct machine *machine __maybe_unused,
732                                   union perf_event *event)
733 {
734         if (dump_trace)
735                 perf_event__fprintf_switch(event, stdout);
736         return 0;
737 }
738
739 static int machine__process_ksymbol_register(struct machine *machine,
740                                              union perf_event *event,
741                                              struct perf_sample *sample __maybe_unused)
742 {
743         struct symbol *sym;
744         struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
745
746         if (!map) {
747                 struct dso *dso = dso__new(event->ksymbol.name);
748
749                 if (dso) {
750                         dso->kernel = DSO_SPACE__KERNEL;
751                         map = map__new2(0, dso);
752                 }
753
754                 if (!dso || !map) {
755                         dso__put(dso);
756                         return -ENOMEM;
757                 }
758
759                 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
760                         map->dso->binary_type = DSO_BINARY_TYPE__OOL;
761                         map->dso->data.file_size = event->ksymbol.len;
762                         dso__set_loaded(map->dso);
763                 }
764
765                 map->start = event->ksymbol.addr;
766                 map->end = map->start + event->ksymbol.len;
767                 maps__insert(&machine->kmaps, map);
768                 dso__set_loaded(dso);
769
770                 if (is_bpf_image(event->ksymbol.name)) {
771                         dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
772                         dso__set_long_name(dso, "", false);
773                 }
774         }
775
776         sym = symbol__new(map->map_ip(map, map->start),
777                           event->ksymbol.len,
778                           0, 0, event->ksymbol.name);
779         if (!sym)
780                 return -ENOMEM;
781         dso__insert_symbol(map->dso, sym);
782         return 0;
783 }
784
785 static int machine__process_ksymbol_unregister(struct machine *machine,
786                                                union perf_event *event,
787                                                struct perf_sample *sample __maybe_unused)
788 {
789         struct map *map;
790
791         map = maps__find(&machine->kmaps, event->ksymbol.addr);
792         if (map)
793                 maps__remove(&machine->kmaps, map);
794
795         return 0;
796 }
797
798 int machine__process_ksymbol(struct machine *machine __maybe_unused,
799                              union perf_event *event,
800                              struct perf_sample *sample)
801 {
802         if (dump_trace)
803                 perf_event__fprintf_ksymbol(event, stdout);
804
805         if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
806                 return machine__process_ksymbol_unregister(machine, event,
807                                                            sample);
808         return machine__process_ksymbol_register(machine, event, sample);
809 }
810
811 int machine__process_text_poke(struct machine *machine, union perf_event *event,
812                                struct perf_sample *sample __maybe_unused)
813 {
814         struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
815         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
816
817         if (dump_trace)
818                 perf_event__fprintf_text_poke(event, machine, stdout);
819
820         if (!event->text_poke.new_len)
821                 return 0;
822
823         if (cpumode != PERF_RECORD_MISC_KERNEL) {
824                 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
825                 return 0;
826         }
827
828         if (map && map->dso) {
829                 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
830                 int ret;
831
832                 /*
833                  * Kernel maps might be changed when loading symbols so loading
834                  * must be done prior to using kernel maps.
835                  */
836                 map__load(map);
837                 ret = dso__data_write_cache_addr(map->dso, map, machine,
838                                                  event->text_poke.addr,
839                                                  new_bytes,
840                                                  event->text_poke.new_len);
841                 if (ret != event->text_poke.new_len)
842                         pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
843                                  event->text_poke.addr);
844         } else {
845                 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
846                          event->text_poke.addr);
847         }
848
849         return 0;
850 }
851
852 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
853                                               const char *filename)
854 {
855         struct map *map = NULL;
856         struct kmod_path m;
857         struct dso *dso;
858
859         if (kmod_path__parse_name(&m, filename))
860                 return NULL;
861
862         dso = machine__findnew_module_dso(machine, &m, filename);
863         if (dso == NULL)
864                 goto out;
865
866         map = map__new2(start, dso);
867         if (map == NULL)
868                 goto out;
869
870         maps__insert(&machine->kmaps, map);
871
872         /* Put the map here because maps__insert alread got it */
873         map__put(map);
874 out:
875         /* put the dso here, corresponding to  machine__findnew_module_dso */
876         dso__put(dso);
877         zfree(&m.name);
878         return map;
879 }
880
881 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
882 {
883         struct rb_node *nd;
884         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
885
886         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
887                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
888                 ret += __dsos__fprintf(&pos->dsos.head, fp);
889         }
890
891         return ret;
892 }
893
894 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
895                                      bool (skip)(struct dso *dso, int parm), int parm)
896 {
897         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
898 }
899
900 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
901                                      bool (skip)(struct dso *dso, int parm), int parm)
902 {
903         struct rb_node *nd;
904         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
905
906         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
907                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
908                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
909         }
910         return ret;
911 }
912
913 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
914 {
915         int i;
916         size_t printed = 0;
917         struct dso *kdso = machine__kernel_dso(machine);
918
919         if (kdso->has_build_id) {
920                 char filename[PATH_MAX];
921                 if (dso__build_id_filename(kdso, filename, sizeof(filename),
922                                            false))
923                         printed += fprintf(fp, "[0] %s\n", filename);
924         }
925
926         for (i = 0; i < vmlinux_path__nr_entries; ++i)
927                 printed += fprintf(fp, "[%d] %s\n",
928                                    i + kdso->has_build_id, vmlinux_path[i]);
929
930         return printed;
931 }
932
933 size_t machine__fprintf(struct machine *machine, FILE *fp)
934 {
935         struct rb_node *nd;
936         size_t ret;
937         int i;
938
939         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
940                 struct threads *threads = &machine->threads[i];
941
942                 down_read(&threads->lock);
943
944                 ret = fprintf(fp, "Threads: %u\n", threads->nr);
945
946                 for (nd = rb_first_cached(&threads->entries); nd;
947                      nd = rb_next(nd)) {
948                         struct thread *pos = rb_entry(nd, struct thread, rb_node);
949
950                         ret += thread__fprintf(pos, fp);
951                 }
952
953                 up_read(&threads->lock);
954         }
955         return ret;
956 }
957
958 static struct dso *machine__get_kernel(struct machine *machine)
959 {
960         const char *vmlinux_name = machine->mmap_name;
961         struct dso *kernel;
962
963         if (machine__is_host(machine)) {
964                 if (symbol_conf.vmlinux_name)
965                         vmlinux_name = symbol_conf.vmlinux_name;
966
967                 kernel = machine__findnew_kernel(machine, vmlinux_name,
968                                                  "[kernel]", DSO_SPACE__KERNEL);
969         } else {
970                 if (symbol_conf.default_guest_vmlinux_name)
971                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
972
973                 kernel = machine__findnew_kernel(machine, vmlinux_name,
974                                                  "[guest.kernel]",
975                                                  DSO_SPACE__KERNEL_GUEST);
976         }
977
978         if (kernel != NULL && (!kernel->has_build_id))
979                 dso__read_running_kernel_build_id(kernel, machine);
980
981         return kernel;
982 }
983
984 struct process_args {
985         u64 start;
986 };
987
988 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
989                                     size_t bufsz)
990 {
991         if (machine__is_default_guest(machine))
992                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
993         else
994                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
995 }
996
997 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
998
999 /* Figure out the start address of kernel map from /proc/kallsyms.
1000  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1001  * symbol_name if it's not that important.
1002  */
1003 static int machine__get_running_kernel_start(struct machine *machine,
1004                                              const char **symbol_name,
1005                                              u64 *start, u64 *end)
1006 {
1007         char filename[PATH_MAX];
1008         int i, err = -1;
1009         const char *name;
1010         u64 addr = 0;
1011
1012         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1013
1014         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1015                 return 0;
1016
1017         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1018                 err = kallsyms__get_function_start(filename, name, &addr);
1019                 if (!err)
1020                         break;
1021         }
1022
1023         if (err)
1024                 return -1;
1025
1026         if (symbol_name)
1027                 *symbol_name = name;
1028
1029         *start = addr;
1030
1031         err = kallsyms__get_function_start(filename, "_etext", &addr);
1032         if (!err)
1033                 *end = addr;
1034
1035         return 0;
1036 }
1037
1038 int machine__create_extra_kernel_map(struct machine *machine,
1039                                      struct dso *kernel,
1040                                      struct extra_kernel_map *xm)
1041 {
1042         struct kmap *kmap;
1043         struct map *map;
1044
1045         map = map__new2(xm->start, kernel);
1046         if (!map)
1047                 return -1;
1048
1049         map->end   = xm->end;
1050         map->pgoff = xm->pgoff;
1051
1052         kmap = map__kmap(map);
1053
1054         strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1055
1056         maps__insert(&machine->kmaps, map);
1057
1058         pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1059                   kmap->name, map->start, map->end);
1060
1061         map__put(map);
1062
1063         return 0;
1064 }
1065
1066 static u64 find_entry_trampoline(struct dso *dso)
1067 {
1068         /* Duplicates are removed so lookup all aliases */
1069         const char *syms[] = {
1070                 "_entry_trampoline",
1071                 "__entry_trampoline_start",
1072                 "entry_SYSCALL_64_trampoline",
1073         };
1074         struct symbol *sym = dso__first_symbol(dso);
1075         unsigned int i;
1076
1077         for (; sym; sym = dso__next_symbol(sym)) {
1078                 if (sym->binding != STB_GLOBAL)
1079                         continue;
1080                 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1081                         if (!strcmp(sym->name, syms[i]))
1082                                 return sym->start;
1083                 }
1084         }
1085
1086         return 0;
1087 }
1088
1089 /*
1090  * These values can be used for kernels that do not have symbols for the entry
1091  * trampolines in kallsyms.
