Merge tag 'arm-soc-omap-genpd-5.11' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / sound / pci / cmipci.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
4  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5  */
6  
7 /* Does not work. Warning may block system in capture mode */
8 /* #define USE_VAR48KRATE */
9
10 #include <linux/io.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/slab.h>
16 #include <linux/gameport.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <sound/core.h>
20 #include <sound/info.h>
21 #include <sound/control.h>
22 #include <sound/pcm.h>
23 #include <sound/rawmidi.h>
24 #include <sound/mpu401.h>
25 #include <sound/opl3.h>
26 #include <sound/sb.h>
27 #include <sound/asoundef.h>
28 #include <sound/initval.h>
29
30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32 MODULE_LICENSE("GPL");
33 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
34                 "{C-Media,CMI8738B},"
35                 "{C-Media,CMI8338A},"
36                 "{C-Media,CMI8338B}}");
37
38 #if IS_REACHABLE(CONFIG_GAMEPORT)
39 #define SUPPORT_JOYSTICK 1
40 #endif
41
42 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
43 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
44 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;     /* Enable switches */
45 static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
46 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
47 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
48 #ifdef SUPPORT_JOYSTICK
49 static int joystick_port[SNDRV_CARDS];
50 #endif
51
52 module_param_array(index, int, NULL, 0444);
53 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
54 module_param_array(id, charp, NULL, 0444);
55 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
56 module_param_array(enable, bool, NULL, 0444);
57 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
58 module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
59 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
60 module_param_hw_array(fm_port, long, ioport, NULL, 0444);
61 MODULE_PARM_DESC(fm_port, "FM port.");
62 module_param_array(soft_ac3, bool, NULL, 0444);
63 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
64 #ifdef SUPPORT_JOYSTICK
65 module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
66 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
67 #endif
68
69 /*
70  * CM8x38 registers definition
71  */
72
73 #define CM_REG_FUNCTRL0         0x00
74 #define CM_RST_CH1              0x00080000
75 #define CM_RST_CH0              0x00040000
76 #define CM_CHEN1                0x00020000      /* ch1: enable */
77 #define CM_CHEN0                0x00010000      /* ch0: enable */
78 #define CM_PAUSE1               0x00000008      /* ch1: pause */
79 #define CM_PAUSE0               0x00000004      /* ch0: pause */
80 #define CM_CHADC1               0x00000002      /* ch1, 0:playback, 1:record */
81 #define CM_CHADC0               0x00000001      /* ch0, 0:playback, 1:record */
82
83 #define CM_REG_FUNCTRL1         0x04
84 #define CM_DSFC_MASK            0x0000E000      /* channel 1 (DAC?) sampling frequency */
85 #define CM_DSFC_SHIFT           13
86 #define CM_ASFC_MASK            0x00001C00      /* channel 0 (ADC?) sampling frequency */
87 #define CM_ASFC_SHIFT           10
88 #define CM_SPDF_1               0x00000200      /* SPDIF IN/OUT at channel B */
89 #define CM_SPDF_0               0x00000100      /* SPDIF OUT only channel A */
90 #define CM_SPDFLOOP             0x00000080      /* ext. SPDIIF/IN -> OUT loopback */
91 #define CM_SPDO2DAC             0x00000040      /* SPDIF/OUT can be heard from internal DAC */
92 #define CM_INTRM                0x00000020      /* master control block (MCB) interrupt enabled */
93 #define CM_BREQ                 0x00000010      /* bus master enabled */
94 #define CM_VOICE_EN             0x00000008      /* legacy voice (SB16,FM) */
95 #define CM_UART_EN              0x00000004      /* legacy UART */
96 #define CM_JYSTK_EN             0x00000002      /* legacy joystick */
97 #define CM_ZVPORT               0x00000001      /* ZVPORT */
98
99 #define CM_REG_CHFORMAT         0x08
100
101 #define CM_CHB3D5C              0x80000000      /* 5,6 channels */
102 #define CM_FMOFFSET2            0x40000000      /* initial FM PCM offset 2 when Fmute=1 */
103 #define CM_CHB3D                0x20000000      /* 4 channels */
104
105 #define CM_CHIP_MASK1           0x1f000000
106 #define CM_CHIP_037             0x01000000
107 #define CM_SETLAT48             0x00800000      /* set latency timer 48h */
108 #define CM_EDGEIRQ              0x00400000      /* emulated edge trigger legacy IRQ */
109 #define CM_SPD24SEL39           0x00200000      /* 24-bit spdif: model 039 */
110 #define CM_AC3EN1               0x00100000      /* enable AC3: model 037 */
111 #define CM_SPDIF_SELECT1        0x00080000      /* for model <= 037 ? */
112 #define CM_SPD24SEL             0x00020000      /* 24bit spdif: model 037 */
113 /* #define CM_SPDIF_INVERSE     0x00010000 */ /* ??? */
114
115 #define CM_ADCBITLEN_MASK       0x0000C000      
116 #define CM_ADCBITLEN_16         0x00000000
117 #define CM_ADCBITLEN_15         0x00004000
118 #define CM_ADCBITLEN_14         0x00008000
119 #define CM_ADCBITLEN_13         0x0000C000
120
121 #define CM_ADCDACLEN_MASK       0x00003000      /* model 037 */
122 #define CM_ADCDACLEN_060        0x00000000
123 #define CM_ADCDACLEN_066        0x00001000
124 #define CM_ADCDACLEN_130        0x00002000
125 #define CM_ADCDACLEN_280        0x00003000
126
127 #define CM_ADCDLEN_MASK         0x00003000      /* model 039 */
128 #define CM_ADCDLEN_ORIGINAL     0x00000000
129 #define CM_ADCDLEN_EXTRA        0x00001000
130 #define CM_ADCDLEN_24K          0x00002000
131 #define CM_ADCDLEN_WEIGHT       0x00003000
132
133 #define CM_CH1_SRATE_176K       0x00000800
134 #define CM_CH1_SRATE_96K        0x00000800      /* model 055? */
135 #define CM_CH1_SRATE_88K        0x00000400
136 #define CM_CH0_SRATE_176K       0x00000200
137 #define CM_CH0_SRATE_96K        0x00000200      /* model 055? */
138 #define CM_CH0_SRATE_88K        0x00000100
139 #define CM_CH0_SRATE_128K       0x00000300
140 #define CM_CH0_SRATE_MASK       0x00000300
141
142 #define CM_SPDIF_INVERSE2       0x00000080      /* model 055? */
143 #define CM_DBLSPDS              0x00000040      /* double SPDIF sample rate 88.2/96 */
144 #define CM_POLVALID             0x00000020      /* inverse SPDIF/IN valid bit */
145 #define CM_SPDLOCKED            0x00000010
146
147 #define CM_CH1FMT_MASK          0x0000000C      /* bit 3: 16 bits, bit 2: stereo */
148 #define CM_CH1FMT_SHIFT         2
149 #define CM_CH0FMT_MASK          0x00000003      /* bit 1: 16 bits, bit 0: stereo */
150 #define CM_CH0FMT_SHIFT         0
151
152 #define CM_REG_INT_HLDCLR       0x0C
153 #define CM_CHIP_MASK2           0xff000000
154 #define CM_CHIP_8768            0x20000000
155 #define CM_CHIP_055             0x08000000
156 #define CM_CHIP_039             0x04000000
157 #define CM_CHIP_039_6CH         0x01000000
158 #define CM_UNKNOWN_INT_EN       0x00080000      /* ? */
159 #define CM_TDMA_INT_EN          0x00040000
160 #define CM_CH1_INT_EN           0x00020000
161 #define CM_CH0_INT_EN           0x00010000
162
163 #define CM_REG_INT_STATUS       0x10
164 #define CM_INTR                 0x80000000
165 #define CM_VCO                  0x08000000      /* Voice Control? CMI8738 */
166 #define CM_MCBINT               0x04000000      /* Master Control Block abort cond.? */
167 #define CM_UARTINT              0x00010000
168 #define CM_LTDMAINT             0x00008000
169 #define CM_HTDMAINT             0x00004000
170 #define CM_XDO46                0x00000080      /* Modell 033? Direct programming EEPROM (read data register) */
171 #define CM_LHBTOG               0x00000040      /* High/Low status from DMA ctrl register */
172 #define CM_LEG_HDMA             0x00000020      /* Legacy is in High DMA channel */
173 #define CM_LEG_STEREO           0x00000010      /* Legacy is in Stereo mode */
174 #define CM_CH1BUSY              0x00000008
175 #define CM_CH0BUSY              0x00000004
176 #define CM_CHINT1               0x00000002
177 #define CM_CHINT0               0x00000001
178
179 #define CM_REG_LEGACY_CTRL      0x14
180 #define CM_NXCHG                0x80000000      /* don't map base reg dword->sample */
181 #define CM_VMPU_MASK            0x60000000      /* MPU401 i/o port address */
182 #define CM_VMPU_330             0x00000000
183 #define CM_VMPU_320             0x20000000
184 #define CM_VMPU_310             0x40000000
185 #define CM_VMPU_300             0x60000000
186 #define CM_ENWR8237             0x10000000      /* enable bus master to write 8237 base reg */
187 #define CM_VSBSEL_MASK          0x0C000000      /* SB16 base address */
188 #define CM_VSBSEL_220           0x00000000
189 #define CM_VSBSEL_240           0x04000000
190 #define CM_VSBSEL_260           0x08000000
191 #define CM_VSBSEL_280           0x0C000000
192 #define CM_FMSEL_MASK           0x03000000      /* FM OPL3 base address */
193 #define CM_FMSEL_388            0x00000000
194 #define CM_FMSEL_3C8            0x01000000
195 #define CM_FMSEL_3E0            0x02000000
196 #define CM_FMSEL_3E8            0x03000000
197 #define CM_ENSPDOUT             0x00800000      /* enable XSPDIF/OUT to I/O interface */
198 #define CM_SPDCOPYRHT           0x00400000      /* spdif in/out copyright bit */
199 #define CM_DAC2SPDO             0x00200000      /* enable wave+fm_midi -> SPDIF/OUT */
200 #define CM_INVIDWEN             0x00100000      /* internal vendor ID write enable, model 039? */
201 #define CM_SETRETRY             0x00100000      /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
202 #define CM_C_EEACCESS           0x00080000      /* direct programming eeprom regs */
203 #define CM_C_EECS               0x00040000
204 #define CM_C_EEDI46             0x00020000
205 #define CM_C_EECK46             0x00010000
206 #define CM_CHB3D6C              0x00008000      /* 5.1 channels support */
207 #define CM_CENTR2LIN            0x00004000      /* line-in as center out */
208 #define CM_BASE2LIN             0x00002000      /* line-in as bass out */
209 #define CM_EXBASEN              0x00001000      /* external bass input enable */
210
211 #define CM_REG_MISC_CTRL        0x18
212 #define CM_PWD                  0x80000000      /* power down */
213 #define CM_RESET                0x40000000
214 #define CM_SFIL_MASK            0x30000000      /* filter control at front end DAC, model 037? */
215 #define CM_VMGAIN               0x10000000      /* analog master amp +6dB, model 039? */
216 #define CM_TXVX                 0x08000000      /* model 037? */
217 #define CM_N4SPK3D              0x04000000      /* copy front to rear */
218 #define CM_SPDO5V               0x02000000      /* 5V spdif output (1 = 0.5v (coax)) */
219 #define CM_SPDIF48K             0x01000000      /* write */
220 #define CM_SPATUS48K            0x01000000      /* read */
221 #define CM_ENDBDAC              0x00800000      /* enable double dac */
222 #define CM_XCHGDAC              0x00400000      /* 0: front=ch0, 1: front=ch1 */
223 #define CM_SPD32SEL             0x00200000      /* 0: 16bit SPDIF, 1: 32bit */
224 #define CM_SPDFLOOPI            0x00100000      /* int. SPDIF-OUT -> int. IN */
225 #define CM_FM_EN                0x00080000      /* enable legacy FM */
226 #define CM_AC3EN2               0x00040000      /* enable AC3: model 039 */
227 #define CM_ENWRASID             0x00010000      /* choose writable internal SUBID (audio) */
228 #define CM_VIDWPDSB             0x00010000      /* model 037? */
229 #define CM_SPDF_AC97            0x00008000      /* 0: SPDIF/OUT 44.1K, 1: 48K */
230 #define CM_MASK_EN              0x00004000      /* activate channel mask on legacy DMA */
231 #define CM_ENWRMSID             0x00002000      /* choose writable internal SUBID (modem) */
232 #define CM_VIDWPPRT             0x00002000      /* model 037? */
233 #define CM_SFILENB              0x00001000      /* filter stepping at front end DAC, model 037? */
234 #define CM_MMODE_MASK           0x00000E00      /* model DAA interface mode */
235 #define CM_SPDIF_SELECT2        0x00000100      /* for model > 039 ? */
236 #define CM_ENCENTER             0x00000080
237 #define CM_FLINKON              0x00000040      /* force modem link detection on, model 037 */
238 #define CM_MUTECH1              0x00000040      /* mute PCI ch1 to DAC */
239 #define CM_FLINKOFF             0x00000020      /* force modem link detection off, model 037 */
240 #define CM_MIDSMP               0x00000010      /* 1/2 interpolation at front end DAC */
241 #define CM_UPDDMA_MASK          0x0000000C      /* TDMA position update notification */
242 #define CM_UPDDMA_2048          0x00000000
243 #define CM_UPDDMA_1024          0x00000004
244 #define CM_UPDDMA_512           0x00000008
245 #define CM_UPDDMA_256           0x0000000C              
246 #define CM_TWAIT_MASK           0x00000003      /* model 037 */
