nds32: fix build error "relocation truncated to fit: R_NDS32_25_PCREL_RELA" when
[linux-2.6-microblaze.git] / tools / perf / bench / numa.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7
8 #include <inttypes.h>
9 /* For the CLR_() macros */
10 #include <pthread.h>
11
12 #include "../perf.h"
13 #include "../builtin.h"
14 #include "../util/util.h"
15 #include <subcmd/parse-options.h>
16 #include "../util/cloexec.h"
17
18 #include "bench.h"
19
20 #include <errno.h>
21 #include <sched.h>
22 #include <stdio.h>
23 #include <assert.h>
24 #include <malloc.h>
25 #include <signal.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/time.h>
31 #include <sys/resource.h>
32 #include <sys/wait.h>
33 #include <sys/prctl.h>
34 #include <sys/types.h>
35 #include <linux/kernel.h>
36 #include <linux/time64.h>
37
38 #include <numa.h>
39 #include <numaif.h>
40
41 /*
42  * Regular printout to the terminal, supressed if -q is specified:
43  */
44 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
45
46 /*
47  * Debug printf:
48  */
49 #undef dprintf
50 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
51
52 struct thread_data {
53         int                     curr_cpu;
54         cpu_set_t               bind_cpumask;
55         int                     bind_node;
56         u8                      *process_data;
57         int                     process_nr;
58         int                     thread_nr;
59         int                     task_nr;
60         unsigned int            loops_done;
61         u64                     val;
62         u64                     runtime_ns;
63         u64                     system_time_ns;
64         u64                     user_time_ns;
65         double                  speed_gbs;
66         pthread_mutex_t         *process_lock;
67 };
68
69 /* Parameters set by options: */
70
71 struct params {
72         /* Startup synchronization: */
73         bool                    serialize_startup;
74
75         /* Task hierarchy: */
76         int                     nr_proc;
77         int                     nr_threads;
78
79         /* Working set sizes: */
80         const char              *mb_global_str;
81         const char              *mb_proc_str;
82         const char              *mb_proc_locked_str;
83         const char              *mb_thread_str;
84
85         double                  mb_global;
86         double                  mb_proc;
87         double                  mb_proc_locked;
88         double                  mb_thread;
89
90         /* Access patterns to the working set: */
91         bool                    data_reads;
92         bool                    data_writes;
93         bool                    data_backwards;
94         bool                    data_zero_memset;
95         bool                    data_rand_walk;
96         u32                     nr_loops;
97         u32                     nr_secs;
98         u32                     sleep_usecs;
99
100         /* Working set initialization: */
101         bool                    init_zero;
102         bool                    init_random;
103         bool                    init_cpu0;
104
105         /* Misc options: */
106         int                     show_details;
107         int                     run_all;
108         int                     thp;
109
110         long                    bytes_global;
111         long                    bytes_process;
112         long                    bytes_process_locked;
113         long                    bytes_thread;
114
115         int                     nr_tasks;
116         bool                    show_quiet;
117
118         bool                    show_convergence;
119         bool                    measure_convergence;
120
121         int                     perturb_secs;
122         int                     nr_cpus;
123         int                     nr_nodes;
124
125         /* Affinity options -C and -N: */
126         char                    *cpu_list_str;
127         char                    *node_list_str;
128 };
129
130
131 /* Global, read-writable area, accessible to all processes and threads: */
132
133 struct global_info {
134         u8                      *data;
135
136         pthread_mutex_t         startup_mutex;
137         int                     nr_tasks_started;
138
139         pthread_mutex_t         startup_done_mutex;
140
141         pthread_mutex_t         start_work_mutex;
142         int                     nr_tasks_working;
143
144         pthread_mutex_t         stop_work_mutex;
145         u64                     bytes_done;
146
147         struct thread_data      *threads;
148
149         /* Convergence latency measurement: */
150         bool                    all_converged;
151         bool                    stop_work;
152
153         int                     print_once;
154
155         struct params           p;
156 };
157
158 static struct global_info       *g = NULL;
159
160 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
161 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
162
163 struct params p0;
164
165 static const struct option options[] = {
166         OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
167         OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
168
169         OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
170         OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
171         OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
172         OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
173
174         OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run (default: unlimited)"),
175         OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run (default: 5 secs)"),
176         OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
177
178         OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via reads (can be mixed with -W)"),
179         OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
180         OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
181         OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
182         OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
183
184
185         OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
186         OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
187         OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
188         OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
189
190         OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
191         OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
192         OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
193         OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
194                     "convergence is reached when each process (all its threads) is running on a single NUMA node."),
195         OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
196         OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "quiet mode"),
197         OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
198
199         /* Special option string parsing callbacks: */
200         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
201                         "bind the first N tasks to these specific cpus (the rest is unbound)",
202                         parse_cpus_opt),
203         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
204                         "bind the first N tasks to these specific memory nodes (the rest is unbound)",
205                         parse_nodes_opt),
206         OPT_END()
207 };
208
209 static const char * const bench_numa_usage[] = {
210         "perf bench numa <options>",
211         NULL
212 };
213
214 static const char * const numa_usage[] = {
215         "perf bench numa mem [<options>]",
216         NULL
217 };
218
219 /*
220  * To get number of numa nodes present.
221  */
222 static int nr_numa_nodes(void)
223 {
224         int i, nr_nodes = 0;
225
226         for (i = 0; i < g->p.nr_nodes; i++) {
227                 if (numa_bitmask_isbitset(numa_nodes_ptr, i))
228                         nr_nodes++;
229         }
230
231         return nr_nodes;
232 }
233
234 /*
235  * To check if given numa node is present.
236  */
237 static int is_node_present(int node)
238 {
239         return numa_bitmask_isbitset(numa_nodes_ptr, node);
240 }
241
242 /*
243  * To check given numa node has cpus.
