perf intel-pt: Time filter logged perf events
[linux-2.6-microblaze.git] / tools / perf / util / intel-pt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46
47 #define MAX_TIMESTAMP (~0ULL)
48
49 struct range {
50         u64 start;
51         u64 end;
52 };
53
54 struct intel_pt {
55         struct auxtrace auxtrace;
56         struct auxtrace_queues queues;
57         struct auxtrace_heap heap;
58         u32 auxtrace_type;
59         struct perf_session *session;
60         struct machine *machine;
61         struct evsel *switch_evsel;
62         struct thread *unknown_thread;
63         bool timeless_decoding;
64         bool sampling_mode;
65         bool snapshot_mode;
66         bool per_cpu_mmaps;
67         bool have_tsc;
68         bool data_queued;
69         bool est_tsc;
70         bool sync_switch;
71         bool mispred_all;
72         bool use_thread_stack;
73         bool callstack;
74         unsigned int br_stack_sz;
75         unsigned int br_stack_sz_plus;
76         int have_sched_switch;
77         u32 pmu_type;
78         u64 kernel_start;
79         u64 switch_ip;
80         u64 ptss_ip;
81
82         struct perf_tsc_conversion tc;
83         bool cap_user_time_zero;
84
85         struct itrace_synth_opts synth_opts;
86
87         bool sample_instructions;
88         u64 instructions_sample_type;
89         u64 instructions_id;
90
91         bool sample_branches;
92         u32 branches_filter;
93         u64 branches_sample_type;
94         u64 branches_id;
95
96         bool sample_transactions;
97         u64 transactions_sample_type;
98         u64 transactions_id;
99
100         bool sample_ptwrites;
101         u64 ptwrites_sample_type;
102         u64 ptwrites_id;
103
104         bool sample_pwr_events;
105         u64 pwr_events_sample_type;
106         u64 mwait_id;
107         u64 pwre_id;
108         u64 exstop_id;
109         u64 pwrx_id;
110         u64 cbr_id;
111
112         bool sample_pebs;
113         struct evsel *pebs_evsel;
114
115         u64 tsc_bit;
116         u64 mtc_bit;
117         u64 mtc_freq_bits;
118         u32 tsc_ctc_ratio_n;
119         u32 tsc_ctc_ratio_d;
120         u64 cyc_bit;
121         u64 noretcomp_bit;
122         unsigned max_non_turbo_ratio;
123         unsigned cbr2khz;
124
125         unsigned long num_events;
126
127         char *filter;
128         struct addr_filters filts;
129
130         struct range *time_ranges;
131         unsigned int range_cnt;
132
133         struct ip_callchain *chain;
134         struct branch_stack *br_stack;
135 };
136
137 enum switch_state {
138         INTEL_PT_SS_NOT_TRACING,
139         INTEL_PT_SS_UNKNOWN,
140         INTEL_PT_SS_TRACING,
141         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
142         INTEL_PT_SS_EXPECTING_SWITCH_IP,
143 };
144
145 struct intel_pt_queue {
146         struct intel_pt *pt;
147         unsigned int queue_nr;
148         struct auxtrace_buffer *buffer;
149         struct auxtrace_buffer *old_buffer;
150         void *decoder;
151         const struct intel_pt_state *state;
152         struct ip_callchain *chain;
153         struct branch_stack *last_branch;
154         union perf_event *event_buf;
155         bool on_heap;
156         bool stop;
157         bool step_through_buffers;
158         bool use_buffer_pid_tid;
159         bool sync_switch;
160         pid_t pid, tid;
161         int cpu;
162         int switch_state;
163         pid_t next_tid;
164         struct thread *thread;
165         bool exclude_kernel;
166         bool have_sample;
167         u64 time;
168         u64 timestamp;
169         u64 sel_timestamp;
170         bool sel_start;
171         unsigned int sel_idx;
172         u32 flags;
173         u16 insn_len;
174         u64 last_insn_cnt;
175         u64 ipc_insn_cnt;
176         u64 ipc_cyc_cnt;
177         u64 last_in_insn_cnt;
178         u64 last_in_cyc_cnt;
179         u64 last_br_insn_cnt;
180         u64 last_br_cyc_cnt;
181         unsigned int cbr_seen;
182         char insn[INTEL_PT_INSN_BUF_SZ];
183 };
184
185 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
186                           unsigned char *buf, size_t len)
187 {
188         struct intel_pt_pkt packet;
189         size_t pos = 0;
190         int ret, pkt_len, i;
191         char desc[INTEL_PT_PKT_DESC_MAX];
192         const char *color = PERF_COLOR_BLUE;
193         enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
194
195         color_fprintf(stdout, color,
196                       ". ... Intel Processor Trace data: size %zu bytes\n",
197                       len);
198
199         while (len) {
200                 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
201                 if (ret > 0)
202                         pkt_len = ret;
203                 else
204                         pkt_len = 1;
205                 printf(".");
206                 color_fprintf(stdout, color, "  %08x: ", pos);
207                 for (i = 0; i < pkt_len; i++)
208                         color_fprintf(stdout, color, " %02x", buf[i]);
209                 for (; i < 16; i++)
210                         color_fprintf(stdout, color, "   ");
211                 if (ret > 0) {
212                         ret = intel_pt_pkt_desc(&packet, desc,
213                                                 INTEL_PT_PKT_DESC_MAX);
214                         if (ret > 0)
215                                 color_fprintf(stdout, color, " %s\n", desc);
216                 } else {
217                         color_fprintf(stdout, color, " Bad packet!\n");
218                 }
219                 pos += pkt_len;
220                 buf += pkt_len;
221                 len -= pkt_len;
222         }
223 }
224
225 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
226                                 size_t len)
227 {
228         printf(".\n");
229         intel_pt_dump(pt, buf, len);
230 }
231
232 static void intel_pt_log_event(union perf_event *event)
233 {
234         FILE *f = intel_pt_log_fp();
235
236         if (!intel_pt_enable_logging || !f)
237                 return;
238
239         perf_event__fprintf(event, NULL, f);
240 }
241
242 static void intel_pt_dump_sample(struct perf_session *session,
243                                  struct perf_sample *sample)
244 {
245         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
246                                            auxtrace);
247
248         printf("\n");
249         intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
250 }
251
252 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
253 {
254         struct perf_time_interval *range = pt->synth_opts.ptime_range;
255         int n = pt->synth_opts.range_num;
256
257         if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
258                 return true;
259
260         if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
261                 return false;
262
263         /* perf_time__ranges_skip_sample does not work if time is zero */
264         if (!tm)
265                 tm = 1;
266
267         return !n || !perf_time__ranges_skip_sample(range, n, tm);
268 }
269
270 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
271                                    struct auxtrace_buffer *b)
272 {
273         bool consecutive = false;
274         void *start;
275
276         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
277                                       pt->have_tsc, &consecutive);
278         if (!start)
279                 return -EINVAL;
280         b->use_size = b->data + b->size - start;
281         b->use_data = start;
282         if (b->use_size && consecutive)
283                 b->consecutive = true;
284         return 0;
285 }
286
287 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
288                                struct auxtrace_buffer *buffer,
289                                struct auxtrace_buffer *old_buffer,
290                                struct intel_pt_buffer *b)
291 {
292         bool might_overlap;
293
294         if (!buffer->data) {
295                 int fd = perf_data__fd(ptq->pt->session->data);
296
297                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
298                 if (!buffer->data)
299                         return -ENOMEM;
300         }
301
302         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
303         if (might_overlap && !buffer->consecutive && old_buffer &&
304             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
305                 return -ENOMEM;
306
307         if (buffer->use_data) {
308                 b->len = buffer->use_size;
309                 b->buf = buffer->use_data;
310         } else {
311                 b->len = buffer->size;
312                 b->buf = buffer->data;
313         }
314         b->ref_timestamp = buffer->reference;
315
316         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
317                 b->consecutive = false;
318                 b->trace_nr = buffer->buffer_nr + 1;
319         } else {
320                 b->consecutive = true;
321         }
322
323         return 0;
324 }
325
326 /* Do not drop buffers with references - refer intel_pt_get_trace() */
327 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
328                                            struct auxtrace_buffer *buffer)
329 {
330         if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
331                 return;
332
333         auxtrace_buffer__drop_data(buffer);
334 }
335
336 /* Must be serialized with respect to intel_pt_get_trace() */
337 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
338                               void *cb_data)
339 {
340         struct intel_pt_queue *ptq = data;
341         struct auxtrace_buffer *buffer = ptq->buffer;
342         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
343         struct auxtrace_queue *queue;
344         int err = 0;
345
346         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
347
348         while (1) {
349                 struct intel_pt_buffer b = { .len = 0 };
350
351                 buffer = auxtrace_buffer__next(queue, buffer);
352                 if (!buffer)
353                         break;
354
355                 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
356                 if (err)
357                         break;
358
359                 if (b.len) {
360                         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
361                         old_buffer = buffer;
362                 } else {
363                         intel_pt_lookahead_drop_buffer(ptq, buffer);
364                         continue;
365                 }
366
367                 err = cb(&b, cb_data);
368                 if (err)
369                         break;
370         }
371
372         if (buffer != old_buffer)
373                 intel_pt_lookahead_drop_buffer(ptq, buffer);
374         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
375
376         return err;
377 }
378
379 /*
380  * This function assumes data is processed sequentially only.
381  * Must be serialized with respect to intel_pt_lookahead()
382  */
383 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
384 {
385         struct intel_pt_queue *ptq = data;
386         struct auxtrace_buffer *buffer = ptq->buffer;
387         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
388         struct auxtrace_queue *queue;
389         int err;
390
391         if (ptq->stop) {
392                 b->len = 0;
393                 return 0;
394         }
395
396         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
397
398         buffer = auxtrace_buffer__next(queue, buffer);
399         if (!buffer) {
400                 if (old_buffer)
401                         auxtrace_buffer__drop_data(old_buffer);
402                 b->len = 0;
403                 return 0;
404         }
405
406         ptq->buffer = buffer;
407
408         err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
409         if (err)
410                 return err;
411
412         if (ptq->step_through_buffers)
413                 ptq->stop = true;
414
415         if (b->len) {
416                 if (old_buffer)
417                         auxtrace_buffer__drop_data(old_buffer);
418                 ptq->old_buffer = buffer;
419         } else {
420                 auxtrace_buffer__drop_data(buffer);
421                 return intel_pt_get_trace(b, data);
422         }
423
424         return 0;
425 }
426
427 struct intel_pt_cache_entry {
428         struct auxtrace_cache_entry     entry;
429         u64                             insn_cnt;
430         u64                             byte_cnt;
431         enum intel_pt_insn_op           op;
432         enum intel_pt_insn_branch       branch;
433         int                             length;
434         int32_t                         rel;
435         char                            insn[INTEL_PT_INSN_BUF_SZ];
436 };
437
438 static int intel_pt_config_div(const char *var, const char *value, void *data)
439 {
440         int *d = data;
441         long val;
442
443         if (!strcmp(var, "intel-pt.cache-divisor")) {
444                 val = strtol(value, NULL, 0);
445                 if (val > 0 && val <= INT_MAX)
446                         *d = val;
447         }
448
449         return 0;
450 }
451
452 static int intel_pt_cache_divisor(void)
453 {
454         static int d;
455
456         if (d)
457                 return d;
458
459         perf_config(intel_pt_config_div, &d);
460
461         if (!d)
462                 d = 64;
463
464         return d;
465 }
466
467 static unsigned int intel_pt_cache_size(struct dso *dso,
468                                         struct machine *machine)
469 {
470         off_t size;
471
472         size = dso__data_size(dso, machine);
473         size /= intel_pt_cache_divisor();
474         if (size < 1000)
475                 return 10;
476         if (size > (1 << 21))
477                 return 21;
478         return 32 - __builtin_clz(size);
479 }
480
481 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
482                                              struct machine *machine)
483 {
484         struct auxtrace_cache *c;
485         unsigned int bits;
486
487         if (dso->auxtrace_cache)
488                 return dso->auxtrace_cache;
489
490         bits = intel_pt_cache_size(dso, machine);
491
492         /* Ignoring cache creation failure */
493         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
494
495         dso->auxtrace_cache = c;
496
497         return c;
498 }
499
500 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
501                               u64 offset, u64 insn_cnt, u64 byte_cnt,
502                               struct intel_pt_insn *intel_pt_insn)
503 {
504         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
505         struct intel_pt_cache_entry *e;
506         int err;
507
508         if (!c)
509                 return -ENOMEM;
510
511         e = auxtrace_cache__alloc_entry(c);
512         if (!e)
513                 return -ENOMEM;
514
515         e->insn_cnt = insn_cnt;
516         e->byte_cnt = byte_cnt;
517         e->op = intel_pt_insn->op;
518         e->branch = intel_pt_insn->branch;
519         e->length = intel_pt_insn->length;
520         e->rel = intel_pt_insn->rel;
521         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
522
523         err = auxtrace_cache__add(c, offset, &e->entry);
524         if (err)
525                 auxtrace_cache__free_entry(c, e);
526
527         return err;
528 }
529
530 static struct intel_pt_cache_entry *
531 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
532 {
533         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
534
535         if (!c)
536                 return NULL;
537
538         return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
539 }
540
541 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
542                                       u64 offset)
543 {
544         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
545
546         if (!c)
547                 return;
548
549         auxtrace_cache__remove(dso->auxtrace_cache, offset);
550 }
551
552 static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
553 {
554         return ip >= pt->kernel_start ?
