8658d42ce57a09d97c42a348b2d94bb229524120
[linux-2.6-microblaze.git] / tools / perf / util / intel-pt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46
47 #define MAX_TIMESTAMP (~0ULL)
48
49 struct range {
50         u64 start;
51         u64 end;
52 };
53
54 struct intel_pt {
55         struct auxtrace auxtrace;
56         struct auxtrace_queues queues;
57         struct auxtrace_heap heap;
58         u32 auxtrace_type;
59         struct perf_session *session;
60         struct machine *machine;
61         struct evsel *switch_evsel;
62         struct thread *unknown_thread;
63         bool timeless_decoding;
64         bool sampling_mode;
65         bool snapshot_mode;
66         bool per_cpu_mmaps;
67         bool have_tsc;
68         bool data_queued;
69         bool est_tsc;
70         bool sync_switch;
71         bool mispred_all;
72         bool use_thread_stack;
73         bool callstack;
74         unsigned int br_stack_sz;
75         unsigned int br_stack_sz_plus;
76         int have_sched_switch;
77         u32 pmu_type;
78         u64 kernel_start;
79         u64 switch_ip;
80         u64 ptss_ip;
81
82         struct perf_tsc_conversion tc;
83         bool cap_user_time_zero;
84
85         struct itrace_synth_opts synth_opts;
86
87         bool sample_instructions;
88         u64 instructions_sample_type;
89         u64 instructions_id;
90
91         bool sample_branches;
92         u32 branches_filter;
93         u64 branches_sample_type;
94         u64 branches_id;
95
96         bool sample_transactions;
97         u64 transactions_sample_type;
98         u64 transactions_id;
99
100         bool sample_ptwrites;
101         u64 ptwrites_sample_type;
102         u64 ptwrites_id;
103
104         bool sample_pwr_events;
105         u64 pwr_events_sample_type;
106         u64 mwait_id;
107         u64 pwre_id;
108         u64 exstop_id;
109         u64 pwrx_id;
110         u64 cbr_id;
111         u64 psb_id;
112
113         bool sample_pebs;
114         struct evsel *pebs_evsel;
115
116         u64 tsc_bit;
117         u64 mtc_bit;
118         u64 mtc_freq_bits;
119         u32 tsc_ctc_ratio_n;
120         u32 tsc_ctc_ratio_d;
121         u64 cyc_bit;
122         u64 noretcomp_bit;
123         unsigned max_non_turbo_ratio;
124         unsigned cbr2khz;
125
126         unsigned long num_events;
127
128         char *filter;
129         struct addr_filters filts;
130
131         struct range *time_ranges;
132         unsigned int range_cnt;
133
134         struct ip_callchain *chain;
135         struct branch_stack *br_stack;
136 };
137
138 enum switch_state {
139         INTEL_PT_SS_NOT_TRACING,
140         INTEL_PT_SS_UNKNOWN,
141         INTEL_PT_SS_TRACING,
142         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
143         INTEL_PT_SS_EXPECTING_SWITCH_IP,
144 };
145
146 struct intel_pt_queue {
147         struct intel_pt *pt;
148         unsigned int queue_nr;
149         struct auxtrace_buffer *buffer;
150         struct auxtrace_buffer *old_buffer;
151         void *decoder;
152         const struct intel_pt_state *state;
153         struct ip_callchain *chain;
154         struct branch_stack *last_branch;
155         union perf_event *event_buf;
156         bool on_heap;
157         bool stop;
158         bool step_through_buffers;
159         bool use_buffer_pid_tid;
160         bool sync_switch;
161         pid_t pid, tid;
162         int cpu;
163         int switch_state;
164         pid_t next_tid;
165         struct thread *thread;
166         struct machine *guest_machine;
167         struct thread *unknown_guest_thread;
168         pid_t guest_machine_pid;
169         bool exclude_kernel;
170         bool have_sample;
171         u64 time;
172         u64 timestamp;
173         u64 sel_timestamp;
174         bool sel_start;
175         unsigned int sel_idx;
176         u32 flags;
177         u16 insn_len;
178         u64 last_insn_cnt;
179         u64 ipc_insn_cnt;
180         u64 ipc_cyc_cnt;
181         u64 last_in_insn_cnt;
182         u64 last_in_cyc_cnt;
183         u64 last_br_insn_cnt;
184         u64 last_br_cyc_cnt;
185         unsigned int cbr_seen;
186         char insn[INTEL_PT_INSN_BUF_SZ];
187 };
188
189 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
190                           unsigned char *buf, size_t len)
191 {
192         struct intel_pt_pkt packet;
193         size_t pos = 0;
194         int ret, pkt_len, i;
195         char desc[INTEL_PT_PKT_DESC_MAX];
196         const char *color = PERF_COLOR_BLUE;
197         enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
198
199         color_fprintf(stdout, color,
200                       ". ... Intel Processor Trace data: size %zu bytes\n",
201                       len);
202
203         while (len) {
204                 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
205                 if (ret > 0)
206                         pkt_len = ret;
207                 else
208                         pkt_len = 1;
209                 printf(".");
210                 color_fprintf(stdout, color, "  %08x: ", pos);
211                 for (i = 0; i < pkt_len; i++)
212                         color_fprintf(stdout, color, " %02x", buf[i]);
213                 for (; i < 16; i++)
214                         color_fprintf(stdout, color, "   ");
215                 if (ret > 0) {
216                         ret = intel_pt_pkt_desc(&packet, desc,
217                                                 INTEL_PT_PKT_DESC_MAX);
218                         if (ret > 0)
219                                 color_fprintf(stdout, color, " %s\n", desc);
220                 } else {
221                         color_fprintf(stdout, color, " Bad packet!\n");
222                 }
223                 pos += pkt_len;
224                 buf += pkt_len;
225                 len -= pkt_len;
226         }
227 }
228
229 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
230                                 size_t len)
231 {
232         printf(".\n");
233         intel_pt_dump(pt, buf, len);
234 }
235
236 static void intel_pt_log_event(union perf_event *event)
237 {
238         FILE *f = intel_pt_log_fp();
239
240         if (!intel_pt_enable_logging || !f)
241                 return;
242
243         perf_event__fprintf(event, NULL, f);
244 }
245
246 static void intel_pt_dump_sample(struct perf_session *session,
247                                  struct perf_sample *sample)
248 {
249         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
250                                            auxtrace);
251
252         printf("\n");
253         intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
254 }
255
256 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
257 {
258         struct perf_time_interval *range = pt->synth_opts.ptime_range;
259         int n = pt->synth_opts.range_num;
260
261         if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
262                 return true;
263
264         if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
265                 return false;
266
267         /* perf_time__ranges_skip_sample does not work if time is zero */
268         if (!tm)
269                 tm = 1;
270
271         return !n || !perf_time__ranges_skip_sample(range, n, tm);
272 }
273
274 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
275                                    struct auxtrace_buffer *b)
276 {
277         bool consecutive = false;
278         void *start;
279
280         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
281                                       pt->have_tsc, &consecutive);
282         if (!start)
283                 return -EINVAL;
284         b->use_size = b->data + b->size - start;
285         b->use_data = start;
286         if (b->use_size && consecutive)
287                 b->consecutive = true;
288         return 0;
289 }
290
291 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
292                                struct auxtrace_buffer *buffer,
293                                struct auxtrace_buffer *old_buffer,
294                                struct intel_pt_buffer *b)
295 {
296         bool might_overlap;
297
298         if (!buffer->data) {
299                 int fd = perf_data__fd(ptq->pt->session->data);
300
301                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
302                 if (!buffer->data)
303                         return -ENOMEM;
304         }
305
306         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
307         if (might_overlap && !buffer->consecutive && old_buffer &&
308             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
309                 return -ENOMEM;
310
311         if (buffer->use_data) {
312                 b->len = buffer->use_size;
313                 b->buf = buffer->use_data;
314         } else {
315                 b->len = buffer->size;
316                 b->buf = buffer->data;
317         }
318         b->ref_timestamp = buffer->reference;
319
320         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
321                 b->consecutive = false;
322                 b->trace_nr = buffer->buffer_nr + 1;
323         } else {
324                 b->consecutive = true;
325         }
326
327         return 0;
328 }
329
330 /* Do not drop buffers with references - refer intel_pt_get_trace() */
331 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
332                                            struct auxtrace_buffer *buffer)
333 {
334         if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
335                 return;
336
337         auxtrace_buffer__drop_data(buffer);
338 }
339
340 /* Must be serialized with respect to intel_pt_get_trace() */
341 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
342                               void *cb_data)
343 {
344         struct intel_pt_queue *ptq = data;
345         struct auxtrace_buffer *buffer = ptq->buffer;
346         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
347         struct auxtrace_queue *queue;
348         int err = 0;
349
350         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
351
352         while (1) {
353                 struct intel_pt_buffer b = { .len = 0 };
354
355                 buffer = auxtrace_buffer__next(queue, buffer);
356                 if (!buffer)
357                         break;
358
359                 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
360                 if (err)
361                         break;
362
363                 if (b.len) {
364                         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
365                         old_buffer = buffer;
366                 } else {
367                         intel_pt_lookahead_drop_buffer(ptq, buffer);
368                         continue;
369                 }
370
371                 err = cb(&b, cb_data);
372                 if (err)
373                         break;
374         }
375
376         if (buffer != old_buffer)
377                 intel_pt_lookahead_drop_buffer(ptq, buffer);
378         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
379
380         return err;
381 }
382
383 /*
384  * This function assumes data is processed sequentially only.
385  * Must be serialized with respect to intel_pt_lookahead()
386  */
387 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
388 {
389         struct intel_pt_queue *ptq = data;
390         struct auxtrace_buffer *buffer = ptq->buffer;
391         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
392         struct auxtrace_queue *queue;
393         int err;
394
395         if (ptq->stop) {
396                 b->len = 0;
397                 return 0;
398         }
399
400         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
401
402         buffer = auxtrace_buffer__next(queue, buffer);
403         if (!buffer) {
404                 if (old_buffer)
405                         auxtrace_buffer__drop_data(old_buffer);
406                 b->len = 0;
407                 return 0;
408         }
409
410         ptq->buffer = buffer;
411
412         err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
413         if (err)
414                 return err;
415
416         if (ptq->step_through_buffers)
417                 ptq->stop = true;
418
419         if (b->len) {
420                 if (old_buffer)
421                         auxtrace_buffer__drop_data(old_buffer);
422                 ptq->old_buffer = buffer;
423         } else {
424                 auxtrace_buffer__drop_data(buffer);
425                 return intel_pt_get_trace(b, data);
426         }
427
428         return 0;
429 }
430
431 struct intel_pt_cache_entry {
432         struct auxtrace_cache_entry     entry;
433         u64                             insn_cnt;
434         u64                             byte_cnt;
435         enum intel_pt_insn_op           op;
436         enum intel_pt_insn_branch       branch;
437         int                             length;
438         int32_t                         rel;
439         char                            insn[INTEL_PT_INSN_BUF_SZ];
440 };
441
442 static int intel_pt_config_div(const char *var, const char *value, void *data)
443 {
444         int *d = data;
445         long val;
446
447         if (!strcmp(var, "intel-pt.cache-divisor")) {
448                 val = strtol(value, NULL, 0);
449                 if (val > 0 && val <= INT_MAX)
450                         *d = val;
451         }
452
453         return 0;
454 }
455
456 static int intel_pt_cache_divisor(void)
457 {
458         static int d;
459
460         if (d)
461                 return d;
462
463         perf_config(intel_pt_config_div, &d);
464
465         if (!d)
466                 d = 64;
467
468         return d;
469 }
470
471 static unsigned int intel_pt_cache_size(struct dso *dso,
472                                         struct machine *machine)
473 {
474         off_t size;
475
476         size = dso__data_size(dso, machine);
477         size /= intel_pt_cache_divisor();
478         if (size < 1000)
479                 return 10;
480         if (size > (1 << 21))
481                 return 21;
482         return 32 - __builtin_clz(size);
483 }
484
485 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
486                                              struct machine *machine)
487 {
488         struct auxtrace_cache *c;
489         unsigned int bits;
490
491         if (dso->auxtrace_cache)
492                 return dso->auxtrace_cache;
493
494         bits = intel_pt_cache_size(dso, machine);
495
496         /* Ignoring cache creation failure */
497         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
498
499         dso->auxtrace_cache = c;
500
501         return c;
502 }
503
504 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
505                               u64 offset, u64 insn_cnt, u64 byte_cnt,
506                               struct intel_pt_insn *intel_pt_insn)
507 {
508         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
509         struct intel_pt_cache_entry *e;
510         int err;
511
512         if (!c)
513                 return -ENOMEM;
514
515         e = auxtrace_cache__alloc_entry(c);
516         if (!e)
517                 return -ENOMEM;
518
519         e->insn_cnt = insn_cnt;
520         e->byte_cnt = byte_cnt;
521         e->op = intel_pt_insn->op;
522         e->branch = intel_pt_insn->branch;
523         e->length = intel_pt_insn->length;
524         e->rel = intel_pt_insn->rel;
525         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
526
527         err = auxtrace_cache__add(c, offset, &e->entry);
528         if (err)
529                 auxtrace_cache__free_entry(c, e);
530
531         return err;
532 }
533
534 static struct intel_pt_cache_entry *
535 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
536 {
537         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
538
539         if (!c)
540                 return NULL;
541
542         return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
543 }
544
545 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
546                                       u64 offset)
547 {
548         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
549
550         if (!c)
551                 return;
552
553         auxtrace_cache__remove(dso->auxtrace_cache, offset);
554 }
555
556 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
557 {
558         /* Assumes 64-bit kernel */
559         return ip & (1ULL << 63);
560 }
561
562 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
563 {
564         if (nr) {
565                 return intel_pt_guest_kernel_ip(ip) ?
