perf evlist: Use the right prefix for 'struct evlist' sample id lookup methods
[linux-2.6-microblaze.git] / tools / perf / util / intel-pt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46
47 #define MAX_TIMESTAMP (~0ULL)
48
49 struct range {
50         u64 start;
51         u64 end;
52 };
53
54 struct intel_pt {
55         struct auxtrace auxtrace;
56         struct auxtrace_queues queues;
57         struct auxtrace_heap heap;
58         u32 auxtrace_type;
59         struct perf_session *session;
60         struct machine *machine;
61         struct evsel *switch_evsel;
62         struct thread *unknown_thread;
63         bool timeless_decoding;
64         bool sampling_mode;
65         bool snapshot_mode;
66         bool per_cpu_mmaps;
67         bool have_tsc;
68         bool data_queued;
69         bool est_tsc;
70         bool sync_switch;
71         bool mispred_all;
72         bool use_thread_stack;
73         bool callstack;
74         unsigned int br_stack_sz;
75         unsigned int br_stack_sz_plus;
76         int have_sched_switch;
77         u32 pmu_type;
78         u64 kernel_start;
79         u64 switch_ip;
80         u64 ptss_ip;
81
82         struct perf_tsc_conversion tc;
83         bool cap_user_time_zero;
84
85         struct itrace_synth_opts synth_opts;
86
87         bool sample_instructions;
88         u64 instructions_sample_type;
89         u64 instructions_id;
90
91         bool sample_branches;
92         u32 branches_filter;
93         u64 branches_sample_type;
94         u64 branches_id;
95
96         bool sample_transactions;
97         u64 transactions_sample_type;
98         u64 transactions_id;
99
100         bool sample_ptwrites;
101         u64 ptwrites_sample_type;
102         u64 ptwrites_id;
103
104         bool sample_pwr_events;
105         u64 pwr_events_sample_type;
106         u64 mwait_id;
107         u64 pwre_id;
108         u64 exstop_id;
109         u64 pwrx_id;
110         u64 cbr_id;
111
112         bool sample_pebs;
113         struct evsel *pebs_evsel;
114
115         u64 tsc_bit;
116         u64 mtc_bit;
117         u64 mtc_freq_bits;
118         u32 tsc_ctc_ratio_n;
119         u32 tsc_ctc_ratio_d;
120         u64 cyc_bit;
121         u64 noretcomp_bit;
122         unsigned max_non_turbo_ratio;
123         unsigned cbr2khz;
124
125         unsigned long num_events;
126
127         char *filter;
128         struct addr_filters filts;
129
130         struct range *time_ranges;
131         unsigned int range_cnt;
132
133         struct ip_callchain *chain;
134         struct branch_stack *br_stack;
135 };
136
137 enum switch_state {
138         INTEL_PT_SS_NOT_TRACING,
139         INTEL_PT_SS_UNKNOWN,
140         INTEL_PT_SS_TRACING,
141         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
142         INTEL_PT_SS_EXPECTING_SWITCH_IP,
143 };
144
145 struct intel_pt_queue {
146         struct intel_pt *pt;
147         unsigned int queue_nr;
148         struct auxtrace_buffer *buffer;
149         struct auxtrace_buffer *old_buffer;
150         void *decoder;
151         const struct intel_pt_state *state;
152         struct ip_callchain *chain;
153         struct branch_stack *last_branch;
154         union perf_event *event_buf;
155         bool on_heap;
156         bool stop;
157         bool step_through_buffers;
158         bool use_buffer_pid_tid;
159         bool sync_switch;
160         pid_t pid, tid;
161         int cpu;
162         int switch_state;
163         pid_t next_tid;
164         struct thread *thread;
165         bool exclude_kernel;
166         bool have_sample;
167         u64 time;
168         u64 timestamp;
169         u64 sel_timestamp;
170         bool sel_start;
171         unsigned int sel_idx;
172         u32 flags;
173         u16 insn_len;
174         u64 last_insn_cnt;
175         u64 ipc_insn_cnt;
176         u64 ipc_cyc_cnt;
177         u64 last_in_insn_cnt;
178         u64 last_in_cyc_cnt;
179         u64 last_br_insn_cnt;
180         u64 last_br_cyc_cnt;
181         unsigned int cbr_seen;
182         char insn[INTEL_PT_INSN_BUF_SZ];
183 };
184
185 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
186                           unsigned char *buf, size_t len)
187 {
188         struct intel_pt_pkt packet;
189         size_t pos = 0;
190         int ret, pkt_len, i;
191         char desc[INTEL_PT_PKT_DESC_MAX];
192         const char *color = PERF_COLOR_BLUE;
193         enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
194
195         color_fprintf(stdout, color,
196                       ". ... Intel Processor Trace data: size %zu bytes\n",
197                       len);
198
199         while (len) {
200                 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
201                 if (ret > 0)
202                         pkt_len = ret;
203                 else
204                         pkt_len = 1;
205                 printf(".");
206                 color_fprintf(stdout, color, "  %08x: ", pos);
207                 for (i = 0; i < pkt_len; i++)
208                         color_fprintf(stdout, color, " %02x", buf[i]);
209                 for (; i < 16; i++)
210                         color_fprintf(stdout, color, "   ");
211                 if (ret > 0) {
212                         ret = intel_pt_pkt_desc(&packet, desc,
213                                                 INTEL_PT_PKT_DESC_MAX);
214                         if (ret > 0)
215                                 color_fprintf(stdout, color, " %s\n", desc);
216                 } else {
217                         color_fprintf(stdout, color, " Bad packet!\n");
218                 }
219                 pos += pkt_len;
220                 buf += pkt_len;
221                 len -= pkt_len;
222         }
223 }
224
225 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
226                                 size_t len)
227 {
228         printf(".\n");
229         intel_pt_dump(pt, buf, len);
230 }
231
232 static void intel_pt_log_event(union perf_event *event)
233 {
234         FILE *f = intel_pt_log_fp();
235
236         if (!intel_pt_enable_logging || !f)
237                 return;
238
239         perf_event__fprintf(event, NULL, f);
240 }
241
242 static void intel_pt_dump_sample(struct perf_session *session,
243                                  struct perf_sample *sample)
244 {
245         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
246                                            auxtrace);
247
248         printf("\n");
249         intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
250 }
251
252 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
253 {
254         struct perf_time_interval *range = pt->synth_opts.ptime_range;
255         int n = pt->synth_opts.range_num;
256
257         if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
258                 return true;
259
260         if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
261                 return false;
262
263         /* perf_time__ranges_skip_sample does not work if time is zero */
264         if (!tm)
265                 tm = 1;
266
267         return !n || !perf_time__ranges_skip_sample(range, n, tm);
268 }
269
270 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
271                                    struct auxtrace_buffer *b)
272 {
273         bool consecutive = false;
274         void *start;
275
276         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
277                                       pt->have_tsc, &consecutive);
278         if (!start)
279                 return -EINVAL;
280         b->use_size = b->data + b->size - start;
281         b->use_data = start;
282         if (b->use_size && consecutive)
283                 b->consecutive = true;
284         return 0;
285 }
286
287 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
288                                struct auxtrace_buffer *buffer,
289                                struct auxtrace_buffer *old_buffer,
290                                struct intel_pt_buffer *b)
291 {
292         bool might_overlap;
293
294         if (!buffer->data) {
295                 int fd = perf_data__fd(ptq->pt->session->data);
296
297                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
298                 if (!buffer->data)
299                         return -ENOMEM;
300         }
301
302         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
303         if (might_overlap && !buffer->consecutive && old_buffer &&
304             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
305                 return -ENOMEM;
306
307         if (buffer->use_data) {
308                 b->len = buffer->use_size;
309                 b->buf = buffer->use_data;
310         } else {
311                 b->len = buffer->size;
312                 b->buf = buffer->data;
313         }
314         b->ref_timestamp = buffer->reference;
315
316         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
317                 b->consecutive = false;
318                 b->trace_nr = buffer->buffer_nr + 1;
319         } else {
320                 b->consecutive = true;
321         }
322
323         return 0;
324 }
325
326 /* Do not drop buffers with references - refer intel_pt_get_trace() */
327 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
328                                            struct auxtrace_buffer *buffer)
329 {
330         if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
331                 return;
332
333         auxtrace_buffer__drop_data(buffer);
334 }
335
336 /* Must be serialized with respect to intel_pt_get_trace() */
337 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
338                               void *cb_data)
339 {
340         struct intel_pt_queue *ptq = data;
341         struct auxtrace_buffer *buffer = ptq->buffer;
342         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
343         struct auxtrace_queue *queue;
344         int err = 0;
345
346         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
347
348         while (1) {
349                 struct intel_pt_buffer b = { .len = 0 };
350
351                 buffer = auxtrace_buffer__next(queue, buffer);
352                 if (!buffer)
353                         break;
354
355                 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
356                 if (err)
357                         break;
358
359                 if (b.len) {
360                         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
361                         old_buffer = buffer;
362                 } else {
363                         intel_pt_lookahead_drop_buffer(ptq, buffer);
364                         continue;
365                 }
366
367                 err = cb(&b, cb_data);
368                 if (err)
369                         break;
370         }
371
372         if (buffer != old_buffer)
373                 intel_pt_lookahead_drop_buffer(ptq, buffer);
374         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
375
376         return err;
377 }
378
379 /*
380  * This function assumes data is processed sequentially only.
381  * Must be serialized with respect to intel_pt_lookahead()
382  */
383 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
384 {
385         struct intel_pt_queue *ptq = data;
386         struct auxtrace_buffer *buffer = ptq->buffer;
387         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
388         struct auxtrace_queue *queue;
389         int err;
390
391         if (ptq->stop) {
392                 b->len = 0;
393                 return 0;
394         }
395
396         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
397
398         buffer = auxtrace_buffer__next(queue, buffer);
399         if (!buffer) {
400                 if (old_buffer)
401                         auxtrace_buffer__drop_data(old_buffer);
402                 b->len = 0;
403                 return 0;
404         }
405
406         ptq->buffer = buffer;
407
408         err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
409         if (err)
410                 return err;
411
412         if (ptq->step_through_buffers)
413                 ptq->stop = true;
414
415         if (b->len) {
416                 if (old_buffer)
417                         auxtrace_buffer__drop_data(old_buffer);
418                 ptq->old_buffer = buffer;
419         } else {
420                 auxtrace_buffer__drop_data(buffer);
421                 return intel_pt_get_trace(b, data);
422         }
423
424         return 0;
425 }
426
427 struct intel_pt_cache_entry {
428         struct auxtrace_cache_entry     entry;
429         u64                             insn_cnt;
430         u64                             byte_cnt;
431         enum intel_pt_insn_op           op;
432         enum intel_pt_insn_branch       branch;
433         int                             length;
434         int32_t                         rel;
435         char                            insn[INTEL_PT_INSN_BUF_SZ];
436 };
437
438 static int intel_pt_config_div(const char *var, const char *value, void *data)
439 {
440         int *d = data;
441         long val;
442
443         if (!strcmp(var, "intel-pt.cache-divisor")) {
444                 val = strtol(value, NULL, 0);
445                 if (val > 0 && val <= INT_MAX)
446                         *d = val;
447         }
448
449         return 0;
450 }
451
452 static int intel_pt_cache_divisor(void)
453 {
454         static int d;
455
456         if (d)
457                 return d;
458
459         perf_config(intel_pt_config_div, &d);
460
461         if (!d)
462                 d = 64;
463
464         return d;
465 }
466
467 static unsigned int intel_pt_cache_size(struct dso *dso,
468                                         struct machine *machine)
469 {
470         off_t size;
471
472         size = dso__data_size(dso, machine);
473         size /= intel_pt_cache_divisor();
474         if (size < 1000)
475                 return 10;
476         if (size > (1 << 21))
477                 return 21;
478         return 32 - __builtin_clz(size);
479 }
480
481 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
482                                              struct machine *machine)
483 {
484         struct auxtrace_cache *c;
485         unsigned int bits;
486
487         if (dso->auxtrace_cache)
488                 return dso->auxtrace_cache;
489
490         bits = intel_pt_cache_size(dso, machine);
491
492         /* Ignoring cache creation failure */
493         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
494
495         dso->auxtrace_cache = c;
496
497         return c;
498 }
499
500 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
501                               u64 offset, u64 insn_cnt, u64 byte_cnt,
502                               struct intel_pt_insn *intel_pt_insn)
503 {
504         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
505         struct intel_pt_cache_entry *e;
506         int err;
507
508         if (!c)
509                 return -ENOMEM;
510
511         e = auxtrace_cache__alloc_entry(c);
512         if (!e)
513                 return -ENOMEM;
514
515         e->insn_cnt = insn_cnt;
516         e->byte_cnt = byte_cnt;
517         e->op = intel_pt_insn->op;
518         e->branch = intel_pt_insn->branch;
519         e->length = intel_pt_insn->length;
520         e->rel = intel_pt_insn->rel;
521         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
522
523         err = auxtrace_cache__add(c, offset, &e->entry);
524         if (err)
525                 auxtrace_cache__free_entry(c, e);
526
527         return err;
528 }
529
530 static struct intel_pt_cache_entry *
531 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
532 {
533         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
534
535         if (!c)
536                 return NULL;
537
538         return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
539 }
540
541 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
542                                       u64 offset)
543 {
544         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
545
546         if (!c)
547                 return;
548
549         auxtrace_cache__remove(dso->auxtrace_cache, offset);
550 }
551
552 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
553 {
554         return ip >= pt->kernel_start ?
