Merge tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
[linux-2.6-microblaze.git] / tools / perf / util / intel-pt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46
47 #define MAX_TIMESTAMP (~0ULL)
48
49 struct range {
50         u64 start;
51         u64 end;
52 };
53
54 struct intel_pt {
55         struct auxtrace auxtrace;
56         struct auxtrace_queues queues;
57         struct auxtrace_heap heap;
58         u32 auxtrace_type;
59         struct perf_session *session;
60         struct machine *machine;
61         struct evsel *switch_evsel;
62         struct thread *unknown_thread;
63         bool timeless_decoding;
64         bool sampling_mode;
65         bool snapshot_mode;
66         bool per_cpu_mmaps;
67         bool have_tsc;
68         bool data_queued;
69         bool est_tsc;
70         bool sync_switch;
71         bool mispred_all;
72         bool use_thread_stack;
73         bool callstack;
74         unsigned int br_stack_sz;
75         unsigned int br_stack_sz_plus;
76         int have_sched_switch;
77         u32 pmu_type;
78         u64 kernel_start;
79         u64 switch_ip;
80         u64 ptss_ip;
81
82         struct perf_tsc_conversion tc;
83         bool cap_user_time_zero;
84
85         struct itrace_synth_opts synth_opts;
86
87         bool sample_instructions;
88         u64 instructions_sample_type;
89         u64 instructions_id;
90
91         bool sample_branches;
92         u32 branches_filter;
93         u64 branches_sample_type;
94         u64 branches_id;
95
96         bool sample_transactions;
97         u64 transactions_sample_type;
98         u64 transactions_id;
99
100         bool sample_ptwrites;
101         u64 ptwrites_sample_type;
102         u64 ptwrites_id;
103
104         bool sample_pwr_events;
105         u64 pwr_events_sample_type;
106         u64 mwait_id;
107         u64 pwre_id;
108         u64 exstop_id;
109         u64 pwrx_id;
110         u64 cbr_id;
111
112         bool sample_pebs;
113         struct evsel *pebs_evsel;
114
115         u64 tsc_bit;
116         u64 mtc_bit;
117         u64 mtc_freq_bits;
118         u32 tsc_ctc_ratio_n;
119         u32 tsc_ctc_ratio_d;
120         u64 cyc_bit;
121         u64 noretcomp_bit;
122         unsigned max_non_turbo_ratio;
123         unsigned cbr2khz;
124
125         unsigned long num_events;
126
127         char *filter;
128         struct addr_filters filts;
129
130         struct range *time_ranges;
131         unsigned int range_cnt;
132
133         struct ip_callchain *chain;
134         struct branch_stack *br_stack;
135 };
136
137 enum switch_state {
138         INTEL_PT_SS_NOT_TRACING,
139         INTEL_PT_SS_UNKNOWN,
140         INTEL_PT_SS_TRACING,
141         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
142         INTEL_PT_SS_EXPECTING_SWITCH_IP,
143 };
144
145 struct intel_pt_queue {
146         struct intel_pt *pt;
147         unsigned int queue_nr;
148         struct auxtrace_buffer *buffer;
149         struct auxtrace_buffer *old_buffer;
150         void *decoder;
151         const struct intel_pt_state *state;
152         struct ip_callchain *chain;
153         struct branch_stack *last_branch;
154         union perf_event *event_buf;
155         bool on_heap;
156         bool stop;
157         bool step_through_buffers;
158         bool use_buffer_pid_tid;
159         bool sync_switch;
160         pid_t pid, tid;
161         int cpu;
162         int switch_state;
163         pid_t next_tid;
164         struct thread *thread;
165         bool exclude_kernel;
166         bool have_sample;
167         u64 time;
168         u64 timestamp;
169         u64 sel_timestamp;
170         bool sel_start;
171         unsigned int sel_idx;
172         u32 flags;
173         u16 insn_len;
174         u64 last_insn_cnt;
175         u64 ipc_insn_cnt;
176         u64 ipc_cyc_cnt;
177         u64 last_in_insn_cnt;
178         u64 last_in_cyc_cnt;
179         u64 last_br_insn_cnt;
180         u64 last_br_cyc_cnt;
181         unsigned int cbr_seen;
182         char insn[INTEL_PT_INSN_BUF_SZ];
183 };
184
185 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
186                           unsigned char *buf, size_t len)
187 {
188         struct intel_pt_pkt packet;
189         size_t pos = 0;
190         int ret, pkt_len, i;
191         char desc[INTEL_PT_PKT_DESC_MAX];
192         const char *color = PERF_COLOR_BLUE;
193         enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
194
195         color_fprintf(stdout, color,
196                       ". ... Intel Processor Trace data: size %zu bytes\n",
197                       len);
198
199         while (len) {
200                 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
201                 if (ret > 0)
202                         pkt_len = ret;
203                 else
204                         pkt_len = 1;
205                 printf(".");
206                 color_fprintf(stdout, color, "  %08x: ", pos);
207                 for (i = 0; i < pkt_len; i++)
208                         color_fprintf(stdout, color, " %02x", buf[i]);
209                 for (; i < 16; i++)
210                         color_fprintf(stdout, color, "   ");
211                 if (ret > 0) {
212                         ret = intel_pt_pkt_desc(&packet, desc,
213                                                 INTEL_PT_PKT_DESC_MAX);
214                         if (ret > 0)
215                                 color_fprintf(stdout, color, " %s\n", desc);
216                 } else {
217                         color_fprintf(stdout, color, " Bad packet!\n");
218                 }
219                 pos += pkt_len;
220                 buf += pkt_len;
221                 len -= pkt_len;
222         }
223 }
224
225 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
226                                 size_t len)
227 {
228         printf(".\n");
229         intel_pt_dump(pt, buf, len);
230 }
231
232 static void intel_pt_log_event(union perf_event *event)
233 {
234         FILE *f = intel_pt_log_fp();
235
236         if (!intel_pt_enable_logging || !f)
237                 return;
238
239         perf_event__fprintf(event, f);
240 }
241
242 static void intel_pt_dump_sample(struct perf_session *session,
243                                  struct perf_sample *sample)
244 {
245         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
246                                            auxtrace);
247
248         printf("\n");
249         intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
250 }
251
252 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
253                                    struct auxtrace_buffer *b)
254 {
255         bool consecutive = false;
256         void *start;
257
258         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
259                                       pt->have_tsc, &consecutive);
260         if (!start)
261                 return -EINVAL;
262         b->use_size = b->data + b->size - start;
263         b->use_data = start;
264         if (b->use_size && consecutive)
265                 b->consecutive = true;
266         return 0;
267 }
268
269 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
270                                struct auxtrace_buffer *buffer,
271                                struct auxtrace_buffer *old_buffer,
272                                struct intel_pt_buffer *b)
273 {
274         bool might_overlap;
275
276         if (!buffer->data) {
277                 int fd = perf_data__fd(ptq->pt->session->data);
278
279                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
280                 if (!buffer->data)
281                         return -ENOMEM;
282         }
283
284         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
285         if (might_overlap && !buffer->consecutive && old_buffer &&
286             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
287                 return -ENOMEM;
288
289         if (buffer->use_data) {
290                 b->len = buffer->use_size;
291                 b->buf = buffer->use_data;
292         } else {
293                 b->len = buffer->size;
294                 b->buf = buffer->data;
295         }
296         b->ref_timestamp = buffer->reference;
297
298         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
299                 b->consecutive = false;
300                 b->trace_nr = buffer->buffer_nr + 1;
301         } else {
302                 b->consecutive = true;
303         }
304
305         return 0;
306 }
307
308 /* Do not drop buffers with references - refer intel_pt_get_trace() */
309 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
310                                            struct auxtrace_buffer *buffer)
311 {
312         if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
313                 return;
314
315         auxtrace_buffer__drop_data(buffer);
316 }
317
318 /* Must be serialized with respect to intel_pt_get_trace() */
319 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
320                               void *cb_data)
321 {
322         struct intel_pt_queue *ptq = data;
323         struct auxtrace_buffer *buffer = ptq->buffer;
324         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
325         struct auxtrace_queue *queue;
326         int err = 0;
327
328         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
329
330         while (1) {
331                 struct intel_pt_buffer b = { .len = 0 };
332
333                 buffer = auxtrace_buffer__next(queue, buffer);
334                 if (!buffer)
335                         break;
336
337                 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
338                 if (err)
339                         break;
340
341                 if (b.len) {
342                         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
343                         old_buffer = buffer;
344                 } else {
345                         intel_pt_lookahead_drop_buffer(ptq, buffer);
346                         continue;
347                 }
348
349                 err = cb(&b, cb_data);
350                 if (err)
351                         break;
352         }
353
354         if (buffer != old_buffer)
355                 intel_pt_lookahead_drop_buffer(ptq, buffer);
356         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
357
358         return err;
359 }
360
361 /*
362  * This function assumes data is processed sequentially only.
363  * Must be serialized with respect to intel_pt_lookahead()
364  */
365 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
366 {
367         struct intel_pt_queue *ptq = data;
368         struct auxtrace_buffer *buffer = ptq->buffer;
369         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
370         struct auxtrace_queue *queue;
371         int err;
372
373         if (ptq->stop) {
374                 b->len = 0;
375                 return 0;
376         }
377
378         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
379
380         buffer = auxtrace_buffer__next(queue, buffer);
381         if (!buffer) {
382                 if (old_buffer)
383                         auxtrace_buffer__drop_data(old_buffer);
384                 b->len = 0;
385                 return 0;
386         }
387
388         ptq->buffer = buffer;
389
390         err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
391         if (err)
392                 return err;
393
394         if (ptq->step_through_buffers)
395                 ptq->stop = true;
396
397         if (b->len) {
398                 if (old_buffer)
399                         auxtrace_buffer__drop_data(old_buffer);
400                 ptq->old_buffer = buffer;
401         } else {
402                 auxtrace_buffer__drop_data(buffer);
403                 return intel_pt_get_trace(b, data);
404         }
405
406         return 0;
407 }
408
409 struct intel_pt_cache_entry {
410         struct auxtrace_cache_entry     entry;
411         u64                             insn_cnt;
412         u64                             byte_cnt;
413         enum intel_pt_insn_op           op;
414         enum intel_pt_insn_branch       branch;
415         int                             length;
416         int32_t                         rel;
417         char                            insn[INTEL_PT_INSN_BUF_SZ];
418 };
419
420 static int intel_pt_config_div(const char *var, const char *value, void *data)
421 {
422         int *d = data;
423         long val;
424
425         if (!strcmp(var, "intel-pt.cache-divisor")) {
426                 val = strtol(value, NULL, 0);
427                 if (val > 0 && val <= INT_MAX)
428                         *d = val;
429         }
430
431         return 0;
432 }
433
434 static int intel_pt_cache_divisor(void)
435 {
436         static int d;
437
438         if (d)
439                 return d;
440
441         perf_config(intel_pt_config_div, &d);
442
443         if (!d)
444                 d = 64;
445
446         return d;
447 }
448
449 static unsigned int intel_pt_cache_size(struct dso *dso,
450                                         struct machine *machine)
451 {
452         off_t size;
453
454         size = dso__data_size(dso, machine);
455         size /= intel_pt_cache_divisor();
456         if (size < 1000)
457                 return 10;
458         if (size > (1 << 21))
459                 return 21;
460         return 32 - __builtin_clz(size);
461 }
462
463 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
464                                              struct machine *machine)
465 {
466         struct auxtrace_cache *c;
467         unsigned int bits;
468
469         if (dso->auxtrace_cache)
470                 return dso->auxtrace_cache;
471
472         bits = intel_pt_cache_size(dso, machine);
473
474         /* Ignoring cache creation failure */
475         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
476
477         dso->auxtrace_cache = c;
478
479         return c;
480 }
481
482 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
483                               u64 offset, u64 insn_cnt, u64 byte_cnt,
484                               struct intel_pt_insn *intel_pt_insn)
485 {
486         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
487         struct intel_pt_cache_entry *e;
488         int err;
489
490         if (!c)
491                 return -ENOMEM;
492
493         e = auxtrace_cache__alloc_entry(c);
494         if (!e)
495                 return -ENOMEM;
496
497         e->insn_cnt = insn_cnt;
498         e->byte_cnt = byte_cnt;
499         e->op = intel_pt_insn->op;
500         e->branch = intel_pt_insn->branch;
501         e->length = intel_pt_insn->length;
502         e->rel = intel_pt_insn->rel;
503         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
504
505         err = auxtrace_cache__add(c, offset, &e->entry);
506         if (err)
507                 auxtrace_cache__free_entry(c, e);
508
509         return err;
510 }
511
512 static struct intel_pt_cache_entry *
513 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
514 {
515         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
516
517         if (!c)
518                 return NULL;
519
520         return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
521 }
522
523 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
524 {
525         return ip >= pt->kernel_start ?
