Merge branch 'next' into for-linus
[linux-2.6-microblaze.git] / tools / perf / builtin-sched.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf.h"
4 #include "perf-sys.h"
5
6 #include "util/cpumap.h"
7 #include "util/evlist.h"
8 #include "util/evsel.h"
9 #include "util/evsel_fprintf.h"
10 #include "util/symbol.h"
11 #include "util/thread.h"
12 #include "util/header.h"
13 #include "util/session.h"
14 #include "util/tool.h"
15 #include "util/cloexec.h"
16 #include "util/thread_map.h"
17 #include "util/color.h"
18 #include "util/stat.h"
19 #include "util/string2.h"
20 #include "util/callchain.h"
21 #include "util/time-utils.h"
22
23 #include <subcmd/pager.h>
24 #include <subcmd/parse-options.h>
25 #include "util/trace-event.h"
26
27 #include "util/debug.h"
28 #include "util/event.h"
29
30 #include <linux/kernel.h>
31 #include <linux/log2.h>
32 #include <linux/zalloc.h>
33 #include <sys/prctl.h>
34 #include <sys/resource.h>
35 #include <inttypes.h>
36
37 #include <errno.h>
38 #include <semaphore.h>
39 #include <pthread.h>
40 #include <math.h>
41 #include <api/fs/fs.h>
42 #include <perf/cpumap.h>
43 #include <linux/time64.h>
44 #include <linux/err.h>
45
46 #include <linux/ctype.h>
47
48 #define PR_SET_NAME             15               /* Set process name */
49 #define MAX_CPUS                4096
50 #define COMM_LEN                20
51 #define SYM_LEN                 129
52 #define MAX_PID                 1024000
53
54 struct sched_atom;
55
56 struct task_desc {
57         unsigned long           nr;
58         unsigned long           pid;
59         char                    comm[COMM_LEN];
60
61         unsigned long           nr_events;
62         unsigned long           curr_event;
63         struct sched_atom       **atoms;
64
65         pthread_t               thread;
66         sem_t                   sleep_sem;
67
68         sem_t                   ready_for_work;
69         sem_t                   work_done_sem;
70
71         u64                     cpu_usage;
72 };
73
74 enum sched_event_type {
75         SCHED_EVENT_RUN,
76         SCHED_EVENT_SLEEP,
77         SCHED_EVENT_WAKEUP,
78         SCHED_EVENT_MIGRATION,
79 };
80
81 struct sched_atom {
82         enum sched_event_type   type;
83         int                     specific_wait;
84         u64                     timestamp;
85         u64                     duration;
86         unsigned long           nr;
87         sem_t                   *wait_sem;
88         struct task_desc        *wakee;
89 };
90
91 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
92
93 /* task state bitmask, copied from include/linux/sched.h */
94 #define TASK_RUNNING            0
95 #define TASK_INTERRUPTIBLE      1
96 #define TASK_UNINTERRUPTIBLE    2
97 #define __TASK_STOPPED          4
98 #define __TASK_TRACED           8
99 /* in tsk->exit_state */
100 #define EXIT_DEAD               16
101 #define EXIT_ZOMBIE             32
102 #define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
103 /* in tsk->state again */
104 #define TASK_DEAD               64
105 #define TASK_WAKEKILL           128
106 #define TASK_WAKING             256
107 #define TASK_PARKED             512
108
109 enum thread_state {
110         THREAD_SLEEPING = 0,
111         THREAD_WAIT_CPU,
112         THREAD_SCHED_IN,
113         THREAD_IGNORE
114 };
115
116 struct work_atom {
117         struct list_head        list;
118         enum thread_state       state;
119         u64                     sched_out_time;
120         u64                     wake_up_time;
121         u64                     sched_in_time;
122         u64                     runtime;
123 };
124
125 struct work_atoms {
126         struct list_head        work_list;
127         struct thread           *thread;
128         struct rb_node          node;
129         u64                     max_lat;
130         u64                     max_lat_at;
131         u64                     total_lat;
132         u64                     nb_atoms;
133         u64                     total_runtime;
134         int                     num_merged;
135 };
136
137 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
138
139 struct perf_sched;
140
141 struct trace_sched_handler {
142         int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
143                             struct perf_sample *sample, struct machine *machine);
144
145         int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
146                              struct perf_sample *sample, struct machine *machine);
147
148         int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
149                             struct perf_sample *sample, struct machine *machine);
150
151         /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
152         int (*fork_event)(struct perf_sched *sched, union perf_event *event,
153                           struct machine *machine);
154
155         int (*migrate_task_event)(struct perf_sched *sched,
156                                   struct evsel *evsel,
157                                   struct perf_sample *sample,
158                                   struct machine *machine);
159 };
160
161 #define COLOR_PIDS PERF_COLOR_BLUE
162 #define COLOR_CPUS PERF_COLOR_BG_RED
163
164 struct perf_sched_map {
165         DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
166         int                     *comp_cpus;
167         bool                     comp;
168         struct perf_thread_map *color_pids;
169         const char              *color_pids_str;
170         struct perf_cpu_map     *color_cpus;
171         const char              *color_cpus_str;
172         struct perf_cpu_map     *cpus;
173         const char              *cpus_str;
174 };
175
176 struct perf_sched {
177         struct perf_tool tool;
178         const char       *sort_order;
179         unsigned long    nr_tasks;
180         struct task_desc **pid_to_task;
181         struct task_desc **tasks;
182         const struct trace_sched_handler *tp_handler;
183         pthread_mutex_t  start_work_mutex;
184         pthread_mutex_t  work_done_wait_mutex;
185         int              profile_cpu;
186 /*
187  * Track the current task - that way we can know whether there's any
188  * weird events, such as a task being switched away that is not current.
189  */
190         int              max_cpu;
191         u32              curr_pid[MAX_CPUS];
192         struct thread    *curr_thread[MAX_CPUS];
193         char             next_shortname1;
194         char             next_shortname2;
195         unsigned int     replay_repeat;
196         unsigned long    nr_run_events;
197         unsigned long    nr_sleep_events;
198         unsigned long    nr_wakeup_events;
199         unsigned long    nr_sleep_corrections;
200         unsigned long    nr_run_events_optimized;
201         unsigned long    targetless_wakeups;
202         unsigned long    multitarget_wakeups;
203         unsigned long    nr_runs;
204         unsigned long    nr_timestamps;
205         unsigned long    nr_unordered_timestamps;
206         unsigned long    nr_context_switch_bugs;
207         unsigned long    nr_events;
208         unsigned long    nr_lost_chunks;
209         unsigned long    nr_lost_events;
210         u64              run_measurement_overhead;
211         u64              sleep_measurement_overhead;
212         u64              start_time;
213         u64              cpu_usage;
214         u64              runavg_cpu_usage;
215         u64              parent_cpu_usage;
216         u64              runavg_parent_cpu_usage;
217         u64              sum_runtime;
218         u64              sum_fluct;
219         u64              run_avg;
220         u64              all_runtime;
221         u64              all_count;
222         u64              cpu_last_switched[MAX_CPUS];
223         struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
224         struct list_head sort_list, cmp_pid;
225         bool force;
226         bool skip_merge;
227         struct perf_sched_map map;
228
229         /* options for timehist command */
230         bool            summary;
231         bool            summary_only;
232         bool            idle_hist;
233         bool            show_callchain;
234         unsigned int    max_stack;
235         bool            show_cpu_visual;
236         bool            show_wakeups;
237         bool            show_next;
238         bool            show_migrations;
239         bool            show_state;
240         u64             skipped_samples;
241         const char      *time_str;
242         struct perf_time_interval ptime;
243         struct perf_time_interval hist_time;
244 };
245
246 /* per thread run time data */
247 struct thread_runtime {
248         u64 last_time;      /* time of previous sched in/out event */
249         u64 dt_run;         /* run time */
250         u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
251         u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
252         u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
253         u64 dt_delay;       /* time between wakeup and sched-in */
254         u64 ready_to_run;   /* time of wakeup */
255
256         struct stats run_stats;
257         u64 total_run_time;
258         u64 total_sleep_time;
259         u64 total_iowait_time;
260         u64 total_preempt_time;
261         u64 total_delay_time;
262
263         int last_state;
264
265         char shortname[3];
266         bool comm_changed;
267
268         u64 migrations;
269 };
270
271 /* per event run time data */
272 struct evsel_runtime {
273         u64 *last_time; /* time this event was last seen per cpu */
274         u32 ncpu;       /* highest cpu slot allocated */
275 };
276
277 /* per cpu idle time data */
278 struct idle_thread_runtime {
279         struct thread_runtime   tr;
280         struct thread           *last_thread;
281         struct rb_root_cached   sorted_root;
282         struct callchain_root   callchain;
283         struct callchain_cursor cursor;
284 };
285
286 /* track idle times per cpu */
287 static struct thread **idle_threads;
288 static int idle_max_cpu;
289 static char idle_comm[] = "<idle>";
290
291 static u64 get_nsecs(void)
292 {
293         struct timespec ts;
294
295         clock_gettime(CLOCK_MONOTONIC, &ts);
296
297         return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
298 }
299
300 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
301 {
302         u64 T0 = get_nsecs(), T1;
303
304         do {
305                 T1 = get_nsecs();
306         } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
307 }
308
309 static void sleep_nsecs(u64 nsecs)
310 {
311         struct timespec ts;
312
313         ts.tv_nsec = nsecs % 999999999;
314         ts.tv_sec = nsecs / 999999999;
315
316         nanosleep(&ts, NULL);
317 }
318
319 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
320 {
321         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
322         int i;
323
324         for (i = 0; i < 10; i++) {
325                 T0 = get_nsecs();
326                 burn_nsecs(sched, 0);
327                 T1 = get_nsecs();
328                 delta = T1-T0;
329                 min_delta = min(min_delta, delta);
330         }
331         sched->run_measurement_overhead = min_delta;
332
333         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
334 }
335
336 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
337 {
338         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
339         int i;
340
341         for (i = 0; i < 10; i++) {
342                 T0 = get_nsecs();
343                 sleep_nsecs(10000);
344                 T1 = get_nsecs();
345                 delta = T1-T0;
346                 min_delta = min(min_delta, delta);
347         }
348         min_delta -= 10000;
349         sched->sleep_measurement_overhead = min_delta;
350
351         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
352 }
353
354 static struct sched_atom *
355 get_new_event(struct task_desc *task, u64 timestamp)
356 {
357         struct sched_atom *event = zalloc(sizeof(*event));
358         unsigned long idx = task->nr_events;
359         size_t size;
360
361         event->timestamp = timestamp;
362         event->nr = idx;
363
364         task->nr_events++;
365         size = sizeof(struct sched_atom *) * task->nr_events;
366         task->atoms = realloc(task->atoms, size);
367         BUG_ON(!task->atoms);
368
369         task->atoms[idx] = event;
370
371         return event;
372 }
373
374 static struct sched_atom *last_event(struct task_desc *task)
375 {
376         if (!task->nr_events)
377                 return NULL;
378
379         return task->atoms[task->nr_events - 1];
380 }
381
382 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
383                                 u64 timestamp, u64 duration)
384 {
385         struct sched_atom *event, *curr_event = last_event(task);
386
387         /*
388          * optimize an existing RUN event by merging this one
389          * to it:
390          */
391         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
392                 sched->nr_run_events_optimized++;
393                 curr_event->duration += duration;
394                 return;
395         }
396
397         event = get_new_event(task, timestamp);
398
399         event->type = SCHED_EVENT_RUN;
400         event->duration = duration;
401
402         sched->nr_run_events++;
403 }
404
405 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
406                                    u64 timestamp, struct task_desc *wakee)
407 {
408         struct sched_atom *event, *wakee_event;
409
410         event = get_new_event(task, timestamp);
411         event->type = SCHED_EVENT_WAKEUP;
412         event->wakee = wakee;
413
414         wakee_event = last_event(wakee);
415         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
416                 sched->targetless_wakeups++;
417                 return;
418         }
419         if (wakee_event->wait_sem) {
420                 sched->multitarget_wakeups++;
421                 return;
422         }
423
424         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
425         sem_init(wakee_event->wait_sem, 0, 0);
426         wakee_event->specific_wait = 1;
427         event->wait_sem = wakee_event->wait_sem;
428
429         sched->nr_wakeup_events++;
430 }
431
432 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
433                                   u64 timestamp, u64 task_state __maybe_unused)
434 {
435         struct sched_atom *event = get_new_event(task, timestamp);
436
437         event->type = SCHED_EVENT_SLEEP;
438
439         sched->nr_sleep_events++;
440 }
441
442 static struct task_desc *register_pid(struct perf_sched *sched,
443                                       unsigned long pid, const char *comm)
444 {
445         struct task_desc *task;
446         static int pid_max;