555                PERF_RECORD_MISC_KERNEL :
556                PERF_RECORD_MISC_USER;
557 }
558
559 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
560                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
561                                    uint64_t to_ip, uint64_t max_insn_cnt,
562                                    void *data)
563 {
564         struct intel_pt_queue *ptq = data;
565         struct machine *machine = ptq->pt->machine;
566         struct thread *thread;
567         struct addr_location al;
568         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
569         ssize_t len;
570         int x86_64;
571         u8 cpumode;
572         u64 offset, start_offset, start_ip;
573         u64 insn_cnt = 0;
574         bool one_map = true;
575
576         intel_pt_insn->length = 0;
577
578         if (to_ip && *ip == to_ip)
579                 goto out_no_cache;
580
581         cpumode = intel_pt_cpumode(ptq->pt, *ip);
582
583         thread = ptq->thread;
584         if (!thread) {
585                 if (cpumode != PERF_RECORD_MISC_KERNEL)
586                         return -EINVAL;
587                 thread = ptq->pt->unknown_thread;
588         }
589
590         while (1) {
591                 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
592                         return -EINVAL;
593
594                 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
595                     dso__data_status_seen(al.map->dso,
596                                           DSO_DATA_STATUS_SEEN_ITRACE))
597                         return -ENOENT;
598
599                 offset = al.map->map_ip(al.map, *ip);
600
601                 if (!to_ip && one_map) {
602                         struct intel_pt_cache_entry *e;
603
604                         e = intel_pt_cache_lookup(al.map->dso, machine, offset);
605                         if (e &&
606                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
607                                 *insn_cnt_ptr = e->insn_cnt;
608                                 *ip += e->byte_cnt;
609                                 intel_pt_insn->op = e->op;
610                                 intel_pt_insn->branch = e->branch;
611                                 intel_pt_insn->length = e->length;
612                                 intel_pt_insn->rel = e->rel;
613                                 memcpy(intel_pt_insn->buf, e->insn,
614                                        INTEL_PT_INSN_BUF_SZ);
615                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
616                                 return 0;
617                         }
618                 }
619
620                 start_offset = offset;
621                 start_ip = *ip;
622
623                 /* Load maps to ensure dso->is_64_bit has been updated */
624                 map__load(al.map);
625
626                 x86_64 = al.map->dso->is_64_bit;
627
628                 while (1) {
629                         len = dso__data_read_offset(al.map->dso, machine,
630                                                     offset, buf,
631                                                     INTEL_PT_INSN_BUF_SZ);
632                         if (len <= 0)
633                                 return -EINVAL;
634
635                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
636                                 return -EINVAL;
637
638                         intel_pt_log_insn(intel_pt_insn, *ip);
639
640                         insn_cnt += 1;
641
642                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
643                                 goto out;
644
645                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
646                                 goto out_no_cache;
647
648                         *ip += intel_pt_insn->length;
649
650                         if (to_ip && *ip == to_ip)
651                                 goto out_no_cache;
652
653                         if (*ip >= al.map->end)
654                                 break;
655
656                         offset += intel_pt_insn->length;
657                 }
658                 one_map = false;
659         }
660 out:
661         *insn_cnt_ptr = insn_cnt;
662
663         if (!one_map)
664                 goto out_no_cache;
665
666         /*
667          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
668          * entries.
669          */
670         if (to_ip) {
671                 struct intel_pt_cache_entry *e;
672
673                 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
674                 if (e)
675                         return 0;
676         }
677
678         /* Ignore cache errors */
679         intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
680                            *ip - start_ip, intel_pt_insn);
681
682         return 0;
683
684 out_no_cache:
685         *insn_cnt_ptr = insn_cnt;
686         return 0;
687 }
688
689 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
690                                   uint64_t offset, const char *filename)
691 {
692         struct addr_filter *filt;
693         bool have_filter   = false;
694         bool hit_tracestop = false;
695         bool hit_filter    = false;
696
697         list_for_each_entry(filt, &pt->filts.head, list) {
698                 if (filt->start)
699                         have_filter = true;
700
701                 if ((filename && !filt->filename) ||
702                     (!filename && filt->filename) ||
703                     (filename && strcmp(filename, filt->filename)))
704                         continue;
705
706                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
707                         continue;
708
709                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
710                              ip, offset, filename ? filename : "[kernel]",
711                              filt->start ? "filter" : "stop",
712                              filt->addr, filt->size);
713
714                 if (filt->start)
715                         hit_filter = true;
716                 else
717                         hit_tracestop = true;
718         }
719
720         if (!hit_tracestop && !hit_filter)
721                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
722                              ip, offset, filename ? filename : "[kernel]");
723
724         return hit_tracestop || (have_filter && !hit_filter);
725 }
726
727 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
728 {
729         struct intel_pt_queue *ptq = data;
730         struct thread *thread;
731         struct addr_location al;
732         u8 cpumode;
733         u64 offset;
734
735         if (ip >= ptq->pt->kernel_start)
736                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
737
738         cpumode = PERF_RECORD_MISC_USER;
739
740         thread = ptq->thread;
741         if (!thread)
742                 return -EINVAL;
743
744         if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
745                 return -EINVAL;
746
747         offset = al.map->map_ip(al.map, ip);
748
749         return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
750                                      al.map->dso->long_name);
751 }
752
753 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
754 {
755         return __intel_pt_pgd_ip(ip, data) > 0;
756 }
757
758 static bool intel_pt_get_config(struct intel_pt *pt,
759                                 struct perf_event_attr *attr, u64 *config)
760 {
761         if (attr->type == pt->pmu_type) {
762                 if (config)
763                         *config = attr->config;
764                 return true;
765         }
766
767         return false;
768 }
769
770 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
771 {
772         struct evsel *evsel;
773
774         evlist__for_each_entry(pt->session->evlist, evsel) {
775                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
776                     !evsel->core.attr.exclude_kernel)
777                         return false;
778         }
779         return true;
780 }
781
782 static bool intel_pt_return_compression(struct intel_pt *pt)
783 {
784         struct evsel *evsel;
785         u64 config;
786
787         if (!pt->noretcomp_bit)
788                 return true;
789
790         evlist__for_each_entry(pt->session->evlist, evsel) {
791                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
792                     (config & pt->noretcomp_bit))
793                         return false;
794         }
795         return true;
796 }
797
798 static bool intel_pt_branch_enable(struct intel_pt *pt)
799 {
800         struct evsel *evsel;
801         u64 config;
802
803         evlist__for_each_entry(pt->session->evlist, evsel) {
804                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
805                     (config & 1) && !(config & 0x2000))
806                         return false;
807         }
808         return true;
809 }
810
811 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
812 {
813         struct evsel *evsel;
814         unsigned int shift;
815         u64 config;
816
817         if (!pt->mtc_freq_bits)
818                 return 0;
819
820         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
821                 config >>= 1;
822
823         evlist__for_each_entry(pt->session->evlist, evsel) {
824                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
825                         return (config & pt->mtc_freq_bits) >> shift;
826         }
827         return 0;
828 }
829
830 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
831 {
832         struct evsel *evsel;
833         bool timeless_decoding = true;
834         u64 config;
835
836         if (!pt->tsc_bit || !pt->cap_user_time_zero)
837                 return true;
838
839         evlist__for_each_entry(pt->session->evlist, evsel) {
840                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
841                         return true;
842                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
843                         if (config & pt->tsc_bit)
844                                 timeless_decoding = false;
845                         else
846                                 return true;
847                 }
848         }
849         return timeless_decoding;
850 }
851
852 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
853 {
854         struct evsel *evsel;
855
856         evlist__for_each_entry(pt->session->evlist, evsel) {
857                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
858                     !evsel->core.attr.exclude_kernel)
859                         return true;
860         }
861         return false;
862 }
863
864 static bool intel_pt_have_tsc(struct intel_pt *pt)
865 {
866         struct evsel *evsel;
867         bool have_tsc = false;
868         u64 config;
869
870         if (!pt->tsc_bit)
871                 return false;
872
873         evlist__for_each_entry(pt->session->evlist, evsel) {
874                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
875                         if (config & pt->tsc_bit)
876                                 have_tsc = true;
877                         else
878                                 return false;
879                 }
880         }
881         return have_tsc;
882 }
883
884 static bool intel_pt_sampling_mode(struct intel_pt *pt)
885 {
886         struct evsel *evsel;
887
888         evlist__for_each_entry(pt->session->evlist, evsel) {
889                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
890                     evsel->core.attr.aux_sample_size)
891                         return true;
892         }
893         return false;
894 }
895
896 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
897 {
898         u64 quot, rem;
899
900         quot = ns / pt->tc.time_mult;
901         rem  = ns % pt->tc.time_mult;
902         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
903                 pt->tc.time_mult;
904 }
905
906 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
907 {
908         size_t sz = sizeof(struct ip_callchain);
909
910         /* Add 1 to callchain_sz for callchain context */
911         sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
912         return zalloc(sz);
913 }
914
915 static int intel_pt_callchain_init(struct intel_pt *pt)
916 {
917         struct evsel *evsel;
918
919         evlist__for_each_entry(pt->session->evlist, evsel) {
920                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
921                         evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
922         }
923
924         pt->chain = intel_pt_alloc_chain(pt);
925         if (!pt->chain)
926                 return -ENOMEM;
927
928         return 0;
929 }
930
931 static void intel_pt_add_callchain(struct intel_pt *pt,
932                                    struct perf_sample *sample)
933 {
934         struct thread *thread = machine__findnew_thread(pt->machine,
935                                                         sample->pid,
936                                                         sample->tid);
937
938         thread_stack__sample_late(thread, sample->cpu, pt->chain,
939                                   pt->synth_opts.callchain_sz + 1, sample->ip,
940                                   pt->kernel_start);
941
942         sample->callchain = pt->chain;
943 }
944
945 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
946 {
947         size_t sz = sizeof(struct branch_stack);
948
949         sz += entry_cnt * sizeof(struct branch_entry);
950         return zalloc(sz);
951 }
952
953 static int intel_pt_br_stack_init(struct intel_pt *pt)
954 {
955         struct evsel *evsel;
956
957         evlist__for_each_entry(pt->session->evlist, evsel) {
958                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
959                         evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
960         }
961
962         pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
963         if (!pt->br_stack)
964                 return -ENOMEM;
965
966         return 0;
967 }
968
969 static void intel_pt_add_br_stack(struct intel_pt *pt,
970                                   struct perf_sample *sample)
971 {
972         struct thread *thread = machine__findnew_thread(pt->machine,
973                                                         sample->pid,
974                                                         sample->tid);
975
976         thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
977                                      pt->br_stack_sz, sample->ip,
978                                      pt->kernel_start);
979
980         sample->branch_stack = pt->br_stack;
981 }
982
983 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
984 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
985
986 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
987                                                    unsigned int queue_nr)
988 {
989         struct intel_pt_params params = { .get_trace = 0, };
990         struct perf_env *env = pt->machine->env;
991         struct intel_pt_queue *ptq;
992
993         ptq = zalloc(sizeof(struct intel_pt_queue));
994         if (!ptq)
995                 return NULL;
996
997         if (pt->synth_opts.callchain) {
998                 ptq->chain = intel_pt_alloc_chain(pt);
999                 if (!ptq->chain)
1000                         goto out_free;
1001         }
1002
1003         if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1004                 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1005
1006                 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1007                 if (!ptq->last_branch)
1008                         goto out_free;
1009         }
1010
1011         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1012         if (!ptq->event_buf)
1013                 goto out_free;
1014
1015         ptq->pt = pt;
1016         ptq->queue_nr = queue_nr;
1017         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1018         ptq->pid = -1;
1019         ptq->tid = -1;
1020         ptq->cpu = -1;
1021         ptq->next_tid = -1;
1022
1023         params.get_trace = intel_pt_get_trace;
1024         params.walk_insn = intel_pt_walk_next_insn;
1025         params.lookahead = intel_pt_lookahead;
1026         params.data = ptq;
1027         params.return_compression = intel_pt_return_compression(pt);
1028         params.branch_enable = intel_pt_branch_enable(pt);
1029         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1030         params.mtc_period = intel_pt_mtc_period(pt);
1031         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1032         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1033         params.quick = pt->synth_opts.quick;
1034
1035         if (pt->filts.cnt > 0)
1036                 params.pgd_ip = intel_pt_pgd_ip;
1037
1038         if (pt->synth_opts.instructions) {
1039                 if (pt->synth_opts.period) {
1040                         switch (pt->synth_opts.period_type) {