555                PERF_RECORD_MISC_KERNEL :
556                PERF_RECORD_MISC_USER;
557 }
558
559 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
560                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
561                                    uint64_t to_ip, uint64_t max_insn_cnt,
562                                    void *data)
563 {
564         struct intel_pt_queue *ptq = data;
565         struct machine *machine = ptq->pt->machine;
566         struct thread *thread;
567         struct addr_location al;
568         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
569         ssize_t len;
570         int x86_64;
571         u8 cpumode;
572         u64 offset, start_offset, start_ip;
573         u64 insn_cnt = 0;
574         bool one_map = true;
575
576         intel_pt_insn->length = 0;
577
578         if (to_ip && *ip == to_ip)
579                 goto out_no_cache;
580
581         cpumode = intel_pt_cpumode(ptq->pt, *ip);
582
583         thread = ptq->thread;
584         if (!thread) {
585                 if (cpumode != PERF_RECORD_MISC_KERNEL)
586                         return -EINVAL;
587                 thread = ptq->pt->unknown_thread;
588         }
589
590         while (1) {
591                 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
592                         return -EINVAL;
593
594                 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
595                     dso__data_status_seen(al.map->dso,
596                                           DSO_DATA_STATUS_SEEN_ITRACE))
597                         return -ENOENT;
598
599                 offset = al.map->map_ip(al.map, *ip);
600
601                 if (!to_ip && one_map) {
602                         struct intel_pt_cache_entry *e;
603
604                         e = intel_pt_cache_lookup(al.map->dso, machine, offset);
605                         if (e &&
606                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
607                                 *insn_cnt_ptr = e->insn_cnt;
608                                 *ip += e->byte_cnt;
609                                 intel_pt_insn->op = e->op;
610                                 intel_pt_insn->branch = e->branch;
611                                 intel_pt_insn->length = e->length;
612                                 intel_pt_insn->rel = e->rel;
613                                 memcpy(intel_pt_insn->buf, e->insn,
614                                        INTEL_PT_INSN_BUF_SZ);
615                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
616                                 return 0;
617                         }
618                 }
619
620                 start_offset = offset;
621                 start_ip = *ip;
622
623                 /* Load maps to ensure dso->is_64_bit has been updated */
624                 map__load(al.map);
625
626                 x86_64 = al.map->dso->is_64_bit;
627
628                 while (1) {
629                         len = dso__data_read_offset(al.map->dso, machine,
630                                                     offset, buf,
631                                                     INTEL_PT_INSN_BUF_SZ);
632                         if (len <= 0)
633                                 return -EINVAL;
634
635                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
636                                 return -EINVAL;
637
638                         intel_pt_log_insn(intel_pt_insn, *ip);
639
640                         insn_cnt += 1;
641
642                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
643                                 goto out;
644
645                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
646                                 goto out_no_cache;
647
648                         *ip += intel_pt_insn->length;
649
650                         if (to_ip && *ip == to_ip)
651                                 goto out_no_cache;
652
653                         if (*ip >= al.map->end)
654                                 break;
655
656                         offset += intel_pt_insn->length;
657                 }
658                 one_map = false;
659         }
660 out:
661         *insn_cnt_ptr = insn_cnt;
662
663         if (!one_map)
664                 goto out_no_cache;
665
666         /*
667          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
668          * entries.
669          */
670         if (to_ip) {
671                 struct intel_pt_cache_entry *e;
672
673                 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
674                 if (e)
675                         return 0;
676         }
677
678         /* Ignore cache errors */
679         intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
680                            *ip - start_ip, intel_pt_insn);
681
682         return 0;
683
684 out_no_cache:
685         *insn_cnt_ptr = insn_cnt;
686         return 0;
687 }
688
689 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
690                                   uint64_t offset, const char *filename)
691 {
692         struct addr_filter *filt;
693         bool have_filter   = false;
694         bool hit_tracestop = false;
695         bool hit_filter    = false;
696
697         list_for_each_entry(filt, &pt->filts.head, list) {
698                 if (filt->start)
699                         have_filter = true;
700
701                 if ((filename && !filt->filename) ||
702                     (!filename && filt->filename) ||
703                     (filename && strcmp(filename, filt->filename)))
704                         continue;
705
706                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
707                         continue;
708
709                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
710                              ip, offset, filename ? filename : "[kernel]",
711                              filt->start ? "filter" : "stop",
712                              filt->addr, filt->size);
713
714                 if (filt->start)
715                         hit_filter = true;
716                 else
717                         hit_tracestop = true;
718         }
719
720         if (!hit_tracestop && !hit_filter)
721                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
722                              ip, offset, filename ? filename : "[kernel]");
723
724         return hit_tracestop || (have_filter && !hit_filter);
725 }
726
727 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
728 {
729         struct intel_pt_queue *ptq = data;
730         struct thread *thread;
731         struct addr_location al;
732         u8 cpumode;
733         u64 offset;
734
735         if (ip >= ptq->pt->kernel_start)
736                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
737
738         cpumode = PERF_RECORD_MISC_USER;
739
740         thread = ptq->thread;
741         if (!thread)
742                 return -EINVAL;
743
744         if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
745                 return -EINVAL;
746
747         offset = al.map->map_ip(al.map, ip);
748
749         return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
750                                      al.map->dso->long_name);
751 }
752
753 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
754 {
755         return __intel_pt_pgd_ip(ip, data) > 0;
756 }
757
758 static bool intel_pt_get_config(struct intel_pt *pt,
759                                 struct perf_event_attr *attr, u64 *config)
760 {
761         if (attr->type == pt->pmu_type) {
762                 if (config)
763                         *config = attr->config;
764                 return true;
765         }
766
767         return false;
768 }
769
770 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
771 {
772         struct evsel *evsel;
773
774         evlist__for_each_entry(pt->session->evlist, evsel) {
775                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
776                     !evsel->core.attr.exclude_kernel)
777                         return false;
778         }
779         return true;
780 }
781
782 static bool intel_pt_return_compression(struct intel_pt *pt)
783 {
784         struct evsel *evsel;
785         u64 config;
786
787         if (!pt->noretcomp_bit)
788                 return true;
789
790         evlist__for_each_entry(pt->session->evlist, evsel) {
791                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
792                     (config & pt->noretcomp_bit))
793                         return false;
794         }
795         return true;
796 }
797
798 static bool intel_pt_branch_enable(struct intel_pt *pt)
799 {
800         struct evsel *evsel;
801         u64 config;
802
803         evlist__for_each_entry(pt->session->evlist, evsel) {
804                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
805                     (config & 1) && !(config & 0x2000))
806                         return false;
807         }
808         return true;
809 }
810
811 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
812 {
813         struct evsel *evsel;
814         unsigned int shift;
815         u64 config;
816
817         if (!pt->mtc_freq_bits)
818                 return 0;
819
820         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
821                 config >>= 1;
822
823         evlist__for_each_entry(pt->session->evlist, evsel) {
824                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
825                         return (config & pt->mtc_freq_bits) >> shift;
826         }
827         return 0;
828 }
829
830 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
831 {
832         struct evsel *evsel;
833         bool timeless_decoding = true;
834         u64 config;
835
836         if (!pt->tsc_bit || !pt->cap_user_time_zero)
837                 return true;
838
839         evlist__for_each_entry(pt->session->evlist, evsel) {
840                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
841                         return true;
842                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
843                         if (config & pt->tsc_bit)
844                                 timeless_decoding = false;
845                         else
846                                 return true;
847                 }
848         }
849         return timeless_decoding;
850 }
851
852 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
853 {
854         struct evsel *evsel;
855
856         evlist__for_each_entry(pt->session->evlist, evsel) {
857                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
858                     !evsel->core.attr.exclude_kernel)
859                         return true;
860         }
861         return false;
862 }
863
864 static bool intel_pt_have_tsc(struct intel_pt *pt)
865 {
866         struct evsel *evsel;
867         bool have_tsc = false;
868         u64 config;
869
870         if (!pt->tsc_bit)
871                 return false;
872
873         evlist__for_each_entry(pt->session->evlist, evsel) {
874                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
875                         if (config & pt->tsc_bit)
876                                 have_tsc = true;
877                         else
878                                 return false;
879                 }
880         }
881         return have_tsc;
882 }
883
884 static bool intel_pt_sampling_mode(struct intel_pt *pt)
885 {
886         struct evsel *evsel;
887
888         evlist__for_each_entry(pt->session->evlist, evsel) {
889                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
890                     evsel->core.attr.aux_sample_size)
891                         return true;
892         }
893         return false;
894 }
895
896 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
897 {
898         u64 quot, rem;
899
900         quot = ns / pt->tc.time_mult;
901         rem  = ns % pt->tc.time_mult;
902         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
903                 pt->tc.time_mult;
904 }
905
906 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
907 {
908         size_t sz = sizeof(struct ip_callchain);
909
910         /* Add 1 to callchain_sz for callchain context */
911         sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
912         return zalloc(sz);
913 }
914
915 static int intel_pt_callchain_init(struct intel_pt *pt)
916 {
917         struct evsel *evsel;
918
919         evlist__for_each_entry(pt->session->evlist, evsel) {
920                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
921                         evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
922         }
923
924         pt->chain = intel_pt_alloc_chain(pt);
925         if (!pt->chain)
926                 return -ENOMEM;
927
928         return 0;
929 }
930
931 static void intel_pt_add_callchain(struct intel_pt *pt,
932                                    struct perf_sample *sample)
933 {
934         struct thread *thread = machine__findnew_thread(pt->machine,
935                                                         sample->pid,
936                                                         sample->tid);
937
938         thread_stack__sample_late(thread, sample->cpu, pt->chain,
939                                   pt->synth_opts.callchain_sz + 1, sample->ip,
940                                   pt->kernel_start);
941
942         sample->callchain = pt->chain;
943 }
944
945 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
946 {
947         size_t sz = sizeof(struct branch_stack);
948
949         sz += entry_cnt * sizeof(struct branch_entry);
950         return zalloc(sz);
951 }
952
953 static int intel_pt_br_stack_init(struct intel_pt *pt)
954 {
955         struct evsel *evsel;
956
957         evlist__for_each_entry(pt->session->evlist, evsel) {
958                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
959                         evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
960         }
961
962         pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
963         if (!pt->br_stack)
964                 return -ENOMEM;
965
966         return 0;
967 }
968
969 static void intel_pt_add_br_stack(struct intel_pt *pt,
970                                   struct perf_sample *sample)
971 {
972         struct thread *thread = machine__findnew_thread(pt->machine,
973                                                         sample->pid,
974                                                         sample->tid);
975
976         thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
977                                      pt->br_stack_sz, sample->ip,
978                                      pt->kernel_start);
979
980         sample->branch_stack = pt->br_stack;
981 }
982
983 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
984 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
985
986 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
987                                                    unsigned int queue_nr)
988 {
989         struct intel_pt_params params = { .get_trace = 0, };
990         struct perf_env *env = pt->machine->env;
991         struct intel_pt_queue *ptq;
992
993         ptq = zalloc(sizeof(struct intel_pt_queue));
994         if (!ptq)
995                 return NULL;
996
997         if (pt->synth_opts.callchain) {
998                 ptq->chain = intel_pt_alloc_chain(pt);
999                 if (!ptq->chain)
1000                         goto out_free;
1001         }
1002
1003         if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1004                 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1005
1006                 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1007                 if (!ptq->last_branch)
1008                         goto out_free;
1009         }
1010
1011         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1012         if (!ptq->event_buf)
1013                 goto out_free;
1014
1015         ptq->pt = pt;
1016         ptq->queue_nr = queue_nr;
1017         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1018         ptq->pid = -1;
1019         ptq->tid = -1;
1020         ptq->cpu = -1;
1021         ptq->next_tid = -1;
1022
1023         params.get_trace = intel_pt_get_trace;
1024         params.walk_insn = intel_pt_walk_next_insn;
1025         params.lookahead = intel_pt_lookahead;
1026         params.data = ptq;
1027         params.return_compression = intel_pt_return_compression(pt);
1028         params.branch_enable = intel_pt_branch_enable(pt);
1029         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1030         params.mtc_period = intel_pt_mtc_period(pt);
1031         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1032         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1033
1034         if (pt->filts.cnt > 0)
1035                 params.pgd_ip = intel_pt_pgd_ip;
1036
1037         if (pt->synth_opts.instructions) {
1038                 if (pt->synth_opts.period) {
