Merge branch 'pipe-exclusive-wakeup'
[linux-2.6-microblaze.git] / sound / pci / sis7019.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Driver for SiS7019 Audio Accelerator
4  *
5  *  Copyright (C) 2004-2007, David Dillow
6  *  Written by David Dillow <dave@thedillows.org>
7  *  Inspired by the Trident 4D-WaveDX/NX driver.
8  *
9  *  All rights reserved.
10  */
11
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/time.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <sound/core.h>
20 #include <sound/ac97_codec.h>
21 #include <sound/initval.h>
22 #include "sis7019.h"
23
24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25 MODULE_DESCRIPTION("SiS7019");
26 MODULE_LICENSE("GPL");
27 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
28
29 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
30 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
31 static bool enable = 1;
32 static int codecs = 1;
33
34 module_param(index, int, 0444);
35 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
36 module_param(id, charp, 0444);
37 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
38 module_param(enable, bool, 0444);
39 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
40 module_param(codecs, int, 0444);
41 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
42
43 static const struct pci_device_id snd_sis7019_ids[] = {
44         { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
45         { 0, }
46 };
47
48 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
49
50 /* There are three timing modes for the voices.
51  *
52  * For both playback and capture, when the buffer is one or two periods long,
53  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
54  * to let us know when the periods have ended.
55  *
56  * When performing playback with more than two periods per buffer, we set
57  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
58  * reach it. We then update the offset and continue on until we are
59  * interrupted for the next period.
60  *
61  * Capture channels do not have a SSO, so we allocate a playback channel to
62  * use as a timer for the capture periods. We use the SSO on the playback
63  * channel to clock out virtual periods, and adjust the virtual period length
64  * to maintain synchronization. This algorithm came from the Trident driver.
65  *
66  * FIXME: It'd be nice to make use of some of the synth features in the
67  * hardware, but a woeful lack of documentation is a significant roadblock.
68  */
69 struct voice {
70         u16 flags;
71 #define         VOICE_IN_USE            1
72 #define         VOICE_CAPTURE           2
73 #define         VOICE_SSO_TIMING        4
74 #define         VOICE_SYNC_TIMING       8
75         u16 sync_cso;
76         u16 period_size;
77         u16 buffer_size;
78         u16 sync_period_size;
79         u16 sync_buffer_size;
80         u32 sso;
81         u32 vperiod;
82         struct snd_pcm_substream *substream;
83         struct voice *timing;
84         void __iomem *ctrl_base;
85         void __iomem *wave_base;
86         void __iomem *sync_base;
87         int num;
88 };
89
90 /* We need four pages to store our wave parameters during a suspend. If
91  * we're not doing power management, we still need to allocate a page
92  * for the silence buffer.
93  */
94 #ifdef CONFIG_PM_SLEEP
95 #define SIS_SUSPEND_PAGES       4
96 #else
97 #define SIS_SUSPEND_PAGES       1
98 #endif
99
100 struct sis7019 {
101         unsigned long ioport;
102         void __iomem *ioaddr;
103         int irq;
104         int codecs_present;
105
106         struct pci_dev *pci;
107         struct snd_pcm *pcm;
108         struct snd_card *card;
109         struct snd_ac97 *ac97[3];
110
111         /* Protect against more than one thread hitting the AC97
112          * registers (in a more polite manner than pounding the hardware
113          * semaphore)
114          */
115         struct mutex ac97_mutex;
116
117         /* voice_lock protects allocation/freeing of the voice descriptions
118          */
119         spinlock_t voice_lock;
120
121         struct voice voices[64];
122         struct voice capture_voice;
123
124         /* Allocate pages to store the internal wave state during
125          * suspends. When we're operating, this can be used as a silence
126          * buffer for a timing channel.
127          */
128         void *suspend_state[SIS_SUSPEND_PAGES];
129
130         int silence_users;
131         dma_addr_t silence_dma_addr;
132 };
133
134 /* These values are also used by the module param 'codecs' to indicate
135  * which codecs should be present.
136  */
137 #define SIS_PRIMARY_CODEC_PRESENT       0x0001
138 #define SIS_SECONDARY_CODEC_PRESENT     0x0002
139 #define SIS_TERTIARY_CODEC_PRESENT      0x0004
140
141 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
142  * documented range of 8-0xfff8 samples. Given that they are 0-based,
143  * that places our period/buffer range at 9-0xfff9 samples. That makes the
144  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
145  * max samples / min samples gives us the max periods in a buffer.
146  *
147  * We'll add a constraint upon open that limits the period and buffer sample
148  * size to values that are legal for the hardware.
