ACPI: processor: idle: Allow probing on platforms with one ACPI C-state
[linux-2.6-microblaze.git] / sound / core / pcm_lib.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Digital Audio (PCM) abstract layer
4  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5  *                   Abramo Bagnara <abramo@alsa-project.org>
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10 #include <linux/time.h>
11 #include <linux/math64.h>
12 #include <linux/export.h>
13 #include <sound/core.h>
14 #include <sound/control.h>
15 #include <sound/tlv.h>
16 #include <sound/info.h>
17 #include <sound/pcm.h>
18 #include <sound/pcm_params.h>
19 #include <sound/timer.h>
20
21 #include "pcm_local.h"
22
23 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
24 #define CREATE_TRACE_POINTS
25 #include "pcm_trace.h"
26 #else
27 #define trace_hwptr(substream, pos, in_interrupt)
28 #define trace_xrun(substream)
29 #define trace_hw_ptr_error(substream, reason)
30 #define trace_applptr(substream, prev, curr)
31 #endif
32
33 static int fill_silence_frames(struct snd_pcm_substream *substream,
34                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36 /*
37  * fill ring buffer with silence
38  * runtime->silence_start: starting pointer to silence area
39  * runtime->silence_filled: size filled with silence
40  * runtime->silence_threshold: threshold from application
41  * runtime->silence_size: maximal size from application
42  *
43  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
44  */
45 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
46 {
47         struct snd_pcm_runtime *runtime = substream->runtime;
48         snd_pcm_uframes_t frames, ofs, transfer;
49         int err;
50
51         if (runtime->silence_size < runtime->boundary) {
52                 snd_pcm_sframes_t noise_dist, n;
53                 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
54                 if (runtime->silence_start != appl_ptr) {
55                         n = appl_ptr - runtime->silence_start;
56                         if (n < 0)
57                                 n += runtime->boundary;
58                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
59                                 runtime->silence_filled -= n;
60                         else
61                                 runtime->silence_filled = 0;
62                         runtime->silence_start = appl_ptr;
63                 }
64                 if (runtime->silence_filled >= runtime->buffer_size)
65                         return;
66                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
67                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
68                         return;
69                 frames = runtime->silence_threshold - noise_dist;
70                 if (frames > runtime->silence_size)
71                         frames = runtime->silence_size;
72         } else {
73                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
74                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
75                         if (avail > runtime->buffer_size)
76                                 avail = runtime->buffer_size;
77                         runtime->silence_filled = avail > 0 ? avail : 0;
78                         runtime->silence_start = (runtime->status->hw_ptr +
79                                                   runtime->silence_filled) %
80                                                  runtime->boundary;
81                 } else {
82                         ofs = runtime->status->hw_ptr;
83                         frames = new_hw_ptr - ofs;
84                         if ((snd_pcm_sframes_t)frames < 0)
85                                 frames += runtime->boundary;
86                         runtime->silence_filled -= frames;
87                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
88                                 runtime->silence_filled = 0;
89                                 runtime->silence_start = new_hw_ptr;
90                         } else {
91                                 runtime->silence_start = ofs;
92                         }
93                 }
94                 frames = runtime->buffer_size - runtime->silence_filled;
95         }
96         if (snd_BUG_ON(frames > runtime->buffer_size))
97                 return;
98         if (frames == 0)
99                 return;
100         ofs = runtime->silence_start % runtime->buffer_size;
101         while (frames > 0) {
102                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
103                 err = fill_silence_frames(substream, ofs, transfer);
104                 snd_BUG_ON(err < 0);
105                 runtime->silence_filled += transfer;
106                 frames -= transfer;
107                 ofs = 0;
108         }
109 }
110
111 #ifdef CONFIG_SND_DEBUG
112 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
113                            char *name, size_t len)
114 {
115         snprintf(name, len, "pcmC%dD%d%c:%d",
116                  substream->pcm->card->number,
117                  substream->pcm->device,
118                  substream->stream ? 'c' : 'p',
119                  substream->number);
120 }
121 EXPORT_SYMBOL(snd_pcm_debug_name);
122 #endif
123
124 #define XRUN_DEBUG_BASIC        (1<<0)
125 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
126 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
127
128 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
129
130 #define xrun_debug(substream, mask) \
131                         ((substream)->pstr->xrun_debug & (mask))
132 #else
133 #define xrun_debug(substream, mask)     0
134 #endif
135
136 #define dump_stack_on_xrun(substream) do {                      \
137                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