566                        PERF_RECORD_MISC_GUEST_KERNEL :
567                        PERF_RECORD_MISC_GUEST_USER;
568         }
569
570         return ip >= ptq->pt->kernel_start ?
571                PERF_RECORD_MISC_KERNEL :
572                PERF_RECORD_MISC_USER;
573 }
574
575 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
576 {
577         /* No support for non-zero CS base */
578         if (from_ip)
579                 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
580         return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
581 }
582
583 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
584 {
585         struct machines *machines = &ptq->pt->session->machines;
586         struct machine *machine;
587         pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
588
589         if (ptq->guest_machine && pid == ptq->guest_machine_pid)
590                 return 0;
591
592         ptq->guest_machine = NULL;
593         thread__zput(ptq->unknown_guest_thread);
594
595         machine = machines__find_guest(machines, pid);
596         if (!machine)
597                 return -1;
598
599         ptq->unknown_guest_thread = machine__idle_thread(machine);
600         if (!ptq->unknown_guest_thread)
601                 return -1;
602
603         ptq->guest_machine = machine;
604         ptq->guest_machine_pid = pid;
605
606         return 0;
607 }
608
609 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
610                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
611                                    uint64_t to_ip, uint64_t max_insn_cnt,
612                                    void *data)
613 {
614         struct intel_pt_queue *ptq = data;
615         struct machine *machine = ptq->pt->machine;
616         struct thread *thread;
617         struct addr_location al;
618         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
619         ssize_t len;
620         int x86_64;
621         u8 cpumode;
622         u64 offset, start_offset, start_ip;
623         u64 insn_cnt = 0;
624         bool one_map = true;
625         bool nr;
626
627         intel_pt_insn->length = 0;
628
629         if (to_ip && *ip == to_ip)
630                 goto out_no_cache;
631
632         nr = ptq->state->to_nr;
633         cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
634
635         if (nr) {
636                 if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL ||
637                     intel_pt_get_guest(ptq))
638                         return -EINVAL;
639                 machine = ptq->guest_machine;
640                 thread = ptq->unknown_guest_thread;
641         } else {
642                 thread = ptq->thread;
643                 if (!thread) {
644                         if (cpumode != PERF_RECORD_MISC_KERNEL)
645                                 return -EINVAL;
646                         thread = ptq->pt->unknown_thread;
647                 }
648         }
649
650         while (1) {
651                 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
652                         return -EINVAL;
653
654                 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
655                     dso__data_status_seen(al.map->dso,
656                                           DSO_DATA_STATUS_SEEN_ITRACE))
657                         return -ENOENT;
658
659                 offset = al.map->map_ip(al.map, *ip);
660
661                 if (!to_ip && one_map) {
662                         struct intel_pt_cache_entry *e;
663
664                         e = intel_pt_cache_lookup(al.map->dso, machine, offset);
665                         if (e &&
666                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
667                                 *insn_cnt_ptr = e->insn_cnt;
668                                 *ip += e->byte_cnt;
669                                 intel_pt_insn->op = e->op;
670                                 intel_pt_insn->branch = e->branch;
671                                 intel_pt_insn->length = e->length;
672                                 intel_pt_insn->rel = e->rel;
673                                 memcpy(intel_pt_insn->buf, e->insn,
674                                        INTEL_PT_INSN_BUF_SZ);
675                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
676                                 return 0;
677                         }
678                 }
679
680                 start_offset = offset;
681                 start_ip = *ip;
682
683                 /* Load maps to ensure dso->is_64_bit has been updated */
684                 map__load(al.map);
685
686                 x86_64 = al.map->dso->is_64_bit;
687
688                 while (1) {
689                         len = dso__data_read_offset(al.map->dso, machine,
690                                                     offset, buf,
691                                                     INTEL_PT_INSN_BUF_SZ);
692                         if (len <= 0)
693                                 return -EINVAL;
694
695                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
696                                 return -EINVAL;
697
698                         intel_pt_log_insn(intel_pt_insn, *ip);
699
700                         insn_cnt += 1;
701
702                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
703                                 goto out;
704
705                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
706                                 goto out_no_cache;
707
708                         *ip += intel_pt_insn->length;
709
710                         if (to_ip && *ip == to_ip)
711                                 goto out_no_cache;
712
713                         if (*ip >= al.map->end)
714                                 break;
715
716                         offset += intel_pt_insn->length;
717                 }
718                 one_map = false;
719         }
720 out:
721         *insn_cnt_ptr = insn_cnt;
722
723         if (!one_map)
724                 goto out_no_cache;
725
726         /*
727          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
728          * entries.
729          */
730         if (to_ip) {
731                 struct intel_pt_cache_entry *e;
732
733                 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
734                 if (e)
735                         return 0;
736         }
737
738         /* Ignore cache errors */
739         intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
740                            *ip - start_ip, intel_pt_insn);
741
742         return 0;
743
744 out_no_cache:
745         *insn_cnt_ptr = insn_cnt;
746         return 0;
747 }
748
749 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
750                                   uint64_t offset, const char *filename)
751 {
752         struct addr_filter *filt;
753         bool have_filter   = false;
754         bool hit_tracestop = false;
755         bool hit_filter    = false;
756
757         list_for_each_entry(filt, &pt->filts.head, list) {
758                 if (filt->start)
759                         have_filter = true;
760
761                 if ((filename && !filt->filename) ||
762                     (!filename && filt->filename) ||
763                     (filename && strcmp(filename, filt->filename)))
764                         continue;
765
766                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
767                         continue;
768
769                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
770                              ip, offset, filename ? filename : "[kernel]",
771                              filt->start ? "filter" : "stop",
772                              filt->addr, filt->size);
773
774                 if (filt->start)
775                         hit_filter = true;
776                 else
777                         hit_tracestop = true;
778         }
779
780         if (!hit_tracestop && !hit_filter)
781                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
782                              ip, offset, filename ? filename : "[kernel]");
783
784         return hit_tracestop || (have_filter && !hit_filter);
785 }
786
787 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
788 {
789         struct intel_pt_queue *ptq = data;
790         struct thread *thread;
791         struct addr_location al;
792         u8 cpumode;
793         u64 offset;
794
795         if (ptq->state->to_nr) {
796                 if (intel_pt_guest_kernel_ip(ip))
797                         return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
798                 /* No support for decoding guest user space */
799                 return -EINVAL;
800         } else if (ip >= ptq->pt->kernel_start) {
801                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
802         }
803
804         cpumode = PERF_RECORD_MISC_USER;
805
806         thread = ptq->thread;
807         if (!thread)
808                 return -EINVAL;
809
810         if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
811                 return -EINVAL;
812
813         offset = al.map->map_ip(al.map, ip);
814
815         return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
816                                      al.map->dso->long_name);
817 }
818
819 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
820 {
821         return __intel_pt_pgd_ip(ip, data) > 0;
822 }
823
824 static bool intel_pt_get_config(struct intel_pt *pt,
825                                 struct perf_event_attr *attr, u64 *config)
826 {
827         if (attr->type == pt->pmu_type) {
828                 if (config)
829                         *config = attr->config;
830                 return true;
831         }
832
833         return false;
834 }
835
836 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
837 {
838         struct evsel *evsel;
839
840         evlist__for_each_entry(pt->session->evlist, evsel) {
841                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
842                     !evsel->core.attr.exclude_kernel)
843                         return false;
844         }
845         return true;
846 }
847
848 static bool intel_pt_return_compression(struct intel_pt *pt)
849 {
850         struct evsel *evsel;
851         u64 config;
852
853         if (!pt->noretcomp_bit)
854                 return true;
855
856         evlist__for_each_entry(pt->session->evlist, evsel) {
857                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
858                     (config & pt->noretcomp_bit))
859                         return false;
860         }
861         return true;
862 }
863
864 static bool intel_pt_branch_enable(struct intel_pt *pt)
865 {
866         struct evsel *evsel;
867         u64 config;
868
869         evlist__for_each_entry(pt->session->evlist, evsel) {
870                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
871                     (config & 1) && !(config & 0x2000))
872                         return false;
873         }
874         return true;
875 }
876
877 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
878 {
879         struct evsel *evsel;
880         unsigned int shift;
881         u64 config;
882
883         if (!pt->mtc_freq_bits)
884                 return 0;
885
886         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
887                 config >>= 1;
888
889         evlist__for_each_entry(pt->session->evlist, evsel) {
890                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
891                         return (config & pt->mtc_freq_bits) >> shift;
892         }
893         return 0;
894 }
895
896 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
897 {
898         struct evsel *evsel;
899         bool timeless_decoding = true;
900         u64 config;
901
902         if (!pt->tsc_bit || !pt->cap_user_time_zero)
903                 return true;
904
905         evlist__for_each_entry(pt->session->evlist, evsel) {
906                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
907                         return true;
908                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
909                         if (config & pt->tsc_bit)
910                                 timeless_decoding = false;
911                         else
912                                 return true;
913                 }
914         }
915         return timeless_decoding;
916 }
917
918 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
919 {
920         struct evsel *evsel;
921
922         evlist__for_each_entry(pt->session->evlist, evsel) {
923                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
924                     !evsel->core.attr.exclude_kernel)
925                         return true;
926         }
927         return false;
928 }
929
930 static bool intel_pt_have_tsc(struct intel_pt *pt)
931 {
932         struct evsel *evsel;
933         bool have_tsc = false;
934         u64 config;
935
936         if (!pt->tsc_bit)
937                 return false;
938
939         evlist__for_each_entry(pt->session->evlist, evsel) {
940                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
941                         if (config & pt->tsc_bit)
942                                 have_tsc = true;
943                         else
944                                 return false;
945                 }
946         }
947         return have_tsc;
948 }
949
950 static bool intel_pt_sampling_mode(struct intel_pt *pt)
951 {
952         struct evsel *evsel;
953
954         evlist__for_each_entry(pt->session->evlist, evsel) {
955                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
956                     evsel->core.attr.aux_sample_size)
957                         return true;
958         }
959         return false;
960 }
961
962 static u64 intel_pt_ctl(struct intel_pt *pt)
963 {
964         struct evsel *evsel;
965         u64 config;
966
967         evlist__for_each_entry(pt->session->evlist, evsel) {
968                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
969                         return config;
970         }
971         return 0;
972 }
973
974 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
975 {
976         u64 quot, rem;
977
978         quot = ns / pt->tc.time_mult;
979         rem  = ns % pt->tc.time_mult;
980         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
981                 pt->tc.time_mult;
982 }
983
984 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
985 {
986         size_t sz = sizeof(struct ip_callchain);
987
988         /* Add 1 to callchain_sz for callchain context */
989         sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
990         return zalloc(sz);
991 }
992
993 static int intel_pt_callchain_init(struct intel_pt *pt)
994 {
995         struct evsel *evsel;
996
997         evlist__for_each_entry(pt->session->evlist, evsel) {
998                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
999                         evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1000         }
1001
1002         pt->chain = intel_pt_alloc_chain(pt);
1003         if (!pt->chain)
1004                 return -ENOMEM;
1005
1006         return 0;
1007 }
1008
1009 static void intel_pt_add_callchain(struct intel_pt *pt,
1010                                    struct perf_sample *sample)
1011 {
1012         struct thread *thread = machine__findnew_thread(pt->machine,
1013                                                         sample->pid,
1014                                                         sample->tid);
1015
1016         thread_stack__sample_late(thread, sample->cpu, pt->chain,
1017                                   pt->synth_opts.callchain_sz + 1, sample->ip,
1018                                   pt->kernel_start);
1019
1020         sample->callchain = pt->chain;
1021 }
1022
1023 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1024 {
1025         size_t sz = sizeof(struct branch_stack);
1026
1027         sz += entry_cnt * sizeof(struct branch_entry);
1028         return zalloc(sz);
1029 }
1030
1031 static int intel_pt_br_stack_init(struct intel_pt *pt)
1032 {
1033         struct evsel *evsel;
1034
1035         evlist__for_each_entry(pt->session->evlist, evsel) {
1036                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1037                         evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1038         }
1039
1040         pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1041         if (!pt->br_stack)
1042                 return -ENOMEM;
1043
1044         return 0;
1045 }
1046
1047 static void intel_pt_add_br_stack(struct intel_pt *pt,
1048                                   struct perf_sample *sample)
1049 {
1050         struct thread *thread = machine__findnew_thread(pt->machine,
1051                                                         sample->pid,
1052                                                         sample->tid);
1053
1054         thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1055                                      pt->br_stack_sz, sample->ip,
1056                                      pt->kernel_start);
1057
1058         sample->branch_stack = pt->br_stack;
1059 }
1060
1061 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1062 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1063
1064 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1065                                                    unsigned int queue_nr)
1066 {
1067         struct intel_pt_params params = { .get_trace = 0, };
1068         struct perf_env *env = pt->machine->env;
1069         struct intel_pt_queue *ptq;
1070
1071         ptq = zalloc(sizeof(struct intel_pt_queue));
1072         if (!ptq)
1073                 return NULL;
1074
1075         if (pt->synth_opts.callchain) {
1076                 ptq->chain = intel_pt_alloc_chain(pt);
1077                 if (!ptq->chain)
1078                         goto out_free;
1079         }
1080
1081         if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1082                 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1083
1084                 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1085                 if (!ptq->last_branch)
1086                         goto out_free;
1087         }
1088
1089         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1090         if (!ptq->event_buf)
1091                 goto out_free;
1092
1093         ptq->pt = pt;
1094         ptq->queue_nr = queue_nr;
1095         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1096         ptq->pid = -1;