244  */
245 static bool node_has_cpus(int node)
246 {
247         struct bitmask *cpu = numa_allocate_cpumask();
248         unsigned int i;
249
250         if (cpu && !numa_node_to_cpus(node, cpu)) {
251                 for (i = 0; i < cpu->size; i++) {
252                         if (numa_bitmask_isbitset(cpu, i))
253                                 return true;
254                 }
255         }
256
257         return false; /* lets fall back to nocpus safely */
258 }
259
260 static cpu_set_t bind_to_cpu(int target_cpu)
261 {
262         cpu_set_t orig_mask, mask;
263         int ret;
264
265         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
266         BUG_ON(ret);
267
268         CPU_ZERO(&mask);
269
270         if (target_cpu == -1) {
271                 int cpu;
272
273                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
274                         CPU_SET(cpu, &mask);
275         } else {
276                 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
277                 CPU_SET(target_cpu, &mask);
278         }
279
280         ret = sched_setaffinity(0, sizeof(mask), &mask);
281         BUG_ON(ret);
282
283         return orig_mask;
284 }
285
286 static cpu_set_t bind_to_node(int target_node)
287 {
288         int cpus_per_node = g->p.nr_cpus / nr_numa_nodes();
289         cpu_set_t orig_mask, mask;
290         int cpu;
291         int ret;
292
293         BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus);
294         BUG_ON(!cpus_per_node);
295
296         ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
297         BUG_ON(ret);
298
299         CPU_ZERO(&mask);
300
301         if (target_node == -1) {
302                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
303                         CPU_SET(cpu, &mask);
304         } else {
305                 int cpu_start = (target_node + 0) * cpus_per_node;
306                 int cpu_stop  = (target_node + 1) * cpus_per_node;
307
308                 BUG_ON(cpu_stop > g->p.nr_cpus);
309
310                 for (cpu = cpu_start; cpu < cpu_stop; cpu++)
311                         CPU_SET(cpu, &mask);
312         }
313
314         ret = sched_setaffinity(0, sizeof(mask), &mask);
315         BUG_ON(ret);
316
317         return orig_mask;
318 }
319
320 static void bind_to_cpumask(cpu_set_t mask)
321 {
322         int ret;
323
324         ret = sched_setaffinity(0, sizeof(mask), &mask);
325         BUG_ON(ret);
326 }
327
328 static void mempol_restore(void)
329 {
330         int ret;
331
332         ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
333
334         BUG_ON(ret);
335 }
336
337 static void bind_to_memnode(int node)
338 {
339         unsigned long nodemask;
340         int ret;
341
342         if (node == -1)
343                 return;
344
345         BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
346         nodemask = 1L << node;
347
348         ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
349         dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
350
351         BUG_ON(ret);
352 }
353
354 #define HPSIZE (2*1024*1024)
355
356 #define set_taskname(fmt...)                            \
357 do {                                                    \
358         char name[20];                                  \
359                                                         \
360         snprintf(name, 20, fmt);                        \
361         prctl(PR_SET_NAME, name);                       \
362 } while (0)
363
364 static u8 *alloc_data(ssize_t bytes0, int map_flags,
365                       int init_zero, int init_cpu0, int thp, int init_random)
366 {
367         cpu_set_t orig_mask;
368         ssize_t bytes;
369         u8 *buf;
370         int ret;
371
372         if (!bytes0)
373                 return NULL;
374
375         /* Allocate and initialize all memory on CPU#0: */
376         if (init_cpu0) {
377                 orig_mask = bind_to_node(0);
378                 bind_to_memnode(0);
379         }
380
381         bytes = bytes0 + HPSIZE;
382
383         buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
384         BUG_ON(buf == (void *)-1);
385
386         if (map_flags == MAP_PRIVATE) {
387                 if (thp > 0) {
388                         ret = madvise(buf, bytes, MADV_HUGEPAGE);
389                         if (ret && !g->print_once) {
390                                 g->print_once = 1;
391                                 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
392                         }
393                 }
394                 if (thp < 0) {
395                         ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
396                         if (ret && !g->print_once) {
397                                 g->print_once = 1;
398                                 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
399                         }
400                 }
401         }
402
403         if (init_zero) {
404                 bzero(buf, bytes);
405         } else {
406                 /* Initialize random contents, different in each word: */
407                 if (init_random) {
408                         u64 *wbuf = (void *)buf;
409                         long off = rand();
410                         long i;
411
412                         for (i = 0; i < bytes/8; i++)
413                                 wbuf[i] = i + off;
414                 }
415         }
416
417         /* Align to 2MB boundary: */
418         buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
419
420         /* Restore affinity: */
421         if (init_cpu0) {
422                 bind_to_cpumask(orig_mask);
423                 mempol_restore();
424         }
425
426         return buf;
427 }
428
429 static void free_data(void *data, ssize_t bytes)
430 {
431         int ret;
432
433         if (!data)
434                 return;
435
436         ret = munmap(data, bytes);
437         BUG_ON(ret);
438 }
439
440 /*
441  * Create a shared memory buffer that can be shared between processes, zeroed:
442  */
443 static void * zalloc_shared_data(ssize_t bytes)
444 {
445         return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
446 }
447
448 /*
449  * Create a shared memory buffer that can be shared between processes:
450  */
451 static void * setup_shared_data(ssize_t bytes)
452 {
453         return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
454 }
455
456 /*
457  * Allocate process-local memory - this will either be shared between
458  * threads of this process, or only be accessed by this thread:
459  */
460 static void * setup_private_data(ssize_t bytes)
461 {
462         return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
463 }
464
465 /*
466  * Return a process-shared (global) mutex:
467  */
468 static void init_global_mutex(pthread_mutex_t *mutex)
469 {
470         pthread_mutexattr_t attr;
471
472         pthread_mutexattr_init(&attr);
473         pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
474         pthread_mutex_init(mutex, &attr);
475 }
476
477 static int parse_cpu_list(const char *arg)
478 {
479         p0.cpu_list_str = strdup(arg);
480
481         dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
482
483         return 0;
484 }
485
486 static int parse_setup_cpu_list(void)
487 {
488         struct thread_data *td;
489         char *str0, *str;
490         int t;
491
492         if (!g->p.cpu_list_str)
493                 return 0;
494
495         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
496
497         str0 = str = strdup(g->p.cpu_list_str);
498         t = 0;
499
500         BUG_ON(!str);
501
502         tprintf("# binding tasks to CPUs:\n");
503         tprintf("#  ");
504
505         while (true) {
506                 int bind_cpu, bind_cpu_0, bind_cpu_1;
507                 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
508                 int bind_len;
509                 int step;
510                 int mul;
511
512                 tok = strsep(&str, ",");
513                 if (!tok)
514                         break;
515
516                 tok_end = strstr(tok, "-");
517
518                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
519                 if (!tok_end) {
520                         /* Single CPU specified: */
521                         bind_cpu_0 = bind_cpu_1 = atol(tok);
522                 } else {
523                         /* CPU range specified (for example: "5-11"): */
524                         bind_cpu_0 = atol(tok);
525                         bind_cpu_1 = atol(tok_end + 1);
526                 }
527
528                 step = 1;
529                 tok_step = strstr(tok, "#");
530                 if (tok_step) {
531                         step = atol(tok_step + 1);
532                         BUG_ON(step <= 0 || step >= g->p.nr_cpus);
533                 }
534
535                 /*
536                  * Mask length.