149  */
150 static const struct snd_pcm_hardware sis_playback_hw_info = {
151         .info = (SNDRV_PCM_INFO_MMAP |
152                  SNDRV_PCM_INFO_MMAP_VALID |
153                  SNDRV_PCM_INFO_INTERLEAVED |
154                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
155                  SNDRV_PCM_INFO_SYNC_START |
156                  SNDRV_PCM_INFO_RESUME),
157         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
158                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
159         .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
160         .rate_min = 4000,
161         .rate_max = 48000,
162         .channels_min = 1,
163         .channels_max = 2,
164         .buffer_bytes_max = (0xfff9 * 4),
165         .period_bytes_min = 9,
166         .period_bytes_max = (0xfff9 * 4),
167         .periods_min = 1,
168         .periods_max = (0xfff9 / 9),
169 };
170
171 static const struct snd_pcm_hardware sis_capture_hw_info = {
172         .info = (SNDRV_PCM_INFO_MMAP |
173                  SNDRV_PCM_INFO_MMAP_VALID |
174                  SNDRV_PCM_INFO_INTERLEAVED |
175                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
176                  SNDRV_PCM_INFO_SYNC_START |
177                  SNDRV_PCM_INFO_RESUME),
178         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
179                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
180         .rates = SNDRV_PCM_RATE_48000,
181         .rate_min = 4000,
182         .rate_max = 48000,
183         .channels_min = 1,
184         .channels_max = 2,
185         .buffer_bytes_max = (0xfff9 * 4),
186         .period_bytes_min = 9,
187         .period_bytes_max = (0xfff9 * 4),
188         .periods_min = 1,
189         .periods_max = (0xfff9 / 9),
190 };
191
192 static void sis_update_sso(struct voice *voice, u16 period)
193 {
194         void __iomem *base = voice->ctrl_base;
195
196         voice->sso += period;
197         if (voice->sso >= voice->buffer_size)
198                 voice->sso -= voice->buffer_size;
199
200         /* Enforce the documented hardware minimum offset */
201         if (voice->sso < 8)
202                 voice->sso = 8;
203
204         /* The SSO is in the upper 16 bits of the register. */
205         writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
206 }
207
208 static void sis_update_voice(struct voice *voice)
209 {
210         if (voice->flags & VOICE_SSO_TIMING) {
211                 sis_update_sso(voice, voice->period_size);
212         } else if (voice->flags & VOICE_SYNC_TIMING) {
213                 int sync;
214
215                 /* If we've not hit the end of the virtual period, update
216                  * our records and keep going.
217                  */
218                 if (voice->vperiod > voice->period_size) {
219                         voice->vperiod -= voice->period_size;
220                         if (voice->vperiod < voice->period_size)
221                                 sis_update_sso(voice, voice->vperiod);
222                         else
223                                 sis_update_sso(voice, voice->period_size);
224                         return;
225                 }
226
227                 /* Calculate our relative offset between the target and
228                  * the actual CSO value. Since we're operating in a loop,
229                  * if the value is more than half way around, we can
230                  * consider ourselves wrapped.
231                  */
232                 sync = voice->sync_cso;
233                 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
234                 if (sync > (voice->sync_buffer_size / 2))
235                         sync -= voice->sync_buffer_size;
236
237                 /* If sync is positive, then we interrupted too early, and
238                  * we'll need to come back in a few samples and try again.
239                  * There's a minimum wait, as it takes some time for the DMA
240                  * engine to startup, etc...
241                  */
242                 if (sync > 0) {
243                         if (sync < 16)
244                                 sync = 16;
245                         sis_update_sso(voice, sync);
246                         return;
247                 }
248
249                 /* Ok, we interrupted right on time, or (hopefully) just
250                  * a bit late. We'll adjst our next waiting period based
251                  * on how close we got.
252                  *
253                  * We need to stay just behind the actual channel to ensure
254                  * it really is past a period when we get our interrupt --
255                  * otherwise we'll fall into the early code above and have
256                  * a minimum wait time, which makes us quite late here,
257                  * eating into the user's time to refresh the buffer, esp.
258                  * if using small periods.
259                  *
260                  * If we're less than 9 samples behind, we're on target.
261                  * Otherwise, shorten the next vperiod by the amount we've
262                  * been delayed.
263                  */
264                 if (sync > -9)
265                         voice->vperiod = voice->sync_period_size + 1;
266                 else
267                         voice->vperiod = voice->sync_period_size + sync + 10;
268
269                 if (voice->vperiod < voice->buffer_size) {
270                         sis_update_sso(voice, voice->vperiod);
271                         voice->vperiod = 0;
272                 } else
273                         sis_update_sso(voice, voice->period_size);
274
275                 sync = voice->sync_cso + voice->sync_period_size;
276                 if (sync >= voice->sync_buffer_size)
277                         sync -= voice->sync_buffer_size;
278                 voice->sync_cso = sync;
279         }
280
281         snd_pcm_period_elapsed(voice->substream);
282 }
283
284 static void sis_voice_irq(u32 status, struct voice *voice)
285 {
286         int bit;
287
288         while (status) {
289                 bit = __ffs(status);
290                 status >>= bit + 1;
291                 voice += bit;
292                 sis_update_voice(voice);
293                 voice++;
294         }
295 }
296
297 static irqreturn_t sis_interrupt(int irq, void *dev)
298 {
299         struct sis7019 *sis = dev;
300         unsigned long io = sis->ioport;
301         struct voice *voice;
302         u32 intr, status;
303
304         /* We only use the DMA interrupts, and we don't enable any other
305          * source of interrupts. But, it is possible to see an interrupt
306          * status that didn't actually interrupt us, so eliminate anything
307          * we're not expecting to avoid falsely claiming an IRQ, and an
308          * ensuing endless loop.
309          */
310         intr = inl(io + SIS_GISR);
311         intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
312                 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
313         if (!intr)
314                 return IRQ_NONE;
315
316         do {
317                 status = inl(io + SIS_PISR_A);
318                 if (status) {
319                         sis_voice_irq(status, sis->voices);
320                         outl(status, io + SIS_PISR_A);
321                 }
322
323                 status = inl(io + SIS_PISR_B);
324                 if (status) {
325                         sis_voice_irq(status, &sis->voices[32]);
326                         outl(status, io + SIS_PISR_B);
327                 }
328
329                 status = inl(io + SIS_RISR);
330                 if (status) {
331                         voice = &sis->capture_voice;
332                         if (!voice->timing)
333                                 snd_pcm_period_elapsed(voice->substream);
334
335                         outl(status, io + SIS_RISR);
336                 }
337
338                 outl(intr, io + SIS_GISR);
339                 intr = inl(io + SIS_GISR);
340                 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
341                         SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
342         } while (intr);
343
344         return IRQ_HANDLED;
345 }
346
347 static u32 sis_rate_to_delta(unsigned int rate)
348 {
349         u32 delta;
350
351         /* This was copied from the trident driver, but it seems its gotten
352          * around a bit... nevertheless, it works well.