1097         ptq->tid = -1;
1098         ptq->cpu = -1;
1099         ptq->next_tid = -1;
1100
1101         params.get_trace = intel_pt_get_trace;
1102         params.walk_insn = intel_pt_walk_next_insn;
1103         params.lookahead = intel_pt_lookahead;
1104         params.data = ptq;
1105         params.return_compression = intel_pt_return_compression(pt);
1106         params.branch_enable = intel_pt_branch_enable(pt);
1107         params.ctl = intel_pt_ctl(pt);
1108         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1109         params.mtc_period = intel_pt_mtc_period(pt);
1110         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1111         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1112         params.quick = pt->synth_opts.quick;
1113
1114         if (pt->filts.cnt > 0)
1115                 params.pgd_ip = intel_pt_pgd_ip;
1116
1117         if (pt->synth_opts.instructions) {
1118                 if (pt->synth_opts.period) {
1119                         switch (pt->synth_opts.period_type) {
1120                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1121                                 params.period_type =
1122                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
1123                                 params.period = pt->synth_opts.period;
1124                                 break;
1125                         case PERF_ITRACE_PERIOD_TICKS:
1126                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1127                                 params.period = pt->synth_opts.period;
1128                                 break;
1129                         case PERF_ITRACE_PERIOD_NANOSECS:
1130                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1131                                 params.period = intel_pt_ns_to_ticks(pt,
1132                                                         pt->synth_opts.period);
1133                                 break;
1134                         default:
1135                                 break;
1136                         }
1137                 }
1138
1139                 if (!params.period) {
1140                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1141                         params.period = 1;
1142                 }
1143         }
1144
1145         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1146                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1147
1148         ptq->decoder = intel_pt_decoder_new(&params);
1149         if (!ptq->decoder)
1150                 goto out_free;
1151
1152         return ptq;
1153
1154 out_free:
1155         zfree(&ptq->event_buf);
1156         zfree(&ptq->last_branch);
1157         zfree(&ptq->chain);
1158         free(ptq);
1159         return NULL;
1160 }
1161
1162 static void intel_pt_free_queue(void *priv)
1163 {
1164         struct intel_pt_queue *ptq = priv;
1165
1166         if (!ptq)
1167                 return;
1168         thread__zput(ptq->thread);
1169         thread__zput(ptq->unknown_guest_thread);
1170         intel_pt_decoder_free(ptq->decoder);
1171         zfree(&ptq->event_buf);
1172         zfree(&ptq->last_branch);
1173         zfree(&ptq->chain);
1174         free(ptq);
1175 }
1176
1177 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1178                                      struct auxtrace_queue *queue)
1179 {
1180         struct intel_pt_queue *ptq = queue->priv;
1181
1182         if (queue->tid == -1 || pt->have_sched_switch) {
1183                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1184                 if (ptq->tid == -1)
1185                         ptq->pid = -1;
1186                 thread__zput(ptq->thread);
1187         }
1188
1189         if (!ptq->thread && ptq->tid != -1)
1190                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1191
1192         if (ptq->thread) {
1193                 ptq->pid = ptq->thread->pid_;
1194                 if (queue->cpu == -1)
1195                         ptq->cpu = ptq->thread->cpu;
1196         }
1197 }
1198
1199 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1200 {
1201         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1202                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1203         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1204                 if (!ptq->state->to_ip)
1205                         ptq->flags = PERF_IP_FLAG_BRANCH |
1206                                      PERF_IP_FLAG_TRACE_END;
1207                 else if (ptq->state->from_nr && !ptq->state->to_nr)
1208                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1209                                      PERF_IP_FLAG_VMEXIT;
1210                 else
1211                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1212                                      PERF_IP_FLAG_ASYNC |
1213                                      PERF_IP_FLAG_INTERRUPT;
1214                 ptq->insn_len = 0;
1215         } else {
1216                 if (ptq->state->from_ip)
1217                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1218                 else
1219                         ptq->flags = PERF_IP_FLAG_BRANCH |
1220                                      PERF_IP_FLAG_TRACE_BEGIN;
1221                 if (ptq->state->flags & INTEL_PT_IN_TX)
1222                         ptq->flags |= PERF_IP_FLAG_IN_TX;
1223                 ptq->insn_len = ptq->state->insn_len;
1224                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1225         }
1226
1227         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1228                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1229         if (ptq->state->type & INTEL_PT_TRACE_END)
1230                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1231 }
1232
1233 static void intel_pt_setup_time_range(struct intel_pt *pt,
1234                                       struct intel_pt_queue *ptq)
1235 {
1236         if (!pt->range_cnt)
1237                 return;
1238
1239         ptq->sel_timestamp = pt->time_ranges[0].start;
1240         ptq->sel_idx = 0;
1241
1242         if (ptq->sel_timestamp) {
1243                 ptq->sel_start = true;
1244         } else {
1245                 ptq->sel_timestamp = pt->time_ranges[0].end;
1246                 ptq->sel_start = false;
1247         }
1248 }
1249
1250 static int intel_pt_setup_queue(struct intel_pt *pt,
1251                                 struct auxtrace_queue *queue,
1252                                 unsigned int queue_nr)
1253 {
1254         struct intel_pt_queue *ptq = queue->priv;
1255
1256         if (list_empty(&queue->head))
1257                 return 0;
1258
1259         if (!ptq) {
1260                 ptq = intel_pt_alloc_queue(pt, queue_nr);
1261                 if (!ptq)
1262                         return -ENOMEM;
1263                 queue->priv = ptq;
1264
1265                 if (queue->cpu != -1)
1266                         ptq->cpu = queue->cpu;
1267                 ptq->tid = queue->tid;
1268
1269                 ptq->cbr_seen = UINT_MAX;
1270
1271                 if (pt->sampling_mode && !pt->snapshot_mode &&
1272                     pt->timeless_decoding)
1273                         ptq->step_through_buffers = true;
1274
1275                 ptq->sync_switch = pt->sync_switch;
1276
1277                 intel_pt_setup_time_range(pt, ptq);
1278         }
1279
1280         if (!ptq->on_heap &&
1281             (!ptq->sync_switch ||
1282              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1283                 const struct intel_pt_state *state;
1284                 int ret;
1285
1286                 if (pt->timeless_decoding)
1287                         return 0;
1288
1289                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1290                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1291                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1292
1293                 if (ptq->sel_start && ptq->sel_timestamp) {
1294                         ret = intel_pt_fast_forward(ptq->decoder,
1295                                                     ptq->sel_timestamp);
1296                         if (ret)
1297                                 return ret;
1298                 }
1299
1300                 while (1) {
1301                         state = intel_pt_decode(ptq->decoder);
1302                         if (state->err) {
1303                                 if (state->err == INTEL_PT_ERR_NODATA) {
1304                                         intel_pt_log("queue %u has no timestamp\n",
1305                                                      queue_nr);
1306                                         return 0;
1307                                 }
1308                                 continue;
1309                         }
1310                         if (state->timestamp)
1311                                 break;
1312                 }
1313
1314                 ptq->timestamp = state->timestamp;
1315                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1316                              queue_nr, ptq->timestamp);
1317                 ptq->state = state;
1318                 ptq->have_sample = true;
1319                 if (ptq->sel_start && ptq->sel_timestamp &&
1320                     ptq->timestamp < ptq->sel_timestamp)
1321                         ptq->have_sample = false;
1322                 intel_pt_sample_flags(ptq);
1323                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1324                 if (ret)
1325                         return ret;
1326                 ptq->on_heap = true;
1327         }
1328
1329         return 0;
1330 }
1331
1332 static int intel_pt_setup_queues(struct intel_pt *pt)
1333 {
1334         unsigned int i;
1335         int ret;
1336
1337         for (i = 0; i < pt->queues.nr_queues; i++) {
1338                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1339                 if (ret)
1340                         return ret;
1341         }
1342         return 0;
1343 }
1344
1345 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1346 {
1347         return pt->synth_opts.initial_skip &&
1348                pt->num_events++ < pt->synth_opts.initial_skip;
1349 }
1350
1351 /*
1352  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1353  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1354  * from this decoder state.
1355  */
1356 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1357 {
1358         return pt->synth_opts.initial_skip &&
1359                pt->num_events + 4 < pt->synth_opts.initial_skip;
1360 }
1361
1362 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1363                                    union perf_event *event,
1364                                    struct perf_sample *sample)
1365 {
1366         event->sample.header.type = PERF_RECORD_SAMPLE;
1367         event->sample.header.size = sizeof(struct perf_event_header);
1368
1369         sample->pid = ptq->pid;
1370         sample->tid = ptq->tid;
1371         sample->cpu = ptq->cpu;
1372         sample->insn_len = ptq->insn_len;
1373         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1374 }
1375
1376 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1377                                    struct intel_pt_queue *ptq,
1378                                    union perf_event *event,
1379                                    struct perf_sample *sample)
1380 {
1381         intel_pt_prep_a_sample(ptq, event, sample);
1382
1383         if (!pt->timeless_decoding)
1384                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1385
1386         sample->ip = ptq->state->from_ip;
1387         sample->addr = ptq->state->to_ip;
1388         sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1389         sample->period = 1;
1390         sample->flags = ptq->flags;
1391
1392         event->sample.header.misc = sample->cpumode;
1393 }
1394
1395 static int intel_pt_inject_event(union perf_event *event,
1396                                  struct perf_sample *sample, u64 type)
1397 {
1398         event->header.size = perf_event__sample_event_size(sample, type, 0);
1399         return perf_event__synthesize_sample(event, type, 0, sample);
1400 }
1401
1402 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1403                                       union perf_event *event,
1404                                       struct perf_sample *sample, u64 type)
1405 {
1406         if (!pt->synth_opts.inject)
1407                 return 0;
1408
1409         return intel_pt_inject_event(event, sample, type);
1410 }
1411
1412 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1413                                         union perf_event *event,
1414                                         struct perf_sample *sample, u64 type)
1415 {
1416         int ret;
1417
1418         ret = intel_pt_opt_inject(pt, event, sample, type);
1419         if (ret)
1420                 return ret;
1421
1422         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1423         if (ret)
1424                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1425
1426         return ret;
1427 }
1428
1429 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1430 {
1431         struct intel_pt *pt = ptq->pt;
1432         union perf_event *event = ptq->event_buf;
1433         struct perf_sample sample = { .ip = 0, };
1434         struct dummy_branch_stack {
1435                 u64                     nr;
1436                 u64                     hw_idx;
1437                 struct branch_entry     entries;
1438         } dummy_bs;
1439
1440         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1441                 return 0;
1442
1443         if (intel_pt_skip_event(pt))
1444                 return 0;
1445
1446         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1447
1448         sample.id = ptq->pt->branches_id;
1449         sample.stream_id = ptq->pt->branches_id;
1450
1451         /*
1452          * perf report cannot handle events without a branch stack when using
1453          * SORT_MODE__BRANCH so make a dummy one.
1454          */
1455         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1456                 dummy_bs = (struct dummy_branch_stack){
1457                         .nr = 1,
1458                         .hw_idx = -1ULL,
1459                         .entries = {
1460                                 .from = sample.ip,
1461                                 .to = sample.addr,
1462                         },
1463                 };
1464                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1465         }
1466
1467         if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1468                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1469         if (sample.cyc_cnt) {
1470                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1471                 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1472                 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1473         }
1474
1475         return intel_pt_deliver_synth_event(pt, event, &sample,
1476                                             pt->branches_sample_type);
1477 }
1478
1479 static void intel_pt_prep_sample(struct intel_pt *pt,
1480                                  struct intel_pt_queue *ptq,
1481                                  union perf_event *event,
1482                                  struct perf_sample *sample)
1483 {
1484         intel_pt_prep_b_sample(pt, ptq, event, sample);
1485
1486         if (pt->synth_opts.callchain) {
1487                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1488                                      pt->synth_opts.callchain_sz + 1,
1489                                      sample->ip, pt->kernel_start);
1490                 sample->callchain = ptq->chain;
1491         }
1492
1493         if (pt->synth_opts.last_branch) {
1494                 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1495                                         pt->br_stack_sz);
1496                 sample->branch_stack = ptq->last_branch;
1497         }
1498 }
1499
1500 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1501 {
1502         struct intel_pt *pt = ptq->pt;
1503         union perf_event *event = ptq->event_buf;
1504         struct perf_sample sample = { .ip = 0, };
1505
1506         if (intel_pt_skip_event(pt))
1507                 return 0;
1508
1509         intel_pt_prep_sample(pt, ptq, event, &sample);
1510
1511         sample.id = ptq->pt->instructions_id;
1512         sample.stream_id = ptq->pt->instructions_id;
1513         if (pt->synth_opts.quick)
1514                 sample.period = 1;
1515         else
1516                 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1517
1518         if (ptq->state->flags & INTEL_PT_SAMPLE_IPC)
1519                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1520         if (sample.cyc_cnt) {
1521                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1522                 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1523                 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1524         }
1525
1526         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1527
1528         return intel_pt_deliver_synth_event(pt, event, &sample,
1529                                             pt->instructions_sample_type);
1530 }
1531
1532 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1533 {
1534         struct intel_pt *pt = ptq->pt;
1535         union perf_event *event = ptq->event_buf;
1536         struct perf_sample sample = { .ip = 0, };
1537
1538         if (intel_pt_skip_event(pt))
1539                 return 0;
1540
1541         intel_pt_prep_sample(pt, ptq, event, &sample);
1542
1543         sample.id = ptq->pt->transactions_id;
1544         sample.stream_id = ptq->pt->transactions_id;
1545
1546         return intel_pt_deliver_synth_event(pt, event, &sample,
1547                                             pt->transactions_sample_type);
1548 }
1549
1550 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1551                                    struct intel_pt_queue *ptq,
1552                                    union perf_event *event,
1553                                    struct perf_sample *sample)
1554 {
1555         intel_pt_prep_sample(pt, ptq, event, sample);
1556
1557         /*
1558          * Zero IP is used to mean "trace start" but that is not the case for
1559          * power or PTWRITE events with no IP, so clear the flags.