1041                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1042                                 params.period_type =
1043                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
1044                                 params.period = pt->synth_opts.period;
1045                                 break;
1046                         case PERF_ITRACE_PERIOD_TICKS:
1047                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1048                                 params.period = pt->synth_opts.period;
1049                                 break;
1050                         case PERF_ITRACE_PERIOD_NANOSECS:
1051                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1052                                 params.period = intel_pt_ns_to_ticks(pt,
1053                                                         pt->synth_opts.period);
1054                                 break;
1055                         default:
1056                                 break;
1057                         }
1058                 }
1059
1060                 if (!params.period) {
1061                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1062                         params.period = 1;
1063                 }
1064         }
1065
1066         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1067                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1068
1069         ptq->decoder = intel_pt_decoder_new(&params);
1070         if (!ptq->decoder)
1071                 goto out_free;
1072
1073         return ptq;
1074
1075 out_free:
1076         zfree(&ptq->event_buf);
1077         zfree(&ptq->last_branch);
1078         zfree(&ptq->chain);
1079         free(ptq);
1080         return NULL;
1081 }
1082
1083 static void intel_pt_free_queue(void *priv)
1084 {
1085         struct intel_pt_queue *ptq = priv;
1086
1087         if (!ptq)
1088                 return;
1089         thread__zput(ptq->thread);
1090         intel_pt_decoder_free(ptq->decoder);
1091         zfree(&ptq->event_buf);
1092         zfree(&ptq->last_branch);
1093         zfree(&ptq->chain);
1094         free(ptq);
1095 }
1096
1097 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1098                                      struct auxtrace_queue *queue)
1099 {
1100         struct intel_pt_queue *ptq = queue->priv;
1101
1102         if (queue->tid == -1 || pt->have_sched_switch) {
1103                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1104                 if (ptq->tid == -1)
1105                         ptq->pid = -1;
1106                 thread__zput(ptq->thread);
1107         }
1108
1109         if (!ptq->thread && ptq->tid != -1)
1110                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1111
1112         if (ptq->thread) {
1113                 ptq->pid = ptq->thread->pid_;
1114                 if (queue->cpu == -1)
1115                         ptq->cpu = ptq->thread->cpu;
1116         }
1117 }
1118
1119 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1120 {
1121         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1122                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1123         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1124                 if (ptq->state->to_ip)
1125                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1126                                      PERF_IP_FLAG_ASYNC |
1127                                      PERF_IP_FLAG_INTERRUPT;
1128                 else
1129                         ptq->flags = PERF_IP_FLAG_BRANCH |
1130                                      PERF_IP_FLAG_TRACE_END;
1131                 ptq->insn_len = 0;
1132         } else {
1133                 if (ptq->state->from_ip)
1134                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1135                 else
1136                         ptq->flags = PERF_IP_FLAG_BRANCH |
1137                                      PERF_IP_FLAG_TRACE_BEGIN;
1138                 if (ptq->state->flags & INTEL_PT_IN_TX)
1139                         ptq->flags |= PERF_IP_FLAG_IN_TX;
1140                 ptq->insn_len = ptq->state->insn_len;
1141                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1142         }
1143
1144         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1145                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1146         if (ptq->state->type & INTEL_PT_TRACE_END)
1147                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1148 }
1149
1150 static void intel_pt_setup_time_range(struct intel_pt *pt,
1151                                       struct intel_pt_queue *ptq)
1152 {
1153         if (!pt->range_cnt)
1154                 return;
1155
1156         ptq->sel_timestamp = pt->time_ranges[0].start;
1157         ptq->sel_idx = 0;
1158
1159         if (ptq->sel_timestamp) {
1160                 ptq->sel_start = true;
1161         } else {
1162                 ptq->sel_timestamp = pt->time_ranges[0].end;
1163                 ptq->sel_start = false;
1164         }
1165 }
1166
1167 static int intel_pt_setup_queue(struct intel_pt *pt,
1168                                 struct auxtrace_queue *queue,
1169                                 unsigned int queue_nr)
1170 {
1171         struct intel_pt_queue *ptq = queue->priv;
1172
1173         if (list_empty(&queue->head))
1174                 return 0;
1175
1176         if (!ptq) {
1177                 ptq = intel_pt_alloc_queue(pt, queue_nr);
1178                 if (!ptq)
1179                         return -ENOMEM;
1180                 queue->priv = ptq;
1181
1182                 if (queue->cpu != -1)
1183                         ptq->cpu = queue->cpu;
1184                 ptq->tid = queue->tid;
1185
1186                 ptq->cbr_seen = UINT_MAX;
1187
1188                 if (pt->sampling_mode && !pt->snapshot_mode &&
1189                     pt->timeless_decoding)
1190                         ptq->step_through_buffers = true;
1191
1192                 ptq->sync_switch = pt->sync_switch;
1193
1194                 intel_pt_setup_time_range(pt, ptq);
1195         }
1196
1197         if (!ptq->on_heap &&
1198             (!ptq->sync_switch ||
1199              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1200                 const struct intel_pt_state *state;
1201                 int ret;
1202
1203                 if (pt->timeless_decoding)
1204                         return 0;
1205
1206                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1207                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1208                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1209
1210                 if (ptq->sel_start && ptq->sel_timestamp) {
1211                         ret = intel_pt_fast_forward(ptq->decoder,
1212                                                     ptq->sel_timestamp);
1213                         if (ret)
1214                                 return ret;
1215                 }
1216
1217                 while (1) {
1218                         state = intel_pt_decode(ptq->decoder);
1219                         if (state->err) {
1220                                 if (state->err == INTEL_PT_ERR_NODATA) {
1221                                         intel_pt_log("queue %u has no timestamp\n",
1222                                                      queue_nr);
1223                                         return 0;
1224                                 }
1225                                 continue;
1226                         }
1227                         if (state->timestamp)
1228                                 break;
1229                 }
1230
1231                 ptq->timestamp = state->timestamp;
1232                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1233                              queue_nr, ptq->timestamp);
1234                 ptq->state = state;
1235                 ptq->have_sample = true;
1236                 if (ptq->sel_start && ptq->sel_timestamp &&
1237                     ptq->timestamp < ptq->sel_timestamp)
1238                         ptq->have_sample = false;
1239                 intel_pt_sample_flags(ptq);
1240                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1241                 if (ret)
1242                         return ret;
1243                 ptq->on_heap = true;
1244         }
1245
1246         return 0;
1247 }
1248
1249 static int intel_pt_setup_queues(struct intel_pt *pt)
1250 {
1251         unsigned int i;
1252         int ret;
1253
1254         for (i = 0; i < pt->queues.nr_queues; i++) {
1255                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1256                 if (ret)
1257                         return ret;
1258         }
1259         return 0;
1260 }
1261
1262 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1263 {
1264         return pt->synth_opts.initial_skip &&
1265                pt->num_events++ < pt->synth_opts.initial_skip;
1266 }
1267
1268 /*
1269  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1270  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1271  * from this decoder state.
1272  */
1273 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1274 {
1275         return pt->synth_opts.initial_skip &&
1276                pt->num_events + 4 < pt->synth_opts.initial_skip;
1277 }
1278
1279 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1280                                    union perf_event *event,
1281                                    struct perf_sample *sample)
1282 {
1283         event->sample.header.type = PERF_RECORD_SAMPLE;
1284         event->sample.header.size = sizeof(struct perf_event_header);
1285
1286         sample->pid = ptq->pid;
1287         sample->tid = ptq->tid;
1288         sample->cpu = ptq->cpu;
1289         sample->insn_len = ptq->insn_len;
1290         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1291 }
1292
1293 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1294                                    struct intel_pt_queue *ptq,
1295                                    union perf_event *event,
1296                                    struct perf_sample *sample)
1297 {
1298         intel_pt_prep_a_sample(ptq, event, sample);
1299
1300         if (!pt->timeless_decoding)
1301                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1302
1303         sample->ip = ptq->state->from_ip;
1304         sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1305         sample->addr = ptq->state->to_ip;
1306         sample->period = 1;
1307         sample->flags = ptq->flags;
1308
1309         event->sample.header.misc = sample->cpumode;
1310 }
1311
1312 static int intel_pt_inject_event(union perf_event *event,
1313                                  struct perf_sample *sample, u64 type)
1314 {
1315         event->header.size = perf_event__sample_event_size(sample, type, 0);
1316         return perf_event__synthesize_sample(event, type, 0, sample);
1317 }
1318
1319 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1320                                       union perf_event *event,
1321                                       struct perf_sample *sample, u64 type)
1322 {
1323         if (!pt->synth_opts.inject)
1324                 return 0;
1325
1326         return intel_pt_inject_event(event, sample, type);
1327 }
1328
1329 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1330                                         union perf_event *event,
1331                                         struct perf_sample *sample, u64 type)
1332 {
1333         int ret;
1334
1335         ret = intel_pt_opt_inject(pt, event, sample, type);
1336         if (ret)
1337                 return ret;
1338
1339         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1340         if (ret)
1341                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1342
1343         return ret;
1344 }
1345
1346 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1347 {
1348         struct intel_pt *pt = ptq->pt;
1349         union perf_event *event = ptq->event_buf;
1350         struct perf_sample sample = { .ip = 0, };
1351         struct dummy_branch_stack {
1352                 u64                     nr;
1353                 u64                     hw_idx;
1354                 struct branch_entry     entries;
1355         } dummy_bs;
1356
1357         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1358                 return 0;
1359
1360         if (intel_pt_skip_event(pt))
1361                 return 0;
1362
1363         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1364
1365         sample.id = ptq->pt->branches_id;
1366         sample.stream_id = ptq->pt->branches_id;
1367
1368         /*
1369          * perf report cannot handle events without a branch stack when using
1370          * SORT_MODE__BRANCH so make a dummy one.
1371          */
1372         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1373                 dummy_bs = (struct dummy_branch_stack){
1374                         .nr = 1,
1375                         .hw_idx = -1ULL,
1376                         .entries = {
1377                                 .from = sample.ip,
1378                                 .to = sample.addr,
1379                         },
1380                 };
1381                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1382         }
1383
1384         sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1385         if (sample.cyc_cnt) {
1386                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1387                 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1388                 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1389         }
1390
1391         return intel_pt_deliver_synth_event(pt, event, &sample,
1392                                             pt->branches_sample_type);
1393 }
1394
1395 static void intel_pt_prep_sample(struct intel_pt *pt,
1396                                  struct intel_pt_queue *ptq,
1397                                  union perf_event *event,
1398                                  struct perf_sample *sample)
1399 {
1400         intel_pt_prep_b_sample(pt, ptq, event, sample);
1401
1402         if (pt->synth_opts.callchain) {
1403                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1404                                      pt->synth_opts.callchain_sz + 1,
1405                                      sample->ip, pt->kernel_start);
1406                 sample->callchain = ptq->chain;
1407         }
1408
1409         if (pt->synth_opts.last_branch) {
1410                 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1411                                         pt->br_stack_sz);
1412                 sample->branch_stack = ptq->last_branch;
1413         }
1414 }
1415
1416 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1417 {
1418         struct intel_pt *pt = ptq->pt;
1419         union perf_event *event = ptq->event_buf;
1420         struct perf_sample sample = { .ip = 0, };
1421
1422         if (intel_pt_skip_event(pt))
1423                 return 0;
1424
1425         intel_pt_prep_sample(pt, ptq, event, &sample);
1426
1427         sample.id = ptq->pt->instructions_id;
1428         sample.stream_id = ptq->pt->instructions_id;
1429         if (pt->synth_opts.quick)
1430                 sample.period = 1;
1431         else
1432                 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1433
1434         sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1435         if (sample.cyc_cnt) {
1436                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1437                 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1438                 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1439         }
1440
1441         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1442
1443         return intel_pt_deliver_synth_event(pt, event, &sample,
1444                                             pt->instructions_sample_type);
1445 }
1446
1447 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1448 {
1449         struct intel_pt *pt = ptq->pt;
1450         union perf_event *event = ptq->event_buf;
1451         struct perf_sample sample = { .ip = 0, };
1452
1453         if (intel_pt_skip_event(pt))
1454                 return 0;
1455
1456         intel_pt_prep_sample(pt, ptq, event, &sample);
1457
1458         sample.id = ptq->pt->transactions_id;
1459         sample.stream_id = ptq->pt->transactions_id;
1460
1461         return intel_pt_deliver_synth_event(pt, event, &sample,
1462                                             pt->transactions_sample_type);
1463 }
1464
1465 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1466                                    struct intel_pt_queue *ptq,
1467                                    union perf_event *event,
1468                                    struct perf_sample *sample)
1469 {
1470         intel_pt_prep_sample(pt, ptq, event, sample);
1471
1472         /*
1473          * Zero IP is used to mean "trace start" but that is not the case for
1474          * power or PTWRITE events with no IP, so clear the flags.