138                         dump_stack();                           \
139         } while (0)
140
141 /* call with stream lock held */
142 void __snd_pcm_xrun(struct snd_pcm_substream *substream)
143 {
144         struct snd_pcm_runtime *runtime = substream->runtime;
145
146         trace_xrun(substream);
147         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
148                 struct timespec64 tstamp;
149
150                 snd_pcm_gettime(runtime, &tstamp);
151                 runtime->status->tstamp.tv_sec = tstamp.tv_sec;
152                 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
153         }
154         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
155         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
156                 char name[16];
157                 snd_pcm_debug_name(substream, name, sizeof(name));
158                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
159                 dump_stack_on_xrun(substream);
160         }
161 }
162
163 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
164 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
165         do {                                                            \
166                 trace_hw_ptr_error(substream, reason);  \
167                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
168                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
169                                            (in_interrupt) ? 'Q' : 'P', ##args); \
170                         dump_stack_on_xrun(substream);                  \
171                 }                                                       \
172         } while (0)
173
174 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
175
176 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
177
178 #endif
179
180 int snd_pcm_update_state(struct snd_pcm_substream *substream,
181                          struct snd_pcm_runtime *runtime)
182 {
183         snd_pcm_uframes_t avail;
184
185         avail = snd_pcm_avail(substream);
186         if (avail > runtime->avail_max)
187                 runtime->avail_max = avail;
188         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
189                 if (avail >= runtime->buffer_size) {
190                         snd_pcm_drain_done(substream);
191                         return -EPIPE;
192                 }
193         } else {
194                 if (avail >= runtime->stop_threshold) {
195                         __snd_pcm_xrun(substream);
196                         return -EPIPE;
197                 }
198         }
199         if (runtime->twake) {
200                 if (avail >= runtime->twake)
201                         wake_up(&runtime->tsleep);
202         } else if (avail >= runtime->control->avail_min)
203                 wake_up(&runtime->sleep);
204         return 0;
205 }
206
207 static void update_audio_tstamp(struct snd_pcm_substream *substream,
208                                 struct timespec64 *curr_tstamp,
209                                 struct timespec64 *audio_tstamp)
210 {
211         struct snd_pcm_runtime *runtime = substream->runtime;
212         u64 audio_frames, audio_nsecs;
213         struct timespec64 driver_tstamp;
214
215         if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
216                 return;
217
218         if (!(substream->ops->get_time_info) ||
219                 (runtime->audio_tstamp_report.actual_type ==
220                         SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
221
222                 /*
223                  * provide audio timestamp derived from pointer position
224                  * add delay only if requested
225                  */
226
227                 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
228
229                 if (runtime->audio_tstamp_config.report_delay) {
230                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
231                                 audio_frames -=  runtime->delay;
232                         else
233                                 audio_frames +=  runtime->delay;
234                 }
235                 audio_nsecs = div_u64(audio_frames * 1000000000LL,
236                                 runtime->rate);
237                 *audio_tstamp = ns_to_timespec64(audio_nsecs);
238         }
239
240         if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
241             runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
242                 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
243                 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
244                 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
245                 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
246         }
247
248
249         /*
250          * re-take a driver timestamp to let apps detect if the reference tstamp
251          * read by low-level hardware was provided with a delay
252          */
253         snd_pcm_gettime(substream->runtime, &driver_tstamp);
254         runtime->driver_tstamp = driver_tstamp;
255 }
256
257 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
258                                   unsigned int in_interrupt)
259 {
260         struct snd_pcm_runtime *runtime = substream->runtime;
261         snd_pcm_uframes_t pos;
262         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
263         snd_pcm_sframes_t hdelta, delta;
264         unsigned long jdelta;
265         unsigned long curr_jiffies;
266         struct timespec64 curr_tstamp;
267         struct timespec64 audio_tstamp;
268         int crossed_boundary = 0;
269
270         old_hw_ptr = runtime->status->hw_ptr;
271
272         /*
273          * group pointer, time and jiffies reads to allow for more
274          * accurate correlations/corrections.