1560          */
1561         if (!sample->ip)
1562                 sample->flags = 0;
1563 }
1564
1565 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1566 {
1567         struct intel_pt *pt = ptq->pt;
1568         union perf_event *event = ptq->event_buf;
1569         struct perf_sample sample = { .ip = 0, };
1570         struct perf_synth_intel_ptwrite raw;
1571
1572         if (intel_pt_skip_event(pt))
1573                 return 0;
1574
1575         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1576
1577         sample.id = ptq->pt->ptwrites_id;
1578         sample.stream_id = ptq->pt->ptwrites_id;
1579
1580         raw.flags = 0;
1581         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1582         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1583
1584         sample.raw_size = perf_synth__raw_size(raw);
1585         sample.raw_data = perf_synth__raw_data(&raw);
1586
1587         return intel_pt_deliver_synth_event(pt, event, &sample,
1588                                             pt->ptwrites_sample_type);
1589 }
1590
1591 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1592 {
1593         struct intel_pt *pt = ptq->pt;
1594         union perf_event *event = ptq->event_buf;
1595         struct perf_sample sample = { .ip = 0, };
1596         struct perf_synth_intel_cbr raw;
1597         u32 flags;
1598
1599         if (intel_pt_skip_cbr_event(pt))
1600                 return 0;
1601
1602         ptq->cbr_seen = ptq->state->cbr;
1603
1604         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1605
1606         sample.id = ptq->pt->cbr_id;
1607         sample.stream_id = ptq->pt->cbr_id;
1608
1609         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1610         raw.flags = cpu_to_le32(flags);
1611         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1612         raw.reserved3 = 0;
1613
1614         sample.raw_size = perf_synth__raw_size(raw);
1615         sample.raw_data = perf_synth__raw_data(&raw);
1616
1617         return intel_pt_deliver_synth_event(pt, event, &sample,
1618                                             pt->pwr_events_sample_type);
1619 }
1620
1621 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1622 {
1623         struct intel_pt *pt = ptq->pt;
1624         union perf_event *event = ptq->event_buf;
1625         struct perf_sample sample = { .ip = 0, };
1626         struct perf_synth_intel_psb raw;
1627
1628         if (intel_pt_skip_event(pt))
1629                 return 0;
1630
1631         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1632
1633         sample.id = ptq->pt->psb_id;
1634         sample.stream_id = ptq->pt->psb_id;
1635         sample.flags = 0;
1636
1637         raw.reserved = 0;
1638         raw.offset = ptq->state->psb_offset;
1639
1640         sample.raw_size = perf_synth__raw_size(raw);
1641         sample.raw_data = perf_synth__raw_data(&raw);
1642
1643         return intel_pt_deliver_synth_event(pt, event, &sample,
1644                                             pt->pwr_events_sample_type);
1645 }
1646
1647 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1648 {
1649         struct intel_pt *pt = ptq->pt;
1650         union perf_event *event = ptq->event_buf;
1651         struct perf_sample sample = { .ip = 0, };
1652         struct perf_synth_intel_mwait raw;
1653
1654         if (intel_pt_skip_event(pt))
1655                 return 0;
1656
1657         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1658
1659         sample.id = ptq->pt->mwait_id;
1660         sample.stream_id = ptq->pt->mwait_id;
1661
1662         raw.reserved = 0;
1663         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1664
1665         sample.raw_size = perf_synth__raw_size(raw);
1666         sample.raw_data = perf_synth__raw_data(&raw);
1667
1668         return intel_pt_deliver_synth_event(pt, event, &sample,
1669                                             pt->pwr_events_sample_type);
1670 }
1671
1672 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1673 {
1674         struct intel_pt *pt = ptq->pt;
1675         union perf_event *event = ptq->event_buf;
1676         struct perf_sample sample = { .ip = 0, };
1677         struct perf_synth_intel_pwre raw;
1678
1679         if (intel_pt_skip_event(pt))
1680                 return 0;
1681
1682         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1683
1684         sample.id = ptq->pt->pwre_id;
1685         sample.stream_id = ptq->pt->pwre_id;
1686
1687         raw.reserved = 0;
1688         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1689
1690         sample.raw_size = perf_synth__raw_size(raw);
1691         sample.raw_data = perf_synth__raw_data(&raw);
1692
1693         return intel_pt_deliver_synth_event(pt, event, &sample,
1694                                             pt->pwr_events_sample_type);
1695 }
1696
1697 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1698 {
1699         struct intel_pt *pt = ptq->pt;
1700         union perf_event *event = ptq->event_buf;
1701         struct perf_sample sample = { .ip = 0, };
1702         struct perf_synth_intel_exstop raw;
1703
1704         if (intel_pt_skip_event(pt))
1705                 return 0;
1706
1707         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1708
1709         sample.id = ptq->pt->exstop_id;
1710         sample.stream_id = ptq->pt->exstop_id;
1711
1712         raw.flags = 0;
1713         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1714
1715         sample.raw_size = perf_synth__raw_size(raw);
1716         sample.raw_data = perf_synth__raw_data(&raw);
1717
1718         return intel_pt_deliver_synth_event(pt, event, &sample,
1719                                             pt->pwr_events_sample_type);
1720 }
1721
1722 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1723 {
1724         struct intel_pt *pt = ptq->pt;
1725         union perf_event *event = ptq->event_buf;
1726         struct perf_sample sample = { .ip = 0, };
1727         struct perf_synth_intel_pwrx raw;
1728
1729         if (intel_pt_skip_event(pt))
1730                 return 0;
1731
1732         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1733
1734         sample.id = ptq->pt->pwrx_id;
1735         sample.stream_id = ptq->pt->pwrx_id;
1736
1737         raw.reserved = 0;
1738         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1739
1740         sample.raw_size = perf_synth__raw_size(raw);
1741         sample.raw_data = perf_synth__raw_data(&raw);
1742
1743         return intel_pt_deliver_synth_event(pt, event, &sample,
1744                                             pt->pwr_events_sample_type);
1745 }
1746
1747 /*
1748  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1749  * intel_pt_add_gp_regs().
1750  */
1751 static const int pebs_gp_regs[] = {
1752         [PERF_REG_X86_FLAGS]    = 1,
1753         [PERF_REG_X86_IP]       = 2,
1754         [PERF_REG_X86_AX]       = 3,
1755         [PERF_REG_X86_CX]       = 4,
1756         [PERF_REG_X86_DX]       = 5,
1757         [PERF_REG_X86_BX]       = 6,
1758         [PERF_REG_X86_SP]       = 7,
1759         [PERF_REG_X86_BP]       = 8,
1760         [PERF_REG_X86_SI]       = 9,
1761         [PERF_REG_X86_DI]       = 10,
1762         [PERF_REG_X86_R8]       = 11,
1763         [PERF_REG_X86_R9]       = 12,
1764         [PERF_REG_X86_R10]      = 13,
1765         [PERF_REG_X86_R11]      = 14,
1766         [PERF_REG_X86_R12]      = 15,
1767         [PERF_REG_X86_R13]      = 16,
1768         [PERF_REG_X86_R14]      = 17,
1769         [PERF_REG_X86_R15]      = 18,
1770 };
1771
1772 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1773                                  const struct intel_pt_blk_items *items,
1774                                  u64 regs_mask)
1775 {
1776         const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1777         u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1778         u32 bit;
1779         int i;
1780
1781         for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1782                 /* Get the PEBS gp_regs array index */
1783                 int n = pebs_gp_regs[i] - 1;
1784
1785                 if (n < 0)
1786                         continue;
1787                 /*
1788                  * Add only registers that were requested (i.e. 'regs_mask') and
1789                  * that were provided (i.e. 'mask'), and update the resulting
1790                  * mask (i.e. 'intr_regs->mask') accordingly.
1791                  */
1792                 if (mask & 1 << n && regs_mask & bit) {
1793                         intr_regs->mask |= bit;
1794                         *pos++ = gp_regs[n];
1795                 }
1796         }
1797
1798         return pos;
1799 }
1800
1801 #ifndef PERF_REG_X86_XMM0
1802 #define PERF_REG_X86_XMM0 32
1803 #endif
1804
1805 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1806                              const struct intel_pt_blk_items *items,
1807                              u64 regs_mask)
1808 {
1809         u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1810         const u64 *xmm = items->xmm;
1811
1812         /*
1813          * If there are any XMM registers, then there should be all of them.
1814          * Nevertheless, follow the logic to add only registers that were
1815          * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1816          * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1817          */
1818         intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1819
1820         for (; mask; mask >>= 1, xmm++) {
1821                 if (mask & 1)
1822                         *pos++ = *xmm;
1823         }
1824 }
1825
1826 #define LBR_INFO_MISPRED        (1ULL << 63)
1827 #define LBR_INFO_IN_TX          (1ULL << 62)
1828 #define LBR_INFO_ABORT          (1ULL << 61)
1829 #define LBR_INFO_CYCLES         0xffff
1830
1831 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1832 static u64 intel_pt_lbr_flags(u64 info)
1833 {
1834         union {
1835                 struct branch_flags flags;
1836                 u64 result;
1837         } u;
1838
1839         u.result          = 0;
1840         u.flags.mispred   = !!(info & LBR_INFO_MISPRED);
1841         u.flags.predicted = !(info & LBR_INFO_MISPRED);
1842         u.flags.in_tx     = !!(info & LBR_INFO_IN_TX);
1843         u.flags.abort     = !!(info & LBR_INFO_ABORT);
1844         u.flags.cycles    = info & LBR_INFO_CYCLES;
1845
1846         return u.result;
1847 }
1848
1849 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1850                               const struct intel_pt_blk_items *items)
1851 {
1852         u64 *to;
1853         int i;
1854
1855         br_stack->nr = 0;
1856
1857         to = &br_stack->entries[0].from;
1858
1859         for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1860                 u32 mask = items->mask[i];
1861                 const u64 *from = items->val[i];
1862
1863                 for (; mask; mask >>= 3, from += 3) {
1864                         if ((mask & 7) == 7) {
1865                                 *to++ = from[0];
1866                                 *to++ = from[1];
1867                                 *to++ = intel_pt_lbr_flags(from[2]);
1868                                 br_stack->nr += 1;
1869                         }
1870                 }
1871         }
1872 }
1873
1874 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1875 {
1876         const struct intel_pt_blk_items *items = &ptq->state->items;
1877         struct perf_sample sample = { .ip = 0, };
1878         union perf_event *event = ptq->event_buf;
1879         struct intel_pt *pt = ptq->pt;
1880         struct evsel *evsel = pt->pebs_evsel;
1881         u64 sample_type = evsel->core.attr.sample_type;
1882         u64 id = evsel->core.id[0];
1883         u8 cpumode;
1884         u64 regs[8 * sizeof(sample.intr_regs.mask)];
1885
1886         if (intel_pt_skip_event(pt))
1887                 return 0;
1888
1889         intel_pt_prep_a_sample(ptq, event, &sample);
1890
1891         sample.id = id;
1892         sample.stream_id = id;
1893
1894         if (!evsel->core.attr.freq)
1895                 sample.period = evsel->core.attr.sample_period;
1896
1897         /* No support for non-zero CS base */
1898         if (items->has_ip)
1899                 sample.ip = items->ip;
1900         else if (items->has_rip)
1901                 sample.ip = items->rip;
1902         else
1903                 sample.ip = ptq->state->from_ip;
1904
1905         cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
1906
1907         event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1908
1909         sample.cpumode = cpumode;
1910
1911         if (sample_type & PERF_SAMPLE_TIME) {
1912                 u64 timestamp = 0;
1913
1914                 if (items->has_timestamp)
1915                         timestamp = items->timestamp;
1916                 else if (!pt->timeless_decoding)
1917                         timestamp = ptq->timestamp;
1918                 if (timestamp)
1919                         sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1920         }
1921
1922         if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1923             pt->synth_opts.callchain) {
1924                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1925                                      pt->synth_opts.callchain_sz, sample.ip,
1926                                      pt->kernel_start);
1927                 sample.callchain = ptq->chain;
1928         }
1929
1930         if (sample_type & PERF_SAMPLE_REGS_INTR &&
1931             (items->mask[INTEL_PT_GP_REGS_POS] ||
1932              items->mask[INTEL_PT_XMM_POS])) {
1933                 u64 regs_mask = evsel->core.attr.sample_regs_intr;
1934                 u64 *pos;
1935
1936                 sample.intr_regs.abi = items->is_32_bit ?