447
448         if (sched->pid_to_task == NULL) {
449                 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
450                         pid_max = MAX_PID;
451                 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
452         }
453         if (pid >= (unsigned long)pid_max) {
454                 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
455                         sizeof(struct task_desc *))) == NULL);
456                 while (pid >= (unsigned long)pid_max)
457                         sched->pid_to_task[pid_max++] = NULL;
458         }
459
460         task = sched->pid_to_task[pid];
461
462         if (task)
463                 return task;
464
465         task = zalloc(sizeof(*task));
466         task->pid = pid;
467         task->nr = sched->nr_tasks;
468         strcpy(task->comm, comm);
469         /*
470          * every task starts in sleeping state - this gets ignored
471          * if there's no wakeup pointing to this sleep state:
472          */
473         add_sched_event_sleep(sched, task, 0, 0);
474
475         sched->pid_to_task[pid] = task;
476         sched->nr_tasks++;
477         sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
478         BUG_ON(!sched->tasks);
479         sched->tasks[task->nr] = task;
480
481         if (verbose > 0)
482                 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
483
484         return task;
485 }
486
487
488 static void print_task_traces(struct perf_sched *sched)
489 {
490         struct task_desc *task;
491         unsigned long i;
492
493         for (i = 0; i < sched->nr_tasks; i++) {
494                 task = sched->tasks[i];
495                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
496                         task->nr, task->comm, task->pid, task->nr_events);
497         }
498 }
499
500 static void add_cross_task_wakeups(struct perf_sched *sched)
501 {
502         struct task_desc *task1, *task2;
503         unsigned long i, j;
504
505         for (i = 0; i < sched->nr_tasks; i++) {
506                 task1 = sched->tasks[i];
507                 j = i + 1;
508                 if (j == sched->nr_tasks)
509                         j = 0;
510                 task2 = sched->tasks[j];
511                 add_sched_event_wakeup(sched, task1, 0, task2);
512         }
513 }
514
515 static void perf_sched__process_event(struct perf_sched *sched,
516                                       struct sched_atom *atom)
517 {
518         int ret = 0;
519
520         switch (atom->type) {
521                 case SCHED_EVENT_RUN:
522                         burn_nsecs(sched, atom->duration);
523                         break;
524                 case SCHED_EVENT_SLEEP:
525                         if (atom->wait_sem)
526                                 ret = sem_wait(atom->wait_sem);
527                         BUG_ON(ret);
528                         break;
529                 case SCHED_EVENT_WAKEUP:
530                         if (atom->wait_sem)
531                                 ret = sem_post(atom->wait_sem);
532                         BUG_ON(ret);
533                         break;
534                 case SCHED_EVENT_MIGRATION:
535                         break;
536                 default:
537                         BUG_ON(1);
538         }
539 }
540
541 static u64 get_cpu_usage_nsec_parent(void)
542 {
543         struct rusage ru;
544         u64 sum;
545         int err;
546
547         err = getrusage(RUSAGE_SELF, &ru);
548         BUG_ON(err);
549
550         sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
551         sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
552
553         return sum;
554 }
555
556 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
557 {
558         struct perf_event_attr attr;
559         char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
560         int fd;
561         struct rlimit limit;
562         bool need_privilege = false;
563
564         memset(&attr, 0, sizeof(attr));
565
566         attr.type = PERF_TYPE_SOFTWARE;
567         attr.config = PERF_COUNT_SW_TASK_CLOCK;
568
569 force_again:
570         fd = sys_perf_event_open(&attr, 0, -1, -1,
571                                  perf_event_open_cloexec_flag());
572
573         if (fd < 0) {
574                 if (errno == EMFILE) {
575                         if (sched->force) {
576                                 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
577                                 limit.rlim_cur += sched->nr_tasks - cur_task;
578                                 if (limit.rlim_cur > limit.rlim_max) {
579                                         limit.rlim_max = limit.rlim_cur;
580                                         need_privilege = true;
581                                 }
582                                 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
583                                         if (need_privilege && errno == EPERM)
584                                                 strcpy(info, "Need privilege\n");
585                                 } else
586                                         goto force_again;
587                         } else
588                                 strcpy(info, "Have a try with -f option\n");
589                 }
590                 pr_err("Error: sys_perf_event_open() syscall returned "
591                        "with %d (%s)\n%s", fd,
592                        str_error_r(errno, sbuf, sizeof(sbuf)), info);
593                 exit(EXIT_FAILURE);
594         }
595         return fd;
596 }
597
598 static u64 get_cpu_usage_nsec_self(int fd)
599 {
600         u64 runtime;
601         int ret;
602
603         ret = read(fd, &runtime, sizeof(runtime));
604         BUG_ON(ret != sizeof(runtime));
605
606         return runtime;
607 }
608
609 struct sched_thread_parms {
610         struct task_desc  *task;
611         struct perf_sched *sched;
612         int fd;
613 };
614
615 static void *thread_func(void *ctx)
616 {
617         struct sched_thread_parms *parms = ctx;
618         struct task_desc *this_task = parms->task;
619         struct perf_sched *sched = parms->sched;
620         u64 cpu_usage_0, cpu_usage_1;
621         unsigned long i, ret;
622         char comm2[22];
623         int fd = parms->fd;
624
625         zfree(&parms);
626
627         sprintf(comm2, ":%s", this_task->comm);
628         prctl(PR_SET_NAME, comm2);
629         if (fd < 0)
630                 return NULL;
631 again:
632         ret = sem_post(&this_task->ready_for_work);
633         BUG_ON(ret);
634         ret = pthread_mutex_lock(&sched->start_work_mutex);
635         BUG_ON(ret);
636         ret = pthread_mutex_unlock(&sched->start_work_mutex);
637         BUG_ON(ret);
638
639         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
640
641         for (i = 0; i < this_task->nr_events; i++) {
642                 this_task->curr_event = i;
643                 perf_sched__process_event(sched, this_task->atoms[i]);
644         }
645
646         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
647         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
648         ret = sem_post(&this_task->work_done_sem);
649         BUG_ON(ret);
650
651         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
652         BUG_ON(ret);
653         ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
654         BUG_ON(ret);
655
656         goto again;
657 }
658
659 static void create_tasks(struct perf_sched *sched)
660 {
661         struct task_desc *task;
662         pthread_attr_t attr;
663         unsigned long i;
664         int err;
665
666         err = pthread_attr_init(&attr);
667         BUG_ON(err);
668         err = pthread_attr_setstacksize(&attr,
669                         (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
670         BUG_ON(err);
671         err = pthread_mutex_lock(&sched->start_work_mutex);
672         BUG_ON(err);
673         err = pthread_mutex_lock(&sched->work_done_wait_mutex);
674         BUG_ON(err);
675         for (i = 0; i < sched->nr_tasks; i++) {
676                 struct sched_thread_parms *parms = malloc(sizeof(*parms));
677                 BUG_ON(parms == NULL);
678                 parms->task = task = sched->tasks[i];
679                 parms->sched = sched;
680                 parms->fd = self_open_counters(sched, i);
681                 sem_init(&task->sleep_sem, 0, 0);
682                 sem_init(&task->ready_for_work, 0, 0);
683                 sem_init(&task->work_done_sem, 0, 0);
684                 task->curr_event = 0;
685                 err = pthread_create(&task->thread, &attr, thread_func, parms);
686                 BUG_ON(err);
687         }
688 }
689
690 static void wait_for_tasks(struct perf_sched *sched)
691 {
692         u64 cpu_usage_0, cpu_usage_1;
693         struct task_desc *task;
694         unsigned long i, ret;
695
696         sched->start_time = get_nsecs();
697         sched->cpu_usage = 0;
698         pthread_mutex_unlock(&sched->work_done_wait_mutex);
699
700         for (i = 0; i < sched->nr_tasks; i++) {
701                 task = sched->tasks[i];
702                 ret = sem_wait(&task->ready_for_work);
703                 BUG_ON(ret);
704                 sem_init(&task->ready_for_work, 0, 0);
705         }
706         ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
707         BUG_ON(ret);
708
709         cpu_usage_0 = get_cpu_usage_nsec_parent();
710
711         pthread_mutex_unlock(&sched->start_work_mutex);
712
713         for (i = 0; i < sched->nr_tasks; i++) {
714                 task = sched->tasks[i];
715                 ret = sem_wait(&task->work_done_sem);
716                 BUG_ON(ret);
717                 sem_init(&task->work_done_sem, 0, 0);
718                 sched->cpu_usage += task->cpu_usage;
719                 task->cpu_usage = 0;
720         }
721
722         cpu_usage_1 = get_cpu_usage_nsec_parent();
723         if (!sched->runavg_cpu_usage)
724                 sched->runavg_cpu_usage = sched->cpu_usage;
725         sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
726
727         sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
728         if (!sched->runavg_parent_cpu_usage)
729                 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
730         sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
731                                          sched->parent_cpu_usage)/sched->replay_repeat;
732
733         ret = pthread_mutex_lock(&sched->start_work_mutex);
734         BUG_ON(ret);
735
736         for (i = 0; i < sched->nr_tasks; i++) {
737                 task = sched->tasks[i];
738                 sem_init(&task->sleep_sem, 0, 0);
739                 task->curr_event = 0;
740         }
741 }
742
743 static void run_one_test(struct perf_sched *sched)
744 {
745         u64 T0, T1, delta, avg_delta, fluct;
746
747         T0 = get_nsecs();
748         wait_for_tasks(sched);
749         T1 = get_nsecs();
750
751         delta = T1 - T0;
752         sched->sum_runtime += delta;
753         sched->nr_runs++;
754
755         avg_delta = sched->sum_runtime / sched->nr_runs;
756         if (delta < avg_delta)
757                 fluct = avg_delta - delta;
758         else
759                 fluct = delta - avg_delta;
760         sched->sum_fluct += fluct;
761         if (!sched->run_avg)
762                 sched->run_avg = delta;
763         sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
764
765         printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
766
767         printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
768
769         printf("cpu: %0.2f / %0.2f",
770                 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
771
772 #if 0
773         /*
774          * rusage statistics done by the parent, these are less
775          * accurate than the sched->sum_exec_runtime based statistics:
776          */
777         printf(" [%0.2f / %0.2f]",
778                 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
779                 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
780 #endif
781
782         printf("\n");
783
784         if (sched->nr_sleep_corrections)
785                 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
786         sched->nr_sleep_corrections = 0;
787 }
788
789 static void test_calibrations(struct perf_sched *sched)
790 {
791         u64 T0, T1;
792
793         T0 = get_nsecs();
794         burn_nsecs(sched, NSEC_PER_MSEC);
795         T1 = get_nsecs();
796
797         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
798
799         T0 = get_nsecs();
800         sleep_nsecs(NSEC_PER_MSEC);
801         T1 = get_nsecs();
802
803         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
804 }
805
806 static int
807 replay_wakeup_event(struct perf_sched *sched,
808                     struct evsel *evsel, struct perf_sample *sample,
809                     struct machine *machine __maybe_unused)
810 {
811         const char *comm = perf_evsel__strval(evsel, sample, "comm");
812         const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
813         struct task_desc *waker, *wakee;
814
815         if (verbose > 0) {
816                 printf("sched_wakeup event %p\n", evsel);
817
818                 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
819         }
820
821         waker = register_pid(sched, sample->tid, "<unknown>");
822         wakee = register_pid(sched, pid, comm);
823
824         add_sched_event_wakeup(sched, waker, sample->time, wakee);
825         return 0;
826 }
827
828 static int replay_switch_event(struct perf_sched *sched,
829                                struct evsel *evsel,
830                                struct perf_sample *sample,
831                                struct machine *machine __maybe_unused)
832 {
833         const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
834                    *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
835         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
836                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
837         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
838         struct task_desc *prev, __maybe_unused *next;
839         u64 timestamp0, timestamp = sample->time;
840         int cpu = sample->cpu;
841         s64 delta;
842
843         if (verbose > 0)
844                 printf("sched_switch event %p\n", evsel);
845
846         if (cpu >= MAX_CPUS || cpu < 0)
847                 return 0;
848
849         timestamp0 = sched->cpu_last_switched[cpu];
850         if (timestamp0)
851                 delta = timestamp - timestamp0;
852         else
853                 delta = 0;
854
855         if (delta < 0) {
856                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
857                 return -1;
858         }
859