247 #define CM_TWAIT1               0x00000002      /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
248 #define CM_TWAIT0               0x00000001      /* i/o cycle, 0: 4, 1: 6 PCICLKs */
249
250 #define CM_REG_TDMA_POSITION    0x1C
251 #define CM_TDMA_CNT_MASK        0xFFFF0000      /* current byte/word count */
252 #define CM_TDMA_ADR_MASK        0x0000FFFF      /* current address */
253
254         /* byte */
255 #define CM_REG_MIXER0           0x20
256 #define CM_REG_SBVR             0x20            /* write: sb16 version */
257 #define CM_REG_DEV              0x20            /* read: hardware device version */
258
259 #define CM_REG_MIXER21          0x21
260 #define CM_UNKNOWN_21_MASK      0x78            /* ? */
261 #define CM_X_ADPCM              0x04            /* SB16 ADPCM enable */
262 #define CM_PROINV               0x02            /* SBPro left/right channel switching */
263 #define CM_X_SB16               0x01            /* SB16 compatible */
264
265 #define CM_REG_SB16_DATA        0x22
266 #define CM_REG_SB16_ADDR        0x23
267
268 #define CM_REFFREQ_XIN          (315*1000*1000)/22      /* 14.31818 Mhz reference clock frequency pin XIN */
269 #define CM_ADCMULT_XIN          512                     /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
270 #define CM_TOLERANCE_RATE       0.001                   /* Tolerance sample rate pitch (1000ppm) */
271 #define CM_MAXIMUM_RATE         80000000                /* Note more than 80MHz */
272
273 #define CM_REG_MIXER1           0x24
274 #define CM_FMMUTE               0x80    /* mute FM */
275 #define CM_FMMUTE_SHIFT         7
276 #define CM_WSMUTE               0x40    /* mute PCM */
277 #define CM_WSMUTE_SHIFT         6
278 #define CM_REAR2LIN             0x20    /* lin-in -> rear line out */
279 #define CM_REAR2LIN_SHIFT       5
280 #define CM_REAR2FRONT           0x10    /* exchange rear/front */
281 #define CM_REAR2FRONT_SHIFT     4
282 #define CM_WAVEINL              0x08    /* digital wave rec. left chan */
283 #define CM_WAVEINL_SHIFT        3
284 #define CM_WAVEINR              0x04    /* digical wave rec. right */
285 #define CM_WAVEINR_SHIFT        2
286 #define CM_X3DEN                0x02    /* 3D surround enable */
287 #define CM_X3DEN_SHIFT          1
288 #define CM_CDPLAY               0x01    /* enable SPDIF/IN PCM -> DAC */
289 #define CM_CDPLAY_SHIFT         0
290
291 #define CM_REG_MIXER2           0x25
292 #define CM_RAUXREN              0x80    /* AUX right capture */
293 #define CM_RAUXREN_SHIFT        7
294 #define CM_RAUXLEN              0x40    /* AUX left capture */
295 #define CM_RAUXLEN_SHIFT        6
296 #define CM_VAUXRM               0x20    /* AUX right mute */
297 #define CM_VAUXRM_SHIFT         5
298 #define CM_VAUXLM               0x10    /* AUX left mute */
299 #define CM_VAUXLM_SHIFT         4
300 #define CM_VADMIC_MASK          0x0e    /* mic gain level (0-3) << 1 */
301 #define CM_VADMIC_SHIFT         1
302 #define CM_MICGAINZ             0x01    /* mic boost */
303 #define CM_MICGAINZ_SHIFT       0
304
305 #define CM_REG_MIXER3           0x24
306 #define CM_REG_AUX_VOL          0x26
307 #define CM_VAUXL_MASK           0xf0
308 #define CM_VAUXR_MASK           0x0f
309
310 #define CM_REG_MISC             0x27
311 #define CM_UNKNOWN_27_MASK      0xd8    /* ? */
312 #define CM_XGPO1                0x20
313 // #define CM_XGPBIO            0x04
314 #define CM_MIC_CENTER_LFE       0x04    /* mic as center/lfe out? (model 039 or later?) */
315 #define CM_SPDIF_INVERSE        0x04    /* spdif input phase inverse (model 037) */
316 #define CM_SPDVALID             0x02    /* spdif input valid check */
317 #define CM_DMAUTO               0x01    /* SB16 DMA auto detect */
318
319 #define CM_REG_AC97             0x28    /* hmmm.. do we have ac97 link? */
320 /*
321  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
322  * or identical with AC97 codec?
323  */
324 #define CM_REG_EXTERN_CODEC     CM_REG_AC97
325
326 /*
327  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
328  */
329 #define CM_REG_MPU_PCI          0x40
330
331 /*
332  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
333  */
334 #define CM_REG_FM_PCI           0x50
335
336 /*
337  * access from SB-mixer port
338  */
339 #define CM_REG_EXTENT_IND       0xf0
340 #define CM_VPHONE_MASK          0xe0    /* Phone volume control (0-3) << 5 */
341 #define CM_VPHONE_SHIFT         5
342 #define CM_VPHOM                0x10    /* Phone mute control */
343 #define CM_VSPKM                0x08    /* Speaker mute control, default high */
344 #define CM_RLOOPREN             0x04    /* Rec. R-channel enable */
345 #define CM_RLOOPLEN             0x02    /* Rec. L-channel enable */
346 #define CM_VADMIC3              0x01    /* Mic record boost */
347
348 /*
349  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
350  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
351  * unit (readonly?).
352  */
353 #define CM_REG_PLL              0xf8
354
355 /*
356  * extended registers
357  */
358 #define CM_REG_CH0_FRAME1       0x80    /* write: base address */
359 #define CM_REG_CH0_FRAME2       0x84    /* read: current address */
360 #define CM_REG_CH1_FRAME1       0x88    /* 0-15: count of samples at bus master; buffer size */
361 #define CM_REG_CH1_FRAME2       0x8C    /* 16-31: count of samples at codec; fragment size */
362
363 #define CM_REG_EXT_MISC         0x90
364 #define CM_ADC48K44K            0x10000000      /* ADC parameters group, 0: 44k, 1: 48k */
365 #define CM_CHB3D8C              0x00200000      /* 7.1 channels support */
366 #define CM_SPD32FMT             0x00100000      /* SPDIF/IN 32k sample rate */
367 #define CM_ADC2SPDIF            0x00080000      /* ADC output to SPDIF/OUT */
368 #define CM_SHAREADC             0x00040000      /* DAC in ADC as Center/LFE */
369 #define CM_REALTCMP             0x00020000      /* monitor the CMPL/CMPR of ADC */
370 #define CM_INVLRCK              0x00010000      /* invert ZVPORT's LRCK */
371 #define CM_UNKNOWN_90_MASK      0x0000FFFF      /* ? */
372
373 /*
374  * size of i/o region
375  */
376 #define CM_EXTENT_CODEC   0x100
377 #define CM_EXTENT_MIDI    0x2
378 #define CM_EXTENT_SYNTH   0x4
379
380
381 /*
382  * channels for playback / capture
383  */
384 #define CM_CH_PLAY      0
385 #define CM_CH_CAPT      1
386
387 /*
388  * flags to check device open/close
389  */
390 #define CM_OPEN_NONE    0
391 #define CM_OPEN_CH_MASK 0x01
392 #define CM_OPEN_DAC     0x10
393 #define CM_OPEN_ADC     0x20
394 #define CM_OPEN_SPDIF   0x40
395 #define CM_OPEN_MCHAN   0x80
396 #define CM_OPEN_PLAYBACK        (CM_CH_PLAY | CM_OPEN_DAC)
397 #define CM_OPEN_PLAYBACK2       (CM_CH_CAPT | CM_OPEN_DAC)
398 #define CM_OPEN_PLAYBACK_MULTI  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
399 #define CM_OPEN_CAPTURE         (CM_CH_CAPT | CM_OPEN_ADC)
400 #define CM_OPEN_SPDIF_PLAYBACK  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
401 #define CM_OPEN_SPDIF_CAPTURE   (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
402
403
404 #if CM_CH_PLAY == 1
405 #define CM_PLAYBACK_SRATE_176K  CM_CH1_SRATE_176K
406 #define CM_PLAYBACK_SPDF        CM_SPDF_1
407 #define CM_CAPTURE_SPDF         CM_SPDF_0
408 #else
409 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
410 #define CM_PLAYBACK_SPDF        CM_SPDF_0
411 #define CM_CAPTURE_SPDF         CM_SPDF_1
412 #endif
413
414
415 /*
416  * driver data
417  */
418
419 struct cmipci_pcm {
420         struct snd_pcm_substream *substream;
421         u8 running;             /* dac/adc running? */
422         u8 fmt;                 /* format bits */
423         u8 is_dac;
424         u8 needs_silencing;
425         unsigned int dma_size;  /* in frames */
426         unsigned int shift;
427         unsigned int ch;        /* channel (0/1) */
428         unsigned int offset;    /* physical address of the buffer */
429 };
430
431 /* mixer elements toggled/resumed during ac3 playback */
432 struct cmipci_mixer_auto_switches {
433         const char *name;       /* switch to toggle */
434         int toggle_on;          /* value to change when ac3 mode */
435 };
436 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
437         {"PCM Playback Switch", 0},
438         {"IEC958 Output Switch", 1},
439         {"IEC958 Mix Analog", 0},
440         // {"IEC958 Out To DAC", 1}, // no longer used
441         {"IEC958 Loop", 0},
442 };
443 #define CM_SAVED_MIXERS         ARRAY_SIZE(cm_saved_mixer)
444
445 struct cmipci {
446         struct snd_card *card;
447
448         struct pci_dev *pci;
449         unsigned int device;    /* device ID */
450         int irq;
451
452         unsigned long iobase;
453         unsigned int ctrl;      /* FUNCTRL0 current value */
454
455         struct snd_pcm *pcm;            /* DAC/ADC PCM */
456         struct snd_pcm *pcm2;   /* 2nd DAC */
457         struct snd_pcm *pcm_spdif;      /* SPDIF */
458
459         int chip_version;
460         int max_channels;
461         unsigned int can_ac3_sw: 1;
462         unsigned int can_ac3_hw: 1;
463         unsigned int can_multi_ch: 1;
464         unsigned int can_96k: 1;        /* samplerate above 48k */
465         unsigned int do_soft_ac3: 1;
466
467         unsigned int spdif_playback_avail: 1;   /* spdif ready? */
468         unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
469         int spdif_counter;      /* for software AC3 */
470
471         unsigned int dig_status;
472         unsigned int dig_pcm_status;
473
474         struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
475
476         int opened[2];  /* open mode */
477         struct mutex open_mutex;
478
479         unsigned int mixer_insensitive: 1;
480         struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
481         int mixer_res_status[CM_SAVED_MIXERS];
482
483         struct cmipci_pcm channel[2];   /* ch0 - DAC, ch1 - ADC or 2nd DAC */
484
485         /* external MIDI */
486         struct snd_rawmidi *rmidi;
487
488 #ifdef SUPPORT_JOYSTICK
489         struct gameport *gameport;
490 #endif
491
492         spinlock_t reg_lock;
493
494 #ifdef CONFIG_PM_SLEEP
495         unsigned int saved_regs[0x20];
496         unsigned char saved_mixers[0x20];
497 #endif
498 };
499
500
501 /* read/write operations for dword register */
502 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
503 {
504         outl(data, cm->iobase + cmd);
505 }
506
507 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
508 {
509         return inl(cm->iobase + cmd);
510 }
511
512 /* read/write operations for word register */
513 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
514 {
515         outw(data, cm->iobase + cmd);
516 }
517
518 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
519 {
520         return inw(cm->iobase + cmd);
521 }
522
523 /* read/write operations for byte register */
524 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
525 {
526         outb(data, cm->iobase + cmd);
527 }
528
529 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
530 {
531         return inb(cm->iobase + cmd);
532 }
533
534 /* bit operations for dword register */
535 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
536 {
537         unsigned int val, oval;
538         val = oval = inl(cm->iobase + cmd);
539         val |= flag;
540         if (val == oval)
541                 return 0;
542         outl(val, cm->iobase + cmd);
543         return 1;
544 }
545
546 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
547 {
548         unsigned int val, oval;
549         val = oval = inl(cm->iobase + cmd);
550         val &= ~flag;
551         if (val == oval)
552                 return 0;
553         outl(val, cm->iobase + cmd);
554         return 1;
555 }
556
557 /* bit operations for byte register */
558 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
559 {
560         unsigned char val, oval;
561         val = oval = inb(cm->iobase + cmd);
562         val |= flag;
563         if (val == oval)
564                 return 0;
565         outb(val, cm->iobase + cmd);
566         return 1;
567 }
568
569 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
570 {
571         unsigned char val, oval;
572         val = oval = inb(cm->iobase + cmd);
573         val &= ~flag;
574         if (val == oval)
575                 return 0;
576         outb(val, cm->iobase + cmd);
577         return 1;
578 }
579
580
581 /*
582  * PCM interface
583  */
584
585 /*
586  * calculate frequency
587  */
588
589 static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
590
591 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
592 {
593         unsigned int i;
594
595         for (i = 0; i < ARRAY_SIZE(rates); i++) {
596                 if (rates[i] == rate)
597                         return i;
598         }
599         snd_BUG();
600         return 0;
601 }
602
603 #ifdef USE_VAR48KRATE
604 /*
605  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
606  * does it this way .. maybe not.  Never get any information from C-Media about
607  * that <werner@suse.de>.