1092  */
1093 #define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
1094 #define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
1095 #define X86_64_ENTRY_TRAMPOLINE         0x6000
1096
1097 /* Map x86_64 PTI entry trampolines */
1098 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1099                                           struct dso *kernel)
1100 {
1101         struct maps *kmaps = &machine->kmaps;
1102         int nr_cpus_avail, cpu;
1103         bool found = false;
1104         struct map *map;
1105         u64 pgoff;
1106
1107         /*
1108          * In the vmlinux case, pgoff is a virtual address which must now be
1109          * mapped to a vmlinux offset.
1110          */
1111         maps__for_each_entry(kmaps, map) {
1112                 struct kmap *kmap = __map__kmap(map);
1113                 struct map *dest_map;
1114
1115                 if (!kmap || !is_entry_trampoline(kmap->name))
1116                         continue;
1117
1118                 dest_map = maps__find(kmaps, map->pgoff);
1119                 if (dest_map != map)
1120                         map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1121                 found = true;
1122         }
1123         if (found || machine->trampolines_mapped)
1124                 return 0;
1125
1126         pgoff = find_entry_trampoline(kernel);
1127         if (!pgoff)
1128                 return 0;
1129
1130         nr_cpus_avail = machine__nr_cpus_avail(machine);
1131
1132         /* Add a 1 page map for each CPU's entry trampoline */
1133         for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1134                 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1135                          cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1136                          X86_64_ENTRY_TRAMPOLINE;
1137                 struct extra_kernel_map xm = {
1138                         .start = va,
1139                         .end   = va + page_size,
1140                         .pgoff = pgoff,
1141                 };
1142
1143                 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1144
1145                 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1146                         return -1;
1147         }
1148
1149         machine->trampolines_mapped = nr_cpus_avail;
1150
1151         return 0;
1152 }
1153
1154 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1155                                              struct dso *kernel __maybe_unused)
1156 {
1157         return 0;
1158 }
1159
1160 static int
1161 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1162 {
1163         /* In case of renewal the kernel map, destroy previous one */
1164         machine__destroy_kernel_maps(machine);
1165
1166         machine->vmlinux_map = map__new2(0, kernel);
1167         if (machine->vmlinux_map == NULL)
1168                 return -1;
1169
1170         machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1171         maps__insert(&machine->kmaps, machine->vmlinux_map);
1172         return 0;
1173 }
1174
1175 void machine__destroy_kernel_maps(struct machine *machine)
1176 {
1177         struct kmap *kmap;
1178         struct map *map = machine__kernel_map(machine);
1179
1180         if (map == NULL)
1181                 return;
1182
1183         kmap = map__kmap(map);
1184         maps__remove(&machine->kmaps, map);
1185         if (kmap && kmap->ref_reloc_sym) {
1186                 zfree((char **)&kmap->ref_reloc_sym->name);
1187                 zfree(&kmap->ref_reloc_sym);
1188         }
1189
1190         map__zput(machine->vmlinux_map);
1191 }
1192
1193 int machines__create_guest_kernel_maps(struct machines *machines)
1194 {
1195         int ret = 0;
1196         struct dirent **namelist = NULL;
1197         int i, items = 0;
1198         char path[PATH_MAX];
1199         pid_t pid;
1200         char *endp;
1201
1202         if (symbol_conf.default_guest_vmlinux_name ||
1203             symbol_conf.default_guest_modules ||
1204             symbol_conf.default_guest_kallsyms) {
1205                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1206         }
1207
1208         if (symbol_conf.guestmount) {
1209                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1210                 if (items <= 0)
1211                         return -ENOENT;
1212                 for (i = 0; i < items; i++) {
1213                         if (!isdigit(namelist[i]->d_name[0])) {
1214                                 /* Filter out . and .. */
1215                                 continue;
1216                         }
1217                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1218                         if ((*endp != '\0') ||
1219                             (endp == namelist[i]->d_name) ||
1220                             (errno == ERANGE)) {
1221                                 pr_debug("invalid directory (%s). Skipping.\n",
1222                                          namelist[i]->d_name);
1223                                 continue;
1224                         }
1225                         sprintf(path, "%s/%s/proc/kallsyms",
1226                                 symbol_conf.guestmount,
1227                                 namelist[i]->d_name);
1228                         ret = access(path, R_OK);
1229                         if (ret) {
1230                                 pr_debug("Can't access file %s\n", path);
1231                                 goto failure;
1232                         }
1233                         machines__create_kernel_maps(machines, pid);
1234                 }
1235 failure:
1236                 free(namelist);
1237         }
1238
1239         return ret;
1240 }
1241
1242 void machines__destroy_kernel_maps(struct machines *machines)
1243 {
1244         struct rb_node *next = rb_first_cached(&machines->guests);
1245
1246         machine__destroy_kernel_maps(&machines->host);
1247
1248         while (next) {
1249                 struct machine *pos = rb_entry(next, struct machine, rb_node);
1250
1251                 next = rb_next(&pos->rb_node);
1252                 rb_erase_cached(&pos->rb_node, &machines->guests);
1253                 machine__delete(pos);
1254         }
1255 }
1256
1257 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1258 {
1259         struct machine *machine = machines__findnew(machines, pid);
1260
1261         if (machine == NULL)
1262                 return -1;
1263
1264         return machine__create_kernel_maps(machine);
1265 }
1266
1267 int machine__load_kallsyms(struct machine *machine, const char *filename)
1268 {
1269         struct map *map = machine__kernel_map(machine);
1270         int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1271
1272         if (ret > 0) {
1273                 dso__set_loaded(map->dso);
1274                 /*
1275                  * Since /proc/kallsyms will have multiple sessions for the
1276                  * kernel, with modules between them, fixup the end of all
1277                  * sections.
1278                  */
1279                 maps__fixup_end(&machine->kmaps);
1280         }
1281
1282         return ret;
1283 }
1284
1285 int machine__load_vmlinux_path(struct machine *machine)
1286 {
1287         struct map *map = machine__kernel_map(machine);
1288         int ret = dso__load_vmlinux_path(map->dso, map);
1289
1290         if (ret > 0)
1291                 dso__set_loaded(map->dso);
1292
1293         return ret;
1294 }
1295
1296 static char *get_kernel_version(const char *root_dir)
1297 {
1298         char version[PATH_MAX];
1299         FILE *file;
1300         char *name, *tmp;
1301         const char *prefix = "Linux version ";
1302
1303         sprintf(version, "%s/proc/version", root_dir);
1304         file = fopen(version, "r");
1305         if (!file)
1306                 return NULL;
1307
1308         tmp = fgets(version, sizeof(version), file);
1309         fclose(file);
1310         if (!tmp)
1311                 return NULL;
1312
1313         name = strstr(version, prefix);
1314         if (!name)
1315                 return NULL;
1316         name += strlen(prefix);
1317         tmp = strchr(name, ' ');
1318         if (tmp)
1319                 *tmp = '\0';
1320
1321         return strdup(name);
1322 }
1323
1324 static bool is_kmod_dso(struct dso *dso)
1325 {
1326         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1327                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1328 }
1329
1330 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1331 {
1332         char *long_name;
1333         struct map *map = maps__find_by_name(maps, m->name);
1334
1335         if (map == NULL)
1336                 return 0;
1337
1338         long_name = strdup(path);
1339         if (long_name == NULL)
1340                 return -ENOMEM;
1341
1342         dso__set_long_name(map->dso, long_name, true);
1343         dso__kernel_module_get_build_id(map->dso, "");
1344
1345         /*
1346          * Full name could reveal us kmod compression, so
1347          * we need to update the symtab_type if needed.
1348          */
1349         if (m->comp && is_kmod_dso(map->dso)) {
1350                 map->dso->symtab_type++;
1351                 map->dso->comp = m->comp;
1352         }
1353
1354         return 0;
1355 }
1356
1357 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1358 {
1359         struct dirent *dent;
1360         DIR *dir = opendir(dir_name);
1361         int ret = 0;
1362
1363         if (!dir) {
1364                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1365                 return -1;
1366         }
1367
1368         while ((dent = readdir(dir)) != NULL) {
1369                 char path[PATH_MAX];
1370                 struct stat st;
1371
1372                 /*sshfs might return bad dent->d_type, so we have to stat*/
1373                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1374                 if (stat(path, &st))
1375                         continue;
1376
1377                 if (S_ISDIR(st.st_mode)) {
1378                         if (!strcmp(dent->d_name, ".") ||
1379                             !strcmp(dent->d_name, ".."))