860         pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
861                  prev_comm, prev_pid, next_comm, next_pid, delta);
862
863         prev = register_pid(sched, prev_pid, prev_comm);
864         next = register_pid(sched, next_pid, next_comm);
865
866         sched->cpu_last_switched[cpu] = timestamp;
867
868         add_sched_event_run(sched, prev, timestamp, delta);
869         add_sched_event_sleep(sched, prev, timestamp, prev_state);
870
871         return 0;
872 }
873
874 static int replay_fork_event(struct perf_sched *sched,
875                              union perf_event *event,
876                              struct machine *machine)
877 {
878         struct thread *child, *parent;
879
880         child = machine__findnew_thread(machine, event->fork.pid,
881                                         event->fork.tid);
882         parent = machine__findnew_thread(machine, event->fork.ppid,
883                                          event->fork.ptid);
884
885         if (child == NULL || parent == NULL) {
886                 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
887                                  child, parent);
888                 goto out_put;
889         }
890
891         if (verbose > 0) {
892                 printf("fork event\n");
893                 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
894                 printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
895         }
896
897         register_pid(sched, parent->tid, thread__comm_str(parent));
898         register_pid(sched, child->tid, thread__comm_str(child));
899 out_put:
900         thread__put(child);
901         thread__put(parent);
902         return 0;
903 }
904
905 struct sort_dimension {
906         const char              *name;
907         sort_fn_t               cmp;
908         struct list_head        list;
909 };
910
911 /*
912  * handle runtime stats saved per thread
913  */
914 static struct thread_runtime *thread__init_runtime(struct thread *thread)
915 {
916         struct thread_runtime *r;
917
918         r = zalloc(sizeof(struct thread_runtime));
919         if (!r)
920                 return NULL;
921
922         init_stats(&r->run_stats);
923         thread__set_priv(thread, r);
924
925         return r;
926 }
927
928 static struct thread_runtime *thread__get_runtime(struct thread *thread)
929 {
930         struct thread_runtime *tr;
931
932         tr = thread__priv(thread);
933         if (tr == NULL) {
934                 tr = thread__init_runtime(thread);
935                 if (tr == NULL)
936                         pr_debug("Failed to malloc memory for runtime data.\n");
937         }
938
939         return tr;
940 }
941
942 static int
943 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
944 {
945         struct sort_dimension *sort;
946         int ret = 0;
947
948         BUG_ON(list_empty(list));
949
950         list_for_each_entry(sort, list, list) {
951                 ret = sort->cmp(l, r);
952                 if (ret)
953                         return ret;
954         }
955
956         return ret;
957 }
958
959 static struct work_atoms *
960 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
961                          struct list_head *sort_list)
962 {
963         struct rb_node *node = root->rb_root.rb_node;
964         struct work_atoms key = { .thread = thread };
965
966         while (node) {
967                 struct work_atoms *atoms;
968                 int cmp;
969
970                 atoms = container_of(node, struct work_atoms, node);
971
972                 cmp = thread_lat_cmp(sort_list, &key, atoms);
973                 if (cmp > 0)
974                         node = node->rb_left;
975                 else if (cmp < 0)
976                         node = node->rb_right;
977                 else {
978                         BUG_ON(thread != atoms->thread);
979                         return atoms;
980                 }
981         }
982         return NULL;
983 }
984
985 static void
986 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
987                          struct list_head *sort_list)
988 {
989         struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
990         bool leftmost = true;
991
992         while (*new) {
993                 struct work_atoms *this;
994                 int cmp;
995
996                 this = container_of(*new, struct work_atoms, node);
997                 parent = *new;
998
999                 cmp = thread_lat_cmp(sort_list, data, this);
1000
1001                 if (cmp > 0)
1002                         new = &((*new)->rb_left);
1003                 else {
1004                         new = &((*new)->rb_right);
1005                         leftmost = false;
1006                 }
1007         }
1008
1009         rb_link_node(&data->node, parent, new);
1010         rb_insert_color_cached(&data->node, root, leftmost);
1011 }
1012
1013 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1014 {
1015         struct work_atoms *atoms = zalloc(sizeof(*atoms));
1016         if (!atoms) {
1017                 pr_err("No memory at %s\n", __func__);
1018                 return -1;
1019         }
1020
1021         atoms->thread = thread__get(thread);
1022         INIT_LIST_HEAD(&atoms->work_list);
1023         __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1024         return 0;
1025 }
1026
1027 static char sched_out_state(u64 prev_state)
1028 {
1029         const char *str = TASK_STATE_TO_CHAR_STR;
1030
1031         return str[prev_state];
1032 }
1033
1034 static int
1035 add_sched_out_event(struct work_atoms *atoms,
1036                     char run_state,
1037                     u64 timestamp)
1038 {
1039         struct work_atom *atom = zalloc(sizeof(*atom));
1040         if (!atom) {
1041                 pr_err("Non memory at %s", __func__);
1042                 return -1;
1043         }
1044
1045         atom->sched_out_time = timestamp;
1046
1047         if (run_state == 'R') {
1048                 atom->state = THREAD_WAIT_CPU;
1049                 atom->wake_up_time = atom->sched_out_time;
1050         }
1051
1052         list_add_tail(&atom->list, &atoms->work_list);
1053         return 0;
1054 }
1055
1056 static void
1057 add_runtime_event(struct work_atoms *atoms, u64 delta,
1058                   u64 timestamp __maybe_unused)
1059 {
1060         struct work_atom *atom;
1061
1062         BUG_ON(list_empty(&atoms->work_list));
1063
1064         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1065
1066         atom->runtime += delta;
1067         atoms->total_runtime += delta;
1068 }
1069
1070 static void
1071 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1072 {
1073         struct work_atom *atom;
1074         u64 delta;
1075
1076         if (list_empty(&atoms->work_list))
1077                 return;
1078
1079         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1080
1081         if (atom->state != THREAD_WAIT_CPU)
1082                 return;
1083
1084         if (timestamp < atom->wake_up_time) {
1085                 atom->state = THREAD_IGNORE;
1086                 return;
1087         }
1088
1089         atom->state = THREAD_SCHED_IN;
1090         atom->sched_in_time = timestamp;
1091
1092         delta = atom->sched_in_time - atom->wake_up_time;
1093         atoms->total_lat += delta;
1094         if (delta > atoms->max_lat) {
1095                 atoms->max_lat = delta;
1096                 atoms->max_lat_at = timestamp;
1097         }
1098         atoms->nb_atoms++;
1099 }
1100
1101 static int latency_switch_event(struct perf_sched *sched,
1102                                 struct evsel *evsel,
1103                                 struct perf_sample *sample,
1104                                 struct machine *machine)
1105 {
1106         const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1107                   next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1108         const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1109         struct work_atoms *out_events, *in_events;
1110         struct thread *sched_out, *sched_in;
1111         u64 timestamp0, timestamp = sample->time;
1112         int cpu = sample->cpu, err = -1;
1113         s64 delta;
1114
1115         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1116
1117         timestamp0 = sched->cpu_last_switched[cpu];
1118         sched->cpu_last_switched[cpu] = timestamp;
1119         if (timestamp0)
1120                 delta = timestamp - timestamp0;
1121         else
1122                 delta = 0;
1123
1124         if (delta < 0) {
1125                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1126                 return -1;
1127         }
1128
1129         sched_out = machine__findnew_thread(machine, -1, prev_pid);
1130         sched_in = machine__findnew_thread(machine, -1, next_pid);
1131         if (sched_out == NULL || sched_in == NULL)
1132                 goto out_put;
1133
1134         out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1135         if (!out_events) {
1136                 if (thread_atoms_insert(sched, sched_out))
1137                         goto out_put;
1138                 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1139                 if (!out_events) {
1140                         pr_err("out-event: Internal tree error");
1141                         goto out_put;
1142                 }
1143         }
1144         if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1145                 return -1;
1146
1147         in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1148         if (!in_events) {
1149                 if (thread_atoms_insert(sched, sched_in))
1150                         goto out_put;
1151                 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1152                 if (!in_events) {
1153                         pr_err("in-event: Internal tree error");
1154                         goto out_put;
1155                 }
1156                 /*
1157                  * Take came in we have not heard about yet,
1158                  * add in an initial atom in runnable state:
1159                  */
1160                 if (add_sched_out_event(in_events, 'R', timestamp))
1161                         goto out_put;
1162         }
1163         add_sched_in_event(in_events, timestamp);
1164         err = 0;
1165 out_put:
1166         thread__put(sched_out);
1167         thread__put(sched_in);
1168         return err;
1169 }
1170
1171 static int latency_runtime_event(struct perf_sched *sched,
1172                                  struct evsel *evsel,
1173                                  struct perf_sample *sample,
1174                                  struct machine *machine)
1175 {
1176         const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
1177         const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1178         struct thread *thread = machine__findnew_thread(machine, -1, pid);
1179         struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1180         u64 timestamp = sample->time;
1181         int cpu = sample->cpu, err = -1;
1182
1183         if (thread == NULL)
1184                 return -1;
1185
1186         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1187         if (!atoms) {
1188                 if (thread_atoms_insert(sched, thread))
1189                         goto out_put;
1190                 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1191                 if (!atoms) {
1192                         pr_err("in-event: Internal tree error");
1193                         goto out_put;
1194                 }
1195                 if (add_sched_out_event(atoms, 'R', timestamp))
1196                         goto out_put;
1197         }
1198
1199         add_runtime_event(atoms, runtime, timestamp);
1200         err = 0;
1201 out_put:
1202         thread__put(thread);
1203         return err;
1204 }
1205
1206 static int latency_wakeup_event(struct perf_sched *sched,
1207                                 struct evsel *evsel,
1208                                 struct perf_sample *sample,
1209                                 struct machine *machine)
1210 {
1211         const u32 pid     = perf_evsel__intval(evsel, sample, "pid");
1212         struct work_atoms *atoms;
1213         struct work_atom *atom;
1214         struct thread *wakee;
1215         u64 timestamp = sample->time;
1216         int err = -1;
1217
1218         wakee = machine__findnew_thread(machine, -1, pid);
1219         if (wakee == NULL)
1220                 return -1;
1221         atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1222         if (!atoms) {
1223                 if (thread_atoms_insert(sched, wakee))
1224                         goto out_put;
1225                 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1226                 if (!atoms) {
1227                         pr_err("wakeup-event: Internal tree error");
1228                         goto out_put;
1229                 }
1230                 if (add_sched_out_event(atoms, 'S', timestamp))
1231                         goto out_put;
1232         }
1233
1234         BUG_ON(list_empty(&atoms->work_list));
1235
1236         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1237
1238         /*
1239          * As we do not guarantee the wakeup event happens when
1240          * task is out of run queue, also may happen when task is
1241          * on run queue and wakeup only change ->state to TASK_RUNNING,
1242          * then we should not set the ->wake_up_time when wake up a
1243          * task which is on run queue.
1244          *
1245          * You WILL be missing events if you've recorded only
1246          * one CPU, or are only looking at only one, so don't
1247          * skip in this case.
1248          */
1249         if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1250                 goto out_ok;
1251
1252         sched->nr_timestamps++;
1253         if (atom->sched_out_time > timestamp) {
1254                 sched->nr_unordered_timestamps++;
1255                 goto out_ok;
1256         }
1257
1258         atom->state = THREAD_WAIT_CPU;
1259         atom->wake_up_time = timestamp;
1260 out_ok:
1261         err = 0;
1262 out_put:
1263         thread__put(wakee);
1264         return err;
1265 }
1266
1267 static int latency_migrate_task_event(struct perf_sched *sched,
1268                                       struct evsel *evsel,
1269                                       struct perf_sample *sample,
1270                                       struct machine *machine)
1271 {
1272         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1273         u64 timestamp = sample->time;
1274         struct work_atoms *atoms;
1275         struct work_atom *atom;
1276         struct thread *migrant;
1277         int err = -1;
1278
1279         /*
1280          * Only need to worry about migration when profiling one CPU.