608  */
609 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
610 {
611         unsigned int delta, tolerance;
612         int xm, xn, xr;
613
614         for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
615                 rate <<= 1;
616         *n = -1;
617         if (*r > 0xff)
618                 goto out;
619         tolerance = rate*CM_TOLERANCE_RATE;
620
621         for (xn = (1+2); xn < (0x1f+2); xn++) {
622                 for (xm = (1+2); xm < (0xff+2); xm++) {
623                         xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
624
625                         if (xr < rate)
626                                 delta = rate - xr;
627                         else
628                                 delta = xr - rate;
629
630                         /*
631                          * If we found one, remember this,
632                          * and try to find a closer one
633                          */
634                         if (delta < tolerance) {
635                                 tolerance = delta;
636                                 *m = xm - 2;
637                                 *n = xn - 2;
638                         }
639                 }
640         }
641 out:
642         return (*n > -1);
643 }
644
645 /*
646  * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
647  * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
648  * at the register CM_REG_FUNCTRL1 (0x04).
649  * Problem: other ways are also possible (any information about that?)
650  */
651 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
652 {
653         unsigned int reg = CM_REG_PLL + slot;
654         /*
655          * Guess that this programs at reg. 0x04 the pos 15:13/12:10
656          * for DSFC/ASFC (000 up to 111).
657          */
658
659         /* FIXME: Init (Do we've to set an other register first before programming?) */
660
661         /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
662         snd_cmipci_write_b(cm, reg, rate>>8);
663         snd_cmipci_write_b(cm, reg, rate&0xff);
664
665         /* FIXME: Setup (Do we've to set an other register first to enable this?) */
666 }
667 #endif /* USE_VAR48KRATE */
668
669 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
670                                           struct snd_pcm_hw_params *hw_params)
671 {
672         struct cmipci *cm = snd_pcm_substream_chip(substream);
673         if (params_channels(hw_params) > 2) {
674                 mutex_lock(&cm->open_mutex);
675                 if (cm->opened[CM_CH_PLAY]) {
676                         mutex_unlock(&cm->open_mutex);
677                         return -EBUSY;
678                 }
679                 /* reserve the channel A */
680                 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
681                 mutex_unlock(&cm->open_mutex);
682         }
683         return 0;
684 }
685
686 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
687 {
688         int reset = CM_RST_CH0 << (cm->channel[ch].ch);
689         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
690         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
691         udelay(10);
692 }
693
694
695 /*
696  */
697
698 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
699 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
700         .count = 3,
701         .list = hw_channels,
702         .mask = 0,
703 };
704 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
705         .count = 4,
706         .list = hw_channels,
707         .mask = 0,
708 };
709 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
710         .count = 5,
711         .list = hw_channels,
712         .mask = 0,
713 };
714
715 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
716 {
717         if (channels > 2) {
718                 if (!cm->can_multi_ch || !rec->ch)
719                         return -EINVAL;
720                 if (rec->fmt != 0x03) /* stereo 16bit only */
721                         return -EINVAL;
722         }
723
724         if (cm->can_multi_ch) {
725                 spin_lock_irq(&cm->reg_lock);
726                 if (channels > 2) {
727                         snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
728                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
729                 } else {
730                         snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
731                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
732                 }
733                 if (channels == 8)
734                         snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
735                 else
736                         snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
737                 if (channels == 6) {
738                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
739                         snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
740                 } else {
741                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
742                         snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
743                 }
744                 if (channels == 4)
745                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
746                 else
747                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
748                 spin_unlock_irq(&cm->reg_lock);
749         }
750         return 0;
751 }
752
753
754 /*
755  * prepare playback/capture channel
756  * channel to be used must have been set in rec->ch.
757  */
758 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
759                                  struct snd_pcm_substream *substream)
760 {
761         unsigned int reg, freq, freq_ext, val;
762         unsigned int period_size;
763         struct snd_pcm_runtime *runtime = substream->runtime;
764
765         rec->fmt = 0;
766         rec->shift = 0;
767         if (snd_pcm_format_width(runtime->format) >= 16) {
768                 rec->fmt |= 0x02;
769                 if (snd_pcm_format_width(runtime->format) > 16)
770                         rec->shift++; /* 24/32bit */
771         }
772         if (runtime->channels > 1)
773                 rec->fmt |= 0x01;
774         if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
775                 dev_dbg(cm->card->dev, "cannot set dac channels\n");
776                 return -EINVAL;
777         }
778
779         rec->offset = runtime->dma_addr;
780         /* buffer and period sizes in frame */
781         rec->dma_size = runtime->buffer_size << rec->shift;
782         period_size = runtime->period_size << rec->shift;
783         if (runtime->channels > 2) {
784                 /* multi-channels */
785                 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
786                 period_size = (period_size * runtime->channels) / 2;
787         }
788
789         spin_lock_irq(&cm->reg_lock);
790
791         /* set buffer address */
792         reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
793         snd_cmipci_write(cm, reg, rec->offset);
794         /* program sample counts */
795         reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
796         snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
797         snd_cmipci_write_w(cm, reg + 2, period_size - 1);
798
799         /* set adc/dac flag */
800         val = rec->ch ? CM_CHADC1 : CM_CHADC0;
801         if (rec->is_dac)
802                 cm->ctrl &= ~val;
803         else
804                 cm->ctrl |= val;
805         snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
806         /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
807
808         /* set sample rate */
809         freq = 0;
810         freq_ext = 0;
811         if (runtime->rate > 48000)
812                 switch (runtime->rate) {
813                 case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
814                 case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
815                 case 128000: freq_ext = CM_CH0_SRATE_128K; break;
816                 default:     snd_BUG(); break;
817                 }
818         else
819                 freq = snd_cmipci_rate_freq(runtime->rate);
820         val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
821         if (rec->ch) {
822                 val &= ~CM_DSFC_MASK;
823                 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
824         } else {
825                 val &= ~CM_ASFC_MASK;
826                 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
827         }
828         snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
829         dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
830
831         /* set format */
832         val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
833         if (rec->ch) {
834                 val &= ~CM_CH1FMT_MASK;
835                 val |= rec->fmt << CM_CH1FMT_SHIFT;
836         } else {
837                 val &= ~CM_CH0FMT_MASK;
838                 val |= rec->fmt << CM_CH0FMT_SHIFT;
839         }
840         if (cm->can_96k) {
841                 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
842                 val |= freq_ext << (rec->ch * 2);
843         }
844         snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
845         dev_dbg(cm->card->dev, "chformat = %08x\n", val);
846
847         if (!rec->is_dac && cm->chip_version) {
848                 if (runtime->rate > 44100)
849                         snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
850                 else
851                         snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
852         }
853
854         rec->running = 0;
855         spin_unlock_irq(&cm->reg_lock);
856
857         return 0;
858 }
859
860 /*
861  * PCM trigger/stop
862  */
863 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
864                                   int cmd)
865 {
866         unsigned int inthld, chen, reset, pause;
867         int result = 0;
868
869         inthld = CM_CH0_INT_EN << rec->ch;
870         chen = CM_CHEN0 << rec->ch;
871         reset = CM_RST_CH0 << rec->ch;
872         pause = CM_PAUSE0 << rec->ch;
873
874         spin_lock(&cm->reg_lock);
875         switch (cmd) {
876         case SNDRV_PCM_TRIGGER_START:
877                 rec->running = 1;
878                 /* set interrupt */
879                 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
880                 cm->ctrl |= chen;
881                 /* enable channel */
882                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
883                 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
884                 break;
885         case SNDRV_PCM_TRIGGER_STOP:
886                 rec->running = 0;
887                 /* disable interrupt */
888                 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
889                 /* reset */
890                 cm->ctrl &= ~chen;
891                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
892                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
893                 rec->needs_silencing = rec->is_dac;
894                 break;
895         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
896         case SNDRV_PCM_TRIGGER_SUSPEND:
897                 cm->ctrl |= pause;
898                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
899                 break;
900         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
901         case SNDRV_PCM_TRIGGER_RESUME:
902                 cm->ctrl &= ~pause;
903                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
904                 break;
905         default:
906                 result = -EINVAL;
907                 break;
908         }
909         spin_unlock(&cm->reg_lock);
910         return result;
911 }
912
913 /*
914  * return the current pointer
915  */
916 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
917                                                 struct snd_pcm_substream *substream)
918 {
919         size_t ptr;
920         unsigned int reg, rem, tries;
921
922         if (!rec->running)
923                 return 0;
924 #if 1 // this seems better..