353          *
354          * We special case 44100 and 8000 since rounding with the equation
355          * does not give us an accurate enough value. For 11025 and 22050
356          * the equation gives us the best answer. All other frequencies will
357          * also use the equation. JDW
358          */
359         if (rate == 44100)
360                 delta = 0xeb3;
361         else if (rate == 8000)
362                 delta = 0x2ab;
363         else if (rate == 48000)
364                 delta = 0x1000;
365         else
366                 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
367         return delta;
368 }
369
370 static void __sis_map_silence(struct sis7019 *sis)
371 {
372         /* Helper function: must hold sis->voice_lock on entry */
373         if (!sis->silence_users)
374                 sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
375                                                 sis->suspend_state[0],
376                                                 4096, DMA_TO_DEVICE);
377         sis->silence_users++;
378 }
379
380 static void __sis_unmap_silence(struct sis7019 *sis)
381 {
382         /* Helper function: must hold sis->voice_lock on entry */
383         sis->silence_users--;
384         if (!sis->silence_users)
385                 dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
386                                         DMA_TO_DEVICE);
387 }
388
389 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
390 {
391         unsigned long flags;
392
393         spin_lock_irqsave(&sis->voice_lock, flags);
394         if (voice->timing) {
395                 __sis_unmap_silence(sis);
396                 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
397                                                 VOICE_SYNC_TIMING);
398                 voice->timing = NULL;
399         }
400         voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
401         spin_unlock_irqrestore(&sis->voice_lock, flags);
402 }
403
404 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
405 {
406         /* Must hold the voice_lock on entry */
407         struct voice *voice;
408         int i;
409
410         for (i = 0; i < 64; i++) {
411                 voice = &sis->voices[i];
412                 if (voice->flags & VOICE_IN_USE)
413                         continue;
414                 voice->flags |= VOICE_IN_USE;
415                 goto found_one;
416         }
417         voice = NULL;
418
419 found_one:
420         return voice;
421 }
422
423 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
424 {
425         struct voice *voice;
426         unsigned long flags;
427
428         spin_lock_irqsave(&sis->voice_lock, flags);
429         voice = __sis_alloc_playback_voice(sis);
430         spin_unlock_irqrestore(&sis->voice_lock, flags);
431
432         return voice;
433 }
434
435 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
436                                         struct snd_pcm_hw_params *hw_params)
437 {
438         struct sis7019 *sis = snd_pcm_substream_chip(substream);
439         struct snd_pcm_runtime *runtime = substream->runtime;
440         struct voice *voice = runtime->private_data;
441         unsigned int period_size, buffer_size;
442         unsigned long flags;
443         int needed;
444
445         /* If there are one or two periods per buffer, we don't need a
446          * timing voice, as we can use the capture channel's interrupts
447          * to clock out the periods.
448          */
449         period_size = params_period_size(hw_params);
450         buffer_size = params_buffer_size(hw_params);
451         needed = (period_size != buffer_size &&
452                         period_size != (buffer_size / 2));
453
454         if (needed && !voice->timing) {
455                 spin_lock_irqsave(&sis->voice_lock, flags);
456                 voice->timing = __sis_alloc_playback_voice(sis);
457                 if (voice->timing)
458                         __sis_map_silence(sis);
459                 spin_unlock_irqrestore(&sis->voice_lock, flags);
460                 if (!voice->timing)
461                         return -ENOMEM;
462                 voice->timing->substream = substream;
463         } else if (!needed && voice->timing) {
464                 sis_free_voice(sis, voice);
465                 voice->timing = NULL;
466         }
467
468         return 0;
469 }
470
471 static int sis_playback_open(struct snd_pcm_substream *substream)
472 {
473         struct sis7019 *sis = snd_pcm_substream_chip(substream);
474         struct snd_pcm_runtime *runtime = substream->runtime;
475         struct voice *voice;
476
477         voice = sis_alloc_playback_voice(sis);
478         if (!voice)
479                 return -EAGAIN;
480
481         voice->substream = substream;
482         runtime->private_data = voice;
483         runtime->hw = sis_playback_hw_info;
484         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
485                                                 9, 0xfff9);
486         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
487                                                 9, 0xfff9);
488         snd_pcm_set_sync(substream);
489         return 0;
490 }
491
492 static int sis_substream_close(struct snd_pcm_substream *substream)
493 {
494         struct sis7019 *sis = snd_pcm_substream_chip(substream);
495         struct snd_pcm_runtime *runtime = substream->runtime;
496         struct voice *voice = runtime->private_data;
497
498         sis_free_voice(sis, voice);
499         return 0;
500 }
501
502 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
503 {
504         struct snd_pcm_runtime *runtime = substream->runtime;
505         struct voice *voice = runtime->private_data;
506         void __iomem *ctrl_base = voice->ctrl_base;
507         void __iomem *wave_base = voice->wave_base;
508         u32 format, dma_addr, control, sso_eso, delta, reg;
509         u16 leo;
510
511         /* We rely on the PCM core to ensure that the parameters for this
512          * substream do not change on us while we're programming the HW.