1281          */
1282         if (sched->profile_cpu == -1)
1283                 return 0;
1284
1285         migrant = machine__findnew_thread(machine, -1, pid);
1286         if (migrant == NULL)
1287                 return -1;
1288         atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1289         if (!atoms) {
1290                 if (thread_atoms_insert(sched, migrant))
1291                         goto out_put;
1292                 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1293                 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1294                 if (!atoms) {
1295                         pr_err("migration-event: Internal tree error");
1296                         goto out_put;
1297                 }
1298                 if (add_sched_out_event(atoms, 'R', timestamp))
1299                         goto out_put;
1300         }
1301
1302         BUG_ON(list_empty(&atoms->work_list));
1303
1304         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1305         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1306
1307         sched->nr_timestamps++;
1308
1309         if (atom->sched_out_time > timestamp)
1310                 sched->nr_unordered_timestamps++;
1311         err = 0;
1312 out_put:
1313         thread__put(migrant);
1314         return err;
1315 }
1316
1317 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1318 {
1319         int i;
1320         int ret;
1321         u64 avg;
1322         char max_lat_at[32];
1323
1324         if (!work_list->nb_atoms)
1325                 return;
1326         /*
1327          * Ignore idle threads:
1328          */
1329         if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1330                 return;
1331
1332         sched->all_runtime += work_list->total_runtime;
1333         sched->all_count   += work_list->nb_atoms;
1334
1335         if (work_list->num_merged > 1)
1336                 ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1337         else
1338                 ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1339
1340         for (i = 0; i < 24 - ret; i++)
1341                 printf(" ");
1342
1343         avg = work_list->total_lat / work_list->nb_atoms;
1344         timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1345
1346         printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1347               (double)work_list->total_runtime / NSEC_PER_MSEC,
1348                  work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1349                  (double)work_list->max_lat / NSEC_PER_MSEC,
1350                  max_lat_at);
1351 }
1352
1353 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1354 {
1355         if (l->thread == r->thread)
1356                 return 0;
1357         if (l->thread->tid < r->thread->tid)
1358                 return -1;
1359         if (l->thread->tid > r->thread->tid)
1360                 return 1;
1361         return (int)(l->thread - r->thread);
1362 }
1363
1364 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1365 {
1366         u64 avgl, avgr;
1367
1368         if (!l->nb_atoms)
1369                 return -1;
1370
1371         if (!r->nb_atoms)
1372                 return 1;
1373
1374         avgl = l->total_lat / l->nb_atoms;
1375         avgr = r->total_lat / r->nb_atoms;
1376
1377         if (avgl < avgr)
1378                 return -1;
1379         if (avgl > avgr)
1380                 return 1;
1381
1382         return 0;
1383 }
1384
1385 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1386 {
1387         if (l->max_lat < r->max_lat)
1388                 return -1;
1389         if (l->max_lat > r->max_lat)
1390                 return 1;
1391
1392         return 0;
1393 }
1394
1395 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1396 {
1397         if (l->nb_atoms < r->nb_atoms)
1398                 return -1;
1399         if (l->nb_atoms > r->nb_atoms)
1400                 return 1;
1401
1402         return 0;
1403 }
1404
1405 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1406 {
1407         if (l->total_runtime < r->total_runtime)
1408                 return -1;
1409         if (l->total_runtime > r->total_runtime)
1410                 return 1;
1411
1412         return 0;
1413 }
1414
1415 static int sort_dimension__add(const char *tok, struct list_head *list)
1416 {
1417         size_t i;
1418         static struct sort_dimension avg_sort_dimension = {
1419                 .name = "avg",
1420                 .cmp  = avg_cmp,
1421         };
1422         static struct sort_dimension max_sort_dimension = {
1423                 .name = "max",
1424                 .cmp  = max_cmp,
1425         };
1426         static struct sort_dimension pid_sort_dimension = {
1427                 .name = "pid",
1428                 .cmp  = pid_cmp,
1429         };
1430         static struct sort_dimension runtime_sort_dimension = {
1431                 .name = "runtime",
1432                 .cmp  = runtime_cmp,
1433         };
1434         static struct sort_dimension switch_sort_dimension = {
1435                 .name = "switch",
1436                 .cmp  = switch_cmp,
1437         };
1438         struct sort_dimension *available_sorts[] = {
1439                 &pid_sort_dimension,
1440                 &avg_sort_dimension,
1441                 &max_sort_dimension,
1442                 &switch_sort_dimension,
1443                 &runtime_sort_dimension,
1444         };
1445
1446         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1447                 if (!strcmp(available_sorts[i]->name, tok)) {
1448                         list_add_tail(&available_sorts[i]->list, list);
1449
1450                         return 0;
1451                 }
1452         }
1453
1454         return -1;
1455 }
1456
1457 static void perf_sched__sort_lat(struct perf_sched *sched)
1458 {
1459         struct rb_node *node;
1460         struct rb_root_cached *root = &sched->atom_root;
1461 again:
1462         for (;;) {
1463                 struct work_atoms *data;
1464                 node = rb_first_cached(root);
1465                 if (!node)
1466                         break;
1467
1468                 rb_erase_cached(node, root);
1469                 data = rb_entry(node, struct work_atoms, node);
1470                 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1471         }
1472         if (root == &sched->atom_root) {
1473                 root = &sched->merged_atom_root;
1474                 goto again;
1475         }
1476 }
1477
1478 static int process_sched_wakeup_event(struct perf_tool *tool,
1479                                       struct evsel *evsel,
1480                                       struct perf_sample *sample,
1481                                       struct machine *machine)
1482 {
1483         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1484
1485         if (sched->tp_handler->wakeup_event)
1486                 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1487
1488         return 0;
1489 }
1490
1491 union map_priv {
1492         void    *ptr;
1493         bool     color;
1494 };
1495
1496 static bool thread__has_color(struct thread *thread)
1497 {
1498         union map_priv priv = {
1499                 .ptr = thread__priv(thread),
1500         };
1501
1502         return priv.color;
1503 }
1504
1505 static struct thread*
1506 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1507 {
1508         struct thread *thread = machine__findnew_thread(machine, pid, tid);
1509         union map_priv priv = {
1510                 .color = false,
1511         };
1512
1513         if (!sched->map.color_pids || !thread || thread__priv(thread))
1514                 return thread;
1515
1516         if (thread_map__has(sched->map.color_pids, tid))
1517                 priv.color = true;
1518
1519         thread__set_priv(thread, priv.ptr);
1520         return thread;
1521 }
1522
1523 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1524                             struct perf_sample *sample, struct machine *machine)
1525 {
1526         const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1527         struct thread *sched_in;
1528         struct thread_runtime *tr;
1529         int new_shortname;
1530         u64 timestamp0, timestamp = sample->time;
1531         s64 delta;
1532         int i, this_cpu = sample->cpu;
1533         int cpus_nr;
1534         bool new_cpu = false;
1535         const char *color = PERF_COLOR_NORMAL;
1536         char stimestamp[32];
1537
1538         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1539
1540         if (this_cpu > sched->max_cpu)
1541                 sched->max_cpu = this_cpu;
1542
1543         if (sched->map.comp) {
1544                 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1545                 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1546                         sched->map.comp_cpus[cpus_nr++] = this_cpu;
1547                         new_cpu = true;
1548                 }
1549         } else
1550                 cpus_nr = sched->max_cpu;
1551
1552         timestamp0 = sched->cpu_last_switched[this_cpu];
1553         sched->cpu_last_switched[this_cpu] = timestamp;
1554         if (timestamp0)
1555                 delta = timestamp - timestamp0;
1556         else
1557                 delta = 0;
1558
1559         if (delta < 0) {
1560                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1561                 return -1;
1562         }
1563
1564         sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1565         if (sched_in == NULL)
1566                 return -1;
1567
1568         tr = thread__get_runtime(sched_in);
1569         if (tr == NULL) {
1570                 thread__put(sched_in);
1571                 return -1;
1572         }
1573
1574         sched->curr_thread[this_cpu] = thread__get(sched_in);
1575
1576         printf("  ");
1577
1578         new_shortname = 0;
1579         if (!tr->shortname[0]) {
1580                 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1581                         /*
1582                          * Don't allocate a letter-number for swapper:0
1583                          * as a shortname. Instead, we use '.' for it.
1584                          */
1585                         tr->shortname[0] = '.';
1586                         tr->shortname[1] = ' ';
1587                 } else {
1588                         tr->shortname[0] = sched->next_shortname1;
1589                         tr->shortname[1] = sched->next_shortname2;
1590
1591                         if (sched->next_shortname1 < 'Z') {
1592                                 sched->next_shortname1++;
1593                         } else {
1594                                 sched->next_shortname1 = 'A';
1595                                 if (sched->next_shortname2 < '9')
1596                                         sched->next_shortname2++;
1597                                 else
1598                                         sched->next_shortname2 = '0';
1599                         }
1600                 }
1601                 new_shortname = 1;
1602         }
1603
1604         for (i = 0; i < cpus_nr; i++) {
1605                 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1606                 struct thread *curr_thread = sched->curr_thread[cpu];
1607                 struct thread_runtime *curr_tr;
1608                 const char *pid_color = color;
1609                 const char *cpu_color = color;
1610
1611                 if (curr_thread && thread__has_color(curr_thread))
1612                         pid_color = COLOR_PIDS;
1613
1614                 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1615                         continue;
1616
1617                 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1618                         cpu_color = COLOR_CPUS;
1619
1620                 if (cpu != this_cpu)
1621                         color_fprintf(stdout, color, " ");
1622                 else
1623                         color_fprintf(stdout, cpu_color, "*");
1624
1625                 if (sched->curr_thread[cpu]) {
1626                         curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1627                         if (curr_tr == NULL) {
1628                                 thread__put(sched_in);
1629                                 return -1;
1630                         }
1631                         color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1632                 } else
1633                         color_fprintf(stdout, color, "   ");
1634         }
1635
1636         if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1637                 goto out;
1638
1639         timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1640         color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1641         if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1642                 const char *pid_color = color;
1643
1644                 if (thread__has_color(sched_in))
1645                         pid_color = COLOR_PIDS;
1646
1647                 color_fprintf(stdout, pid_color, "%s => %s:%d",
1648                        tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1649                 tr->comm_changed = false;
1650         }
1651
1652         if (sched->map.comp && new_cpu)
1653                 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1654
1655 out:
1656         color_fprintf(stdout, color, "\n");
1657
1658         thread__put(sched_in);
1659
1660         return 0;
1661 }
1662
1663 static int process_sched_switch_event(struct perf_tool *tool,
1664                                       struct evsel *evsel,
1665                                       struct perf_sample *sample,
1666                                       struct machine *machine)
1667 {
1668         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1669         int this_cpu = sample->cpu, err = 0;
1670         u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1671             next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1672
1673         if (sched->curr_pid[this_cpu] != (u32)-1) {
1674                 /*
1675                  * Are we trying to switch away a PID that is
1676                  * not current?
1677                  */
1678                 if (sched->curr_pid[this_cpu] != prev_pid)
1679                         sched->nr_context_switch_bugs++;
1680         }
1681
1682         if (sched->tp_handler->switch_event)
1683                 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1684
1685         sched->curr_pid[this_cpu] = next_pid;
1686         return err;
1687 }
1688
1689 static int process_sched_runtime_event(struct perf_tool *tool,
1690                                        struct evsel *evsel,
1691                                        struct perf_sample *sample,
1692                                        struct machine *machine)
1693 {
1694         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1695
1696         if (sched->tp_handler->runtime_event)
1697                 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1698
1699         return 0;
1700 }
1701
1702 static int perf_sched__process_fork_event(struct perf_tool *tool,
1703                                           union perf_event *event,
1704                                           struct perf_sample *sample,
1705                                           struct machine *machine)
1706 {
1707         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1708
1709         /* run the fork event through the perf machineruy */
1710         perf_event__process_fork(tool, event, sample, machine);
1711
1712         /* and then run additional processing needed for this command */
1713         if (sched->tp_handler->fork_event)
1714                 return sched->tp_handler->fork_event(sched, event, machine);
1715
1716         return 0;
1717 }
1718
1719 static int process_sched_migrate_task_event(struct perf_tool *tool,
1720                                             struct evsel *evsel,
1721                                             struct perf_sample *sample,
1722                                             struct machine *machine)
1723 {
1724         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1725
1726         if (sched->tp_handler->migrate_task_event)
1727                 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1728
1729         return 0;
1730 }
1731
1732 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1733                                   struct evsel *evsel,
1734                                   struct perf_sample *sample,
1735                                   struct machine *machine);
1736
1737 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1738                                                  union perf_event *event __maybe_unused,
1739                                                  struct perf_sample *sample,
1740                                                  struct evsel *evsel,
1741                                                  struct machine *machine)
1742 {
1743         int err = 0;
1744
1745         if (evsel->handler != NULL) {
1746                 tracepoint_handler f = evsel->handler;
1747                 err = f(tool, evsel, sample, machine);
1748         }
1749
1750         return err;
1751 }
1752
1753 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1754                                     union perf_event *event,
1755                                     struct perf_sample *sample,
1756                                     struct machine *machine)
1757 {
1758         struct thread *thread;
1759         struct thread_runtime *tr;
1760         int err;
1761
1762         err = perf_event__process_comm(tool, event, sample, machine);
1763         if (err)
1764                 return err;
1765
1766         thread = machine__find_thread(machine, sample->pid, sample->tid);
1767         if (!thread) {
1768                 pr_err("Internal error: can't find thread\n");
1769                 return -1;
1770         }
1771
1772         tr = thread__get_runtime(thread);
1773         if (tr == NULL) {
1774                 thread__put(thread);
1775                 return -1;
1776         }
1777
1778         tr->comm_changed = true;
1779         thread__put(thread);
1780
1781         return 0;
1782 }
1783
1784 static int perf_sched__read_events(struct perf_sched *sched)
1785 {
1786         const struct evsel_str_handler handlers[] = {
1787                 { "sched:sched_switch",       process_sched_switch_event, },
1788                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1789                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1790                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1791                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1792         };
1793         struct perf_session *session;
1794         struct perf_data data = {
1795                 .path  = input_name,
1796                 .mode  = PERF_DATA_MODE_READ,
1797                 .force = sched->force,
1798         };
1799         int rc = -1;
1800
1801         session = perf_session__new(&data, false, &sched->tool);
1802         if (IS_ERR(session)) {
1803                 pr_debug("Error creating perf session");
1804                 return PTR_ERR(session);
1805         }
1806
1807         symbol__init(&session->header.env);
1808
1809         if (perf_session__set_tracepoints_handlers(session, handlers))
1810                 goto out_delete;
1811
1812         if (perf_session__has_traces(session, "record -R")) {
1813                 int err = perf_session__process_events(session);
1814                 if (err) {
1815                         pr_err("Failed to process events, error %d", err);
1816                         goto out_delete;
1817                 }
1818
1819                 sched->nr_events      = session->evlist->stats.nr_events[0];
1820                 sched->nr_lost_events = session->evlist->stats.total_lost;
1821                 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1822         }
1823
1824         rc = 0;
1825 out_delete:
1826         perf_session__delete(session);
1827         return rc;
1828 }
1829
1830 /*
1831  * scheduling times are printed as msec.usec
1832  */
1833 static inline void print_sched_time(unsigned long long nsecs, int width)
1834 {
1835         unsigned long msecs;
1836         unsigned long usecs;
1837
1838         msecs  = nsecs / NSEC_PER_MSEC;
1839         nsecs -= msecs * NSEC_PER_MSEC;
1840         usecs  = nsecs / NSEC_PER_USEC;
1841         printf("%*lu.%03lu ", width, msecs, usecs);
1842 }
1843
1844 /*
1845  * returns runtime data for event, allocating memory for it the
1846  * first time it is used.