1937                                        PERF_SAMPLE_REGS_ABI_32 :
1938                                        PERF_SAMPLE_REGS_ABI_64;
1939                 sample.intr_regs.regs = regs;
1940
1941                 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1942
1943                 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1944         }
1945
1946         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1947                 if (items->mask[INTEL_PT_LBR_0_POS] ||
1948                     items->mask[INTEL_PT_LBR_1_POS] ||
1949                     items->mask[INTEL_PT_LBR_2_POS]) {
1950                         intel_pt_add_lbrs(ptq->last_branch, items);
1951                 } else if (pt->synth_opts.last_branch) {
1952                         thread_stack__br_sample(ptq->thread, ptq->cpu,
1953                                                 ptq->last_branch,
1954                                                 pt->br_stack_sz);
1955                 } else {
1956                         ptq->last_branch->nr = 0;
1957                 }
1958                 sample.branch_stack = ptq->last_branch;
1959         }
1960
1961         if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1962                 sample.addr = items->mem_access_address;
1963
1964         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1965                 /*
1966                  * Refer kernel's setup_pebs_adaptive_sample_data() and
1967                  * intel_hsw_weight().
1968                  */
1969                 if (items->has_mem_access_latency) {
1970                         u64 weight = items->mem_access_latency >> 32;
1971
1972                         /*
1973                          * Starts from SPR, the mem access latency field
1974                          * contains both cache latency [47:32] and instruction
1975                          * latency [15:0]. The cache latency is the same as the
1976                          * mem access latency on previous platforms.
1977                          *
1978                          * In practice, no memory access could last than 4G
1979                          * cycles. Use latency >> 32 to distinguish the
1980                          * different format of the mem access latency field.
1981                          */
1982                         if (weight > 0) {
1983                                 sample.weight = weight & 0xffff;
1984                                 sample.ins_lat = items->mem_access_latency & 0xffff;
1985                         } else
1986                                 sample.weight = items->mem_access_latency;
1987                 }
1988                 if (!sample.weight && items->has_tsx_aux_info) {
1989                         /* Cycles last block */
1990                         sample.weight = (u32)items->tsx_aux_info;
1991                 }
1992         }
1993
1994         if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1995                 u64 ax = items->has_rax ? items->rax : 0;
1996                 /* Refer kernel's intel_hsw_transaction() */
1997                 u64 txn = (u8)(items->tsx_aux_info >> 32);
1998
1999                 /* For RTM XABORTs also log the abort code from AX */
2000                 if (txn & PERF_TXN_TRANSACTION && ax & 1)
2001                         txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2002                 sample.transaction = txn;
2003         }
2004
2005         return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2006 }
2007
2008 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2009                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
2010 {
2011         union perf_event event;
2012         char msg[MAX_AUXTRACE_ERROR_MSG];
2013         int err;
2014
2015         if (pt->synth_opts.error_minus_flags) {
2016                 if (code == INTEL_PT_ERR_OVR &&
2017                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2018                         return 0;
2019                 if (code == INTEL_PT_ERR_LOST &&
2020                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2021                         return 0;
2022         }
2023
2024         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2025
2026         auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2027                              code, cpu, pid, tid, ip, msg, timestamp);
2028
2029         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2030         if (err)
2031                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2032                        err);
2033
2034         return err;
2035 }
2036
2037 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2038                                  const struct intel_pt_state *state)
2039 {
2040         struct intel_pt *pt = ptq->pt;
2041         u64 tm = ptq->timestamp;
2042
2043         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2044
2045         return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
2046                                     ptq->tid, state->from_ip, tm);
2047 }
2048
2049 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2050 {
2051         struct auxtrace_queue *queue;
2052         pid_t tid = ptq->next_tid;
2053         int err;
2054
2055         if (tid == -1)
2056                 return 0;
2057
2058         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2059
2060         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2061
2062         queue = &pt->queues.queue_array[ptq->queue_nr];
2063         intel_pt_set_pid_tid_cpu(pt, queue);
2064
2065         ptq->next_tid = -1;
2066
2067         return err;
2068 }
2069
2070 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2071 {
2072         struct intel_pt *pt = ptq->pt;
2073
2074         return ip == pt->switch_ip &&
2075                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2076                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2077                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2078 }
2079
2080 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2081                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2082
2083 static int intel_pt_sample(struct intel_pt_queue *ptq)
2084 {
2085         const struct intel_pt_state *state = ptq->state;
2086         struct intel_pt *pt = ptq->pt;
2087         int err;
2088
2089         if (!ptq->have_sample)
2090                 return 0;
2091
2092         ptq->have_sample = false;
2093
2094         ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2095         ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2096
2097         /*
2098          * Do PEBS first to allow for the possibility that the PEBS timestamp
2099          * precedes the current timestamp.
2100          */
2101         if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2102                 err = intel_pt_synth_pebs_sample(ptq);
2103                 if (err)
2104                         return err;
2105         }
2106
2107         if (pt->sample_pwr_events) {
2108                 if (state->type & INTEL_PT_PSB_EVT) {
2109                         err = intel_pt_synth_psb_sample(ptq);
2110                         if (err)
2111                                 return err;
2112                 }
2113                 if (ptq->state->cbr != ptq->cbr_seen) {
2114                         err = intel_pt_synth_cbr_sample(ptq);
2115                         if (err)
2116                                 return err;
2117                 }
2118                 if (state->type & INTEL_PT_PWR_EVT) {
2119                         if (state->type & INTEL_PT_MWAIT_OP) {
2120                                 err = intel_pt_synth_mwait_sample(ptq);
2121                                 if (err)
2122                                         return err;
2123                         }
2124                         if (state->type & INTEL_PT_PWR_ENTRY) {
2125                                 err = intel_pt_synth_pwre_sample(ptq);
2126                                 if (err)
2127                                         return err;
2128                         }
2129                         if (state->type & INTEL_PT_EX_STOP) {
2130                                 err = intel_pt_synth_exstop_sample(ptq);
2131                                 if (err)
2132                                         return err;
2133                         }
2134                         if (state->type & INTEL_PT_PWR_EXIT) {
2135                                 err = intel_pt_synth_pwrx_sample(ptq);
2136                                 if (err)
2137                                         return err;
2138                         }
2139                 }
2140         }
2141
2142         if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2143                 err = intel_pt_synth_instruction_sample(ptq);
2144                 if (err)
2145                         return err;
2146         }
2147
2148         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2149                 err = intel_pt_synth_transaction_sample(ptq);
2150                 if (err)
2151                         return err;
2152         }
2153
2154         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2155                 err = intel_pt_synth_ptwrite_sample(ptq);
2156                 if (err)
2157                         return err;
2158         }
2159
2160         if (!(state->type & INTEL_PT_BRANCH))
2161                 return 0;
2162
2163         if (pt->use_thread_stack) {
2164                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2165                                     state->from_ip, state->to_ip, ptq->insn_len,
2166                                     state->trace_nr, pt->callstack,
2167                                     pt->br_stack_sz_plus,
2168                                     pt->mispred_all);
2169         } else {
2170                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2171         }
2172
2173         if (pt->sample_branches) {
2174                 if (state->from_nr != state->to_nr &&
2175                     state->from_ip && state->to_ip) {
2176                         struct intel_pt_state *st = (struct intel_pt_state *)state;
2177                         u64 to_ip = st->to_ip;
2178                         u64 from_ip = st->from_ip;
2179
2180                         /*
2181                          * perf cannot handle having different machines for ip
2182                          * and addr, so create 2 branches.
2183                          */
2184                         st->to_ip = 0;
2185                         err = intel_pt_synth_branch_sample(ptq);
2186                         if (err)
2187                                 return err;
2188                         st->from_ip = 0;
2189                         st->to_ip = to_ip;
2190                         err = intel_pt_synth_branch_sample(ptq);
2191                         st->from_ip = from_ip;
2192                 } else {
2193                         err = intel_pt_synth_branch_sample(ptq);
2194                 }
2195                 if (err)
2196                         return err;
2197         }
2198
2199         if (!ptq->sync_switch)
2200                 return 0;
2201
2202         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2203                 switch (ptq->switch_state) {
2204                 case INTEL_PT_SS_NOT_TRACING:
2205                 case INTEL_PT_SS_UNKNOWN:
2206                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2207                         err = intel_pt_next_tid(pt, ptq);
2208                         if (err)
2209                                 return err;
2210                         ptq->switch_state = INTEL_PT_SS_TRACING;
2211                         break;
2212                 default:
2213                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2214                         return 1;
2215                 }
2216         } else if (!state->to_ip) {
2217                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2218         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2219                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2220         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2221                    state->to_ip == pt->ptss_ip &&
2222                    (ptq->flags & PERF_IP_FLAG_CALL)) {
2223                 ptq->switch_state = INTEL_PT_SS_TRACING;
2224         }
2225
2226         return 0;
2227 }
2228
2229 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2230 {
2231         struct machine *machine = pt->machine;
2232         struct map *map;
2233         struct symbol *sym, *start;
2234         u64 ip, switch_ip = 0;
2235         const char *ptss;
2236
2237         if (ptss_ip)
2238                 *ptss_ip = 0;
2239
2240         map = machine__kernel_map(machine);
2241         if (!map)
2242                 return 0;
2243
2244         if (map__load(map))
2245                 return 0;
2246
2247         start = dso__first_symbol(map->dso);
2248
2249         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2250                 if (sym->binding == STB_GLOBAL &&
2251                     !strcmp(sym->name, "__switch_to")) {
2252                         ip = map->unmap_ip(map, sym->start);
2253                         if (ip >= map->start && ip < map->end) {
2254                                 switch_ip = ip;
2255                                 break;
2256                         }
2257                 }
2258         }
2259
2260         if (!switch_ip || !ptss_ip)
2261                 return 0;
2262
2263         if (pt->have_sched_switch == 1)
2264                 ptss = "perf_trace_sched_switch";
2265         else
2266                 ptss = "__perf_event_task_sched_out";
2267
2268         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2269                 if (!strcmp(sym->name, ptss)) {
2270                         ip = map->unmap_ip(map, sym->start);
2271                         if (ip >= map->start && ip < map->end) {
2272                                 *ptss_ip = ip;
2273                                 break;
2274                         }
2275                 }
2276         }
2277
2278         return switch_ip;
2279 }
2280
2281 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2282 {
2283         unsigned int i;
2284
2285         pt->sync_switch = true;
2286
2287         for (i = 0; i < pt->queues.nr_queues; i++) {
2288                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2289                 struct intel_pt_queue *ptq = queue->priv;
2290
2291                 if (ptq)
2292                         ptq->sync_switch = true;
2293         }
2294 }
2295
2296 /*
2297  * To filter against time ranges, it is only necessary to look at the next start
2298  * or end time.