513          */
514         format = 0;
515         if (snd_pcm_format_width(runtime->format) == 8)
516                 format |= SIS_PLAY_DMA_FORMAT_8BIT;
517         if (!snd_pcm_format_signed(runtime->format))
518                 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
519         if (runtime->channels == 1)
520                 format |= SIS_PLAY_DMA_FORMAT_MONO;
521
522         /* The baseline setup is for a single period per buffer, and
523          * we add bells and whistles as needed from there.
524          */
525         dma_addr = runtime->dma_addr;
526         leo = runtime->buffer_size - 1;
527         control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
528         sso_eso = leo;
529
530         if (runtime->period_size == (runtime->buffer_size / 2)) {
531                 control |= SIS_PLAY_DMA_INTR_AT_MLP;
532         } else if (runtime->period_size != runtime->buffer_size) {
533                 voice->flags |= VOICE_SSO_TIMING;
534                 voice->sso = runtime->period_size - 1;
535                 voice->period_size = runtime->period_size;
536                 voice->buffer_size = runtime->buffer_size;
537
538                 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
539                 control |= SIS_PLAY_DMA_INTR_AT_SSO;
540                 sso_eso |= (runtime->period_size - 1) << 16;
541         }
542
543         delta = sis_rate_to_delta(runtime->rate);
544
545         /* Ok, we're ready to go, set up the channel.
546          */
547         writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
548         writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
549         writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
550         writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
551
552         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
553                 writel(0, wave_base + reg);
554
555         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
556         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
557         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
558                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
559                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
560                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
561
562         /* Force PCI writes to post. */
563         readl(ctrl_base);
564
565         return 0;
566 }
567
568 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
569 {
570         struct sis7019 *sis = snd_pcm_substream_chip(substream);
571         unsigned long io = sis->ioport;
572         struct snd_pcm_substream *s;
573         struct voice *voice;
574         void *chip;
575         int starting;
576         u32 record = 0;
577         u32 play[2] = { 0, 0 };
578
579         /* No locks needed, as the PCM core will hold the locks on the
580          * substreams, and the HW will only start/stop the indicated voices
581          * without changing the state of the others.
582          */
583         switch (cmd) {
584         case SNDRV_PCM_TRIGGER_START:
585         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
586         case SNDRV_PCM_TRIGGER_RESUME:
587                 starting = 1;
588                 break;
589         case SNDRV_PCM_TRIGGER_STOP:
590         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
591         case SNDRV_PCM_TRIGGER_SUSPEND:
592                 starting = 0;
593                 break;
594         default:
595                 return -EINVAL;
596         }
597
598         snd_pcm_group_for_each_entry(s, substream) {
599                 /* Make sure it is for us... */
600                 chip = snd_pcm_substream_chip(s);
601                 if (chip != sis)
602                         continue;
603
604                 voice = s->runtime->private_data;
605                 if (voice->flags & VOICE_CAPTURE) {
606                         record |= 1 << voice->num;
607                         voice = voice->timing;
608                 }
609
610                 /* voice could be NULL if this a recording stream, and it
611                  * doesn't have an external timing channel.
612                  */
613                 if (voice)
614                         play[voice->num / 32] |= 1 << (voice->num & 0x1f);
615
616                 snd_pcm_trigger_done(s, substream);
617         }
618
619         if (starting) {
620                 if (record)
621                         outl(record, io + SIS_RECORD_START_REG);
622                 if (play[0])
623                         outl(play[0], io + SIS_PLAY_START_A_REG);
624                 if (play[1])
625                         outl(play[1], io + SIS_PLAY_START_B_REG);
626         } else {
627                 if (record)
628                         outl(record, io + SIS_RECORD_STOP_REG);
629                 if (play[0])
630                         outl(play[0], io + SIS_PLAY_STOP_A_REG);
631                 if (play[1])
632                         outl(play[1], io + SIS_PLAY_STOP_B_REG);
633         }
634         return 0;
635 }
636
637 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
638 {
639         struct snd_pcm_runtime *runtime = substream->runtime;
640         struct voice *voice = runtime->private_data;
641         u32 cso;
642
643         cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
644         cso &= 0xffff;
645         return cso;
646 }
647
648 static int sis_capture_open(struct snd_pcm_substream *substream)
649 {
650         struct sis7019 *sis = snd_pcm_substream_chip(substream);
651         struct snd_pcm_runtime *runtime = substream->runtime;
652         struct voice *voice = &sis->capture_voice;
653         unsigned long flags;
654
655         /* FIXME: The driver only supports recording from one channel
656          * at the moment, but it could support more.
657          */
658         spin_lock_irqsave(&sis->voice_lock, flags);
659         if (voice->flags & VOICE_IN_USE)
660                 voice = NULL;
661         else
662                 voice->flags |= VOICE_IN_USE;
663         spin_unlock_irqrestore(&sis->voice_lock, flags);
664
665         if (!voice)
666                 return -EAGAIN;
667
668         voice->substream = substream;
669         runtime->private_data = voice;
670         runtime->hw = sis_capture_hw_info;
671         runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
672         snd_pcm_limit_hw_rates(runtime);
673         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
674                                                 9, 0xfff9);
675         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
676                                                 9, 0xfff9);
677         snd_pcm_set_sync(substream);
678         return 0;
679 }
680
681 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
682                                         struct snd_pcm_hw_params *hw_params)
683 {
684         struct sis7019 *sis = snd_pcm_substream_chip(substream);
685         int rc;
686
687         rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
688                                                 params_rate(hw_params));
689         if (rc)
690                 goto out;
691
692         rc = sis_alloc_timing_voice(substream, hw_params);
693
694 out:
695         return rc;
696 }
697
698 static void sis_prepare_timing_voice(struct voice *voice,
699                                         struct snd_pcm_substream *substream)
700 {
701         struct sis7019 *sis = snd_pcm_substream_chip(substream);
702         struct snd_pcm_runtime *runtime = substream->runtime;
703         struct voice *timing = voice->timing;
704         void __iomem *play_base = timing->ctrl_base;
705         void __iomem *wave_base = timing->wave_base;
706         u16 buffer_size, period_size;
707         u32 format, control, sso_eso, delta;
708         u32 vperiod, sso, reg;
709
710         /* Set our initial buffer and period as large as we can given a
711          * single page of silence.