1475          */
1476         if (!sample->ip)
1477                 sample->flags = 0;
1478 }
1479
1480 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1481 {
1482         struct intel_pt *pt = ptq->pt;
1483         union perf_event *event = ptq->event_buf;
1484         struct perf_sample sample = { .ip = 0, };
1485         struct perf_synth_intel_ptwrite raw;
1486
1487         if (intel_pt_skip_event(pt))
1488                 return 0;
1489
1490         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1491
1492         sample.id = ptq->pt->ptwrites_id;
1493         sample.stream_id = ptq->pt->ptwrites_id;
1494
1495         raw.flags = 0;
1496         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1497         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1498
1499         sample.raw_size = perf_synth__raw_size(raw);
1500         sample.raw_data = perf_synth__raw_data(&raw);
1501
1502         return intel_pt_deliver_synth_event(pt, event, &sample,
1503                                             pt->ptwrites_sample_type);
1504 }
1505
1506 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1507 {
1508         struct intel_pt *pt = ptq->pt;
1509         union perf_event *event = ptq->event_buf;
1510         struct perf_sample sample = { .ip = 0, };
1511         struct perf_synth_intel_cbr raw;
1512         u32 flags;
1513
1514         if (intel_pt_skip_cbr_event(pt))
1515                 return 0;
1516
1517         ptq->cbr_seen = ptq->state->cbr;
1518
1519         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1520
1521         sample.id = ptq->pt->cbr_id;
1522         sample.stream_id = ptq->pt->cbr_id;
1523
1524         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1525         raw.flags = cpu_to_le32(flags);
1526         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1527         raw.reserved3 = 0;
1528
1529         sample.raw_size = perf_synth__raw_size(raw);
1530         sample.raw_data = perf_synth__raw_data(&raw);
1531
1532         return intel_pt_deliver_synth_event(pt, event, &sample,
1533                                             pt->pwr_events_sample_type);
1534 }
1535
1536 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1537 {
1538         struct intel_pt *pt = ptq->pt;
1539         union perf_event *event = ptq->event_buf;
1540         struct perf_sample sample = { .ip = 0, };
1541         struct perf_synth_intel_mwait raw;
1542
1543         if (intel_pt_skip_event(pt))
1544                 return 0;
1545
1546         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1547
1548         sample.id = ptq->pt->mwait_id;
1549         sample.stream_id = ptq->pt->mwait_id;
1550
1551         raw.reserved = 0;
1552         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1553
1554         sample.raw_size = perf_synth__raw_size(raw);
1555         sample.raw_data = perf_synth__raw_data(&raw);
1556
1557         return intel_pt_deliver_synth_event(pt, event, &sample,
1558                                             pt->pwr_events_sample_type);
1559 }
1560
1561 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1562 {
1563         struct intel_pt *pt = ptq->pt;
1564         union perf_event *event = ptq->event_buf;
1565         struct perf_sample sample = { .ip = 0, };
1566         struct perf_synth_intel_pwre raw;
1567
1568         if (intel_pt_skip_event(pt))
1569                 return 0;
1570
1571         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1572
1573         sample.id = ptq->pt->pwre_id;
1574         sample.stream_id = ptq->pt->pwre_id;
1575
1576         raw.reserved = 0;
1577         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1578
1579         sample.raw_size = perf_synth__raw_size(raw);
1580         sample.raw_data = perf_synth__raw_data(&raw);
1581
1582         return intel_pt_deliver_synth_event(pt, event, &sample,
1583                                             pt->pwr_events_sample_type);
1584 }
1585
1586 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1587 {
1588         struct intel_pt *pt = ptq->pt;
1589         union perf_event *event = ptq->event_buf;
1590         struct perf_sample sample = { .ip = 0, };
1591         struct perf_synth_intel_exstop raw;
1592
1593         if (intel_pt_skip_event(pt))
1594                 return 0;
1595
1596         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1597
1598         sample.id = ptq->pt->exstop_id;
1599         sample.stream_id = ptq->pt->exstop_id;
1600
1601         raw.flags = 0;
1602         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1603
1604         sample.raw_size = perf_synth__raw_size(raw);
1605         sample.raw_data = perf_synth__raw_data(&raw);
1606
1607         return intel_pt_deliver_synth_event(pt, event, &sample,
1608                                             pt->pwr_events_sample_type);
1609 }
1610
1611 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1612 {
1613         struct intel_pt *pt = ptq->pt;
1614         union perf_event *event = ptq->event_buf;
1615         struct perf_sample sample = { .ip = 0, };
1616         struct perf_synth_intel_pwrx raw;
1617
1618         if (intel_pt_skip_event(pt))
1619                 return 0;
1620
1621         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1622
1623         sample.id = ptq->pt->pwrx_id;
1624         sample.stream_id = ptq->pt->pwrx_id;
1625
1626         raw.reserved = 0;
1627         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1628
1629         sample.raw_size = perf_synth__raw_size(raw);
1630         sample.raw_data = perf_synth__raw_data(&raw);
1631
1632         return intel_pt_deliver_synth_event(pt, event, &sample,
1633                                             pt->pwr_events_sample_type);
1634 }
1635
1636 /*
1637  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1638  * intel_pt_add_gp_regs().
1639  */
1640 static const int pebs_gp_regs[] = {
1641         [PERF_REG_X86_FLAGS]    = 1,
1642         [PERF_REG_X86_IP]       = 2,
1643         [PERF_REG_X86_AX]       = 3,
1644         [PERF_REG_X86_CX]       = 4,
1645         [PERF_REG_X86_DX]       = 5,
1646         [PERF_REG_X86_BX]       = 6,
1647         [PERF_REG_X86_SP]       = 7,
1648         [PERF_REG_X86_BP]       = 8,
1649         [PERF_REG_X86_SI]       = 9,
1650         [PERF_REG_X86_DI]       = 10,
1651         [PERF_REG_X86_R8]       = 11,
1652         [PERF_REG_X86_R9]       = 12,
1653         [PERF_REG_X86_R10]      = 13,
1654         [PERF_REG_X86_R11]      = 14,
1655         [PERF_REG_X86_R12]      = 15,
1656         [PERF_REG_X86_R13]      = 16,
1657         [PERF_REG_X86_R14]      = 17,
1658         [PERF_REG_X86_R15]      = 18,
1659 };
1660
1661 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1662                                  const struct intel_pt_blk_items *items,
1663                                  u64 regs_mask)
1664 {
1665         const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1666         u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1667         u32 bit;
1668         int i;
1669
1670         for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1671                 /* Get the PEBS gp_regs array index */
1672                 int n = pebs_gp_regs[i] - 1;
1673
1674                 if (n < 0)
1675                         continue;
1676                 /*
1677                  * Add only registers that were requested (i.e. 'regs_mask') and
1678                  * that were provided (i.e. 'mask'), and update the resulting
1679                  * mask (i.e. 'intr_regs->mask') accordingly.
1680                  */
1681                 if (mask & 1 << n && regs_mask & bit) {
1682                         intr_regs->mask |= bit;
1683                         *pos++ = gp_regs[n];
1684                 }
1685         }
1686
1687         return pos;
1688 }
1689
1690 #ifndef PERF_REG_X86_XMM0
1691 #define PERF_REG_X86_XMM0 32
1692 #endif
1693
1694 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1695                              const struct intel_pt_blk_items *items,
1696                              u64 regs_mask)
1697 {
1698         u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1699         const u64 *xmm = items->xmm;
1700
1701         /*
1702          * If there are any XMM registers, then there should be all of them.
1703          * Nevertheless, follow the logic to add only registers that were
1704          * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1705          * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1706          */
1707         intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1708
1709         for (; mask; mask >>= 1, xmm++) {
1710                 if (mask & 1)
1711                         *pos++ = *xmm;
1712         }
1713 }
1714
1715 #define LBR_INFO_MISPRED        (1ULL << 63)
1716 #define LBR_INFO_IN_TX          (1ULL << 62)
1717 #define LBR_INFO_ABORT          (1ULL << 61)
1718 #define LBR_INFO_CYCLES         0xffff
1719
1720 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1721 static u64 intel_pt_lbr_flags(u64 info)
1722 {
1723         union {
1724                 struct branch_flags flags;
1725                 u64 result;
1726         } u;
1727
1728         u.result          = 0;
1729         u.flags.mispred   = !!(info & LBR_INFO_MISPRED);
1730         u.flags.predicted = !(info & LBR_INFO_MISPRED);
1731         u.flags.in_tx     = !!(info & LBR_INFO_IN_TX);
1732         u.flags.abort     = !!(info & LBR_INFO_ABORT);
1733         u.flags.cycles    = info & LBR_INFO_CYCLES;
1734
1735         return u.result;
1736 }
1737
1738 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1739                               const struct intel_pt_blk_items *items)
1740 {
1741         u64 *to;
1742         int i;
1743
1744         br_stack->nr = 0;
1745
1746         to = &br_stack->entries[0].from;
1747
1748         for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1749                 u32 mask = items->mask[i];
1750                 const u64 *from = items->val[i];
1751
1752                 for (; mask; mask >>= 3, from += 3) {
1753                         if ((mask & 7) == 7) {
1754                                 *to++ = from[0];
1755                                 *to++ = from[1];
1756                                 *to++ = intel_pt_lbr_flags(from[2]);
1757                                 br_stack->nr += 1;
1758                         }
1759                 }
1760         }
1761 }
1762
1763 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1764 {
1765         const struct intel_pt_blk_items *items = &ptq->state->items;
1766         struct perf_sample sample = { .ip = 0, };
1767         union perf_event *event = ptq->event_buf;
1768         struct intel_pt *pt = ptq->pt;
1769         struct evsel *evsel = pt->pebs_evsel;
1770         u64 sample_type = evsel->core.attr.sample_type;
1771         u64 id = evsel->core.id[0];
1772         u8 cpumode;
1773         u64 regs[8 * sizeof(sample.intr_regs.mask)];
1774
1775         if (intel_pt_skip_event(pt))
1776                 return 0;
1777
1778         intel_pt_prep_a_sample(ptq, event, &sample);
1779
1780         sample.id = id;
1781         sample.stream_id = id;
1782
1783         if (!evsel->core.attr.freq)
1784                 sample.period = evsel->core.attr.sample_period;
1785
1786         /* No support for non-zero CS base */
1787         if (items->has_ip)
1788                 sample.ip = items->ip;
1789         else if (items->has_rip)
1790                 sample.ip = items->rip;
1791         else
1792                 sample.ip = ptq->state->from_ip;
1793
1794         /* No support for guest mode at this time */
1795         cpumode = sample.ip < ptq->pt->kernel_start ?
1796                   PERF_RECORD_MISC_USER :
1797                   PERF_RECORD_MISC_KERNEL;
1798
1799         event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1800
1801         sample.cpumode = cpumode;
1802
1803         if (sample_type & PERF_SAMPLE_TIME) {
1804                 u64 timestamp = 0;
1805
1806                 if (items->has_timestamp)
1807                         timestamp = items->timestamp;
1808                 else if (!pt->timeless_decoding)
1809                         timestamp = ptq->timestamp;
1810                 if (timestamp)
1811                         sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1812         }
1813
1814         if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1815             pt->synth_opts.callchain) {
1816                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1817                                      pt->synth_opts.callchain_sz, sample.ip,
1818                                      pt->kernel_start);
1819                 sample.callchain = ptq->chain;
1820         }
1821
1822         if (sample_type & PERF_SAMPLE_REGS_INTR &&
1823             (items->mask[INTEL_PT_GP_REGS_POS] ||
1824              items->mask[INTEL_PT_XMM_POS])) {
1825                 u64 regs_mask = evsel->core.attr.sample_regs_intr;
1826                 u64 *pos;
1827
1828                 sample.intr_regs.abi = items->is_32_bit ?
1829                                        PERF_SAMPLE_REGS_ABI_32 :
1830                                        PERF_SAMPLE_REGS_ABI_64;
1831                 sample.intr_regs.regs = regs;
1832
1833                 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1834
1835                 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1836         }
1837
1838         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1839                 if (items->mask[INTEL_PT_LBR_0_POS] ||
1840                     items->mask[INTEL_PT_LBR_1_POS] ||
1841                     items->mask[INTEL_PT_LBR_2_POS]) {
1842                         intel_pt_add_lbrs(ptq->last_branch, items);
1843                 } else if (pt->synth_opts.last_branch) {
1844                         thread_stack__br_sample(ptq->thread, ptq->cpu,
1845                                                 ptq->last_branch,
1846                                                 pt->br_stack_sz);
1847                 } else {
1848                         ptq->last_branch->nr = 0;
1849                 }
1850                 sample.branch_stack = ptq->last_branch;
1851         }
1852
1853         if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1854                 sample.addr = items->mem_access_address;
1855
1856         if (sample_type & PERF_SAMPLE_WEIGHT) {
1857                 /*
1858                  * Refer kernel's setup_pebs_adaptive_sample_data() and
1859                  * intel_hsw_weight().