1847  */
1848 static struct evsel_runtime *perf_evsel__get_runtime(struct evsel *evsel)
1849 {
1850         struct evsel_runtime *r = evsel->priv;
1851
1852         if (r == NULL) {
1853                 r = zalloc(sizeof(struct evsel_runtime));
1854                 evsel->priv = r;
1855         }
1856
1857         return r;
1858 }
1859
1860 /*
1861  * save last time event was seen per cpu
1862  */
1863 static void perf_evsel__save_time(struct evsel *evsel,
1864                                   u64 timestamp, u32 cpu)
1865 {
1866         struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1867
1868         if (r == NULL)
1869                 return;
1870
1871         if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1872                 int i, n = __roundup_pow_of_two(cpu+1);
1873                 void *p = r->last_time;
1874
1875                 p = realloc(r->last_time, n * sizeof(u64));
1876                 if (!p)
1877                         return;
1878
1879                 r->last_time = p;
1880                 for (i = r->ncpu; i < n; ++i)
1881                         r->last_time[i] = (u64) 0;
1882
1883                 r->ncpu = n;
1884         }
1885
1886         r->last_time[cpu] = timestamp;
1887 }
1888
1889 /* returns last time this event was seen on the given cpu */
1890 static u64 perf_evsel__get_time(struct evsel *evsel, u32 cpu)
1891 {
1892         struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1893
1894         if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1895                 return 0;
1896
1897         return r->last_time[cpu];
1898 }
1899
1900 static int comm_width = 30;
1901
1902 static char *timehist_get_commstr(struct thread *thread)
1903 {
1904         static char str[32];
1905         const char *comm = thread__comm_str(thread);
1906         pid_t tid = thread->tid;
1907         pid_t pid = thread->pid_;
1908         int n;
1909
1910         if (pid == 0)
1911                 n = scnprintf(str, sizeof(str), "%s", comm);
1912
1913         else if (tid != pid)
1914                 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1915
1916         else
1917                 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1918
1919         if (n > comm_width)
1920                 comm_width = n;
1921
1922         return str;
1923 }
1924
1925 static void timehist_header(struct perf_sched *sched)
1926 {
1927         u32 ncpus = sched->max_cpu + 1;
1928         u32 i, j;
1929
1930         printf("%15s %6s ", "time", "cpu");
1931
1932         if (sched->show_cpu_visual) {
1933                 printf(" ");
1934                 for (i = 0, j = 0; i < ncpus; ++i) {
1935                         printf("%x", j++);
1936                         if (j > 15)
1937                                 j = 0;
1938                 }
1939                 printf(" ");
1940         }
1941
1942         printf(" %-*s  %9s  %9s  %9s", comm_width,
1943                 "task name", "wait time", "sch delay", "run time");
1944
1945         if (sched->show_state)
1946                 printf("  %s", "state");
1947
1948         printf("\n");
1949
1950         /*
1951          * units row
1952          */
1953         printf("%15s %-6s ", "", "");
1954
1955         if (sched->show_cpu_visual)
1956                 printf(" %*s ", ncpus, "");
1957
1958         printf(" %-*s  %9s  %9s  %9s", comm_width,
1959                "[tid/pid]", "(msec)", "(msec)", "(msec)");
1960
1961         if (sched->show_state)
1962                 printf("  %5s", "");
1963
1964         printf("\n");
1965
1966         /*
1967          * separator
1968          */
1969         printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1970
1971         if (sched->show_cpu_visual)
1972                 printf(" %.*s ", ncpus, graph_dotted_line);
1973
1974         printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1975                 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1976                 graph_dotted_line);
1977
1978         if (sched->show_state)
1979                 printf("  %.5s", graph_dotted_line);
1980
1981         printf("\n");
1982 }
1983
1984 static char task_state_char(struct thread *thread, int state)
1985 {
1986         static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1987         unsigned bit = state ? ffs(state) : 0;
1988
1989         /* 'I' for idle */
1990         if (thread->tid == 0)
1991                 return 'I';
1992
1993         return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1994 }
1995
1996 static void timehist_print_sample(struct perf_sched *sched,
1997                                   struct evsel *evsel,
1998                                   struct perf_sample *sample,
1999                                   struct addr_location *al,
2000                                   struct thread *thread,
2001                                   u64 t, int state)
2002 {
2003         struct thread_runtime *tr = thread__priv(thread);
2004         const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
2005         const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
2006         u32 max_cpus = sched->max_cpu + 1;
2007         char tstr[64];
2008         char nstr[30];
2009         u64 wait_time;
2010
2011         timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2012         printf("%15s [%04d] ", tstr, sample->cpu);
2013
2014         if (sched->show_cpu_visual) {
2015                 u32 i;
2016                 char c;
2017
2018                 printf(" ");
2019                 for (i = 0; i < max_cpus; ++i) {
2020                         /* flag idle times with 'i'; others are sched events */
2021                         if (i == sample->cpu)
2022                                 c = (thread->tid == 0) ? 'i' : 's';
2023                         else
2024                                 c = ' ';
2025                         printf("%c", c);
2026                 }
2027                 printf(" ");
2028         }
2029
2030         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2031
2032         wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2033         print_sched_time(wait_time, 6);
2034
2035         print_sched_time(tr->dt_delay, 6);
2036         print_sched_time(tr->dt_run, 6);
2037
2038         if (sched->show_state)
2039                 printf(" %5c ", task_state_char(thread, state));
2040
2041         if (sched->show_next) {
2042                 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2043                 printf(" %-*s", comm_width, nstr);
2044         }
2045
2046         if (sched->show_wakeups && !sched->show_next)
2047                 printf("  %-*s", comm_width, "");
2048
2049         if (thread->tid == 0)
2050                 goto out;
2051
2052         if (sched->show_callchain)
2053                 printf("  ");
2054
2055         sample__fprintf_sym(sample, al, 0,
2056                             EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2057                             EVSEL__PRINT_CALLCHAIN_ARROW |
2058                             EVSEL__PRINT_SKIP_IGNORED,
2059                             &callchain_cursor, symbol_conf.bt_stop_list,  stdout);
2060
2061 out:
2062         printf("\n");
2063 }
2064
2065 /*
2066  * Explanation of delta-time stats:
2067  *
2068  *            t = time of current schedule out event
2069  *        tprev = time of previous sched out event
2070  *                also time of schedule-in event for current task
2071  *    last_time = time of last sched change event for current task
2072  *                (i.e, time process was last scheduled out)
2073  * ready_to_run = time of wakeup for current task
2074  *
2075  * -----|------------|------------|------------|------
2076  *    last         ready        tprev          t
2077  *    time         to run
2078  *
2079  *      |-------- dt_wait --------|
2080  *                   |- dt_delay -|-- dt_run --|
2081  *
2082  *   dt_run = run time of current task
2083  *  dt_wait = time between last schedule out event for task and tprev
2084  *            represents time spent off the cpu
2085  * dt_delay = time between wakeup and schedule-in of task
2086  */
2087
2088 static void timehist_update_runtime_stats(struct thread_runtime *r,
2089                                          u64 t, u64 tprev)
2090 {
2091         r->dt_delay   = 0;
2092         r->dt_sleep   = 0;
2093         r->dt_iowait  = 0;
2094         r->dt_preempt = 0;
2095         r->dt_run     = 0;
2096
2097         if (tprev) {
2098                 r->dt_run = t - tprev;
2099                 if (r->ready_to_run) {
2100                         if (r->ready_to_run > tprev)
2101                                 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2102                         else
2103                                 r->dt_delay = tprev - r->ready_to_run;
2104                 }
2105
2106                 if (r->last_time > tprev)
2107                         pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2108                 else if (r->last_time) {
2109                         u64 dt_wait = tprev - r->last_time;
2110
2111                         if (r->last_state == TASK_RUNNING)
2112                                 r->dt_preempt = dt_wait;
2113                         else if (r->last_state == TASK_UNINTERRUPTIBLE)
2114                                 r->dt_iowait = dt_wait;
2115                         else
2116                                 r->dt_sleep = dt_wait;
2117                 }
2118         }
2119
2120         update_stats(&r->run_stats, r->dt_run);
2121
2122         r->total_run_time     += r->dt_run;
2123         r->total_delay_time   += r->dt_delay;
2124         r->total_sleep_time   += r->dt_sleep;
2125         r->total_iowait_time  += r->dt_iowait;
2126         r->total_preempt_time += r->dt_preempt;
2127 }
2128
2129 static bool is_idle_sample(struct perf_sample *sample,
2130                            struct evsel *evsel)
2131 {
2132         /* pid 0 == swapper == idle task */
2133         if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2134                 return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2135
2136         return sample->pid == 0;
2137 }
2138
2139 static void save_task_callchain(struct perf_sched *sched,
2140                                 struct perf_sample *sample,
2141                                 struct evsel *evsel,
2142                                 struct machine *machine)
2143 {
2144         struct callchain_cursor *cursor = &callchain_cursor;
2145         struct thread *thread;
2146
2147         /* want main thread for process - has maps */
2148         thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2149         if (thread == NULL) {
2150                 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2151                 return;
2152         }
2153
2154         if (!sched->show_callchain || sample->callchain == NULL)
2155                 return;
2156
2157         if (thread__resolve_callchain(thread, cursor, evsel, sample,
2158                                       NULL, NULL, sched->max_stack + 2) != 0) {
2159                 if (verbose > 0)
2160                         pr_err("Failed to resolve callchain. Skipping\n");
2161
2162                 return;
2163         }
2164
2165         callchain_cursor_commit(cursor);
2166
2167         while (true) {
2168                 struct callchain_cursor_node *node;
2169                 struct symbol *sym;
2170
2171                 node = callchain_cursor_current(cursor);
2172                 if (node == NULL)
2173                         break;
2174
2175                 sym = node->ms.sym;
2176                 if (sym) {
2177                         if (!strcmp(sym->name, "schedule") ||
2178                             !strcmp(sym->name, "__schedule") ||
2179                             !strcmp(sym->name, "preempt_schedule"))
2180                                 sym->ignore = 1;
2181                 }
2182
2183                 callchain_cursor_advance(cursor);
2184         }
2185 }
2186
2187 static int init_idle_thread(struct thread *thread)
2188 {
2189         struct idle_thread_runtime *itr;
2190
2191         thread__set_comm(thread, idle_comm, 0);
2192
2193         itr = zalloc(sizeof(*itr));
2194         if (itr == NULL)
2195                 return -ENOMEM;
2196
2197         init_stats(&itr->tr.run_stats);
2198         callchain_init(&itr->callchain);
2199         callchain_cursor_reset(&itr->cursor);
2200         thread__set_priv(thread, itr);
2201
2202         return 0;
2203 }
2204
2205 /*
2206  * Track idle stats per cpu by maintaining a local thread
2207  * struct for the idle task on each cpu.