526                PERF_RECORD_MISC_KERNEL :
527                PERF_RECORD_MISC_USER;
528 }
529
530 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
531                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
532                                    uint64_t to_ip, uint64_t max_insn_cnt,
533                                    void *data)
534 {
535         struct intel_pt_queue *ptq = data;
536         struct machine *machine = ptq->pt->machine;
537         struct thread *thread;
538         struct addr_location al;
539         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
540         ssize_t len;
541         int x86_64;
542         u8 cpumode;
543         u64 offset, start_offset, start_ip;
544         u64 insn_cnt = 0;
545         bool one_map = true;
546
547         intel_pt_insn->length = 0;
548
549         if (to_ip && *ip == to_ip)
550                 goto out_no_cache;
551
552         cpumode = intel_pt_cpumode(ptq->pt, *ip);
553
554         thread = ptq->thread;
555         if (!thread) {
556                 if (cpumode != PERF_RECORD_MISC_KERNEL)
557                         return -EINVAL;
558                 thread = ptq->pt->unknown_thread;
559         }
560
561         while (1) {
562                 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
563                         return -EINVAL;
564
565                 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
566                     dso__data_status_seen(al.map->dso,
567                                           DSO_DATA_STATUS_SEEN_ITRACE))
568                         return -ENOENT;
569
570                 offset = al.map->map_ip(al.map, *ip);
571
572                 if (!to_ip && one_map) {
573                         struct intel_pt_cache_entry *e;
574
575                         e = intel_pt_cache_lookup(al.map->dso, machine, offset);
576                         if (e &&
577                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
578                                 *insn_cnt_ptr = e->insn_cnt;
579                                 *ip += e->byte_cnt;
580                                 intel_pt_insn->op = e->op;
581                                 intel_pt_insn->branch = e->branch;
582                                 intel_pt_insn->length = e->length;
583                                 intel_pt_insn->rel = e->rel;
584                                 memcpy(intel_pt_insn->buf, e->insn,
585                                        INTEL_PT_INSN_BUF_SZ);
586                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
587                                 return 0;
588                         }
589                 }
590
591                 start_offset = offset;
592                 start_ip = *ip;
593
594                 /* Load maps to ensure dso->is_64_bit has been updated */
595                 map__load(al.map);
596
597                 x86_64 = al.map->dso->is_64_bit;
598
599                 while (1) {
600                         len = dso__data_read_offset(al.map->dso, machine,
601                                                     offset, buf,
602                                                     INTEL_PT_INSN_BUF_SZ);
603                         if (len <= 0)
604                                 return -EINVAL;
605
606                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
607                                 return -EINVAL;
608
609                         intel_pt_log_insn(intel_pt_insn, *ip);
610
611                         insn_cnt += 1;
612
613                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
614                                 goto out;
615
616                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
617                                 goto out_no_cache;
618
619                         *ip += intel_pt_insn->length;
620
621                         if (to_ip && *ip == to_ip)
622                                 goto out_no_cache;
623
624                         if (*ip >= al.map->end)
625                                 break;
626
627                         offset += intel_pt_insn->length;
628                 }
629                 one_map = false;
630         }
631 out:
632         *insn_cnt_ptr = insn_cnt;
633
634         if (!one_map)
635                 goto out_no_cache;
636
637         /*
638          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
639          * entries.
640          */
641         if (to_ip) {
642                 struct intel_pt_cache_entry *e;
643
644                 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
645                 if (e)
646                         return 0;
647         }
648
649         /* Ignore cache errors */
650         intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
651                            *ip - start_ip, intel_pt_insn);
652
653         return 0;
654
655 out_no_cache:
656         *insn_cnt_ptr = insn_cnt;
657         return 0;
658 }
659
660 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
661                                   uint64_t offset, const char *filename)
662 {
663         struct addr_filter *filt;
664         bool have_filter   = false;
665         bool hit_tracestop = false;
666         bool hit_filter    = false;
667
668         list_for_each_entry(filt, &pt->filts.head, list) {
669                 if (filt->start)
670                         have_filter = true;
671
672                 if ((filename && !filt->filename) ||
673                     (!filename && filt->filename) ||
674                     (filename && strcmp(filename, filt->filename)))
675                         continue;
676
677                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
678                         continue;
679
680                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
681                              ip, offset, filename ? filename : "[kernel]",
682                              filt->start ? "filter" : "stop",
683                              filt->addr, filt->size);
684
685                 if (filt->start)
686                         hit_filter = true;
687                 else
688                         hit_tracestop = true;
689         }
690
691         if (!hit_tracestop && !hit_filter)
692                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
693                              ip, offset, filename ? filename : "[kernel]");
694
695         return hit_tracestop || (have_filter && !hit_filter);
696 }
697
698 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
699 {
700         struct intel_pt_queue *ptq = data;
701         struct thread *thread;
702         struct addr_location al;
703         u8 cpumode;
704         u64 offset;
705
706         if (ip >= ptq->pt->kernel_start)
707                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
708
709         cpumode = PERF_RECORD_MISC_USER;
710
711         thread = ptq->thread;
712         if (!thread)
713                 return -EINVAL;
714
715         if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
716                 return -EINVAL;
717
718         offset = al.map->map_ip(al.map, ip);
719
720         return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
721                                      al.map->dso->long_name);
722 }
723
724 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
725 {
726         return __intel_pt_pgd_ip(ip, data) > 0;
727 }
728
729 static bool intel_pt_get_config(struct intel_pt *pt,
730                                 struct perf_event_attr *attr, u64 *config)
731 {
732         if (attr->type == pt->pmu_type) {
733                 if (config)
734                         *config = attr->config;
735                 return true;
736         }
737
738         return false;
739 }
740
741 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
742 {
743         struct evsel *evsel;
744
745         evlist__for_each_entry(pt->session->evlist, evsel) {
746                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
747                     !evsel->core.attr.exclude_kernel)
748                         return false;
749         }
750         return true;
751 }
752
753 static bool intel_pt_return_compression(struct intel_pt *pt)
754 {
755         struct evsel *evsel;
756         u64 config;
757
758         if (!pt->noretcomp_bit)
759                 return true;
760
761         evlist__for_each_entry(pt->session->evlist, evsel) {
762                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
763                     (config & pt->noretcomp_bit))
764                         return false;
765         }
766         return true;
767 }
768
769 static bool intel_pt_branch_enable(struct intel_pt *pt)
770 {
771         struct evsel *evsel;
772         u64 config;
773
774         evlist__for_each_entry(pt->session->evlist, evsel) {
775                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
776                     (config & 1) && !(config & 0x2000))
777                         return false;
778         }
779         return true;
780 }
781
782 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
783 {
784         struct evsel *evsel;
785         unsigned int shift;
786         u64 config;
787
788         if (!pt->mtc_freq_bits)
789                 return 0;
790
791         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
792                 config >>= 1;
793
794         evlist__for_each_entry(pt->session->evlist, evsel) {
795                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
796                         return (config & pt->mtc_freq_bits) >> shift;
797         }
798         return 0;
799 }
800
801 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
802 {
803         struct evsel *evsel;
804         bool timeless_decoding = true;
805         u64 config;
806
807         if (!pt->tsc_bit || !pt->cap_user_time_zero)
808                 return true;
809
810         evlist__for_each_entry(pt->session->evlist, evsel) {
811                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
812                         return true;
813                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
814                         if (config & pt->tsc_bit)
815                                 timeless_decoding = false;
816                         else
817                                 return true;
818                 }
819         }
820         return timeless_decoding;
821 }
822
823 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
824 {
825         struct evsel *evsel;
826
827         evlist__for_each_entry(pt->session->evlist, evsel) {
828                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
829                     !evsel->core.attr.exclude_kernel)
830                         return true;
831         }
832         return false;
833 }
834
835 static bool intel_pt_have_tsc(struct intel_pt *pt)
836 {
837         struct evsel *evsel;
838         bool have_tsc = false;
839         u64 config;
840
841         if (!pt->tsc_bit)
842                 return false;
843
844         evlist__for_each_entry(pt->session->evlist, evsel) {
845                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
846                         if (config & pt->tsc_bit)
847                                 have_tsc = true;
848                         else
849                                 return false;
850                 }
851         }
852         return have_tsc;
853 }
854
855 static bool intel_pt_sampling_mode(struct intel_pt *pt)
856 {
857         struct evsel *evsel;
858
859         evlist__for_each_entry(pt->session->evlist, evsel) {
860                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
861                     evsel->core.attr.aux_sample_size)
862                         return true;
863         }
864         return false;
865 }
866
867 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
868 {
869         u64 quot, rem;
870
871         quot = ns / pt->tc.time_mult;
872         rem  = ns % pt->tc.time_mult;
873         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
874                 pt->tc.time_mult;
875 }
876
877 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
878 {
879         size_t sz = sizeof(struct ip_callchain);
880
881         /* Add 1 to callchain_sz for callchain context */
882         sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
883         return zalloc(sz);
884 }
885
886 static int intel_pt_callchain_init(struct intel_pt *pt)
887 {
888         struct evsel *evsel;
889
890         evlist__for_each_entry(pt->session->evlist, evsel) {
891                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
892                         evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
893         }
894
895         pt->chain = intel_pt_alloc_chain(pt);
896         if (!pt->chain)
897                 return -ENOMEM;
898
899         return 0;
900 }
901
902 static void intel_pt_add_callchain(struct intel_pt *pt,
903                                    struct perf_sample *sample)
904 {
905         struct thread *thread = machine__findnew_thread(pt->machine,
906                                                         sample->pid,
907                                                         sample->tid);
908
909         thread_stack__sample_late(thread, sample->cpu, pt->chain,
910                                   pt->synth_opts.callchain_sz + 1, sample->ip,
911                                   pt->kernel_start);
912
913         sample->callchain = pt->chain;
914 }
915
916 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
917 {
918         size_t sz = sizeof(struct branch_stack);
919
920         sz += entry_cnt * sizeof(struct branch_entry);
921         return zalloc(sz);
922 }
923
924 static int intel_pt_br_stack_init(struct intel_pt *pt)
925 {
926         struct evsel *evsel;
927
928         evlist__for_each_entry(pt->session->evlist, evsel) {
929                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
930                         evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
931         }
932
933         pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
934         if (!pt->br_stack)
935                 return -ENOMEM;
936
937         return 0;
938 }
939
940 static void intel_pt_add_br_stack(struct intel_pt *pt,
941                                   struct perf_sample *sample)
942 {
943         struct thread *thread = machine__findnew_thread(pt->machine,
944                                                         sample->pid,
945                                                         sample->tid);
946
947         thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
948                                      pt->br_stack_sz, sample->ip,
949                                      pt->kernel_start);
950
951         sample->branch_stack = pt->br_stack;
952 }
953
954 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
955 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
956
957 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
958                                                    unsigned int queue_nr)
959 {
960         struct intel_pt_params params = { .get_trace = 0, };
961         struct perf_env *env = pt->machine->env;
962         struct intel_pt_queue *ptq;
963
964         ptq = zalloc(sizeof(struct intel_pt_queue));
965         if (!ptq)
966                 return NULL;
967
968         if (pt->synth_opts.callchain) {
969                 ptq->chain = intel_pt_alloc_chain(pt);
970                 if (!ptq->chain)
971                         goto out_free;
972         }
973
974         if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
975                 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
976
977                 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
978                 if (!ptq->last_branch)
979                         goto out_free;
980         }
981
982         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
983         if (!ptq->event_buf)
984                 goto out_free;
985
986         ptq->pt = pt;
987         ptq->queue_nr = queue_nr;
988         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
989         ptq->pid = -1;
990         ptq->tid = -1;
991         ptq->cpu = -1;
992         ptq->next_tid = -1;
993
994         params.get_trace = intel_pt_get_trace;
995         params.walk_insn = intel_pt_walk_next_insn;
996         params.lookahead = intel_pt_lookahead;
997         params.data = ptq;
998         params.return_compression = intel_pt_return_compression(pt);
999         params.branch_enable = intel_pt_branch_enable(pt);
1000         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1001         params.mtc_period = intel_pt_mtc_period(pt);
1002         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1003         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1004
1005         if (pt->filts.cnt > 0)
1006                 params.pgd_ip = intel_pt_pgd_ip;
1007
1008         if (pt->synth_opts.instructions) {
1009                 if (pt->synth_opts.period) {