712          */
713         buffer_size = 4096 / runtime->channels;
714         buffer_size /= snd_pcm_format_size(runtime->format, 1);
715         period_size = buffer_size;
716
717         /* Initially, we want to interrupt just a bit behind the end of
718          * the period we're clocking out. 12 samples seems to give a good
719          * delay.
720          *
721          * We want to spread our interrupts throughout the virtual period,
722          * so that we don't end up with two interrupts back to back at the
723          * end -- this helps minimize the effects of any jitter. Adjust our
724          * clocking period size so that the last period is at least a fourth
725          * of a full period.
726          *
727          * This is all moot if we don't need to use virtual periods.
728          */
729         vperiod = runtime->period_size + 12;
730         if (vperiod > period_size) {
731                 u16 tail = vperiod % period_size;
732                 u16 quarter_period = period_size / 4;
733
734                 if (tail && tail < quarter_period) {
735                         u16 loops = vperiod / period_size;
736
737                         tail = quarter_period - tail;
738                         tail += loops - 1;
739                         tail /= loops;
740                         period_size -= tail;
741                 }
742
743                 sso = period_size - 1;
744         } else {
745                 /* The initial period will fit inside the buffer, so we
746                  * don't need to use virtual periods -- disable them.
747                  */
748                 period_size = runtime->period_size;
749                 sso = vperiod - 1;
750                 vperiod = 0;
751         }
752
753         /* The interrupt handler implements the timing synchronization, so
754          * setup its state.
755          */
756         timing->flags |= VOICE_SYNC_TIMING;
757         timing->sync_base = voice->ctrl_base;
758         timing->sync_cso = runtime->period_size;
759         timing->sync_period_size = runtime->period_size;
760         timing->sync_buffer_size = runtime->buffer_size;
761         timing->period_size = period_size;
762         timing->buffer_size = buffer_size;
763         timing->sso = sso;
764         timing->vperiod = vperiod;
765
766         /* Using unsigned samples with the all-zero silence buffer
767          * forces the output to the lower rail, killing playback.
768          * So ignore unsigned vs signed -- it doesn't change the timing.
769          */
770         format = 0;
771         if (snd_pcm_format_width(runtime->format) == 8)
772                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
773         if (runtime->channels == 1)
774                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
775
776         control = timing->buffer_size - 1;
777         control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
778         sso_eso = timing->buffer_size - 1;
779         sso_eso |= timing->sso << 16;
780
781         delta = sis_rate_to_delta(runtime->rate);
782
783         /* We've done the math, now configure the channel.
784          */
785         writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
786         writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
787         writel(control, play_base + SIS_PLAY_DMA_CONTROL);
788         writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
789
790         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
791                 writel(0, wave_base + reg);
792
793         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
794         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
795         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
796                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
797                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
798                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
799 }
800
801 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
802 {
803         struct snd_pcm_runtime *runtime = substream->runtime;
804         struct voice *voice = runtime->private_data;
805         void __iomem *rec_base = voice->ctrl_base;
806         u32 format, dma_addr, control;
807         u16 leo;
808
809         /* We rely on the PCM core to ensure that the parameters for this
810          * substream do not change on us while we're programming the HW.
811          */
812         format = 0;
813         if (snd_pcm_format_width(runtime->format) == 8)
814                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
815         if (!snd_pcm_format_signed(runtime->format))
816                 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
817         if (runtime->channels == 1)
818                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
819
820         dma_addr = runtime->dma_addr;
821         leo = runtime->buffer_size - 1;
822         control = leo | SIS_CAPTURE_DMA_LOOP;
823
824         /* If we've got more than two periods per buffer, then we have
825          * use a timing voice to clock out the periods. Otherwise, we can
826          * use the capture channel's interrupts.
827          */
828         if (voice->timing) {
829                 sis_prepare_timing_voice(voice, substream);
830         } else {
831                 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
832                 if (runtime->period_size != runtime->buffer_size)
833                         control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
834         }
835
836         writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
837         writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
838         writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
839
840         /* Force the writes to post. */
841         readl(rec_base);
842
843         return 0;
844 }
845
846 static const struct snd_pcm_ops sis_playback_ops = {
847         .open = sis_playback_open,
848         .close = sis_substream_close,
849         .prepare = sis_pcm_playback_prepare,
850         .trigger = sis_pcm_trigger,
851         .pointer = sis_pcm_pointer,
852 };
853
854 static const struct snd_pcm_ops sis_capture_ops = {
855         .open = sis_capture_open,
856         .close = sis_substream_close,
857         .hw_params = sis_capture_hw_params,
858         .prepare = sis_pcm_capture_prepare,
859         .trigger = sis_pcm_trigger,
860         .pointer = sis_pcm_pointer,
861 };
862
863 static int sis_pcm_create(struct sis7019 *sis)
864 {
865         struct snd_pcm *pcm;
866         int rc;
867
868         /* We have 64 voices, and the driver currently records from
869          * only one channel, though that could change in the future.