1380                                 continue;
1381
1382                         /* Do not follow top-level source and build symlinks */
1383                         if (depth == 0) {
1384                                 if (!strcmp(dent->d_name, "source") ||
1385                                     !strcmp(dent->d_name, "build"))
1386                                         continue;
1387                         }
1388
1389                         ret = maps__set_modules_path_dir(maps, path, depth + 1);
1390                         if (ret < 0)
1391                                 goto out;
1392                 } else {
1393                         struct kmod_path m;
1394
1395                         ret = kmod_path__parse_name(&m, dent->d_name);
1396                         if (ret)
1397                                 goto out;
1398
1399                         if (m.kmod)
1400                                 ret = maps__set_module_path(maps, path, &m);
1401
1402                         zfree(&m.name);
1403
1404                         if (ret)
1405                                 goto out;
1406                 }
1407         }
1408
1409 out:
1410         closedir(dir);
1411         return ret;
1412 }
1413
1414 static int machine__set_modules_path(struct machine *machine)
1415 {
1416         char *version;
1417         char modules_path[PATH_MAX];
1418
1419         version = get_kernel_version(machine->root_dir);
1420         if (!version)
1421                 return -1;
1422
1423         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1424                  machine->root_dir, version);
1425         free(version);
1426
1427         return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1428 }
1429 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1430                                 u64 *size __maybe_unused,
1431                                 const char *name __maybe_unused)
1432 {
1433         return 0;
1434 }
1435
1436 static int machine__create_module(void *arg, const char *name, u64 start,
1437                                   u64 size)
1438 {
1439         struct machine *machine = arg;
1440         struct map *map;
1441
1442         if (arch__fix_module_text_start(&start, &size, name) < 0)
1443                 return -1;
1444
1445         map = machine__addnew_module_map(machine, start, name);
1446         if (map == NULL)
1447                 return -1;
1448         map->end = start + size;
1449
1450         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1451
1452         return 0;
1453 }
1454
1455 static int machine__create_modules(struct machine *machine)
1456 {
1457         const char *modules;
1458         char path[PATH_MAX];
1459
1460         if (machine__is_default_guest(machine)) {
1461                 modules = symbol_conf.default_guest_modules;
1462         } else {
1463                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1464                 modules = path;
1465         }
1466
1467         if (symbol__restricted_filename(modules, "/proc/modules"))
1468                 return -1;
1469
1470         if (modules__parse(modules, machine, machine__create_module))
1471                 return -1;
1472
1473         if (!machine__set_modules_path(machine))
1474                 return 0;
1475
1476         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1477
1478         return 0;
1479 }
1480
1481 static void machine__set_kernel_mmap(struct machine *machine,
1482                                      u64 start, u64 end)
1483 {
1484         machine->vmlinux_map->start = start;
1485         machine->vmlinux_map->end   = end;
1486         /*
1487          * Be a bit paranoid here, some perf.data file came with
1488          * a zero sized synthesized MMAP event for the kernel.
1489          */
1490         if (start == 0 && end == 0)
1491                 machine->vmlinux_map->end = ~0ULL;
1492 }
1493
1494 static void machine__update_kernel_mmap(struct machine *machine,
1495                                      u64 start, u64 end)
1496 {
1497         struct map *map = machine__kernel_map(machine);
1498
1499         map__get(map);
1500         maps__remove(&machine->kmaps, map);
1501
1502         machine__set_kernel_mmap(machine, start, end);
1503
1504         maps__insert(&machine->kmaps, map);
1505         map__put(map);
1506 }
1507
1508 int machine__create_kernel_maps(struct machine *machine)
1509 {
1510         struct dso *kernel = machine__get_kernel(machine);
1511         const char *name = NULL;
1512         struct map *map;
1513         u64 start = 0, end = ~0ULL;
1514         int ret;
1515
1516         if (kernel == NULL)
1517                 return -1;
1518
1519         ret = __machine__create_kernel_maps(machine, kernel);
1520         if (ret < 0)
1521                 goto out_put;
1522
1523         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1524                 if (machine__is_host(machine))
1525                         pr_debug("Problems creating module maps, "
1526                                  "continuing anyway...\n");
1527                 else
1528                         pr_debug("Problems creating module maps for guest %d, "
1529                                  "continuing anyway...\n", machine->pid);
1530         }
1531
1532         if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1533                 if (name &&
1534                     map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1535                         machine__destroy_kernel_maps(machine);
1536                         ret = -1;
1537                         goto out_put;
1538                 }
1539
1540                 /*
1541                  * we have a real start address now, so re-order the kmaps
1542                  * assume it's the last in the kmaps
1543                  */
1544                 machine__update_kernel_mmap(machine, start, end);
1545         }
1546
1547         if (machine__create_extra_kernel_maps(machine, kernel))
1548                 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1549
1550         if (end == ~0ULL) {
1551                 /* update end address of the kernel map using adjacent module address */
1552                 map = map__next(machine__kernel_map(machine));
1553                 if (map)
1554                         machine__set_kernel_mmap(machine, start, map->start);
1555         }
1556
1557 out_put:
1558         dso__put(kernel);
1559         return ret;
1560 }
1561
1562 static bool machine__uses_kcore(struct machine *machine)
1563 {
1564         struct dso *dso;
1565
1566         list_for_each_entry(dso, &machine->dsos.head, node) {
1567                 if (dso__is_kcore(dso))
1568                         return true;
1569         }
1570
1571         return false;
1572 }
1573
1574 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1575                                              union perf_event *event)
1576 {
1577         return machine__is(machine, "x86_64") &&
1578                is_entry_trampoline(event->mmap.filename);
1579 }
1580
1581 static int machine__process_extra_kernel_map(struct machine *machine,
1582                                              union perf_event *event)
1583 {
1584         struct dso *kernel = machine__kernel_dso(machine);
1585         struct extra_kernel_map xm = {
1586                 .start = event->mmap.start,
1587                 .end   = event->mmap.start + event->mmap.len,
1588                 .pgoff = event->mmap.pgoff,
1589         };
1590
1591         if (kernel == NULL)
1592                 return -1;
1593
1594         strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1595
1596         return machine__create_extra_kernel_map(machine, kernel, &xm);
1597 }
1598
1599 static int machine__process_kernel_mmap_event(struct machine *machine,
1600                                               union perf_event *event)
1601 {
1602         struct map *map;
1603         enum dso_space_type dso_space;
1604         bool is_kernel_mmap;
1605
1606         /* If we have maps from kcore then we do not need or want any others */
1607         if (machine__uses_kcore(machine))
1608                 return 0;
1609
1610         if (machine__is_host(machine))
1611                 dso_space = DSO_SPACE__KERNEL;
1612         else
1613                 dso_space = DSO_SPACE__KERNEL_GUEST;
1614
1615         is_kernel_mmap = memcmp(event->mmap.filename,
1616                                 machine->mmap_name,
1617                                 strlen(machine->mmap_name) - 1) == 0;
1618         if (event->mmap.filename[0] == '/' ||
1619             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1620                 map = machine__addnew_module_map(machine, event->mmap.start,
1621                                                  event->mmap.filename);
1622                 if (map == NULL)
1623                         goto out_problem;
1624
1625                 map->end = map->start + event->mmap.len;
1626         } else if (is_kernel_mmap) {
1627                 const char *symbol_name = (event->mmap.filename +
1628                                 strlen(machine->mmap_name));
1629                 /*
1630                  * Should be there already, from the build-id table in
1631                  * the header.
1632                  */
1633                 struct dso *kernel = NULL;
1634                 struct dso *dso;
1635
1636                 down_read(&machine->dsos.lock);
1637
1638                 list_for_each_entry(dso, &machine->dsos.head, node) {
1639
1640                         /*
1641                          * The cpumode passed to is_kernel_module is not the
1642                          * cpumode of *this* event. If we insist on passing
1643                          * correct cpumode to is_kernel_module, we should
1644                          * record the cpumode when we adding this dso to the
1645                          * linked list.
1646                          *
1647                          * However we don't really need passing correct
1648                          * cpumode.  We know the correct cpumode must be kernel
1649                          * mode (if not, we should not link it onto kernel_dsos
1650                          * list).
1651                          *
1652                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1653                          * is_kernel_module() treats it as a kernel cpumode.