2299  */
2300 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2301 {
2302         struct intel_pt *pt = ptq->pt;
2303
2304         if (ptq->sel_start) {
2305                 /* Next time is an end time */
2306                 ptq->sel_start = false;
2307                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2308                 return true;
2309         } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2310                 /* Next time is a start time */
2311                 ptq->sel_start = true;
2312                 ptq->sel_idx += 1;
2313                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2314                 return true;
2315         }
2316
2317         /* No next time */
2318         return false;
2319 }
2320
2321 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2322 {
2323         int err;
2324
2325         while (1) {
2326                 if (ptq->sel_start) {
2327                         if (ptq->timestamp >= ptq->sel_timestamp) {
2328                                 /* After start time, so consider next time */
2329                                 intel_pt_next_time(ptq);
2330                                 if (!ptq->sel_timestamp) {
2331                                         /* No end time */
2332                                         return 0;
2333                                 }
2334                                 /* Check against end time */
2335                                 continue;
2336                         }
2337                         /* Before start time, so fast forward */
2338                         ptq->have_sample = false;
2339                         if (ptq->sel_timestamp > *ff_timestamp) {
2340                                 if (ptq->sync_switch) {
2341                                         intel_pt_next_tid(ptq->pt, ptq);
2342                                         ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2343                                 }
2344                                 *ff_timestamp = ptq->sel_timestamp;
2345                                 err = intel_pt_fast_forward(ptq->decoder,
2346                                                             ptq->sel_timestamp);
2347                                 if (err)
2348                                         return err;
2349                         }
2350                         return 0;
2351                 } else if (ptq->timestamp > ptq->sel_timestamp) {
2352                         /* After end time, so consider next time */
2353                         if (!intel_pt_next_time(ptq)) {
2354                                 /* No next time range, so stop decoding */
2355                                 ptq->have_sample = false;
2356                                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2357                                 return 1;
2358                         }
2359                         /* Check against next start time */
2360                         continue;
2361                 } else {
2362                         /* Before end time */
2363                         return 0;
2364                 }
2365         }
2366 }
2367
2368 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2369 {
2370         const struct intel_pt_state *state = ptq->state;
2371         struct intel_pt *pt = ptq->pt;
2372         u64 ff_timestamp = 0;
2373         int err;
2374
2375         if (!pt->kernel_start) {
2376                 pt->kernel_start = machine__kernel_start(pt->machine);
2377                 if (pt->per_cpu_mmaps &&
2378                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2379                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2380                     !pt->sampling_mode) {
2381                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2382                         if (pt->switch_ip) {
2383                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2384                                              pt->switch_ip, pt->ptss_ip);
2385                                 intel_pt_enable_sync_switch(pt);
2386                         }
2387                 }
2388         }
2389
2390         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2391                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2392         while (1) {
2393                 err = intel_pt_sample(ptq);
2394                 if (err)
2395                         return err;
2396
2397                 state = intel_pt_decode(ptq->decoder);
2398                 if (state->err) {
2399                         if (state->err == INTEL_PT_ERR_NODATA)
2400                                 return 1;
2401                         if (ptq->sync_switch &&
2402                             state->from_ip >= pt->kernel_start) {
2403                                 ptq->sync_switch = false;
2404                                 intel_pt_next_tid(pt, ptq);
2405                         }
2406                         if (pt->synth_opts.errors) {
2407                                 err = intel_ptq_synth_error(ptq, state);
2408                                 if (err)
2409                                         return err;
2410                         }
2411                         continue;
2412                 }
2413
2414                 ptq->state = state;
2415                 ptq->have_sample = true;
2416                 intel_pt_sample_flags(ptq);
2417
2418                 /* Use estimated TSC upon return to user space */
2419                 if (pt->est_tsc &&
2420                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2421                     state->to_ip && state->to_ip < pt->kernel_start) {
2422                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2423                                      state->timestamp, state->est_timestamp);
2424                         ptq->timestamp = state->est_timestamp;
2425                 /* Use estimated TSC in unknown switch state */
2426                 } else if (ptq->sync_switch &&
2427                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2428                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
2429                            ptq->next_tid == -1) {
2430                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2431                                      state->timestamp, state->est_timestamp);
2432                         ptq->timestamp = state->est_timestamp;
2433                 } else if (state->timestamp > ptq->timestamp) {
2434                         ptq->timestamp = state->timestamp;
2435                 }
2436
2437                 if (ptq->sel_timestamp) {
2438                         err = intel_pt_time_filter(ptq, &ff_timestamp);
2439                         if (err)
2440                                 return err;
2441                 }
2442
2443                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2444                         *timestamp = ptq->timestamp;
2445                         return 0;
2446                 }
2447         }
2448         return 0;
2449 }
2450
2451 static inline int intel_pt_update_queues(struct intel_pt *pt)
2452 {
2453         if (pt->queues.new_data) {
2454                 pt->queues.new_data = false;
2455                 return intel_pt_setup_queues(pt);
2456         }
2457         return 0;
2458 }
2459
2460 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2461 {
2462         unsigned int queue_nr;
2463         u64 ts;
2464         int ret;
2465
2466         while (1) {
2467                 struct auxtrace_queue *queue;
2468                 struct intel_pt_queue *ptq;
2469
2470                 if (!pt->heap.heap_cnt)
2471                         return 0;
2472
2473                 if (pt->heap.heap_array[0].ordinal >= timestamp)
2474                         return 0;
2475
2476                 queue_nr = pt->heap.heap_array[0].queue_nr;
2477                 queue = &pt->queues.queue_array[queue_nr];
2478                 ptq = queue->priv;
2479
2480                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2481                              queue_nr, pt->heap.heap_array[0].ordinal,
2482                              timestamp);
2483
2484                 auxtrace_heap__pop(&pt->heap);
2485
2486                 if (pt->heap.heap_cnt) {
2487                         ts = pt->heap.heap_array[0].ordinal + 1;
2488                         if (ts > timestamp)
2489                                 ts = timestamp;
2490                 } else {
2491                         ts = timestamp;
2492                 }
2493
2494                 intel_pt_set_pid_tid_cpu(pt, queue);
2495
2496                 ret = intel_pt_run_decoder(ptq, &ts);
2497
2498                 if (ret < 0) {
2499                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
2500                         return ret;
2501                 }
2502
2503                 if (!ret) {
2504                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2505                         if (ret < 0)
2506                                 return ret;
2507                 } else {
2508                         ptq->on_heap = false;
2509                 }
2510         }
2511
2512         return 0;
2513 }
2514
2515 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2516                                             u64 time_)
2517 {
2518         struct auxtrace_queues *queues = &pt->queues;
2519         unsigned int i;
2520         u64 ts = 0;
2521
2522         for (i = 0; i < queues->nr_queues; i++) {
2523                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2524                 struct intel_pt_queue *ptq = queue->priv;
2525
2526                 if (ptq && (tid == -1 || ptq->tid == tid)) {
2527                         ptq->time = time_;
2528                         intel_pt_set_pid_tid_cpu(pt, queue);
2529                         intel_pt_run_decoder(ptq, &ts);
2530                 }
2531         }
2532         return 0;
2533 }
2534
2535 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2536                                             struct auxtrace_queue *queue,
2537                                             struct perf_sample *sample)
2538 {
2539         struct machine *m = ptq->pt->machine;
2540
2541         ptq->pid = sample->pid;
2542         ptq->tid = sample->tid;
2543         ptq->cpu = queue->cpu;
2544
2545         intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2546                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2547
2548         thread__zput(ptq->thread);
2549
2550         if (ptq->tid == -1)
2551                 return;
2552
2553         if (ptq->pid == -1) {
2554                 ptq->thread = machine__find_thread(m, -1, ptq->tid);
2555                 if (ptq->thread)
2556                         ptq->pid = ptq->thread->pid_;
2557                 return;
2558         }
2559
2560         ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2561 }
2562
2563 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2564                                             struct perf_sample *sample)
2565 {
2566         struct auxtrace_queue *queue;
2567         struct intel_pt_queue *ptq;
2568         u64 ts = 0;
2569
2570         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2571         if (!queue)
2572                 return -EINVAL;
2573
2574         ptq = queue->priv;
2575         if (!ptq)
2576                 return 0;
2577
2578         ptq->stop = false;
2579         ptq->time = sample->time;
2580         intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2581         intel_pt_run_decoder(ptq, &ts);
2582         return 0;
2583 }
2584
2585 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2586 {
2587         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2588                                     sample->pid, sample->tid, 0, sample->time);
2589 }
2590
2591 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2592 {
2593         unsigned i, j;
2594
2595         if (cpu < 0 || !pt->queues.nr_queues)
2596                 return NULL;
2597
2598         if ((unsigned)cpu >= pt->queues.nr_queues)
2599                 i = pt->queues.nr_queues - 1;
2600         else
2601                 i = cpu;
2602
2603         if (pt->queues.queue_array[i].cpu == cpu)
2604                 return pt->queues.queue_array[i].priv;
2605
2606         for (j = 0; i > 0; j++) {
2607                 if (pt->queues.queue_array[--i].cpu == cpu)
2608                         return pt->queues.queue_array[i].priv;
2609         }
2610
2611         for (; j < pt->queues.nr_queues; j++) {
2612                 if (pt->queues.queue_array[j].cpu == cpu)
2613                         return pt->queues.queue_array[j].priv;
2614         }
2615
2616         return NULL;
2617 }
2618
2619 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2620                                 u64 timestamp)
2621 {
2622         struct intel_pt_queue *ptq;
2623         int err;
2624
2625         if (!pt->sync_switch)
2626                 return 1;
2627
2628         ptq = intel_pt_cpu_to_ptq(pt, cpu);
2629         if (!ptq || !ptq->sync_switch)
2630                 return 1;
2631
2632         switch (ptq->switch_state) {
2633         case INTEL_PT_SS_NOT_TRACING:
2634                 break;
2635         case INTEL_PT_SS_UNKNOWN:
2636         case INTEL_PT_SS_TRACING:
2637                 ptq->next_tid = tid;
2638                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2639                 return 0;
2640         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2641                 if (!ptq->on_heap) {
2642                         ptq->timestamp = perf_time_to_tsc(timestamp,
2643                                                           &pt->tc);
2644                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2645                                                  ptq->timestamp);
2646                         if (err)
2647                                 return err;
2648                         ptq->on_heap = true;
2649                 }
2650                 ptq->switch_state = INTEL_PT_SS_TRACING;
2651                 break;
2652         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2653                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2654                 break;
2655         default:
2656                 break;
2657         }
2658
2659         ptq->next_tid = -1;
2660
2661         return 1;
2662 }
2663
2664 static int intel_pt_process_switch(struct intel_pt *pt,
2665                                    struct perf_sample *sample)
2666 {
2667         pid_t tid;
2668         int cpu, ret;
2669         struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
2670
2671         if (evsel != pt->switch_evsel)
2672                 return 0;
2673
2674         tid = evsel__intval(evsel, sample, "next_pid");
2675         cpu = sample->cpu;
2676
2677         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2678                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2679                      &pt->tc));
2680
2681         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2682         if (ret <= 0)
2683                 return ret;
2684
2685         return machine__set_current_tid(pt->machine, cpu, -1, tid);
2686 }
2687
2688 static int intel_pt_context_switch_in(struct intel_pt *pt,
2689                                       struct perf_sample *sample)
2690 {
2691         pid_t pid = sample->pid;
2692         pid_t tid = sample->tid;
2693         int cpu = sample->cpu;
2694
2695         if (pt->sync_switch) {
2696                 struct intel_pt_queue *ptq;
2697
2698                 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2699                 if (ptq && ptq->sync_switch) {
2700                         ptq->next_tid = -1;
2701                         switch (ptq->switch_state) {
2702                         case INTEL_PT_SS_NOT_TRACING:
2703                         case INTEL_PT_SS_UNKNOWN:
2704                         case INTEL_PT_SS_TRACING:
2705                                 break;
2706                         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2707                         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2708                                 ptq->switch_state = INTEL_PT_SS_TRACING;
2709                                 break;
2710                         default:
2711                                 break;
2712                         }
2713                 }
2714         }
2715
2716         /*
2717          * If the current tid has not been updated yet, ensure it is now that
2718          * a "switch in" event has occurred.
2719          */
2720         if (machine__get_current_tid(pt->machine, cpu) == tid)
2721                 return 0;
2722
2723         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2724 }
2725
2726 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2727                                    struct perf_sample *sample)
2728 {
2729         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2730         pid_t pid, tid;
2731         int cpu, ret;
2732
2733         cpu = sample->cpu;
2734
2735         if (pt->have_sched_switch == 3) {
2736                 if (!out)
2737                         return intel_pt_context_switch_in(pt, sample);
2738                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2739                         pr_err("Expecting CPU-wide context switch event\n");
2740                         return -EINVAL;
2741                 }
2742                 pid = event->context_switch.next_prev_pid;
2743                 tid = event->context_switch.next_prev_tid;
2744         } else {
2745                 if (out)
2746                         return 0;
2747                 pid = sample->pid;
2748                 tid = sample->tid;
2749         }
2750
2751         if (tid == -1)
2752                 intel_pt_log("context_switch event has no tid\n");
2753
2754         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2755         if (ret <= 0)
2756                 return ret;
2757
2758         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2759 }
2760
2761 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2762                                          union perf_event *event,
2763                                          struct perf_sample *sample)
2764 {
2765         if (!pt->per_cpu_mmaps)
2766                 return 0;
2767
2768         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2769                      sample->cpu, event->itrace_start.pid,
2770                      event->itrace_start.tid, sample->time,
2771                      perf_time_to_tsc(sample->time, &pt->tc));
2772
2773         return machine__set_current_tid(pt->machine, sample->cpu,
2774                                         event->itrace_start.pid,
2775                                         event->itrace_start.tid);
2776 }
2777
2778 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2779                              struct addr_location *al)
2780 {
2781         if (!al->map || addr < al->map->start || addr >= al->map->end) {
2782                 if (!thread__find_map(thread, cpumode, addr, al))
2783                         return -1;
2784         }
2785
2786         return 0;
2787 }
2788
2789 /* Invalidate all instruction cache entries that overlap the text poke */
2790 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2791 {
2792         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2793         u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2794         /* Assume text poke begins in a basic block no more than 4096 bytes */
2795         int cnt = 4096 + event->text_poke.new_len;
2796         struct thread *thread = pt->unknown_thread;
2797         struct addr_location al = { .map = NULL };
2798         struct machine *machine = pt->machine;
2799         struct intel_pt_cache_entry *e;
2800         u64 offset;
2801
2802         if (!event->text_poke.new_len)
2803                 return 0;
2804
2805         for (; cnt; cnt--, addr--) {
2806                 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2807                         if (addr < event->text_poke.addr)
2808                                 return 0;
2809                         continue;
2810                 }
2811
2812                 if (!al.map->dso || !al.map->dso->auxtrace_cache)
2813                         continue;
2814
2815                 offset = al.map->map_ip(al.map, addr);
2816
2817                 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2818                 if (!e)
2819                         continue;
2820
2821                 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2822                         /*
2823                          * No overlap. Working backwards there cannot be another
2824                          * basic block that overlaps the text poke if there is a
2825                          * branch instruction before the text poke address.