1039                         switch (pt->synth_opts.period_type) {
1040                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1041                                 params.period_type =
1042                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
1043                                 params.period = pt->synth_opts.period;
1044                                 break;
1045                         case PERF_ITRACE_PERIOD_TICKS:
1046                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1047                                 params.period = pt->synth_opts.period;
1048                                 break;
1049                         case PERF_ITRACE_PERIOD_NANOSECS:
1050                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1051                                 params.period = intel_pt_ns_to_ticks(pt,
1052                                                         pt->synth_opts.period);
1053                                 break;
1054                         default:
1055                                 break;
1056                         }
1057                 }
1058
1059                 if (!params.period) {
1060                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1061                         params.period = 1;
1062                 }
1063         }
1064
1065         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1066                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1067
1068         ptq->decoder = intel_pt_decoder_new(&params);
1069         if (!ptq->decoder)
1070                 goto out_free;
1071
1072         return ptq;
1073
1074 out_free:
1075         zfree(&ptq->event_buf);
1076         zfree(&ptq->last_branch);
1077         zfree(&ptq->chain);
1078         free(ptq);
1079         return NULL;
1080 }
1081
1082 static void intel_pt_free_queue(void *priv)
1083 {
1084         struct intel_pt_queue *ptq = priv;
1085
1086         if (!ptq)
1087                 return;
1088         thread__zput(ptq->thread);
1089         intel_pt_decoder_free(ptq->decoder);
1090         zfree(&ptq->event_buf);
1091         zfree(&ptq->last_branch);
1092         zfree(&ptq->chain);
1093         free(ptq);
1094 }
1095
1096 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1097                                      struct auxtrace_queue *queue)
1098 {
1099         struct intel_pt_queue *ptq = queue->priv;
1100
1101         if (queue->tid == -1 || pt->have_sched_switch) {
1102                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1103                 thread__zput(ptq->thread);
1104         }
1105
1106         if (!ptq->thread && ptq->tid != -1)
1107                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1108
1109         if (ptq->thread) {
1110                 ptq->pid = ptq->thread->pid_;
1111                 if (queue->cpu == -1)
1112                         ptq->cpu = ptq->thread->cpu;
1113         }
1114 }
1115
1116 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1117 {
1118         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1119                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1120         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1121                 if (ptq->state->to_ip)
1122                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1123                                      PERF_IP_FLAG_ASYNC |
1124                                      PERF_IP_FLAG_INTERRUPT;
1125                 else
1126                         ptq->flags = PERF_IP_FLAG_BRANCH |
1127                                      PERF_IP_FLAG_TRACE_END;
1128                 ptq->insn_len = 0;
1129         } else {
1130                 if (ptq->state->from_ip)
1131                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1132                 else
1133                         ptq->flags = PERF_IP_FLAG_BRANCH |
1134                                      PERF_IP_FLAG_TRACE_BEGIN;
1135                 if (ptq->state->flags & INTEL_PT_IN_TX)
1136                         ptq->flags |= PERF_IP_FLAG_IN_TX;
1137                 ptq->insn_len = ptq->state->insn_len;
1138                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1139         }
1140
1141         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1142                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1143         if (ptq->state->type & INTEL_PT_TRACE_END)
1144                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1145 }
1146
1147 static void intel_pt_setup_time_range(struct intel_pt *pt,
1148                                       struct intel_pt_queue *ptq)
1149 {
1150         if (!pt->range_cnt)
1151                 return;
1152
1153         ptq->sel_timestamp = pt->time_ranges[0].start;
1154         ptq->sel_idx = 0;
1155
1156         if (ptq->sel_timestamp) {
1157                 ptq->sel_start = true;
1158         } else {
1159                 ptq->sel_timestamp = pt->time_ranges[0].end;
1160                 ptq->sel_start = false;
1161         }
1162 }
1163
1164 static int intel_pt_setup_queue(struct intel_pt *pt,
1165                                 struct auxtrace_queue *queue,
1166                                 unsigned int queue_nr)
1167 {
1168         struct intel_pt_queue *ptq = queue->priv;
1169
1170         if (list_empty(&queue->head))
1171                 return 0;
1172
1173         if (!ptq) {
1174                 ptq = intel_pt_alloc_queue(pt, queue_nr);
1175                 if (!ptq)
1176                         return -ENOMEM;
1177                 queue->priv = ptq;
1178
1179                 if (queue->cpu != -1)
1180                         ptq->cpu = queue->cpu;
1181                 ptq->tid = queue->tid;
1182
1183                 ptq->cbr_seen = UINT_MAX;
1184
1185                 if (pt->sampling_mode && !pt->snapshot_mode &&
1186                     pt->timeless_decoding)
1187                         ptq->step_through_buffers = true;
1188
1189                 ptq->sync_switch = pt->sync_switch;
1190
1191                 intel_pt_setup_time_range(pt, ptq);
1192         }
1193
1194         if (!ptq->on_heap &&
1195             (!ptq->sync_switch ||
1196              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1197                 const struct intel_pt_state *state;
1198                 int ret;
1199
1200                 if (pt->timeless_decoding)
1201                         return 0;
1202
1203                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1204                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1205                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1206
1207                 if (ptq->sel_start && ptq->sel_timestamp) {
1208                         ret = intel_pt_fast_forward(ptq->decoder,
1209                                                     ptq->sel_timestamp);
1210                         if (ret)
1211                                 return ret;
1212                 }
1213
1214                 while (1) {
1215                         state = intel_pt_decode(ptq->decoder);
1216                         if (state->err) {
1217                                 if (state->err == INTEL_PT_ERR_NODATA) {
1218                                         intel_pt_log("queue %u has no timestamp\n",
1219                                                      queue_nr);
1220                                         return 0;
1221                                 }
1222                                 continue;
1223                         }
1224                         if (state->timestamp)
1225                                 break;
1226                 }
1227
1228                 ptq->timestamp = state->timestamp;
1229                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1230                              queue_nr, ptq->timestamp);
1231                 ptq->state = state;
1232                 ptq->have_sample = true;
1233                 if (ptq->sel_start && ptq->sel_timestamp &&
1234                     ptq->timestamp < ptq->sel_timestamp)
1235                         ptq->have_sample = false;
1236                 intel_pt_sample_flags(ptq);
1237                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1238                 if (ret)
1239                         return ret;
1240                 ptq->on_heap = true;
1241         }
1242
1243         return 0;
1244 }
1245
1246 static int intel_pt_setup_queues(struct intel_pt *pt)
1247 {
1248         unsigned int i;
1249         int ret;
1250
1251         for (i = 0; i < pt->queues.nr_queues; i++) {
1252                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1253                 if (ret)
1254                         return ret;
1255         }
1256         return 0;
1257 }
1258
1259 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1260 {
1261         return pt->synth_opts.initial_skip &&
1262                pt->num_events++ < pt->synth_opts.initial_skip;
1263 }
1264
1265 /*
1266  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1267  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1268  * from this decoder state.
1269  */
1270 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1271 {
1272         return pt->synth_opts.initial_skip &&
1273                pt->num_events + 4 < pt->synth_opts.initial_skip;
1274 }
1275
1276 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1277                                    union perf_event *event,
1278                                    struct perf_sample *sample)
1279 {
1280         event->sample.header.type = PERF_RECORD_SAMPLE;
1281         event->sample.header.size = sizeof(struct perf_event_header);
1282
1283         sample->pid = ptq->pid;
1284         sample->tid = ptq->tid;
1285         sample->cpu = ptq->cpu;
1286         sample->insn_len = ptq->insn_len;
1287         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1288 }
1289
1290 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1291                                    struct intel_pt_queue *ptq,
1292                                    union perf_event *event,
1293                                    struct perf_sample *sample)
1294 {
1295         intel_pt_prep_a_sample(ptq, event, sample);
1296
1297         if (!pt->timeless_decoding)
1298                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1299
1300         sample->ip = ptq->state->from_ip;
1301         sample->cpumode = intel_pt_cpumode(pt, sample->ip);
1302         sample->addr = ptq->state->to_ip;
1303         sample->period = 1;
1304         sample->flags = ptq->flags;
1305
1306         event->sample.header.misc = sample->cpumode;
1307 }
1308
1309 static int intel_pt_inject_event(union perf_event *event,
1310                                  struct perf_sample *sample, u64 type)
1311 {
1312         event->header.size = perf_event__sample_event_size(sample, type, 0);
1313         return perf_event__synthesize_sample(event, type, 0, sample);
1314 }
1315
1316 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1317                                       union perf_event *event,
1318                                       struct perf_sample *sample, u64 type)
1319 {
1320         if (!pt->synth_opts.inject)
1321                 return 0;
1322
1323         return intel_pt_inject_event(event, sample, type);
1324 }
1325
1326 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1327                                         union perf_event *event,
1328                                         struct perf_sample *sample, u64 type)
1329 {
1330         int ret;
1331
1332         ret = intel_pt_opt_inject(pt, event, sample, type);
1333         if (ret)
1334                 return ret;
1335
1336         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1337         if (ret)
1338                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1339
1340         return ret;
1341 }
1342
1343 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1344 {
1345         struct intel_pt *pt = ptq->pt;
1346         union perf_event *event = ptq->event_buf;
1347         struct perf_sample sample = { .ip = 0, };
1348         struct dummy_branch_stack {
1349                 u64                     nr;
1350                 u64                     hw_idx;
1351                 struct branch_entry     entries;
1352         } dummy_bs;
1353
1354         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1355                 return 0;
1356
1357         if (intel_pt_skip_event(pt))
1358                 return 0;
1359
1360         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1361
1362         sample.id = ptq->pt->branches_id;
1363         sample.stream_id = ptq->pt->branches_id;
1364
1365         /*
1366          * perf report cannot handle events without a branch stack when using
1367          * SORT_MODE__BRANCH so make a dummy one.
1368          */
1369         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1370                 dummy_bs = (struct dummy_branch_stack){
1371                         .nr = 1,
1372                         .hw_idx = -1ULL,
1373                         .entries = {
1374                                 .from = sample.ip,
1375                                 .to = sample.addr,
1376                         },
1377                 };
1378                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1379         }
1380
1381         sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1382         if (sample.cyc_cnt) {
1383                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1384                 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1385                 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1386         }
1387
1388         return intel_pt_deliver_synth_event(pt, event, &sample,
1389                                             pt->branches_sample_type);
1390 }
1391
1392 static void intel_pt_prep_sample(struct intel_pt *pt,
1393                                  struct intel_pt_queue *ptq,
1394                                  union perf_event *event,
1395                                  struct perf_sample *sample)
1396 {
1397         intel_pt_prep_b_sample(pt, ptq, event, sample);
1398
1399         if (pt->synth_opts.callchain) {
1400                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1401                                      pt->synth_opts.callchain_sz + 1,
1402                                      sample->ip, pt->kernel_start);
1403                 sample->callchain = ptq->chain;
1404         }
1405
1406         if (pt->synth_opts.last_branch) {
1407                 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1408                                         pt->br_stack_sz);
1409                 sample->branch_stack = ptq->last_branch;
1410         }
1411 }
1412
1413 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1414 {
1415         struct intel_pt *pt = ptq->pt;
1416         union perf_event *event = ptq->event_buf;
1417         struct perf_sample sample = { .ip = 0, };
1418
1419         if (intel_pt_skip_event(pt))
1420                 return 0;
1421
1422         intel_pt_prep_sample(pt, ptq, event, &sample);
1423
1424         sample.id = ptq->pt->instructions_id;
1425         sample.stream_id = ptq->pt->instructions_id;
1426         sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1427
1428         sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1429         if (sample.cyc_cnt) {
1430                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1431                 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1432                 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1433         }
1434
1435         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1436
1437         return intel_pt_deliver_synth_event(pt, event, &sample,
1438                                             pt->instructions_sample_type);
1439 }
1440
1441 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1442 {
1443         struct intel_pt *pt = ptq->pt;
1444         union perf_event *event = ptq->event_buf;
1445         struct perf_sample sample = { .ip = 0, };
1446
1447         if (intel_pt_skip_event(pt))
1448                 return 0;
1449
1450         intel_pt_prep_sample(pt, ptq, event, &sample);
1451
1452         sample.id = ptq->pt->transactions_id;
1453         sample.stream_id = ptq->pt->transactions_id;
1454
1455         return intel_pt_deliver_synth_event(pt, event, &sample,
1456                                             pt->transactions_sample_type);
1457 }
1458
1459 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1460                                    struct intel_pt_queue *ptq,
1461                                    union perf_event *event,
1462                                    struct perf_sample *sample)
1463 {
1464         intel_pt_prep_sample(pt, ptq, event, sample);
1465
1466         /*
1467          * Zero IP is used to mean "trace start" but that is not the case for
1468          * power or PTWRITE events with no IP, so clear the flags.