275          * The values are stored at the end of this routine after
276          * corrections for hw_ptr position
277          */
278         pos = substream->ops->pointer(substream);
279         curr_jiffies = jiffies;
280         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
281                 if ((substream->ops->get_time_info) &&
282                         (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
283                         substream->ops->get_time_info(substream, &curr_tstamp,
284                                                 &audio_tstamp,
285                                                 &runtime->audio_tstamp_config,
286                                                 &runtime->audio_tstamp_report);
287
288                         /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
289                         if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
290                                 snd_pcm_gettime(runtime, &curr_tstamp);
291                 } else
292                         snd_pcm_gettime(runtime, &curr_tstamp);
293         }
294
295         if (pos == SNDRV_PCM_POS_XRUN) {
296                 __snd_pcm_xrun(substream);
297                 return -EPIPE;
298         }
299         if (pos >= runtime->buffer_size) {
300                 if (printk_ratelimit()) {
301                         char name[16];
302                         snd_pcm_debug_name(substream, name, sizeof(name));
303                         pcm_err(substream->pcm,
304                                 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
305                                 name, pos, runtime->buffer_size,
306                                 runtime->period_size);
307                 }
308                 pos = 0;
309         }
310         pos -= pos % runtime->min_align;
311         trace_hwptr(substream, pos, in_interrupt);
312         hw_base = runtime->hw_ptr_base;
313         new_hw_ptr = hw_base + pos;
314         if (in_interrupt) {
315                 /* we know that one period was processed */
316                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
317                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
318                 if (delta > new_hw_ptr) {
319                         /* check for double acknowledged interrupts */
320                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
321                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
322                                 hw_base += runtime->buffer_size;
323                                 if (hw_base >= runtime->boundary) {
324                                         hw_base = 0;
325                                         crossed_boundary++;
326                                 }
327                                 new_hw_ptr = hw_base + pos;
328                                 goto __delta;
329                         }
330                 }
331         }
332         /* new_hw_ptr might be lower than old_hw_ptr in case when */
333         /* pointer crosses the end of the ring buffer */
334         if (new_hw_ptr < old_hw_ptr) {
335                 hw_base += runtime->buffer_size;
336                 if (hw_base >= runtime->boundary) {
337                         hw_base = 0;
338                         crossed_boundary++;
339                 }
340                 new_hw_ptr = hw_base + pos;
341         }
342       __delta:
343         delta = new_hw_ptr - old_hw_ptr;
344         if (delta < 0)
345                 delta += runtime->boundary;
346
347         if (runtime->no_period_wakeup) {
348                 snd_pcm_sframes_t xrun_threshold;
349                 /*
350                  * Without regular period interrupts, we have to check
351                  * the elapsed time to detect xruns.
352                  */
353                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
354                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
355                         goto no_delta_check;
356                 hdelta = jdelta - delta * HZ / runtime->rate;
357                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
358                 while (hdelta > xrun_threshold) {
359                         delta += runtime->buffer_size;
360                         hw_base += runtime->buffer_size;
361                         if (hw_base >= runtime->boundary) {
362                                 hw_base = 0;
363                                 crossed_boundary++;
364                         }
365                         new_hw_ptr = hw_base + pos;
366                         hdelta -= runtime->hw_ptr_buffer_jiffies;
367                 }
368                 goto no_delta_check;
369         }
370
371         /* something must be really wrong */
372         if (delta >= runtime->buffer_size + runtime->period_size) {
373                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
374                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
375                              substream->stream, (long)pos,
376                              (long)new_hw_ptr, (long)old_hw_ptr);
377                 return 0;
378         }
379
380         /* Do jiffies check only in xrun_debug mode */
381         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
382                 goto no_jiffies_check;
383
384         /* Skip the jiffies check for hardwares with BATCH flag.
385          * Such hardware usually just increases the position at each IRQ,
386          * thus it can't give any strange position.
387          */
388         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
389                 goto no_jiffies_check;
390         hdelta = delta;
391         if (hdelta < runtime->delay)
392                 goto no_jiffies_check;
393         hdelta -= runtime->delay;
394         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
395         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
396                 delta = jdelta /
397                         (((runtime->period_size * HZ) / runtime->rate)
398                                                                 + HZ/100);
399                 /* move new_hw_ptr according jiffies not pos variable */
400                 new_hw_ptr = old_hw_ptr;
401                 hw_base = delta;
402                 /* use loop to avoid checks for delta overflows */
403                 /* the delta value is small or zero in most cases */
404                 while (delta > 0) {
405                         new_hw_ptr += runtime->period_size;
406                         if (new_hw_ptr >= runtime->boundary) {
407                                 new_hw_ptr -= runtime->boundary;
408                                 crossed_boundary--;
409                         }
410                         delta--;
411                 }
412                 /* align hw_base to buffer_size */
413                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
414                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
415                              (long)pos, (long)hdelta,
416                              (long)runtime->period_size, jdelta,
417                              ((hdelta * HZ) / runtime->rate), hw_base,
418                              (unsigned long)old_hw_ptr,
419                              (unsigned long)new_hw_ptr);
420                 /* reset values to proper state */
421                 delta = 0;
422                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
423         }
424  no_jiffies_check:
425         if (delta > runtime->period_size + runtime->period_size / 2) {
426                 hw_ptr_error(substream, in_interrupt,
427                              "Lost interrupts?",
428                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
429                              substream->stream, (long)delta,
430                              (long)new_hw_ptr,
431                              (long)old_hw_ptr);
432         }
433
434  no_delta_check:
435         if (runtime->status->hw_ptr == new_hw_ptr) {
436                 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
437                 return 0;
438         }
439
440         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
441             runtime->silence_size > 0)
442                 snd_pcm_playback_silence(substream, new_hw_ptr);
443
444         if (in_interrupt) {
445                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
446                 if (delta < 0)
447                         delta += runtime->boundary;
448                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
449                 runtime->hw_ptr_interrupt += delta;
450                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
451                         runtime->hw_ptr_interrupt -= runtime->boundary;
452         }
453         runtime->hw_ptr_base = hw_base;
454         runtime->status->hw_ptr = new_hw_ptr;
455         runtime->hw_ptr_jiffies = curr_jiffies;
456         if (crossed_boundary) {
457                 snd_BUG_ON(crossed_boundary != 1);
458                 runtime->hw_ptr_wrap += runtime->boundary;
459         }
460
461         update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
462
463         return snd_pcm_update_state(substream, runtime);
464 }
465
466 /* CAUTION: call it with irq disabled */
467 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
468 {
469         return snd_pcm_update_hw_ptr0(substream, 0);
470 }
471
472 /**
473  * snd_pcm_set_ops - set the PCM operators
474  * @pcm: the pcm instance
475  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
476  * @ops: the operator table
477  *
478  * Sets the given PCM operators to the pcm instance.