537                  * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
538                  * where the _4 means the next 4 CPUs are allowed.
539                  */
540                 bind_len = 1;
541                 tok_len = strstr(tok, "_");
542                 if (tok_len) {
543                         bind_len = atol(tok_len + 1);
544                         BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
545                 }
546
547                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
548                 mul = 1;
549                 tok_mul = strstr(tok, "x");
550                 if (tok_mul) {
551                         mul = atol(tok_mul + 1);
552                         BUG_ON(mul <= 0);
553                 }
554
555                 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
556
557                 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
558                         printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
559                         return -1;
560                 }
561
562                 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
563                 BUG_ON(bind_cpu_0 > bind_cpu_1);
564
565                 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
566                         int i;
567
568                         for (i = 0; i < mul; i++) {
569                                 int cpu;
570
571                                 if (t >= g->p.nr_tasks) {
572                                         printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
573                                         goto out;
574                                 }
575                                 td = g->threads + t;
576
577                                 if (t)
578                                         tprintf(",");
579                                 if (bind_len > 1) {
580                                         tprintf("%2d/%d", bind_cpu, bind_len);
581                                 } else {
582                                         tprintf("%2d", bind_cpu);
583                                 }
584
585                                 CPU_ZERO(&td->bind_cpumask);
586                                 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
587                                         BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
588                                         CPU_SET(cpu, &td->bind_cpumask);
589                                 }
590                                 t++;
591                         }
592                 }
593         }
594 out:
595
596         tprintf("\n");
597
598         if (t < g->p.nr_tasks)
599                 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
600
601         free(str0);
602         return 0;
603 }
604
605 static int parse_cpus_opt(const struct option *opt __maybe_unused,
606                           const char *arg, int unset __maybe_unused)
607 {
608         if (!arg)
609                 return -1;
610
611         return parse_cpu_list(arg);
612 }
613
614 static int parse_node_list(const char *arg)
615 {
616         p0.node_list_str = strdup(arg);
617
618         dprintf("got NODE list: {%s}\n", p0.node_list_str);
619
620         return 0;
621 }
622
623 static int parse_setup_node_list(void)
624 {
625         struct thread_data *td;
626         char *str0, *str;
627         int t;
628
629         if (!g->p.node_list_str)
630                 return 0;
631
632         dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
633
634         str0 = str = strdup(g->p.node_list_str);
635         t = 0;
636
637         BUG_ON(!str);
638
639         tprintf("# binding tasks to NODEs:\n");
640         tprintf("# ");
641
642         while (true) {
643                 int bind_node, bind_node_0, bind_node_1;
644                 char *tok, *tok_end, *tok_step, *tok_mul;
645                 int step;
646                 int mul;
647
648                 tok = strsep(&str, ",");
649                 if (!tok)
650                         break;
651
652                 tok_end = strstr(tok, "-");
653
654                 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
655                 if (!tok_end) {
656                         /* Single NODE specified: */
657                         bind_node_0 = bind_node_1 = atol(tok);
658                 } else {
659                         /* NODE range specified (for example: "5-11"): */
660                         bind_node_0 = atol(tok);
661                         bind_node_1 = atol(tok_end + 1);
662                 }
663
664                 step = 1;
665                 tok_step = strstr(tok, "#");
666                 if (tok_step) {
667                         step = atol(tok_step + 1);
668                         BUG_ON(step <= 0 || step >= g->p.nr_nodes);
669                 }
670
671                 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
672                 mul = 1;
673                 tok_mul = strstr(tok, "x");
674                 if (tok_mul) {
675                         mul = atol(tok_mul + 1);
676                         BUG_ON(mul <= 0);
677                 }
678
679                 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
680
681                 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
682                         printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
683                         return -1;
684                 }
685
686                 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
687                 BUG_ON(bind_node_0 > bind_node_1);
688
689                 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
690                         int i;
691
692                         for (i = 0; i < mul; i++) {
693                                 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
694                                         printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
695                                         goto out;
696                                 }
697                                 td = g->threads + t;
698
699                                 if (!t)
700                                         tprintf(" %2d", bind_node);
701                                 else
702                                         tprintf(",%2d", bind_node);
703
704                                 td->bind_node = bind_node;
705                                 t++;
706                         }
707                 }
708         }
709 out:
710
711         tprintf("\n");
712
713         if (t < g->p.nr_tasks)
714                 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
715
716         free(str0);
717         return 0;
718 }
719
720 static int parse_nodes_opt(const struct option *opt __maybe_unused,
721                           const char *arg, int unset __maybe_unused)
722 {
723         if (!arg)
724                 return -1;
725
726         return parse_node_list(arg);
727
728         return 0;
729 }
730
731 #define BIT(x) (1ul << x)
732
733 static inline uint32_t lfsr_32(uint32_t lfsr)
734 {
735         const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
736         return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
737 }
738
739 /*
740  * Make sure there's real data dependency to RAM (when read
741  * accesses are enabled), so the compiler, the CPU and the
742  * kernel (KSM, zero page, etc.) cannot optimize away RAM
743  * accesses:
744  */
745 static inline u64 access_data(u64 *data, u64 val)
746 {
747         if (g->p.data_reads)
748                 val += *data;
749         if (g->p.data_writes)
750                 *data = val + 1;
751         return val;
752 }
753
754 /*
755  * The worker process does two types of work, a forwards going
756  * loop and a backwards going loop.