1469          */
1470         if (!sample->ip)
1471                 sample->flags = 0;
1472 }
1473
1474 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1475 {
1476         struct intel_pt *pt = ptq->pt;
1477         union perf_event *event = ptq->event_buf;
1478         struct perf_sample sample = { .ip = 0, };
1479         struct perf_synth_intel_ptwrite raw;
1480
1481         if (intel_pt_skip_event(pt))
1482                 return 0;
1483
1484         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1485
1486         sample.id = ptq->pt->ptwrites_id;
1487         sample.stream_id = ptq->pt->ptwrites_id;
1488
1489         raw.flags = 0;
1490         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1491         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1492
1493         sample.raw_size = perf_synth__raw_size(raw);
1494         sample.raw_data = perf_synth__raw_data(&raw);
1495
1496         return intel_pt_deliver_synth_event(pt, event, &sample,
1497                                             pt->ptwrites_sample_type);
1498 }
1499
1500 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1501 {
1502         struct intel_pt *pt = ptq->pt;
1503         union perf_event *event = ptq->event_buf;
1504         struct perf_sample sample = { .ip = 0, };
1505         struct perf_synth_intel_cbr raw;
1506         u32 flags;
1507
1508         if (intel_pt_skip_cbr_event(pt))
1509                 return 0;
1510
1511         ptq->cbr_seen = ptq->state->cbr;
1512
1513         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1514
1515         sample.id = ptq->pt->cbr_id;
1516         sample.stream_id = ptq->pt->cbr_id;
1517
1518         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1519         raw.flags = cpu_to_le32(flags);
1520         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1521         raw.reserved3 = 0;
1522
1523         sample.raw_size = perf_synth__raw_size(raw);
1524         sample.raw_data = perf_synth__raw_data(&raw);
1525
1526         return intel_pt_deliver_synth_event(pt, event, &sample,
1527                                             pt->pwr_events_sample_type);
1528 }
1529
1530 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1531 {
1532         struct intel_pt *pt = ptq->pt;
1533         union perf_event *event = ptq->event_buf;
1534         struct perf_sample sample = { .ip = 0, };
1535         struct perf_synth_intel_mwait raw;
1536
1537         if (intel_pt_skip_event(pt))
1538                 return 0;
1539
1540         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1541
1542         sample.id = ptq->pt->mwait_id;
1543         sample.stream_id = ptq->pt->mwait_id;
1544
1545         raw.reserved = 0;
1546         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1547
1548         sample.raw_size = perf_synth__raw_size(raw);
1549         sample.raw_data = perf_synth__raw_data(&raw);
1550
1551         return intel_pt_deliver_synth_event(pt, event, &sample,
1552                                             pt->pwr_events_sample_type);
1553 }
1554
1555 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1556 {
1557         struct intel_pt *pt = ptq->pt;
1558         union perf_event *event = ptq->event_buf;
1559         struct perf_sample sample = { .ip = 0, };
1560         struct perf_synth_intel_pwre raw;
1561
1562         if (intel_pt_skip_event(pt))
1563                 return 0;
1564
1565         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1566
1567         sample.id = ptq->pt->pwre_id;
1568         sample.stream_id = ptq->pt->pwre_id;
1569
1570         raw.reserved = 0;
1571         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1572
1573         sample.raw_size = perf_synth__raw_size(raw);
1574         sample.raw_data = perf_synth__raw_data(&raw);
1575
1576         return intel_pt_deliver_synth_event(pt, event, &sample,
1577                                             pt->pwr_events_sample_type);
1578 }
1579
1580 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1581 {
1582         struct intel_pt *pt = ptq->pt;
1583         union perf_event *event = ptq->event_buf;
1584         struct perf_sample sample = { .ip = 0, };
1585         struct perf_synth_intel_exstop raw;
1586
1587         if (intel_pt_skip_event(pt))
1588                 return 0;
1589
1590         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1591
1592         sample.id = ptq->pt->exstop_id;
1593         sample.stream_id = ptq->pt->exstop_id;
1594
1595         raw.flags = 0;
1596         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1597
1598         sample.raw_size = perf_synth__raw_size(raw);
1599         sample.raw_data = perf_synth__raw_data(&raw);
1600
1601         return intel_pt_deliver_synth_event(pt, event, &sample,
1602                                             pt->pwr_events_sample_type);
1603 }
1604
1605 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1606 {
1607         struct intel_pt *pt = ptq->pt;
1608         union perf_event *event = ptq->event_buf;
1609         struct perf_sample sample = { .ip = 0, };
1610         struct perf_synth_intel_pwrx raw;
1611
1612         if (intel_pt_skip_event(pt))
1613                 return 0;
1614
1615         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1616
1617         sample.id = ptq->pt->pwrx_id;
1618         sample.stream_id = ptq->pt->pwrx_id;
1619
1620         raw.reserved = 0;
1621         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1622
1623         sample.raw_size = perf_synth__raw_size(raw);
1624         sample.raw_data = perf_synth__raw_data(&raw);
1625
1626         return intel_pt_deliver_synth_event(pt, event, &sample,
1627                                             pt->pwr_events_sample_type);
1628 }
1629
1630 /*
1631  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
1632  * intel_pt_add_gp_regs().
1633  */
1634 static const int pebs_gp_regs[] = {
1635         [PERF_REG_X86_FLAGS]    = 1,
1636         [PERF_REG_X86_IP]       = 2,
1637         [PERF_REG_X86_AX]       = 3,
1638         [PERF_REG_X86_CX]       = 4,
1639         [PERF_REG_X86_DX]       = 5,
1640         [PERF_REG_X86_BX]       = 6,
1641         [PERF_REG_X86_SP]       = 7,
1642         [PERF_REG_X86_BP]       = 8,
1643         [PERF_REG_X86_SI]       = 9,
1644         [PERF_REG_X86_DI]       = 10,
1645         [PERF_REG_X86_R8]       = 11,
1646         [PERF_REG_X86_R9]       = 12,
1647         [PERF_REG_X86_R10]      = 13,
1648         [PERF_REG_X86_R11]      = 14,
1649         [PERF_REG_X86_R12]      = 15,
1650         [PERF_REG_X86_R13]      = 16,
1651         [PERF_REG_X86_R14]      = 17,
1652         [PERF_REG_X86_R15]      = 18,
1653 };
1654
1655 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
1656                                  const struct intel_pt_blk_items *items,
1657                                  u64 regs_mask)
1658 {
1659         const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
1660         u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
1661         u32 bit;
1662         int i;
1663
1664         for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
1665                 /* Get the PEBS gp_regs array index */
1666                 int n = pebs_gp_regs[i] - 1;
1667
1668                 if (n < 0)
1669                         continue;
1670                 /*
1671                  * Add only registers that were requested (i.e. 'regs_mask') and
1672                  * that were provided (i.e. 'mask'), and update the resulting
1673                  * mask (i.e. 'intr_regs->mask') accordingly.
1674                  */
1675                 if (mask & 1 << n && regs_mask & bit) {
1676                         intr_regs->mask |= bit;
1677                         *pos++ = gp_regs[n];
1678                 }
1679         }
1680
1681         return pos;
1682 }
1683
1684 #ifndef PERF_REG_X86_XMM0
1685 #define PERF_REG_X86_XMM0 32
1686 #endif
1687
1688 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
1689                              const struct intel_pt_blk_items *items,
1690                              u64 regs_mask)
1691 {
1692         u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
1693         const u64 *xmm = items->xmm;
1694
1695         /*
1696          * If there are any XMM registers, then there should be all of them.
1697          * Nevertheless, follow the logic to add only registers that were
1698          * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
1699          * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
1700          */
1701         intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
1702
1703         for (; mask; mask >>= 1, xmm++) {
1704                 if (mask & 1)
1705                         *pos++ = *xmm;
1706         }
1707 }
1708
1709 #define LBR_INFO_MISPRED        (1ULL << 63)
1710 #define LBR_INFO_IN_TX          (1ULL << 62)
1711 #define LBR_INFO_ABORT          (1ULL << 61)
1712 #define LBR_INFO_CYCLES         0xffff
1713
1714 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
1715 static u64 intel_pt_lbr_flags(u64 info)
1716 {
1717         union {
1718                 struct branch_flags flags;
1719                 u64 result;
1720         } u;
1721
1722         u.result          = 0;
1723         u.flags.mispred   = !!(info & LBR_INFO_MISPRED);
1724         u.flags.predicted = !(info & LBR_INFO_MISPRED);
1725         u.flags.in_tx     = !!(info & LBR_INFO_IN_TX);
1726         u.flags.abort     = !!(info & LBR_INFO_ABORT);
1727         u.flags.cycles    = info & LBR_INFO_CYCLES;
1728
1729         return u.result;
1730 }
1731
1732 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
1733                               const struct intel_pt_blk_items *items)
1734 {
1735         u64 *to;
1736         int i;
1737
1738         br_stack->nr = 0;
1739
1740         to = &br_stack->entries[0].from;
1741
1742         for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
1743                 u32 mask = items->mask[i];
1744                 const u64 *from = items->val[i];
1745
1746                 for (; mask; mask >>= 3, from += 3) {
1747                         if ((mask & 7) == 7) {
1748                                 *to++ = from[0];
1749                                 *to++ = from[1];
1750                                 *to++ = intel_pt_lbr_flags(from[2]);
1751                                 br_stack->nr += 1;
1752                         }
1753                 }
1754         }
1755 }
1756
1757 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
1758 {
1759         const struct intel_pt_blk_items *items = &ptq->state->items;
1760         struct perf_sample sample = { .ip = 0, };
1761         union perf_event *event = ptq->event_buf;
1762         struct intel_pt *pt = ptq->pt;
1763         struct evsel *evsel = pt->pebs_evsel;
1764         u64 sample_type = evsel->core.attr.sample_type;
1765         u64 id = evsel->core.id[0];
1766         u8 cpumode;
1767         u64 regs[8 * sizeof(sample.intr_regs.mask)];
1768
1769         if (intel_pt_skip_event(pt))
1770                 return 0;
1771
1772         intel_pt_prep_a_sample(ptq, event, &sample);
1773
1774         sample.id = id;
1775         sample.stream_id = id;
1776
1777         if (!evsel->core.attr.freq)
1778                 sample.period = evsel->core.attr.sample_period;
1779
1780         /* No support for non-zero CS base */
1781         if (items->has_ip)
1782                 sample.ip = items->ip;
1783         else if (items->has_rip)
1784                 sample.ip = items->rip;
1785         else
1786                 sample.ip = ptq->state->from_ip;
1787
1788         /* No support for guest mode at this time */
1789         cpumode = sample.ip < ptq->pt->kernel_start ?
1790                   PERF_RECORD_MISC_USER :
1791                   PERF_RECORD_MISC_KERNEL;
1792
1793         event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
1794
1795         sample.cpumode = cpumode;
1796
1797         if (sample_type & PERF_SAMPLE_TIME) {
1798                 u64 timestamp = 0;
1799
1800                 if (items->has_timestamp)
1801                         timestamp = items->timestamp;
1802                 else if (!pt->timeless_decoding)
1803                         timestamp = ptq->timestamp;
1804                 if (timestamp)
1805                         sample.time = tsc_to_perf_time(timestamp, &pt->tc);
1806         }
1807
1808         if (sample_type & PERF_SAMPLE_CALLCHAIN &&
1809             pt->synth_opts.callchain) {
1810                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1811                                      pt->synth_opts.callchain_sz, sample.ip,
1812                                      pt->kernel_start);
1813                 sample.callchain = ptq->chain;
1814         }
1815
1816         if (sample_type & PERF_SAMPLE_REGS_INTR &&
1817             (items->mask[INTEL_PT_GP_REGS_POS] ||
1818              items->mask[INTEL_PT_XMM_POS])) {
1819                 u64 regs_mask = evsel->core.attr.sample_regs_intr;
1820                 u64 *pos;
1821
1822                 sample.intr_regs.abi = items->is_32_bit ?
1823                                        PERF_SAMPLE_REGS_ABI_32 :
1824                                        PERF_SAMPLE_REGS_ABI_64;
1825                 sample.intr_regs.regs = regs;
1826
1827                 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
1828
1829                 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
1830         }
1831
1832         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1833                 if (items->mask[INTEL_PT_LBR_0_POS] ||
1834                     items->mask[INTEL_PT_LBR_1_POS] ||
1835                     items->mask[INTEL_PT_LBR_2_POS]) {
1836                         intel_pt_add_lbrs(ptq->last_branch, items);
1837                 } else if (pt->synth_opts.last_branch) {
1838                         thread_stack__br_sample(ptq->thread, ptq->cpu,
1839                                                 ptq->last_branch,
1840                                                 pt->br_stack_sz);
1841                 } else {
1842                         ptq->last_branch->nr = 0;
1843                 }
1844                 sample.branch_stack = ptq->last_branch;
1845         }
1846
1847         if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
1848                 sample.addr = items->mem_access_address;
1849
1850         if (sample_type & PERF_SAMPLE_WEIGHT) {
1851                 /*
1852                  * Refer kernel's setup_pebs_adaptive_sample_data() and
1853                  * intel_hsw_weight().