1010                         switch (pt->synth_opts.period_type) {
1011                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1012                                 params.period_type =
1013                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
1014                                 params.period = pt->synth_opts.period;
1015                                 break;
1016                         case PERF_ITRACE_PERIOD_TICKS:
1017                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1018                                 params.period = pt->synth_opts.period;
1019                                 break;
1020                         case PERF_ITRACE_PERIOD_NANOSECS:
1021                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1022                                 params.period = intel_pt_ns_to_ticks(pt,
1023                                                         pt->synth_opts.period);
1024                                 break;
1025                         default:
1026                                 break;
1027                         }
1028                 }
1029
1030                 if (!params.period) {
1031                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1032                         params.period = 1;
1033                 }
1034         }
1035
1036         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1037                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1038
1039         ptq->decoder = intel_pt_decoder_new(&params);
1040         if (!ptq->decoder)
1041                 goto out_free;
1042
1043         return ptq;
1044
1045 out_free:
1046         zfree(&ptq->event_buf);
1047         zfree(&ptq->last_branch);
1048         zfree(&ptq->chain);
1049         free(ptq);
1050         return NULL;
1051 }
1052
1053 static void intel_pt_free_queue(void *priv)
1054 {
1055         struct intel_pt_queue *ptq = priv;
1056
1057         if (!ptq)
1058                 return;
1059         thread__zput(ptq->thread);
1060         intel_pt_decoder_free(ptq->decoder);
1061         zfree(&ptq->event_buf);
1062         zfree(&ptq->last_branch);
1063         zfree(&ptq->chain);
1064         free(ptq);
1065 }
1066
1067 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1068                                      struct auxtrace_queue *queue)
1069 {
1070         struct intel_pt_queue *ptq = queue->priv;
1071
1072         if (queue->tid == -1 || pt->have_sched_switch) {
1073                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1074                 thread__zput(ptq->thread);
1075         }
1076
1077         if (!ptq->thread && ptq->tid != -1)
1078                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1079
1080         if (ptq->thread) {
1081                 ptq->pid = ptq->thread->pid_;
1082                 if (queue->cpu == -1)
1083                         ptq->cpu = ptq->thread->cpu;
1084         }
1085 }
1086
1087 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1088 {
1089         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1090                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1091         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1092                 if (ptq->state->to_ip)
1093                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1094                                      PERF_IP_FLAG_ASYNC |
1095                                      PERF_IP_FLAG_INTERRUPT;
1096                 else
1097                         ptq->flags = PERF_IP_FLAG_BRANCH |
1098                                      PERF_IP_FLAG_TRACE_END;
1099                 ptq->insn_len = 0;
1100         } else {
1101                 if (ptq->state->from_ip)
1102                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1103                 else
1104                         ptq->flags = PERF_IP_FLAG_BRANCH |
1105                                      PERF_IP_FLAG_TRACE_BEGIN;
1106                 if (ptq->state->flags & INTEL_PT_IN_TX)
1107                         ptq->flags |= PERF_IP_FLAG_IN_TX;
1108                 ptq->insn_len = ptq->state->insn_len;
1109                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1110         }
1111
1112         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1113                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1114         if (ptq->state->type & INTEL_PT_TRACE_END)
1115                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1116 }
1117
1118 static void intel_pt_setup_time_range(struct intel_pt *pt,
1119                                       struct intel_pt_queue *ptq)
1120 {
1121         if (!pt->range_cnt)
1122                 return;
1123
1124         ptq->sel_timestamp = pt->time_ranges[0].start;
1125         ptq->sel_idx = 0;
1126
1127         if (ptq->sel_timestamp) {
1128                 ptq->sel_start = true;
1129         } else {
1130                 ptq->sel_timestamp = pt->time_ranges[0].end;
1131                 ptq->sel_start = false;
1132         }
1133 }
1134
1135 static int intel_pt_setup_queue(struct intel_pt *pt,
1136                                 struct auxtrace_queue *queue,
1137                                 unsigned int queue_nr)
1138 {
1139         struct intel_pt_queue *ptq = queue->priv;
1140
1141         if (list_empty(&queue->head))
1142                 return 0;
1143
1144         if (!ptq) {
1145                 ptq = intel_pt_alloc_queue(pt, queue_nr);
1146                 if (!ptq)
1147                         return -ENOMEM;
1148                 queue->priv = ptq;
1149
1150                 if (queue->cpu != -1)
1151                         ptq->cpu = queue->cpu;
1152                 ptq->tid = queue->tid;
1153
1154                 ptq->cbr_seen = UINT_MAX;
1155
1156                 if (pt->sampling_mode && !pt->snapshot_mode &&
1157                     pt->timeless_decoding)
1158                         ptq->step_through_buffers = true;
1159
1160                 ptq->sync_switch = pt->sync_switch;
1161
1162                 intel_pt_setup_time_range(pt, ptq);
1163         }
1164
1165         if (!ptq->on_heap &&
1166             (!ptq->sync_switch ||
1167              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1168                 const struct intel_pt_state *state;
1169                 int ret;
1170
1171                 if (pt->timeless_decoding)
1172                         return 0;
1173
1174                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1175                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1176                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1177
1178                 if (ptq->sel_start && ptq->sel_timestamp) {
1179                         ret = intel_pt_fast_forward(ptq->decoder,
1180                                                     ptq->sel_timestamp);
1181                         if (ret)
1182                                 return ret;
1183                 }
1184
1185                 while (1) {
1186                         state = intel_pt_decode(ptq->decoder);
1187                         if (state->err) {
1188                                 if (state->err == INTEL_PT_ERR_NODATA) {
1189                                         intel_pt_log("queue %u has no timestamp\n",
1190                                                      queue_nr);
1191                                         return 0;
1192                                 }
1193                                 continue;
1194                         }
1195                         if (state->timestamp)
1196                                 break;
1197                 }
1198
1199                 ptq->timestamp = state->timestamp;
1200                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1201                              queue_nr, ptq->timestamp);
1202                 ptq->state = state;
1203                 ptq->have_sample = true;
1204                 if (ptq->sel_start && ptq->sel_timestamp &&
1205                     ptq->timestamp < ptq->sel_timestamp)
1206                         ptq->have_sample = false;
1207                 intel_pt_sample_flags(ptq);
1208                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1209                 if (ret)
1210                         return ret;
1211                 ptq->on_heap = true;
1212         }
1213
1214         return 0;
1215 }
1216
1217 static int intel_pt_setup_queues(struct intel_pt *pt)
1218 {
1219         unsigned int i;
1220         int ret;
1221
1222         for (i = 0; i < pt->queues.nr_queues; i++) {
1223                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1224                 if (ret)
1225                         return ret;
1226         }
1227         return 0;
1228 }
1229
1230 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1231 {
1232         return pt->synth_opts.initial_skip &&
1233                pt->num_events++ < pt->synth_opts.initial_skip;
1234 }
1235
1236 /*
1237  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1238  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1239  * from this decoder state.
1240  */
1241 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1242 {
1243         return pt->synth_opts.initial_skip &&
1244                pt->num_events + 4 < pt->synth_opts.initial_skip;
1245 }
1246
1247 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1248                                    union perf_event *event,
1249                                    struct perf_sample *sample)
1250 {
1251         event->sample.header.type = PERF_RECORD_SAMPLE;
1252         event->sample.header.size = sizeof(struct perf_event_header);
1253
1254         sample->pid = ptq->pid;
1255         sample->tid = ptq->tid;
1256         sample->cpu = ptq->cpu;
1257         sample->insn_len = ptq->insn_len;
1258         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1259 }
1260
1261 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1262                                    struct intel_pt_queue *ptq,
1263                                    union perf_event *event,
1264                                    struct perf_sample *sample)
1265 {
1266         intel_pt_prep_a_sample(ptq, event, sample);
1267
1268         if (!pt->timeless_decoding)
1269                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1270
1271         sample->ip = ptq->state->from_ip;
1272         sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1273         sample->addr = ptq->state->to_ip;
1274         sample->period = 1;
1275         sample->flags = ptq->flags;
1276
1277         event->sample.header.misc = sample->cpumode;
1278 }
1279
1280 static int intel_pt_inject_event(union perf_event *event,
1281                                  struct perf_sample *sample, u64 type)
1282 {
1283         event->header.size = perf_event__sample_event_size(sample, type, 0);
1284         return perf_event__synthesize_sample(event, type, 0, sample);
1285 }
1286
1287 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1288                                       union perf_event *event,
1289                                       struct perf_sample *sample, u64 type)
1290 {
1291         if (!pt->synth_opts.inject)
1292                 return 0;
1293
1294         return intel_pt_inject_event(event, sample, type);
1295 }
1296
1297 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1298                                         union perf_event *event,
1299                                         struct perf_sample *sample, u64 type)
1300 {
1301         int ret;
1302
1303         ret = intel_pt_opt_inject(pt, event, sample, type);
1304         if (ret)
1305                 return ret;
1306
1307         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1308         if (ret)
1309                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1310
1311         return ret;
1312 }
1313
1314 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1315 {
1316         struct intel_pt *pt = ptq->pt;
1317         union perf_event *event = ptq->event_buf;
1318         struct perf_sample sample = { .ip = 0, };
1319         struct dummy_branch_stack {
1320                 u64                     nr;
1321                 u64                     hw_idx;
1322                 struct branch_entry     entries;
1323         } dummy_bs;
1324
1325         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1326                 return 0;
1327
1328         if (intel_pt_skip_event(pt))
1329                 return 0;
1330
1331         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1332
1333         sample.id = ptq->pt->branches_id;
1334         sample.stream_id = ptq->pt->branches_id;
1335
1336         /*
1337          * perf report cannot handle events without a branch stack when using
1338          * SORT_MODE__BRANCH so make a dummy one.
1339          */
1340         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1341                 dummy_bs = (struct dummy_branch_stack){
1342                         .nr = 1,
1343                         .hw_idx = -1ULL,
1344                         .entries = {
1345                                 .from = sample.ip,
1346                                 .to = sample.addr,
1347                         },
1348                 };
1349                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1350         }
1351
1352         sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1353         if (sample.cyc_cnt) {
1354                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1355                 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1356                 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1357         }
1358
1359         return intel_pt_deliver_synth_event(pt, event, &sample,
1360                                             pt->branches_sample_type);
1361 }
1362
1363 static void intel_pt_prep_sample(struct intel_pt *pt,
1364                                  struct intel_pt_queue *ptq,
1365                                  union perf_event *event,
1366                                  struct perf_sample *sample)
1367 {
1368         intel_pt_prep_b_sample(pt, ptq, event, sample);
1369
1370         if (pt->synth_opts.callchain) {
1371                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1372                                      pt->synth_opts.callchain_sz + 1,
1373                                      sample->ip, pt->kernel_start);
1374                 sample->callchain = ptq->chain;
1375         }
1376
1377         if (pt->synth_opts.last_branch) {
1378                 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1379                                         pt->br_stack_sz);
1380                 sample->branch_stack = ptq->last_branch;
1381         }
1382 }
1383
1384 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1385 {
1386         struct intel_pt *pt = ptq->pt;
1387         union perf_event *event = ptq->event_buf;
1388         struct perf_sample sample = { .ip = 0, };
1389
1390         if (intel_pt_skip_event(pt))
1391                 return 0;
1392
1393         intel_pt_prep_sample(pt, ptq, event, &sample);
1394
1395         sample.id = ptq->pt->instructions_id;
1396         sample.stream_id = ptq->pt->instructions_id;
1397         sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1398
1399         sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1400         if (sample.cyc_cnt) {
1401                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1402                 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1403                 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1404         }
1405
1406         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1407
1408         return intel_pt_deliver_synth_event(pt, event, &sample,
1409                                             pt->instructions_sample_type);
1410 }
1411
1412 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1413 {
1414         struct intel_pt *pt = ptq->pt;
1415         union perf_event *event = ptq->event_buf;
1416         struct perf_sample sample = { .ip = 0, };
1417
1418         if (intel_pt_skip_event(pt))
1419                 return 0;
1420
1421         intel_pt_prep_sample(pt, ptq, event, &sample);
1422
1423         sample.id = ptq->pt->transactions_id;
1424         sample.stream_id = ptq->pt->transactions_id;
1425
1426         return intel_pt_deliver_synth_event(pt, event, &sample,
1427                                             pt->transactions_sample_type);
1428 }
1429
1430 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1431                                    struct intel_pt_queue *ptq,
1432                                    union perf_event *event,
1433                                    struct perf_sample *sample)
1434 {
1435         intel_pt_prep_sample(pt, ptq, event, sample);
1436
1437         /*
1438          * Zero IP is used to mean "trace start" but that is not the case for
1439          * power or PTWRITE events with no IP, so clear the flags.