1654                          */
1655
1656                         if (!dso->kernel ||
1657                             is_kernel_module(dso->long_name,
1658                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1659                                 continue;
1660
1661
1662                         kernel = dso;
1663                         break;
1664                 }
1665
1666                 up_read(&machine->dsos.lock);
1667
1668                 if (kernel == NULL)
1669                         kernel = machine__findnew_dso(machine, machine->mmap_name);
1670                 if (kernel == NULL)
1671                         goto out_problem;
1672
1673                 kernel->kernel = dso_space;
1674                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1675                         dso__put(kernel);
1676                         goto out_problem;
1677                 }
1678
1679                 if (strstr(kernel->long_name, "vmlinux"))
1680                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1681
1682                 machine__update_kernel_mmap(machine, event->mmap.start,
1683                                          event->mmap.start + event->mmap.len);
1684
1685                 /*
1686                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1687                  * symbol. Effectively having zero here means that at record
1688                  * time /proc/sys/kernel/kptr_restrict was non zero.
1689                  */
1690                 if (event->mmap.pgoff != 0) {
1691                         map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1692                                                         symbol_name,
1693                                                         event->mmap.pgoff);
1694                 }
1695
1696                 if (machine__is_default_guest(machine)) {
1697                         /*
1698                          * preload dso of guest kernel and modules
1699                          */
1700                         dso__load(kernel, machine__kernel_map(machine));
1701                 }
1702         } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1703                 return machine__process_extra_kernel_map(machine, event);
1704         }
1705         return 0;
1706 out_problem:
1707         return -1;
1708 }
1709
1710 int machine__process_mmap2_event(struct machine *machine,
1711                                  union perf_event *event,
1712                                  struct perf_sample *sample)
1713 {
1714         struct thread *thread;
1715         struct map *map;
1716         struct dso_id dso_id = {
1717                 .maj = event->mmap2.maj,
1718                 .min = event->mmap2.min,
1719                 .ino = event->mmap2.ino,
1720                 .ino_generation = event->mmap2.ino_generation,
1721         };
1722         int ret = 0;
1723
1724         if (dump_trace)
1725                 perf_event__fprintf_mmap2(event, stdout);
1726
1727         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1728             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1729                 ret = machine__process_kernel_mmap_event(machine, event);
1730                 if (ret < 0)
1731                         goto out_problem;
1732                 return 0;
1733         }
1734
1735         thread = machine__findnew_thread(machine, event->mmap2.pid,
1736                                         event->mmap2.tid);
1737         if (thread == NULL)
1738                 goto out_problem;
1739
1740         map = map__new(machine, event->mmap2.start,
1741                         event->mmap2.len, event->mmap2.pgoff,
1742                         &dso_id, event->mmap2.prot,
1743                         event->mmap2.flags,
1744                         event->mmap2.filename, thread);
1745
1746         if (map == NULL)
1747                 goto out_problem_map;
1748
1749         ret = thread__insert_map(thread, map);
1750         if (ret)
1751                 goto out_problem_insert;
1752
1753         thread__put(thread);
1754         map__put(map);
1755         return 0;
1756
1757 out_problem_insert:
1758         map__put(map);
1759 out_problem_map:
1760         thread__put(thread);
1761 out_problem:
1762         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1763         return 0;
1764 }
1765
1766 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1767                                 struct perf_sample *sample)
1768 {
1769         struct thread *thread;
1770         struct map *map;
1771         u32 prot = 0;
1772         int ret = 0;
1773
1774         if (dump_trace)
1775                 perf_event__fprintf_mmap(event, stdout);
1776
1777         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1778             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1779                 ret = machine__process_kernel_mmap_event(machine, event);
1780                 if (ret < 0)
1781                         goto out_problem;
1782                 return 0;
1783         }
1784
1785         thread = machine__findnew_thread(machine, event->mmap.pid,
1786                                          event->mmap.tid);
1787         if (thread == NULL)
1788                 goto out_problem;
1789
1790         if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1791                 prot = PROT_EXEC;
1792
1793         map = map__new(machine, event->mmap.start,
1794                         event->mmap.len, event->mmap.pgoff,
1795                         NULL, prot, 0, event->mmap.filename, thread);
1796
1797         if (map == NULL)
1798                 goto out_problem_map;
1799
1800         ret = thread__insert_map(thread, map);
1801         if (ret)
1802                 goto out_problem_insert;
1803
1804         thread__put(thread);
1805         map__put(map);
1806         return 0;
1807
1808 out_problem_insert:
1809         map__put(map);
1810 out_problem_map:
1811         thread__put(thread);
1812 out_problem:
1813         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1814         return 0;
1815 }
1816
1817 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1818 {
1819         struct threads *threads = machine__threads(machine, th->tid);
1820
1821         if (threads->last_match == th)
1822                 threads__set_last_match(threads, NULL);
1823
1824         if (lock)
1825                 down_write(&threads->lock);
1826
1827         BUG_ON(refcount_read(&th->refcnt) == 0);
1828
1829         rb_erase_cached(&th->rb_node, &threads->entries);
1830         RB_CLEAR_NODE(&th->rb_node);
1831         --threads->nr;
1832         /*
1833          * Move it first to the dead_threads list, then drop the reference,
1834          * if this is the last reference, then the thread__delete destructor
1835          * will be called and we will remove it from the dead_threads list.
1836          */
1837         list_add_tail(&th->node, &threads->dead);
1838
1839         /*
1840          * We need to do the put here because if this is the last refcount,
1841          * then we will be touching the threads->dead head when removing the
1842          * thread.
1843          */
1844         thread__put(th);
1845
1846         if (lock)
1847                 up_write(&threads->lock);
1848 }
1849
1850 void machine__remove_thread(struct machine *machine, struct thread *th)
1851 {
1852         return __machine__remove_thread(machine, th, true);
1853 }
1854
1855 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1856                                 struct perf_sample *sample)
1857 {
1858         struct thread *thread = machine__find_thread(machine,
1859                                                      event->fork.pid,
1860                                                      event->fork.tid);
1861         struct thread *parent = machine__findnew_thread(machine,
1862                                                         event->fork.ppid,
1863                                                         event->fork.ptid);
1864         bool do_maps_clone = true;
1865         int err = 0;
1866
1867         if (dump_trace)
1868                 perf_event__fprintf_task(event, stdout);
1869
1870         /*
1871          * There may be an existing thread that is not actually the parent,
1872          * either because we are processing events out of order, or because the
1873          * (fork) event that would have removed the thread was lost. Assume the
1874          * latter case and continue on as best we can.
1875          */
1876         if (parent->pid_ != (pid_t)event->fork.ppid) {
1877                 dump_printf("removing erroneous parent thread %d/%d\n",
1878                             parent->pid_, parent->tid);
1879                 machine__remove_thread(machine, parent);
1880                 thread__put(parent);
1881                 parent = machine__findnew_thread(machine, event->fork.ppid,
1882                                                  event->fork.ptid);
1883         }
1884
1885         /* if a thread currently exists for the thread id remove it */
1886         if (thread != NULL) {
1887                 machine__remove_thread(machine, thread);
1888                 thread__put(thread);
1889         }
1890
1891         thread = machine__findnew_thread(machine, event->fork.pid,
1892                                          event->fork.tid);
1893         /*
1894          * When synthesizing FORK events, we are trying to create thread
1895          * objects for the already running tasks on the machine.
1896          *
1897          * Normally, for a kernel FORK event, we want to clone the parent's
1898          * maps because that is what the kernel just did.
1899          *
1900          * But when synthesizing, this should not be done.  If we do, we end up
1901          * with overlapping maps as we process the sythesized MMAP2 events that
1902          * get delivered shortly thereafter.
1903          *
1904          * Use the FORK event misc flags in an internal way to signal this
1905          * situation, so we can elide the map clone when appropriate.