1854                  */
1855                 if (items->has_mem_access_latency)
1856                         sample.weight = items->mem_access_latency;
1857                 if (!sample.weight && items->has_tsx_aux_info) {
1858                         /* Cycles last block */
1859                         sample.weight = (u32)items->tsx_aux_info;
1860                 }
1861         }
1862
1863         if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
1864                 u64 ax = items->has_rax ? items->rax : 0;
1865                 /* Refer kernel's intel_hsw_transaction() */
1866                 u64 txn = (u8)(items->tsx_aux_info >> 32);
1867
1868                 /* For RTM XABORTs also log the abort code from AX */
1869                 if (txn & PERF_TXN_TRANSACTION && ax & 1)
1870                         txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1871                 sample.transaction = txn;
1872         }
1873
1874         return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
1875 }
1876
1877 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1878                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp)
1879 {
1880         union perf_event event;
1881         char msg[MAX_AUXTRACE_ERROR_MSG];
1882         int err;
1883
1884         if (pt->synth_opts.error_minus_flags) {
1885                 if (code == INTEL_PT_ERR_OVR &&
1886                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
1887                         return 0;
1888                 if (code == INTEL_PT_ERR_LOST &&
1889                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
1890                         return 0;
1891         }
1892
1893         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1894
1895         auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1896                              code, cpu, pid, tid, ip, msg, timestamp);
1897
1898         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1899         if (err)
1900                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1901                        err);
1902
1903         return err;
1904 }
1905
1906 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
1907                                  const struct intel_pt_state *state)
1908 {
1909         struct intel_pt *pt = ptq->pt;
1910         u64 tm = ptq->timestamp;
1911
1912         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
1913
1914         return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
1915                                     ptq->tid, state->from_ip, tm);
1916 }
1917
1918 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1919 {
1920         struct auxtrace_queue *queue;
1921         pid_t tid = ptq->next_tid;
1922         int err;
1923
1924         if (tid == -1)
1925                 return 0;
1926
1927         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1928
1929         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1930
1931         queue = &pt->queues.queue_array[ptq->queue_nr];
1932         intel_pt_set_pid_tid_cpu(pt, queue);
1933
1934         ptq->next_tid = -1;
1935
1936         return err;
1937 }
1938
1939 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1940 {
1941         struct intel_pt *pt = ptq->pt;
1942
1943         return ip == pt->switch_ip &&
1944                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1945                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1946                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1947 }
1948
1949 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1950                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
1951
1952 static int intel_pt_sample(struct intel_pt_queue *ptq)
1953 {
1954         const struct intel_pt_state *state = ptq->state;
1955         struct intel_pt *pt = ptq->pt;
1956         int err;
1957
1958         if (!ptq->have_sample)
1959                 return 0;
1960
1961         ptq->have_sample = false;
1962
1963         if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
1964                 /*
1965                  * Cycle count and instruction count only go together to create
1966                  * a valid IPC ratio when the cycle count changes.
1967                  */
1968                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
1969                 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
1970         }
1971
1972         /*
1973          * Do PEBS first to allow for the possibility that the PEBS timestamp
1974          * precedes the current timestamp.
1975          */
1976         if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
1977                 err = intel_pt_synth_pebs_sample(ptq);
1978                 if (err)
1979                         return err;
1980         }
1981
1982         if (pt->sample_pwr_events) {
1983                 if (ptq->state->cbr != ptq->cbr_seen) {
1984                         err = intel_pt_synth_cbr_sample(ptq);
1985                         if (err)
1986                                 return err;
1987                 }
1988                 if (state->type & INTEL_PT_PWR_EVT) {
1989                         if (state->type & INTEL_PT_MWAIT_OP) {
1990                                 err = intel_pt_synth_mwait_sample(ptq);
1991                                 if (err)
1992                                         return err;
1993                         }
1994                         if (state->type & INTEL_PT_PWR_ENTRY) {
1995                                 err = intel_pt_synth_pwre_sample(ptq);
1996                                 if (err)
1997                                         return err;
1998                         }
1999                         if (state->type & INTEL_PT_EX_STOP) {
2000                                 err = intel_pt_synth_exstop_sample(ptq);
2001                                 if (err)
2002                                         return err;
2003                         }
2004                         if (state->type & INTEL_PT_PWR_EXIT) {
2005                                 err = intel_pt_synth_pwrx_sample(ptq);
2006                                 if (err)
2007                                         return err;
2008                         }
2009                 }
2010         }
2011
2012         if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2013                 err = intel_pt_synth_instruction_sample(ptq);
2014                 if (err)
2015                         return err;
2016         }
2017
2018         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2019                 err = intel_pt_synth_transaction_sample(ptq);
2020                 if (err)
2021                         return err;
2022         }
2023
2024         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2025                 err = intel_pt_synth_ptwrite_sample(ptq);
2026                 if (err)
2027                         return err;
2028         }
2029
2030         if (!(state->type & INTEL_PT_BRANCH))
2031                 return 0;
2032
2033         if (pt->use_thread_stack) {
2034                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2035                                     state->from_ip, state->to_ip, ptq->insn_len,
2036                                     state->trace_nr, pt->callstack,
2037                                     pt->br_stack_sz_plus,
2038                                     pt->mispred_all);
2039         } else {
2040                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2041         }
2042
2043         if (pt->sample_branches) {
2044                 err = intel_pt_synth_branch_sample(ptq);
2045                 if (err)
2046                         return err;
2047         }
2048
2049         if (!ptq->sync_switch)
2050                 return 0;
2051
2052         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2053                 switch (ptq->switch_state) {
2054                 case INTEL_PT_SS_NOT_TRACING:
2055                 case INTEL_PT_SS_UNKNOWN:
2056                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2057                         err = intel_pt_next_tid(pt, ptq);
2058                         if (err)
2059                                 return err;
2060                         ptq->switch_state = INTEL_PT_SS_TRACING;
2061                         break;
2062                 default:
2063                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2064                         return 1;
2065                 }
2066         } else if (!state->to_ip) {
2067                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2068         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2069                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2070         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2071                    state->to_ip == pt->ptss_ip &&
2072                    (ptq->flags & PERF_IP_FLAG_CALL)) {
2073                 ptq->switch_state = INTEL_PT_SS_TRACING;
2074         }
2075
2076         return 0;
2077 }
2078
2079 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2080 {
2081         struct machine *machine = pt->machine;
2082         struct map *map;
2083         struct symbol *sym, *start;
2084         u64 ip, switch_ip = 0;
2085         const char *ptss;
2086
2087         if (ptss_ip)
2088                 *ptss_ip = 0;
2089
2090         map = machine__kernel_map(machine);
2091         if (!map)
2092                 return 0;
2093
2094         if (map__load(map))
2095                 return 0;
2096
2097         start = dso__first_symbol(map->dso);
2098
2099         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2100                 if (sym->binding == STB_GLOBAL &&
2101                     !strcmp(sym->name, "__switch_to")) {
2102                         ip = map->unmap_ip(map, sym->start);
2103                         if (ip >= map->start && ip < map->end) {
2104                                 switch_ip = ip;
2105                                 break;
2106                         }
2107                 }
2108         }
2109
2110         if (!switch_ip || !ptss_ip)
2111                 return 0;
2112
2113         if (pt->have_sched_switch == 1)
2114                 ptss = "perf_trace_sched_switch";
2115         else
2116                 ptss = "__perf_event_task_sched_out";
2117
2118         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2119                 if (!strcmp(sym->name, ptss)) {
2120                         ip = map->unmap_ip(map, sym->start);
2121                         if (ip >= map->start && ip < map->end) {
2122                                 *ptss_ip = ip;
2123                                 break;
2124                         }
2125                 }
2126         }
2127
2128         return switch_ip;
2129 }
2130
2131 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2132 {
2133         unsigned int i;
2134
2135         pt->sync_switch = true;
2136
2137         for (i = 0; i < pt->queues.nr_queues; i++) {
2138                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2139                 struct intel_pt_queue *ptq = queue->priv;
2140
2141                 if (ptq)
2142                         ptq->sync_switch = true;
2143         }
2144 }
2145
2146 /*
2147  * To filter against time ranges, it is only necessary to look at the next start
2148  * or end time.
2149  */
2150 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2151 {
2152         struct intel_pt *pt = ptq->pt;
2153
2154         if (ptq->sel_start) {
2155                 /* Next time is an end time */
2156                 ptq->sel_start = false;
2157                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2158                 return true;
2159         } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2160                 /* Next time is a start time */
2161                 ptq->sel_start = true;
2162                 ptq->sel_idx += 1;
2163                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2164                 return true;
2165         }
2166
2167         /* No next time */
2168         return false;
2169 }
2170
2171 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2172 {
2173         int err;
2174
2175         while (1) {
2176                 if (ptq->sel_start) {
2177                         if (ptq->timestamp >= ptq->sel_timestamp) {
2178                                 /* After start time, so consider next time */
2179                                 intel_pt_next_time(ptq);
2180                                 if (!ptq->sel_timestamp) {
2181                                         /* No end time */
2182                                         return 0;
2183                                 }
2184                                 /* Check against end time */
2185                                 continue;
2186                         }
2187                         /* Before start time, so fast forward */
2188                         ptq->have_sample = false;
2189                         if (ptq->sel_timestamp > *ff_timestamp) {
2190                                 if (ptq->sync_switch) {
2191                                         intel_pt_next_tid(ptq->pt, ptq);
2192                                         ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2193                                 }
2194                                 *ff_timestamp = ptq->sel_timestamp;
2195                                 err = intel_pt_fast_forward(ptq->decoder,
2196                                                             ptq->sel_timestamp);
2197                                 if (err)
2198                                         return err;
2199                         }
2200                         return 0;
2201                 } else if (ptq->timestamp > ptq->sel_timestamp) {
2202                         /* After end time, so consider next time */
2203                         if (!intel_pt_next_time(ptq)) {
2204                                 /* No next time range, so stop decoding */
2205                                 ptq->have_sample = false;
2206                                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2207                                 return 1;
2208                         }
2209                         /* Check against next start time */
2210                         continue;
2211                 } else {
2212                         /* Before end time */
2213                         return 0;
2214                 }
2215         }
2216 }
2217
2218 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2219 {
2220         const struct intel_pt_state *state = ptq->state;
2221         struct intel_pt *pt = ptq->pt;
2222         u64 ff_timestamp = 0;
2223         int err;
2224
2225         if (!pt->kernel_start) {
2226                 pt->kernel_start = machine__kernel_start(pt->machine);
2227                 if (pt->per_cpu_mmaps &&
2228                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2229                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2230                     !pt->sampling_mode) {
2231                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2232                         if (pt->switch_ip) {
2233                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2234                                              pt->switch_ip, pt->ptss_ip);
2235                                 intel_pt_enable_sync_switch(pt);
2236                         }
2237                 }
2238         }
2239
2240         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2241                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2242         while (1) {
2243                 err = intel_pt_sample(ptq);
2244                 if (err)
2245                         return err;
2246
2247                 state = intel_pt_decode(ptq->decoder);
2248                 if (state->err) {
2249                         if (state->err == INTEL_PT_ERR_NODATA)
2250                                 return 1;
2251                         if (ptq->sync_switch &&
2252                             state->from_ip >= pt->kernel_start) {
2253                                 ptq->sync_switch = false;