925         reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
926         for (tries = 0; tries < 3; tries++) {
927                 rem = snd_cmipci_read_w(cm, reg);
928                 if (rem < rec->dma_size)
929                         goto ok;
930         } 
931         dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
932         return SNDRV_PCM_POS_XRUN;
933 ok:
934         ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
935 #else
936         reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
937         ptr = snd_cmipci_read(cm, reg) - rec->offset;
938         ptr = bytes_to_frames(substream->runtime, ptr);
939 #endif
940         if (substream->runtime->channels > 2)
941                 ptr = (ptr * 2) / substream->runtime->channels;
942         return ptr;
943 }
944
945 /*
946  * playback
947  */
948
949 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
950                                        int cmd)
951 {
952         struct cmipci *cm = snd_pcm_substream_chip(substream);
953         return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
954 }
955
956 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
957 {
958         struct cmipci *cm = snd_pcm_substream_chip(substream);
959         return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
960 }
961
962
963
964 /*
965  * capture
966  */
967
968 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
969                                      int cmd)
970 {
971         struct cmipci *cm = snd_pcm_substream_chip(substream);
972         return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
973 }
974
975 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
976 {
977         struct cmipci *cm = snd_pcm_substream_chip(substream);
978         return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
979 }
980
981
982 /*
983  * hw preparation for spdif
984  */
985
986 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
987                                          struct snd_ctl_elem_info *uinfo)
988 {
989         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
990         uinfo->count = 1;
991         return 0;
992 }
993
994 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
995                                         struct snd_ctl_elem_value *ucontrol)
996 {
997         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
998         int i;
999
1000         spin_lock_irq(&chip->reg_lock);
1001         for (i = 0; i < 4; i++)
1002                 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1003         spin_unlock_irq(&chip->reg_lock);
1004         return 0;
1005 }
1006
1007 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1008                                          struct snd_ctl_elem_value *ucontrol)
1009 {
1010         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1011         int i, change;
1012         unsigned int val;
1013
1014         val = 0;
1015         spin_lock_irq(&chip->reg_lock);
1016         for (i = 0; i < 4; i++)
1017                 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1018         change = val != chip->dig_status;
1019         chip->dig_status = val;
1020         spin_unlock_irq(&chip->reg_lock);
1021         return change;
1022 }
1023
1024 static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1025 {
1026         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1027         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1028         .info =         snd_cmipci_spdif_default_info,
1029         .get =          snd_cmipci_spdif_default_get,
1030         .put =          snd_cmipci_spdif_default_put
1031 };
1032
1033 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1034                                       struct snd_ctl_elem_info *uinfo)
1035 {
1036         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1037         uinfo->count = 1;
1038         return 0;
1039 }
1040
1041 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1042                                      struct snd_ctl_elem_value *ucontrol)
1043 {
1044         ucontrol->value.iec958.status[0] = 0xff;
1045         ucontrol->value.iec958.status[1] = 0xff;
1046         ucontrol->value.iec958.status[2] = 0xff;
1047         ucontrol->value.iec958.status[3] = 0xff;
1048         return 0;
1049 }
1050
1051 static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1052 {
1053         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1054         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1055         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1056         .info =         snd_cmipci_spdif_mask_info,
1057         .get =          snd_cmipci_spdif_mask_get,
1058 };
1059
1060 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1061                                         struct snd_ctl_elem_info *uinfo)
1062 {
1063         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1064         uinfo->count = 1;
1065         return 0;
1066 }
1067
1068 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1069                                        struct snd_ctl_elem_value *ucontrol)
1070 {
1071         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1072         int i;
1073
1074         spin_lock_irq(&chip->reg_lock);
1075         for (i = 0; i < 4; i++)
1076                 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1077         spin_unlock_irq(&chip->reg_lock);
1078         return 0;
1079 }
1080
1081 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1082                                        struct snd_ctl_elem_value *ucontrol)
1083 {
1084         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1085         int i, change;
1086         unsigned int val;
1087
1088         val = 0;
1089         spin_lock_irq(&chip->reg_lock);
1090         for (i = 0; i < 4; i++)
1091                 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1092         change = val != chip->dig_pcm_status;
1093         chip->dig_pcm_status = val;
1094         spin_unlock_irq(&chip->reg_lock);
1095         return change;
1096 }
1097
1098 static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1099 {
1100         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1101         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1102         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1103         .info =         snd_cmipci_spdif_stream_info,
1104         .get =          snd_cmipci_spdif_stream_get,
1105         .put =          snd_cmipci_spdif_stream_put
1106 };
1107
1108 /*
1109  */
1110
1111 /* save mixer setting and mute for AC3 playback */
1112 static int save_mixer_state(struct cmipci *cm)
1113 {
1114         if (! cm->mixer_insensitive) {
1115                 struct snd_ctl_elem_value *val;
1116                 unsigned int i;
1117
1118                 val = kmalloc(sizeof(*val), GFP_KERNEL);
1119                 if (!val)
1120                         return -ENOMEM;
1121                 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1122                         struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1123                         if (ctl) {
1124                                 int event;
1125                                 memset(val, 0, sizeof(*val));
1126                                 ctl->get(ctl, val);
1127                                 cm->mixer_res_status[i] = val->value.integer.value[0];
1128                                 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1129                                 event = SNDRV_CTL_EVENT_MASK_INFO;
1130                                 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1131                                         ctl->put(ctl, val); /* toggle */
1132                                         event |= SNDRV_CTL_EVENT_MASK_VALUE;
1133                                 }
1134                                 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1135                                 snd_ctl_notify(cm->card, event, &ctl->id);
1136                         }
1137                 }
1138                 kfree(val);
1139                 cm->mixer_insensitive = 1;
1140         }
1141         return 0;
1142 }
1143
1144
1145 /* restore the previously saved mixer status */
1146 static void restore_mixer_state(struct cmipci *cm)
1147 {
1148         if (cm->mixer_insensitive) {
1149                 struct snd_ctl_elem_value *val;
1150                 unsigned int i;
1151
1152                 val = kmalloc(sizeof(*val), GFP_KERNEL);
1153                 if (!val)
1154                         return;
1155                 cm->mixer_insensitive = 0; /* at first clear this;
1156                                               otherwise the changes will be ignored */
1157                 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1158                         struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1159                         if (ctl) {
1160                                 int event;
1161
1162                                 memset(val, 0, sizeof(*val));
1163                                 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1164                                 ctl->get(ctl, val);
1165                                 event = SNDRV_CTL_EVENT_MASK_INFO;
1166                                 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1167                                         val->value.integer.value[0] = cm->mixer_res_status[i];
1168                                         ctl->put(ctl, val);
1169                                         event |= SNDRV_CTL_EVENT_MASK_VALUE;
1170                                 }
1171                                 snd_ctl_notify(cm->card, event, &ctl->id);
1172                         }
1173                 }
1174                 kfree(val);
1175         }
1176 }
1177
1178 /* spinlock held! */
1179 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1180 {
1181         if (do_ac3) {
1182                 /* AC3EN for 037 */
1183                 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1184                 /* AC3EN for 039 */
1185                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1186         
1187                 if (cm->can_ac3_hw) {
1188                         /* SPD24SEL for 037, 0x02 */
1189                         /* SPD24SEL for 039, 0x20, but cannot be set */
1190                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1191                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1192                 } else { /* can_ac3_sw */
1193                         /* SPD32SEL for 037 & 039, 0x20 */
1194                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1195                         /* set 176K sample rate to fix 033 HW bug */
1196                         if (cm->chip_version == 33) {
1197                                 if (rate >= 48000) {
1198                                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1199                                 } else {
1200                                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1201                                 }
1202                         }
1203                 }
1204
1205         } else {
1206                 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1207                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1208
1209                 if (cm->can_ac3_hw) {
1210                         /* chip model >= 37 */
1211                         if (snd_pcm_format_width(subs->runtime->format) > 16) {
1212                                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1213                                 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1214                         } else {
1215                                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216                                 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1217                         }
1218                 } else {
1219                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1220                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1221                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1222                 }
1223         }
1224 }
1225
1226 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1227 {
1228         int rate, err;
1229
1230         rate = subs->runtime->rate;
1231
1232         if (up && do_ac3)
1233                 if ((err = save_mixer_state(cm)) < 0)
1234                         return err;
1235
1236         spin_lock_irq(&cm->reg_lock);
1237         cm->spdif_playback_avail = up;
1238         if (up) {
1239                 /* they are controlled via "IEC958 Output Switch" */
1240                 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1241                 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1242                 if (cm->spdif_playback_enabled)
1243                         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1244                 setup_ac3(cm, subs, do_ac3, rate);
1245
1246                 if (rate == 48000 || rate == 96000)
1247                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1248                 else
1249                         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1250                 if (rate > 48000)
1251                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1252                 else
1253                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1254         } else {
1255                 /* they are controlled via "IEC958 Output Switch" */
1256                 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1257                 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1258                 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1259                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1260                 setup_ac3(cm, subs, 0, 0);
1261         }
1262         spin_unlock_irq(&cm->reg_lock);
1263         return 0;
1264 }
1265
1266
1267 /*
1268  * preparation
1269  */
1270
1271 /* playback - enable spdif only on the certain condition */
1272 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1273 {
1274         struct cmipci *cm = snd_pcm_substream_chip(substream);
1275         int rate = substream->runtime->rate;
1276         int err, do_spdif, do_ac3 = 0;
1277
1278         do_spdif = (rate >= 44100 && rate <= 96000 &&
1279                     substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1280                     substream->runtime->channels == 2);
1281         if (do_spdif && cm->can_ac3_hw) 
1282                 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1283         if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1284                 return err;
1285         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1286 }
1287
1288 /* playback  (via device #2) - enable spdif always */
1289 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1290 {
1291         struct cmipci *cm = snd_pcm_substream_chip(substream);
1292         int err, do_ac3;
1293
1294         if (cm->can_ac3_hw) 
1295                 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1296         else
1297                 do_ac3 = 1; /* doesn't matter */
1298         if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1299                 return err;
1300         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1301 }
1302
1303 /*
1304  * Apparently, the samples last played on channel A stay in some buffer, even
1305  * after the channel is reset, and get added to the data for the rear DACs when
1306  * playing a multichannel stream on channel B.  This is likely to generate
1307  * wraparounds and thus distortions.
1308  * To avoid this, we play at least one zero sample after the actual stream has
1309  * stopped.
1310  */
1311 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1312 {
1313         struct snd_pcm_runtime *runtime = rec->substream->runtime;
1314         unsigned int reg, val;
1315
1316         if (rec->needs_silencing && runtime && runtime->dma_area) {
1317                 /* set up a small silence buffer */
1318                 memset(runtime->dma_area, 0, PAGE_SIZE);
1319                 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1320                 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1321                 snd_cmipci_write(cm, reg, val);
1322         
1323                 /* configure for 16 bits, 2 channels, 8 kHz */
1324                 if (runtime->channels > 2)
1325                         set_dac_channels(cm, rec, 2);
1326                 spin_lock_irq(&cm->reg_lock);
1327                 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1328                 val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1329                 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1330                 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1331                 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1332                 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1333                 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1334                 if (cm->can_96k)
1335                         val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1336                 snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1337         
1338                 /* start stream (we don't need interrupts) */
1339                 cm->ctrl |= CM_CHEN0 << rec->ch;
1340                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1341                 spin_unlock_irq(&cm->reg_lock);
1342
1343                 msleep(1);
1344
1345                 /* stop and reset stream */
1346                 spin_lock_irq(&cm->reg_lock);
1347                 cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1348                 val = CM_RST_CH0 << rec->ch;
1349                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1350                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1351                 spin_unlock_irq(&cm->reg_lock);
1352
1353                 rec->needs_silencing = 0;
1354         }
1355 }
1356
1357 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1358 {
1359         struct cmipci *cm = snd_pcm_substream_chip(substream);
1360         setup_spdif_playback(cm, substream, 0, 0);
1361         restore_mixer_state(cm);
1362         snd_cmipci_silence_hack(cm, &cm->channel[0]);
1363         return 0;
1364 }
1365
1366 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1367 {
1368         struct cmipci *cm = snd_pcm_substream_chip(substream);
1369         snd_cmipci_silence_hack(cm, &cm->channel[1]);
1370         return 0;
1371 }
1372
1373 /* capture */
1374 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1375 {
1376         struct cmipci *cm = snd_pcm_substream_chip(substream);
1377         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1378 }
1379
1380 /* capture with spdif (via device #2) */
1381 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1382 {
1383         struct cmipci *cm = snd_pcm_substream_chip(substream);
1384
1385         spin_lock_irq(&cm->reg_lock);
1386         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1387         if (cm->can_96k) {
1388                 if (substream->runtime->rate > 48000)
1389                         snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1390                 else
1391                         snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1392         }
1393         if (snd_pcm_format_width(substream->runtime->format) > 16)
1394                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1395         else
1396                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1397
1398         spin_unlock_irq(&cm->reg_lock);
1399
1400         return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1401 }
1402
1403 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1404 {
1405         struct cmipci *cm = snd_pcm_substream_chip(subs);
1406
1407         spin_lock_irq(&cm->reg_lock);
1408         snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1409         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1410         spin_unlock_irq(&cm->reg_lock);
1411
1412         return 0;
1413 }
1414
1415
1416 /*
1417  * interrupt handler
1418  */
1419 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1420 {
1421         struct cmipci *cm = dev_id;
1422         unsigned int status, mask = 0;
1423         
1424         /* fastpath out, to ease interrupt sharing */
1425         status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1426         if (!(status & CM_INTR))
1427                 return IRQ_NONE;
1428
1429         /* acknowledge interrupt */
1430         spin_lock(&cm->reg_lock);
1431         if (status & CM_CHINT0)
1432                 mask |= CM_CH0_INT_EN;
1433         if (status & CM_CHINT1)
1434                 mask |= CM_CH1_INT_EN;
1435         snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1436         snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1437         spin_unlock(&cm->reg_lock);
1438
1439         if (cm->rmidi && (status & CM_UARTINT))
1440                 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1441
1442         if (cm->pcm) {
1443                 if ((status & CM_CHINT0) && cm->channel[0].running)
1444                         snd_pcm_period_elapsed(cm->channel[0].substream);
1445                 if ((status & CM_CHINT1) && cm->channel[1].running)
1446                         snd_pcm_period_elapsed(cm->channel[1].substream);
1447         }
1448         return IRQ_HANDLED;
1449 }
1450
1451 /*
1452  * h/w infos
1453  */
1454
1455 /* playback on channel A */
1456 static const struct snd_pcm_hardware snd_cmipci_playback =
1457 {
1458         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1459                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1460                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1461         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1462         .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1463         .rate_min =             5512,
1464         .rate_max =             48000,
1465         .channels_min =         1,
1466         .channels_max =         2,
1467         .buffer_bytes_max =     (128*1024),
1468         .period_bytes_min =     64,
1469         .period_bytes_max =     (128*1024),
1470         .periods_min =          2,
1471         .periods_max =          1024,
1472         .fifo_size =            0,
1473 };
1474
1475 /* capture on channel B */
1476 static const struct snd_pcm_hardware snd_cmipci_capture =
1477 {
1478         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1479                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1480                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1481         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1482         .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1483         .rate_min =             5512,
1484         .rate_max =             48000,
1485         .channels_min =         1,
1486         .channels_max =         2,
1487         .buffer_bytes_max =     (128*1024),
1488         .period_bytes_min =     64,
1489         .period_bytes_max =     (128*1024),
1490         .periods_min =          2,
1491         .periods_max =          1024,
1492         .fifo_size =            0,
1493 };
1494
1495 /* playback on channel B - stereo 16bit only? */
1496 static const struct snd_pcm_hardware snd_cmipci_playback2 =
1497 {
1498         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1499                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1500                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1501         .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1502         .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1503         .rate_min =             5512,
1504         .rate_max =             48000,
1505         .channels_min =         2,
1506         .channels_max =         2,
1507         .buffer_bytes_max =     (128*1024),
1508         .period_bytes_min =     64,
1509         .period_bytes_max =     (128*1024),
1510         .periods_min =          2,
1511         .periods_max =          1024,
1512         .fifo_size =            0,
1513 };
1514
1515 /* spdif playback on channel A */
1516 static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1517 {
1518         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1519                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1520                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1521         .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1522         .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1523         .rate_min =             44100,
1524         .rate_max =             48000,
1525         .channels_min =         2,
1526         .channels_max =         2,
1527         .buffer_bytes_max =     (128*1024),
1528         .period_bytes_min =     64,
1529         .period_bytes_max =     (128*1024),
1530         .periods_min =          2,
1531         .periods_max =          1024,
1532         .fifo_size =            0,
1533 };
1534
1535 /* spdif playback on channel A (32bit, IEC958 subframes) */
1536 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1537 {
1538         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1539                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1540                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1541         .formats =              SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1542         .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1543         .rate_min =             44100,
1544         .rate_max =             48000,
1545         .channels_min =         2,
1546         .channels_max =         2,
1547         .buffer_bytes_max =     (128*1024),
1548         .period_bytes_min =     64,
1549         .period_bytes_max =     (128*1024),
1550         .periods_min =          2,
1551         .periods_max =          1024,
1552         .fifo_size =            0,
1553 };
1554
1555 /* spdif capture on channel B */
1556 static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1557 {
1558         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1559                                  SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1560                                  SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1561         .formats =              SNDRV_PCM_FMTBIT_S16_LE |
1562                                 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1563         .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1564         .rate_min =             44100,
1565         .rate_max =             48000,
1566         .channels_min =         2,
1567         .channels_max =         2,
1568         .buffer_bytes_max =     (128*1024),
1569         .period_bytes_min =     64,
1570         .period_bytes_max =     (128*1024),
1571         .periods_min =          2,
1572         .periods_max =          1024,
1573         .fifo_size =            0,
1574 };
1575
1576 static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1577                         32000, 44100, 48000, 88200, 96000, 128000 };
1578 static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1579                 .count = ARRAY_SIZE(rate_constraints),
1580                 .list = rate_constraints,
1581                 .mask = 0,
1582 };
1583
1584 /*
1585  * check device open/close
1586  */
1587 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1588 {
1589         int ch = mode & CM_OPEN_CH_MASK;
1590
1591         /* FIXME: a file should wait until the device becomes free
1592          * when it's opened on blocking mode.  however, since the current
1593          * pcm framework doesn't pass file pointer before actually opened,
1594          * we can't know whether blocking mode or not in open callback..