1860                  */
1861                 if (items->has_mem_access_latency)
1862                         sample.weight = items->mem_access_latency;
1863                 if (!sample.weight && items->has_tsx_aux_info) {
1864                         /* Cycles last block */
1865                         sample.weight = (u32)items->tsx_aux_info;
1866                 }
1867         }
1868
1869         if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1870                 u64 ax = items->has_rax ? items->rax : 0;
1871                 /* Refer kernel's intel_hsw_transaction() */
1872                 u64 txn = (u8)(items->tsx_aux_info >> 32);
1873
1874                 /* For RTM XABORTs also log the abort code from AX */
1875                 if (txn & PERF_TXN_TRANSACTION && ax & 1)
1876                         txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1877                 sample.transaction = txn;
1878         }
1879
1880         return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
1881 }
1882
1883 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1884                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1885 {
1886         union perf_event event;
1887         char msg[MAX_AUXTRACE_ERROR_MSG];
1888         int err;
1889
1890         if (pt->synth_opts.error_minus_flags) {
1891                 if (code == INTEL_PT_ERR_OVR &&
1892                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
1893                         return 0;
1894                 if (code == INTEL_PT_ERR_LOST &&
1895                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
1896                         return 0;
1897         }
1898
1899         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1900
1901         auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1902                              code, cpu, pid, tid, ip, msg, timestamp);
1903
1904         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1905         if (err)
1906                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1907                        err);
1908
1909         return err;
1910 }
1911
1912 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1913                                  const struct intel_pt_state *state)
1914 {
1915         struct intel_pt *pt = ptq->pt;
1916         u64 tm = ptq->timestamp;
1917
1918         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1919
1920         return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1921                                     ptq->tid, state->from_ip, tm);
1922 }
1923
1924 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1925 {
1926         struct auxtrace_queue *queue;
1927         pid_t tid = ptq->next_tid;
1928         int err;
1929
1930         if (tid == -1)
1931                 return 0;
1932
1933         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1934
1935         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1936
1937         queue = &pt->queues.queue_array[ptq->queue_nr];
1938         intel_pt_set_pid_tid_cpu(pt, queue);
1939
1940         ptq->next_tid = -1;
1941
1942         return err;
1943 }
1944
1945 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1946 {
1947         struct intel_pt *pt = ptq->pt;
1948
1949         return ip == pt->switch_ip &&
1950                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1951                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1952                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1953 }
1954
1955 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1956                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1957
1958 static int intel_pt_sample(struct intel_pt_queue *ptq)
1959 {
1960         const struct intel_pt_state *state = ptq->state;
1961         struct intel_pt *pt = ptq->pt;
1962         int err;
1963
1964         if (!ptq->have_sample)
1965                 return 0;
1966
1967         ptq->have_sample = false;
1968
1969         if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1970                 /*
1971                  * Cycle count and instruction count only go together to create
1972                  * a valid IPC ratio when the cycle count changes.
1973                  */
1974                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1975                 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1976         }
1977
1978         /*
1979          * Do PEBS first to allow for the possibility that the PEBS timestamp
1980          * precedes the current timestamp.
1981          */
1982         if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1983                 err = intel_pt_synth_pebs_sample(ptq);
1984                 if (err)
1985                         return err;
1986         }
1987
1988         if (pt->sample_pwr_events) {
1989                 if (ptq->state->cbr != ptq->cbr_seen) {
1990                         err = intel_pt_synth_cbr_sample(ptq);
1991                         if (err)
1992                                 return err;
1993                 }
1994                 if (state->type & INTEL_PT_PWR_EVT) {
1995                         if (state->type & INTEL_PT_MWAIT_OP) {
1996                                 err = intel_pt_synth_mwait_sample(ptq);
1997                                 if (err)
1998                                         return err;
1999                         }
2000                         if (state->type & INTEL_PT_PWR_ENTRY) {
2001                                 err = intel_pt_synth_pwre_sample(ptq);
2002                                 if (err)
2003                                         return err;
2004                         }
2005                         if (state->type & INTEL_PT_EX_STOP) {
2006                                 err = intel_pt_synth_exstop_sample(ptq);
2007                                 if (err)
2008                                         return err;
2009                         }
2010                         if (state->type & INTEL_PT_PWR_EXIT) {
2011                                 err = intel_pt_synth_pwrx_sample(ptq);
2012                                 if (err)
2013                                         return err;
2014                         }
2015                 }
2016         }
2017
2018         if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2019                 err = intel_pt_synth_instruction_sample(ptq);
2020                 if (err)
2021                         return err;
2022         }
2023
2024         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2025                 err = intel_pt_synth_transaction_sample(ptq);
2026                 if (err)
2027                         return err;
2028         }
2029
2030         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2031                 err = intel_pt_synth_ptwrite_sample(ptq);
2032                 if (err)
2033                         return err;
2034         }
2035
2036         if (!(state->type & INTEL_PT_BRANCH))
2037                 return 0;
2038
2039         if (pt->use_thread_stack) {
2040                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2041                                     state->from_ip, state->to_ip, ptq->insn_len,
2042                                     state->trace_nr, pt->callstack,
2043                                     pt->br_stack_sz_plus,
2044                                     pt->mispred_all);
2045         } else {
2046                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2047         }
2048
2049         if (pt->sample_branches) {
2050                 err = intel_pt_synth_branch_sample(ptq);
2051                 if (err)
2052                         return err;
2053         }
2054
2055         if (!ptq->sync_switch)
2056                 return 0;
2057
2058         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2059                 switch (ptq->switch_state) {
2060                 case INTEL_PT_SS_NOT_TRACING:
2061                 case INTEL_PT_SS_UNKNOWN:
2062                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2063                         err = intel_pt_next_tid(pt, ptq);
2064                         if (err)
2065                                 return err;
2066                         ptq->switch_state = INTEL_PT_SS_TRACING;
2067                         break;
2068                 default:
2069                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2070                         return 1;
2071                 }
2072         } else if (!state->to_ip) {
2073                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2074         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2075                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2076         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2077                    state->to_ip == pt->ptss_ip &&
2078                    (ptq->flags & PERF_IP_FLAG_CALL)) {
2079                 ptq->switch_state = INTEL_PT_SS_TRACING;
2080         }
2081
2082         return 0;
2083 }
2084
2085 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2086 {
2087         struct machine *machine = pt->machine;
2088         struct map *map;
2089         struct symbol *sym, *start;
2090         u64 ip, switch_ip = 0;
2091         const char *ptss;
2092
2093         if (ptss_ip)
2094                 *ptss_ip = 0;
2095
2096         map = machine__kernel_map(machine);
2097         if (!map)
2098                 return 0;
2099
2100         if (map__load(map))
2101                 return 0;
2102
2103         start = dso__first_symbol(map->dso);
2104
2105         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2106                 if (sym->binding == STB_GLOBAL &&
2107                     !strcmp(sym->name, "__switch_to")) {
2108                         ip = map->unmap_ip(map, sym->start);
2109                         if (ip >= map->start && ip < map->end) {
2110                                 switch_ip = ip;
2111                                 break;
2112                         }
2113                 }
2114         }
2115
2116         if (!switch_ip || !ptss_ip)
2117                 return 0;
2118
2119         if (pt->have_sched_switch == 1)
2120                 ptss = "perf_trace_sched_switch";
2121         else
2122                 ptss = "__perf_event_task_sched_out";
2123
2124         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2125                 if (!strcmp(sym->name, ptss)) {
2126                         ip = map->unmap_ip(map, sym->start);
2127                         if (ip >= map->start && ip < map->end) {
2128                                 *ptss_ip = ip;
2129                                 break;
2130                         }
2131                 }
2132         }
2133
2134         return switch_ip;
2135 }
2136
2137 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2138 {
2139         unsigned int i;
2140
2141         pt->sync_switch = true;
2142
2143         for (i = 0; i < pt->queues.nr_queues; i++) {
2144                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2145                 struct intel_pt_queue *ptq = queue->priv;
2146
2147                 if (ptq)
2148                         ptq->sync_switch = true;
2149         }
2150 }
2151
2152 /*
2153  * To filter against time ranges, it is only necessary to look at the next start
2154  * or end time.
2155  */
2156 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2157 {
2158         struct intel_pt *pt = ptq->pt;
2159
2160         if (ptq->sel_start) {
2161                 /* Next time is an end time */
2162                 ptq->sel_start = false;
2163                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2164                 return true;
2165         } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2166                 /* Next time is a start time */
2167                 ptq->sel_start = true;
2168                 ptq->sel_idx += 1;
2169                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2170                 return true;
2171         }
2172
2173         /* No next time */
2174         return false;
2175 }
2176
2177 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2178 {
2179         int err;
2180
2181         while (1) {
2182                 if (ptq->sel_start) {
2183                         if (ptq->timestamp >= ptq->sel_timestamp) {
2184                                 /* After start time, so consider next time */
2185                                 intel_pt_next_time(ptq);
2186                                 if (!ptq->sel_timestamp) {
2187                                         /* No end time */
2188                                         return 0;
2189                                 }
2190                                 /* Check against end time */
2191                                 continue;
2192                         }
2193                         /* Before start time, so fast forward */
2194                         ptq->have_sample = false;
2195                         if (ptq->sel_timestamp > *ff_timestamp) {
2196                                 if (ptq->sync_switch) {
2197                                         intel_pt_next_tid(ptq->pt, ptq);
2198                                         ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2199                                 }
2200                                 *ff_timestamp = ptq->sel_timestamp;
2201                                 err = intel_pt_fast_forward(ptq->decoder,
2202                                                             ptq->sel_timestamp);
2203                                 if (err)
2204                                         return err;
2205                         }
2206                         return 0;
2207                 } else if (ptq->timestamp > ptq->sel_timestamp) {
2208                         /* After end time, so consider next time */
2209                         if (!intel_pt_next_time(ptq)) {
2210                                 /* No next time range, so stop decoding */
2211                                 ptq->have_sample = false;
2212                                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2213                                 return 1;
2214                         }
2215                         /* Check against next start time */
2216                         continue;
2217                 } else {
2218                         /* Before end time */
2219                         return 0;
2220                 }
2221         }
2222 }
2223
2224 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2225 {
2226         const struct intel_pt_state *state = ptq->state;
2227         struct intel_pt *pt = ptq->pt;
2228         u64 ff_timestamp = 0;
2229         int err;
2230
2231         if (!pt->kernel_start) {
2232                 pt->kernel_start = machine__kernel_start(pt->machine);
2233                 if (pt->per_cpu_mmaps &&
2234                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2235                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2236                     !pt->sampling_mode) {
2237                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2238                         if (pt->switch_ip) {
2239                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2240                                              pt->switch_ip, pt->ptss_ip);
2241                                 intel_pt_enable_sync_switch(pt);
2242                         }
2243                 }
2244         }
2245
2246         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2247                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2248         while (1) {
2249                 err = intel_pt_sample(ptq);
2250                 if (err)
2251                         return err;
2252
2253                 state = intel_pt_decode(ptq->decoder);
2254                 if (state->err) {
2255                         if (state->err == INTEL_PT_ERR_NODATA)
2256                                 return 1;
2257                         if (ptq->sync_switch &&
2258                             state->from_ip >= pt->kernel_start) {