1906          */
1907         if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1908                 do_maps_clone = false;
1909
1910         if (thread == NULL || parent == NULL ||
1911             thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1912                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1913                 err = -1;
1914         }
1915         thread__put(thread);
1916         thread__put(parent);
1917
1918         return err;
1919 }
1920
1921 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1922                                 struct perf_sample *sample __maybe_unused)
1923 {
1924         struct thread *thread = machine__find_thread(machine,
1925                                                      event->fork.pid,
1926                                                      event->fork.tid);
1927
1928         if (dump_trace)
1929                 perf_event__fprintf_task(event, stdout);
1930
1931         if (thread != NULL) {
1932                 thread__exited(thread);
1933                 thread__put(thread);
1934         }
1935
1936         return 0;
1937 }
1938
1939 int machine__process_event(struct machine *machine, union perf_event *event,
1940                            struct perf_sample *sample)
1941 {
1942         int ret;
1943
1944         switch (event->header.type) {
1945         case PERF_RECORD_COMM:
1946                 ret = machine__process_comm_event(machine, event, sample); break;
1947         case PERF_RECORD_MMAP:
1948                 ret = machine__process_mmap_event(machine, event, sample); break;
1949         case PERF_RECORD_NAMESPACES:
1950                 ret = machine__process_namespaces_event(machine, event, sample); break;
1951         case PERF_RECORD_CGROUP:
1952                 ret = machine__process_cgroup_event(machine, event, sample); break;
1953         case PERF_RECORD_MMAP2:
1954                 ret = machine__process_mmap2_event(machine, event, sample); break;
1955         case PERF_RECORD_FORK:
1956                 ret = machine__process_fork_event(machine, event, sample); break;
1957         case PERF_RECORD_EXIT:
1958                 ret = machine__process_exit_event(machine, event, sample); break;
1959         case PERF_RECORD_LOST:
1960                 ret = machine__process_lost_event(machine, event, sample); break;
1961         case PERF_RECORD_AUX:
1962                 ret = machine__process_aux_event(machine, event); break;
1963         case PERF_RECORD_ITRACE_START:
1964                 ret = machine__process_itrace_start_event(machine, event); break;
1965         case PERF_RECORD_LOST_SAMPLES:
1966                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1967         case PERF_RECORD_SWITCH:
1968         case PERF_RECORD_SWITCH_CPU_WIDE:
1969                 ret = machine__process_switch_event(machine, event); break;
1970         case PERF_RECORD_KSYMBOL:
1971                 ret = machine__process_ksymbol(machine, event, sample); break;
1972         case PERF_RECORD_BPF_EVENT:
1973                 ret = machine__process_bpf(machine, event, sample); break;
1974         case PERF_RECORD_TEXT_POKE:
1975                 ret = machine__process_text_poke(machine, event, sample); break;
1976         default:
1977                 ret = -1;
1978                 break;
1979         }
1980
1981         return ret;
1982 }
1983
1984 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1985 {
1986         if (!regexec(regex, sym->name, 0, NULL, 0))
1987                 return 1;
1988         return 0;
1989 }
1990
1991 static void ip__resolve_ams(struct thread *thread,
1992                             struct addr_map_symbol *ams,
1993                             u64 ip)
1994 {
1995         struct addr_location al;
1996
1997         memset(&al, 0, sizeof(al));
1998         /*
1999          * We cannot use the header.misc hint to determine whether a
2000          * branch stack address is user, kernel, guest, hypervisor.
2001          * Branches may straddle the kernel/user/hypervisor boundaries.
2002          * Thus, we have to try consecutively until we find a match
2003          * or else, the symbol is unknown
2004          */
2005         thread__find_cpumode_addr_location(thread, ip, &al);
2006
2007         ams->addr = ip;
2008         ams->al_addr = al.addr;
2009         ams->ms.maps = al.maps;
2010         ams->ms.sym = al.sym;
2011         ams->ms.map = al.map;
2012         ams->phys_addr = 0;
2013 }
2014
2015 static void ip__resolve_data(struct thread *thread,
2016                              u8 m, struct addr_map_symbol *ams,
2017                              u64 addr, u64 phys_addr)
2018 {
2019         struct addr_location al;
2020
2021         memset(&al, 0, sizeof(al));
2022
2023         thread__find_symbol(thread, m, addr, &al);
2024
2025         ams->addr = addr;
2026         ams->al_addr = al.addr;
2027         ams->ms.maps = al.maps;
2028         ams->ms.sym = al.sym;
2029         ams->ms.map = al.map;
2030         ams->phys_addr = phys_addr;
2031 }
2032
2033 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2034                                      struct addr_location *al)
2035 {
2036         struct mem_info *mi = mem_info__new();
2037
2038         if (!mi)
2039                 return NULL;
2040
2041         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2042         ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2043                          sample->addr, sample->phys_addr);
2044         mi->data_src.val = sample->data_src;
2045
2046         return mi;
2047 }
2048
2049 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2050 {
2051         struct map *map = ms->map;
2052         char *srcline = NULL;
2053
2054         if (!map || callchain_param.key == CCKEY_FUNCTION)
2055                 return srcline;
2056
2057         srcline = srcline__tree_find(&map->dso->srclines, ip);
2058         if (!srcline) {
2059                 bool show_sym = false;
2060                 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2061
2062                 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2063                                       ms->sym, show_sym, show_addr, ip);
2064                 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2065         }
2066
2067         return srcline;
2068 }
2069
2070 struct iterations {
2071         int nr_loop_iter;
2072         u64 cycles;
2073 };
2074
2075 static int add_callchain_ip(struct thread *thread,
2076                             struct callchain_cursor *cursor,
2077                             struct symbol **parent,
2078                             struct addr_location *root_al,
2079                             u8 *cpumode,
2080                             u64 ip,
2081                             bool branch,
2082                             struct branch_flags *flags,
2083                             struct iterations *iter,
2084                             u64 branch_from)
2085 {
2086         struct map_symbol ms;
2087         struct addr_location al;
2088         int nr_loop_iter = 0;
2089         u64 iter_cycles = 0;
2090         const char *srcline = NULL;
2091
2092         al.filtered = 0;
2093         al.sym = NULL;
2094         if (!cpumode) {
2095                 thread__find_cpumode_addr_location(thread, ip, &al);
2096         } else {
2097                 if (ip >= PERF_CONTEXT_MAX) {
2098                         switch (ip) {
2099                         case PERF_CONTEXT_HV:
2100                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2101                                 break;
2102                         case PERF_CONTEXT_KERNEL:
2103                                 *cpumode = PERF_RECORD_MISC_KERNEL;
2104                                 break;
2105                         case PERF_CONTEXT_USER:
2106                                 *cpumode = PERF_RECORD_MISC_USER;
2107                                 break;
2108                         default:
2109                                 pr_debug("invalid callchain context: "
2110                                          "%"PRId64"\n", (s64) ip);
2111                                 /*
2112                                  * It seems the callchain is corrupted.
2113                                  * Discard all.
2114                                  */
2115                                 callchain_cursor_reset(cursor);
2116                                 return 1;
2117                         }
2118                         return 0;
2119                 }
2120                 thread__find_symbol(thread, *cpumode, ip, &al);
2121         }
2122
2123         if (al.sym != NULL) {
2124                 if (perf_hpp_list.parent && !*parent &&
2125                     symbol__match_regex(al.sym, &parent_regex))
2126                         *parent = al.sym;
2127                 else if (have_ignore_callees && root_al &&
2128                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
2129                         /* Treat this symbol as the root,
2130                            forgetting its callees. */
2131                         *root_al = al;
2132                         callchain_cursor_reset(cursor);
2133                 }
2134         }
2135
2136         if (symbol_conf.hide_unresolved && al.sym == NULL)
2137                 return 0;
2138
2139         if (iter) {
2140                 nr_loop_iter = iter->nr_loop_iter;
2141                 iter_cycles = iter->cycles;
2142         }
2143
2144         ms.maps = al.maps;
2145         ms.map = al.map;
2146         ms.sym = al.sym;
2147         srcline = callchain_srcline(&ms, al.addr);
2148         return callchain_cursor_append(cursor, ip, &ms,
2149                                        branch, flags, nr_loop_iter,
2150                                        iter_cycles, branch_from, srcline);
2151 }
2152
2153 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2154                                            struct addr_location *al)
2155 {
2156         unsigned int i;
2157         const struct branch_stack *bs = sample->branch_stack;
2158         struct branch_entry *entries = perf_sample__branch_entries(sample);
2159         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2160
2161         if (!bi)
2162                 return NULL;
2163
2164         for (i = 0; i < bs->nr; i++) {
2165                 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2166                 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2167                 bi[i].flags = entries[i].flags;
2168         }
2169         return bi;
2170 }
2171
2172 static void save_iterations(struct iterations *iter,
2173                             struct branch_entry *be, int nr)
2174 {
2175         int i;
2176
2177         iter->nr_loop_iter++;
2178         iter->cycles = 0;
2179
2180         for (i = 0; i < nr; i++)
2181                 iter->cycles += be[i].flags.cycles;
2182 }
2183
2184 #define CHASHSZ 127
2185 #define CHASHBITS 7
2186 #define NO_ENTRY 0xff
2187
2188 #define PERF_MAX_BRANCH_DEPTH 127
2189
2190 /* Remove loops. */
2191 static int remove_loops(struct branch_entry *l, int nr,
2192                         struct iterations *iter)
2193 {
2194         int i, j, off;
2195         unsigned char chash[CHASHSZ];
2196
2197         memset(chash, NO_ENTRY, sizeof(chash));
2198
2199         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2200
2201         for (i = 0; i < nr; i++) {
2202                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2203
2204                 /* no collision handling for now */
2205                 if (chash[h] == NO_ENTRY) {
2206                         chash[h] = i;
2207                 } else if (l[chash[h]].from == l[i].from) {
2208                         bool is_loop = true;
2209                         /* check if it is a real loop */
2210                         off = 0;
2211                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
2212                                 if (l[j].from != l[i + off].from) {
2213                                         is_loop = false;
2214                                         break;
2215                                 }
2216                         if (is_loop) {
2217                                 j = nr - (i + off);
2218                                 if (j > 0) {
2219                                         save_iterations(iter + i + off,
2220                                                 l + i, off);
2221
2222                                         memmove(iter + i, iter + i + off,
2223                                                 j * sizeof(*iter));
2224
2225                                         memmove(l + i, l + i + off,
2226                                                 j * sizeof(*l));
2227                                 }
2228
2229                                 nr -= off;
2230                         }
2231                 }
2232         }
2233         return nr;
2234 }
2235
2236 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2237                                        struct callchain_cursor *cursor,
2238                                        struct perf_sample *sample,
2239                                        struct symbol **parent,
2240                                        struct addr_location *root_al,
2241                                        u64 branch_from,
2242                                        bool callee, int end)
2243 {
2244         struct ip_callchain *chain = sample->callchain;
2245         u8 cpumode = PERF_RECORD_MISC_USER;
2246         int err, i;
2247
2248         if (callee) {
2249                 for (i = 0; i < end + 1; i++) {
2250                         err = add_callchain_ip(thread, cursor, parent,
2251                                                root_al, &cpumode, chain->ips[i],
2252                                                false, NULL, NULL, branch_from);
2253                         if (err)
2254                                 return err;
2255                 }
2256                 return 0;
2257         }
2258
2259         for (i = end; i >= 0; i--) {
2260                 err = add_callchain_ip(thread, cursor, parent,
2261                                        root_al, &cpumode, chain->ips[i],
2262                                        false, NULL, NULL, branch_from);
2263                 if (err)
2264                         return err;
2265         }
2266
2267         return 0;
2268 }
2269
2270 static void save_lbr_cursor_node(struct thread *thread,
2271                                  struct callchain_cursor *cursor,
2272                                  int idx)
2273 {
2274         struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2275
2276         if (!lbr_stitch)
2277                 return;
2278
2279         if (cursor->pos == cursor->nr) {
2280                 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2281                 return;
2282         }
2283
2284         if (!cursor->curr)
2285                 cursor->curr = cursor->first;
2286         else
2287                 cursor->curr = cursor->curr->next;
2288         memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2289                sizeof(struct callchain_cursor_node));
2290
2291         lbr_stitch->prev_lbr_cursor[idx].valid = true;
2292         cursor->pos++;
2293 }
2294
2295 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2296                                     struct callchain_cursor *cursor,
2297                                     struct perf_sample *sample,
2298                                     struct symbol **parent,
2299                                     struct addr_location *root_al,
2300                                     u64 *branch_from,
2301                                     bool callee)
2302 {
2303         struct branch_stack *lbr_stack = sample->branch_stack;
2304         struct branch_entry *entries = perf_sample__branch_entries(sample);
2305         u8 cpumode = PERF_RECORD_MISC_USER;
2306         int lbr_nr = lbr_stack->nr;
2307         struct branch_flags *flags;
2308         int err, i;
2309         u64 ip;
2310
2311         /*
2312          * The curr and pos are not used in writing session. They are cleared
2313          * in callchain_cursor_commit() when the writing session is closed.