870          */
871         rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
872         if (rc)
873                 return rc;
874
875         pcm->private_data = sis;
876         strcpy(pcm->name, "SiS7019");
877         sis->pcm = pcm;
878
879         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
880         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
881
882         /* Try to preallocate some memory, but it's not the end of the
883          * world if this fails.
884          */
885         snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
886                                        &sis->pci->dev, 64*1024, 128*1024);
887
888         return 0;
889 }
890
891 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
892 {
893         unsigned long io = sis->ioport;
894         unsigned short val = 0xffff;
895         u16 status;
896         u16 rdy;
897         int count;
898         static const u16 codec_ready[3] = {
899                 SIS_AC97_STATUS_CODEC_READY,
900                 SIS_AC97_STATUS_CODEC2_READY,
901                 SIS_AC97_STATUS_CODEC3_READY,
902         };
903
904         rdy = codec_ready[codec];
905
906
907         /* Get the AC97 semaphore -- software first, so we don't spin
908          * pounding out IO reads on the hardware semaphore...
909          */
910         mutex_lock(&sis->ac97_mutex);
911
912         count = 0xffff;
913         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
914                 udelay(1);
915
916         if (!count)
917                 goto timeout;
918
919         /* ... and wait for any outstanding commands to complete ...
920          */
921         count = 0xffff;
922         do {
923                 status = inw(io + SIS_AC97_STATUS);
924                 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
925                         break;
926
927                 udelay(1);
928         } while (--count);
929
930         if (!count)
931                 goto timeout_sema;
932
933         /* ... before sending our command and waiting for it to finish ...
934          */
935         outl(cmd, io + SIS_AC97_CMD);
936         udelay(10);
937
938         count = 0xffff;
939         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
940                 udelay(1);
941
942         /* ... and reading the results (if any).
943          */
944         val = inl(io + SIS_AC97_CMD) >> 16;
945
946 timeout_sema:
947         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
948 timeout:
949         mutex_unlock(&sis->ac97_mutex);
950
951         if (!count) {
952                 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
953                                         codec, cmd);
954         }
955
956         return val;
957 }
958
959 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
960                                 unsigned short val)
961 {
962         static const u32 cmd[3] = {
963                 SIS_AC97_CMD_CODEC_WRITE,
964                 SIS_AC97_CMD_CODEC2_WRITE,
965                 SIS_AC97_CMD_CODEC3_WRITE,
966         };
967         sis_ac97_rw(ac97->private_data, ac97->num,
968                         (val << 16) | (reg << 8) | cmd[ac97->num]);
969 }
970
971 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
972 {
973         static const u32 cmd[3] = {
974                 SIS_AC97_CMD_CODEC_READ,
975                 SIS_AC97_CMD_CODEC2_READ,
976                 SIS_AC97_CMD_CODEC3_READ,
977         };
978         return sis_ac97_rw(ac97->private_data, ac97->num,
979                                         (reg << 8) | cmd[ac97->num]);
980 }
981
982 static int sis_mixer_create(struct sis7019 *sis)
983 {
984         struct snd_ac97_bus *bus;
985         struct snd_ac97_template ac97;
986         static const struct snd_ac97_bus_ops ops = {
987                 .write = sis_ac97_write,
988                 .read = sis_ac97_read,
989         };
990         int rc;
991
992         memset(&ac97, 0, sizeof(ac97));
993         ac97.private_data = sis;
994
995         rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
996         if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
997                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
998         ac97.num = 1;
999         if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1000                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1001         ac97.num = 2;
1002         if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1003                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1004
1005         /* If we return an error here, then snd_card_free() should
1006          * free up any ac97 codecs that got created, as well as the bus.
1007          */
1008         return rc;
1009 }
1010
1011 static void sis_free_suspend(struct sis7019 *sis)
1012 {
1013         int i;
1014
1015         for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1016                 kfree(sis->suspend_state[i]);
1017 }
1018
1019 static int sis_chip_free(struct sis7019 *sis)
1020 {
1021         /* Reset the chip, and disable all interrputs.
1022          */
1023         outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1024         udelay(25);
1025         outl(0, sis->ioport + SIS_GCR);
1026         outl(0, sis->ioport + SIS_GIER);
1027
1028         /* Now, free everything we allocated.
1029          */
1030         if (sis->irq >= 0)
1031                 free_irq(sis->irq, sis);
1032
1033         iounmap(sis->ioaddr);
1034         pci_release_regions(sis->pci);
1035         pci_disable_device(sis->pci);
1036         sis_free_suspend(sis);
1037         return 0;
1038 }
1039
1040 static int sis_dev_free(struct snd_device *dev)
1041 {
1042         struct sis7019 *sis = dev->device_data;
1043         return sis_chip_free(sis);
1044 }
1045
1046 static int sis_chip_init(struct sis7019 *sis)
1047 {
1048         unsigned long io = sis->ioport;
1049         void __iomem *ioaddr = sis->ioaddr;
1050         unsigned long timeout;
1051         u16 status;
1052         int count;
1053         int i;
1054
1055         /* Reset the audio controller
1056          */
1057         outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1058         udelay(25);
1059         outl(0, io + SIS_GCR);
1060
1061         /* Get the AC-link semaphore, and reset the codecs
1062          */
1063         count = 0xffff;
1064         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1065                 udelay(1);
1066
1067         if (!count)
1068                 return -EIO;
1069
1070         outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1071         udelay(250);
1072
1073         count = 0xffff;
1074         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1075                 udelay(1);
1076
1077         /* Command complete, we can let go of the semaphore now.