757  *
758  * We do this so that on multiprocessor systems we do not create
759  * a 'train' of processing, with highly synchronized processes,
760  * skewing the whole benchmark.
761  */
762 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
763 {
764         long words = bytes/sizeof(u64);
765         u64 *data = (void *)__data;
766         long chunk_0, chunk_1;
767         u64 *d0, *d, *d1;
768         long off;
769         long i;
770
771         BUG_ON(!data && words);
772         BUG_ON(data && !words);
773
774         if (!data)
775                 return val;
776
777         /* Very simple memset() work variant: */
778         if (g->p.data_zero_memset && !g->p.data_rand_walk) {
779                 bzero(data, bytes);
780                 return val;
781         }
782
783         /* Spread out by PID/TID nr and by loop nr: */
784         chunk_0 = words/nr_max;
785         chunk_1 = words/g->p.nr_loops;
786         off = nr*chunk_0 + loop*chunk_1;
787
788         while (off >= words)
789                 off -= words;
790
791         if (g->p.data_rand_walk) {
792                 u32 lfsr = nr + loop + val;
793                 int j;
794
795                 for (i = 0; i < words/1024; i++) {
796                         long start, end;
797
798                         lfsr = lfsr_32(lfsr);
799
800                         start = lfsr % words;
801                         end = min(start + 1024, words-1);
802
803                         if (g->p.data_zero_memset) {
804                                 bzero(data + start, (end-start) * sizeof(u64));
805                         } else {
806                                 for (j = start; j < end; j++)
807                                         val = access_data(data + j, val);
808                         }
809                 }
810         } else if (!g->p.data_backwards || (nr + loop) & 1) {
811
812                 d0 = data + off;
813                 d  = data + off + 1;
814                 d1 = data + words;
815
816                 /* Process data forwards: */
817                 for (;;) {
818                         if (unlikely(d >= d1))
819                                 d = data;
820                         if (unlikely(d == d0))
821                                 break;
822
823                         val = access_data(d, val);
824
825                         d++;
826                 }
827         } else {
828                 /* Process data backwards: */
829
830                 d0 = data + off;
831                 d  = data + off - 1;
832                 d1 = data + words;
833
834                 /* Process data forwards: */
835                 for (;;) {
836                         if (unlikely(d < data))
837                                 d = data + words-1;
838                         if (unlikely(d == d0))
839                                 break;
840
841                         val = access_data(d, val);
842
843                         d--;
844                 }
845         }
846
847         return val;
848 }
849
850 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
851 {
852         unsigned int cpu;
853
854         cpu = sched_getcpu();
855
856         g->threads[task_nr].curr_cpu = cpu;
857         prctl(0, bytes_worked);
858 }
859
860 #define MAX_NR_NODES    64
861
862 /*
863  * Count the number of nodes a process's threads
864  * are spread out on.
865  *
866  * A count of 1 means that the process is compressed
867  * to a single node. A count of g->p.nr_nodes means it's
868  * spread out on the whole system.
869  */
870 static int count_process_nodes(int process_nr)
871 {
872         char node_present[MAX_NR_NODES] = { 0, };
873         int nodes;
874         int n, t;
875
876         for (t = 0; t < g->p.nr_threads; t++) {
877                 struct thread_data *td;
878                 int task_nr;
879                 int node;
880
881                 task_nr = process_nr*g->p.nr_threads + t;
882                 td = g->threads + task_nr;
883
884                 node = numa_node_of_cpu(td->curr_cpu);
885                 if (node < 0) /* curr_cpu was likely still -1 */
886                         return 0;
887
888                 node_present[node] = 1;
889         }
890
891         nodes = 0;
892
893         for (n = 0; n < MAX_NR_NODES; n++)
894                 nodes += node_present[n];
895
896         return nodes;
897 }
898
899 /*
900  * Count the number of distinct process-threads a node contains.
901  *
902  * A count of 1 means that the node contains only a single
903  * process. If all nodes on the system contain at most one
904  * process then we are well-converged.
905  */
906 static int count_node_processes(int node)
907 {
908         int processes = 0;
909         int t, p;
910
911         for (p = 0; p < g->p.nr_proc; p++) {
912                 for (t = 0; t < g->p.nr_threads; t++) {
913                         struct thread_data *td;
914                         int task_nr;
915                         int n;
916
917                         task_nr = p*g->p.nr_threads + t;
918                         td = g->threads + task_nr;
919
920                         n = numa_node_of_cpu(td->curr_cpu);
921                         if (n == node) {
922                                 processes++;
923                                 break;
924                         }
925                 }
926         }
927
928         return processes;
929 }
930
931 static void calc_convergence_compression(int *strong)
932 {
933         unsigned int nodes_min, nodes_max;
934         int p;
935
936         nodes_min = -1;
937         nodes_max =  0;
938
939         for (p = 0; p < g->p.nr_proc; p++) {
940                 unsigned int nodes = count_process_nodes(p);
941
942                 if (!nodes) {
943                         *strong = 0;
944                         return;
945                 }
946
947                 nodes_min = min(nodes, nodes_min);
948                 nodes_max = max(nodes, nodes_max);
949         }
950
951         /* Strong convergence: all threads compress on a single node: */
952         if (nodes_min == 1 && nodes_max == 1) {
953                 *strong = 1;
954         } else {
955                 *strong = 0;
956                 tprintf(" {%d-%d}", nodes_min, nodes_max);
957         }
958 }
959
960 static void calc_convergence(double runtime_ns_max, double *convergence)
961 {
962         unsigned int loops_done_min, loops_done_max;
963         int process_groups;
964         int nodes[MAX_NR_NODES];
965         int distance;
966         int nr_min;
967         int nr_max;
968         int strong;
969         int sum;
970         int nr;
971         int node;
972         int cpu;
973         int t;
974
975         if (!g->p.show_convergence && !g->p.measure_convergence)
976                 return;
977
978         for (node = 0; node < g->p.nr_nodes; node++)
979                 nodes[node] = 0;
980
981         loops_done_min = -1;
982         loops_done_max = 0;
983
984         for (t = 0; t < g->p.nr_tasks; t++) {
985                 struct thread_data *td = g->threads + t;
986                 unsigned int loops_done;
987
988                 cpu = td->curr_cpu;
989
990                 /* Not all threads have written it yet: */
991                 if (cpu < 0)
992                         continue;
993
994                 node = numa_node_of_cpu(cpu);
995
996                 nodes[node]++;
997
998                 loops_done = td->loops_done;
999                 loops_done_min = min(loops_done, loops_done_min);
1000                 loops_done_max = max(loops_done, loops_done_max);
1001         }
1002
1003         nr_max = 0;
1004         nr_min = g->p.nr_tasks;
1005         sum = 0;
1006
1007         for (node = 0; node < g->p.nr_nodes; node++) {
1008                 if (!is_node_present(node))
1009                         continue;