1440          */
1441         if (!sample->ip)
1442                 sample->flags = 0;
1443 }
1444
1445 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1446 {
1447         struct intel_pt *pt = ptq->pt;
1448         union perf_event *event = ptq->event_buf;
1449         struct perf_sample sample = { .ip = 0, };
1450         struct perf_synth_intel_ptwrite raw;
1451
1452         if (intel_pt_skip_event(pt))
1453                 return 0;
1454
1455         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1456
1457         sample.id = ptq->pt->ptwrites_id;
1458         sample.stream_id = ptq->pt->ptwrites_id;
1459
1460         raw.flags = 0;
1461         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1462         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1463
1464         sample.raw_size = perf_synth__raw_size(raw);
1465         sample.raw_data = perf_synth__raw_data(&raw);
1466
1467         return intel_pt_deliver_synth_event(pt, event, &sample,
1468                                             pt->ptwrites_sample_type);
1469 }
1470
1471 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1472 {
1473         struct intel_pt *pt = ptq->pt;
1474         union perf_event *event = ptq->event_buf;
1475         struct perf_sample sample = { .ip = 0, };
1476         struct perf_synth_intel_cbr raw;
1477         u32 flags;
1478
1479         if (intel_pt_skip_cbr_event(pt))
1480                 return 0;
1481
1482         ptq->cbr_seen = ptq->state->cbr;
1483
1484         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1485
1486         sample.id = ptq->pt->cbr_id;
1487         sample.stream_id = ptq->pt->cbr_id;
1488
1489         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1490         raw.flags = cpu_to_le32(flags);
1491         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1492         raw.reserved3 = 0;
1493
1494         sample.raw_size = perf_synth__raw_size(raw);
1495         sample.raw_data = perf_synth__raw_data(&raw);
1496
1497         return intel_pt_deliver_synth_event(pt, event, &sample,
1498                                             pt->pwr_events_sample_type);
1499 }
1500
1501 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1502 {
1503         struct intel_pt *pt = ptq->pt;
1504         union perf_event *event = ptq->event_buf;
1505         struct perf_sample sample = { .ip = 0, };
1506         struct perf_synth_intel_mwait raw;
1507
1508         if (intel_pt_skip_event(pt))
1509                 return 0;
1510
1511         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1512
1513         sample.id = ptq->pt->mwait_id;
1514         sample.stream_id = ptq->pt->mwait_id;
1515
1516         raw.reserved = 0;
1517         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1518
1519         sample.raw_size = perf_synth__raw_size(raw);
1520         sample.raw_data = perf_synth__raw_data(&raw);
1521
1522         return intel_pt_deliver_synth_event(pt, event, &sample,
1523                                             pt->pwr_events_sample_type);
1524 }
1525
1526 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1527 {
1528         struct intel_pt *pt = ptq->pt;
1529         union perf_event *event = ptq->event_buf;
1530         struct perf_sample sample = { .ip = 0, };
1531         struct perf_synth_intel_pwre raw;
1532
1533         if (intel_pt_skip_event(pt))
1534                 return 0;
1535
1536         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1537
1538         sample.id = ptq->pt->pwre_id;
1539         sample.stream_id = ptq->pt->pwre_id;
1540
1541         raw.reserved = 0;
1542         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1543
1544         sample.raw_size = perf_synth__raw_size(raw);
1545         sample.raw_data = perf_synth__raw_data(&raw);
1546
1547         return intel_pt_deliver_synth_event(pt, event, &sample,
1548                                             pt->pwr_events_sample_type);
1549 }
1550
1551 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1552 {
1553         struct intel_pt *pt = ptq->pt;
1554         union perf_event *event = ptq->event_buf;
1555         struct perf_sample sample = { .ip = 0, };
1556         struct perf_synth_intel_exstop raw;
1557
1558         if (intel_pt_skip_event(pt))
1559                 return 0;
1560
1561         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1562
1563         sample.id = ptq->pt->exstop_id;
1564         sample.stream_id = ptq->pt->exstop_id;
1565
1566         raw.flags = 0;
1567         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1568
1569         sample.raw_size = perf_synth__raw_size(raw);
1570         sample.raw_data = perf_synth__raw_data(&raw);
1571
1572         return intel_pt_deliver_synth_event(pt, event, &sample,
1573                                             pt->pwr_events_sample_type);
1574 }
1575
1576 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1577 {
1578         struct intel_pt *pt = ptq->pt;
1579         union perf_event *event = ptq->event_buf;
1580         struct perf_sample sample = { .ip = 0, };
1581         struct perf_synth_intel_pwrx raw;
1582
1583         if (intel_pt_skip_event(pt))
1584                 return 0;
1585
1586         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1587
1588         sample.id = ptq->pt->pwrx_id;
1589         sample.stream_id = ptq->pt->pwrx_id;
1590
1591         raw.reserved = 0;
1592         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1593
1594         sample.raw_size = perf_synth__raw_size(raw);
1595         sample.raw_data = perf_synth__raw_data(&raw);
1596
1597         return intel_pt_deliver_synth_event(pt, event, &sample,
1598                                             pt->pwr_events_sample_type);
1599 }
1600
1601 /*
1602  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1603  * intel_pt_add_gp_regs().
1604  */
1605 static const int pebs_gp_regs[] = {
1606         [PERF_REG_X86_FLAGS]    = 1,
1607         [PERF_REG_X86_IP]       = 2,
1608         [PERF_REG_X86_AX]       = 3,
1609         [PERF_REG_X86_CX]       = 4,
1610         [PERF_REG_X86_DX]       = 5,
1611         [PERF_REG_X86_BX]       = 6,
1612         [PERF_REG_X86_SP]       = 7,
1613         [PERF_REG_X86_BP]       = 8,
1614         [PERF_REG_X86_SI]       = 9,
1615         [PERF_REG_X86_DI]       = 10,
1616         [PERF_REG_X86_R8]       = 11,
1617         [PERF_REG_X86_R9]       = 12,
1618         [PERF_REG_X86_R10]      = 13,
1619         [PERF_REG_X86_R11]      = 14,
1620         [PERF_REG_X86_R12]      = 15,
1621         [PERF_REG_X86_R13]      = 16,
1622         [PERF_REG_X86_R14]      = 17,
1623         [PERF_REG_X86_R15]      = 18,
1624 };
1625
1626 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1627                                  const struct intel_pt_blk_items *items,
1628                                  u64 regs_mask)
1629 {
1630         const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1631         u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1632         u32 bit;
1633         int i;
1634
1635         for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1636                 /* Get the PEBS gp_regs array index */
1637                 int n = pebs_gp_regs[i] - 1;
1638
1639                 if (n < 0)
1640                         continue;
1641                 /*
1642                  * Add only registers that were requested (i.e. 'regs_mask') and
1643                  * that were provided (i.e. 'mask'), and update the resulting
1644                  * mask (i.e. 'intr_regs->mask') accordingly.
1645                  */
1646                 if (mask & 1 << n && regs_mask & bit) {
1647                         intr_regs->mask |= bit;
1648                         *pos++ = gp_regs[n];
1649                 }
1650         }
1651
1652         return pos;
1653 }
1654
1655 #ifndef PERF_REG_X86_XMM0
1656 #define PERF_REG_X86_XMM0 32
1657 #endif
1658
1659 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1660                              const struct intel_pt_blk_items *items,
1661                              u64 regs_mask)
1662 {
1663         u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1664         const u64 *xmm = items->xmm;
1665
1666         /*
1667          * If there are any XMM registers, then there should be all of them.
1668          * Nevertheless, follow the logic to add only registers that were
1669          * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1670          * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1671          */
1672         intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1673
1674         for (; mask; mask >>= 1, xmm++) {
1675                 if (mask & 1)
1676                         *pos++ = *xmm;
1677         }
1678 }
1679
1680 #define LBR_INFO_MISPRED        (1ULL << 63)
1681 #define LBR_INFO_IN_TX          (1ULL << 62)
1682 #define LBR_INFO_ABORT          (1ULL << 61)
1683 #define LBR_INFO_CYCLES         0xffff
1684
1685 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1686 static u64 intel_pt_lbr_flags(u64 info)
1687 {
1688         union {
1689                 struct branch_flags flags;
1690                 u64 result;
1691         } u;
1692
1693         u.result          = 0;
1694         u.flags.mispred   = !!(info & LBR_INFO_MISPRED);
1695         u.flags.predicted = !(info & LBR_INFO_MISPRED);
1696         u.flags.in_tx     = !!(info & LBR_INFO_IN_TX);
1697         u.flags.abort     = !!(info & LBR_INFO_ABORT);
1698         u.flags.cycles    = info & LBR_INFO_CYCLES;
1699
1700         return u.result;
1701 }
1702
1703 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1704                               const struct intel_pt_blk_items *items)
1705 {
1706         u64 *to;
1707         int i;
1708
1709         br_stack->nr = 0;
1710
1711         to = &br_stack->entries[0].from;
1712
1713         for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1714                 u32 mask = items->mask[i];
1715                 const u64 *from = items->val[i];
1716
1717                 for (; mask; mask >>= 3, from += 3) {
1718                         if ((mask & 7) == 7) {
1719                                 *to++ = from[0];
1720                                 *to++ = from[1];
1721                                 *to++ = intel_pt_lbr_flags(from[2]);
1722                                 br_stack->nr += 1;
1723                         }
1724                 }
1725         }
1726 }
1727
1728 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1729 {
1730         const struct intel_pt_blk_items *items = &ptq->state->items;
1731         struct perf_sample sample = { .ip = 0, };
1732         union perf_event *event = ptq->event_buf;
1733         struct intel_pt *pt = ptq->pt;
1734         struct evsel *evsel = pt->pebs_evsel;
1735         u64 sample_type = evsel->core.attr.sample_type;
1736         u64 id = evsel->core.id[0];
1737         u8 cpumode;
1738         u64 regs[8 * sizeof(sample.intr_regs.mask)];
1739
1740         if (intel_pt_skip_event(pt))
1741                 return 0;
1742
1743         intel_pt_prep_a_sample(ptq, event, &sample);
1744
1745         sample.id = id;
1746         sample.stream_id = id;
1747
1748         if (!evsel->core.attr.freq)
1749                 sample.period = evsel->core.attr.sample_period;
1750
1751         /* No support for non-zero CS base */
1752         if (items->has_ip)
1753                 sample.ip = items->ip;
1754         else if (items->has_rip)
1755                 sample.ip = items->rip;
1756         else
1757                 sample.ip = ptq->state->from_ip;
1758
1759         /* No support for guest mode at this time */
1760         cpumode = sample.ip < ptq->pt->kernel_start ?
1761                   PERF_RECORD_MISC_USER :
1762                   PERF_RECORD_MISC_KERNEL;
1763
1764         event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1765
1766         sample.cpumode = cpumode;
1767
1768         if (sample_type & PERF_SAMPLE_TIME) {
1769                 u64 timestamp = 0;
1770
1771                 if (items->has_timestamp)
1772                         timestamp = items->timestamp;
1773                 else if (!pt->timeless_decoding)
1774                         timestamp = ptq->timestamp;
1775                 if (timestamp)
1776                         sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1777         }
1778
1779         if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1780             pt->synth_opts.callchain) {
1781                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1782                                      pt->synth_opts.callchain_sz, sample.ip,
1783                                      pt->kernel_start);
1784                 sample.callchain = ptq->chain;
1785         }
1786
1787         if (sample_type & PERF_SAMPLE_REGS_INTR &&
1788             (items->mask[INTEL_PT_GP_REGS_POS] ||
1789              items->mask[INTEL_PT_XMM_POS])) {
1790                 u64 regs_mask = evsel->core.attr.sample_regs_intr;
1791                 u64 *pos;
1792
1793                 sample.intr_regs.abi = items->is_32_bit ?