2314          * Using curr and pos to track the current cursor node.
2315          */
2316         if (thread->lbr_stitch) {
2317                 cursor->curr = NULL;
2318                 cursor->pos = cursor->nr;
2319                 if (cursor->nr) {
2320                         cursor->curr = cursor->first;
2321                         for (i = 0; i < (int)(cursor->nr - 1); i++)
2322                                 cursor->curr = cursor->curr->next;
2323                 }
2324         }
2325
2326         if (callee) {
2327                 /* Add LBR ip from first entries.to */
2328                 ip = entries[0].to;
2329                 flags = &entries[0].flags;
2330                 *branch_from = entries[0].from;
2331                 err = add_callchain_ip(thread, cursor, parent,
2332                                        root_al, &cpumode, ip,
2333                                        true, flags, NULL,
2334                                        *branch_from);
2335                 if (err)
2336                         return err;
2337
2338                 /*
2339                  * The number of cursor node increases.
2340                  * Move the current cursor node.
2341                  * But does not need to save current cursor node for entry 0.
2342                  * It's impossible to stitch the whole LBRs of previous sample.
2343                  */
2344                 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2345                         if (!cursor->curr)
2346                                 cursor->curr = cursor->first;
2347                         else
2348                                 cursor->curr = cursor->curr->next;
2349                         cursor->pos++;
2350                 }
2351
2352                 /* Add LBR ip from entries.from one by one. */
2353                 for (i = 0; i < lbr_nr; i++) {
2354                         ip = entries[i].from;
2355                         flags = &entries[i].flags;
2356                         err = add_callchain_ip(thread, cursor, parent,
2357                                                root_al, &cpumode, ip,
2358                                                true, flags, NULL,
2359                                                *branch_from);
2360                         if (err)
2361                                 return err;
2362                         save_lbr_cursor_node(thread, cursor, i);
2363                 }
2364                 return 0;
2365         }
2366
2367         /* Add LBR ip from entries.from one by one. */
2368         for (i = lbr_nr - 1; i >= 0; i--) {
2369                 ip = entries[i].from;
2370                 flags = &entries[i].flags;
2371                 err = add_callchain_ip(thread, cursor, parent,
2372                                        root_al, &cpumode, ip,
2373                                        true, flags, NULL,
2374                                        *branch_from);
2375                 if (err)
2376                         return err;
2377                 save_lbr_cursor_node(thread, cursor, i);
2378         }
2379
2380         /* Add LBR ip from first entries.to */
2381         ip = entries[0].to;
2382         flags = &entries[0].flags;
2383         *branch_from = entries[0].from;
2384         err = add_callchain_ip(thread, cursor, parent,
2385                                root_al, &cpumode, ip,
2386                                true, flags, NULL,
2387                                *branch_from);
2388         if (err)
2389                 return err;
2390
2391         return 0;
2392 }
2393
2394 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2395                                              struct callchain_cursor *cursor)
2396 {
2397         struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2398         struct callchain_cursor_node *cnode;
2399         struct stitch_list *stitch_node;
2400         int err;
2401
2402         list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2403                 cnode = &stitch_node->cursor;
2404
2405                 err = callchain_cursor_append(cursor, cnode->ip,
2406                                               &cnode->ms,
2407                                               cnode->branch,
2408                                               &cnode->branch_flags,
2409                                               cnode->nr_loop_iter,
2410                                               cnode->iter_cycles,
2411                                               cnode->branch_from,
2412                                               cnode->srcline);
2413                 if (err)
2414                         return err;
2415         }
2416         return 0;
2417 }
2418
2419 static struct stitch_list *get_stitch_node(struct thread *thread)
2420 {
2421         struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2422         struct stitch_list *stitch_node;
2423
2424         if (!list_empty(&lbr_stitch->free_lists)) {
2425                 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2426                                                struct stitch_list, node);
2427                 list_del(&stitch_node->node);
2428
2429                 return stitch_node;
2430         }
2431
2432         return malloc(sizeof(struct stitch_list));
2433 }
2434
2435 static bool has_stitched_lbr(struct thread *thread,
2436                              struct perf_sample *cur,
2437                              struct perf_sample *prev,
2438                              unsigned int max_lbr,
2439                              bool callee)
2440 {
2441         struct branch_stack *cur_stack = cur->branch_stack;
2442         struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2443         struct branch_stack *prev_stack = prev->branch_stack;
2444         struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2445         struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2446         int i, j, nr_identical_branches = 0;
2447         struct stitch_list *stitch_node;
2448         u64 cur_base, distance;
2449
2450         if (!cur_stack || !prev_stack)
2451                 return false;
2452
2453         /* Find the physical index of the base-of-stack for current sample. */
2454         cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2455
2456         distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2457                                                      (max_lbr + prev_stack->hw_idx - cur_base);
2458         /* Previous sample has shorter stack. Nothing can be stitched. */
2459         if (distance + 1 > prev_stack->nr)
2460                 return false;
2461
2462         /*
2463          * Check if there are identical LBRs between two samples.
2464          * Identicall LBRs must have same from, to and flags values. Also,
2465          * they have to be saved in the same LBR registers (same physical
2466          * index).
2467          *
2468          * Starts from the base-of-stack of current sample.
2469          */
2470         for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2471                 if ((prev_entries[i].from != cur_entries[j].from) ||
2472                     (prev_entries[i].to != cur_entries[j].to) ||
2473                     (prev_entries[i].flags.value != cur_entries[j].flags.value))
2474                         break;
2475                 nr_identical_branches++;
2476         }
2477
2478         if (!nr_identical_branches)
2479                 return false;
2480
2481         /*
2482          * Save the LBRs between the base-of-stack of previous sample
2483          * and the base-of-stack of current sample into lbr_stitch->lists.
2484          * These LBRs will be stitched later.