479  */
480 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
481                      const struct snd_pcm_ops *ops)
482 {
483         struct snd_pcm_str *stream = &pcm->streams[direction];
484         struct snd_pcm_substream *substream;
485         
486         for (substream = stream->substream; substream != NULL; substream = substream->next)
487                 substream->ops = ops;
488 }
489 EXPORT_SYMBOL(snd_pcm_set_ops);
490
491 /**
492  * snd_pcm_sync - set the PCM sync id
493  * @substream: the pcm substream
494  *
495  * Sets the PCM sync identifier for the card.
496  */
497 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
498 {
499         struct snd_pcm_runtime *runtime = substream->runtime;
500         
501         runtime->sync.id32[0] = substream->pcm->card->number;
502         runtime->sync.id32[1] = -1;
503         runtime->sync.id32[2] = -1;
504         runtime->sync.id32[3] = -1;
505 }
506 EXPORT_SYMBOL(snd_pcm_set_sync);
507
508 /*
509  *  Standard ioctl routine
510  */
511
512 static inline unsigned int div32(unsigned int a, unsigned int b, 
513                                  unsigned int *r)
514 {
515         if (b == 0) {
516                 *r = 0;
517                 return UINT_MAX;
518         }
519         *r = a % b;
520         return a / b;
521 }
522
523 static inline unsigned int div_down(unsigned int a, unsigned int b)
524 {
525         if (b == 0)
526                 return UINT_MAX;
527         return a / b;
528 }
529
530 static inline unsigned int div_up(unsigned int a, unsigned int b)
531 {
532         unsigned int r;
533         unsigned int q;
534         if (b == 0)
535                 return UINT_MAX;
536         q = div32(a, b, &r);
537         if (r)
538                 ++q;
539         return q;
540 }
541
542 static inline unsigned int mul(unsigned int a, unsigned int b)
543 {
544         if (a == 0)
545                 return 0;
546         if (div_down(UINT_MAX, a) < b)
547                 return UINT_MAX;
548         return a * b;
549 }
550
551 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
552                                     unsigned int c, unsigned int *r)
553 {
554         u_int64_t n = (u_int64_t) a * b;
555         if (c == 0) {
556                 *r = 0;
557                 return UINT_MAX;
558         }
559         n = div_u64_rem(n, c, r);
560         if (n >= UINT_MAX) {
561                 *r = 0;
562                 return UINT_MAX;
563         }
564         return n;
565 }
566
567 /**
568  * snd_interval_refine - refine the interval value of configurator
569  * @i: the interval value to refine
570  * @v: the interval value to refer to
571  *
572  * Refines the interval value with the reference value.
573  * The interval is changed to the range satisfying both intervals.
574  * The interval status (min, max, integer, etc.) are evaluated.
575  *
576  * Return: Positive if the value is changed, zero if it's not changed, or a
577  * negative error code.