1794                                        PERF_SAMPLE_REGS_ABI_32 :
1795                                        PERF_SAMPLE_REGS_ABI_64;
1796                 sample.intr_regs.regs = regs;
1797
1798                 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1799
1800                 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1801         }
1802
1803         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1804                 if (items->mask[INTEL_PT_LBR_0_POS] ||
1805                     items->mask[INTEL_PT_LBR_1_POS] ||
1806                     items->mask[INTEL_PT_LBR_2_POS]) {
1807                         intel_pt_add_lbrs(ptq->last_branch, items);
1808                 } else if (pt->synth_opts.last_branch) {
1809                         thread_stack__br_sample(ptq->thread, ptq->cpu,
1810                                                 ptq->last_branch,
1811                                                 pt->br_stack_sz);
1812                 } else {
1813                         ptq->last_branch->nr = 0;
1814                 }
1815                 sample.branch_stack = ptq->last_branch;
1816         }
1817
1818         if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1819                 sample.addr = items->mem_access_address;
1820
1821         if (sample_type & PERF_SAMPLE_WEIGHT) {
1822                 /*
1823                  * Refer kernel's setup_pebs_adaptive_sample_data() and
1824                  * intel_hsw_weight().
1825                  */
1826                 if (items->has_mem_access_latency)
1827                         sample.weight = items->mem_access_latency;
1828                 if (!sample.weight && items->has_tsx_aux_info) {
1829                         /* Cycles last block */
1830                         sample.weight = (u32)items->tsx_aux_info;
1831                 }
1832         }
1833
1834         if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1835                 u64 ax = items->has_rax ? items->rax : 0;
1836                 /* Refer kernel's intel_hsw_transaction() */
1837                 u64 txn = (u8)(items->tsx_aux_info >> 32);
1838
1839                 /* For RTM XABORTs also log the abort code from AX */
1840                 if (txn & PERF_TXN_TRANSACTION && ax & 1)
1841                         txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1842                 sample.transaction = txn;
1843         }
1844
1845         return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
1846 }
1847
1848 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1849                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1850 {
1851         union perf_event event;
1852         char msg[MAX_AUXTRACE_ERROR_MSG];
1853         int err;
1854
1855         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1856
1857         auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1858                              code, cpu, pid, tid, ip, msg, timestamp);
1859
1860         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1861         if (err)
1862                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1863                        err);
1864
1865         return err;
1866 }
1867
1868 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1869                                  const struct intel_pt_state *state)
1870 {
1871         struct intel_pt *pt = ptq->pt;
1872         u64 tm = ptq->timestamp;
1873
1874         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1875
1876         return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1877                                     ptq->tid, state->from_ip, tm);
1878 }
1879
1880 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1881 {
1882         struct auxtrace_queue *queue;
1883         pid_t tid = ptq->next_tid;
1884         int err;
1885
1886         if (tid == -1)
1887                 return 0;
1888
1889         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1890
1891         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1892
1893         queue = &pt->queues.queue_array[ptq->queue_nr];
1894         intel_pt_set_pid_tid_cpu(pt, queue);
1895
1896         ptq->next_tid = -1;
1897
1898         return err;
1899 }
1900
1901 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1902 {
1903         struct intel_pt *pt = ptq->pt;
1904
1905         return ip == pt->switch_ip &&
1906                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1907                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1908                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1909 }
1910
1911 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1912                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1913
1914 static int intel_pt_sample(struct intel_pt_queue *ptq)
1915 {
1916         const struct intel_pt_state *state = ptq->state;
1917         struct intel_pt *pt = ptq->pt;
1918         int err;
1919
1920         if (!ptq->have_sample)
1921                 return 0;
1922
1923         ptq->have_sample = false;
1924
1925         if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1926                 /*
1927                  * Cycle count and instruction count only go together to create
1928                  * a valid IPC ratio when the cycle count changes.
1929                  */
1930                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1931                 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1932         }
1933
1934         /*
1935          * Do PEBS first to allow for the possibility that the PEBS timestamp
1936          * precedes the current timestamp.
1937          */
1938         if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1939                 err = intel_pt_synth_pebs_sample(ptq);
1940                 if (err)
1941                         return err;
1942         }
1943
1944         if (pt->sample_pwr_events) {
1945                 if (ptq->state->cbr != ptq->cbr_seen) {
1946                         err = intel_pt_synth_cbr_sample(ptq);
1947                         if (err)
1948                                 return err;
1949                 }
1950                 if (state->type & INTEL_PT_PWR_EVT) {
1951                         if (state->type & INTEL_PT_MWAIT_OP) {
1952                                 err = intel_pt_synth_mwait_sample(ptq);
1953                                 if (err)
1954                                         return err;
1955                         }
1956                         if (state->type & INTEL_PT_PWR_ENTRY) {
1957                                 err = intel_pt_synth_pwre_sample(ptq);
1958                                 if (err)
1959                                         return err;
1960                         }
1961                         if (state->type & INTEL_PT_EX_STOP) {
1962                                 err = intel_pt_synth_exstop_sample(ptq);
1963                                 if (err)
1964                                         return err;
1965                         }
1966                         if (state->type & INTEL_PT_PWR_EXIT) {
1967                                 err = intel_pt_synth_pwrx_sample(ptq);
1968                                 if (err)
1969                                         return err;
1970                         }
1971                 }
1972         }
1973
1974         if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1975                 err = intel_pt_synth_instruction_sample(ptq);
1976                 if (err)
1977                         return err;
1978         }
1979
1980         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1981                 err = intel_pt_synth_transaction_sample(ptq);
1982                 if (err)
1983                         return err;
1984         }
1985
1986         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1987                 err = intel_pt_synth_ptwrite_sample(ptq);
1988                 if (err)
1989                         return err;
1990         }
1991
1992         if (!(state->type & INTEL_PT_BRANCH))
1993                 return 0;
1994
1995         if (pt->use_thread_stack) {
1996                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
1997                                     state->from_ip, state->to_ip, ptq->insn_len,
1998                                     state->trace_nr, pt->callstack,
1999                                     pt->br_stack_sz_plus,
2000                                     pt->mispred_all);
2001         } else {
2002                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2003         }
2004
2005         if (pt->sample_branches) {
2006                 err = intel_pt_synth_branch_sample(ptq);
2007                 if (err)
2008                         return err;
2009         }
2010
2011         if (!ptq->sync_switch)
2012                 return 0;
2013
2014         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2015                 switch (ptq->switch_state) {
2016                 case INTEL_PT_SS_NOT_TRACING:
2017                 case INTEL_PT_SS_UNKNOWN:
2018                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2019                         err = intel_pt_next_tid(pt, ptq);
2020                         if (err)
2021                                 return err;
2022                         ptq->switch_state = INTEL_PT_SS_TRACING;
2023                         break;
2024                 default:
2025                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2026                         return 1;
2027                 }
2028         } else if (!state->to_ip) {
2029                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2030         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2031                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2032         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2033                    state->to_ip == pt->ptss_ip &&
2034                    (ptq->flags & PERF_IP_FLAG_CALL)) {
2035                 ptq->switch_state = INTEL_PT_SS_TRACING;
2036         }
2037
2038         return 0;
2039 }
2040
2041 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2042 {
2043         struct machine *machine = pt->machine;
2044         struct map *map;
2045         struct symbol *sym, *start;
2046         u64 ip, switch_ip = 0;
2047         const char *ptss;
2048
2049         if (ptss_ip)
2050                 *ptss_ip = 0;
2051
2052         map = machine__kernel_map(machine);
2053         if (!map)
2054                 return 0;
2055
2056         if (map__load(map))
2057                 return 0;
2058
2059         start = dso__first_symbol(map->dso);
2060
2061         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2062                 if (sym->binding == STB_GLOBAL &&
2063                     !strcmp(sym->name, "__switch_to")) {
2064                         ip = map->unmap_ip(map, sym->start);
2065                         if (ip >= map->start && ip < map->end) {
2066                                 switch_ip = ip;
2067                                 break;
2068                         }
2069                 }
2070         }
2071
2072         if (!switch_ip || !ptss_ip)
2073                 return 0;
2074
2075         if (pt->have_sched_switch == 1)
2076                 ptss = "perf_trace_sched_switch";
2077         else
2078                 ptss = "__perf_event_task_sched_out";
2079
2080         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2081                 if (!strcmp(sym->name, ptss)) {
2082                         ip = map->unmap_ip(map, sym->start);
2083                         if (ip >= map->start && ip < map->end) {
2084                                 *ptss_ip = ip;
2085                                 break;
2086                         }
2087                 }
2088         }
2089
2090         return switch_ip;
2091 }
2092
2093 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2094 {
2095         unsigned int i;
2096
2097         pt->sync_switch = true;
2098
2099         for (i = 0; i < pt->queues.nr_queues; i++) {
2100                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2101                 struct intel_pt_queue *ptq = queue->priv;
2102
2103                 if (ptq)
2104                         ptq->sync_switch = true;
2105         }
2106 }
2107
2108 /*
2109  * To filter against time ranges, it is only necessary to look at the next start
2110  * or end time.