2485          */
2486         for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2487
2488                 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2489                         continue;
2490
2491                 stitch_node = get_stitch_node(thread);
2492                 if (!stitch_node)
2493                         return false;
2494
2495                 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2496                        sizeof(struct callchain_cursor_node));
2497
2498                 if (callee)
2499                         list_add(&stitch_node->node, &lbr_stitch->lists);
2500                 else
2501                         list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2502         }
2503
2504         return true;
2505 }
2506
2507 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2508 {
2509         if (thread->lbr_stitch)
2510                 return true;
2511
2512         thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2513         if (!thread->lbr_stitch)
2514                 goto err;
2515
2516         thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2517         if (!thread->lbr_stitch->prev_lbr_cursor)
2518                 goto free_lbr_stitch;
2519
2520         INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2521         INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2522
2523         return true;
2524
2525 free_lbr_stitch:
2526         zfree(&thread->lbr_stitch);
2527 err:
2528         pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2529         thread->lbr_stitch_enable = false;
2530         return false;
2531 }
2532
2533 /*
2534  * Recolve LBR callstack chain sample
2535  * Return:
2536  * 1 on success get LBR callchain information
2537  * 0 no available LBR callchain information, should try fp
2538  * negative error code on other errors.
2539  */
2540 static int resolve_lbr_callchain_sample(struct thread *thread,
2541                                         struct callchain_cursor *cursor,
2542                                         struct perf_sample *sample,
2543                                         struct symbol **parent,
2544                                         struct addr_location *root_al,
2545                                         int max_stack,
2546                                         unsigned int max_lbr)
2547 {
2548         bool callee = (callchain_param.order == ORDER_CALLEE);
2549         struct ip_callchain *chain = sample->callchain;
2550         int chain_nr = min(max_stack, (int)chain->nr), i;
2551         struct lbr_stitch *lbr_stitch;
2552         bool stitched_lbr = false;
2553         u64 branch_from = 0;
2554         int err;
2555
2556         for (i = 0; i < chain_nr; i++) {
2557                 if (chain->ips[i] == PERF_CONTEXT_USER)
2558                         break;
2559         }
2560
2561         /* LBR only affects the user callchain */
2562         if (i == chain_nr)
2563                 return 0;
2564
2565         if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2566             (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2567                 lbr_stitch = thread->lbr_stitch;
2568
2569                 stitched_lbr = has_stitched_lbr(thread, sample,
2570                                                 &lbr_stitch->prev_sample,
2571                                                 max_lbr, callee);
2572
2573                 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2574                         list_replace_init(&lbr_stitch->lists,
2575                                           &lbr_stitch->free_lists);
2576                 }
2577                 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2578         }
2579
2580         if (callee) {
2581                 /* Add kernel ip */
2582                 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2583                                                   parent, root_al, branch_from,
2584                                                   true, i);
2585                 if (err)
2586                         goto error;
2587
2588                 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2589                                                root_al, &branch_from, true);
2590                 if (err)
2591                         goto error;
2592
2593                 if (stitched_lbr) {
2594                         err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2595                         if (err)
2596                                 goto error;
2597                 }
2598
2599         } else {
2600                 if (stitched_lbr) {
2601                         err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2602                         if (err)
2603                                 goto error;
2604                 }
2605                 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2606                                                root_al, &branch_from, false);
2607                 if (err)
2608                         goto error;
2609
2610                 /* Add kernel ip */
2611                 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2612                                                   parent, root_al, branch_from,
2613                                                   false, i);
2614                 if (err)
2615                         goto error;
2616         }
2617         return 1;
2618
2619 error:
2620         return (err < 0) ? err : 0;
2621 }
2622
2623 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2624                              struct callchain_cursor *cursor,
2625                              struct symbol **parent,
2626                              struct addr_location *root_al,
2627                              u8 *cpumode, int ent)
2628 {
2629         int err = 0;
2630
2631         while (--ent >= 0) {
2632                 u64 ip = chain->ips[ent];
2633
2634                 if (ip >= PERF_CONTEXT_MAX) {
2635                         err = add_callchain_ip(thread, cursor, parent,
2636                                                root_al, cpumode, ip,
2637                                                false, NULL, NULL, 0);
2638                         break;
2639                 }
2640         }
2641         return err;
2642 }
2643
2644 static int thread__resolve_callchain_sample(struct thread *thread,
2645                                             struct callchain_cursor *cursor,
2646                                             struct evsel *evsel,
2647                                             struct perf_sample *sample,
2648                                             struct symbol **parent,
2649                                             struct addr_location *root_al,
2650                                             int max_stack)
2651 {
2652         struct branch_stack *branch = sample->branch_stack;
2653         struct branch_entry *entries = perf_sample__branch_entries(sample);
2654         struct ip_callchain *chain = sample->callchain;
2655         int chain_nr = 0;
2656         u8 cpumode = PERF_RECORD_MISC_USER;
2657         int i, j, err, nr_entries;
2658         int skip_idx = -1;
2659         int first_call = 0;
2660
2661         if (chain)
2662                 chain_nr = chain->nr;
2663
2664         if (evsel__has_branch_callstack(evsel)) {
2665                 struct perf_env *env = evsel__env(evsel);
2666
2667                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2668                                                    root_al, max_stack,
2669                                                    !env ? 0 : env->max_branches);
2670                 if (err)
2671                         return (err < 0) ? err : 0;
2672         }
2673
2674         /*
2675          * Based on DWARF debug information, some architectures skip
2676          * a callchain entry saved by the kernel.
2677          */
2678         skip_idx = arch_skip_callchain_idx(thread, chain);
2679
2680         /*
2681          * Add branches to call stack for easier browsing. This gives
2682          * more context for a sample than just the callers.
2683          *
2684          * This uses individual histograms of paths compared to the
2685          * aggregated histograms the normal LBR mode uses.
2686          *
2687          * Limitations for now:
2688          * - No extra filters
2689          * - No annotations (should annotate somehow)
2690          */
2691
2692         if (branch && callchain_param.branch_callstack) {
2693                 int nr = min(max_stack, (int)branch->nr);
2694                 struct branch_entry be[nr];
2695                 struct iterations iter[nr];
2696
2697                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2698                         pr_warning("corrupted branch chain. skipping...\n");
2699                         goto check_calls;
2700                 }
2701
2702                 for (i = 0; i < nr; i++) {
2703                         if (callchain_param.order == ORDER_CALLEE) {
2704                                 be[i] = entries[i];
2705
2706                                 if (chain == NULL)
2707                                         continue;
2708
2709                                 /*
2710                                  * Check for overlap into the callchain.
2711                                  * The return address is one off compared to
2712                                  * the branch entry. To adjust for this
2713                                  * assume the calling instruction is not longer
2714                                  * than 8 bytes.
2715                                  */
2716                                 if (i == skip_idx ||
2717                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
2718                                         first_call++;
2719                                 else if (be[i].from < chain->ips[first_call] &&
2720                                     be[i].from >= chain->ips[first_call] - 8)
2721                                         first_call++;
2722                         } else
2723                                 be[i] = entries[branch->nr - i - 1];
2724                 }
2725
2726                 memset(iter, 0, sizeof(struct iterations) * nr);
2727                 nr = remove_loops(be, nr, iter);
2728
2729                 for (i = 0; i < nr; i++) {
2730                         err = add_callchain_ip(thread, cursor, parent,
2731                                                root_al,
2732                                                NULL, be[i].to,
2733                                                true, &be[i].flags,
2734                                                NULL, be[i].from);
2735
2736                         if (!err)
2737                                 err = add_callchain_ip(thread, cursor, parent, root_al,
2738                                                        NULL, be[i].from,
2739                                                        true, &be[i].flags,
2740                                                        &iter[i], 0);
2741                         if (err == -EINVAL)
2742                                 break;
2743                         if (err)
2744                                 return err;
2745                 }
2746
2747                 if (chain_nr == 0)
2748                         return 0;
2749
2750                 chain_nr -= nr;
2751         }
2752
2753 check_calls:
2754         if (chain && callchain_param.order != ORDER_CALLEE) {
2755                 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2756                                         &cpumode, chain->nr - first_call);
2757                 if (err)
2758                         return (err < 0) ? err : 0;
2759         }
2760         for (i = first_call, nr_entries = 0;
2761              i < chain_nr && nr_entries < max_stack; i++) {
2762                 u64 ip;
2763
2764                 if (callchain_param.order == ORDER_CALLEE)
2765                         j = i;
2766                 else
2767                         j = chain->nr - i - 1;
2768
2769 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2770                 if (j == skip_idx)
2771                         continue;
2772 #endif
2773                 ip = chain->ips[j];
2774                 if (ip < PERF_CONTEXT_MAX)
2775                        ++nr_entries;
2776                 else if (callchain_param.order != ORDER_CALLEE) {
2777                         err = find_prev_cpumode(chain, thread, cursor, parent,
2778                                                 root_al, &cpumode, j);
2779                         if (err)
2780                                 return (err < 0) ? err : 0;
2781                         continue;
2782                 }
2783
2784                 err = add_callchain_ip(thread, cursor, parent,
2785                                        root_al, &cpumode, ip,
2786                                        false, NULL, NULL, 0);
2787
2788                 if (err)
2789                         return (err < 0) ? err : 0;
2790         }
2791
2792         return 0;
2793 }
2794
2795 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2796 {
2797         struct symbol *sym = ms->sym;
2798         struct map *map = ms->map;
2799         struct inline_node *inline_node;
2800         struct inline_list *ilist;
2801         u64 addr;
2802         int ret = 1;
2803
2804         if (!symbol_conf.inline_name || !map || !sym)
2805                 return ret;
2806
2807         addr = map__map_ip(map, ip);
2808         addr = map__rip_2objdump(map, addr);
2809
2810         inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2811         if (!inline_node) {
2812                 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2813                 if (!inline_node)
2814                         return ret;
2815                 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2816         }
2817
2818         list_for_each_entry(ilist, &inline_node->val, list) {
2819                 struct map_symbol ilist_ms = {
2820                         .maps = ms->maps,
2821                         .map = map,
2822                         .sym = ilist->symbol,
2823                 };
2824                 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2825                                               NULL, 0, 0, 0, ilist->srcline);
2826
2827                 if (ret != 0)
2828                         return ret;
2829         }
2830
2831         return ret;
2832 }
2833
2834 static int unwind_entry(struct unwind_entry *entry, void *arg)
2835 {
2836         struct callchain_cursor *cursor = arg;
2837         const char *srcline = NULL;
2838         u64 addr = entry->ip;
2839
2840         if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2841                 return 0;
2842
2843         if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2844                 return 0;
2845
2846         /*
2847          * Convert entry->ip from a virtual address to an offset in
2848          * its corresponding binary.