578  */
579 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
580 {
581         int changed = 0;
582         if (snd_BUG_ON(snd_interval_empty(i)))
583                 return -EINVAL;
584         if (i->min < v->min) {
585                 i->min = v->min;
586                 i->openmin = v->openmin;
587                 changed = 1;
588         } else if (i->min == v->min && !i->openmin && v->openmin) {
589                 i->openmin = 1;
590                 changed = 1;
591         }
592         if (i->max > v->max) {
593                 i->max = v->max;
594                 i->openmax = v->openmax;
595                 changed = 1;
596         } else if (i->max == v->max && !i->openmax && v->openmax) {
597                 i->openmax = 1;
598                 changed = 1;
599         }
600         if (!i->integer && v->integer) {
601                 i->integer = 1;
602                 changed = 1;
603         }
604         if (i->integer) {
605                 if (i->openmin) {
606                         i->min++;
607                         i->openmin = 0;
608                 }
609                 if (i->openmax) {
610                         i->max--;
611                         i->openmax = 0;
612                 }
613         } else if (!i->openmin && !i->openmax && i->min == i->max)
614                 i->integer = 1;
615         if (snd_interval_checkempty(i)) {
616                 snd_interval_none(i);
617                 return -EINVAL;
618         }
619         return changed;
620 }
621 EXPORT_SYMBOL(snd_interval_refine);
622
623 static int snd_interval_refine_first(struct snd_interval *i)
624 {
625         const unsigned int last_max = i->max;
626
627         if (snd_BUG_ON(snd_interval_empty(i)))
628                 return -EINVAL;
629         if (snd_interval_single(i))
630                 return 0;
631         i->max = i->min;
632         if (i->openmin)
633                 i->max++;
634         /* only exclude max value if also excluded before refine */
635         i->openmax = (i->openmax && i->max >= last_max);
636         return 1;
637 }
638
639 static int snd_interval_refine_last(struct snd_interval *i)
640 {
641         const unsigned int last_min = i->min;
642
643         if (snd_BUG_ON(snd_interval_empty(i)))
644                 return -EINVAL;
645         if (snd_interval_single(i))
646                 return 0;
647         i->min = i->max;
648         if (i->openmax)
649                 i->min--;
650         /* only exclude min value if also excluded before refine */
651         i->openmin = (i->openmin && i->min <= last_min);
652         return 1;
653 }
654
655 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
656 {
657         if (a->empty || b->empty) {
658                 snd_interval_none(c);
659                 return;
660         }
661         c->empty = 0;
662         c->min = mul(a->min, b->min);
663         c->openmin = (a->openmin || b->openmin);
664         c->max = mul(a->max,  b->max);
665         c->openmax = (a->openmax || b->openmax);
666         c->integer = (a->integer && b->integer);
667 }
668
669 /**
670  * snd_interval_div - refine the interval value with division
671  * @a: dividend
672  * @b: divisor
673  * @c: quotient
674  *
675  * c = a / b
676  *
677  * Returns non-zero if the value is changed, zero if not changed.
678  */
679 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
680 {
681         unsigned int r;
682         if (a->empty || b->empty) {
683                 snd_interval_none(c);
684                 return;
685         }
686         c->empty = 0;
687         c->min = div32(a->min, b->max, &r);
688         c->openmin = (r || a->openmin || b->openmax);
689         if (b->min > 0) {
690                 c->max = div32(a->max, b->min, &r);
691                 if (r) {
692                         c->max++;
693                         c->openmax = 1;
694                 } else
695                         c->openmax = (a->openmax || b->openmin);
696         } else {
697                 c->max = UINT_MAX;
698                 c->openmax = 0;
699         }
700         c->integer = 0;
701 }
702
703 /**
704  * snd_interval_muldivk - refine the interval value
705  * @a: dividend 1
706  * @b: dividend 2
707  * @k: divisor (as integer)
708  * @c: result
709   *
710  * c = a * b / k
711  *
712  * Returns non-zero if the value is changed, zero if not changed.
713  */
714 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
715                       unsigned int k, struct snd_interval *c)
716 {
717         unsigned int r;
718         if (a->empty || b->empty) {
719                 snd_interval_none(c);
720                 return;
721         }
722         c->empty = 0;
723         c->min = muldiv32(a->min, b->min, k, &r);
724         c->openmin = (r || a->openmin || b->openmin);
725         c->max = muldiv32(a->max, b->max, k, &r);
726         if (r) {
727                 c->max++;
728                 c->openmax = 1;
729         } else
730                 c->openmax = (a->openmax || b->openmax);
731         c->integer = 0;
732 }
733
734 /**
735  * snd_interval_mulkdiv - refine the interval value
736  * @a: dividend 1
737  * @k: dividend 2 (as integer)
738  * @b: divisor
739  * @c: result
740  *
741  * c = a * k / b
742  *
743  * Returns non-zero if the value is changed, zero if not changed.
744  */
745 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
746                       const struct snd_interval *b, struct snd_interval *c)
747 {
748         unsigned int r;
749         if (a->empty || b->empty) {
750                 snd_interval_none(c);
751                 return;
752         }
753         c->empty = 0;
754         c->min = muldiv32(a->min, k, b->max, &r);
755         c->openmin = (r || a->openmin || b->openmax);
756         if (b->min > 0) {
757                 c->max = muldiv32(a->max, k, b->min, &r);
758                 if (r) {
759                         c->max++;
760                         c->openmax = 1;
761                 } else
762                         c->openmax = (a->openmax || b->openmin);
763         } else {
764                 c->max = UINT_MAX;
765                 c->openmax = 0;
766         }
767         c->integer = 0;
768 }
769
770 /* ---- */
771
772
773 /**
774  * snd_interval_ratnum - refine the interval value
775  * @i: interval to refine
776  * @rats_count: number of ratnum_t 
777  * @rats: ratnum_t array
778  * @nump: pointer to store the resultant numerator
779  * @denp: pointer to store the resultant denominator
780  *
781  * Return: Positive if the value is changed, zero if it's not changed, or a
782  * negative error code.