1010                 nr = nodes[node];
1011                 nr_min = min(nr, nr_min);
1012                 nr_max = max(nr, nr_max);
1013                 sum += nr;
1014         }
1015         BUG_ON(nr_min > nr_max);
1016
1017         BUG_ON(sum > g->p.nr_tasks);
1018
1019         if (0 && (sum < g->p.nr_tasks))
1020                 return;
1021
1022         /*
1023          * Count the number of distinct process groups present
1024          * on nodes - when we are converged this will decrease
1025          * to g->p.nr_proc:
1026          */
1027         process_groups = 0;
1028
1029         for (node = 0; node < g->p.nr_nodes; node++) {
1030                 int processes;
1031
1032                 if (!is_node_present(node))
1033                         continue;
1034                 processes = count_node_processes(node);
1035                 nr = nodes[node];
1036                 tprintf(" %2d/%-2d", nr, processes);
1037
1038                 process_groups += processes;
1039         }
1040
1041         distance = nr_max - nr_min;
1042
1043         tprintf(" [%2d/%-2d]", distance, process_groups);
1044
1045         tprintf(" l:%3d-%-3d (%3d)",
1046                 loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1047
1048         if (loops_done_min && loops_done_max) {
1049                 double skew = 1.0 - (double)loops_done_min/loops_done_max;
1050
1051                 tprintf(" [%4.1f%%]", skew * 100.0);
1052         }
1053
1054         calc_convergence_compression(&strong);
1055
1056         if (strong && process_groups == g->p.nr_proc) {
1057                 if (!*convergence) {
1058                         *convergence = runtime_ns_max;
1059                         tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1060                         if (g->p.measure_convergence) {
1061                                 g->all_converged = true;
1062                                 g->stop_work = true;
1063                         }
1064                 }
1065         } else {
1066                 if (*convergence) {
1067                         tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1068                         *convergence = 0;
1069                 }
1070                 tprintf("\n");
1071         }
1072 }
1073
1074 static void show_summary(double runtime_ns_max, int l, double *convergence)
1075 {
1076         tprintf("\r #  %5.1f%%  [%.1f mins]",
1077                 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1078
1079         calc_convergence(runtime_ns_max, convergence);
1080
1081         if (g->p.show_details >= 0)
1082                 fflush(stdout);
1083 }
1084
1085 static void *worker_thread(void *__tdata)
1086 {
1087         struct thread_data *td = __tdata;
1088         struct timeval start0, start, stop, diff;
1089         int process_nr = td->process_nr;
1090         int thread_nr = td->thread_nr;
1091         unsigned long last_perturbance;
1092         int task_nr = td->task_nr;
1093         int details = g->p.show_details;
1094         int first_task, last_task;
1095         double convergence = 0;
1096         u64 val = td->val;
1097         double runtime_ns_max;
1098         u8 *global_data;
1099         u8 *process_data;
1100         u8 *thread_data;
1101         u64 bytes_done;
1102         long work_done;
1103         u32 l;
1104         struct rusage rusage;
1105
1106         bind_to_cpumask(td->bind_cpumask);
1107         bind_to_memnode(td->bind_node);
1108
1109         set_taskname("thread %d/%d", process_nr, thread_nr);
1110
1111         global_data = g->data;
1112         process_data = td->process_data;
1113         thread_data = setup_private_data(g->p.bytes_thread);
1114
1115         bytes_done = 0;
1116
1117         last_task = 0;
1118         if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1119                 last_task = 1;
1120
1121         first_task = 0;
1122         if (process_nr == 0 && thread_nr == 0)
1123                 first_task = 1;
1124
1125         if (details >= 2) {
1126                 printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1127                         process_nr, thread_nr, global_data, process_data, thread_data);
1128         }
1129
1130         if (g->p.serialize_startup) {
1131                 pthread_mutex_lock(&g->startup_mutex);
1132                 g->nr_tasks_started++;
1133                 pthread_mutex_unlock(&g->startup_mutex);
1134
1135                 /* Here we will wait for the main process to start us all at once: */
1136                 pthread_mutex_lock(&g->start_work_mutex);
1137                 g->nr_tasks_working++;
1138
1139                 /* Last one wake the main process: */
1140                 if (g->nr_tasks_working == g->p.nr_tasks)
1141                         pthread_mutex_unlock(&g->startup_done_mutex);
1142
1143                 pthread_mutex_unlock(&g->start_work_mutex);
1144         }
1145
1146         gettimeofday(&start0, NULL);
1147
1148         start = stop = start0;
1149         last_perturbance = start.tv_sec;
1150
1151         for (l = 0; l < g->p.nr_loops; l++) {
1152                 start = stop;
1153
1154                 if (g->stop_work)
1155                         break;
1156
1157                 val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1158                 val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1159                 val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1160
1161                 if (g->p.sleep_usecs) {
1162                         pthread_mutex_lock(td->process_lock);
1163                         usleep(g->p.sleep_usecs);
1164                         pthread_mutex_unlock(td->process_lock);
1165                 }
1166                 /*
1167                  * Amount of work to be done under a process-global lock:
1168                  */
1169                 if (g->p.bytes_process_locked) {
1170                         pthread_mutex_lock(td->process_lock);
1171                         val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1172                         pthread_mutex_unlock(td->process_lock);
1173                 }
1174
1175                 work_done = g->p.bytes_global + g->p.bytes_process +
1176                             g->p.bytes_process_locked + g->p.bytes_thread;
1177
1178                 update_curr_cpu(task_nr, work_done);
1179                 bytes_done += work_done;
1180
1181                 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1182                         continue;
1183
1184                 td->loops_done = l;
1185
1186                 gettimeofday(&stop, NULL);
1187
1188                 /* Check whether our max runtime timed out: */
1189                 if (g->p.nr_secs) {
1190                         timersub(&stop, &start0, &diff);
1191                         if ((u32)diff.tv_sec >= g->p.nr_secs) {
1192                                 g->stop_work = true;
1193                                 break;
1194                         }
1195                 }
1196
1197                 /* Update the summary at most once per second: */
1198                 if (start.tv_sec == stop.tv_sec)
1199                         continue;
1200
1201                 /*
1202                  * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1203                  * by migrating to CPU#0:
1204                  */
1205                 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1206                         cpu_set_t orig_mask;
1207                         int target_cpu;
1208                         int this_cpu;
1209
1210                         last_perturbance = stop.tv_sec;
1211
1212                         /*
1213                          * Depending on where we are running, move into
1214                          * the other half of the system, to create some
1215                          * real disturbance:
1216                          */
1217                         this_cpu = g->threads[task_nr].curr_cpu;
1218                         if (this_cpu < g->p.nr_cpus/2)
1219                                 target_cpu = g->p.nr_cpus-1;
1220                         else
1221                                 target_cpu = 0;
1222
1223                         orig_mask = bind_to_cpu(target_cpu);
1224
1225                         /* Here we are running on the target CPU already */
1226                         if (details >= 1)
1227                                 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1228
1229                         bind_to_cpumask(orig_mask);
1230                 }
1231
1232                 if (details >= 3) {
1233                         timersub(&stop, &start, &diff);
1234                         runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1235                         runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1236
1237                         if (details >= 0) {
1238                                 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1239                                         process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1240                         }
1241                         fflush(stdout);
1242                 }
1243                 if (!last_task)
1244                         continue;
1245
1246                 timersub(&stop, &start0, &diff);
1247                 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1248                 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1249
1250                 show_summary(runtime_ns_max, l, &convergence);
1251         }
1252
1253         gettimeofday(&stop, NULL);
1254         timersub(&stop, &start0, &diff);
1255         td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1256         td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1257         td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
1258
1259         getrusage(RUSAGE_THREAD, &rusage);
1260         td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1261         td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1262         td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1263         td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1264
1265         free_data(thread_data, g->p.bytes_thread);
1266
1267         pthread_mutex_lock(&g->stop_work_mutex);
1268         g->bytes_done += bytes_done;
1269         pthread_mutex_unlock(&g->stop_work_mutex);
1270
1271         return NULL;
1272 }
1273
1274 /*
1275  * A worker process starts a couple of threads:
1276  */
1277 static void worker_process(int process_nr)
1278 {
1279         pthread_mutex_t process_lock;
1280         struct thread_data *td;
1281         pthread_t *pthreads;
1282         u8 *process_data;
1283         int task_nr;
1284         int ret;
1285         int t;
1286
1287         pthread_mutex_init(&process_lock, NULL);
1288         set_taskname("process %d", process_nr);
1289
1290         /*
1291          * Pick up the memory policy and the CPU binding of our first thread,
1292          * so that we initialize memory accordingly:
1293          */
1294         task_nr = process_nr*g->p.nr_threads;
1295         td = g->threads + task_nr;
1296
1297         bind_to_memnode(td->bind_node);
1298         bind_to_cpumask(td->bind_cpumask);
1299
1300         pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1301         process_data = setup_private_data(g->p.bytes_process);
1302
1303         if (g->p.show_details >= 3) {
1304                 printf(" # process %2d global mem: %p, process mem: %p\n",
1305                         process_nr, g->data, process_data);
1306         }
1307
1308         for (t = 0; t < g->p.nr_threads; t++) {
1309                 task_nr = process_nr*g->p.nr_threads + t;
1310                 td = g->threads + task_nr;
1311
1312                 td->process_data = process_data;
1313                 td->process_nr   = process_nr;
1314                 td->thread_nr    = t;
1315                 td->task_nr      = task_nr;
1316                 td->val          = rand();
1317                 td->curr_cpu     = -1;
1318                 td->process_lock = &process_lock;
1319
1320                 ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1321                 BUG_ON(ret);
1322         }
1323
1324         for (t = 0; t < g->p.nr_threads; t++) {
1325                 ret = pthread_join(pthreads[t], NULL);
1326                 BUG_ON(ret);
1327         }
1328
1329         free_data(process_data, g->p.bytes_process);
1330         free(pthreads);
1331 }
1332
1333 static void print_summary(void)
1334 {
1335         if (g->p.show_details < 0)
1336                 return;
1337
1338         printf("\n ###\n");
1339         printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1340                 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1341         printf(" #      %5dx %5ldMB global  shared mem operations\n",
1342                         g->p.nr_loops, g->p.bytes_global/1024/1024);
1343         printf(" #      %5dx %5ldMB process shared mem operations\n",
1344                         g->p.nr_loops, g->p.bytes_process/1024/1024);
1345         printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1346                         g->p.nr_loops, g->p.bytes_thread/1024/1024);
1347
1348         printf(" ###\n");
1349
1350         printf("\n ###\n"); fflush(stdout);
1351 }
1352
1353 static void init_thread_data(void)
1354 {
1355         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1356         int t;
1357
1358         g->threads = zalloc_shared_data(size);
1359
1360         for (t = 0; t < g->p.nr_tasks; t++) {
1361                 struct thread_data *td = g->threads + t;
1362                 int cpu;
1363
1364                 /* Allow all nodes by default: */
1365                 td->bind_node = -1;
1366
1367                 /* Allow all CPUs by default: */
1368                 CPU_ZERO(&td->bind_cpumask);
1369                 for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1370                         CPU_SET(cpu, &td->bind_cpumask);
1371         }
1372 }
1373
1374 static void deinit_thread_data(void)
1375 {
1376         ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1377
1378         free_data(g->threads, size);
1379 }
1380
1381 static int init(void)
1382 {
1383         g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1384
1385         /* Copy over options: */
1386         g->p = p0;
1387
1388         g->p.nr_cpus = numa_num_configured_cpus();
1389
1390         g->p.nr_nodes = numa_max_node() + 1;
1391
1392         /* char array in count_process_nodes(): */
1393         BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1394
1395         if (g->p.show_quiet && !g->p.show_details)
1396                 g->p.show_details = -1;
1397
1398         /* Some memory should be specified: */
1399         if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1400                 return -1;
1401
1402         if (g->p.mb_global_str) {
1403                 g->p.mb_global = atof(g->p.mb_global_str);
1404                 BUG_ON(g->p.mb_global < 0);
1405         }
1406
1407         if (g->p.mb_proc_str) {
1408                 g->p.mb_proc = atof(g->p.mb_proc_str);
1409                 BUG_ON(g->p.mb_proc < 0);
1410         }
1411
1412         if (g->p.mb_proc_locked_str) {
1413                 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1414                 BUG_ON(g->p.mb_proc_locked < 0);
1415                 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1416         }
1417
1418         if (g->p.mb_thread_str) {
1419                 g->p.mb_thread = atof(g->p.mb_thread_str);
1420                 BUG_ON(g->p.mb_thread < 0);
1421         }
1422
1423         BUG_ON(g->p.nr_threads <= 0);