2111  */
2112 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2113 {
2114         struct intel_pt *pt = ptq->pt;
2115
2116         if (ptq->sel_start) {
2117                 /* Next time is an end time */
2118                 ptq->sel_start = false;
2119                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2120                 return true;
2121         } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2122                 /* Next time is a start time */
2123                 ptq->sel_start = true;
2124                 ptq->sel_idx += 1;
2125                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2126                 return true;
2127         }
2128
2129         /* No next time */
2130         return false;
2131 }
2132
2133 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2134 {
2135         int err;
2136
2137         while (1) {
2138                 if (ptq->sel_start) {
2139                         if (ptq->timestamp >= ptq->sel_timestamp) {
2140                                 /* After start time, so consider next time */
2141                                 intel_pt_next_time(ptq);
2142                                 if (!ptq->sel_timestamp) {
2143                                         /* No end time */
2144                                         return 0;
2145                                 }
2146                                 /* Check against end time */
2147                                 continue;
2148                         }
2149                         /* Before start time, so fast forward */
2150                         ptq->have_sample = false;
2151                         if (ptq->sel_timestamp > *ff_timestamp) {
2152                                 if (ptq->sync_switch) {
2153                                         intel_pt_next_tid(ptq->pt, ptq);
2154                                         ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2155                                 }
2156                                 *ff_timestamp = ptq->sel_timestamp;
2157                                 err = intel_pt_fast_forward(ptq->decoder,
2158                                                             ptq->sel_timestamp);
2159                                 if (err)
2160                                         return err;
2161                         }
2162                         return 0;
2163                 } else if (ptq->timestamp > ptq->sel_timestamp) {
2164                         /* After end time, so consider next time */
2165                         if (!intel_pt_next_time(ptq)) {
2166                                 /* No next time range, so stop decoding */
2167                                 ptq->have_sample = false;
2168                                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2169                                 return 1;
2170                         }
2171                         /* Check against next start time */
2172                         continue;
2173                 } else {
2174                         /* Before end time */
2175                         return 0;
2176                 }
2177         }
2178 }
2179
2180 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2181 {
2182         const struct intel_pt_state *state = ptq->state;
2183         struct intel_pt *pt = ptq->pt;
2184         u64 ff_timestamp = 0;
2185         int err;
2186
2187         if (!pt->kernel_start) {
2188                 pt->kernel_start = machine__kernel_start(pt->machine);
2189                 if (pt->per_cpu_mmaps &&
2190                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2191                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2192                     !pt->sampling_mode) {
2193                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2194                         if (pt->switch_ip) {
2195                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2196                                              pt->switch_ip, pt->ptss_ip);
2197                                 intel_pt_enable_sync_switch(pt);
2198                         }
2199                 }
2200         }
2201
2202         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2203                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2204         while (1) {
2205                 err = intel_pt_sample(ptq);
2206                 if (err)
2207                         return err;
2208
2209                 state = intel_pt_decode(ptq->decoder);
2210                 if (state->err) {
2211                         if (state->err == INTEL_PT_ERR_NODATA)
2212                                 return 1;
2213                         if (ptq->sync_switch &&
2214                             state->from_ip >= pt->kernel_start) {
2215                                 ptq->sync_switch = false;
2216                                 intel_pt_next_tid(pt, ptq);
2217                         }
2218                         if (pt->synth_opts.errors) {
2219                                 err = intel_ptq_synth_error(ptq, state);
2220                                 if (err)
2221                                         return err;
2222                         }
2223                         continue;
2224                 }
2225
2226                 ptq->state = state;
2227                 ptq->have_sample = true;
2228                 intel_pt_sample_flags(ptq);
2229
2230                 /* Use estimated TSC upon return to user space */
2231                 if (pt->est_tsc &&
2232                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2233                     state->to_ip && state->to_ip < pt->kernel_start) {
2234                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2235                                      state->timestamp, state->est_timestamp);
2236                         ptq->timestamp = state->est_timestamp;
2237                 /* Use estimated TSC in unknown switch state */
2238                 } else if (ptq->sync_switch &&
2239                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2240                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
2241                            ptq->next_tid == -1) {
2242                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2243                                      state->timestamp, state->est_timestamp);
2244                         ptq->timestamp = state->est_timestamp;
2245                 } else if (state->timestamp > ptq->timestamp) {
2246                         ptq->timestamp = state->timestamp;
2247                 }
2248
2249                 if (ptq->sel_timestamp) {
2250                         err = intel_pt_time_filter(ptq, &ff_timestamp);
2251                         if (err)
2252                                 return err;
2253                 }
2254
2255                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2256                         *timestamp = ptq->timestamp;
2257                         return 0;
2258                 }
2259         }
2260         return 0;
2261 }
2262
2263 static inline int intel_pt_update_queues(struct intel_pt *pt)
2264 {
2265         if (pt->queues.new_data) {
2266                 pt->queues.new_data = false;
2267                 return intel_pt_setup_queues(pt);
2268         }
2269         return 0;
2270 }
2271
2272 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2273 {
2274         unsigned int queue_nr;
2275         u64 ts;
2276         int ret;
2277
2278         while (1) {
2279                 struct auxtrace_queue *queue;
2280                 struct intel_pt_queue *ptq;
2281
2282                 if (!pt->heap.heap_cnt)
2283                         return 0;
2284
2285                 if (pt->heap.heap_array[0].ordinal >= timestamp)
2286                         return 0;
2287
2288                 queue_nr = pt->heap.heap_array[0].queue_nr;
2289                 queue = &pt->queues.queue_array[queue_nr];
2290                 ptq = queue->priv;
2291
2292                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2293                              queue_nr, pt->heap.heap_array[0].ordinal,
2294                              timestamp);
2295
2296                 auxtrace_heap__pop(&pt->heap);
2297
2298                 if (pt->heap.heap_cnt) {
2299                         ts = pt->heap.heap_array[0].ordinal + 1;
2300                         if (ts > timestamp)
2301                                 ts = timestamp;
2302                 } else {
2303                         ts = timestamp;
2304                 }
2305
2306                 intel_pt_set_pid_tid_cpu(pt, queue);
2307
2308                 ret = intel_pt_run_decoder(ptq, &ts);
2309
2310                 if (ret < 0) {
2311                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
2312                         return ret;
2313                 }
2314
2315                 if (!ret) {
2316                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2317                         if (ret < 0)
2318                                 return ret;
2319                 } else {
2320                         ptq->on_heap = false;
2321                 }
2322         }
2323
2324         return 0;
2325 }
2326
2327 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2328                                             u64 time_)
2329 {
2330         struct auxtrace_queues *queues = &pt->queues;
2331         unsigned int i;
2332         u64 ts = 0;
2333
2334         for (i = 0; i < queues->nr_queues; i++) {
2335                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2336                 struct intel_pt_queue *ptq = queue->priv;
2337
2338                 if (ptq && (tid == -1 || ptq->tid == tid)) {
2339                         ptq->time = time_;
2340                         intel_pt_set_pid_tid_cpu(pt, queue);
2341                         intel_pt_run_decoder(ptq, &ts);
2342                 }
2343         }
2344         return 0;
2345 }
2346
2347 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2348                                             struct auxtrace_queue *queue,
2349                                             struct perf_sample *sample)
2350 {
2351         struct machine *m = ptq->pt->machine;
2352
2353         ptq->pid = sample->pid;
2354         ptq->tid = sample->tid;
2355         ptq->cpu = queue->cpu;
2356
2357         intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2358                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2359
2360         thread__zput(ptq->thread);
2361
2362         if (ptq->tid == -1)
2363                 return;
2364
2365         if (ptq->pid == -1) {
2366                 ptq->thread = machine__find_thread(m, -1, ptq->tid);
2367                 if (ptq->thread)
2368                         ptq->pid = ptq->thread->pid_;
2369                 return;
2370         }
2371
2372         ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2373 }
2374
2375 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2376                                             struct perf_sample *sample)
2377 {
2378         struct auxtrace_queue *queue;
2379         struct intel_pt_queue *ptq;
2380         u64 ts = 0;
2381
2382         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2383         if (!queue)
2384                 return -EINVAL;
2385
2386         ptq = queue->priv;
2387         if (!ptq)
2388                 return 0;
2389
2390         ptq->stop = false;
2391         ptq->time = sample->time;
2392         intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2393         intel_pt_run_decoder(ptq, &ts);
2394         return 0;
2395 }
2396
2397 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2398 {
2399         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2400                                     sample->pid, sample->tid, 0, sample->time);
2401 }
2402
2403 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2404 {
2405         unsigned i, j;
2406
2407         if (cpu < 0 || !pt->queues.nr_queues)
2408                 return NULL;
2409
2410         if ((unsigned)cpu >= pt->queues.nr_queues)
2411                 i = pt->queues.nr_queues - 1;
2412         else
2413                 i = cpu;
2414
2415         if (pt->queues.queue_array[i].cpu == cpu)
2416                 return pt->queues.queue_array[i].priv;
2417
2418         for (j = 0; i > 0; j++) {
2419                 if (pt->queues.queue_array[--i].cpu == cpu)
2420                         return pt->queues.queue_array[i].priv;
2421         }
2422
2423         for (; j < pt->queues.nr_queues; j++) {
2424                 if (pt->queues.queue_array[j].cpu == cpu)
2425                         return pt->queues.queue_array[j].priv;
2426         }
2427
2428         return NULL;
2429 }
2430
2431 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2432                                 u64 timestamp)
2433 {
2434         struct intel_pt_queue *ptq;
2435         int err;
2436
2437         if (!pt->sync_switch)
2438                 return 1;
2439
2440         ptq = intel_pt_cpu_to_ptq(pt, cpu);
2441         if (!ptq || !ptq->sync_switch)
2442                 return 1;
2443
2444         switch (ptq->switch_state) {
2445         case INTEL_PT_SS_NOT_TRACING:
2446                 break;
2447         case INTEL_PT_SS_UNKNOWN:
2448         case INTEL_PT_SS_TRACING:
2449                 ptq->next_tid = tid;
2450                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2451                 return 0;
2452         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2453                 if (!ptq->on_heap) {
2454                         ptq->timestamp = perf_time_to_tsc(timestamp,
2455                                                           &pt->tc);
2456                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2457                                                  ptq->timestamp);
2458                         if (err)
2459                                 return err;
2460                         ptq->on_heap = true;
2461                 }
2462                 ptq->switch_state = INTEL_PT_SS_TRACING;
2463                 break;
2464         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2465                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2466                 break;
2467         default:
2468                 break;
2469         }
2470
2471         ptq->next_tid = -1;
2472
2473         return 1;
2474 }
2475
2476 static int intel_pt_process_switch(struct intel_pt *pt,
2477                                    struct perf_sample *sample)
2478 {
2479         struct evsel *evsel;
2480         pid_t tid;
2481         int cpu, ret;
2482
2483         evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2484         if (evsel != pt->switch_evsel)
2485                 return 0;
2486
2487         tid = evsel__intval(evsel, sample, "next_pid");
2488         cpu = sample->cpu;
2489
2490         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2491                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2492                      &pt->tc));
2493
2494         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2495         if (ret <= 0)
2496                 return ret;
2497
2498         return machine__set_current_tid(pt->machine, cpu, -1, tid);
2499 }
2500
2501 static int intel_pt_context_switch_in(struct intel_pt *pt,
2502                                       struct perf_sample *sample)
2503 {
2504         pid_t pid = sample->pid;
2505         pid_t tid = sample->tid;
2506         int cpu = sample->cpu;
2507
2508         if (pt->sync_switch) {
2509                 struct intel_pt_queue *ptq;
2510
2511                 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2512                 if (ptq && ptq->sync_switch) {
2513                         ptq->next_tid = -1;
2514                         switch (ptq->switch_state) {
2515                         case INTEL_PT_SS_NOT_TRACING:
2516                         case INTEL_PT_SS_UNKNOWN:
2517                         case INTEL_PT_SS_TRACING:
2518                                 break;
2519                         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2520                         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2521                                 ptq->switch_state = INTEL_PT_SS_TRACING;
2522                                 break;
2523                         default:
2524                                 break;
2525                         }
2526                 }
2527         }
2528
2529         /*
2530          * If the current tid has not been updated yet, ensure it is now that
2531          * a "switch in" event has occurred.