1078          */
1079         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1080         if (!count)
1081                 return -EIO;
1082
1083         /* Now that we've finished the reset, find out what's attached.
1084          * There are some codec/board combinations that take an extremely
1085          * long time to come up. 350+ ms has been observed in the field,
1086          * so we'll give them up to 500ms.
1087          */
1088         sis->codecs_present = 0;
1089         timeout = msecs_to_jiffies(500) + jiffies;
1090         while (time_before_eq(jiffies, timeout)) {
1091                 status = inl(io + SIS_AC97_STATUS);
1092                 if (status & SIS_AC97_STATUS_CODEC_READY)
1093                         sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1094                 if (status & SIS_AC97_STATUS_CODEC2_READY)
1095                         sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1096                 if (status & SIS_AC97_STATUS_CODEC3_READY)
1097                         sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1098
1099                 if (sis->codecs_present == codecs)
1100                         break;
1101
1102                 msleep(1);
1103         }
1104
1105         /* All done, check for errors.
1106          */
1107         if (!sis->codecs_present) {
1108                 dev_err(&sis->pci->dev, "could not find any codecs\n");
1109                 return -EIO;
1110         }
1111
1112         if (sis->codecs_present != codecs) {
1113                 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1114                                          sis->codecs_present, codecs);
1115         }
1116
1117         /* Let the hardware know that the audio driver is alive,
1118          * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1119          * record channels. We're going to want to use Variable Rate Audio
1120          * for recording, to avoid needlessly resampling from 48kHZ.
1121          */
1122         outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1123         outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1124                 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1125                 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1126                 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1127
1128         /* All AC97 PCM slots should be sourced from sub-mixer 0.
1129          */
1130         outl(0, io + SIS_AC97_PSR);
1131
1132         /* There is only one valid DMA setup for a PCI environment.
1133          */
1134         outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1135
1136         /* Reset the synchronization groups for all of the channels
1137          * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1138          * we'll need to change how we handle these. Until then, we just
1139          * assign sub-mixer 0 to all playback channels, and avoid any
1140          * attenuation on the audio.
1141          */
1142         outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1143         outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1144         outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1145         outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1146         outl(0, io + SIS_MIXER_SYNC_GROUP);
1147
1148         for (i = 0; i < 64; i++) {
1149                 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1150                 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1151                                 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1152         }
1153
1154         /* Don't attenuate any audio set for the wave amplifier.
1155          *
1156          * FIXME: Maximum attenuation is set for the music amp, which will
1157          * need to change if we start using the synth engine.
1158          */
1159         outl(0xffff0000, io + SIS_WEVCR);
1160
1161         /* Ensure that the wave engine is in normal operating mode.
1162          */
1163         outl(0, io + SIS_WECCR);
1164
1165         /* Go ahead and enable the DMA interrupts. They won't go live
1166          * until we start a channel.
1167          */
1168         outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1169                 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1170
1171         return 0;
1172 }
1173
1174 #ifdef CONFIG_PM_SLEEP
1175 static int sis_suspend(struct device *dev)
1176 {
1177         struct snd_card *card = dev_get_drvdata(dev);
1178         struct sis7019 *sis = card->private_data;
1179         void __iomem *ioaddr = sis->ioaddr;
1180         int i;
1181
1182         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1183         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1184                 snd_ac97_suspend(sis->ac97[0]);
1185         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1186                 snd_ac97_suspend(sis->ac97[1]);
1187         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1188                 snd_ac97_suspend(sis->ac97[2]);
1189
1190         /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1191          */
1192         if (sis->irq >= 0) {
1193                 free_irq(sis->irq, sis);
1194                 sis->irq = -1;
1195         }
1196
1197         /* Save the internal state away
1198          */
1199         for (i = 0; i < 4; i++) {
1200                 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1201                 ioaddr += 4096;
1202         }
1203
1204         return 0;
1205 }
1206
1207 static int sis_resume(struct device *dev)
1208 {
1209         struct pci_dev *pci = to_pci_dev(dev);
1210         struct snd_card *card = dev_get_drvdata(dev);
1211         struct sis7019 *sis = card->private_data;
1212         void __iomem *ioaddr = sis->ioaddr;
1213         int i;
1214
1215         if (sis_chip_init(sis)) {
1216                 dev_err(&pci->dev, "unable to re-init controller\n");
1217                 goto error;
1218         }
1219
1220         if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1221                         KBUILD_MODNAME, sis)) {
1222                 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1223                 goto error;
1224         }
1225
1226         /* Restore saved state, then clear out the page we use for the
1227          * silence buffer.
1228          */
1229         for (i = 0; i < 4; i++) {
1230                 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1231                 ioaddr += 4096;
1232         }
1233
1234         memset(sis->suspend_state[0], 0, 4096);
1235
1236         sis->irq = pci->irq;
1237
1238         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1239                 snd_ac97_resume(sis->ac97[0]);
1240         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1241                 snd_ac97_resume(sis->ac97[1]);
1242         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1243                 snd_ac97_resume(sis->ac97[2]);
1244
1245         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1246         return 0;
1247
1248 error:
1249         snd_card_disconnect(card);
1250         return -EIO;
1251 }
1252
1253 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1254 #define SIS_PM_OPS      &sis_pm
1255 #else
1256 #define SIS_PM_OPS      NULL
1257 #endif /* CONFIG_PM_SLEEP */
1258
1259 static int sis_alloc_suspend(struct sis7019 *sis)
1260 {
1261         int i;
1262
1263         /* We need 16K to store the internal wave engine state during a
1264          * suspend, but we don't need it to be contiguous, so play nice
1265          * with the memory system. We'll also use this area for a silence
1266          * buffer.