2254                                 intel_pt_next_tid(pt, ptq);
2255                         }
2256                         if (pt->synth_opts.errors) {
2257                                 err = intel_ptq_synth_error(ptq, state);
2258                                 if (err)
2259                                         return err;
2260                         }
2261                         continue;
2262                 }
2263
2264                 ptq->state = state;
2265                 ptq->have_sample = true;
2266                 intel_pt_sample_flags(ptq);
2267
2268                 /* Use estimated TSC upon return to user space */
2269                 if (pt->est_tsc &&
2270                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2271                     state->to_ip && state->to_ip < pt->kernel_start) {
2272                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2273                                      state->timestamp, state->est_timestamp);
2274                         ptq->timestamp = state->est_timestamp;
2275                 /* Use estimated TSC in unknown switch state */
2276                 } else if (ptq->sync_switch &&
2277                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2278                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
2279                            ptq->next_tid == -1) {
2280                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2281                                      state->timestamp, state->est_timestamp);
2282                         ptq->timestamp = state->est_timestamp;
2283                 } else if (state->timestamp > ptq->timestamp) {
2284                         ptq->timestamp = state->timestamp;
2285                 }
2286
2287                 if (ptq->sel_timestamp) {
2288                         err = intel_pt_time_filter(ptq, &ff_timestamp);
2289                         if (err)
2290                                 return err;
2291                 }
2292
2293                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2294                         *timestamp = ptq->timestamp;
2295                         return 0;
2296                 }
2297         }
2298         return 0;
2299 }
2300
2301 static inline int intel_pt_update_queues(struct intel_pt *pt)
2302 {
2303         if (pt->queues.new_data) {
2304                 pt->queues.new_data = false;
2305                 return intel_pt_setup_queues(pt);
2306         }
2307         return 0;
2308 }
2309
2310 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2311 {
2312         unsigned int queue_nr;
2313         u64 ts;
2314         int ret;
2315
2316         while (1) {
2317                 struct auxtrace_queue *queue;
2318                 struct intel_pt_queue *ptq;
2319
2320                 if (!pt->heap.heap_cnt)
2321                         return 0;
2322
2323                 if (pt->heap.heap_array[0].ordinal >= timestamp)
2324                         return 0;
2325
2326                 queue_nr = pt->heap.heap_array[0].queue_nr;
2327                 queue = &pt->queues.queue_array[queue_nr];
2328                 ptq = queue->priv;
2329
2330                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2331                              queue_nr, pt->heap.heap_array[0].ordinal,
2332                              timestamp);
2333
2334                 auxtrace_heap__pop(&pt->heap);
2335
2336                 if (pt->heap.heap_cnt) {
2337                         ts = pt->heap.heap_array[0].ordinal + 1;
2338                         if (ts > timestamp)
2339                                 ts = timestamp;
2340                 } else {
2341                         ts = timestamp;
2342                 }
2343
2344                 intel_pt_set_pid_tid_cpu(pt, queue);
2345
2346                 ret = intel_pt_run_decoder(ptq, &ts);
2347
2348                 if (ret < 0) {
2349                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
2350                         return ret;
2351                 }
2352
2353                 if (!ret) {
2354                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2355                         if (ret < 0)
2356                                 return ret;
2357                 } else {
2358                         ptq->on_heap = false;
2359                 }
2360         }
2361
2362         return 0;
2363 }
2364
2365 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2366                                             u64 time_)
2367 {
2368         struct auxtrace_queues *queues = &pt->queues;
2369         unsigned int i;
2370         u64 ts = 0;
2371
2372         for (i = 0; i < queues->nr_queues; i++) {
2373                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2374                 struct intel_pt_queue *ptq = queue->priv;
2375
2376                 if (ptq && (tid == -1 || ptq->tid == tid)) {
2377                         ptq->time = time_;
2378                         intel_pt_set_pid_tid_cpu(pt, queue);
2379                         intel_pt_run_decoder(ptq, &ts);
2380                 }
2381         }
2382         return 0;
2383 }
2384
2385 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
2386                                             struct auxtrace_queue *queue,
2387                                             struct perf_sample *sample)
2388 {
2389         struct machine *m = ptq->pt->machine;
2390
2391         ptq->pid = sample->pid;
2392         ptq->tid = sample->tid;
2393         ptq->cpu = queue->cpu;
2394
2395         intel_pt_log("queue %u cpu %d pid %d tid %d\n",
2396                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2397
2398         thread__zput(ptq->thread);
2399
2400         if (ptq->tid == -1)
2401                 return;
2402
2403         if (ptq->pid == -1) {
2404                 ptq->thread = machine__find_thread(m, -1, ptq->tid);
2405                 if (ptq->thread)
2406                         ptq->pid = ptq->thread->pid_;
2407                 return;
2408         }
2409
2410         ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
2411 }
2412
2413 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
2414                                             struct perf_sample *sample)
2415 {
2416         struct auxtrace_queue *queue;
2417         struct intel_pt_queue *ptq;
2418         u64 ts = 0;
2419
2420         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
2421         if (!queue)
2422                 return -EINVAL;
2423
2424         ptq = queue->priv;
2425         if (!ptq)
2426                 return 0;
2427
2428         ptq->stop = false;
2429         ptq->time = sample->time;
2430         intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
2431         intel_pt_run_decoder(ptq, &ts);
2432         return 0;
2433 }
2434
2435 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
2436 {
2437         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
2438                                     sample->pid, sample->tid, 0, sample->time);
2439 }
2440
2441 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
2442 {
2443         unsigned i, j;
2444
2445         if (cpu < 0 || !pt->queues.nr_queues)
2446                 return NULL;
2447
2448         if ((unsigned)cpu >= pt->queues.nr_queues)
2449                 i = pt->queues.nr_queues - 1;
2450         else
2451                 i = cpu;
2452
2453         if (pt->queues.queue_array[i].cpu == cpu)
2454                 return pt->queues.queue_array[i].priv;
2455
2456         for (j = 0; i > 0; j++) {
2457                 if (pt->queues.queue_array[--i].cpu == cpu)
2458                         return pt->queues.queue_array[i].priv;
2459         }
2460
2461         for (; j < pt->queues.nr_queues; j++) {
2462                 if (pt->queues.queue_array[j].cpu == cpu)
2463                         return pt->queues.queue_array[j].priv;
2464         }
2465
2466         return NULL;
2467 }
2468
2469 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
2470                                 u64 timestamp)
2471 {
2472         struct intel_pt_queue *ptq;
2473         int err;
2474
2475         if (!pt->sync_switch)
2476                 return 1;
2477
2478         ptq = intel_pt_cpu_to_ptq(pt, cpu);
2479         if (!ptq || !ptq->sync_switch)
2480                 return 1;
2481
2482         switch (ptq->switch_state) {
2483         case INTEL_PT_SS_NOT_TRACING:
2484                 break;
2485         case INTEL_PT_SS_UNKNOWN:
2486         case INTEL_PT_SS_TRACING:
2487                 ptq->next_tid = tid;
2488                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
2489                 return 0;
2490         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2491                 if (!ptq->on_heap) {
2492                         ptq->timestamp = perf_time_to_tsc(timestamp,
2493                                                           &pt->tc);
2494                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
2495                                                  ptq->timestamp);
2496                         if (err)
2497                                 return err;
2498                         ptq->on_heap = true;
2499                 }
2500                 ptq->switch_state = INTEL_PT_SS_TRACING;
2501                 break;
2502         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2503                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
2504                 break;
2505         default:
2506                 break;
2507         }
2508
2509         ptq->next_tid = -1;
2510
2511         return 1;
2512 }
2513
2514 static int intel_pt_process_switch(struct intel_pt *pt,
2515                                    struct perf_sample *sample)
2516 {
2517         struct evsel *evsel;
2518         pid_t tid;
2519         int cpu, ret;
2520
2521         evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
2522         if (evsel != pt->switch_evsel)
2523                 return 0;
2524
2525         tid = evsel__intval(evsel, sample, "next_pid");
2526         cpu = sample->cpu;
2527
2528         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2529                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
2530                      &pt->tc));
2531
2532         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2533         if (ret <= 0)
2534                 return ret;
2535
2536         return machine__set_current_tid(pt->machine, cpu, -1, tid);
2537 }
2538
2539 static int intel_pt_context_switch_in(struct intel_pt *pt,
2540                                       struct perf_sample *sample)
2541 {
2542         pid_t pid = sample->pid;
2543         pid_t tid = sample->tid;
2544         int cpu = sample->cpu;
2545
2546         if (pt->sync_switch) {
2547                 struct intel_pt_queue *ptq;
2548
2549                 ptq = intel_pt_cpu_to_ptq(pt, cpu);
2550                 if (ptq && ptq->sync_switch) {
2551                         ptq->next_tid = -1;
2552                         switch (ptq->switch_state) {
2553                         case INTEL_PT_SS_NOT_TRACING:
2554                         case INTEL_PT_SS_UNKNOWN:
2555                         case INTEL_PT_SS_TRACING:
2556                                 break;
2557                         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
2558                         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2559                                 ptq->switch_state = INTEL_PT_SS_TRACING;
2560                                 break;
2561                         default:
2562                                 break;
2563                         }
2564                 }
2565         }
2566
2567         /*
2568          * If the current tid has not been updated yet, ensure it is now that
2569          * a "switch in" event has occurred.
2570          */
2571         if (machine__get_current_tid(pt->machine, cpu) == tid)
2572                 return 0;
2573
2574         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2575 }
2576
2577 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
2578                                    struct perf_sample *sample)
2579 {
2580         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2581         pid_t pid, tid;
2582         int cpu, ret;
2583
2584         cpu = sample->cpu;
2585
2586         if (pt->have_sched_switch == 3) {
2587                 if (!out)
2588                         return intel_pt_context_switch_in(pt, sample);
2589                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
2590                         pr_err("Expecting CPU-wide context switch event\n");
2591                         return -EINVAL;
2592                 }
2593                 pid = event->context_switch.next_prev_pid;
2594                 tid = event->context_switch.next_prev_tid;
2595         } else {
2596                 if (out)
2597                         return 0;
2598                 pid = sample->pid;
2599                 tid = sample->tid;
2600         }
2601
2602         if (tid == -1) {
2603                 pr_err("context_switch event has no tid\n");
2604                 return -EINVAL;
2605         }
2606
2607         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
2608         if (ret <= 0)
2609                 return ret;
2610
2611         return machine__set_current_tid(pt->machine, cpu, pid, tid);
2612 }
2613
2614 static int intel_pt_process_itrace_start(struct intel_pt *pt,
2615                                          union perf_event *event,
2616                                          struct perf_sample *sample)
2617 {
2618         if (!pt->per_cpu_mmaps)
2619                 return 0;
2620
2621         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
2622                      sample->cpu, event->itrace_start.pid,
2623                      event->itrace_start.tid, sample->time,
2624                      perf_time_to_tsc(sample->time, &pt->tc));
2625
2626         return machine__set_current_tid(pt->machine, sample->cpu,
2627                                         event->itrace_start.pid,
2628                                         event->itrace_start.tid);
2629 }
2630
2631 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
2632                              struct addr_location *al)
2633 {
2634         if (!al->map || addr < al->map->start || addr >= al->map->end) {
2635                 if (!thread__find_map(thread, cpumode, addr, al))
2636                         return -1;
2637         }
2638
2639         return 0;
2640 }
2641
2642 /* Invalidate all instruction cache entries that overlap the text poke */
2643 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
2644 {
2645         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2646         u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
2647         /* Assume text poke begins in a basic block no more than 4096 bytes */
2648         int cnt = 4096 + event->text_poke.new_len;
2649         struct thread *thread = pt->unknown_thread;
2650         struct addr_location al = { .map = NULL };
2651         struct machine *machine = pt->machine;
2652         struct intel_pt_cache_entry *e;
2653         u64 offset;
2654
2655         if (!event->text_poke.new_len)
2656                 return 0;
2657
2658         for (; cnt; cnt--, addr--) {
2659                 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
2660                         if (addr < event->text_poke.addr)
2661                                 return 0;
2662                         continue;
2663                 }
2664
2665                 if (!al.map->dso || !al.map->dso->auxtrace_cache)
2666                         continue;
2667
2668                 offset = al.map->map_ip(al.map, addr);
2669
2670                 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
2671                 if (!e)
2672                         continue;
2673
2674                 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
2675                         /*
2676                          * No overlap. Working backwards there cannot be another
2677                          * basic block that overlaps the text poke if there is a
2678                          * branch instruction before the text poke address.