2849          */
2850         if (entry->ms.map)
2851                 addr = map__map_ip(entry->ms.map, entry->ip);
2852
2853         srcline = callchain_srcline(&entry->ms, addr);
2854         return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2855                                        false, NULL, 0, 0, 0, srcline);
2856 }
2857
2858 static int thread__resolve_callchain_unwind(struct thread *thread,
2859                                             struct callchain_cursor *cursor,
2860                                             struct evsel *evsel,
2861                                             struct perf_sample *sample,
2862                                             int max_stack)
2863 {
2864         /* Can we do dwarf post unwind? */
2865         if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2866               (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2867                 return 0;
2868
2869         /* Bail out if nothing was captured. */
2870         if ((!sample->user_regs.regs) ||
2871             (!sample->user_stack.size))
2872                 return 0;
2873
2874         return unwind__get_entries(unwind_entry, cursor,
2875                                    thread, sample, max_stack);
2876 }
2877
2878 int thread__resolve_callchain(struct thread *thread,
2879                               struct callchain_cursor *cursor,
2880                               struct evsel *evsel,
2881                               struct perf_sample *sample,
2882                               struct symbol **parent,
2883                               struct addr_location *root_al,
2884                               int max_stack)
2885 {
2886         int ret = 0;
2887
2888         callchain_cursor_reset(cursor);
2889
2890         if (callchain_param.order == ORDER_CALLEE) {
2891                 ret = thread__resolve_callchain_sample(thread, cursor,
2892                                                        evsel, sample,
2893                                                        parent, root_al,
2894                                                        max_stack);
2895                 if (ret)
2896                         return ret;
2897                 ret = thread__resolve_callchain_unwind(thread, cursor,
2898                                                        evsel, sample,
2899                                                        max_stack);
2900         } else {
2901                 ret = thread__resolve_callchain_unwind(thread, cursor,
2902                                                        evsel, sample,
2903                                                        max_stack);
2904                 if (ret)
2905                         return ret;
2906                 ret = thread__resolve_callchain_sample(thread, cursor,
2907                                                        evsel, sample,
2908                                                        parent, root_al,
2909                                                        max_stack);
2910         }
2911
2912         return ret;
2913 }
2914
2915 int machine__for_each_thread(struct machine *machine,
2916                              int (*fn)(struct thread *thread, void *p),
2917                              void *priv)
2918 {
2919         struct threads *threads;
2920         struct rb_node *nd;
2921         struct thread *thread;
2922         int rc = 0;
2923         int i;
2924
2925         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2926                 threads = &machine->threads[i];
2927                 for (nd = rb_first_cached(&threads->entries); nd;
2928                      nd = rb_next(nd)) {
2929                         thread = rb_entry(nd, struct thread, rb_node);
2930                         rc = fn(thread, priv);
2931                         if (rc != 0)
2932                                 return rc;
2933                 }
2934
2935                 list_for_each_entry(thread, &threads->dead, node) {
2936                         rc = fn(thread, priv);
2937                         if (rc != 0)
2938                                 return rc;
2939                 }
2940         }
2941         return rc;
2942 }
2943
2944 int machines__for_each_thread(struct machines *machines,
2945                               int (*fn)(struct thread *thread, void *p),
2946                               void *priv)
2947 {
2948         struct rb_node *nd;
2949         int rc = 0;
2950
2951         rc = machine__for_each_thread(&machines->host, fn, priv);
2952         if (rc != 0)
2953                 return rc;
2954
2955         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2956                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2957
2958                 rc = machine__for_each_thread(machine, fn, priv);
2959                 if (rc != 0)
2960                         return rc;
2961         }
2962         return rc;
2963 }
2964
2965 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2966 {
2967         int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2968
2969         if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2970                 return -1;
2971
2972         return machine->current_tid[cpu];
2973 }
2974
2975 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2976                              pid_t tid)
2977 {
2978         struct thread *thread;
2979         int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2980
2981         if (cpu < 0)
2982                 return -EINVAL;
2983
2984         if (!machine->current_tid) {
2985                 int i;
2986
2987                 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2988                 if (!machine->current_tid)
2989                         return -ENOMEM;
2990                 for (i = 0; i < nr_cpus; i++)
2991                         machine->current_tid[i] = -1;
2992         }
2993
2994         if (cpu >= nr_cpus) {
2995                 pr_err("Requested CPU %d too large. ", cpu);
2996                 pr_err("Consider raising MAX_NR_CPUS\n");
2997                 return -EINVAL;
2998         }
2999
3000         machine->current_tid[cpu] = tid;
3001
3002         thread = machine__findnew_thread(machine, pid, tid);
3003         if (!thread)
3004                 return -ENOMEM;
3005
3006         thread->cpu = cpu;
3007         thread__put(thread);
3008
3009         return 0;
3010 }
3011
3012 /*
3013  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3014  * normalized arch is needed.
3015  */
3016 bool machine__is(struct machine *machine, const char *arch)
3017 {
3018         return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3019 }
3020
3021 int machine__nr_cpus_avail(struct machine *machine)
3022 {
3023         return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3024 }
3025
3026 int machine__get_kernel_start(struct machine *machine)
3027 {
3028         struct map *map = machine__kernel_map(machine);
3029         int err = 0;
3030
3031         /*
3032          * The only addresses above 2^63 are kernel addresses of a 64-bit
3033          * kernel.  Note that addresses are unsigned so that on a 32-bit system
3034          * all addresses including kernel addresses are less than 2^32.  In
3035          * that case (32-bit system), if the kernel mapping is unknown, all
3036          * addresses will be assumed to be in user space - see
3037          * machine__kernel_ip().
3038          */
3039         machine->kernel_start = 1ULL << 63;
3040         if (map) {
3041                 err = map__load(map);
3042                 /*
3043                  * On x86_64, PTI entry trampolines are less than the
3044                  * start of kernel text, but still above 2^63. So leave
3045                  * kernel_start = 1ULL << 63 for x86_64.
3046                  */
3047                 if (!err && !machine__is(machine, "x86_64"))
3048                         machine->kernel_start = map->start;
3049         }
3050         return err;
3051 }
3052
3053 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3054 {
3055         u8 addr_cpumode = cpumode;
3056         bool kernel_ip;
3057
3058         if (!machine->single_address_space)
3059                 goto out;
3060
3061         kernel_ip = machine__kernel_ip(machine, addr);
3062         switch (cpumode) {
3063         case PERF_RECORD_MISC_KERNEL:
3064         case PERF_RECORD_MISC_USER:
3065                 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3066                                            PERF_RECORD_MISC_USER;
3067                 break;
3068         case PERF_RECORD_MISC_GUEST_KERNEL:
3069         case PERF_RECORD_MISC_GUEST_USER:
3070                 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3071                                            PERF_RECORD_MISC_GUEST_USER;
3072                 break;
3073         default:
3074                 break;
3075         }
3076 out:
3077         return addr_cpumode;
3078 }
3079
3080 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3081 {
3082         return dsos__findnew_id(&machine->dsos, filename, id);
3083 }
3084
3085 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3086 {
3087         return machine__findnew_dso_id(machine, filename, NULL);
3088 }
3089
3090 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3091 {
3092         struct machine *machine = vmachine;
3093         struct map *map;
3094         struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3095
3096         if (sym == NULL)
3097                 return NULL;
3098
3099         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3100         *addrp = map->unmap_ip(map, sym->start);
3101         return sym->name;
3102 }
3103
3104 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3105 {
3106         struct dso *pos;
3107         int err = 0;
3108
3109         list_for_each_entry(pos, &machine->dsos.head, node) {
3110                 if (fn(pos, machine, priv))
3111                         err = -1;
3112         }
3113         return err;
3114 }