1595          */
1596         mutex_lock(&cm->open_mutex);
1597         if (cm->opened[ch]) {
1598                 mutex_unlock(&cm->open_mutex);
1599                 return -EBUSY;
1600         }
1601         cm->opened[ch] = mode;
1602         cm->channel[ch].substream = subs;
1603         if (! (mode & CM_OPEN_DAC)) {
1604                 /* disable dual DAC mode */
1605                 cm->channel[ch].is_dac = 0;
1606                 spin_lock_irq(&cm->reg_lock);
1607                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1608                 spin_unlock_irq(&cm->reg_lock);
1609         }
1610         mutex_unlock(&cm->open_mutex);
1611         return 0;
1612 }
1613
1614 static void close_device_check(struct cmipci *cm, int mode)
1615 {
1616         int ch = mode & CM_OPEN_CH_MASK;
1617
1618         mutex_lock(&cm->open_mutex);
1619         if (cm->opened[ch] == mode) {
1620                 if (cm->channel[ch].substream) {
1621                         snd_cmipci_ch_reset(cm, ch);
1622                         cm->channel[ch].running = 0;
1623                         cm->channel[ch].substream = NULL;
1624                 }
1625                 cm->opened[ch] = 0;
1626                 if (! cm->channel[ch].is_dac) {
1627                         /* enable dual DAC mode again */
1628                         cm->channel[ch].is_dac = 1;
1629                         spin_lock_irq(&cm->reg_lock);
1630                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1631                         spin_unlock_irq(&cm->reg_lock);
1632                 }
1633         }
1634         mutex_unlock(&cm->open_mutex);
1635 }
1636
1637 /*
1638  */
1639
1640 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1641 {
1642         struct cmipci *cm = snd_pcm_substream_chip(substream);
1643         struct snd_pcm_runtime *runtime = substream->runtime;
1644         int err;
1645
1646         if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1647                 return err;
1648         runtime->hw = snd_cmipci_playback;
1649         if (cm->chip_version == 68) {
1650                 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1651                                      SNDRV_PCM_RATE_96000;
1652                 runtime->hw.rate_max = 96000;
1653         } else if (cm->chip_version == 55) {
1654                 err = snd_pcm_hw_constraint_list(runtime, 0,
1655                         SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1656                 if (err < 0)
1657                         return err;
1658                 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1659                 runtime->hw.rate_max = 128000;
1660         }
1661         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1662         cm->dig_pcm_status = cm->dig_status;
1663         return 0;
1664 }
1665
1666 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1667 {
1668         struct cmipci *cm = snd_pcm_substream_chip(substream);
1669         struct snd_pcm_runtime *runtime = substream->runtime;
1670         int err;
1671
1672         if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1673                 return err;
1674         runtime->hw = snd_cmipci_capture;
1675         if (cm->chip_version == 68) {   // 8768 only supports 44k/48k recording
1676                 runtime->hw.rate_min = 41000;
1677                 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1678         } else if (cm->chip_version == 55) {
1679                 err = snd_pcm_hw_constraint_list(runtime, 0,
1680                         SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1681                 if (err < 0)
1682                         return err;
1683                 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1684                 runtime->hw.rate_max = 128000;
1685         }
1686         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1687         return 0;
1688 }
1689
1690 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1691 {
1692         struct cmipci *cm = snd_pcm_substream_chip(substream);
1693         struct snd_pcm_runtime *runtime = substream->runtime;
1694         int err;
1695
1696         if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1697                 return err;
1698         runtime->hw = snd_cmipci_playback2;
1699         mutex_lock(&cm->open_mutex);
1700         if (! cm->opened[CM_CH_PLAY]) {
1701                 if (cm->can_multi_ch) {
1702                         runtime->hw.channels_max = cm->max_channels;
1703                         if (cm->max_channels == 4)
1704                                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1705                         else if (cm->max_channels == 6)
1706                                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1707                         else if (cm->max_channels == 8)
1708                                 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1709                 }
1710         }
1711         mutex_unlock(&cm->open_mutex);
1712         if (cm->chip_version == 68) {
1713                 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1714                                      SNDRV_PCM_RATE_96000;
1715                 runtime->hw.rate_max = 96000;
1716         } else if (cm->chip_version == 55) {
1717                 err = snd_pcm_hw_constraint_list(runtime, 0,
1718                         SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1719                 if (err < 0)
1720                         return err;
1721                 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1722                 runtime->hw.rate_max = 128000;
1723         }
1724         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1725         return 0;
1726 }
1727
1728 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1729 {
1730         struct cmipci *cm = snd_pcm_substream_chip(substream);
1731         struct snd_pcm_runtime *runtime = substream->runtime;
1732         int err;
1733
1734         if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1735                 return err;
1736         if (cm->can_ac3_hw) {
1737                 runtime->hw = snd_cmipci_playback_spdif;
1738                 if (cm->chip_version >= 37) {
1739                         runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1740                         snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1741                 }
1742                 if (cm->can_96k) {
1743                         runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1744                                              SNDRV_PCM_RATE_96000;
1745                         runtime->hw.rate_max = 96000;
1746                 }
1747         } else {
1748                 runtime->hw = snd_cmipci_playback_iec958_subframe;
1749         }
1750         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1751         cm->dig_pcm_status = cm->dig_status;
1752         return 0;
1753 }
1754
1755 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1756 {
1757         struct cmipci *cm = snd_pcm_substream_chip(substream);
1758         struct snd_pcm_runtime *runtime = substream->runtime;
1759         int err;
1760
1761         if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1762                 return err;
1763         runtime->hw = snd_cmipci_capture_spdif;
1764         if (cm->can_96k && !(cm->chip_version == 68)) {
1765                 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1766                                      SNDRV_PCM_RATE_96000;
1767                 runtime->hw.rate_max = 96000;
1768         }
1769         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1770         return 0;
1771 }
1772
1773
1774 /*
1775  */
1776
1777 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1778 {
1779         struct cmipci *cm = snd_pcm_substream_chip(substream);
1780         close_device_check(cm, CM_OPEN_PLAYBACK);
1781         return 0;
1782 }
1783
1784 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1785 {
1786         struct cmipci *cm = snd_pcm_substream_chip(substream);
1787         close_device_check(cm, CM_OPEN_CAPTURE);
1788         return 0;
1789 }
1790
1791 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1792 {
1793         struct cmipci *cm = snd_pcm_substream_chip(substream);
1794         close_device_check(cm, CM_OPEN_PLAYBACK2);
1795         close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1796         return 0;
1797 }
1798
1799 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1800 {
1801         struct cmipci *cm = snd_pcm_substream_chip(substream);
1802         close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1803         return 0;
1804 }
1805
1806 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1807 {
1808         struct cmipci *cm = snd_pcm_substream_chip(substream);
1809         close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1810         return 0;
1811 }
1812
1813
1814 /*
1815  */
1816
1817 static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1818         .open =         snd_cmipci_playback_open,
1819         .close =        snd_cmipci_playback_close,
1820         .hw_free =      snd_cmipci_playback_hw_free,
1821         .prepare =      snd_cmipci_playback_prepare,
1822         .trigger =      snd_cmipci_playback_trigger,
1823         .pointer =      snd_cmipci_playback_pointer,
1824 };
1825
1826 static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1827         .open =         snd_cmipci_capture_open,
1828         .close =        snd_cmipci_capture_close,
1829         .prepare =      snd_cmipci_capture_prepare,
1830         .trigger =      snd_cmipci_capture_trigger,
1831         .pointer =      snd_cmipci_capture_pointer,
1832 };
1833
1834 static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1835         .open =         snd_cmipci_playback2_open,
1836         .close =        snd_cmipci_playback2_close,
1837         .hw_params =    snd_cmipci_playback2_hw_params,
1838         .hw_free =      snd_cmipci_playback2_hw_free,
1839         .prepare =      snd_cmipci_capture_prepare,     /* channel B */
1840         .trigger =      snd_cmipci_capture_trigger,     /* channel B */
1841         .pointer =      snd_cmipci_capture_pointer,     /* channel B */
1842 };
1843
1844 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1845         .open =         snd_cmipci_playback_spdif_open,
1846         .close =        snd_cmipci_playback_spdif_close,
1847         .hw_free =      snd_cmipci_playback_hw_free,
1848         .prepare =      snd_cmipci_playback_spdif_prepare,      /* set up rate */
1849         .trigger =      snd_cmipci_playback_trigger,
1850         .pointer =      snd_cmipci_playback_pointer,
1851 };
1852
1853 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1854         .open =         snd_cmipci_capture_spdif_open,
1855         .close =        snd_cmipci_capture_spdif_close,
1856         .hw_free =      snd_cmipci_capture_spdif_hw_free,
1857         .prepare =      snd_cmipci_capture_spdif_prepare,
1858         .trigger =      snd_cmipci_capture_trigger,
1859         .pointer =      snd_cmipci_capture_pointer,
1860 };
1861
1862
1863 /*
1864  */
1865
1866 static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1867 {
1868         struct snd_pcm *pcm;
1869         int err;
1870
1871         err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1872         if (err < 0)
1873                 return err;
1874
1875         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1876         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1877
1878         pcm->private_data = cm;
1879         pcm->info_flags = 0;
1880         strcpy(pcm->name, "C-Media PCI DAC/ADC");
1881         cm->pcm = pcm;
1882
1883         snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1884                                        &cm->pci->dev, 64*1024, 128*1024);
1885
1886         return 0;
1887 }
1888
1889 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1890 {
1891         struct snd_pcm *pcm;
1892         int err;
1893
1894         err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1895         if (err < 0)
1896                 return err;
1897
1898         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1899
1900         pcm->private_data = cm;
1901         pcm->info_flags = 0;
1902         strcpy(pcm->name, "C-Media PCI 2nd DAC");
1903         cm->pcm2 = pcm;
1904
1905         snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1906                                        &cm->pci->dev, 64*1024, 128*1024);
1907
1908         return 0;
1909 }
1910
1911 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1912 {
1913         struct snd_pcm *pcm;
1914         int err;
1915
1916         err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1917         if (err < 0)
1918                 return err;
1919
1920         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1921         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1922
1923         pcm->private_data = cm;
1924         pcm->info_flags = 0;
1925         strcpy(pcm->name, "C-Media PCI IEC958");
1926         cm->pcm_spdif = pcm;
1927
1928         snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1929                                        &cm->pci->dev, 64*1024, 128*1024);
1930
1931         err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1932                                      snd_pcm_alt_chmaps, cm->max_channels, 0,
1933                                      NULL);
1934         if (err < 0)
1935                 return err;
1936
1937         return 0;
1938 }
1939
1940 /*
1941  * mixer interface:
1942  * - CM8338/8738 has a compatible mixer interface with SB16, but
1943  *   lack of some elements like tone control, i/o gain and AGC.