2532          */
2533         if (machine__get_current_tid(pt->machine, cpu) == tid)
2534                 return 0;
2535
2536         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2537 }
2538
2539 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2540                                    struct perf_sample *sample)
2541 {
2542         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2543         pid_t pid, tid;
2544         int cpu, ret;
2545
2546         cpu = sample->cpu;
2547
2548         if (pt->have_sched_switch == 3) {
2549                 if (!out)
2550                         return intel_pt_context_switch_in(pt, sample);
2551                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2552                         pr_err("Expecting CPU-wide context switch event\n");
2553                         return -EINVAL;
2554                 }
2555                 pid = event->context_switch.next_prev_pid;
2556                 tid = event->context_switch.next_prev_tid;
2557         } else {
2558                 if (out)
2559                         return 0;
2560                 pid = sample->pid;
2561                 tid = sample->tid;
2562         }
2563
2564         if (tid == -1) {
2565                 pr_err("context_switch event has no tid\n");
2566                 return -EINVAL;
2567         }
2568
2569         intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2570                      cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
2571                      &pt->tc));
2572
2573         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2574         if (ret <= 0)
2575                 return ret;
2576
2577         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2578 }
2579
2580 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2581                                          union perf_event *event,
2582                                          struct perf_sample *sample)
2583 {
2584         if (!pt->per_cpu_mmaps)
2585                 return 0;
2586
2587         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2588                      sample->cpu, event->itrace_start.pid,
2589                      event->itrace_start.tid, sample->time,
2590                      perf_time_to_tsc(sample->time, &pt->tc));
2591
2592         return machine__set_current_tid(pt->machine, sample->cpu,
2593                                         event->itrace_start.pid,
2594                                         event->itrace_start.tid);
2595 }
2596
2597 static int intel_pt_process_event(struct perf_session *session,
2598                                   union perf_event *event,
2599                                   struct perf_sample *sample,
2600                                   struct perf_tool *tool)
2601 {
2602         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2603                                            auxtrace);
2604         u64 timestamp;
2605         int err = 0;
2606
2607         if (dump_trace)
2608                 return 0;
2609
2610         if (!tool->ordered_events) {
2611                 pr_err("Intel Processor Trace requires ordered events\n");
2612                 return -EINVAL;
2613         }
2614
2615         if (sample->time && sample->time != (u64)-1)
2616                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2617         else
2618                 timestamp = 0;
2619
2620         if (timestamp || pt->timeless_decoding) {
2621                 err = intel_pt_update_queues(pt);
2622                 if (err)
2623                         return err;
2624         }
2625
2626         if (pt->timeless_decoding) {
2627                 if (pt->sampling_mode) {
2628                         if (sample->aux_sample.size)
2629                                 err = intel_pt_process_timeless_sample(pt,
2630                                                                        sample);
2631                 } else if (event->header.type == PERF_RECORD_EXIT) {
2632                         err = intel_pt_process_timeless_queues(pt,
2633                                                                event->fork.tid,
2634                                                                sample->time);
2635                 }
2636         } else if (timestamp) {
2637                 err = intel_pt_process_queues(pt, timestamp);
2638         }
2639         if (err)
2640                 return err;
2641
2642         if (event->header.type == PERF_RECORD_SAMPLE) {
2643                 if (pt->synth_opts.add_callchain && !sample->callchain)
2644                         intel_pt_add_callchain(pt, sample);
2645                 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2646                         intel_pt_add_br_stack(pt, sample);
2647         }
2648
2649         if (event->header.type == PERF_RECORD_AUX &&
2650             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2651             pt->synth_opts.errors) {
2652                 err = intel_pt_lost(pt, sample);
2653                 if (err)
2654                         return err;
2655         }
2656
2657         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2658                 err = intel_pt_process_switch(pt, sample);
2659         else if (event->header.type == PERF_RECORD_ITRACE_START)
2660                 err = intel_pt_process_itrace_start(pt, event, sample);
2661         else if (event->header.type == PERF_RECORD_SWITCH ||
2662                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2663                 err = intel_pt_context_switch(pt, event, sample);
2664
2665         intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2666                      event->header.type, sample->cpu, sample->time, timestamp);
2667         intel_pt_log_event(event);
2668
2669         return err;
2670 }
2671
2672 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2673 {
2674         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2675                                            auxtrace);
2676         int ret;
2677
2678         if (dump_trace)
2679                 return 0;
2680
2681         if (!tool->ordered_events)
2682                 return -EINVAL;
2683
2684         ret = intel_pt_update_queues(pt);
2685         if (ret < 0)
2686                 return ret;
2687
2688         if (pt->timeless_decoding)
2689                 return intel_pt_process_timeless_queues(pt, -1,
2690                                                         MAX_TIMESTAMP - 1);
2691
2692         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2693 }
2694
2695 static void intel_pt_free_events(struct perf_session *session)
2696 {
2697         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2698                                            auxtrace);
2699         struct auxtrace_queues *queues = &pt->queues;
2700         unsigned int i;
2701
2702         for (i = 0; i < queues->nr_queues; i++) {
2703                 intel_pt_free_queue(queues->queue_array[i].priv);
2704                 queues->queue_array[i].priv = NULL;
2705         }
2706         intel_pt_log_disable();
2707         auxtrace_queues__free(queues);
2708 }
2709
2710 static void intel_pt_free(struct perf_session *session)
2711 {
2712         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2713                                            auxtrace);
2714
2715         auxtrace_heap__free(&pt->heap);
2716         intel_pt_free_events(session);
2717         session->auxtrace = NULL;
2718         thread__put(pt->unknown_thread);
2719         addr_filters__exit(&pt->filts);
2720         zfree(&pt->chain);
2721         zfree(&pt->filter);
2722         zfree(&pt->time_ranges);
2723         free(pt);
2724 }
2725
2726 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
2727                                        struct evsel *evsel)
2728 {
2729         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2730                                            auxtrace);
2731
2732         return evsel->core.attr.type == pt->pmu_type;
2733 }
2734
2735 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2736                                            union perf_event *event,
2737                                            struct perf_tool *tool __maybe_unused)
2738 {
2739         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2740                                            auxtrace);
2741
2742         if (!pt->data_queued) {
2743                 struct auxtrace_buffer *buffer;
2744                 off_t data_offset;
2745                 int fd = perf_data__fd(session->data);
2746                 int err;
2747
2748                 if (perf_data__is_pipe(session->data)) {
2749                         data_offset = 0;
2750                 } else {
2751                         data_offset = lseek(fd, 0, SEEK_CUR);
2752                         if (data_offset == -1)
2753                                 return -errno;
2754                 }
2755
2756                 err = auxtrace_queues__add_event(&pt->queues, session, event,
2757                                                  data_offset, &buffer);
2758                 if (err)
2759                         return err;
2760
2761                 /* Dump here now we have copied a piped trace out of the pipe */
2762                 if (dump_trace) {
2763                         if (auxtrace_buffer__get_data(buffer, fd)) {
2764                                 intel_pt_dump_event(pt, buffer->data,
2765                                                     buffer->size);
2766                                 auxtrace_buffer__put_data(buffer);
2767                         }
2768                 }
2769         }
2770
2771         return 0;
2772 }
2773
2774 static int intel_pt_queue_data(struct perf_session *session,
2775                                struct perf_sample *sample,
2776                                union perf_event *event, u64 data_offset)
2777 {
2778         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2779                                            auxtrace);
2780         u64 timestamp;
2781
2782         if (event) {
2783                 return auxtrace_queues__add_event(&pt->queues, session, event,
2784                                                   data_offset, NULL);
2785         }
2786
2787         if (sample->time && sample->time != (u64)-1)
2788                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2789         else
2790                 timestamp = 0;
2791
2792         return auxtrace_queues__add_sample(&pt->queues, session, sample,
2793                                            data_offset, timestamp);
2794 }
2795
2796 struct intel_pt_synth {
2797         struct perf_tool dummy_tool;
2798         struct perf_session *session;
2799 };
2800
2801 static int intel_pt_event_synth(struct perf_tool *tool,
2802                                 union perf_event *event,
2803                                 struct perf_sample *sample __maybe_unused,
2804                                 struct machine *machine __maybe_unused)
2805 {
2806         struct intel_pt_synth *intel_pt_synth =
2807                         container_of(tool, struct intel_pt_synth, dummy_tool);
2808
2809         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2810                                                  NULL);
2811 }
2812
2813 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2814                                 struct perf_event_attr *attr, u64 id)
2815 {
2816         struct intel_pt_synth intel_pt_synth;
2817         int err;
2818
2819         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2820                  name, id, (u64)attr->sample_type);
2821
2822         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2823         intel_pt_synth.session = session;
2824
2825         err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2826                                           &id, intel_pt_event_synth);
2827         if (err)
2828                 pr_err("%s: failed to synthesize '%s' event type\n",
2829                        __func__, name);
2830
2831         return err;
2832 }
2833
2834 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2835                                     const char *name)
2836 {
2837         struct evsel *evsel;
2838
2839         evlist__for_each_entry(evlist, evsel) {
2840                 if (evsel->core.id && evsel->core.id[0] == id) {
2841                         if (evsel->name)
2842                                 zfree(&evsel->name);
2843                         evsel->name = strdup(name);
2844                         break;
2845                 }
2846         }
2847 }
2848
2849 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2850                                          struct evlist *evlist)
2851 {
2852         struct evsel *evsel;
2853
2854         evlist__for_each_entry(evlist, evsel) {
2855                 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2856                         return evsel;
2857         }
2858
2859         return NULL;
2860 }
2861
2862 static int intel_pt_synth_events(struct intel_pt *pt,
2863                                  struct perf_session *session)
2864 {
2865         struct evlist *evlist = session->evlist;
2866         struct evsel *evsel = intel_pt_evsel(pt, evlist);
2867         struct perf_event_attr attr;
2868         u64 id;
2869         int err;
2870
2871         if (!evsel) {
2872                 pr_debug("There are no selected events with Intel Processor Trace data\n");
2873                 return 0;
2874         }
2875
2876         memset(&attr, 0, sizeof(struct perf_event_attr));
2877         attr.size = sizeof(struct perf_event_attr);
2878         attr.type = PERF_TYPE_HARDWARE;
2879         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2880         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2881                             PERF_SAMPLE_PERIOD;
2882         if (pt->timeless_decoding)
2883                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2884         else
2885                 attr.sample_type |= PERF_SAMPLE_TIME;
2886         if (!pt->per_cpu_mmaps)
2887                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2888         attr.exclude_user = evsel->core.attr.exclude_user;
2889         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2890         attr.exclude_hv = evsel->core.attr.exclude_hv;
2891         attr.exclude_host = evsel->core.attr.exclude_host;
2892         attr.exclude_guest = evsel->core.attr.exclude_guest;
2893         attr.sample_id_all = evsel->core.attr.sample_id_all;
2894         attr.read_format = evsel->core.attr.read_format;
2895
2896         id = evsel->core.id[0] + 1000000000;
2897         if (!id)
2898                 id = 1;
2899
2900         if (pt->synth_opts.branches) {
2901                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2902                 attr.sample_period = 1;
2903                 attr.sample_type |= PERF_SAMPLE_ADDR;
2904                 err = intel_pt_synth_event(session, "branches", &attr, id);
2905                 if (err)
2906                         return err;
2907                 pt->sample_branches = true;
2908                 pt->branches_sample_type = attr.sample_type;
2909                 pt->branches_id = id;
2910                 id += 1;
2911                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2912         }
2913
2914         if (pt->synth_opts.callchain)
2915                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2916         if (pt->synth_opts.last_branch)
2917                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2918
2919         if (pt->synth_opts.instructions) {
2920                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2921                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2922                         attr.sample_period =
2923                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2924                 else
2925                         attr.sample_period = pt->synth_opts.period;
2926                 err = intel_pt_synth_event(session, "instructions", &attr, id);
2927                 if (err)
2928                         return err;
2929                 pt->sample_instructions = true;
2930                 pt->instructions_sample_type = attr.sample_type;
2931                 pt->instructions_id = id;
2932                 id += 1;
2933         }
2934
2935         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2936         attr.sample_period = 1;
2937
2938         if (pt->synth_opts.transactions) {
2939                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2940                 err = intel_pt_synth_event(session, "transactions", &attr, id);
2941                 if (err)
2942                         return err;
2943                 pt->sample_transactions = true;
2944                 pt->transactions_sample_type = attr.sample_type;
2945                 pt->transactions_id = id;
2946                 intel_pt_set_event_name(evlist, id, "transactions");
2947                 id += 1;
2948         }
2949
2950         attr.type = PERF_TYPE_SYNTH;
2951         attr.sample_type |= PERF_SAMPLE_RAW;
2952
2953         if (pt->synth_opts.ptwrites) {
2954                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
2955                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2956                 if (err)
2957                         return err;
2958                 pt->sample_ptwrites = true;
2959                 pt->ptwrites_sample_type = attr.sample_type;
2960                 pt->ptwrites_id = id;
2961                 intel_pt_set_event_name(evlist, id, "ptwrite");
2962                 id += 1;
2963         }
2964
2965         if (pt->synth_opts.pwr_events) {
2966                 pt->sample_pwr_events = true;
2967                 pt->pwr_events_sample_type = attr.sample_type;
2968
2969                 attr.config = PERF_SYNTH_INTEL_CBR;
2970                 err = intel_pt_synth_event(session, "cbr", &attr, id);
2971                 if (err)
2972                         return err;
2973                 pt->cbr_id = id;
2974                 intel_pt_set_event_name(evlist, id, "cbr");
2975                 id += 1;
2976         }
2977
2978         if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
2979                 attr.config = PERF_SYNTH_INTEL_MWAIT;
2980                 err = intel_pt_synth_event(session, "mwait", &attr, id);
2981                 if (err)
2982                         return err;
2983                 pt->mwait_id = id;
2984                 intel_pt_set_event_name(evlist, id, "mwait");
2985                 id += 1;
2986
2987                 attr.config = PERF_SYNTH_INTEL_PWRE;
2988                 err = intel_pt_synth_event(session, "pwre", &attr, id);
2989                 if (err)
2990                         return err;
2991                 pt->pwre_id = id;
2992                 intel_pt_set_event_name(evlist, id, "pwre");
2993                 id += 1;
2994
2995                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
2996                 err = intel_pt_synth_event(session, "exstop", &attr, id);
2997                 if (err)
2998                         return err;
2999                 pt->exstop_id = id;
3000                 intel_pt_set_event_name(evlist, id, "exstop");
3001                 id += 1;
3002
3003                 attr.config = PERF_SYNTH_INTEL_PWRX;
3004                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3005                 if (err)
3006                         return err;
3007                 pt->pwrx_id = id;
3008                 intel_pt_set_event_name(evlist, id, "pwrx");
3009                 id += 1;
3010         }
3011
3012         return 0;
3013 }
3014
3015 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3016 {
3017         struct evsel *evsel;
3018
3019         if (!pt->synth_opts.other_events)
3020                 return;
3021
3022         evlist__for_each_entry(pt->session->evlist, evsel) {
3023                 if (evsel->core.attr.aux_output && evsel->core.id) {
3024                         pt->sample_pebs = true;
3025                         pt->pebs_evsel = evsel;
3026                         return;
3027                 }
3028         }
3029 }
3030
3031 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3032 {
3033         struct evsel *evsel;
3034
3035         evlist__for_each_entry_reverse(evlist, evsel) {
3036                 const char *name = evsel__name(evsel);
3037
3038                 if (!strcmp(name, "sched:sched_switch"))
3039                         return evsel;
3040         }
3041
3042         return NULL;
3043 }
3044
3045 static bool intel_pt_find_switch(struct evlist *evlist)
3046 {
3047         struct evsel *evsel;
3048
3049         evlist__for_each_entry(evlist, evsel) {
3050                 if (evsel->core.attr.context_switch)
3051                         return true;
3052         }
3053
3054         return false;
3055 }
3056
3057 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3058 {
3059         struct intel_pt *pt = data;
3060
3061         if (!strcmp(var, "intel-pt.mispred-all"))
3062                 pt->mispred_all = perf_config_bool(var, value);
3063
3064         return 0;
3065 }
3066
3067 /* Find least TSC which converts to ns or later */
3068 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3069 {
3070         u64 tsc, tm;
3071
3072         tsc = perf_time_to_tsc(ns, &pt->tc);
3073
3074         while (1) {
3075                 tm = tsc_to_perf_time(tsc, &pt->tc);
3076                 if (tm < ns)
3077                         break;
3078                 tsc -= 1;
3079         }
3080
3081         while (tm < ns)
3082                 tm = tsc_to_perf_time(++tsc, &pt->tc);
3083
3084         return tsc;
3085 }
3086
3087 /* Find greatest TSC which converts to ns or earlier */
3088 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3089 {
3090         u64 tsc, tm;
3091
3092         tsc = perf_time_to_tsc(ns, &pt->tc);
3093
3094         while (1) {
3095                 tm = tsc_to_perf_time(tsc, &pt->tc);
3096                 if (tm > ns)
3097                         break;
3098                 tsc += 1;
3099         }
3100
3101         while (tm > ns)
3102                 tm = tsc_to_perf_time(--tsc, &pt->tc);
3103
3104         return tsc;
3105 }
3106
3107 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3108                                       struct itrace_synth_opts *opts)
3109 {
3110         struct perf_time_interval *p = opts->ptime_range;
3111         int n = opts->range_num;
3112         int i;
3113
3114         if (!n || !p || pt->timeless_decoding)
3115                 return 0;
3116
3117         pt->time_ranges = calloc(n, sizeof(struct range));
3118         if (!pt->time_ranges)
3119                 return -ENOMEM;
3120
3121         pt->range_cnt = n;
3122
3123         intel_pt_log("%s: %u range(s)\n", __func__, n);
3124
3125         for (i = 0; i < n; i++) {
3126                 struct range *r = &pt->time_ranges[i];
3127                 u64 ts = p[i].start;
3128                 u64 te = p[i].end;
3129
3130                 /*
3131                  * Take care to ensure the TSC range matches the perf-time range
3132                  * when converted back to perf-time.