2208  */
2209 static int init_idle_threads(int ncpu)
2210 {
2211         int i, ret;
2212
2213         idle_threads = zalloc(ncpu * sizeof(struct thread *));
2214         if (!idle_threads)
2215                 return -ENOMEM;
2216
2217         idle_max_cpu = ncpu;
2218
2219         /* allocate the actual thread struct if needed */
2220         for (i = 0; i < ncpu; ++i) {
2221                 idle_threads[i] = thread__new(0, 0);
2222                 if (idle_threads[i] == NULL)
2223                         return -ENOMEM;
2224
2225                 ret = init_idle_thread(idle_threads[i]);
2226                 if (ret < 0)
2227                         return ret;
2228         }
2229
2230         return 0;
2231 }
2232
2233 static void free_idle_threads(void)
2234 {
2235         int i;
2236
2237         if (idle_threads == NULL)
2238                 return;
2239
2240         for (i = 0; i < idle_max_cpu; ++i) {
2241                 if ((idle_threads[i]))
2242                         thread__delete(idle_threads[i]);
2243         }
2244
2245         free(idle_threads);
2246 }
2247
2248 static struct thread *get_idle_thread(int cpu)
2249 {
2250         /*
2251          * expand/allocate array of pointers to local thread
2252          * structs if needed
2253          */
2254         if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2255                 int i, j = __roundup_pow_of_two(cpu+1);
2256                 void *p;
2257
2258                 p = realloc(idle_threads, j * sizeof(struct thread *));
2259                 if (!p)
2260                         return NULL;
2261
2262                 idle_threads = (struct thread **) p;
2263                 for (i = idle_max_cpu; i < j; ++i)
2264                         idle_threads[i] = NULL;
2265
2266                 idle_max_cpu = j;
2267         }
2268
2269         /* allocate a new thread struct if needed */
2270         if (idle_threads[cpu] == NULL) {
2271                 idle_threads[cpu] = thread__new(0, 0);
2272
2273                 if (idle_threads[cpu]) {
2274                         if (init_idle_thread(idle_threads[cpu]) < 0)
2275                                 return NULL;
2276                 }
2277         }
2278
2279         return idle_threads[cpu];
2280 }
2281
2282 static void save_idle_callchain(struct perf_sched *sched,
2283                                 struct idle_thread_runtime *itr,
2284                                 struct perf_sample *sample)
2285 {
2286         if (!sched->show_callchain || sample->callchain == NULL)
2287                 return;
2288
2289         callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2290 }
2291
2292 static struct thread *timehist_get_thread(struct perf_sched *sched,
2293                                           struct perf_sample *sample,
2294                                           struct machine *machine,
2295                                           struct evsel *evsel)
2296 {
2297         struct thread *thread;
2298
2299         if (is_idle_sample(sample, evsel)) {
2300                 thread = get_idle_thread(sample->cpu);
2301                 if (thread == NULL)
2302                         pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2303
2304         } else {
2305                 /* there were samples with tid 0 but non-zero pid */
2306                 thread = machine__findnew_thread(machine, sample->pid,
2307                                                  sample->tid ?: sample->pid);
2308                 if (thread == NULL) {
2309                         pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2310                                  sample->tid);
2311                 }
2312
2313                 save_task_callchain(sched, sample, evsel, machine);
2314                 if (sched->idle_hist) {
2315                         struct thread *idle;
2316                         struct idle_thread_runtime *itr;
2317
2318                         idle = get_idle_thread(sample->cpu);
2319                         if (idle == NULL) {
2320                                 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2321                                 return NULL;
2322                         }
2323
2324                         itr = thread__priv(idle);
2325                         if (itr == NULL)
2326                                 return NULL;
2327
2328                         itr->last_thread = thread;
2329
2330                         /* copy task callchain when entering to idle */
2331                         if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2332                                 save_idle_callchain(sched, itr, sample);
2333                 }
2334         }
2335
2336         return thread;
2337 }
2338
2339 static bool timehist_skip_sample(struct perf_sched *sched,
2340                                  struct thread *thread,
2341                                  struct evsel *evsel,
2342                                  struct perf_sample *sample)
2343 {
2344         bool rc = false;
2345
2346         if (thread__is_filtered(thread)) {
2347                 rc = true;
2348                 sched->skipped_samples++;
2349         }
2350
2351         if (sched->idle_hist) {
2352                 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2353                         rc = true;
2354                 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2355                          perf_evsel__intval(evsel, sample, "next_pid") != 0)
2356                         rc = true;
2357         }
2358
2359         return rc;
2360 }
2361
2362 static void timehist_print_wakeup_event(struct perf_sched *sched,
2363                                         struct evsel *evsel,
2364                                         struct perf_sample *sample,
2365                                         struct machine *machine,
2366                                         struct thread *awakened)
2367 {
2368         struct thread *thread;
2369         char tstr[64];
2370
2371         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2372         if (thread == NULL)
2373                 return;
2374
2375         /* show wakeup unless both awakee and awaker are filtered */
2376         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2377             timehist_skip_sample(sched, awakened, evsel, sample)) {
2378                 return;
2379         }
2380
2381         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2382         printf("%15s [%04d] ", tstr, sample->cpu);
2383         if (sched->show_cpu_visual)
2384                 printf(" %*s ", sched->max_cpu + 1, "");
2385
2386         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2387
2388         /* dt spacer */
2389         printf("  %9s  %9s  %9s ", "", "", "");
2390
2391         printf("awakened: %s", timehist_get_commstr(awakened));
2392
2393         printf("\n");
2394 }
2395
2396 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2397                                        union perf_event *event __maybe_unused,
2398                                        struct evsel *evsel,
2399                                        struct perf_sample *sample,
2400                                        struct machine *machine)
2401 {
2402         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2403         struct thread *thread;
2404         struct thread_runtime *tr = NULL;
2405         /* want pid of awakened task not pid in sample */
2406         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2407
2408         thread = machine__findnew_thread(machine, 0, pid);
2409         if (thread == NULL)
2410                 return -1;
2411
2412         tr = thread__get_runtime(thread);
2413         if (tr == NULL)
2414                 return -1;
2415
2416         if (tr->ready_to_run == 0)
2417                 tr->ready_to_run = sample->time;
2418
2419         /* show wakeups if requested */
2420         if (sched->show_wakeups &&
2421             !perf_time__skip_sample(&sched->ptime, sample->time))
2422                 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2423
2424         return 0;
2425 }
2426
2427 static void timehist_print_migration_event(struct perf_sched *sched,
2428                                         struct evsel *evsel,
2429                                         struct perf_sample *sample,
2430                                         struct machine *machine,
2431                                         struct thread *migrated)
2432 {
2433         struct thread *thread;
2434         char tstr[64];
2435         u32 max_cpus = sched->max_cpu + 1;
2436         u32 ocpu, dcpu;
2437
2438         if (sched->summary_only)
2439                 return;
2440
2441         max_cpus = sched->max_cpu + 1;
2442         ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2443         dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2444
2445         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2446         if (thread == NULL)
2447                 return;
2448
2449         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2450             timehist_skip_sample(sched, migrated, evsel, sample)) {
2451                 return;
2452         }
2453
2454         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2455         printf("%15s [%04d] ", tstr, sample->cpu);
2456
2457         if (sched->show_cpu_visual) {
2458                 u32 i;
2459                 char c;
2460
2461                 printf("  ");
2462                 for (i = 0; i < max_cpus; ++i) {
2463                         c = (i == sample->cpu) ? 'm' : ' ';
2464                         printf("%c", c);
2465                 }
2466                 printf("  ");
2467         }
2468
2469         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2470
2471         /* dt spacer */
2472         printf("  %9s  %9s  %9s ", "", "", "");
2473
2474         printf("migrated: %s", timehist_get_commstr(migrated));
2475         printf(" cpu %d => %d", ocpu, dcpu);
2476
2477         printf("\n");
2478 }
2479
2480 static int timehist_migrate_task_event(struct perf_tool *tool,
2481                                        union perf_event *event __maybe_unused,
2482                                        struct evsel *evsel,
2483                                        struct perf_sample *sample,
2484                                        struct machine *machine)
2485 {
2486         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2487         struct thread *thread;
2488         struct thread_runtime *tr = NULL;
2489         /* want pid of migrated task not pid in sample */
2490         const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2491
2492         thread = machine__findnew_thread(machine, 0, pid);
2493         if (thread == NULL)
2494                 return -1;
2495
2496         tr = thread__get_runtime(thread);
2497         if (tr == NULL)
2498                 return -1;
2499
2500         tr->migrations++;
2501
2502         /* show migrations if requested */
2503         timehist_print_migration_event(sched, evsel, sample, machine, thread);
2504
2505         return 0;
2506 }
2507
2508 static int timehist_sched_change_event(struct perf_tool *tool,
2509                                        union perf_event *event,
2510                                        struct evsel *evsel,
2511                                        struct perf_sample *sample,
2512                                        struct machine *machine)
2513 {
2514         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2515         struct perf_time_interval *ptime = &sched->ptime;
2516         struct addr_location al;
2517         struct thread *thread;
2518         struct thread_runtime *tr = NULL;
2519         u64 tprev, t = sample->time;
2520         int rc = 0;
2521         int state = perf_evsel__intval(evsel, sample, "prev_state");
2522
2523
2524         if (machine__resolve(machine, &al, sample) < 0) {
2525                 pr_err("problem processing %d event. skipping it\n",
2526                        event->header.type);
2527                 rc = -1;
2528                 goto out;
2529         }
2530
2531         thread = timehist_get_thread(sched, sample, machine, evsel);
2532         if (thread == NULL) {
2533                 rc = -1;
2534                 goto out;
2535         }
2536
2537         if (timehist_skip_sample(sched, thread, evsel, sample))
2538                 goto out;
2539
2540         tr = thread__get_runtime(thread);
2541         if (tr == NULL) {
2542                 rc = -1;
2543                 goto out;
2544         }
2545
2546         tprev = perf_evsel__get_time(evsel, sample->cpu);
2547
2548         /*
2549          * If start time given:
2550          * - sample time is under window user cares about - skip sample
2551          * - tprev is under window user cares about  - reset to start of window
2552          */
2553         if (ptime->start && ptime->start > t)
2554                 goto out;
2555
2556         if (tprev && ptime->start > tprev)
2557                 tprev = ptime->start;
2558
2559         /*
2560          * If end time given:
2561          * - previous sched event is out of window - we are done
2562          * - sample time is beyond window user cares about - reset it
2563          *   to close out stats for time window interest
2564          */
2565         if (ptime->end) {
2566                 if (tprev > ptime->end)
2567                         goto out;
2568
2569                 if (t > ptime->end)
2570                         t = ptime->end;
2571         }
2572
2573         if (!sched->idle_hist || thread->tid == 0) {
2574                 timehist_update_runtime_stats(tr, t, tprev);
2575
2576                 if (sched->idle_hist) {
2577                         struct idle_thread_runtime *itr = (void *)tr;
2578                         struct thread_runtime *last_tr;
2579
2580                         BUG_ON(thread->tid != 0);
2581
2582                         if (itr->last_thread == NULL)
2583                                 goto out;
2584
2585                         /* add current idle time as last thread's runtime */
2586                         last_tr = thread__get_runtime(itr->last_thread);
2587                         if (last_tr == NULL)
2588                                 goto out;
2589
2590                         timehist_update_runtime_stats(last_tr, t, tprev);
2591                         /*
2592                          * remove delta time of last thread as it's not updated
2593                          * and otherwise it will show an invalid value next
2594                          * time.  we only care total run time and run stat.