783  */
784 int snd_interval_ratnum(struct snd_interval *i,
785                         unsigned int rats_count, const struct snd_ratnum *rats,
786                         unsigned int *nump, unsigned int *denp)
787 {
788         unsigned int best_num, best_den;
789         int best_diff;
790         unsigned int k;
791         struct snd_interval t;
792         int err;
793         unsigned int result_num, result_den;
794         int result_diff;
795
796         best_num = best_den = best_diff = 0;
797         for (k = 0; k < rats_count; ++k) {
798                 unsigned int num = rats[k].num;
799                 unsigned int den;
800                 unsigned int q = i->min;
801                 int diff;
802                 if (q == 0)
803                         q = 1;
804                 den = div_up(num, q);
805                 if (den < rats[k].den_min)
806                         continue;
807                 if (den > rats[k].den_max)
808                         den = rats[k].den_max;
809                 else {
810                         unsigned int r;
811                         r = (den - rats[k].den_min) % rats[k].den_step;
812                         if (r != 0)
813                                 den -= r;
814                 }
815                 diff = num - q * den;
816                 if (diff < 0)
817                         diff = -diff;
818                 if (best_num == 0 ||
819                     diff * best_den < best_diff * den) {
820                         best_diff = diff;
821                         best_den = den;
822                         best_num = num;
823                 }
824         }
825         if (best_den == 0) {
826                 i->empty = 1;
827                 return -EINVAL;
828         }
829         t.min = div_down(best_num, best_den);
830         t.openmin = !!(best_num % best_den);
831         
832         result_num = best_num;
833         result_diff = best_diff;
834         result_den = best_den;
835         best_num = best_den = best_diff = 0;
836         for (k = 0; k < rats_count; ++k) {
837                 unsigned int num = rats[k].num;
838                 unsigned int den;
839                 unsigned int q = i->max;
840                 int diff;
841                 if (q == 0) {
842                         i->empty = 1;
843                         return -EINVAL;
844                 }
845                 den = div_down(num, q);
846                 if (den > rats[k].den_max)
847                         continue;
848                 if (den < rats[k].den_min)
849                         den = rats[k].den_min;
850                 else {
851                         unsigned int r;
852                         r = (den - rats[k].den_min) % rats[k].den_step;
853                         if (r != 0)
854                                 den += rats[k].den_step - r;
855                 }
856                 diff = q * den - num;
857                 if (diff < 0)
858                         diff = -diff;
859                 if (best_num == 0 ||
860                     diff * best_den < best_diff * den) {
861                         best_diff = diff;
862                         best_den = den;
863                         best_num = num;
864                 }
865         }
866         if (best_den == 0) {
867                 i->empty = 1;
868                 return -EINVAL;
869         }
870         t.max = div_up(best_num, best_den);
871         t.openmax = !!(best_num % best_den);
872         t.integer = 0;
873         err = snd_interval_refine(i, &t);
874         if (err < 0)
875                 return err;
876
877         if (snd_interval_single(i)) {
878                 if (best_diff * result_den < result_diff * best_den) {
879                         result_num = best_num;
880                         result_den = best_den;
881                 }
882                 if (nump)
883                         *nump = result_num;
884                 if (denp)
885                         *denp = result_den;
886         }
887         return err;
888 }
889 EXPORT_SYMBOL(snd_interval_ratnum);
890
891 /**
892  * snd_interval_ratden - refine the interval value
893  * @i: interval to refine
894  * @rats_count: number of struct ratden
895  * @rats: struct ratden array
896  * @nump: pointer to store the resultant numerator
897  * @denp: pointer to store the resultant denominator
898  *
899  * Return: Positive if the value is changed, zero if it's not changed, or a
900  * negative error code.