1267          */
1268         for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1269                 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1270                 if (!sis->suspend_state[i])
1271                         return -ENOMEM;
1272         }
1273         memset(sis->suspend_state[0], 0, 4096);
1274
1275         return 0;
1276 }
1277
1278 static int sis_chip_create(struct snd_card *card,
1279                            struct pci_dev *pci)
1280 {
1281         struct sis7019 *sis = card->private_data;
1282         struct voice *voice;
1283         static const struct snd_device_ops ops = {
1284                 .dev_free = sis_dev_free,
1285         };
1286         int rc;
1287         int i;
1288
1289         rc = pci_enable_device(pci);
1290         if (rc)
1291                 goto error_out;
1292
1293         rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1294         if (rc < 0) {
1295                 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1296                 goto error_out_enabled;
1297         }
1298
1299         memset(sis, 0, sizeof(*sis));
1300         mutex_init(&sis->ac97_mutex);
1301         spin_lock_init(&sis->voice_lock);
1302         sis->card = card;
1303         sis->pci = pci;
1304         sis->irq = -1;
1305         sis->ioport = pci_resource_start(pci, 0);
1306
1307         rc = pci_request_regions(pci, "SiS7019");
1308         if (rc) {
1309                 dev_err(&pci->dev, "unable request regions\n");
1310                 goto error_out_enabled;
1311         }
1312
1313         rc = -EIO;
1314         sis->ioaddr = ioremap(pci_resource_start(pci, 1), 0x4000);
1315         if (!sis->ioaddr) {
1316                 dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1317                 goto error_out_cleanup;
1318         }
1319
1320         rc = sis_alloc_suspend(sis);
1321         if (rc < 0) {
1322                 dev_err(&pci->dev, "unable to allocate state storage\n");
1323                 goto error_out_cleanup;
1324         }
1325
1326         rc = sis_chip_init(sis);
1327         if (rc)
1328                 goto error_out_cleanup;
1329
1330         rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1331                          sis);
1332         if (rc) {
1333                 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1334                 goto error_out_cleanup;
1335         }
1336
1337         sis->irq = pci->irq;
1338         card->sync_irq = sis->irq;
1339         pci_set_master(pci);
1340
1341         for (i = 0; i < 64; i++) {
1342                 voice = &sis->voices[i];
1343                 voice->num = i;
1344                 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1345                 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1346         }
1347
1348         voice = &sis->capture_voice;
1349         voice->flags = VOICE_CAPTURE;
1350         voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1351         voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1352
1353         rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1354         if (rc)
1355                 goto error_out_cleanup;
1356
1357         return 0;
1358
1359 error_out_cleanup:
1360         sis_chip_free(sis);
1361
1362 error_out_enabled:
1363         pci_disable_device(pci);
1364
1365 error_out:
1366         return rc;
1367 }
1368
1369 static int snd_sis7019_probe(struct pci_dev *pci,
1370                              const struct pci_device_id *pci_id)
1371 {
1372         struct snd_card *card;
1373         struct sis7019 *sis;
1374         int rc;
1375
1376         rc = -ENOENT;
1377         if (!enable)
1378                 goto error_out;
1379
1380         /* The user can specify which codecs should be present so that we
1381          * can wait for them to show up if they are slow to recover from
1382          * the AC97 cold reset. We default to a single codec, the primary.
1383          *
1384          * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1385          */
1386         codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1387                   SIS_TERTIARY_CODEC_PRESENT;
1388         if (!codecs)
1389                 codecs = SIS_PRIMARY_CODEC_PRESENT;
1390
1391         rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
1392                           sizeof(*sis), &card);
1393         if (rc < 0)
1394                 goto error_out;
1395
1396         strcpy(card->driver, "SiS7019");
1397         strcpy(card->shortname, "SiS7019");
1398         rc = sis_chip_create(card, pci);
1399         if (rc)
1400                 goto card_error_out;
1401
1402         sis = card->private_data;
1403
1404         rc = sis_mixer_create(sis);
1405         if (rc)
1406                 goto card_error_out;
1407
1408         rc = sis_pcm_create(sis);
1409         if (rc)
1410                 goto card_error_out;
1411
1412         snprintf(card->longname, sizeof(card->longname),
1413                         "%s Audio Accelerator with %s at 0x%lx, irq %d",
1414                         card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1415                         sis->ioport, sis->irq);
1416
1417         rc = snd_card_register(card);
1418         if (rc)
1419                 goto card_error_out;
1420
1421         pci_set_drvdata(pci, card);
1422         return 0;
1423
1424 card_error_out:
1425         snd_card_free(card);
1426
1427 error_out:
1428         return rc;
1429 }
1430
1431 static void snd_sis7019_remove(struct pci_dev *pci)
1432 {
1433         snd_card_free(pci_get_drvdata(pci));
1434 }
1435
1436 static struct pci_driver sis7019_driver = {
1437         .name = KBUILD_MODNAME,
1438         .id_table = snd_sis7019_ids,
1439         .probe = snd_sis7019_probe,
1440         .remove = snd_sis7019_remove,
1441         .driver = {
1442                 .pm = SIS_PM_OPS,
1443         },
1444 };
1445
1446 module_pci_driver(sis7019_driver);