2595                          */
2596                         last_tr->dt_run = 0;
2597                         last_tr->dt_delay = 0;
2598                         last_tr->dt_sleep = 0;
2599                         last_tr->dt_iowait = 0;
2600                         last_tr->dt_preempt = 0;
2601
2602                         if (itr->cursor.nr)
2603                                 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2604
2605                         itr->last_thread = NULL;
2606                 }
2607         }
2608
2609         if (!sched->summary_only)
2610                 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2611
2612 out:
2613         if (sched->hist_time.start == 0 && t >= ptime->start)
2614                 sched->hist_time.start = t;
2615         if (ptime->end == 0 || t <= ptime->end)
2616                 sched->hist_time.end = t;
2617
2618         if (tr) {
2619                 /* time of this sched_switch event becomes last time task seen */
2620                 tr->last_time = sample->time;
2621
2622                 /* last state is used to determine where to account wait time */
2623                 tr->last_state = state;
2624
2625                 /* sched out event for task so reset ready to run time */
2626                 tr->ready_to_run = 0;
2627         }
2628
2629         perf_evsel__save_time(evsel, sample->time, sample->cpu);
2630
2631         return rc;
2632 }
2633
2634 static int timehist_sched_switch_event(struct perf_tool *tool,
2635                              union perf_event *event,
2636                              struct evsel *evsel,
2637                              struct perf_sample *sample,
2638                              struct machine *machine __maybe_unused)
2639 {
2640         return timehist_sched_change_event(tool, event, evsel, sample, machine);
2641 }
2642
2643 static int process_lost(struct perf_tool *tool __maybe_unused,
2644                         union perf_event *event,
2645                         struct perf_sample *sample,
2646                         struct machine *machine __maybe_unused)
2647 {
2648         char tstr[64];
2649
2650         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2651         printf("%15s ", tstr);
2652         printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2653
2654         return 0;
2655 }
2656
2657
2658 static void print_thread_runtime(struct thread *t,
2659                                  struct thread_runtime *r)
2660 {
2661         double mean = avg_stats(&r->run_stats);
2662         float stddev;
2663
2664         printf("%*s   %5d  %9" PRIu64 " ",
2665                comm_width, timehist_get_commstr(t), t->ppid,
2666                (u64) r->run_stats.n);
2667
2668         print_sched_time(r->total_run_time, 8);
2669         stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2670         print_sched_time(r->run_stats.min, 6);
2671         printf(" ");
2672         print_sched_time((u64) mean, 6);
2673         printf(" ");
2674         print_sched_time(r->run_stats.max, 6);
2675         printf("  ");
2676         printf("%5.2f", stddev);
2677         printf("   %5" PRIu64, r->migrations);
2678         printf("\n");
2679 }
2680
2681 static void print_thread_waittime(struct thread *t,
2682                                   struct thread_runtime *r)
2683 {
2684         printf("%*s   %5d  %9" PRIu64 " ",
2685                comm_width, timehist_get_commstr(t), t->ppid,
2686                (u64) r->run_stats.n);
2687
2688         print_sched_time(r->total_run_time, 8);
2689         print_sched_time(r->total_sleep_time, 6);
2690         printf(" ");
2691         print_sched_time(r->total_iowait_time, 6);
2692         printf(" ");
2693         print_sched_time(r->total_preempt_time, 6);
2694         printf(" ");
2695         print_sched_time(r->total_delay_time, 6);
2696         printf("\n");
2697 }
2698
2699 struct total_run_stats {
2700         struct perf_sched *sched;
2701         u64  sched_count;
2702         u64  task_count;
2703         u64  total_run_time;
2704 };
2705
2706 static int __show_thread_runtime(struct thread *t, void *priv)
2707 {
2708         struct total_run_stats *stats = priv;
2709         struct thread_runtime *r;
2710
2711         if (thread__is_filtered(t))
2712                 return 0;
2713
2714         r = thread__priv(t);
2715         if (r && r->run_stats.n) {
2716                 stats->task_count++;
2717                 stats->sched_count += r->run_stats.n;
2718                 stats->total_run_time += r->total_run_time;
2719
2720                 if (stats->sched->show_state)
2721                         print_thread_waittime(t, r);
2722                 else
2723                         print_thread_runtime(t, r);
2724         }
2725
2726         return 0;
2727 }
2728
2729 static int show_thread_runtime(struct thread *t, void *priv)
2730 {
2731         if (t->dead)
2732                 return 0;
2733
2734         return __show_thread_runtime(t, priv);
2735 }
2736
2737 static int show_deadthread_runtime(struct thread *t, void *priv)
2738 {
2739         if (!t->dead)
2740                 return 0;
2741
2742         return __show_thread_runtime(t, priv);
2743 }
2744
2745 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2746 {
2747         const char *sep = " <- ";
2748         struct callchain_list *chain;
2749         size_t ret = 0;
2750         char bf[1024];
2751         bool first;
2752
2753         if (node == NULL)
2754                 return 0;
2755
2756         ret = callchain__fprintf_folded(fp, node->parent);
2757         first = (ret == 0);
2758
2759         list_for_each_entry(chain, &node->val, list) {
2760                 if (chain->ip >= PERF_CONTEXT_MAX)
2761                         continue;
2762                 if (chain->ms.sym && chain->ms.sym->ignore)
2763                         continue;
2764                 ret += fprintf(fp, "%s%s", first ? "" : sep,
2765                                callchain_list__sym_name(chain, bf, sizeof(bf),
2766                                                         false));
2767                 first = false;
2768         }
2769
2770         return ret;
2771 }
2772
2773 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2774 {
2775         size_t ret = 0;
2776         FILE *fp = stdout;
2777         struct callchain_node *chain;
2778         struct rb_node *rb_node = rb_first_cached(root);
2779
2780         printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2781         printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2782                graph_dotted_line);
2783
2784         while (rb_node) {
2785                 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2786                 rb_node = rb_next(rb_node);
2787
2788                 ret += fprintf(fp, "  ");
2789                 print_sched_time(chain->hit, 12);
2790                 ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2791                 ret += fprintf(fp, " %8d  ", chain->count);
2792                 ret += callchain__fprintf_folded(fp, chain);
2793                 ret += fprintf(fp, "\n");
2794         }
2795
2796         return ret;
2797 }
2798
2799 static void timehist_print_summary(struct perf_sched *sched,
2800                                    struct perf_session *session)
2801 {
2802         struct machine *m = &session->machines.host;
2803         struct total_run_stats totals;
2804         u64 task_count;
2805         struct thread *t;
2806         struct thread_runtime *r;
2807         int i;
2808         u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2809
2810         memset(&totals, 0, sizeof(totals));
2811         totals.sched = sched;
2812
2813         if (sched->idle_hist) {
2814                 printf("\nIdle-time summary\n");
2815                 printf("%*s  parent  sched-out  ", comm_width, "comm");
2816                 printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2817         } else if (sched->show_state) {
2818                 printf("\nWait-time summary\n");
2819                 printf("%*s  parent   sched-in  ", comm_width, "comm");
2820                 printf("   run-time      sleep      iowait     preempt       delay\n");
2821         } else {
2822                 printf("\nRuntime summary\n");
2823                 printf("%*s  parent   sched-in  ", comm_width, "comm");
2824                 printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2825         }
2826         printf("%*s            (count)  ", comm_width, "");
2827         printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2828                sched->show_state ? "(msec)" : "%");
2829         printf("%.117s\n", graph_dotted_line);
2830
2831         machine__for_each_thread(m, show_thread_runtime, &totals);
2832         task_count = totals.task_count;
2833         if (!task_count)
2834                 printf("<no still running tasks>\n");
2835
2836         printf("\nTerminated tasks:\n");
2837         machine__for_each_thread(m, show_deadthread_runtime, &totals);
2838         if (task_count == totals.task_count)
2839                 printf("<no terminated tasks>\n");
2840
2841         /* CPU idle stats not tracked when samples were skipped */
2842         if (sched->skipped_samples && !sched->idle_hist)
2843                 return;
2844
2845         printf("\nIdle stats:\n");
2846         for (i = 0; i < idle_max_cpu; ++i) {
2847                 t = idle_threads[i];
2848                 if (!t)
2849                         continue;
2850
2851                 r = thread__priv(t);
2852                 if (r && r->run_stats.n) {
2853                         totals.sched_count += r->run_stats.n;
2854                         printf("    CPU %2d idle for ", i);
2855                         print_sched_time(r->total_run_time, 6);
2856                         printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2857                 } else
2858                         printf("    CPU %2d idle entire time window\n", i);
2859         }
2860
2861         if (sched->idle_hist && sched->show_callchain) {
2862                 callchain_param.mode  = CHAIN_FOLDED;
2863                 callchain_param.value = CCVAL_PERIOD;
2864
2865                 callchain_register_param(&callchain_param);
2866
2867                 printf("\nIdle stats by callchain:\n");
2868                 for (i = 0; i < idle_max_cpu; ++i) {
2869                         struct idle_thread_runtime *itr;
2870
2871                         t = idle_threads[i];
2872                         if (!t)
2873                                 continue;
2874
2875                         itr = thread__priv(t);
2876                         if (itr == NULL)
2877                                 continue;
2878
2879                         callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2880                                              0, &callchain_param);
2881
2882                         printf("  CPU %2d:", i);
2883                         print_sched_time(itr->tr.total_run_time, 6);
2884                         printf(" msec\n");
2885                         timehist_print_idlehist_callchain(&itr->sorted_root);
2886                         printf("\n");
2887                 }
2888         }
2889
2890         printf("\n"
2891                "    Total number of unique tasks: %" PRIu64 "\n"
2892                "Total number of context switches: %" PRIu64 "\n",
2893                totals.task_count, totals.sched_count);
2894
2895         printf("           Total run time (msec): ");
2896         print_sched_time(totals.total_run_time, 2);
2897         printf("\n");
2898
2899         printf("    Total scheduling time (msec): ");
2900         print_sched_time(hist_time, 2);
2901         printf(" (x %d)\n", sched->max_cpu);
2902 }
2903
2904 typedef int (*sched_handler)(struct perf_tool *tool,
2905                           union perf_event *event,
2906                           struct evsel *evsel,
2907                           struct perf_sample *sample,
2908                           struct machine *machine);
2909
2910 static int perf_timehist__process_sample(struct perf_tool *tool,
2911                                          union perf_event *event,
2912                                          struct perf_sample *sample,
2913                                          struct evsel *evsel,
2914                                          struct machine *machine)
2915 {
2916         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2917         int err = 0;
2918         int this_cpu = sample->cpu;
2919
2920         if (this_cpu > sched->max_cpu)
2921                 sched->max_cpu = this_cpu;
2922
2923         if (evsel->handler != NULL) {
2924                 sched_handler f = evsel->handler;
2925
2926                 err = f(tool, event, evsel, sample, machine);
2927         }
2928
2929         return err;
2930 }
2931
2932 static int timehist_check_attr(struct perf_sched *sched,
2933                                struct evlist *evlist)
2934 {
2935         struct evsel *evsel;
2936         struct evsel_runtime *er;
2937
2938         list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2939                 er = perf_evsel__get_runtime(evsel);
2940                 if (er == NULL) {
2941                         pr_err("Failed to allocate memory for evsel runtime data\n");
2942                         return -1;
2943                 }
2944
2945                 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2946                         pr_info("Samples do not have callchains.\n");
2947                         sched->show_callchain = 0;
2948                         symbol_conf.use_callchain = 0;
2949                 }
2950         }
2951
2952         return 0;
2953 }
2954
2955 static int perf_sched__timehist(struct perf_sched *sched)
2956 {
2957         const struct evsel_str_handler handlers[] = {
2958                 { "sched:sched_switch",       timehist_sched_switch_event, },
2959                 { "sched:sched_wakeup",       timehist_sched_wakeup_event, },
2960                 { "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2961         };
2962         const struct evsel_str_handler migrate_handlers[] = {
2963                 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2964         };
2965         struct perf_data data = {
2966                 .path  = input_name,
2967                 .mode  = PERF_DATA_MODE_READ,
2968                 .force = sched->force,
2969         };
2970
2971         struct perf_session *session;
2972         struct evlist *evlist;
2973         int err = -1;
2974
2975         /*
2976          * event handlers for timehist option
2977          */
2978         sched->tool.sample       = perf_timehist__process_sample;
2979         sched->tool.mmap         = perf_event__process_mmap;
2980         sched->tool.comm         = perf_event__process_comm;
2981         sched->tool.exit         = perf_event__process_exit;
2982         sched->tool.fork         = perf_event__process_fork;
2983         sched->tool.lost         = process_lost;
2984         sched->tool.attr         = perf_event__process_attr;
2985         sched->tool.tracing_data = perf_event__process_tracing_data;
2986         sched->tool.build_id     = perf_event__process_build_id;
2987
2988         sched->tool.ordered_events = true;
2989         sched->tool.ordering_requires_timestamps = true;
2990
2991         symbol_conf.use_callchain = sched->show_callchain;
2992
2993         session = perf_session__new(&data, false, &sched->tool);
2994         if (IS_ERR(session))
2995                 return PTR_ERR(session);
2996
2997         evlist = session->evlist;
2998
2999         symbol__init(&session->header.env);
3000
3001         if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3002                 pr_err("Invalid time string\n");
3003                 return -EINVAL;
3004         }
3005
3006         if (timehist_check_attr(sched, evlist) != 0)
3007                 goto out;
3008
3009         setup_pager();
3010
3011         /* setup per-evsel handlers */
3012         if (perf_session__set_tracepoints_handlers(session, handlers))
3013                 goto out;
3014
3015         /* sched_switch event at a minimum needs to exist */
3016         if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3017                                                   "sched:sched_switch")) {
3018                 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3019                 goto out;
3020         }
3021
3022         if (sched->show_migrations &&
3023             perf_session__set_tracepoints_handlers(session, migrate_handlers))
3024                 goto out;
3025
3026         /* pre-allocate struct for per-CPU idle stats */
3027         sched->max_cpu = session->header.env.nr_cpus_online;
3028         if (sched->max_cpu == 0)
3029                 sched->max_cpu = 4;
3030         if (init_idle_threads(sched->max_cpu))
3031                 goto out;
3032
3033         /* summary_only implies summary option, but don't overwrite summary if set */
3034         if (sched->summary_only)
3035                 sched->summary = sched->summary_only;
3036
3037         if (!sched->summary_only)
3038                 timehist_header(sched);
3039
3040         err = perf_session__process_events(session);
3041         if (err) {
3042                 pr_err("Failed to process events, error %d", err);
3043                 goto out;
3044         }
3045
3046         sched->nr_events      = evlist->stats.nr_events[0];
3047         sched->nr_lost_events = evlist->stats.total_lost;
3048         sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3049
3050         if (sched->summary)
3051                 timehist_print_summary(sched, session);
3052
3053 out:
3054         free_idle_threads();
3055         perf_session__delete(session);
3056
3057         return err;
3058 }
3059
3060
3061 static void print_bad_events(struct perf_sched *sched)
3062 {
3063         if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3064                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3065                         (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3066                         sched->nr_unordered_timestamps, sched->nr_timestamps);
3067         }
3068         if (sched->nr_lost_events && sched->nr_events) {
3069                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3070                         (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3071                         sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3072         }
3073         if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3074                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3075                         (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3076                         sched->nr_context_switch_bugs, sched->nr_timestamps);
3077                 if (sched->nr_lost_events)
3078                         printf(" (due to lost events?)");
3079                 printf("\n");
3080         }
3081 }
3082
3083 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3084 {
3085         struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3086         struct work_atoms *this;