2679                          */
2680                         if (e->branch != INTEL_PT_BR_NO_BRANCH)
2681                                 return 0;
2682                 } else {
2683                         intel_pt_cache_invalidate(al.map->dso, machine, offset);
2684                         intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
2685                                      al.map->dso->long_name, addr);
2686                 }
2687         }
2688
2689         return 0;
2690 }
2691
2692 static int intel_pt_process_event(struct perf_session *session,
2693                                   union perf_event *event,
2694                                   struct perf_sample *sample,
2695                                   struct perf_tool *tool)
2696 {
2697         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2698                                            auxtrace);
2699         u64 timestamp;
2700         int err = 0;
2701
2702         if (dump_trace)
2703                 return 0;
2704
2705         if (!tool->ordered_events) {
2706                 pr_err("Intel Processor Trace requires ordered events\n");
2707                 return -EINVAL;
2708         }
2709
2710         if (sample->time && sample->time != (u64)-1)
2711                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2712         else
2713                 timestamp = 0;
2714
2715         if (timestamp || pt->timeless_decoding) {
2716                 err = intel_pt_update_queues(pt);
2717                 if (err)
2718                         return err;
2719         }
2720
2721         if (pt->timeless_decoding) {
2722                 if (pt->sampling_mode) {
2723                         if (sample->aux_sample.size)
2724                                 err = intel_pt_process_timeless_sample(pt,
2725                                                                        sample);
2726                 } else if (event->header.type == PERF_RECORD_EXIT) {
2727                         err = intel_pt_process_timeless_queues(pt,
2728                                                                event->fork.tid,
2729                                                                sample->time);
2730                 }
2731         } else if (timestamp) {
2732                 err = intel_pt_process_queues(pt, timestamp);
2733         }
2734         if (err)
2735                 return err;
2736
2737         if (event->header.type == PERF_RECORD_SAMPLE) {
2738                 if (pt->synth_opts.add_callchain && !sample->callchain)
2739                         intel_pt_add_callchain(pt, sample);
2740                 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
2741                         intel_pt_add_br_stack(pt, sample);
2742         }
2743
2744         if (event->header.type == PERF_RECORD_AUX &&
2745             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
2746             pt->synth_opts.errors) {
2747                 err = intel_pt_lost(pt, sample);
2748                 if (err)
2749                         return err;
2750         }
2751
2752         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
2753                 err = intel_pt_process_switch(pt, sample);
2754         else if (event->header.type == PERF_RECORD_ITRACE_START)
2755                 err = intel_pt_process_itrace_start(pt, event, sample);
2756         else if (event->header.type == PERF_RECORD_SWITCH ||
2757                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2758                 err = intel_pt_context_switch(pt, event, sample);
2759
2760         if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
2761                 err = intel_pt_text_poke(pt, event);
2762
2763         if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
2764                 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
2765                              event->header.type, sample->cpu, sample->time, timestamp);
2766                 intel_pt_log_event(event);
2767         }
2768
2769         return err;
2770 }
2771
2772 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2773 {
2774         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2775                                            auxtrace);
2776         int ret;
2777
2778         if (dump_trace)
2779                 return 0;
2780
2781         if (!tool->ordered_events)
2782                 return -EINVAL;
2783
2784         ret = intel_pt_update_queues(pt);
2785         if (ret < 0)
2786                 return ret;
2787
2788         if (pt->timeless_decoding)
2789                 return intel_pt_process_timeless_queues(pt, -1,
2790                                                         MAX_TIMESTAMP - 1);
2791
2792         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2793 }
2794
2795 static void intel_pt_free_events(struct perf_session *session)
2796 {
2797         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2798                                            auxtrace);
2799         struct auxtrace_queues *queues = &pt->queues;
2800         unsigned int i;
2801
2802         for (i = 0; i < queues->nr_queues; i++) {
2803                 intel_pt_free_queue(queues->queue_array[i].priv);
2804                 queues->queue_array[i].priv = NULL;
2805         }
2806         intel_pt_log_disable();
2807         auxtrace_queues__free(queues);
2808 }
2809
2810 static void intel_pt_free(struct perf_session *session)
2811 {
2812         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2813                                            auxtrace);
2814
2815         auxtrace_heap__free(&pt->heap);
2816         intel_pt_free_events(session);
2817         session->auxtrace = NULL;
2818         thread__put(pt->unknown_thread);
2819         addr_filters__exit(&pt->filts);
2820         zfree(&pt->chain);
2821         zfree(&pt->filter);
2822         zfree(&pt->time_ranges);
2823         free(pt);
2824 }
2825
2826 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
2827                                        struct evsel *evsel)
2828 {
2829         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2830                                            auxtrace);
2831
2832         return evsel->core.attr.type == pt->pmu_type;
2833 }
2834
2835 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2836                                            union perf_event *event,
2837                                            struct perf_tool *tool __maybe_unused)
2838 {
2839         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2840                                            auxtrace);
2841
2842         if (!pt->data_queued) {
2843                 struct auxtrace_buffer *buffer;
2844                 off_t data_offset;
2845                 int fd = perf_data__fd(session->data);
2846                 int err;
2847
2848                 if (perf_data__is_pipe(session->data)) {
2849                         data_offset = 0;
2850                 } else {
2851                         data_offset = lseek(fd, 0, SEEK_CUR);
2852                         if (data_offset == -1)
2853                                 return -errno;
2854                 }
2855
2856                 err = auxtrace_queues__add_event(&pt->queues, session, event,
2857                                                  data_offset, &buffer);
2858                 if (err)
2859                         return err;
2860
2861                 /* Dump here now we have copied a piped trace out of the pipe */
2862                 if (dump_trace) {
2863                         if (auxtrace_buffer__get_data(buffer, fd)) {
2864                                 intel_pt_dump_event(pt, buffer->data,
2865                                                     buffer->size);
2866                                 auxtrace_buffer__put_data(buffer);
2867                         }
2868                 }
2869         }
2870
2871         return 0;
2872 }
2873
2874 static int intel_pt_queue_data(struct perf_session *session,
2875                                struct perf_sample *sample,
2876                                union perf_event *event, u64 data_offset)
2877 {
2878         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2879                                            auxtrace);
2880         u64 timestamp;
2881
2882         if (event) {
2883                 return auxtrace_queues__add_event(&pt->queues, session, event,
2884                                                   data_offset, NULL);
2885         }
2886
2887         if (sample->time && sample->time != (u64)-1)
2888                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
2889         else
2890                 timestamp = 0;
2891
2892         return auxtrace_queues__add_sample(&pt->queues, session, sample,
2893                                            data_offset, timestamp);
2894 }
2895
2896 struct intel_pt_synth {
2897         struct perf_tool dummy_tool;
2898         struct perf_session *session;
2899 };
2900
2901 static int intel_pt_event_synth(struct perf_tool *tool,
2902                                 union perf_event *event,
2903                                 struct perf_sample *sample __maybe_unused,
2904                                 struct machine *machine __maybe_unused)
2905 {
2906         struct intel_pt_synth *intel_pt_synth =
2907                         container_of(tool, struct intel_pt_synth, dummy_tool);
2908
2909         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2910                                                  NULL);
2911 }
2912
2913 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2914                                 struct perf_event_attr *attr, u64 id)
2915 {
2916         struct intel_pt_synth intel_pt_synth;
2917         int err;
2918
2919         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2920                  name, id, (u64)attr->sample_type);
2921
2922         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2923         intel_pt_synth.session = session;
2924
2925         err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2926                                           &id, intel_pt_event_synth);
2927         if (err)
2928                 pr_err("%s: failed to synthesize '%s' event type\n",
2929                        __func__, name);
2930
2931         return err;
2932 }
2933
2934 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
2935                                     const char *name)
2936 {
2937         struct evsel *evsel;
2938
2939         evlist__for_each_entry(evlist, evsel) {
2940                 if (evsel->core.id && evsel->core.id[0] == id) {
2941                         if (evsel->name)
2942                                 zfree(&evsel->name);
2943                         evsel->name = strdup(name);
2944                         break;
2945                 }
2946         }
2947 }
2948
2949 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
2950                                          struct evlist *evlist)
2951 {
2952         struct evsel *evsel;
2953
2954         evlist__for_each_entry(evlist, evsel) {
2955                 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
2956                         return evsel;
2957         }
2958
2959         return NULL;
2960 }
2961
2962 static int intel_pt_synth_events(struct intel_pt *pt,
2963                                  struct perf_session *session)
2964 {
2965         struct evlist *evlist = session->evlist;
2966         struct evsel *evsel = intel_pt_evsel(pt, evlist);
2967         struct perf_event_attr attr;
2968         u64 id;
2969         int err;
2970
2971         if (!evsel) {
2972                 pr_debug("There are no selected events with Intel Processor Trace data\n");
2973                 return 0;
2974         }
2975
2976         memset(&attr, 0, sizeof(struct perf_event_attr));
2977         attr.size = sizeof(struct perf_event_attr);
2978         attr.type = PERF_TYPE_HARDWARE;
2979         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
2980         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2981                             PERF_SAMPLE_PERIOD;
2982         if (pt->timeless_decoding)
2983                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2984         else
2985                 attr.sample_type |= PERF_SAMPLE_TIME;
2986         if (!pt->per_cpu_mmaps)
2987                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2988         attr.exclude_user = evsel->core.attr.exclude_user;
2989         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
2990         attr.exclude_hv = evsel->core.attr.exclude_hv;
2991         attr.exclude_host = evsel->core.attr.exclude_host;
2992         attr.exclude_guest = evsel->core.attr.exclude_guest;
2993         attr.sample_id_all = evsel->core.attr.sample_id_all;
2994         attr.read_format = evsel->core.attr.read_format;
2995
2996         id = evsel->core.id[0] + 1000000000;
2997         if (!id)
2998                 id = 1;
2999
3000         if (pt->synth_opts.branches) {
3001                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3002                 attr.sample_period = 1;
3003                 attr.sample_type |= PERF_SAMPLE_ADDR;
3004                 err = intel_pt_synth_event(session, "branches", &attr, id);
3005                 if (err)
3006                         return err;
3007                 pt->sample_branches = true;
3008                 pt->branches_sample_type = attr.sample_type;
3009                 pt->branches_id = id;
3010                 id += 1;
3011                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3012         }
3013
3014         if (pt->synth_opts.callchain)
3015                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3016         if (pt->synth_opts.last_branch)
3017                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3018
3019         if (pt->synth_opts.instructions) {
3020                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3021                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3022                         attr.sample_period =
3023                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3024                 else
3025                         attr.sample_period = pt->synth_opts.period;
3026                 err = intel_pt_synth_event(session, "instructions", &attr, id);
3027                 if (err)
3028                         return err;
3029                 pt->sample_instructions = true;
3030                 pt->instructions_sample_type = attr.sample_type;
3031                 pt->instructions_id = id;
3032                 id += 1;
3033         }
3034
3035         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3036         attr.sample_period = 1;
3037
3038         if (pt->synth_opts.transactions) {
3039                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3040                 err = intel_pt_synth_event(session, "transactions", &attr, id);
3041                 if (err)
3042                         return err;
3043                 pt->sample_transactions = true;
3044                 pt->transactions_sample_type = attr.sample_type;
3045                 pt->transactions_id = id;
3046                 intel_pt_set_event_name(evlist, id, "transactions");
3047                 id += 1;
3048         }
3049
3050         attr.type = PERF_TYPE_SYNTH;
3051         attr.sample_type |= PERF_SAMPLE_RAW;
3052
3053         if (pt->synth_opts.ptwrites) {
3054                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3055                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3056                 if (err)
3057                         return err;
3058                 pt->sample_ptwrites = true;
3059                 pt->ptwrites_sample_type = attr.sample_type;
3060                 pt->ptwrites_id = id;
3061                 intel_pt_set_event_name(evlist, id, "ptwrite");
3062                 id += 1;
3063         }
3064
3065         if (pt->synth_opts.pwr_events) {
3066                 pt->sample_pwr_events = true;
3067                 pt->pwr_events_sample_type = attr.sample_type;
3068
3069                 attr.config = PERF_SYNTH_INTEL_CBR;
3070                 err = intel_pt_synth_event(session, "cbr", &attr, id);
3071                 if (err)
3072                         return err;
3073                 pt->cbr_id = id;
3074                 intel_pt_set_event_name(evlist, id, "cbr");
3075                 id += 1;
3076         }
3077
3078         if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
3079                 attr.config = PERF_SYNTH_INTEL_MWAIT;
3080                 err = intel_pt_synth_event(session, "mwait", &attr, id);
3081                 if (err)
3082                         return err;
3083                 pt->mwait_id = id;
3084                 intel_pt_set_event_name(evlist, id, "mwait");
3085                 id += 1;
3086
3087                 attr.config = PERF_SYNTH_INTEL_PWRE;
3088                 err = intel_pt_synth_event(session, "pwre", &attr, id);
3089                 if (err)
3090                         return err;
3091                 pt->pwre_id = id;
3092                 intel_pt_set_event_name(evlist, id, "pwre");
3093                 id += 1;
3094
3095                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3096                 err = intel_pt_synth_event(session, "exstop", &attr, id);
3097                 if (err)
3098                         return err;
3099                 pt->exstop_id = id;
3100                 intel_pt_set_event_name(evlist, id, "exstop");
3101                 id += 1;
3102
3103                 attr.config = PERF_SYNTH_INTEL_PWRX;
3104                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3105                 if (err)
3106                         return err;
3107                 pt->pwrx_id = id;
3108                 intel_pt_set_event_name(evlist, id, "pwrx");
3109                 id += 1;
3110         }
3111
3112         return 0;
3113 }
3114
3115 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3116 {
3117         struct evsel *evsel;
3118
3119         if (!pt->synth_opts.other_events)
3120                 return;
3121
3122         evlist__for_each_entry(pt->session->evlist, evsel) {
3123                 if (evsel->core.attr.aux_output && evsel->core.id) {
3124                         pt->sample_pebs = true;
3125                         pt->pebs_evsel = evsel;
3126                         return;
3127                 }
3128         }
3129 }
3130
3131 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3132 {
3133         struct evsel *evsel;
3134
3135         evlist__for_each_entry_reverse(evlist, evsel) {
3136                 const char *name = evsel__name(evsel);
3137
3138                 if (!strcmp(name, "sched:sched_switch"))
3139                         return evsel;
3140         }
3141
3142         return NULL;
3143 }
3144
3145 static bool intel_pt_find_switch(struct evlist *evlist)
3146 {
3147         struct evsel *evsel;
3148
3149         evlist__for_each_entry(evlist, evsel) {
3150                 if (evsel->core.attr.context_switch)
3151                         return true;
3152         }
3153
3154         return false;
3155 }
3156
3157 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3158 {
3159         struct intel_pt *pt = data;
3160
3161         if (!strcmp(var, "intel-pt.mispred-all"))
3162                 pt->mispred_all = perf_config_bool(var, value);
3163
3164         return 0;
3165 }
3166
3167 /* Find least TSC which converts to ns or later */
3168 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3169 {
3170         u64 tsc, tm;
3171
3172         tsc = perf_time_to_tsc(ns, &pt->tc);
3173
3174         while (1) {
3175                 tm = tsc_to_perf_time(tsc, &pt->tc);
3176                 if (tm < ns)
3177                         break;
3178                 tsc -= 1;
3179         }
3180
3181         while (tm < ns)
3182                 tm = tsc_to_perf_time(++tsc, &pt->tc);
3183
3184         return tsc;
3185 }
3186
3187 /* Find greatest TSC which converts to ns or earlier */
3188 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3189 {
3190         u64 tsc, tm;
3191
3192         tsc = perf_time_to_tsc(ns, &pt->tc);
3193
3194         while (1) {
3195                 tm = tsc_to_perf_time(tsc, &pt->tc);
3196                 if (tm > ns)
3197                         break;
3198                 tsc += 1;
3199         }
3200
3201         while (tm > ns)
3202                 tm = tsc_to_perf_time(--tsc, &pt->tc);
3203
3204         return tsc;
3205 }
3206
3207 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3208                                       struct itrace_synth_opts *opts)
3209 {
3210         struct perf_time_interval *p = opts->ptime_range;
3211         int n = opts->range_num;
3212         int i;
3213
3214         if (!n || !p || pt->timeless_decoding)
3215                 return 0;
3216
3217         pt->time_ranges = calloc(n, sizeof(struct range));
3218         if (!pt->time_ranges)
3219                 return -ENOMEM;
3220
3221         pt->range_cnt = n;
3222
3223         intel_pt_log("%s: %u range(s)\n", __func__, n);
3224
3225         for (i = 0; i < n; i++) {
3226                 struct range *r = &pt->time_ranges[i];
3227                 u64 ts = p[i].start;
3228                 u64 te = p[i].end;
3229
3230                 /*
3231                  * Take care to ensure the TSC range matches the perf-time range
3232                  * when converted back to perf-time.