2259                                 ptq->sync_switch = false;
2260                                 intel_pt_next_tid(pt, ptq);
2261                         }
2262                         if (pt->synth_opts.errors) {
2263                                 err = intel_ptq_synth_error(ptq, state);
2264                                 if (err)
2265                                         return err;
2266                         }
2267                         continue;
2268                 }
2269
2270                 ptq->state = state;
2271                 ptq->have_sample = true;
2272                 intel_pt_sample_flags(ptq);
2273
2274                 /* Use estimated TSC upon return to user space */
2275                 if (pt->est_tsc &&
2276                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2277                     state->to_ip && state->to_ip < pt->kernel_start) {
2278                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2279                                      state->timestamp, state->est_timestamp);
2280                         ptq->timestamp = state->est_timestamp;
2281                 /* Use estimated TSC in unknown switch state */
2282                 } else if (ptq->sync_switch &&
2283                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2284                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
2285                            ptq->next_tid == -1) {
2286                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2287                                      state->timestamp, state->est_timestamp);
2288                         ptq->timestamp = state->est_timestamp;
2289                 } else if (state->timestamp > ptq->timestamp) {
2290                         ptq->timestamp = state->timestamp;
2291                 }
2292
2293                 if (ptq->sel_timestamp) {
2294                         err = intel_pt_time_filter(ptq, &ff_timestamp);
2295                         if (err)
2296                                 return err;
2297                 }
2298
2299                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2300                         *timestamp = ptq->timestamp;
2301                         return 0;
2302                 }
2303         }
2304         return 0;
2305 }
2306
2307 static inline int intel_pt_update_queues(struct intel_pt *pt)
2308 {
2309         if (pt->queues.new_data) {
2310                 pt->queues.new_data = false;
2311                 return intel_pt_setup_queues(pt);
2312         }
2313         return 0;
2314 }
2315
2316 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2317 {
2318         unsigned int queue_nr;
2319         u64 ts;
2320         int ret;
2321
2322         while (1) {
2323                 struct auxtrace_queue *queue;
2324                 struct intel_pt_queue *ptq;
2325
2326                 if (!pt->heap.heap_cnt)
2327                         return 0;
2328
2329                 if (pt->heap.heap_array[0].ordinal >= timestamp)
2330                         return 0;
2331
2332                 queue_nr = pt->heap.heap_array[0].queue_nr;
2333                 queue = &pt->queues.queue_array[queue_nr];
2334                 ptq = queue->priv;
2335
2336                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2337                              queue_nr, pt->heap.heap_array[0].ordinal,
2338                              timestamp);
2339
2340                 auxtrace_heap__pop(&pt->heap);
2341
2342                 if (pt->heap.heap_cnt) {
2343                         ts = pt->heap.heap_array[0].ordinal + 1;
2344                         if (ts > timestamp)
2345                                 ts = timestamp;
2346                 } else {
2347                         ts = timestamp;
2348                 }
2349
2350                 intel_pt_set_pid_tid_cpu(pt, queue);
2351
2352                 ret = intel_pt_run_decoder(ptq, &ts);
2353
2354                 if (ret < 0) {
2355                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
2356                         return ret;
2357                 }
2358
2359                 if (!ret) {
2360                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2361                         if (ret < 0)
2362                                 return ret;
2363                 } else {
2364                         ptq->on_heap = false;
2365                 }
2366         }
2367
2368         return 0;
2369 }
2370
2371 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2372                                             u64 time_)
2373 {
2374         struct auxtrace_queues *queues = &pt->queues;
2375         unsigned int i;
2376         u64 ts = 0;
2377
2378         for (i = 0; i < queues->nr_queues; i++) {
2379                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2380                 struct intel_pt_queue *ptq = queue->priv;
2381
2382                 if (ptq && (tid == -1 || ptq->tid == tid)) {
2383                         ptq->time = time_;
2384                         intel_pt_set_pid_tid_cpu(pt, queue);
2385                         intel_pt_run_decoder(ptq, &ts);
2386                 }
2387         }
2388         return 0;
2389 }
2390
2391 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2392                                             struct auxtrace_queue *queue,
2393                                             struct perf_sample *sample)
2394 {
2395         struct machine *m = ptq->pt->machine;
2396
2397         ptq->pid = sample->pid;
2398         ptq->tid = sample->tid;
2399         ptq->cpu = queue->cpu;
2400
2401         intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2402                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2403
2404         thread__zput(ptq->thread);
2405
2406         if (ptq->tid == -1)
2407                 return;
2408
2409         if (ptq->pid == -1) {
2410                 ptq->thread = machine__find_thread(m, -1, ptq->tid);
2411                 if (ptq->thread)
2412                         ptq->pid = ptq->thread->pid_;
2413                 return;
2414         }
2415
2416         ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2417 }
2418
2419 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2420                                             struct perf_sample *sample)
2421 {
2422         struct auxtrace_queue *queue;
2423         struct intel_pt_queue *ptq;
2424         u64 ts = 0;
2425
2426         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2427         if (!queue)
2428                 return -EINVAL;
2429
2430         ptq = queue->priv;
2431         if (!ptq)
2432                 return 0;
2433
2434         ptq->stop = false;
2435         ptq->time = sample->time;
2436         intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2437         intel_pt_run_decoder(ptq, &ts);
2438         return 0;
2439 }
2440
2441 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2442 {
2443         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2444                                     sample->pid, sample->tid, 0, sample->time);
2445 }
2446
2447 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2448 {
2449         unsigned i, j;
2450
2451         if (cpu < 0 || !pt->queues.nr_queues)
2452                 return NULL;
2453
2454         if ((unsigned)cpu >= pt->queues.nr_queues)
2455                 i = pt->queues.nr_queues - 1;
2456         else
2457                 i = cpu;
2458
2459         if (pt->queues.queue_array[i].cpu == cpu)
2460                 return pt->queues.queue_array[i].priv;
2461
2462         for (j = 0; i > 0; j++) {
2463                 if (pt->queues.queue_array[--i].cpu == cpu)
2464                         return pt->queues.queue_array[i].priv;
2465         }
2466
2467         for (; j < pt->queues.nr_queues; j++) {
2468                 if (pt->queues.queue_array[j].cpu == cpu)
2469                         return pt->queues.queue_array[j].priv;
2470         }
2471
2472         return NULL;
2473 }
2474
2475 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2476                                 u64 timestamp)
2477 {
2478         struct intel_pt_queue *ptq;
2479         int err;
2480
2481         if (!pt->sync_switch)
2482                 return 1;
2483
2484         ptq = intel_pt_cpu_to_ptq(pt, cpu);
2485         if (!ptq || !ptq->sync_switch)
2486                 return 1;
2487
2488         switch (ptq->switch_state) {
2489         case INTEL_PT_SS_NOT_TRACING:
2490                 break;
2491         case INTEL_PT_SS_UNKNOWN:
2492         case INTEL_PT_SS_TRACING:
2493                 ptq->next_tid = tid;
2494                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2495                 return 0;
2496         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2497                 if (!ptq->on_heap) {
2498                         ptq->timestamp = perf_time_to_tsc(timestamp,
2499                                                           &pt->tc);
2500                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2501                                                  ptq->timestamp);
2502                         if (err)
2503                                 return err;
2504                         ptq->on_heap = true;
2505                 }
2506                 ptq->switch_state = INTEL_PT_SS_TRACING;
2507                 break;
2508         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2509                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2510                 break;
2511         default:
2512                 break;
2513         }
2514
2515         ptq->next_tid = -1;
2516
2517         return 1;
2518 }
2519
2520 static int intel_pt_process_switch(struct intel_pt *pt,
2521                                    struct perf_sample *sample)
2522 {
2523         pid_t tid;
2524         int cpu, ret;
2525         struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
2526
2527         if (evsel != pt->switch_evsel)
2528                 return 0;
2529
2530         tid = evsel__intval(evsel, sample, "next_pid");
2531         cpu = sample->cpu;
2532
2533         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2534                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2535                      &pt->tc));
2536
2537         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2538         if (ret <= 0)
2539                 return ret;
2540
2541         return machine__set_current_tid(pt->machine, cpu, -1, tid);
2542 }
2543
2544 static int intel_pt_context_switch_in(struct intel_pt *pt,
2545                                       struct perf_sample *sample)
2546 {
2547         pid_t pid = sample->pid;
2548         pid_t tid = sample->tid;
2549         int cpu = sample->cpu;
2550
2551         if (pt->sync_switch) {
2552                 struct intel_pt_queue *ptq;
2553
2554                 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2555                 if (ptq && ptq->sync_switch) {
2556                         ptq->next_tid = -1;
2557                         switch (ptq->switch_state) {
2558                         case INTEL_PT_SS_NOT_TRACING:
2559                         case INTEL_PT_SS_UNKNOWN:
2560                         case INTEL_PT_SS_TRACING:
2561                                 break;
2562                         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2563                         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2564                                 ptq->switch_state = INTEL_PT_SS_TRACING;
2565                                 break;
2566                         default:
2567                                 break;
2568                         }
2569                 }
2570         }
2571
2572         /*
2573          * If the current tid has not been updated yet, ensure it is now that
2574          * a "switch in" event has occurred.
2575          */
2576         if (machine__get_current_tid(pt->machine, cpu) == tid)
2577                 return 0;
2578
2579         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2580 }
2581
2582 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2583                                    struct perf_sample *sample)
2584 {
2585         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2586         pid_t pid, tid;
2587         int cpu, ret;
2588
2589         cpu = sample->cpu;
2590
2591         if (pt->have_sched_switch == 3) {
2592                 if (!out)
2593                         return intel_pt_context_switch_in(pt, sample);
2594                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2595                         pr_err("Expecting CPU-wide context switch event\n");
2596                         return -EINVAL;
2597                 }
2598                 pid = event->context_switch.next_prev_pid;
2599                 tid = event->context_switch.next_prev_tid;
2600         } else {
2601                 if (out)
2602                         return 0;
2603                 pid = sample->pid;
2604                 tid = sample->tid;
2605         }
2606
2607         if (tid == -1)
2608                 intel_pt_log("context_switch event has no tid\n");
2609
2610         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2611         if (ret <= 0)
2612                 return ret;
2613
2614         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2615 }
2616
2617 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2618                                          union perf_event *event,
2619                                          struct perf_sample *sample)
2620 {
2621         if (!pt->per_cpu_mmaps)
2622                 return 0;
2623
2624         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2625                      sample->cpu, event->itrace_start.pid,
2626                      event->itrace_start.tid, sample->time,
2627                      perf_time_to_tsc(sample->time, &pt->tc));
2628
2629         return machine__set_current_tid(pt->machine, sample->cpu,
2630                                         event->itrace_start.pid,
2631                                         event->itrace_start.tid);
2632 }
2633
2634 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2635                              struct addr_location *al)
2636 {
2637         if (!al->map || addr < al->map->start || addr >= al->map->end) {
2638                 if (!thread__find_map(thread, cpumode, addr, al))
2639                         return -1;
2640         }
2641
2642         return 0;
2643 }
2644
2645 /* Invalidate all instruction cache entries that overlap the text poke */
2646 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2647 {
2648         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2649         u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2650         /* Assume text poke begins in a basic block no more than 4096 bytes */
2651         int cnt = 4096 + event->text_poke.new_len;
2652         struct thread *thread = pt->unknown_thread;
2653         struct addr_location al = { .map = NULL };
2654         struct machine *machine = pt->machine;
2655         struct intel_pt_cache_entry *e;
2656         u64 offset;
2657
2658         if (!event->text_poke.new_len)
2659                 return 0;
2660
2661         for (; cnt; cnt--, addr--) {
2662                 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2663                         if (addr < event->text_poke.addr)
2664                                 return 0;
2665                         continue;
2666                 }
2667
2668                 if (!al.map->dso || !al.map->dso->auxtrace_cache)
2669                         continue;
2670
2671                 offset = al.map->map_ip(al.map, addr);
2672
2673                 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2674                 if (!e)
2675                         continue;
2676
2677                 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2678                         /*
2679                          * No overlap. Working backwards there cannot be another
2680                          * basic block that overlaps the text poke if there is a
2681                          * branch instruction before the text poke address.