3087         const char *comm = thread__comm_str(data->thread), *this_comm;
3088         bool leftmost = true;
3089
3090         while (*new) {
3091                 int cmp;
3092
3093                 this = container_of(*new, struct work_atoms, node);
3094                 parent = *new;
3095
3096                 this_comm = thread__comm_str(this->thread);
3097                 cmp = strcmp(comm, this_comm);
3098                 if (cmp > 0) {
3099                         new = &((*new)->rb_left);
3100                 } else if (cmp < 0) {
3101                         new = &((*new)->rb_right);
3102                         leftmost = false;
3103                 } else {
3104                         this->num_merged++;
3105                         this->total_runtime += data->total_runtime;
3106                         this->nb_atoms += data->nb_atoms;
3107                         this->total_lat += data->total_lat;
3108                         list_splice(&data->work_list, &this->work_list);
3109                         if (this->max_lat < data->max_lat) {
3110                                 this->max_lat = data->max_lat;
3111                                 this->max_lat_at = data->max_lat_at;
3112                         }
3113                         zfree(&data);
3114                         return;
3115                 }
3116         }
3117
3118         data->num_merged++;
3119         rb_link_node(&data->node, parent, new);
3120         rb_insert_color_cached(&data->node, root, leftmost);
3121 }
3122
3123 static void perf_sched__merge_lat(struct perf_sched *sched)
3124 {
3125         struct work_atoms *data;
3126         struct rb_node *node;
3127
3128         if (sched->skip_merge)
3129                 return;
3130
3131         while ((node = rb_first_cached(&sched->atom_root))) {
3132                 rb_erase_cached(node, &sched->atom_root);
3133                 data = rb_entry(node, struct work_atoms, node);
3134                 __merge_work_atoms(&sched->merged_atom_root, data);
3135         }
3136 }
3137
3138 static int perf_sched__lat(struct perf_sched *sched)
3139 {
3140         struct rb_node *next;
3141
3142         setup_pager();
3143
3144         if (perf_sched__read_events(sched))
3145                 return -1;
3146
3147         perf_sched__merge_lat(sched);
3148         perf_sched__sort_lat(sched);
3149
3150         printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3151         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3152         printf(" -----------------------------------------------------------------------------------------------------------------\n");
3153
3154         next = rb_first_cached(&sched->sorted_atom_root);
3155
3156         while (next) {
3157                 struct work_atoms *work_list;
3158
3159                 work_list = rb_entry(next, struct work_atoms, node);
3160                 output_lat_thread(sched, work_list);
3161                 next = rb_next(next);
3162                 thread__zput(work_list->thread);
3163         }
3164
3165         printf(" -----------------------------------------------------------------------------------------------------------------\n");
3166         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3167                 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3168
3169         printf(" ---------------------------------------------------\n");
3170
3171         print_bad_events(sched);
3172         printf("\n");
3173
3174         return 0;
3175 }
3176
3177 static int setup_map_cpus(struct perf_sched *sched)
3178 {
3179         struct perf_cpu_map *map;
3180
3181         sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3182
3183         if (sched->map.comp) {
3184                 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3185                 if (!sched->map.comp_cpus)
3186                         return -1;
3187         }
3188
3189         if (!sched->map.cpus_str)
3190                 return 0;
3191
3192         map = perf_cpu_map__new(sched->map.cpus_str);
3193         if (!map) {
3194                 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3195                 return -1;
3196         }
3197
3198         sched->map.cpus = map;
3199         return 0;
3200 }
3201
3202 static int setup_color_pids(struct perf_sched *sched)
3203 {
3204         struct perf_thread_map *map;
3205
3206         if (!sched->map.color_pids_str)
3207                 return 0;
3208
3209         map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3210         if (!map) {
3211                 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3212                 return -1;
3213         }
3214
3215         sched->map.color_pids = map;
3216         return 0;
3217 }
3218
3219 static int setup_color_cpus(struct perf_sched *sched)
3220 {
3221         struct perf_cpu_map *map;
3222
3223         if (!sched->map.color_cpus_str)
3224                 return 0;
3225
3226         map = perf_cpu_map__new(sched->map.color_cpus_str);
3227         if (!map) {
3228                 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3229                 return -1;
3230         }
3231
3232         sched->map.color_cpus = map;
3233         return 0;
3234 }
3235
3236 static int perf_sched__map(struct perf_sched *sched)
3237 {
3238         if (setup_map_cpus(sched))
3239                 return -1;
3240
3241         if (setup_color_pids(sched))
3242                 return -1;
3243
3244         if (setup_color_cpus(sched))
3245                 return -1;
3246
3247         setup_pager();
3248         if (perf_sched__read_events(sched))
3249                 return -1;
3250         print_bad_events(sched);
3251         return 0;
3252 }
3253
3254 static int perf_sched__replay(struct perf_sched *sched)
3255 {
3256         unsigned long i;
3257
3258         calibrate_run_measurement_overhead(sched);
3259         calibrate_sleep_measurement_overhead(sched);
3260
3261         test_calibrations(sched);
3262
3263         if (perf_sched__read_events(sched))
3264                 return -1;
3265
3266         printf("nr_run_events:        %ld\n", sched->nr_run_events);
3267         printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3268         printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3269
3270         if (sched->targetless_wakeups)
3271                 printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3272         if (sched->multitarget_wakeups)
3273                 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3274         if (sched->nr_run_events_optimized)
3275                 printf("run atoms optimized: %ld\n",
3276                         sched->nr_run_events_optimized);
3277
3278         print_task_traces(sched);
3279         add_cross_task_wakeups(sched);
3280
3281         create_tasks(sched);
3282         printf("------------------------------------------------------------\n");
3283         for (i = 0; i < sched->replay_repeat; i++)
3284                 run_one_test(sched);
3285
3286         return 0;
3287 }
3288
3289 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3290                           const char * const usage_msg[])
3291 {
3292         char *tmp, *tok, *str = strdup(sched->sort_order);
3293
3294         for (tok = strtok_r(str, ", ", &tmp);
3295                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
3296                 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3297                         usage_with_options_msg(usage_msg, options,
3298                                         "Unknown --sort key: `%s'", tok);
3299                 }
3300         }
3301
3302         free(str);
3303
3304         sort_dimension__add("pid", &sched->cmp_pid);
3305 }
3306
3307 static int __cmd_record(int argc, const char **argv)
3308 {
3309         unsigned int rec_argc, i, j;
3310         const char **rec_argv;
3311         const char * const record_args[] = {
3312                 "record",
3313                 "-a",
3314                 "-R",
3315                 "-m", "1024",
3316                 "-c", "1",
3317                 "-e", "sched:sched_switch",
3318                 "-e", "sched:sched_stat_wait",
3319                 "-e", "sched:sched_stat_sleep",
3320                 "-e", "sched:sched_stat_iowait",
3321                 "-e", "sched:sched_stat_runtime",
3322                 "-e", "sched:sched_process_fork",
3323                 "-e", "sched:sched_wakeup",
3324                 "-e", "sched:sched_wakeup_new",
3325                 "-e", "sched:sched_migrate_task",
3326         };
3327
3328         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3329         rec_argv = calloc(rec_argc + 1, sizeof(char *));
3330
3331         if (rec_argv == NULL)
3332                 return -ENOMEM;
3333
3334         for (i = 0; i < ARRAY_SIZE(record_args); i++)
3335                 rec_argv[i] = strdup(record_args[i]);
3336
3337         for (j = 1; j < (unsigned int)argc; j++, i++)
3338                 rec_argv[i] = argv[j];
3339
3340         BUG_ON(i != rec_argc);
3341
3342         return cmd_record(i, rec_argv);
3343 }
3344
3345 int cmd_sched(int argc, const char **argv)
3346 {
3347         static const char default_sort_order[] = "avg, max, switch, runtime";
3348         struct perf_sched sched = {
3349                 .tool = {
3350                         .sample          = perf_sched__process_tracepoint_sample,
3351                         .comm            = perf_sched__process_comm,
3352                         .namespaces      = perf_event__process_namespaces,
3353                         .lost            = perf_event__process_lost,
3354                         .fork            = perf_sched__process_fork_event,
3355                         .ordered_events = true,
3356                 },
3357                 .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
3358                 .sort_list            = LIST_HEAD_INIT(sched.sort_list),
3359                 .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3360                 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3361                 .sort_order           = default_sort_order,
3362                 .replay_repeat        = 10,
3363                 .profile_cpu          = -1,
3364                 .next_shortname1      = 'A',
3365                 .next_shortname2      = '0',
3366                 .skip_merge           = 0,
3367                 .show_callchain       = 1,
3368                 .max_stack            = 5,
3369         };
3370         const struct option sched_options[] = {
3371         OPT_STRING('i', "input", &input_name, "file",
3372                     "input file name"),
3373         OPT_INCR('v', "verbose", &verbose,
3374                     "be more verbose (show symbol address, etc)"),
3375         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3376                     "dump raw trace in ASCII"),
3377         OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3378         OPT_END()
3379         };
3380         const struct option latency_options[] = {
3381         OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3382                    "sort by key(s): runtime, switch, avg, max"),
3383         OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3384                     "CPU to profile on"),
3385         OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3386                     "latency stats per pid instead of per comm"),
3387         OPT_PARENT(sched_options)
3388         };
3389         const struct option replay_options[] = {
3390         OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3391                      "repeat the workload replay N times (-1: infinite)"),
3392         OPT_PARENT(sched_options)
3393         };
3394         const struct option map_options[] = {
3395         OPT_BOOLEAN(0, "compact", &sched.map.comp,
3396                     "map output in compact mode"),
3397         OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3398                    "highlight given pids in map"),
3399         OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3400                     "highlight given CPUs in map"),
3401         OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3402                     "display given CPUs in map"),
3403         OPT_PARENT(sched_options)
3404         };
3405         const struct option timehist_options[] = {
3406         OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3407                    "file", "vmlinux pathname"),
3408         OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3409                    "file", "kallsyms pathname"),
3410         OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3411                     "Display call chains if present (default on)"),
3412         OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3413                    "Maximum number of functions to display backtrace."),
3414         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3415                     "Look for files with symbols relative to this directory"),
3416         OPT_BOOLEAN('s', "summary", &sched.summary_only,
3417                     "Show only syscall summary with statistics"),
3418         OPT_BOOLEAN('S', "with-summary", &sched.summary,
3419                     "Show all syscalls and summary with statistics"),
3420         OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3421         OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3422         OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3423         OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3424         OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3425         OPT_STRING(0, "time", &sched.time_str, "str",
3426                    "Time span for analysis (start,stop)"),
3427         OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3428         OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3429                    "analyze events only for given process id(s)"),
3430         OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3431                    "analyze events only for given thread id(s)"),
3432         OPT_PARENT(sched_options)
3433         };
3434
3435         const char * const latency_usage[] = {
3436                 "perf sched latency [<options>]",
3437                 NULL
3438         };
3439         const char * const replay_usage[] = {
3440                 "perf sched replay [<options>]",
3441                 NULL
3442         };
3443         const char * const map_usage[] = {
3444                 "perf sched map [<options>]",
3445                 NULL
3446         };
3447         const char * const timehist_usage[] = {
3448                 "perf sched timehist [<options>]",
3449                 NULL
3450         };
3451         const char *const sched_subcommands[] = { "record", "latency", "map",
3452                                                   "replay", "script",
3453                                                   "timehist", NULL };
3454         const char *sched_usage[] = {
3455                 NULL,
3456                 NULL
3457         };
3458         struct trace_sched_handler lat_ops  = {
3459                 .wakeup_event       = latency_wakeup_event,
3460                 .switch_event       = latency_switch_event,
3461                 .runtime_event      = latency_runtime_event,
3462                 .migrate_task_event = latency_migrate_task_event,
3463         };
3464         struct trace_sched_handler map_ops  = {
3465                 .switch_event       = map_switch_event,
3466         };
3467         struct trace_sched_handler replay_ops  = {
3468                 .wakeup_event       = replay_wakeup_event,
3469                 .switch_event       = replay_switch_event,
3470                 .fork_event         = replay_fork_event,
3471         };
3472         unsigned int i;
3473
3474         for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3475                 sched.curr_pid[i] = -1;
3476
3477         argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3478                                         sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3479         if (!argc)
3480                 usage_with_options(sched_usage, sched_options);
3481
3482         /*
3483          * Aliased to 'perf script' for now:
3484          */
3485         if (!strcmp(argv[0], "script"))
3486                 return cmd_script(argc, argv);
3487
3488         if (!strncmp(argv[0], "rec", 3)) {
3489                 return __cmd_record(argc, argv);
3490         } else if (!strncmp(argv[0], "lat", 3)) {
3491                 sched.tp_handler = &lat_ops;
3492                 if (argc > 1) {
3493                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3494                         if (argc)
3495                                 usage_with_options(latency_usage, latency_options);
3496                 }
3497                 setup_sorting(&sched, latency_options, latency_usage);
3498                 return perf_sched__lat(&sched);
3499         } else if (!strcmp(argv[0], "map")) {
3500                 if (argc) {
3501                         argc = parse_options(argc, argv, map_options, map_usage, 0);
3502                         if (argc)
3503                                 usage_with_options(map_usage, map_options);
3504                 }
3505                 sched.tp_handler = &map_ops;
3506                 setup_sorting(&sched, latency_options, latency_usage);
3507                 return perf_sched__map(&sched);
3508         } else if (!strncmp(argv[0], "rep", 3)) {
3509                 sched.tp_handler = &replay_ops;
3510                 if (argc) {
3511                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3512                         if (argc)
3513                                 usage_with_options(replay_usage, replay_options);
3514                 }
3515                 return perf_sched__replay(&sched);
3516         } else if (!strcmp(argv[0], "timehist")) {
3517                 if (argc) {
3518                         argc = parse_options(argc, argv, timehist_options,
3519                                              timehist_usage, 0);
3520                         if (argc)
3521                                 usage_with_options(timehist_usage, timehist_options);
3522                 }
3523                 if ((sched.show_wakeups || sched.show_next) &&
3524                     sched.summary_only) {
3525                         pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3526                         parse_options_usage(timehist_usage, timehist_options, "s", true);
3527                         if (sched.show_wakeups)
3528                                 parse_options_usage(NULL, timehist_options, "w", true);
3529                         if (sched.show_next)
3530                                 parse_options_usage(NULL, timehist_options, "n", true);
3531                         return -EINVAL;
3532                 }
3533
3534                 return perf_sched__timehist(&sched);
3535         } else {
3536                 usage_with_options(sched_usage, sched_options);
3537         }
3538
3539         return 0;
3540 }