2826                          */
2827                         if (e->branch != INTEL_PT_BR_NO_BRANCH)
2828                                 return 0;
2829                 } else {
2830                         intel_pt_cache_invalidate(al.map->dso, machine, offset);
2831                         intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2832                                      al.map->dso->long_name, addr);
2833                 }
2834         }
2835
2836         return 0;
2837 }
2838
2839 static int intel_pt_process_event(struct perf_session *session,
2840                                   union perf_event *event,
2841                                   struct perf_sample *sample,
2842                                   struct perf_tool *tool)
2843 {
2844         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2845                                            auxtrace);
2846         u64 timestamp;
2847         int err = 0;
2848
2849         if (dump_trace)
2850                 return 0;
2851
2852         if (!tool->ordered_events) {
2853                 pr_err("Intel Processor Trace requires ordered events\n");
2854                 return -EINVAL;
2855         }
2856
2857         if (sample->time && sample->time != (u64)-1)
2858                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2859         else
2860                 timestamp = 0;
2861
2862         if (timestamp || pt->timeless_decoding) {
2863                 err = intel_pt_update_queues(pt);
2864                 if (err)
2865                         return err;
2866         }
2867
2868         if (pt->timeless_decoding) {
2869                 if (pt->sampling_mode) {
2870                         if (sample->aux_sample.size)
2871                                 err = intel_pt_process_timeless_sample(pt,
2872                                                                        sample);
2873                 } else if (event->header.type == PERF_RECORD_EXIT) {
2874                         err = intel_pt_process_timeless_queues(pt,
2875                                                                event->fork.tid,
2876                                                                sample->time);
2877                 }
2878         } else if (timestamp) {
2879                 err = intel_pt_process_queues(pt, timestamp);
2880         }
2881         if (err)
2882                 return err;
2883
2884         if (event->header.type == PERF_RECORD_SAMPLE) {
2885                 if (pt->synth_opts.add_callchain && !sample->callchain)
2886                         intel_pt_add_callchain(pt, sample);
2887                 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2888                         intel_pt_add_br_stack(pt, sample);
2889         }
2890
2891         if (event->header.type == PERF_RECORD_AUX &&
2892             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2893             pt->synth_opts.errors) {
2894                 err = intel_pt_lost(pt, sample);
2895                 if (err)
2896                         return err;
2897         }
2898
2899         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2900                 err = intel_pt_process_switch(pt, sample);
2901         else if (event->header.type == PERF_RECORD_ITRACE_START)
2902                 err = intel_pt_process_itrace_start(pt, event, sample);
2903         else if (event->header.type == PERF_RECORD_SWITCH ||
2904                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2905                 err = intel_pt_context_switch(pt, event, sample);
2906
2907         if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
2908                 err = intel_pt_text_poke(pt, event);
2909
2910         if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
2911                 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2912                              event->header.type, sample->cpu, sample->time, timestamp);
2913                 intel_pt_log_event(event);
2914         }
2915
2916         return err;
2917 }
2918
2919 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2920 {
2921         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2922                                            auxtrace);
2923         int ret;
2924
2925         if (dump_trace)
2926                 return 0;
2927
2928         if (!tool->ordered_events)
2929                 return -EINVAL;
2930
2931         ret = intel_pt_update_queues(pt);
2932         if (ret < 0)
2933                 return ret;
2934
2935         if (pt->timeless_decoding)
2936                 return intel_pt_process_timeless_queues(pt, -1,
2937                                                         MAX_TIMESTAMP - 1);
2938
2939         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2940 }
2941
2942 static void intel_pt_free_events(struct perf_session *session)
2943 {
2944         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2945                                            auxtrace);
2946         struct auxtrace_queues *queues = &pt->queues;
2947         unsigned int i;
2948
2949         for (i = 0; i < queues->nr_queues; i++) {
2950                 intel_pt_free_queue(queues->queue_array[i].priv);
2951                 queues->queue_array[i].priv = NULL;
2952         }
2953         intel_pt_log_disable();
2954         auxtrace_queues__free(queues);
2955 }
2956
2957 static void intel_pt_free(struct perf_session *session)
2958 {
2959         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2960                                            auxtrace);
2961
2962         auxtrace_heap__free(&pt->heap);
2963         intel_pt_free_events(session);
2964         session->auxtrace = NULL;
2965         thread__put(pt->unknown_thread);
2966         addr_filters__exit(&pt->filts);
2967         zfree(&pt->chain);
2968         zfree(&pt->filter);
2969         zfree(&pt->time_ranges);
2970         free(pt);
2971 }
2972
2973 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
2974                                        struct evsel *evsel)
2975 {
2976         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2977                                            auxtrace);
2978
2979         return evsel->core.attr.type == pt->pmu_type;
2980 }
2981
2982 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2983                                            union perf_event *event,
2984                                            struct perf_tool *tool __maybe_unused)
2985 {
2986         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2987                                            auxtrace);
2988
2989         if (!pt->data_queued) {
2990                 struct auxtrace_buffer *buffer;
2991                 off_t data_offset;
2992                 int fd = perf_data__fd(session->data);
2993                 int err;
2994
2995                 if (perf_data__is_pipe(session->data)) {
2996                         data_offset = 0;
2997                 } else {
2998                         data_offset = lseek(fd, 0, SEEK_CUR);
2999                         if (data_offset == -1)
3000                                 return -errno;
3001                 }
3002
3003                 err = auxtrace_queues__add_event(&pt->queues, session, event,
3004                                                  data_offset, &buffer);
3005                 if (err)
3006                         return err;
3007
3008                 /* Dump here now we have copied a piped trace out of the pipe */
3009                 if (dump_trace) {
3010                         if (auxtrace_buffer__get_data(buffer, fd)) {
3011                                 intel_pt_dump_event(pt, buffer->data,
3012                                                     buffer->size);
3013                                 auxtrace_buffer__put_data(buffer);
3014                         }
3015                 }
3016         }
3017
3018         return 0;
3019 }
3020
3021 static int intel_pt_queue_data(struct perf_session *session,
3022                                struct perf_sample *sample,
3023                                union perf_event *event, u64 data_offset)
3024 {
3025         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3026                                            auxtrace);
3027         u64 timestamp;
3028
3029         if (event) {
3030                 return auxtrace_queues__add_event(&pt->queues, session, event,
3031                                                   data_offset, NULL);
3032         }
3033
3034         if (sample->time && sample->time != (u64)-1)
3035                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3036         else
3037                 timestamp = 0;
3038
3039         return auxtrace_queues__add_sample(&pt->queues, session, sample,
3040                                            data_offset, timestamp);
3041 }
3042
3043 struct intel_pt_synth {
3044         struct perf_tool dummy_tool;
3045         struct perf_session *session;
3046 };
3047
3048 static int intel_pt_event_synth(struct perf_tool *tool,
3049                                 union perf_event *event,
3050                                 struct perf_sample *sample __maybe_unused,
3051                                 struct machine *machine __maybe_unused)
3052 {
3053         struct intel_pt_synth *intel_pt_synth =
3054                         container_of(tool, struct intel_pt_synth, dummy_tool);
3055
3056         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3057                                                  NULL);
3058 }
3059
3060 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3061                                 struct perf_event_attr *attr, u64 id)
3062 {
3063         struct intel_pt_synth intel_pt_synth;
3064         int err;
3065
3066         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3067                  name, id, (u64)attr->sample_type);
3068
3069         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3070         intel_pt_synth.session = session;
3071
3072         err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3073                                           &id, intel_pt_event_synth);
3074         if (err)
3075                 pr_err("%s: failed to synthesize '%s' event type\n",
3076                        __func__, name);
3077
3078         return err;
3079 }
3080
3081 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3082                                     const char *name)
3083 {
3084         struct evsel *evsel;
3085
3086         evlist__for_each_entry(evlist, evsel) {
3087                 if (evsel->core.id && evsel->core.id[0] == id) {
3088                         if (evsel->name)
3089                                 zfree(&evsel->name);
3090                         evsel->name = strdup(name);
3091                         break;
3092                 }
3093         }
3094 }
3095
3096 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3097                                          struct evlist *evlist)
3098 {
3099         struct evsel *evsel;
3100
3101         evlist__for_each_entry(evlist, evsel) {
3102                 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3103                         return evsel;
3104         }
3105
3106         return NULL;
3107 }
3108
3109 static int intel_pt_synth_events(struct intel_pt *pt,
3110                                  struct perf_session *session)
3111 {
3112         struct evlist *evlist = session->evlist;
3113         struct evsel *evsel = intel_pt_evsel(pt, evlist);
3114         struct perf_event_attr attr;
3115         u64 id;
3116         int err;
3117
3118         if (!evsel) {
3119                 pr_debug("There are no selected events with Intel Processor Trace data\n");
3120                 return 0;
3121         }
3122
3123         memset(&attr, 0, sizeof(struct perf_event_attr));
3124         attr.size = sizeof(struct perf_event_attr);
3125         attr.type = PERF_TYPE_HARDWARE;
3126         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3127         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3128                             PERF_SAMPLE_PERIOD;
3129         if (pt->timeless_decoding)
3130                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3131         else
3132                 attr.sample_type |= PERF_SAMPLE_TIME;
3133         if (!pt->per_cpu_mmaps)
3134                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3135         attr.exclude_user = evsel->core.attr.exclude_user;
3136         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3137         attr.exclude_hv = evsel->core.attr.exclude_hv;
3138         attr.exclude_host = evsel->core.attr.exclude_host;
3139         attr.exclude_guest = evsel->core.attr.exclude_guest;
3140         attr.sample_id_all = evsel->core.attr.sample_id_all;
3141         attr.read_format = evsel->core.attr.read_format;
3142
3143         id = evsel->core.id[0] + 1000000000;
3144         if (!id)
3145                 id = 1;
3146
3147         if (pt->synth_opts.branches) {
3148                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3149                 attr.sample_period = 1;
3150                 attr.sample_type |= PERF_SAMPLE_ADDR;
3151                 err = intel_pt_synth_event(session, "branches", &attr, id);
3152                 if (err)
3153                         return err;
3154                 pt->sample_branches = true;
3155                 pt->branches_sample_type = attr.sample_type;
3156                 pt->branches_id = id;
3157                 id += 1;
3158                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3159         }
3160
3161         if (pt->synth_opts.callchain)
3162                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3163         if (pt->synth_opts.last_branch) {
3164                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3165                 /*
3166                  * We don't use the hardware index, but the sample generation
3167                  * code uses the new format branch_stack with this field,
3168                  * so the event attributes must indicate that it's present.
3169                  */
3170                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3171         }
3172
3173         if (pt->synth_opts.instructions) {
3174                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3175                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3176                         attr.sample_period =
3177                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3178                 else
3179                         attr.sample_period = pt->synth_opts.period;
3180                 err = intel_pt_synth_event(session, "instructions", &attr, id);
3181                 if (err)
3182                         return err;
3183                 pt->sample_instructions = true;
3184                 pt->instructions_sample_type = attr.sample_type;
3185                 pt->instructions_id = id;
3186                 id += 1;
3187         }
3188
3189         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3190         attr.sample_period = 1;
3191
3192         if (pt->synth_opts.transactions) {
3193                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3194                 err = intel_pt_synth_event(session, "transactions", &attr, id);
3195                 if (err)
3196                         return err;
3197                 pt->sample_transactions = true;
3198                 pt->transactions_sample_type = attr.sample_type;
3199                 pt->transactions_id = id;
3200                 intel_pt_set_event_name(evlist, id, "transactions");
3201                 id += 1;
3202         }
3203
3204         attr.type = PERF_TYPE_SYNTH;
3205         attr.sample_type |= PERF_SAMPLE_RAW;
3206
3207         if (pt->synth_opts.ptwrites) {
3208                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3209                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3210                 if (err)
3211                         return err;
3212                 pt->sample_ptwrites = true;
3213                 pt->ptwrites_sample_type = attr.sample_type;
3214                 pt->ptwrites_id = id;
3215                 intel_pt_set_event_name(evlist, id, "ptwrite");
3216                 id += 1;
3217         }
3218
3219         if (pt->synth_opts.pwr_events) {
3220                 pt->sample_pwr_events = true;
3221                 pt->pwr_events_sample_type = attr.sample_type;
3222
3223                 attr.config = PERF_SYNTH_INTEL_CBR;
3224                 err = intel_pt_synth_event(session, "cbr", &attr, id);
3225                 if (err)
3226                         return err;
3227                 pt->cbr_id = id;
3228                 intel_pt_set_event_name(evlist, id, "cbr");
3229                 id += 1;
3230
3231                 attr.config = PERF_SYNTH_INTEL_PSB;
3232                 err = intel_pt_synth_event(session, "psb", &attr, id);
3233                 if (err)
3234                         return err;
3235                 pt->psb_id = id;
3236                 intel_pt_set_event_name(evlist, id, "psb");
3237                 id += 1;
3238         }
3239
3240         if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3241                 attr.config = PERF_SYNTH_INTEL_MWAIT;
3242                 err = intel_pt_synth_event(session, "mwait", &attr, id);
3243                 if (err)
3244                         return err;
3245                 pt->mwait_id = id;
3246                 intel_pt_set_event_name(evlist, id, "mwait");
3247                 id += 1;
3248
3249                 attr.config = PERF_SYNTH_INTEL_PWRE;
3250                 err = intel_pt_synth_event(session, "pwre", &attr, id);
3251                 if (err)
3252                         return err;
3253                 pt->pwre_id = id;
3254                 intel_pt_set_event_name(evlist, id, "pwre");
3255                 id += 1;
3256
3257                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3258                 err = intel_pt_synth_event(session, "exstop", &attr, id);
3259                 if (err)
3260                         return err;
3261                 pt->exstop_id = id;
3262                 intel_pt_set_event_name(evlist, id, "exstop");
3263                 id += 1;
3264
3265                 attr.config = PERF_SYNTH_INTEL_PWRX;
3266                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3267                 if (err)
3268                         return err;
3269                 pt->pwrx_id = id;
3270                 intel_pt_set_event_name(evlist, id, "pwrx");
3271                 id += 1;
3272         }
3273
3274         return 0;
3275 }
3276
3277 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3278 {
3279         struct evsel *evsel;
3280
3281         if (!pt->synth_opts.other_events)
3282                 return;
3283
3284         evlist__for_each_entry(pt->session->evlist, evsel) {
3285                 if (evsel->core.attr.aux_output && evsel->core.id) {
3286                         pt->sample_pebs = true;
3287                         pt->pebs_evsel = evsel;
3288                         return;
3289                 }
3290         }
3291 }
3292
3293 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3294 {
3295         struct evsel *evsel;
3296
3297         evlist__for_each_entry_reverse(evlist, evsel) {
3298                 const char *name = evsel__name(evsel);
3299
3300                 if (!strcmp(name, "sched:sched_switch"))
3301                         return evsel;
3302         }
3303
3304         return NULL;
3305 }
3306
3307 static bool intel_pt_find_switch(struct evlist *evlist)
3308 {
3309         struct evsel *evsel;
3310
3311         evlist__for_each_entry(evlist, evsel) {
3312                 if (evsel->core.attr.context_switch)
3313                         return true;
3314         }
3315
3316         return false;
3317 }
3318
3319 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3320 {
3321         struct intel_pt *pt = data;
3322
3323         if (!strcmp(var, "intel-pt.mispred-all"))
3324                 pt->mispred_all = perf_config_bool(var, value);
3325
3326         return 0;
3327 }
3328
3329 /* Find least TSC which converts to ns or later */
3330 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3331 {
3332         u64 tsc, tm;
3333
3334         tsc = perf_time_to_tsc(ns, &pt->tc);
3335
3336         while (1) {
3337                 tm = tsc_to_perf_time(tsc, &pt->tc);
3338                 if (tm < ns)
3339                         break;
3340                 tsc -= 1;
3341         }
3342
3343         while (tm < ns)
3344                 tm = tsc_to_perf_time(++tsc, &pt->tc);
3345
3346         return tsc;
3347 }
3348
3349 /* Find greatest TSC which converts to ns or earlier */
3350 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3351 {
3352         u64 tsc, tm;
3353
3354         tsc = perf_time_to_tsc(ns, &pt->tc);
3355
3356         while (1) {
3357                 tm = tsc_to_perf_time(tsc, &pt->tc);
3358                 if (tm > ns)
3359                         break;
3360                 tsc += 1;
3361         }
3362
3363         while (tm > ns)
3364                 tm = tsc_to_perf_time(--tsc, &pt->tc);
3365
3366         return tsc;
3367 }
3368
3369 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3370                                       struct itrace_synth_opts *opts)
3371 {
3372         struct perf_time_interval *p = opts->ptime_range;
3373         int n = opts->range_num;
3374         int i;
3375
3376         if (!n || !p || pt->timeless_decoding)
3377                 return 0;
3378
3379         pt->time_ranges = calloc(n, sizeof(struct range));
3380         if (!pt->time_ranges)
3381                 return -ENOMEM;
3382
3383         pt->range_cnt = n;
3384
3385         intel_pt_log("%s: %u range(s)\n", __func__, n);
3386
3387         for (i = 0; i < n; i++) {
3388                 struct range *r = &pt->time_ranges[i];
3389                 u64 ts = p[i].start;
3390                 u64 te = p[i].end;
3391
3392                 /*
3393                  * Take care to ensure the TSC range matches the perf-time range
3394                  * when converted back to perf-time.