2682                          */
2683                         if (e->branch != INTEL_PT_BR_NO_BRANCH)
2684                                 return 0;
2685                 } else {
2686                         intel_pt_cache_invalidate(al.map->dso, machine, offset);
2687                         intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2688                                      al.map->dso->long_name, addr);
2689                 }
2690         }
2691
2692         return 0;
2693 }
2694
2695 static int intel_pt_process_event(struct perf_session *session,
2696                                   union perf_event *event,
2697                                   struct perf_sample *sample,
2698                                   struct perf_tool *tool)
2699 {
2700         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2701                                            auxtrace);
2702         u64 timestamp;
2703         int err = 0;
2704
2705         if (dump_trace)
2706                 return 0;
2707
2708         if (!tool->ordered_events) {
2709                 pr_err("Intel Processor Trace requires ordered events\n");
2710                 return -EINVAL;
2711         }
2712
2713         if (sample->time && sample->time != (u64)-1)
2714                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2715         else
2716                 timestamp = 0;
2717
2718         if (timestamp || pt->timeless_decoding) {
2719                 err = intel_pt_update_queues(pt);
2720                 if (err)
2721                         return err;
2722         }
2723
2724         if (pt->timeless_decoding) {
2725                 if (pt->sampling_mode) {
2726                         if (sample->aux_sample.size)
2727                                 err = intel_pt_process_timeless_sample(pt,
2728                                                                        sample);
2729                 } else if (event->header.type == PERF_RECORD_EXIT) {
2730                         err = intel_pt_process_timeless_queues(pt,
2731                                                                event->fork.tid,
2732                                                                sample->time);
2733                 }
2734         } else if (timestamp) {
2735                 err = intel_pt_process_queues(pt, timestamp);
2736         }
2737         if (err)
2738                 return err;
2739
2740         if (event->header.type == PERF_RECORD_SAMPLE) {
2741                 if (pt->synth_opts.add_callchain && !sample->callchain)
2742                         intel_pt_add_callchain(pt, sample);
2743                 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2744                         intel_pt_add_br_stack(pt, sample);
2745         }
2746
2747         if (event->header.type == PERF_RECORD_AUX &&
2748             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2749             pt->synth_opts.errors) {
2750                 err = intel_pt_lost(pt, sample);
2751                 if (err)
2752                         return err;
2753         }
2754
2755         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2756                 err = intel_pt_process_switch(pt, sample);
2757         else if (event->header.type == PERF_RECORD_ITRACE_START)
2758                 err = intel_pt_process_itrace_start(pt, event, sample);
2759         else if (event->header.type == PERF_RECORD_SWITCH ||
2760                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2761                 err = intel_pt_context_switch(pt, event, sample);
2762
2763         if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
2764                 err = intel_pt_text_poke(pt, event);
2765
2766         if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
2767                 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2768                              event->header.type, sample->cpu, sample->time, timestamp);
2769                 intel_pt_log_event(event);
2770         }
2771
2772         return err;
2773 }
2774
2775 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2776 {
2777         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2778                                            auxtrace);
2779         int ret;
2780
2781         if (dump_trace)
2782                 return 0;
2783
2784         if (!tool->ordered_events)
2785                 return -EINVAL;
2786
2787         ret = intel_pt_update_queues(pt);
2788         if (ret < 0)
2789                 return ret;
2790
2791         if (pt->timeless_decoding)
2792                 return intel_pt_process_timeless_queues(pt, -1,
2793                                                         MAX_TIMESTAMP - 1);
2794
2795         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2796 }
2797
2798 static void intel_pt_free_events(struct perf_session *session)
2799 {
2800         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2801                                            auxtrace);
2802         struct auxtrace_queues *queues = &pt->queues;
2803         unsigned int i;
2804
2805         for (i = 0; i < queues->nr_queues; i++) {
2806                 intel_pt_free_queue(queues->queue_array[i].priv);
2807                 queues->queue_array[i].priv = NULL;
2808         }
2809         intel_pt_log_disable();
2810         auxtrace_queues__free(queues);
2811 }
2812
2813 static void intel_pt_free(struct perf_session *session)
2814 {
2815         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2816                                            auxtrace);
2817
2818         auxtrace_heap__free(&pt->heap);
2819         intel_pt_free_events(session);
2820         session->auxtrace = NULL;
2821         thread__put(pt->unknown_thread);
2822         addr_filters__exit(&pt->filts);
2823         zfree(&pt->chain);
2824         zfree(&pt->filter);
2825         zfree(&pt->time_ranges);
2826         free(pt);
2827 }
2828
2829 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
2830                                        struct evsel *evsel)
2831 {
2832         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2833                                            auxtrace);
2834
2835         return evsel->core.attr.type == pt->pmu_type;
2836 }
2837
2838 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2839                                            union perf_event *event,
2840                                            struct perf_tool *tool __maybe_unused)
2841 {
2842         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2843                                            auxtrace);
2844
2845         if (!pt->data_queued) {
2846                 struct auxtrace_buffer *buffer;
2847                 off_t data_offset;
2848                 int fd = perf_data__fd(session->data);
2849                 int err;
2850
2851                 if (perf_data__is_pipe(session->data)) {
2852                         data_offset = 0;
2853                 } else {
2854                         data_offset = lseek(fd, 0, SEEK_CUR);
2855                         if (data_offset == -1)
2856                                 return -errno;
2857                 }
2858
2859                 err = auxtrace_queues__add_event(&pt->queues, session, event,
2860                                                  data_offset, &buffer);
2861                 if (err)
2862                         return err;
2863
2864                 /* Dump here now we have copied a piped trace out of the pipe */
2865                 if (dump_trace) {
2866                         if (auxtrace_buffer__get_data(buffer, fd)) {
2867                                 intel_pt_dump_event(pt, buffer->data,
2868                                                     buffer->size);
2869                                 auxtrace_buffer__put_data(buffer);
2870                         }
2871                 }
2872         }
2873
2874         return 0;
2875 }
2876
2877 static int intel_pt_queue_data(struct perf_session *session,
2878                                struct perf_sample *sample,
2879                                union perf_event *event, u64 data_offset)
2880 {
2881         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2882                                            auxtrace);
2883         u64 timestamp;
2884
2885         if (event) {
2886                 return auxtrace_queues__add_event(&pt->queues, session, event,
2887                                                   data_offset, NULL);
2888         }
2889
2890         if (sample->time && sample->time != (u64)-1)
2891                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2892         else
2893                 timestamp = 0;
2894
2895         return auxtrace_queues__add_sample(&pt->queues, session, sample,
2896                                            data_offset, timestamp);
2897 }
2898
2899 struct intel_pt_synth {
2900         struct perf_tool dummy_tool;
2901         struct perf_session *session;
2902 };
2903
2904 static int intel_pt_event_synth(struct perf_tool *tool,
2905                                 union perf_event *event,
2906                                 struct perf_sample *sample __maybe_unused,
2907                                 struct machine *machine __maybe_unused)
2908 {
2909         struct intel_pt_synth *intel_pt_synth =
2910                         container_of(tool, struct intel_pt_synth, dummy_tool);
2911
2912         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2913                                                  NULL);
2914 }
2915
2916 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2917                                 struct perf_event_attr *attr, u64 id)
2918 {
2919         struct intel_pt_synth intel_pt_synth;
2920         int err;
2921
2922         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2923                  name, id, (u64)attr->sample_type);
2924
2925         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2926         intel_pt_synth.session = session;
2927
2928         err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2929                                           &id, intel_pt_event_synth);
2930         if (err)
2931                 pr_err("%s: failed to synthesize '%s' event type\n",
2932                        __func__, name);
2933
2934         return err;
2935 }
2936
2937 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2938                                     const char *name)
2939 {
2940         struct evsel *evsel;
2941
2942         evlist__for_each_entry(evlist, evsel) {
2943                 if (evsel->core.id && evsel->core.id[0] == id) {
2944                         if (evsel->name)
2945                                 zfree(&evsel->name);
2946                         evsel->name = strdup(name);
2947                         break;
2948                 }
2949         }
2950 }
2951
2952 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2953                                          struct evlist *evlist)
2954 {
2955         struct evsel *evsel;
2956
2957         evlist__for_each_entry(evlist, evsel) {
2958                 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2959                         return evsel;
2960         }
2961
2962         return NULL;
2963 }
2964
2965 static int intel_pt_synth_events(struct intel_pt *pt,
2966                                  struct perf_session *session)
2967 {
2968         struct evlist *evlist = session->evlist;
2969         struct evsel *evsel = intel_pt_evsel(pt, evlist);
2970         struct perf_event_attr attr;
2971         u64 id;
2972         int err;
2973
2974         if (!evsel) {
2975                 pr_debug("There are no selected events with Intel Processor Trace data\n");
2976                 return 0;
2977         }
2978
2979         memset(&attr, 0, sizeof(struct perf_event_attr));
2980         attr.size = sizeof(struct perf_event_attr);
2981         attr.type = PERF_TYPE_HARDWARE;
2982         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2983         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2984                             PERF_SAMPLE_PERIOD;
2985         if (pt->timeless_decoding)
2986                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2987         else
2988                 attr.sample_type |= PERF_SAMPLE_TIME;
2989         if (!pt->per_cpu_mmaps)
2990                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2991         attr.exclude_user = evsel->core.attr.exclude_user;
2992         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2993         attr.exclude_hv = evsel->core.attr.exclude_hv;
2994         attr.exclude_host = evsel->core.attr.exclude_host;
2995         attr.exclude_guest = evsel->core.attr.exclude_guest;
2996         attr.sample_id_all = evsel->core.attr.sample_id_all;
2997         attr.read_format = evsel->core.attr.read_format;
2998
2999         id = evsel->core.id[0] + 1000000000;
3000         if (!id)
3001                 id = 1;
3002
3003         if (pt->synth_opts.branches) {
3004                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3005                 attr.sample_period = 1;
3006                 attr.sample_type |= PERF_SAMPLE_ADDR;
3007                 err = intel_pt_synth_event(session, "branches", &attr, id);
3008                 if (err)
3009                         return err;
3010                 pt->sample_branches = true;
3011                 pt->branches_sample_type = attr.sample_type;
3012                 pt->branches_id = id;
3013                 id += 1;
3014                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3015         }
3016
3017         if (pt->synth_opts.callchain)
3018                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3019         if (pt->synth_opts.last_branch) {
3020                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3021                 /*
3022                  * We don't use the hardware index, but the sample generation
3023                  * code uses the new format branch_stack with this field,
3024                  * so the event attributes must indicate that it's present.
3025                  */
3026                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3027         }
3028
3029         if (pt->synth_opts.instructions) {
3030                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3031                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3032                         attr.sample_period =
3033                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3034                 else
3035                         attr.sample_period = pt->synth_opts.period;
3036                 err = intel_pt_synth_event(session, "instructions", &attr, id);
3037                 if (err)
3038                         return err;
3039                 pt->sample_instructions = true;
3040                 pt->instructions_sample_type = attr.sample_type;
3041                 pt->instructions_id = id;
3042                 id += 1;
3043         }
3044
3045         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3046         attr.sample_period = 1;
3047
3048         if (pt->synth_opts.transactions) {
3049                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3050                 err = intel_pt_synth_event(session, "transactions", &attr, id);
3051                 if (err)
3052                         return err;
3053                 pt->sample_transactions = true;
3054                 pt->transactions_sample_type = attr.sample_type;
3055                 pt->transactions_id = id;
3056                 intel_pt_set_event_name(evlist, id, "transactions");
3057                 id += 1;
3058         }
3059
3060         attr.type = PERF_TYPE_SYNTH;
3061         attr.sample_type |= PERF_SAMPLE_RAW;
3062
3063         if (pt->synth_opts.ptwrites) {
3064                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3065                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3066                 if (err)
3067                         return err;
3068                 pt->sample_ptwrites = true;
3069                 pt->ptwrites_sample_type = attr.sample_type;
3070                 pt->ptwrites_id = id;
3071                 intel_pt_set_event_name(evlist, id, "ptwrite");
3072                 id += 1;
3073         }
3074
3075         if (pt->synth_opts.pwr_events) {
3076                 pt->sample_pwr_events = true;
3077                 pt->pwr_events_sample_type = attr.sample_type;
3078
3079                 attr.config = PERF_SYNTH_INTEL_CBR;
3080                 err = intel_pt_synth_event(session, "cbr", &attr, id);
3081                 if (err)
3082                         return err;
3083                 pt->cbr_id = id;
3084                 intel_pt_set_event_name(evlist, id, "cbr");
3085                 id += 1;
3086         }
3087
3088         if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3089                 attr.config = PERF_SYNTH_INTEL_MWAIT;
3090                 err = intel_pt_synth_event(session, "mwait", &attr, id);
3091                 if (err)
3092                         return err;
3093                 pt->mwait_id = id;
3094                 intel_pt_set_event_name(evlist, id, "mwait");
3095                 id += 1;
3096
3097                 attr.config = PERF_SYNTH_INTEL_PWRE;
3098                 err = intel_pt_synth_event(session, "pwre", &attr, id);
3099                 if (err)
3100                         return err;
3101                 pt->pwre_id = id;
3102                 intel_pt_set_event_name(evlist, id, "pwre");
3103                 id += 1;
3104
3105                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3106                 err = intel_pt_synth_event(session, "exstop", &attr, id);
3107                 if (err)
3108                         return err;
3109                 pt->exstop_id = id;
3110                 intel_pt_set_event_name(evlist, id, "exstop");
3111                 id += 1;
3112
3113                 attr.config = PERF_SYNTH_INTEL_PWRX;
3114                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3115                 if (err)
3116                         return err;
3117                 pt->pwrx_id = id;
3118                 intel_pt_set_event_name(evlist, id, "pwrx");
3119                 id += 1;
3120         }
3121
3122         return 0;
3123 }
3124
3125 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3126 {
3127         struct evsel *evsel;
3128
3129         if (!pt->synth_opts.other_events)
3130                 return;
3131
3132         evlist__for_each_entry(pt->session->evlist, evsel) {
3133                 if (evsel->core.attr.aux_output && evsel->core.id) {
3134                         pt->sample_pebs = true;
3135                         pt->pebs_evsel = evsel;
3136                         return;
3137                 }
3138         }
3139 }
3140
3141 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3142 {
3143         struct evsel *evsel;
3144
3145         evlist__for_each_entry_reverse(evlist, evsel) {
3146                 const char *name = evsel__name(evsel);
3147
3148                 if (!strcmp(name, "sched:sched_switch"))
3149                         return evsel;
3150         }
3151
3152         return NULL;
3153 }
3154
3155 static bool intel_pt_find_switch(struct evlist *evlist)
3156 {
3157         struct evsel *evsel;
3158
3159         evlist__for_each_entry(evlist, evsel) {
3160                 if (evsel->core.attr.context_switch)
3161                         return true;
3162         }
3163
3164         return false;
3165 }
3166
3167 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3168 {
3169         struct intel_pt *pt = data;
3170
3171         if (!strcmp(var, "intel-pt.mispred-all"))
3172                 pt->mispred_all = perf_config_bool(var, value);
3173
3174         return 0;
3175 }
3176
3177 /* Find least TSC which converts to ns or later */
3178 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3179 {
3180         u64 tsc, tm;
3181
3182         tsc = perf_time_to_tsc(ns, &pt->tc);
3183
3184         while (1) {
3185                 tm = tsc_to_perf_time(tsc, &pt->tc);
3186                 if (tm < ns)
3187                         break;
3188                 tsc -= 1;
3189         }
3190
3191         while (tm < ns)
3192                 tm = tsc_to_perf_time(++tsc, &pt->tc);
3193
3194         return tsc;
3195 }
3196
3197 /* Find greatest TSC which converts to ns or earlier */
3198 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3199 {
3200         u64 tsc, tm;
3201
3202         tsc = perf_time_to_tsc(ns, &pt->tc);
3203
3204         while (1) {
3205                 tm = tsc_to_perf_time(tsc, &pt->tc);
3206                 if (tm > ns)
3207                         break;
3208                 tsc += 1;
3209         }
3210
3211         while (tm > ns)
3212                 tm = tsc_to_perf_time(--tsc, &pt->tc);
3213
3214         return tsc;
3215 }
3216
3217 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3218                                       struct itrace_synth_opts *opts)
3219 {
3220         struct perf_time_interval *p = opts->ptime_range;
3221         int n = opts->range_num;
3222         int i;
3223
3224         if (!n || !p || pt->timeless_decoding)
3225                 return 0;
3226
3227         pt->time_ranges = calloc(n, sizeof(struct range));
3228         if (!pt->time_ranges)
3229                 return -ENOMEM;
3230
3231         pt->range_cnt = n;
3232
3233         intel_pt_log("%s: %u range(s)\n", __func__, n);
3234
3235         for (i = 0; i < n; i++) {
3236                 struct range *r = &pt->time_ranges[i];
3237                 u64 ts = p[i].start;
3238                 u64 te = p[i].end;
3239
3240                 /*
3241                  * Take care to ensure the TSC range matches the perf-time range
3242                  * when converted back to perf-time.