1944  * - Access to native registers:
1945  *   - A 3D switch
1946  *   - Output mute switches
1947  */
1948
1949 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1950 {
1951         outb(idx, s->iobase + CM_REG_SB16_ADDR);
1952         outb(data, s->iobase + CM_REG_SB16_DATA);
1953 }
1954
1955 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1956 {
1957         unsigned char v;
1958
1959         outb(idx, s->iobase + CM_REG_SB16_ADDR);
1960         v = inb(s->iobase + CM_REG_SB16_DATA);
1961         return v;
1962 }
1963
1964 /*
1965  * general mixer element
1966  */
1967 struct cmipci_sb_reg {
1968         unsigned int left_reg, right_reg;
1969         unsigned int left_shift, right_shift;
1970         unsigned int mask;
1971         unsigned int invert: 1;
1972         unsigned int stereo: 1;
1973 };
1974
1975 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1976  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1977
1978 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1979 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1980   .info = snd_cmipci_info_volume, \
1981   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1982   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1983 }
1984
1985 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1986 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1987 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1988 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1989
1990 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1991 {
1992         r->left_reg = val & 0xff;
1993         r->right_reg = (val >> 8) & 0xff;
1994         r->left_shift = (val >> 16) & 0x07;
1995         r->right_shift = (val >> 19) & 0x07;
1996         r->invert = (val >> 22) & 1;
1997         r->stereo = (val >> 23) & 1;
1998         r->mask = (val >> 24) & 0xff;
1999 }
2000
2001 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2002                                   struct snd_ctl_elem_info *uinfo)
2003 {
2004         struct cmipci_sb_reg reg;
2005
2006         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2007         uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2008         uinfo->count = reg.stereo + 1;
2009         uinfo->value.integer.min = 0;
2010         uinfo->value.integer.max = reg.mask;
2011         return 0;
2012 }
2013  
2014 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2015                                  struct snd_ctl_elem_value *ucontrol)
2016 {
2017         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2018         struct cmipci_sb_reg reg;
2019         int val;
2020
2021         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2022         spin_lock_irq(&cm->reg_lock);
2023         val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2024         if (reg.invert)
2025                 val = reg.mask - val;
2026         ucontrol->value.integer.value[0] = val;
2027         if (reg.stereo) {
2028                 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2029                 if (reg.invert)
2030                         val = reg.mask - val;
2031                 ucontrol->value.integer.value[1] = val;
2032         }
2033         spin_unlock_irq(&cm->reg_lock);
2034         return 0;
2035 }
2036
2037 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2038                                  struct snd_ctl_elem_value *ucontrol)
2039 {
2040         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2041         struct cmipci_sb_reg reg;
2042         int change;
2043         int left, right, oleft, oright;
2044
2045         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2046         left = ucontrol->value.integer.value[0] & reg.mask;
2047         if (reg.invert)
2048                 left = reg.mask - left;
2049         left <<= reg.left_shift;
2050         if (reg.stereo) {
2051                 right = ucontrol->value.integer.value[1] & reg.mask;
2052                 if (reg.invert)
2053                         right = reg.mask - right;
2054                 right <<= reg.right_shift;
2055         } else
2056                 right = 0;
2057         spin_lock_irq(&cm->reg_lock);
2058         oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2059         left |= oleft & ~(reg.mask << reg.left_shift);
2060         change = left != oleft;
2061         if (reg.stereo) {
2062                 if (reg.left_reg != reg.right_reg) {
2063                         snd_cmipci_mixer_write(cm, reg.left_reg, left);
2064                         oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2065                 } else
2066                         oright = left;
2067                 right |= oright & ~(reg.mask << reg.right_shift);
2068                 change |= right != oright;
2069                 snd_cmipci_mixer_write(cm, reg.right_reg, right);
2070         } else
2071                 snd_cmipci_mixer_write(cm, reg.left_reg, left);
2072         spin_unlock_irq(&cm->reg_lock);
2073         return change;
2074 }
2075
2076 /*
2077  * input route (left,right) -> (left,right)
2078  */
2079 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2080 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2081   .info = snd_cmipci_info_input_sw, \
2082   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2083   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2084 }
2085
2086 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2087                                     struct snd_ctl_elem_info *uinfo)
2088 {
2089         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2090         uinfo->count = 4;
2091         uinfo->value.integer.min = 0;
2092         uinfo->value.integer.max = 1;
2093         return 0;
2094 }
2095  
2096 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2097                                    struct snd_ctl_elem_value *ucontrol)
2098 {
2099         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2100         struct cmipci_sb_reg reg;
2101         int val1, val2;
2102
2103         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2104         spin_lock_irq(&cm->reg_lock);
2105         val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2106         val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2107         spin_unlock_irq(&cm->reg_lock);
2108         ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2109         ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2110         ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2111         ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2112         return 0;
2113 }
2114
2115 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2116                                    struct snd_ctl_elem_value *ucontrol)
2117 {
2118         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2119         struct cmipci_sb_reg reg;
2120         int change;
2121         int val1, val2, oval1, oval2;
2122
2123         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2124         spin_lock_irq(&cm->reg_lock);
2125         oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2126         oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2127         val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2128         val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2129         val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2130         val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2131         val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2132         val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2133         change = val1 != oval1 || val2 != oval2;
2134         snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2135         snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2136         spin_unlock_irq(&cm->reg_lock);
2137         return change;
2138 }
2139
2140 /*
2141  * native mixer switches/volumes
2142  */
2143
2144 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2145 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2146   .info = snd_cmipci_info_native_mixer, \
2147   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2148   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2149 }
2150
2151 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2152 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2153   .info = snd_cmipci_info_native_mixer, \
2154   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2155   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2156 }
2157
2158 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2159 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2160   .info = snd_cmipci_info_native_mixer, \
2161   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2162   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2163 }
2164
2165 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2166 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2167   .info = snd_cmipci_info_native_mixer, \
2168   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2169   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2170 }
2171
2172 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2173                                         struct snd_ctl_elem_info *uinfo)
2174 {
2175         struct cmipci_sb_reg reg;
2176
2177         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2178         uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2179         uinfo->count = reg.stereo + 1;
2180         uinfo->value.integer.min = 0;
2181         uinfo->value.integer.max = reg.mask;
2182         return 0;
2183
2184 }
2185
2186 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2187                                        struct snd_ctl_elem_value *ucontrol)
2188 {
2189         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2190         struct cmipci_sb_reg reg;
2191         unsigned char oreg, val;
2192
2193         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2194         spin_lock_irq(&cm->reg_lock);
2195         oreg = inb(cm->iobase + reg.left_reg);
2196         val = (oreg >> reg.left_shift) & reg.mask;
2197         if (reg.invert)
2198                 val = reg.mask - val;
2199         ucontrol->value.integer.value[0] = val;
2200         if (reg.stereo) {
2201                 val = (oreg >> reg.right_shift) & reg.mask;
2202                 if (reg.invert)
2203                         val = reg.mask - val;
2204                 ucontrol->value.integer.value[1] = val;
2205         }
2206         spin_unlock_irq(&cm->reg_lock);
2207         return 0;
2208 }
2209
2210 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2211                                        struct snd_ctl_elem_value *ucontrol)
2212 {
2213         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2214         struct cmipci_sb_reg reg;
2215         unsigned char oreg, nreg, val;
2216
2217         cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2218         spin_lock_irq(&cm->reg_lock);
2219         oreg = inb(cm->iobase + reg.left_reg);
2220         val = ucontrol->value.integer.value[0] & reg.mask;
2221         if (reg.invert)
2222                 val = reg.mask - val;
2223         nreg = oreg & ~(reg.mask << reg.left_shift);
2224         nreg |= (val << reg.left_shift);
2225         if (reg.stereo) {
2226                 val = ucontrol->value.integer.value[1] & reg.mask;
2227                 if (reg.invert)
2228                         val = reg.mask - val;
2229                 nreg &= ~(reg.mask << reg.right_shift);
2230                 nreg |= (val << reg.right_shift);
2231         }
2232         outb(nreg, cm->iobase + reg.left_reg);
2233         spin_unlock_irq(&cm->reg_lock);
2234         return (nreg != oreg);
2235 }
2236
2237 /*
2238  * special case - check mixer sensitivity
2239  */
2240 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2241                                                  struct snd_ctl_elem_value *ucontrol)
2242 {
2243         //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2244         return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2245 }
2246
2247 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2248                                                  struct snd_ctl_elem_value *ucontrol)
2249 {
2250         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2251         if (cm->mixer_insensitive) {
2252                 /* ignored */
2253                 return 0;
2254         }
2255         return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2256 }
2257
2258
2259 static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2260         CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2261         CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2262         CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2263         //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2264         { /* switch with sensitivity */
2265                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2266                 .name = "PCM Playback Switch",
2267                 .info = snd_cmipci_info_native_mixer,
2268                 .get = snd_cmipci_get_native_mixer_sensitive,
2269                 .put = snd_cmipci_put_native_mixer_sensitive,
2270                 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2271         },
2272         CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2273         CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2274         CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2275         CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2276         CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2277         CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2278         CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2279         CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2280         CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2281         CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2282         CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2283         CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2284         CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2285         CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2286         CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2287         CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2288         CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2289         CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2290         CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2291         CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2292         CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2293         CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2294         CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2295 };
2296
2297 /*
2298  * other switches
2299  */
2300
2301 struct cmipci_switch_args {
2302         int reg;                /* register index */
2303         unsigned int mask;      /* mask bits */
2304         unsigned int mask_on;   /* mask bits to turn on */
2305         unsigned int is_byte: 1;                /* byte access? */
2306         unsigned int ac3_sensitive: 1;  /* access forbidden during
2307                                          * non-audio operation?
2308                                          */
2309 };
2310
2311 #define snd_cmipci_uswitch_info         snd_ctl_boolean_mono_info
2312
2313 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2314                                    struct snd_ctl_elem_value *ucontrol,
2315                                    struct cmipci_switch_args *args)
2316 {
2317         unsigned int val;
2318         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2319
2320         spin_lock_irq(&cm->reg_lock);
2321         if (args->ac3_sensitive && cm->mixer_insensitive) {
2322                 ucontrol->value.integer.value[0] = 0;
2323                 spin_unlock_irq(&cm->reg_lock);
2324                 return 0;
2325         }
2326         if (args->is_byte)
2327                 val = inb(cm->iobase + args->reg);
2328         else
2329                 val = snd_cmipci_read(cm, args->reg);
2330         ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2331         spin_unlock_irq(&cm->reg_lock);
2332         return 0;
2333 }
2334
2335 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2336                                   struct snd_ctl_elem_value *ucontrol)
2337 {
2338         struct cmipci_switch_args *args;
2339         args = (struct cmipci_switch_args *)kcontrol->private_value;
2340         if (snd_BUG_ON(!args))
2341                 return -EINVAL;
2342         return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2343 }
2344
2345 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2346                                    struct snd_ctl_elem_value *ucontrol,
2347                                    struct cmipci_switch_args *args)
2348 {
2349         unsigned int val;
2350         int change;
2351         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2352
2353         spin_lock_irq(&cm->reg_lock);
2354         if (args->ac3_sensitive && cm->mixer_insensitive) {
2355                 /* ignored */
2356                 spin_unlock_irq(&cm->reg_lock);
2357                 return 0;
2358         }
2359         if (args->is_byte)
2360                 val = inb(cm->iobase + args->reg);
2361         else
2362                 val = snd_cmipci_read(cm, args->reg);
2363         change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2364                         args->mask_on : (args->mask & ~args->mask_on));
2365         if (change) {
2366                 val &= ~args->mask;
2367                 if (ucontrol->value.integer.value[0])
2368                         val |= args->mask_on;
2369                 else
2370                         val |= (args->mask & ~args->mask_on);
2371                 if (args->is_byte)
2372                         outb((unsigned char)val, cm->iobase + args->reg);
2373                 else
2374                         snd_cmipci_write(cm, args->reg, val);
2375         }
2376         spin_unlock_irq(&cm->reg_lock);
2377         return change;
2378 }
2379
2380 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2381                                   struct snd_ctl_elem_value *ucontrol)
2382 {
2383         struct cmipci_switch_args *args;
2384         args = (struct cmipci_switch_args *)kcontrol->private_value;
2385         if (snd_BUG_ON(!args))
2386                 return -EINVAL;
2387         return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2388 }
2389
2390 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2391 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2392   .reg = xreg, \
2393   .mask = xmask, \
2394   .mask_on = xmask_on, \
2395   .is_byte = xis_byte, \
2396   .ac3_sensitive = xac3, \
2397 }
2398         
2399 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2400         DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2401
2402 #if 0 /* these will be controlled in pcm device */
2403 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2404 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2405 #endif
2406 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2407 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2408 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2409 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2410 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2411 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2412 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2413 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2414 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2415 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2416 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2417 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2418 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2419 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2420 #if CM_CH_PLAY == 1
2421 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2422 #else
2423 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2424 #endif
2425 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2426 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2427 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2428 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2429 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2430
2431 #define DEFINE_SWITCH(sname, stype, sarg) \
2432 { .name = sname, \
2433   .iface = stype, \
2434   .info = snd_cmipci_uswitch_info, \
2435   .get = snd_cmipci_uswitch_get, \
2436   .put = snd_cmipci_uswitch_put, \
2437   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2438 }
2439
2440 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2441 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2442
2443
2444 /*
2445  * callbacks for spdif output switch
2446  * needs toggle two registers..