3395                  */
3396                 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3397                 r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3398
3399                 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3400                              i, ts, te);
3401                 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3402                              i, r->start, r->end);
3403         }
3404
3405         return 0;
3406 }
3407
3408 static const char * const intel_pt_info_fmts[] = {
3409         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
3410         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
3411         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
3412         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
3413         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
3414         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
3415         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
3416         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
3417         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
3418         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
3419         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
3420         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
3421         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
3422         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
3423         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
3424         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
3425 };
3426
3427 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3428 {
3429         int i;
3430
3431         if (!dump_trace)
3432                 return;
3433
3434         for (i = start; i <= finish; i++)
3435                 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3436 }
3437
3438 static void intel_pt_print_info_str(const char *name, const char *str)
3439 {
3440         if (!dump_trace)
3441                 return;
3442
3443         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3444 }
3445
3446 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3447 {
3448         return auxtrace_info->header.size >=
3449                 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3450 }
3451
3452 int intel_pt_process_auxtrace_info(union perf_event *event,
3453                                    struct perf_session *session)
3454 {
3455         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3456         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3457         struct intel_pt *pt;
3458         void *info_end;
3459         __u64 *info;
3460         int err;
3461
3462         if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3463                                         min_sz)
3464                 return -EINVAL;
3465
3466         pt = zalloc(sizeof(struct intel_pt));
3467         if (!pt)
3468                 return -ENOMEM;
3469
3470         addr_filters__init(&pt->filts);
3471
3472         err = perf_config(intel_pt_perf_config, pt);
3473         if (err)
3474                 goto err_free;
3475
3476         err = auxtrace_queues__init(&pt->queues);
3477         if (err)
3478                 goto err_free;
3479
3480         intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3481
3482         pt->session = session;
3483         pt->machine = &session->machines.host; /* No kvm support */
3484         pt->auxtrace_type = auxtrace_info->type;
3485         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3486         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3487         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3488         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3489         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3490         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3491         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3492         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3493         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3494         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3495         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3496                             INTEL_PT_PER_CPU_MMAPS);
3497
3498         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3499                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3500                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3501                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3502                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3503                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3504                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3505                                     INTEL_PT_CYC_BIT);
3506         }
3507
3508         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3509                 pt->max_non_turbo_ratio =
3510                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3511                 intel_pt_print_info(&auxtrace_info->priv[0],
3512                                     INTEL_PT_MAX_NONTURBO_RATIO,
3513                                     INTEL_PT_MAX_NONTURBO_RATIO);
3514         }
3515
3516         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3517         info_end = (void *)info + auxtrace_info->header.size;
3518
3519         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3520                 size_t len;
3521
3522                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3523                 intel_pt_print_info(&auxtrace_info->priv[0],
3524                                     INTEL_PT_FILTER_STR_LEN,
3525                                     INTEL_PT_FILTER_STR_LEN);
3526                 if (len) {
3527                         const char *filter = (const char *)info;
3528
3529                         len = roundup(len + 1, 8);
3530                         info += len >> 3;
3531                         if ((void *)info > info_end) {
3532                                 pr_err("%s: bad filter string length\n", __func__);
3533                                 err = -EINVAL;
3534                                 goto err_free_queues;
3535                         }
3536                         pt->filter = memdup(filter, len);
3537                         if (!pt->filter) {
3538                                 err = -ENOMEM;
3539                                 goto err_free_queues;
3540                         }
3541                         if (session->header.needs_swap)
3542                                 mem_bswap_64(pt->filter, len);
3543                         if (pt->filter[len - 1]) {
3544                                 pr_err("%s: filter string not null terminated\n", __func__);
3545                                 err = -EINVAL;
3546                                 goto err_free_queues;
3547                         }
3548                         err = addr_filters__parse_bare_filter(&pt->filts,
3549                                                               filter);
3550                         if (err)
3551                                 goto err_free_queues;
3552                 }
3553                 intel_pt_print_info_str("Filter string", pt->filter);
3554         }
3555
3556         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3557         if (pt->timeless_decoding && !pt->tc.time_mult)
3558                 pt->tc.time_mult = 1;
3559         pt->have_tsc = intel_pt_have_tsc(pt);
3560         pt->sampling_mode = intel_pt_sampling_mode(pt);
3561         pt->est_tsc = !pt->timeless_decoding;
3562
3563         pt->unknown_thread = thread__new(999999999, 999999999);
3564         if (!pt->unknown_thread) {
3565                 err = -ENOMEM;
3566                 goto err_free_queues;
3567         }
3568
3569         /*
3570          * Since this thread will not be kept in any rbtree not in a
3571          * list, initialize its list node so that at thread__put() the
3572          * current thread lifetime assumption is kept and we don't segfault
3573          * at list_del_init().
3574          */
3575         INIT_LIST_HEAD(&pt->unknown_thread->node);
3576
3577         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3578         if (err)
3579                 goto err_delete_thread;
3580         if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3581                 err = -ENOMEM;
3582                 goto err_delete_thread;
3583         }
3584
3585         pt->auxtrace.process_event = intel_pt_process_event;
3586         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3587         pt->auxtrace.queue_data = intel_pt_queue_data;
3588         pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3589         pt->auxtrace.flush_events = intel_pt_flush;
3590         pt->auxtrace.free_events = intel_pt_free_events;
3591         pt->auxtrace.free = intel_pt_free;
3592         pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3593         session->auxtrace = &pt->auxtrace;
3594
3595         if (dump_trace)
3596                 return 0;
3597
3598         if (pt->have_sched_switch == 1) {
3599                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3600                 if (!pt->switch_evsel) {
3601                         pr_err("%s: missing sched_switch event\n", __func__);
3602                         err = -EINVAL;
3603                         goto err_delete_thread;
3604                 }
3605         } else if (pt->have_sched_switch == 2 &&
3606                    !intel_pt_find_switch(session->evlist)) {
3607                 pr_err("%s: missing context_switch attribute flag\n", __func__);
3608                 err = -EINVAL;
3609                 goto err_delete_thread;
3610         }
3611
3612         if (session->itrace_synth_opts->set) {
3613                 pt->synth_opts = *session->itrace_synth_opts;
3614         } else {
3615                 itrace_synth_opts__set_default(&pt->synth_opts,
3616                                 session->itrace_synth_opts->default_no_sample);
3617                 if (!session->itrace_synth_opts->default_no_sample &&
3618                     !session->itrace_synth_opts->inject) {
3619                         pt->synth_opts.branches = false;
3620                         pt->synth_opts.callchain = true;
3621                         pt->synth_opts.add_callchain = true;
3622                 }
3623                 pt->synth_opts.thread_stack =
3624                                 session->itrace_synth_opts->thread_stack;
3625         }
3626
3627         if (pt->synth_opts.log)
3628                 intel_pt_log_enable();
3629
3630         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3631         if (pt->tc.time_mult) {
3632                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3633
3634                 if (!pt->max_non_turbo_ratio)
3635                         pt->max_non_turbo_ratio =
3636                                         (tsc_freq + 50000000) / 100000000;
3637                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3638                 intel_pt_log("Maximum non-turbo ratio %u\n",
3639                              pt->max_non_turbo_ratio);
3640                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3641         }
3642
3643         err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3644         if (err)
3645                 goto err_delete_thread;
3646
3647         if (pt->synth_opts.calls)
3648                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3649                                        PERF_IP_FLAG_TRACE_END;
3650         if (pt->synth_opts.returns)
3651                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
3652                                        PERF_IP_FLAG_TRACE_BEGIN;
3653
3654         if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3655             !symbol_conf.use_callchain) {
3656                 symbol_conf.use_callchain = true;
3657                 if (callchain_register_param(&callchain_param) < 0) {
3658                         symbol_conf.use_callchain = false;
3659                         pt->synth_opts.callchain = false;
3660                         pt->synth_opts.add_callchain = false;
3661                 }
3662         }
3663
3664         if (pt->synth_opts.add_callchain) {
3665                 err = intel_pt_callchain_init(pt);
3666                 if (err)
3667                         goto err_delete_thread;
3668         }
3669
3670         if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3671                 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3672                 pt->br_stack_sz_plus = pt->br_stack_sz;
3673         }
3674
3675         if (pt->synth_opts.add_last_branch) {
3676                 err = intel_pt_br_stack_init(pt);
3677                 if (err)
3678                         goto err_delete_thread;
3679                 /*
3680                  * Additional branch stack size to cater for tracing from the
3681                  * actual sample ip to where the sample time is recorded.
3682                  * Measured at about 200 branches, but generously set to 1024.
3683                  * If kernel space is not being traced, then add just 1 for the
3684                  * branch to kernel space.
3685                  */
3686                 if (intel_pt_tracing_kernel(pt))
3687                         pt->br_stack_sz_plus += 1024;
3688                 else
3689                         pt->br_stack_sz_plus += 1;
3690         }
3691
3692         pt->use_thread_stack = pt->synth_opts.callchain ||
3693                                pt->synth_opts.add_callchain ||
3694                                pt->synth_opts.thread_stack ||
3695                                pt->synth_opts.last_branch ||
3696                                pt->synth_opts.add_last_branch;
3697
3698         pt->callstack = pt->synth_opts.callchain ||
3699                         pt->synth_opts.add_callchain ||
3700                         pt->synth_opts.thread_stack;
3701
3702         err = intel_pt_synth_events(pt, session);
3703         if (err)
3704                 goto err_delete_thread;
3705
3706         intel_pt_setup_pebs_events(pt);
3707
3708         if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3709                 err = auxtrace_queue_data(session, true, true);
3710         else
3711                 err = auxtrace_queues__process_index(&pt->queues, session);
3712         if (err)
3713                 goto err_delete_thread;
3714
3715         if (pt->queues.populated)
3716                 pt->data_queued = true;
3717
3718         if (pt->timeless_decoding)
3719                 pr_debug2("Intel PT decoding without timestamps\n");
3720
3721         return 0;
3722
3723 err_delete_thread:
3724         zfree(&pt->chain);
3725         thread__zput(pt->unknown_thread);
3726 err_free_queues:
3727         intel_pt_log_disable();
3728         auxtrace_queues__free(&pt->queues);
3729         session->auxtrace = NULL;
3730 err_free:
3731         addr_filters__exit(&pt->filts);
3732         zfree(&pt->filter);
3733         zfree(&pt->time_ranges);
3734         free(pt);
3735         return err;
3736 }