3243                  */
3244                 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3245                 r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3246
3247                 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3248                              i, ts, te);
3249                 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3250                              i, r->start, r->end);
3251         }
3252
3253         return 0;
3254 }
3255
3256 static const char * const intel_pt_info_fmts[] = {
3257         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
3258         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
3259         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
3260         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
3261         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
3262         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
3263         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
3264         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
3265         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
3266         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
3267         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
3268         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
3269         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
3270         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
3271         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
3272         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
3273 };
3274
3275 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3276 {
3277         int i;
3278
3279         if (!dump_trace)
3280                 return;
3281
3282         for (i = start; i <= finish; i++)
3283                 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3284 }
3285
3286 static void intel_pt_print_info_str(const char *name, const char *str)
3287 {
3288         if (!dump_trace)
3289                 return;
3290
3291         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3292 }
3293
3294 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3295 {
3296         return auxtrace_info->header.size >=
3297                 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3298 }
3299
3300 int intel_pt_process_auxtrace_info(union perf_event *event,
3301                                    struct perf_session *session)
3302 {
3303         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3304         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3305         struct intel_pt *pt;
3306         void *info_end;
3307         __u64 *info;
3308         int err;
3309
3310         if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3311                                         min_sz)
3312                 return -EINVAL;
3313
3314         pt = zalloc(sizeof(struct intel_pt));
3315         if (!pt)
3316                 return -ENOMEM;
3317
3318         addr_filters__init(&pt->filts);
3319
3320         err = perf_config(intel_pt_perf_config, pt);
3321         if (err)
3322                 goto err_free;
3323
3324         err = auxtrace_queues__init(&pt->queues);
3325         if (err)
3326                 goto err_free;
3327
3328         intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3329
3330         pt->session = session;
3331         pt->machine = &session->machines.host; /* No kvm support */
3332         pt->auxtrace_type = auxtrace_info->type;
3333         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3334         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3335         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3336         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3337         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3338         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3339         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3340         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3341         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3342         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3343         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3344                             INTEL_PT_PER_CPU_MMAPS);
3345
3346         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3347                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3348                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3349                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3350                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3351                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3352                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3353                                     INTEL_PT_CYC_BIT);
3354         }
3355
3356         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3357                 pt->max_non_turbo_ratio =
3358                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3359                 intel_pt_print_info(&auxtrace_info->priv[0],
3360                                     INTEL_PT_MAX_NONTURBO_RATIO,
3361                                     INTEL_PT_MAX_NONTURBO_RATIO);
3362         }
3363
3364         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3365         info_end = (void *)info + auxtrace_info->header.size;
3366
3367         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3368                 size_t len;
3369
3370                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3371                 intel_pt_print_info(&auxtrace_info->priv[0],
3372                                     INTEL_PT_FILTER_STR_LEN,
3373                                     INTEL_PT_FILTER_STR_LEN);
3374                 if (len) {
3375                         const char *filter = (const char *)info;
3376
3377                         len = roundup(len + 1, 8);
3378                         info += len >> 3;
3379                         if ((void *)info > info_end) {
3380                                 pr_err("%s: bad filter string length\n", __func__);
3381                                 err = -EINVAL;
3382                                 goto err_free_queues;
3383                         }
3384                         pt->filter = memdup(filter, len);
3385                         if (!pt->filter) {
3386                                 err = -ENOMEM;
3387                                 goto err_free_queues;
3388                         }
3389                         if (session->header.needs_swap)
3390                                 mem_bswap_64(pt->filter, len);
3391                         if (pt->filter[len - 1]) {
3392                                 pr_err("%s: filter string not null terminated\n", __func__);
3393                                 err = -EINVAL;
3394                                 goto err_free_queues;
3395                         }
3396                         err = addr_filters__parse_bare_filter(&pt->filts,
3397                                                               filter);
3398                         if (err)
3399                                 goto err_free_queues;
3400                 }
3401                 intel_pt_print_info_str("Filter string", pt->filter);
3402         }
3403
3404         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3405         if (pt->timeless_decoding && !pt->tc.time_mult)
3406                 pt->tc.time_mult = 1;
3407         pt->have_tsc = intel_pt_have_tsc(pt);
3408         pt->sampling_mode = intel_pt_sampling_mode(pt);
3409         pt->est_tsc = !pt->timeless_decoding;
3410
3411         pt->unknown_thread = thread__new(999999999, 999999999);
3412         if (!pt->unknown_thread) {
3413                 err = -ENOMEM;
3414                 goto err_free_queues;
3415         }
3416
3417         /*
3418          * Since this thread will not be kept in any rbtree not in a
3419          * list, initialize its list node so that at thread__put() the
3420          * current thread lifetime assuption is kept and we don't segfault
3421          * at list_del_init().
3422          */
3423         INIT_LIST_HEAD(&pt->unknown_thread->node);
3424
3425         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3426         if (err)
3427                 goto err_delete_thread;
3428         if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3429                 err = -ENOMEM;
3430                 goto err_delete_thread;
3431         }
3432
3433         pt->auxtrace.process_event = intel_pt_process_event;
3434         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3435         pt->auxtrace.queue_data = intel_pt_queue_data;
3436         pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3437         pt->auxtrace.flush_events = intel_pt_flush;
3438         pt->auxtrace.free_events = intel_pt_free_events;
3439         pt->auxtrace.free = intel_pt_free;
3440         pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3441         session->auxtrace = &pt->auxtrace;
3442
3443         if (dump_trace)
3444                 return 0;
3445
3446         if (pt->have_sched_switch == 1) {
3447                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3448                 if (!pt->switch_evsel) {
3449                         pr_err("%s: missing sched_switch event\n", __func__);
3450                         err = -EINVAL;
3451                         goto err_delete_thread;
3452                 }
3453         } else if (pt->have_sched_switch == 2 &&
3454                    !intel_pt_find_switch(session->evlist)) {
3455                 pr_err("%s: missing context_switch attribute flag\n", __func__);
3456                 err = -EINVAL;
3457                 goto err_delete_thread;
3458         }
3459
3460         if (session->itrace_synth_opts->set) {
3461                 pt->synth_opts = *session->itrace_synth_opts;
3462         } else {
3463                 itrace_synth_opts__set_default(&pt->synth_opts,
3464                                 session->itrace_synth_opts->default_no_sample);
3465                 if (!session->itrace_synth_opts->default_no_sample &&
3466                     !session->itrace_synth_opts->inject) {
3467                         pt->synth_opts.branches = false;
3468                         pt->synth_opts.callchain = true;
3469                         pt->synth_opts.add_callchain = true;
3470                 }
3471                 pt->synth_opts.thread_stack =
3472                                 session->itrace_synth_opts->thread_stack;
3473         }
3474
3475         if (pt->synth_opts.log)
3476                 intel_pt_log_enable();
3477
3478         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3479         if (pt->tc.time_mult) {
3480                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3481
3482                 if (!pt->max_non_turbo_ratio)
3483                         pt->max_non_turbo_ratio =
3484                                         (tsc_freq + 50000000) / 100000000;
3485                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3486                 intel_pt_log("Maximum non-turbo ratio %u\n",
3487                              pt->max_non_turbo_ratio);
3488                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3489         }
3490
3491         err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3492         if (err)
3493                 goto err_delete_thread;
3494
3495         if (pt->synth_opts.calls)
3496                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3497                                        PERF_IP_FLAG_TRACE_END;
3498         if (pt->synth_opts.returns)
3499                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
3500                                        PERF_IP_FLAG_TRACE_BEGIN;
3501
3502         if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3503             !symbol_conf.use_callchain) {
3504                 symbol_conf.use_callchain = true;
3505                 if (callchain_register_param(&callchain_param) < 0) {
3506                         symbol_conf.use_callchain = false;
3507                         pt->synth_opts.callchain = false;
3508                         pt->synth_opts.add_callchain = false;
3509                 }
3510         }
3511
3512         if (pt->synth_opts.add_callchain) {
3513                 err = intel_pt_callchain_init(pt);
3514                 if (err)
3515                         goto err_delete_thread;
3516         }
3517
3518         if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3519                 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3520                 pt->br_stack_sz_plus = pt->br_stack_sz;
3521         }
3522
3523         if (pt->synth_opts.add_last_branch) {
3524                 err = intel_pt_br_stack_init(pt);
3525                 if (err)
3526                         goto err_delete_thread;
3527                 /*
3528                  * Additional branch stack size to cater for tracing from the
3529                  * actual sample ip to where the sample time is recorded.
3530                  * Measured at about 200 branches, but generously set to 1024.
3531                  * If kernel space is not being traced, then add just 1 for the
3532                  * branch to kernel space.
3533                  */
3534                 if (intel_pt_tracing_kernel(pt))
3535                         pt->br_stack_sz_plus += 1024;
3536                 else
3537                         pt->br_stack_sz_plus += 1;
3538         }
3539
3540         pt->use_thread_stack = pt->synth_opts.callchain ||
3541                                pt->synth_opts.add_callchain ||
3542                                pt->synth_opts.thread_stack ||
3543                                pt->synth_opts.last_branch ||
3544                                pt->synth_opts.add_last_branch;
3545
3546         pt->callstack = pt->synth_opts.callchain ||
3547                         pt->synth_opts.add_callchain ||
3548                         pt->synth_opts.thread_stack;
3549
3550         err = intel_pt_synth_events(pt, session);
3551         if (err)
3552                 goto err_delete_thread;
3553
3554         intel_pt_setup_pebs_events(pt);
3555
3556         if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3557                 err = auxtrace_queue_data(session, true, true);
3558         else
3559                 err = auxtrace_queues__process_index(&pt->queues, session);
3560         if (err)
3561                 goto err_delete_thread;
3562
3563         if (pt->queues.populated)
3564                 pt->data_queued = true;
3565
3566         if (pt->timeless_decoding)
3567                 pr_debug2("Intel PT decoding without timestamps\n");
3568
3569         return 0;
3570
3571 err_delete_thread:
3572         zfree(&pt->chain);
3573         thread__zput(pt->unknown_thread);
3574 err_free_queues:
3575         intel_pt_log_disable();
3576         auxtrace_queues__free(&pt->queues);
3577         session->auxtrace = NULL;
3578 err_free:
3579         addr_filters__exit(&pt->filts);
3580         zfree(&pt->filter);
3581         zfree(&pt->time_ranges);
3582         free(pt);
3583         return err;
3584 }