2447  */
2448 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2449                                         struct snd_ctl_elem_value *ucontrol)
2450 {
2451         int changed;
2452         changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2453         changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2454         return changed;
2455 }
2456
2457 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2458                                         struct snd_ctl_elem_value *ucontrol)
2459 {
2460         struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2461         int changed;
2462         changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2463         changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2464         if (changed) {
2465                 if (ucontrol->value.integer.value[0]) {
2466                         if (chip->spdif_playback_avail)
2467                                 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2468                 } else {
2469                         if (chip->spdif_playback_avail)
2470                                 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2471                 }
2472         }
2473         chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2474         return changed;
2475 }
2476
2477
2478 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2479                                         struct snd_ctl_elem_info *uinfo)
2480 {
2481         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2482         static const char *const texts[3] = {
2483                 "Line-In", "Rear Output", "Bass Output"
2484         };
2485
2486         return snd_ctl_enum_info(uinfo, 1,
2487                                  cm->chip_version >= 39 ? 3 : 2, texts);
2488 }
2489
2490 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2491 {
2492         unsigned int val;
2493         if (cm->chip_version >= 39) {
2494                 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2495                 if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2496                         return 2;
2497         }
2498         val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2499         if (val & CM_REAR2LIN)
2500                 return 1;
2501         return 0;
2502 }
2503
2504 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2505                                        struct snd_ctl_elem_value *ucontrol)
2506 {
2507         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2508
2509         spin_lock_irq(&cm->reg_lock);
2510         ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2511         spin_unlock_irq(&cm->reg_lock);
2512         return 0;
2513 }
2514
2515 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2516                                        struct snd_ctl_elem_value *ucontrol)
2517 {
2518         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2519         int change;
2520
2521         spin_lock_irq(&cm->reg_lock);
2522         if (ucontrol->value.enumerated.item[0] == 2)
2523                 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2524         else
2525                 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2526         if (ucontrol->value.enumerated.item[0] == 1)
2527                 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2528         else
2529                 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2530         spin_unlock_irq(&cm->reg_lock);
2531         return change;
2532 }
2533
2534 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2535                                        struct snd_ctl_elem_info *uinfo)
2536 {
2537         static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2538
2539         return snd_ctl_enum_info(uinfo, 1, 2, texts);
2540 }
2541
2542 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2543                                       struct snd_ctl_elem_value *ucontrol)
2544 {
2545         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2546         /* same bit as spdi_phase */
2547         spin_lock_irq(&cm->reg_lock);
2548         ucontrol->value.enumerated.item[0] = 
2549                 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2550         spin_unlock_irq(&cm->reg_lock);
2551         return 0;
2552 }
2553
2554 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2555                                       struct snd_ctl_elem_value *ucontrol)
2556 {
2557         struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2558         int change;
2559
2560         spin_lock_irq(&cm->reg_lock);
2561         if (ucontrol->value.enumerated.item[0])
2562                 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2563         else
2564                 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2565         spin_unlock_irq(&cm->reg_lock);
2566         return change;
2567 }
2568
2569 /* both for CM8338/8738 */
2570 static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2571         DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2572         {
2573                 .name = "Line-In Mode",
2574                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2575                 .info = snd_cmipci_line_in_mode_info,
2576                 .get = snd_cmipci_line_in_mode_get,
2577                 .put = snd_cmipci_line_in_mode_put,
2578         },
2579 };
2580
2581 /* for non-multichannel chips */
2582 static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2583 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2584
2585 /* only for CM8738 */
2586 static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2587 #if 0 /* controlled in pcm device */
2588         DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2589         DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2590         DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2591 #endif
2592         // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2593         { .name = "IEC958 Output Switch",
2594           .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2595           .info = snd_cmipci_uswitch_info,
2596           .get = snd_cmipci_spdout_enable_get,
2597           .put = snd_cmipci_spdout_enable_put,
2598         },
2599         DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2600         DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2601         DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2602 //      DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2603         DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2604         DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2605 };
2606
2607 /* only for model 033/037 */
2608 static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2609         DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2610         DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2611         DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2612 };
2613
2614 /* only for model 039 or later */
2615 static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2616         DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2617         DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2618         {
2619                 .name = "Mic-In Mode",
2620                 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2621                 .info = snd_cmipci_mic_in_mode_info,
2622                 .get = snd_cmipci_mic_in_mode_get,
2623                 .put = snd_cmipci_mic_in_mode_put,
2624         }
2625 };
2626
2627 /* card control switches */
2628 static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2629 DEFINE_CARD_SWITCH("Modem", modem);
2630
2631
2632 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2633 {
2634         struct snd_card *card;
2635         const struct snd_kcontrol_new *sw;
2636         struct snd_kcontrol *kctl;
2637         unsigned int idx;
2638         int err;
2639
2640         if (snd_BUG_ON(!cm || !cm->card))
2641                 return -EINVAL;
2642
2643         card = cm->card;
2644
2645         strcpy(card->mixername, "CMedia PCI");
2646
2647         spin_lock_irq(&cm->reg_lock);
2648         snd_cmipci_mixer_write(cm, 0x00, 0x00);         /* mixer reset */
2649         spin_unlock_irq(&cm->reg_lock);
2650
2651         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2652                 if (cm->chip_version == 68) {   // 8768 has no PCM volume
2653                         if (!strcmp(snd_cmipci_mixers[idx].name,
2654                                 "PCM Playback Volume"))
2655                                 continue;
2656                 }
2657                 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2658                         return err;
2659         }
2660
2661         /* mixer switches */
2662         sw = snd_cmipci_mixer_switches;
2663         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2664                 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2665                 if (err < 0)
2666                         return err;
2667         }
2668         if (! cm->can_multi_ch) {
2669                 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2670                 if (err < 0)
2671                         return err;
2672         }
2673         if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2674             cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2675                 sw = snd_cmipci_8738_mixer_switches;
2676                 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2677                         err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2678                         if (err < 0)
2679                                 return err;
2680                 }
2681                 if (cm->can_ac3_hw) {
2682                         if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2683                                 return err;
2684                         kctl->id.device = pcm_spdif_device;
2685                         if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2686                                 return err;
2687                         kctl->id.device = pcm_spdif_device;
2688                         if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2689                                 return err;
2690                         kctl->id.device = pcm_spdif_device;
2691                 }
2692                 if (cm->chip_version <= 37) {
2693                         sw = snd_cmipci_old_mixer_switches;
2694                         for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2695                                 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2696                                 if (err < 0)
2697                                         return err;
2698                         }
2699                 }
2700         }
2701         if (cm->chip_version >= 39) {
2702                 sw = snd_cmipci_extra_mixer_switches;
2703                 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2704                         err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2705                         if (err < 0)
2706                                 return err;
2707                 }
2708         }
2709
2710         /* card switches */
2711         /*
2712          * newer chips don't have the register bits to force modem link
2713          * detection; the bit that was FLINKON now mutes CH1
2714          */
2715         if (cm->chip_version < 39) {
2716                 err = snd_ctl_add(cm->card,
2717                                   snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2718                 if (err < 0)
2719                         return err;
2720         }
2721
2722         for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2723                 struct snd_ctl_elem_id elem_id;
2724                 struct snd_kcontrol *ctl;
2725                 memset(&elem_id, 0, sizeof(elem_id));
2726                 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2727                 strcpy(elem_id.name, cm_saved_mixer[idx].name);
2728                 ctl = snd_ctl_find_id(cm->card, &elem_id);
2729                 if (ctl)
2730                         cm->mixer_res_ctl[idx] = ctl;
2731         }
2732
2733         return 0;
2734 }
2735
2736
2737 /*
2738  * proc interface
2739  */
2740
2741 static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2742                                  struct snd_info_buffer *buffer)
2743 {
2744         struct cmipci *cm = entry->private_data;
2745         int i, v;
2746         
2747         snd_iprintf(buffer, "%s\n", cm->card->longname);
2748         for (i = 0; i < 0x94; i++) {
2749                 if (i == 0x28)
2750                         i = 0x90;
2751                 v = inb(cm->iobase + i);
2752                 if (i % 4 == 0)
2753                         snd_iprintf(buffer, "\n%02x:", i);
2754                 snd_iprintf(buffer, " %02x", v);
2755         }
2756         snd_iprintf(buffer, "\n");
2757 }
2758
2759 static void snd_cmipci_proc_init(struct cmipci *cm)
2760 {
2761         snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2762 }
2763
2764 static const struct pci_device_id snd_cmipci_ids[] = {
2765         {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2766         {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2767         {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2768         {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2769         {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2770         {0,},
2771 };
2772
2773
2774 /*
2775  * check chip version and capabilities
2776  * driver name is modified according to the chip model
2777  */
2778 static void query_chip(struct cmipci *cm)
2779 {
2780         unsigned int detect;
2781
2782         /* check reg 0Ch, bit 24-31 */
2783         detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2784         if (! detect) {
2785                 /* check reg 08h, bit 24-28 */
2786                 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2787                 switch (detect) {
2788                 case 0:
2789                         cm->chip_version = 33;
2790                         if (cm->do_soft_ac3)
2791                                 cm->can_ac3_sw = 1;
2792                         else
2793                                 cm->can_ac3_hw = 1;
2794                         break;
2795                 case CM_CHIP_037:
2796                         cm->chip_version = 37;
2797                         cm->can_ac3_hw = 1;
2798                         break;
2799                 default:
2800                         cm->chip_version = 39;
2801                         cm->can_ac3_hw = 1;
2802                         break;
2803                 }
2804                 cm->max_channels = 2;
2805         } else {
2806                 if (detect & CM_CHIP_039) {
2807                         cm->chip_version = 39;
2808                         if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2809                                 cm->max_channels = 6;
2810                         else
2811                                 cm->max_channels = 4;
2812                 } else if (detect & CM_CHIP_8768) {
2813                         cm->chip_version = 68;
2814                         cm->max_channels = 8;
2815                         cm->can_96k = 1;
2816                 } else {
2817                         cm->chip_version = 55;
2818                         cm->max_channels = 6;
2819                         cm->can_96k = 1;
2820                 }
2821                 cm->can_ac3_hw = 1;
2822                 cm->can_multi_ch = 1;
2823         }
2824 }
2825
2826 #ifdef SUPPORT_JOYSTICK
2827 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2828 {
2829         static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2830         struct gameport *gp;
2831         struct resource *r = NULL;
2832         int i, io_port = 0;
2833
2834         if (joystick_port[dev] == 0)
2835                 return -ENODEV;
2836
2837         if (joystick_port[dev] == 1) { /* auto-detect */
2838                 for (i = 0; ports[i]; i++) {
2839                         io_port = ports[i];
2840                         r = request_region(io_port, 1, "CMIPCI gameport");
2841                         if (r)
2842                                 break;
2843                 }
2844         } else {
2845                 io_port = joystick_port[dev];
2846                 r = request_region(io_port, 1, "CMIPCI gameport");
2847         }
2848
2849         if (!r) {
2850                 dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2851                 return -EBUSY;
2852         }
2853
2854         cm->gameport = gp = gameport_allocate_port();
2855         if (!gp) {
2856                 dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2857                 release_and_free_resource(r);
2858                 return -ENOMEM;
2859         }
2860         gameport_set_name(gp, "C-Media Gameport");
2861         gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2862         gameport_set_dev_parent(gp, &cm->pci->dev);
2863         gp->io = io_port;
2864         gameport_set_port_data(gp, r);
2865
2866         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2867
2868         gameport_register_port(cm->gameport);
2869
2870         return 0;
2871 }
2872
2873 static void snd_cmipci_free_gameport(struct cmipci *cm)
2874 {
2875         if (cm->gameport) {
2876                 struct resource *r = gameport_get_port_data(cm->gameport);
2877
2878                 gameport_unregister_port(cm->gameport);
2879                 cm->gameport = NULL;
2880
2881                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2882                 release_and_free_resource(r);
2883         }
2884 }
2885 #else
2886 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2887 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2888 #endif
2889
2890 static int snd_cmipci_free(struct cmipci *cm)
2891 {
2892         if (cm->irq >= 0) {