1424         BUG_ON(g->p.nr_proc <= 0);
1425
1426         g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1427
1428         g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1429         g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1430         g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1431         g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1432
1433         g->data = setup_shared_data(g->p.bytes_global);
1434
1435         /* Startup serialization: */
1436         init_global_mutex(&g->start_work_mutex);
1437         init_global_mutex(&g->startup_mutex);
1438         init_global_mutex(&g->startup_done_mutex);
1439         init_global_mutex(&g->stop_work_mutex);
1440
1441         init_thread_data();
1442
1443         tprintf("#\n");
1444         if (parse_setup_cpu_list() || parse_setup_node_list())
1445                 return -1;
1446         tprintf("#\n");
1447
1448         print_summary();
1449
1450         return 0;
1451 }
1452
1453 static void deinit(void)
1454 {
1455         free_data(g->data, g->p.bytes_global);
1456         g->data = NULL;
1457
1458         deinit_thread_data();
1459
1460         free_data(g, sizeof(*g));
1461         g = NULL;
1462 }
1463
1464 /*
1465  * Print a short or long result, depending on the verbosity setting:
1466  */
1467 static void print_res(const char *name, double val,
1468                       const char *txt_unit, const char *txt_short, const char *txt_long)
1469 {
1470         if (!name)
1471                 name = "main,";
1472
1473         if (!g->p.show_quiet)
1474                 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1475         else
1476                 printf(" %14.3f %s\n", val, txt_long);
1477 }
1478
1479 static int __bench_numa(const char *name)
1480 {
1481         struct timeval start, stop, diff;
1482         u64 runtime_ns_min, runtime_ns_sum;
1483         pid_t *pids, pid, wpid;
1484         double delta_runtime;
1485         double runtime_avg;
1486         double runtime_sec_max;
1487         double runtime_sec_min;
1488         int wait_stat;
1489         double bytes;
1490         int i, t, p;
1491
1492         if (init())
1493                 return -1;
1494
1495         pids = zalloc(g->p.nr_proc * sizeof(*pids));
1496         pid = -1;
1497
1498         /* All threads try to acquire it, this way we can wait for them to start up: */
1499         pthread_mutex_lock(&g->start_work_mutex);
1500
1501         if (g->p.serialize_startup) {
1502                 tprintf(" #\n");
1503                 tprintf(" # Startup synchronization: ..."); fflush(stdout);
1504         }
1505
1506         gettimeofday(&start, NULL);
1507
1508         for (i = 0; i < g->p.nr_proc; i++) {
1509                 pid = fork();
1510                 dprintf(" # process %2d: PID %d\n", i, pid);
1511
1512                 BUG_ON(pid < 0);
1513                 if (!pid) {
1514                         /* Child process: */
1515                         worker_process(i);
1516
1517                         exit(0);
1518                 }
1519                 pids[i] = pid;
1520
1521         }
1522         /* Wait for all the threads to start up: */
1523         while (g->nr_tasks_started != g->p.nr_tasks)
1524                 usleep(USEC_PER_MSEC);
1525
1526         BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1527
1528         if (g->p.serialize_startup) {
1529                 double startup_sec;
1530
1531                 pthread_mutex_lock(&g->startup_done_mutex);
1532
1533                 /* This will start all threads: */
1534                 pthread_mutex_unlock(&g->start_work_mutex);
1535
1536                 /* This mutex is locked - the last started thread will wake us: */
1537                 pthread_mutex_lock(&g->startup_done_mutex);
1538
1539                 gettimeofday(&stop, NULL);
1540
1541                 timersub(&stop, &start, &diff);
1542
1543                 startup_sec = diff.tv_sec * NSEC_PER_SEC;
1544                 startup_sec += diff.tv_usec * NSEC_PER_USEC;
1545                 startup_sec /= NSEC_PER_SEC;
1546
1547                 tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1548                 tprintf(" #\n");
1549
1550                 start = stop;
1551                 pthread_mutex_unlock(&g->startup_done_mutex);
1552         } else {
1553                 gettimeofday(&start, NULL);
1554         }
1555
1556         /* Parent process: */
1557
1558
1559         for (i = 0; i < g->p.nr_proc; i++) {
1560                 wpid = waitpid(pids[i], &wait_stat, 0);
1561                 BUG_ON(wpid < 0);
1562                 BUG_ON(!WIFEXITED(wait_stat));
1563
1564         }
1565
1566         runtime_ns_sum = 0;
1567         runtime_ns_min = -1LL;
1568
1569         for (t = 0; t < g->p.nr_tasks; t++) {
1570                 u64 thread_runtime_ns = g->threads[t].runtime_ns;
1571
1572                 runtime_ns_sum += thread_runtime_ns;
1573                 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1574         }
1575
1576         gettimeofday(&stop, NULL);
1577         timersub(&stop, &start, &diff);
1578
1579         BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1580
1581         tprintf("\n ###\n");
1582         tprintf("\n");
1583
1584         runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1585         runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1586         runtime_sec_max /= NSEC_PER_SEC;
1587
1588         runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1589
1590         bytes = g->bytes_done;
1591         runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1592
1593         if (g->p.measure_convergence) {
1594                 print_res(name, runtime_sec_max,
1595                         "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1596         }
1597
1598         print_res(name, runtime_sec_max,
1599                 "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1600
1601         print_res(name, runtime_sec_min,
1602                 "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1603
1604         print_res(name, runtime_avg,
1605                 "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1606
1607         delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1608         print_res(name, delta_runtime / runtime_sec_max * 100.0,
1609                 "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1610
1611         print_res(name, bytes / g->p.nr_tasks / 1e9,
1612                 "GB,", "data/thread",           "GB data processed, per thread");
1613
1614         print_res(name, bytes / 1e9,
1615                 "GB,", "data-total",            "GB data processed, total");
1616
1617         print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1618                 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1619
1620         print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1621                 "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1622
1623         print_res(name, bytes / runtime_sec_max / 1e9,
1624                 "GB/sec,", "total-speed",       "GB/sec total speed");
1625
1626         if (g->p.show_details >= 2) {
1627                 char tname[14 + 2 * 10 + 1];
1628                 struct thread_data *td;
1629                 for (p = 0; p < g->p.nr_proc; p++) {
1630                         for (t = 0; t < g->p.nr_threads; t++) {
1631                                 memset(tname, 0, sizeof(tname));
1632                                 td = g->threads + p*g->p.nr_threads + t;
1633                                 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1634                                 print_res(tname, td->speed_gbs,
1635                                         "GB/sec",       "thread-speed", "GB/sec/thread speed");