3233                  */
3234                 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3235                 r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3236
3237                 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3238                              i, ts, te);
3239                 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3240                              i, r->start, r->end);
3241         }
3242
3243         return 0;
3244 }
3245
3246 static const char * const intel_pt_info_fmts[] = {
3247         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
3248         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
3249         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
3250         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
3251         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
3252         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
3253         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
3254         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
3255         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
3256         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
3257         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
3258         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
3259         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
3260         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
3261         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
3262         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
3263 };
3264
3265 static void intel_pt_print_info(__u64 *arr, int start, int finish)
3266 {
3267         int i;
3268
3269         if (!dump_trace)
3270                 return;
3271
3272         for (i = start; i <= finish; i++)
3273                 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
3274 }
3275
3276 static void intel_pt_print_info_str(const char *name, const char *str)
3277 {
3278         if (!dump_trace)
3279                 return;
3280
3281         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
3282 }
3283
3284 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
3285 {
3286         return auxtrace_info->header.size >=
3287                 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
3288 }
3289
3290 int intel_pt_process_auxtrace_info(union perf_event *event,
3291                                    struct perf_session *session)
3292 {
3293         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
3294         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
3295         struct intel_pt *pt;
3296         void *info_end;
3297         __u64 *info;
3298         int err;
3299
3300         if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
3301                                         min_sz)
3302                 return -EINVAL;
3303
3304         pt = zalloc(sizeof(struct intel_pt));
3305         if (!pt)
3306                 return -ENOMEM;
3307
3308         addr_filters__init(&pt->filts);
3309
3310         err = perf_config(intel_pt_perf_config, pt);
3311         if (err)
3312                 goto err_free;
3313
3314         err = auxtrace_queues__init(&pt->queues);
3315         if (err)
3316                 goto err_free;
3317
3318         intel_pt_log_set_name(INTEL_PT_PMU_NAME);
3319
3320         pt->session = session;
3321         pt->machine = &session->machines.host; /* No kvm support */
3322         pt->auxtrace_type = auxtrace_info->type;
3323         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
3324         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
3325         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
3326         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
3327         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
3328         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
3329         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
3330         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
3331         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
3332         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
3333         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
3334                             INTEL_PT_PER_CPU_MMAPS);
3335
3336         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
3337                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
3338                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
3339                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
3340                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
3341                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
3342                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
3343                                     INTEL_PT_CYC_BIT);
3344         }
3345
3346         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
3347                 pt->max_non_turbo_ratio =
3348                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
3349                 intel_pt_print_info(&auxtrace_info->priv[0],
3350                                     INTEL_PT_MAX_NONTURBO_RATIO,
3351                                     INTEL_PT_MAX_NONTURBO_RATIO);
3352         }
3353
3354         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
3355         info_end = (void *)info + auxtrace_info->header.size;
3356
3357         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
3358                 size_t len;
3359
3360                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
3361                 intel_pt_print_info(&auxtrace_info->priv[0],
3362                                     INTEL_PT_FILTER_STR_LEN,
3363                                     INTEL_PT_FILTER_STR_LEN);
3364                 if (len) {
3365                         const char *filter = (const char *)info;
3366
3367                         len = roundup(len + 1, 8);
3368                         info += len >> 3;
3369                         if ((void *)info > info_end) {
3370                                 pr_err("%s: bad filter string length\n", __func__);
3371                                 err = -EINVAL;
3372                                 goto err_free_queues;
3373                         }
3374                         pt->filter = memdup(filter, len);
3375                         if (!pt->filter) {
3376                                 err = -ENOMEM;
3377                                 goto err_free_queues;
3378                         }
3379                         if (session->header.needs_swap)
3380                                 mem_bswap_64(pt->filter, len);
3381                         if (pt->filter[len - 1]) {
3382                                 pr_err("%s: filter string not null terminated\n", __func__);
3383                                 err = -EINVAL;
3384                                 goto err_free_queues;
3385                         }
3386                         err = addr_filters__parse_bare_filter(&pt->filts,
3387                                                               filter);
3388                         if (err)
3389                                 goto err_free_queues;
3390                 }
3391                 intel_pt_print_info_str("Filter string", pt->filter);
3392         }
3393
3394         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
3395         if (pt->timeless_decoding && !pt->tc.time_mult)
3396                 pt->tc.time_mult = 1;
3397         pt->have_tsc = intel_pt_have_tsc(pt);
3398         pt->sampling_mode = intel_pt_sampling_mode(pt);
3399         pt->est_tsc = !pt->timeless_decoding;
3400
3401         pt->unknown_thread = thread__new(999999999, 999999999);
3402         if (!pt->unknown_thread) {
3403                 err = -ENOMEM;
3404                 goto err_free_queues;
3405         }
3406
3407         /*
3408          * Since this thread will not be kept in any rbtree not in a
3409          * list, initialize its list node so that at thread__put() the
3410          * current thread lifetime assuption is kept and we don't segfault
3411          * at list_del_init().
3412          */
3413         INIT_LIST_HEAD(&pt->unknown_thread->node);
3414
3415         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
3416         if (err)
3417                 goto err_delete_thread;
3418         if (thread__init_maps(pt->unknown_thread, pt->machine)) {
3419                 err = -ENOMEM;
3420                 goto err_delete_thread;
3421         }
3422
3423         pt->auxtrace.process_event = intel_pt_process_event;
3424         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
3425         pt->auxtrace.queue_data = intel_pt_queue_data;
3426         pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
3427         pt->auxtrace.flush_events = intel_pt_flush;
3428         pt->auxtrace.free_events = intel_pt_free_events;
3429         pt->auxtrace.free = intel_pt_free;
3430         pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
3431         session->auxtrace = &pt->auxtrace;
3432
3433         if (dump_trace)
3434                 return 0;
3435
3436         if (pt->have_sched_switch == 1) {
3437                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
3438                 if (!pt->switch_evsel) {
3439                         pr_err("%s: missing sched_switch event\n", __func__);
3440                         err = -EINVAL;
3441                         goto err_delete_thread;
3442                 }
3443         } else if (pt->have_sched_switch == 2 &&
3444                    !intel_pt_find_switch(session->evlist)) {
3445                 pr_err("%s: missing context_switch attribute flag\n", __func__);
3446                 err = -EINVAL;
3447                 goto err_delete_thread;
3448         }
3449
3450         if (session->itrace_synth_opts->set) {
3451                 pt->synth_opts = *session->itrace_synth_opts;
3452         } else {
3453                 itrace_synth_opts__set_default(&pt->synth_opts,
3454                                 session->itrace_synth_opts->default_no_sample);
3455                 if (!session->itrace_synth_opts->default_no_sample &&
3456                     !session->itrace_synth_opts->inject) {
3457                         pt->synth_opts.branches = false;
3458                         pt->synth_opts.callchain = true;
3459                         pt->synth_opts.add_callchain = true;
3460                 }
3461                 pt->synth_opts.thread_stack =
3462                                 session->itrace_synth_opts->thread_stack;
3463         }
3464
3465         if (pt->synth_opts.log)
3466                 intel_pt_log_enable();
3467
3468         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
3469         if (pt->tc.time_mult) {
3470                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
3471
3472                 if (!pt->max_non_turbo_ratio)
3473                         pt->max_non_turbo_ratio =
3474                                         (tsc_freq + 50000000) / 100000000;
3475                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
3476                 intel_pt_log("Maximum non-turbo ratio %u\n",
3477                              pt->max_non_turbo_ratio);
3478                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
3479         }
3480
3481         err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
3482         if (err)
3483                 goto err_delete_thread;
3484
3485         if (pt->synth_opts.calls)
3486                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
3487                                        PERF_IP_FLAG_TRACE_END;
3488         if (pt->synth_opts.returns)
3489                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
3490                                        PERF_IP_FLAG_TRACE_BEGIN;
3491
3492         if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
3493             !symbol_conf.use_callchain) {
3494                 symbol_conf.use_callchain = true;
3495                 if (callchain_register_param(&callchain_param) < 0) {
3496                         symbol_conf.use_callchain = false;
3497                         pt->synth_opts.callchain = false;
3498                         pt->synth_opts.add_callchain = false;
3499                 }
3500         }
3501
3502         if (pt->synth_opts.add_callchain) {
3503                 err = intel_pt_callchain_init(pt);
3504                 if (err)
3505                         goto err_delete_thread;
3506         }
3507
3508         if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
3509                 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
3510                 pt->br_stack_sz_plus = pt->br_stack_sz;
3511         }
3512
3513         if (pt->synth_opts.add_last_branch) {
3514                 err = intel_pt_br_stack_init(pt);
3515                 if (err)
3516                         goto err_delete_thread;
3517                 /*
3518                  * Additional branch stack size to cater for tracing from the
3519                  * actual sample ip to where the sample time is recorded.
3520                  * Measured at about 200 branches, but generously set to 1024.
3521                  * If kernel space is not being traced, then add just 1 for the
3522                  * branch to kernel space.
3523                  */
3524                 if (intel_pt_tracing_kernel(pt))
3525                         pt->br_stack_sz_plus += 1024;
3526                 else
3527                         pt->br_stack_sz_plus += 1;
3528         }
3529
3530         pt->use_thread_stack = pt->synth_opts.callchain ||
3531                                pt->synth_opts.add_callchain ||
3532                                pt->synth_opts.thread_stack ||
3533                                pt->synth_opts.last_branch ||
3534                                pt->synth_opts.add_last_branch;
3535
3536         pt->callstack = pt->synth_opts.callchain ||
3537                         pt->synth_opts.add_callchain ||
3538                         pt->synth_opts.thread_stack;
3539
3540         err = intel_pt_synth_events(pt, session);
3541         if (err)
3542                 goto err_delete_thread;
3543
3544         intel_pt_setup_pebs_events(pt);
3545
3546         if (pt->sampling_mode || list_empty(&session->auxtrace_index))
3547                 err = auxtrace_queue_data(session, true, true);
3548         else
3549                 err = auxtrace_queues__process_index(&pt->queues, session);
3550         if (err)
3551                 goto err_delete_thread;
3552
3553         if (pt->queues.populated)
3554                 pt->data_queued = true;
3555
3556         if (pt->timeless_decoding)
3557                 pr_debug2("Intel PT decoding without timestamps\n");
3558
3559         return 0;
3560
3561 err_delete_thread:
3562         zfree(&pt->chain);
3563         thread__zput(pt->unknown_thread);
3564 err_free_queues:
3565         intel_pt_log_disable();
3566         auxtrace_queues__free(&pt->queues);
3567         session->auxtrace = NULL;
3568 err_free:
3569         addr_filters__exit(&pt->filts);
3570         zfree(&pt->filter);
3571         zfree(&pt->time_ranges);
3572         free(pt);
3573         return err;
3574 }