901  */
902 static int snd_interval_ratden(struct snd_interval *i,
903                                unsigned int rats_count,
904                                const struct snd_ratden *rats,
905                                unsigned int *nump, unsigned int *denp)
906 {
907         unsigned int best_num, best_diff, best_den;
908         unsigned int k;
909         struct snd_interval t;
910         int err;
911
912         best_num = best_den = best_diff = 0;
913         for (k = 0; k < rats_count; ++k) {
914                 unsigned int num;
915                 unsigned int den = rats[k].den;
916                 unsigned int q = i->min;
917                 int diff;
918                 num = mul(q, den);
919                 if (num > rats[k].num_max)
920                         continue;
921                 if (num < rats[k].num_min)
922                         num = rats[k].num_max;
923                 else {
924                         unsigned int r;
925                         r = (num - rats[k].num_min) % rats[k].num_step;
926                         if (r != 0)
927                                 num += rats[k].num_step - r;
928                 }
929                 diff = num - q * den;
930                 if (best_num == 0 ||
931                     diff * best_den < best_diff * den) {
932                         best_diff = diff;
933                         best_den = den;
934                         best_num = num;
935                 }
936         }
937         if (best_den == 0) {
938                 i->empty = 1;
939                 return -EINVAL;
940         }
941         t.min = div_down(best_num, best_den);
942         t.openmin = !!(best_num % best_den);
943         
944         best_num = best_den = best_diff = 0;
945         for (k = 0; k < rats_count; ++k) {
946                 unsigned int num;
947                 unsigned int den = rats[k].den;
948                 unsigned int q = i->max;
949                 int diff;
950                 num = mul(q, den);
951                 if (num < rats[k].num_min)
952                         continue;
953                 if (num > rats[k].num_max)
954                         num = rats[k].num_max;
955                 else {
956                         unsigned int r;
957                         r = (num - rats[k].num_min) % rats[k].num_step;
958                         if (r != 0)
959                                 num -= r;
960                 }
961                 diff = q * den - num;
962                 if (best_num == 0 ||
963                     diff * best_den < best_diff * den) {
964                         best_diff = diff;
965                         best_den = den;
966                         best_num = num;
967                 }
968         }
969         if (best_den == 0) {
970                 i->empty = 1;
971                 return -EINVAL;
972         }
973         t.max = div_up(best_num, best_den);
974         t.openmax = !!(best_num % best_den);
975         t.integer = 0;
976         err = snd_interval_refine(i, &t);
977         if (err < 0)
978                 return err;
979
980         if (snd_interval_single(i)) {
981                 if (nump)
982                         *nump = best_num;
983                 if (denp)
984                         *denp = best_den;
985         }
986         return err;
987 }
988
989 /**
990  * snd_interval_list - refine the interval value from the list
991  * @i: the interval value to refine
992  * @count: the number of elements in the list
993  * @list: the value list
994  * @mask: the bit-mask to evaluate
995  *
996  * Refines the interval value from the list.
997  * When mask is non-zero, only the elements corresponding to bit 1 are
998  * evaluated.
999  *
1000  * Return: Positive if the value is changed, zero if it's not changed, or a
1001  * negative error code.
1002  */
1003 int snd_interval_list(struct snd_interval *i, unsigned int count,
1004                       const unsigned int *list, unsigned int mask)
1005 {
1006         unsigned int k;
1007         struct snd_interval list_range;
1008
1009         if (!count) {
1010                 i->empty = 1;
1011                 return -EINVAL;
1012         }
1013         snd_interval_any(&list_range);
1014         list_range.min = UINT_MAX;
1015         list_range.max = 0;
1016         for (k = 0; k < count; k++) {
1017                 if (mask && !(mask & (1 << k)))
1018                         continue;
1019                 if (!snd_interval_test(i, list[k]))
1020                         continue;
1021                 list_range.min = min(list_range.min, list[k]);
1022                 list_range.max = max(list_range.max, list[k]);
1023         }
1024         return snd_interval_refine(i, &list_range);
1025 }
1026 EXPORT_SYMBOL(snd_interval_list);
1027
1028 /**
1029  * snd_interval_ranges - refine the interval value from the list of ranges
1030  * @i: the interval value to refine
1031  * @count: the number of elements in the list of ranges
1032  * @ranges: the ranges list
1033  * @mask: the bit-mask to evaluate
1034  *
1035  * Refines the interval value from the list of ranges.
1036  * When mask is non-zero, only the elements corresponding to bit 1 are
1037  * evaluated.
1038  *
1039  * Return: Positive if the value is changed, zero if it's not changed, or a
1040  * negative error code.
1041  */
1042 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1043                         const struct snd_interval *ranges, unsigned int mask)
1044 {
1045         unsigned int k;
1046         struct snd_interval range_union;
1047         struct snd_interval range;
1048
1049         if (!count) {
1050                 snd_interval_none(i);
1051                 return -EINVAL;
1052         }
1053         snd_interval_any(&range_union);
1054         range_union.min = UINT_MAX;
1055         range_union.max = 0;
1056         for (k = 0; k < count; k++) {
1057                 if (mask && !(mask & (1 << k)))
1058                         continue;
1059                 snd_interval_copy(&range, &ranges[k]);
1060                 if (snd_interval_refine(&range, i) < 0)
1061                         continue;
1062                 if (snd_interval_empty(&range))
1063                         continue;
1064
1065                 if (range.min < range_union.min) {
1066                         range_union.min = range.min;
1067                         range_union.openmin = 1;
1068                 }
1069                 if (range.min == range_union.min && !range.openmin)
1070                         range_union.openmin = 0;
1071                 if (range.max > range_union.max) {
1072                         range_union.max = range.max;
1073                         range_union.openmax = 1;
1074                 }
1075                 if (range.max == range_union.max && !range.openmax)
1076                         range_union.openmax = 0;
1077         }
1078         return snd_interval_refine(i, &range_union);
1079 }
1080 EXPORT_SYMBOL(snd_interval_ranges);
1081
1082 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1083 {
1084         unsigned int n;
1085         int changed = 0;
1086         n = i->min % step;
1087         if (n != 0 || i->openmin) {
1088                 i->min += step - n;
1089                 i->openmin = 0;
1090                 changed = 1;
1091         }
1092         n = i->max % step;
1093         if (n != 0 || i->openmax) {
1094                 i->max -= n;
1095                 i->openmax = 0;
1096                 changed = 1;
1097         }
1098         if (snd_interval_checkempty(i)) {
1099                 i->empty = 1;
1100                 return -EINVAL;
1101         }
1102         return changed;
1103 }
1104
1105 /* Info constraints helpers */
1106
1107 /**
1108  * snd_pcm_hw_rule_add - add the hw-constraint rule
1109  * @runtime: the pcm runtime instance
1110  * @cond: condition bits
1111  * @var: the variable to evaluate
1112  * @func: the evaluation function
1113  * @private: the private data pointer passed to function
1114  * @dep: the dependent variables
1115  *
1116  * Return: Zero if successful, or a negative error code on failure.