3133                  */
3134                 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3135                 r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3136
3137                 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3138                              i, ts, te);
3139                 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3140                              i, r->start, r->end);
3141         }
3142
3143         return 0;
3144 }
3145
3146 static const char * const intel_pt_info_fmts[] = {
3147         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
3148         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
3149         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
3150         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
3151         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
3152         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
3153         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
3154         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
3155         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
3156         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
3157         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
3158         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
3159         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
3160         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
3161         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
3162         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
3163 };
3164
3165 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3166 {
3167         int i;
3168
3169         if (!dump_trace)
3170                 return;
3171
3172         for (i = start; i <= finish; i++)
3173                 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3174 }
3175
3176 static void intel_pt_print_info_str(const char *name, const char *str)
3177 {
3178         if (!dump_trace)
3179                 return;
3180
3181         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3182 }
3183
3184 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3185 {
3186         return auxtrace_info->header.size >=
3187                 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3188 }
3189
3190 int intel_pt_process_auxtrace_info(union perf_event *event,
3191                                    struct perf_session *session)
3192 {
3193         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3194         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3195         struct intel_pt *pt;
3196         void *info_end;
3197         __u64 *info;
3198         int err;
3199
3200         if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3201                                         min_sz)
3202                 return -EINVAL;
3203
3204         pt = zalloc(sizeof(struct intel_pt));
3205         if (!pt)
3206                 return -ENOMEM;
3207
3208         addr_filters__init(&pt->filts);
3209
3210         err = perf_config(intel_pt_perf_config, pt);
3211         if (err)
3212                 goto err_free;
3213
3214         err = auxtrace_queues__init(&pt->queues);
3215         if (err)
3216                 goto err_free;
3217
3218         intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3219
3220         pt->session = session;
3221         pt->machine = &session->machines.host; /* No kvm support */
3222         pt->auxtrace_type = auxtrace_info->type;
3223         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3224         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3225         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3226         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3227         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3228         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3229         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3230         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3231         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3232         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3233         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3234                             INTEL_PT_PER_CPU_MMAPS);
3235
3236         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3237                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3238                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3239                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3240                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3241                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3242                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3243                                     INTEL_PT_CYC_BIT);
3244         }
3245
3246         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3247                 pt->max_non_turbo_ratio =
3248                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3249                 intel_pt_print_info(&auxtrace_info->priv[0],
3250                                     INTEL_PT_MAX_NONTURBO_RATIO,
3251                                     INTEL_PT_MAX_NONTURBO_RATIO);
3252         }
3253
3254         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3255         info_end = (void *)info + auxtrace_info->header.size;
3256
3257         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3258                 size_t len;
3259
3260                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3261                 intel_pt_print_info(&auxtrace_info->priv[0],
3262                                     INTEL_PT_FILTER_STR_LEN,
3263                                     INTEL_PT_FILTER_STR_LEN);
3264                 if (len) {
3265                         const char *filter = (const char *)info;
3266
3267                         len = roundup(len + 1, 8);
3268                         info += len >> 3;
3269                         if ((void *)info > info_end) {
3270                                 pr_err("%s: bad filter string length\n", __func__);
3271                                 err = -EINVAL;
3272                                 goto err_free_queues;
3273                         }
3274                         pt->filter = memdup(filter, len);
3275                         if (!pt->filter) {
3276                                 err = -ENOMEM;
3277                                 goto err_free_queues;
3278                         }
3279                         if (session->header.needs_swap)
3280                                 mem_bswap_64(pt->filter, len);
3281                         if (pt->filter[len - 1]) {
3282                                 pr_err("%s: filter string not null terminated\n", __func__);
3283                                 err = -EINVAL;
3284                                 goto err_free_queues;
3285                         }
3286                         err = addr_filters__parse_bare_filter(&pt->filts,
3287                                                               filter);
3288                         if (err)
3289                                 goto err_free_queues;
3290                 }
3291                 intel_pt_print_info_str("Filter string", pt->filter);
3292         }
3293
3294         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3295         if (pt->timeless_decoding && !pt->tc.time_mult)
3296                 pt->tc.time_mult = 1;
3297         pt->have_tsc = intel_pt_have_tsc(pt);
3298         pt->sampling_mode = intel_pt_sampling_mode(pt);
3299         pt->est_tsc = !pt->timeless_decoding;
3300
3301         pt->unknown_thread = thread__new(999999999, 999999999);
3302         if (!pt->unknown_thread) {
3303                 err = -ENOMEM;
3304                 goto err_free_queues;
3305         }
3306
3307         /*
3308          * Since this thread will not be kept in any rbtree not in a
3309          * list, initialize its list node so that at thread__put() the
3310          * current thread lifetime assuption is kept and we don't segfault
3311          * at list_del_init().
3312          */
3313         INIT_LIST_HEAD(&pt->unknown_thread->node);
3314
3315         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3316         if (err)
3317                 goto err_delete_thread;
3318         if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3319                 err = -ENOMEM;
3320                 goto err_delete_thread;
3321         }
3322
3323         pt->auxtrace.process_event = intel_pt_process_event;
3324         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3325         pt->auxtrace.queue_data = intel_pt_queue_data;
3326         pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3327         pt->auxtrace.flush_events = intel_pt_flush;
3328         pt->auxtrace.free_events = intel_pt_free_events;
3329         pt->auxtrace.free = intel_pt_free;
3330         pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3331         session->auxtrace = &pt->auxtrace;
3332
3333         if (dump_trace)
3334                 return 0;
3335
3336         if (pt->have_sched_switch == 1) {
3337                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3338                 if (!pt->switch_evsel) {
3339                         pr_err("%s: missing sched_switch event\n", __func__);
3340                         err = -EINVAL;
3341                         goto err_delete_thread;
3342                 }
3343         } else if (pt->have_sched_switch == 2 &&
3344                    !intel_pt_find_switch(session->evlist)) {
3345                 pr_err("%s: missing context_switch attribute flag\n", __func__);
3346                 err = -EINVAL;
3347                 goto err_delete_thread;
3348         }
3349
3350         if (session->itrace_synth_opts->set) {
3351                 pt->synth_opts = *session->itrace_synth_opts;
3352         } else {
3353                 itrace_synth_opts__set_default(&pt->synth_opts,
3354                                 session->itrace_synth_opts->default_no_sample);
3355                 if (!session->itrace_synth_opts->default_no_sample &&
3356                     !session->itrace_synth_opts->inject) {
3357                         pt->synth_opts.branches = false;
3358                         pt->synth_opts.callchain = true;
3359                         pt->synth_opts.add_callchain = true;
3360                 }
3361                 pt->synth_opts.thread_stack =
3362                                 session->itrace_synth_opts->thread_stack;
3363         }
3364
3365         if (pt->synth_opts.log)
3366                 intel_pt_log_enable();
3367
3368         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3369         if (pt->tc.time_mult) {
3370                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3371
3372                 if (!pt->max_non_turbo_ratio)
3373                         pt->max_non_turbo_ratio =
3374                                         (tsc_freq + 50000000) / 100000000;
3375                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3376                 intel_pt_log("Maximum non-turbo ratio %u\n",
3377                              pt->max_non_turbo_ratio);
3378                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3379         }
3380
3381         err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3382         if (err)
3383                 goto err_delete_thread;
3384
3385         if (pt->synth_opts.calls)
3386                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3387                                        PERF_IP_FLAG_TRACE_END;
3388         if (pt->synth_opts.returns)
3389                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
3390                                        PERF_IP_FLAG_TRACE_BEGIN;
3391
3392         if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3393             !symbol_conf.use_callchain) {
3394                 symbol_conf.use_callchain = true;
3395                 if (callchain_register_param(&callchain_param) < 0) {
3396                         symbol_conf.use_callchain = false;
3397                         pt->synth_opts.callchain = false;
3398                         pt->synth_opts.add_callchain = false;
3399                 }
3400         }
3401
3402         if (pt->synth_opts.add_callchain) {
3403                 err = intel_pt_callchain_init(pt);
3404                 if (err)
3405                         goto err_delete_thread;
3406         }
3407
3408         if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3409                 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3410                 pt->br_stack_sz_plus = pt->br_stack_sz;
3411         }
3412
3413         if (pt->synth_opts.add_last_branch) {
3414                 err = intel_pt_br_stack_init(pt);
3415                 if (err)
3416                         goto err_delete_thread;
3417                 /*
3418                  * Additional branch stack size to cater for tracing from the
3419                  * actual sample ip to where the sample time is recorded.
3420                  * Measured at about 200 branches, but generously set to 1024.
3421                  * If kernel space is not being traced, then add just 1 for the
3422                  * branch to kernel space.
3423                  */
3424                 if (intel_pt_tracing_kernel(pt))
3425                         pt->br_stack_sz_plus += 1024;
3426                 else
3427                         pt->br_stack_sz_plus += 1;
3428         }
3429
3430         pt->use_thread_stack = pt->synth_opts.callchain ||
3431                                pt->synth_opts.add_callchain ||
3432                                pt->synth_opts.thread_stack ||
3433                                pt->synth_opts.last_branch ||
3434                                pt->synth_opts.add_last_branch;
3435
3436         pt->callstack = pt->synth_opts.callchain ||
3437                         pt->synth_opts.add_callchain ||
3438                         pt->synth_opts.thread_stack;
3439
3440         err = intel_pt_synth_events(pt, session);
3441         if (err)
3442                 goto err_delete_thread;
3443
3444         intel_pt_setup_pebs_events(pt);
3445
3446         if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3447                 err = auxtrace_queue_data(session, true, true);
3448         else
3449                 err = auxtrace_queues__process_index(&pt->queues, session);
3450         if (err)
3451                 goto err_delete_thread;
3452
3453         if (pt->queues.populated)
3454                 pt->data_queued = true;
3455
3456         if (pt->timeless_decoding)
3457                 pr_debug2("Intel PT decoding without timestamps\n");
3458
3459         return 0;
3460
3461 err_delete_thread:
3462         zfree(&pt->chain);
3463         thread__zput(pt->unknown_thread);
3464 err_free_queues:
3465         intel_pt_log_disable();
3466         auxtrace_queues__free(&pt->queues);
3467         session->auxtrace = NULL;
3468 err_free:
3469         addr_filters__exit(&pt->filts);
3470         zfree(&pt->filter);
3471         zfree(&pt->time_ranges);
3472         free(pt);
3473         return err;
3474 }