1636                                 print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1637                                         "secs", "thread-system-time", "system CPU time/thread");
1638                                 print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1639                                         "secs", "thread-user-time", "user CPU time/thread");
1640                         }
1641                 }
1642         }
1643
1644         free(pids);
1645
1646         deinit();
1647
1648         return 0;
1649 }
1650
1651 #define MAX_ARGS 50
1652
1653 static int command_size(const char **argv)
1654 {
1655         int size = 0;
1656
1657         while (*argv) {
1658                 size++;
1659                 argv++;
1660         }
1661
1662         BUG_ON(size >= MAX_ARGS);
1663
1664         return size;
1665 }
1666
1667 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1668 {
1669         int i;
1670
1671         printf("\n # Running %s \"perf bench numa", name);
1672
1673         for (i = 0; i < argc; i++)
1674                 printf(" %s", argv[i]);
1675
1676         printf("\"\n");
1677
1678         memset(p, 0, sizeof(*p));
1679
1680         /* Initialize nonzero defaults: */
1681
1682         p->serialize_startup            = 1;
1683         p->data_reads                   = true;
1684         p->data_writes                  = true;
1685         p->data_backwards               = true;
1686         p->data_rand_walk               = true;
1687         p->nr_loops                     = -1;
1688         p->init_random                  = true;
1689         p->mb_global_str                = "1";
1690         p->nr_proc                      = 1;
1691         p->nr_threads                   = 1;
1692         p->nr_secs                      = 5;
1693         p->run_all                      = argc == 1;
1694 }
1695
1696 static int run_bench_numa(const char *name, const char **argv)
1697 {
1698         int argc = command_size(argv);
1699
1700         init_params(&p0, name, argc, argv);
1701         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1702         if (argc)
1703                 goto err;
1704
1705         if (__bench_numa(name))
1706                 goto err;
1707
1708         return 0;
1709
1710 err:
1711         return -1;
1712 }
1713
1714 #define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1715 #define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1716
1717 #define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1718 #define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1719
1720 #define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1721 #define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1722
1723 /*
1724  * The built-in test-suite executed by "perf bench numa -a".
1725  *
1726  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1727  */
1728 static const char *tests[][MAX_ARGS] = {
1729    /* Basic single-stream NUMA bandwidth measurements: */
1730    { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1731                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1732    { "RAM-bw-local-NOTHP,",
1733                           "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1734                           "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1735    { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1736                           "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1737
1738    /* 2-stream NUMA bandwidth measurements: */
1739    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1740                            "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1741    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1742                            "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1743
1744    /* Cross-stream NUMA bandwidth measurement: */
1745    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1746                            "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1747
1748    /* Convergence latency measurements: */
1749    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1750    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1751    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1752    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1753    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1754    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1755    { " 4x4-convergence-NOTHP,",
1756                           "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1757    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1758    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1759    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1760    { " 8x4-convergence-NOTHP,",
1761                           "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1762    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1763    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1764    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1765    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1766    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1767
1768    /* Various NUMA process/thread layout bandwidth measurements: */
1769    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1770    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1771    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1772    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1773    { " 8x1-bw-process-NOTHP,",
1774                           "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1775    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1776
1777    { " 4x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1778    { " 8x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1779    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1780    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1781
1782    { " 2x3-bw-thread,",   "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1783    { " 4x4-bw-thread,",   "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1784    { " 4x6-bw-thread,",   "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1785    { " 4x8-bw-thread,",   "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1786    { " 4x8-bw-thread-NOTHP,",
1787                           "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1788    { " 3x3-bw-thread,",   "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1789    { " 5x5-bw-thread,",   "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1790
1791    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1792    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1793
1794    { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1795    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1796    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1797    { "numa01-bw-thread-NOTHP,",
1798                           "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1799 };
1800
1801 static int bench_all(void)
1802 {
1803         int nr = ARRAY_SIZE(tests);
1804         int ret;
1805         int i;
1806
1807         ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1808         BUG_ON(ret < 0);
1809
1810         for (i = 0; i < nr; i++) {
1811                 run_bench_numa(tests[i][0], tests[i] + 1);
1812         }
1813
1814         printf("\n");
1815
1816         return 0;
1817 }
1818
1819 int bench_numa(int argc, const char **argv)
1820 {
1821         init_params(&p0, "main,", argc, argv);
1822         argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1823         if (argc)
1824                 goto err;
1825
1826         if (p0.run_all)
1827                 return bench_all();
1828
1829         if (__bench_numa(NULL))
1830                 goto err;
1831
1832         return 0;
1833
1834 err:
1835         usage_with_options(numa_usage, options);
1836         return -1;
1837 }