2893                 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2894                 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2895                 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2896                 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2897                 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2898                 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2899                 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2900
2901                 /* reset mixer */
2902                 snd_cmipci_mixer_write(cm, 0, 0);
2903
2904                 free_irq(cm->irq, cm);
2905         }
2906
2907         snd_cmipci_free_gameport(cm);
2908         pci_release_regions(cm->pci);
2909         pci_disable_device(cm->pci);
2910         kfree(cm);
2911         return 0;
2912 }
2913
2914 static int snd_cmipci_dev_free(struct snd_device *device)
2915 {
2916         struct cmipci *cm = device->device_data;
2917         return snd_cmipci_free(cm);
2918 }
2919
2920 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2921 {
2922         long iosynth;
2923         unsigned int val;
2924         struct snd_opl3 *opl3;
2925         int err;
2926
2927         if (!fm_port)
2928                 goto disable_fm;
2929
2930         if (cm->chip_version >= 39) {
2931                 /* first try FM regs in PCI port range */
2932                 iosynth = cm->iobase + CM_REG_FM_PCI;
2933                 err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2934                                       OPL3_HW_OPL3, 1, &opl3);
2935         } else {
2936                 err = -EIO;
2937         }
2938         if (err < 0) {
2939                 /* then try legacy ports */
2940                 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2941                 iosynth = fm_port;
2942                 switch (iosynth) {
2943                 case 0x3E8: val |= CM_FMSEL_3E8; break;
2944                 case 0x3E0: val |= CM_FMSEL_3E0; break;
2945                 case 0x3C8: val |= CM_FMSEL_3C8; break;
2946                 case 0x388: val |= CM_FMSEL_388; break;
2947                 default:
2948                         goto disable_fm;
2949                 }
2950                 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2951                 /* enable FM */
2952                 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2953
2954                 if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2955                                     OPL3_HW_OPL3, 0, &opl3) < 0) {
2956                         dev_err(cm->card->dev,
2957                                 "no OPL device at %#lx, skipping...\n",
2958                                 iosynth);
2959                         goto disable_fm;
2960                 }
2961         }
2962         if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2963                 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2964                 return err;
2965         }
2966         return 0;
2967
2968  disable_fm:
2969         snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2970         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2971         return 0;
2972 }
2973
2974 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2975                              int dev, struct cmipci **rcmipci)
2976 {
2977         struct cmipci *cm;
2978         int err;
2979         static const struct snd_device_ops ops = {
2980                 .dev_free =     snd_cmipci_dev_free,
2981         };
2982         unsigned int val;
2983         long iomidi = 0;
2984         int integrated_midi = 0;
2985         char modelstr[16];
2986         int pcm_index, pcm_spdif_index;
2987         static const struct pci_device_id intel_82437vx[] = {
2988                 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2989                 { },
2990         };
2991
2992         *rcmipci = NULL;
2993
2994         if ((err = pci_enable_device(pci)) < 0)
2995                 return err;
2996
2997         cm = kzalloc(sizeof(*cm), GFP_KERNEL);
2998         if (cm == NULL) {
2999                 pci_disable_device(pci);
3000                 return -ENOMEM;
3001         }
3002
3003         spin_lock_init(&cm->reg_lock);
3004         mutex_init(&cm->open_mutex);
3005         cm->device = pci->device;
3006         cm->card = card;
3007         cm->pci = pci;
3008         cm->irq = -1;
3009         cm->channel[0].ch = 0;
3010         cm->channel[1].ch = 1;
3011         cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3012
3013         if ((err = pci_request_regions(pci, card->driver)) < 0) {
3014                 kfree(cm);
3015                 pci_disable_device(pci);
3016                 return err;
3017         }
3018         cm->iobase = pci_resource_start(pci, 0);
3019
3020         if (request_irq(pci->irq, snd_cmipci_interrupt,
3021                         IRQF_SHARED, KBUILD_MODNAME, cm)) {
3022                 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3023                 snd_cmipci_free(cm);
3024                 return -EBUSY;
3025         }
3026         cm->irq = pci->irq;
3027         card->sync_irq = cm->irq;
3028
3029         pci_set_master(cm->pci);
3030
3031         /*
3032          * check chip version, max channels and capabilities
3033          */
3034
3035         cm->chip_version = 0;
3036         cm->max_channels = 2;
3037         cm->do_soft_ac3 = soft_ac3[dev];
3038
3039         if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3040             pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3041                 query_chip(cm);
3042         /* added -MCx suffix for chip supporting multi-channels */
3043         if (cm->can_multi_ch)
3044                 sprintf(cm->card->driver + strlen(cm->card->driver),
3045                         "-MC%d", cm->max_channels);
3046         else if (cm->can_ac3_sw)
3047                 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3048
3049         cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3050         cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3051
3052 #if CM_CH_PLAY == 1
3053         cm->ctrl = CM_CHADC0;   /* default FUNCNTRL0 */
3054 #else
3055         cm->ctrl = CM_CHADC1;   /* default FUNCNTRL0 */
3056 #endif
3057
3058         /* initialize codec registers */
3059         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3060         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3061         snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);     /* disable ints */
3062         snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3063         snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3064         snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);       /* disable channels */
3065         snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3066
3067         snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3068         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3069 #if CM_CH_PLAY == 1
3070         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3071 #else
3072         snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3073 #endif
3074         if (cm->chip_version) {
3075                 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3076                 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3077         }
3078         /* Set Bus Master Request */
3079         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3080
3081         /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3082         switch (pci->device) {
3083         case PCI_DEVICE_ID_CMEDIA_CM8738:
3084         case PCI_DEVICE_ID_CMEDIA_CM8738B:
3085                 if (!pci_dev_present(intel_82437vx)) 
3086                         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3087                 break;
3088         default:
3089                 break;
3090         }
3091
3092         if (cm->chip_version < 68) {
3093                 val = pci->device < 0x110 ? 8338 : 8738;
3094         } else {
3095                 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3096                 case 0:
3097                         val = 8769;
3098                         break;
3099                 case 2:
3100                         val = 8762;
3101                         break;
3102                 default:
3103                         switch ((pci->subsystem_vendor << 16) |
3104                                 pci->subsystem_device) {
3105                         case 0x13f69761:
3106                         case 0x584d3741:
3107                         case 0x584d3751:
3108                         case 0x584d3761:
3109                         case 0x584d3771:
3110                         case 0x72848384:
3111                                 val = 8770;
3112                                 break;
3113                         default:
3114                                 val = 8768;
3115                                 break;
3116                         }
3117                 }
3118         }
3119         sprintf(card->shortname, "C-Media CMI%d", val);
3120         if (cm->chip_version < 68)
3121                 sprintf(modelstr, " (model %d)", cm->chip_version);
3122         else
3123                 modelstr[0] = '\0';
3124         sprintf(card->longname, "%s%s at %#lx, irq %i",
3125                 card->shortname, modelstr, cm->iobase, cm->irq);
3126
3127         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3128                 snd_cmipci_free(cm);
3129                 return err;
3130         }
3131
3132         if (cm->chip_version >= 39) {
3133                 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3134                 if (val != 0x00 && val != 0xff) {
3135                         if (mpu_port[dev])
3136                                 iomidi = cm->iobase + CM_REG_MPU_PCI;
3137                         integrated_midi = 1;
3138                 }
3139         }
3140         if (!integrated_midi) {
3141                 val = 0;
3142                 iomidi = mpu_port[dev];
3143                 switch (iomidi) {
3144                 case 0x320: val = CM_VMPU_320; break;
3145                 case 0x310: val = CM_VMPU_310; break;
3146                 case 0x300: val = CM_VMPU_300; break;
3147                 case 0x330: val = CM_VMPU_330; break;
3148                 default:
3149                             iomidi = 0; break;
3150                 }
3151                 if (iomidi > 0) {
3152                         snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3153                         /* enable UART */
3154                         snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3155                         if (inb(iomidi + 1) == 0xff) {
3156                                 dev_err(cm->card->dev,
3157                                         "cannot enable MPU-401 port at %#lx\n",
3158                                         iomidi);
3159                                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3160                                                      CM_UART_EN);
3161                                 iomidi = 0;
3162                         }
3163                 }
3164         }
3165
3166         if (cm->chip_version < 68) {
3167                 err = snd_cmipci_create_fm(cm, fm_port[dev]);
3168                 if (err < 0)
3169                         return err;
3170         }
3171
3172         /* reset mixer */
3173         snd_cmipci_mixer_write(cm, 0, 0);
3174
3175         snd_cmipci_proc_init(cm);
3176
3177         /* create pcm devices */
3178         pcm_index = pcm_spdif_index = 0;
3179         if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3180                 return err;
3181         pcm_index++;
3182         if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3183                 return err;
3184         pcm_index++;
3185         if (cm->can_ac3_hw || cm->can_ac3_sw) {
3186                 pcm_spdif_index = pcm_index;
3187                 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3188                         return err;
3189         }
3190
3191         /* create mixer interface & switches */
3192         if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3193                 return err;
3194
3195         if (iomidi > 0) {
3196                 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3197                                                iomidi,
3198                                                (integrated_midi ?
3199                                                 MPU401_INFO_INTEGRATED : 0) |
3200                                                MPU401_INFO_IRQ_HOOK,
3201                                                -1, &cm->rmidi)) < 0) {
3202                         dev_err(cm->card->dev,
3203                                 "no UART401 device at 0x%lx\n", iomidi);
3204                 }
3205         }
3206
3207 #ifdef USE_VAR48KRATE
3208         for (val = 0; val < ARRAY_SIZE(rates); val++)
3209                 snd_cmipci_set_pll(cm, rates[val], val);
3210
3211         /*
3212          * (Re-)Enable external switch spdo_48k
3213          */
3214         snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3215 #endif /* USE_VAR48KRATE */
3216
3217         if (snd_cmipci_create_gameport(cm, dev) < 0)
3218                 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3219
3220         *rcmipci = cm;
3221         return 0;
3222 }
3223
3224 /*
3225  */
3226
3227 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3228
3229 static int snd_cmipci_probe(struct pci_dev *pci,
3230                             const struct pci_device_id *pci_id)
3231 {
3232         static int dev;
3233         struct snd_card *card;
3234         struct cmipci *cm;
3235         int err;
3236
3237         if (dev >= SNDRV_CARDS)
3238                 return -ENODEV;
3239         if (! enable[dev]) {
3240                 dev++;
3241                 return -ENOENT;
3242         }
3243
3244         err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3245                            0, &card);
3246         if (err < 0)
3247                 return err;
3248         
3249         switch (pci->device) {
3250         case PCI_DEVICE_ID_CMEDIA_CM8738:
3251         case PCI_DEVICE_ID_CMEDIA_CM8738B:
3252                 strcpy(card->driver, "CMI8738");
3253                 break;
3254         case PCI_DEVICE_ID_CMEDIA_CM8338A:
3255         case PCI_DEVICE_ID_CMEDIA_CM8338B:
3256                 strcpy(card->driver, "CMI8338");
3257                 break;
3258         default:
3259                 strcpy(card->driver, "CMIPCI");
3260                 break;
3261         }
3262
3263         err = snd_cmipci_create(card, pci, dev, &cm);
3264         if (err < 0)
3265                 goto free_card;
3266
3267         card->private_data = cm;
3268
3269         err = snd_card_register(card);
3270         if (err < 0)
3271                 goto free_card;
3272
3273         pci_set_drvdata(pci, card);
3274         dev++;
3275         return 0;
3276
3277 free_card:
3278         snd_card_free(card);
3279         return err;
3280 }
3281
3282 static void snd_cmipci_remove(struct pci_dev *pci)
3283 {
3284         snd_card_free(pci_get_drvdata(pci));
3285 }
3286
3287
3288 #ifdef CONFIG_PM_SLEEP
3289 /*
3290  * power management
3291  */
3292 static const unsigned char saved_regs[] = {
3293         CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3294         CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3295         CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3296         CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3297         CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3298 };
3299
3300 static const unsigned char saved_mixers[] = {
3301         SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3302         SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3303         SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3304         SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3305         SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3306         SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3307         CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3308         SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3309 };
3310
3311 static int snd_cmipci_suspend(struct device *dev)
3312 {
3313         struct snd_card *card = dev_get_drvdata(dev);
3314         struct cmipci *cm = card->private_data;
3315         int i;
3316
3317         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3318         
3319         /* save registers */
3320         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3321                 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3322         for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3323                 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3324
3325         /* disable ints */
3326         snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3327         return 0;
3328 }
3329
3330 static int snd_cmipci_resume(struct device *dev)
3331 {
3332         struct snd_card *card = dev_get_drvdata(dev);
3333         struct cmipci *cm = card->private_data;
3334         int i;
3335
3336         /* reset / initialize to a sane state */
3337         snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3338         snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3339         snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3340         snd_cmipci_mixer_write(cm, 0, 0);
3341
3342         /* restore registers */
3343         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3344                 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3345         for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3346                 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3347
3348         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3349         return 0;
3350 }
3351
3352 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3353 #define SND_CMIPCI_PM_OPS       &snd_cmipci_pm
3354 #else
3355 #define SND_CMIPCI_PM_OPS       NULL
3356 #endif /* CONFIG_PM_SLEEP */
3357
3358 static struct pci_driver cmipci_driver = {
3359         .name = KBUILD_MODNAME,
3360         .id_table = snd_cmipci_ids,
3361         .probe = snd_cmipci_probe,
3362         .remove = snd_cmipci_remove,
3363         .driver = {
3364                 .pm = SND_CMIPCI_PM_OPS,
3365         },
3366 };
3367         
3368 module_pci_driver(cmipci_driver);