1117  */
1118 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1119                         int var,
1120                         snd_pcm_hw_rule_func_t func, void *private,
1121                         int dep, ...)
1122 {
1123         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1124         struct snd_pcm_hw_rule *c;
1125         unsigned int k;
1126         va_list args;
1127         va_start(args, dep);
1128         if (constrs->rules_num >= constrs->rules_all) {
1129                 struct snd_pcm_hw_rule *new;
1130                 unsigned int new_rules = constrs->rules_all + 16;
1131                 new = krealloc(constrs->rules, new_rules * sizeof(*c),
1132                                GFP_KERNEL);
1133                 if (!new) {
1134                         va_end(args);
1135                         return -ENOMEM;
1136                 }
1137                 constrs->rules = new;
1138                 constrs->rules_all = new_rules;
1139         }
1140         c = &constrs->rules[constrs->rules_num];
1141         c->cond = cond;
1142         c->func = func;
1143         c->var = var;
1144         c->private = private;
1145         k = 0;
1146         while (1) {
1147                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1148                         va_end(args);
1149                         return -EINVAL;
1150                 }
1151                 c->deps[k++] = dep;
1152                 if (dep < 0)
1153                         break;
1154                 dep = va_arg(args, int);
1155         }
1156         constrs->rules_num++;
1157         va_end(args);
1158         return 0;
1159 }
1160 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1161
1162 /**
1163  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1164  * @runtime: PCM runtime instance
1165  * @var: hw_params variable to apply the mask
1166  * @mask: the bitmap mask
1167  *
1168  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1169  *
1170  * Return: Zero if successful, or a negative error code on failure.
1171  */
1172 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1173                                u_int32_t mask)
1174 {
1175         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1176         struct snd_mask *maskp = constrs_mask(constrs, var);
1177         *maskp->bits &= mask;
1178         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1179         if (*maskp->bits == 0)
1180                 return -EINVAL;
1181         return 0;
1182 }
1183
1184 /**
1185  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1186  * @runtime: PCM runtime instance
1187  * @var: hw_params variable to apply the mask
1188  * @mask: the 64bit bitmap mask
1189  *
1190  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1191  *
1192  * Return: Zero if successful, or a negative error code on failure.
1193  */
1194 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1195                                  u_int64_t mask)
1196 {
1197         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1198         struct snd_mask *maskp = constrs_mask(constrs, var);
1199         maskp->bits[0] &= (u_int32_t)mask;
1200         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1201         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1202         if (! maskp->bits[0] && ! maskp->bits[1])
1203                 return -EINVAL;
1204         return 0;
1205 }
1206 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1207
1208 /**
1209  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1210  * @runtime: PCM runtime instance
1211  * @var: hw_params variable to apply the integer constraint
1212  *
1213  * Apply the constraint of integer to an interval parameter.
1214  *
1215  * Return: Positive if the value is changed, zero if it's not changed, or a
1216  * negative error code.
1217  */
1218 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1219 {
1220         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1221         return snd_interval_setinteger(constrs_interval(constrs, var));
1222 }
1223 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1224
1225 /**
1226  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1227  * @runtime: PCM runtime instance
1228  * @var: hw_params variable to apply the range
1229  * @min: the minimal value
1230  * @max: the maximal value
1231  * 
1232  * Apply the min/max range constraint to an interval parameter.
1233  *
1234  * Return: Positive if the value is changed, zero if it's not changed, or a
1235  * negative error code.
1236  */
1237 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1238                                  unsigned int min, unsigned int max)
1239 {
1240         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1241         struct snd_interval t;
1242         t.min = min;
1243         t.max = max;
1244         t.openmin = t.openmax = 0;
1245         t.integer = 0;
1246         return snd_interval_refine(constrs_interval(constrs, var), &t);
1247 }
1248 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1249
1250 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1251                                 struct snd_pcm_hw_rule *rule)
1252 {
1253         struct snd_pcm_hw_constraint_list *list = rule->private;
1254         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1255 }               
1256
1257
1258 /**
1259  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1260  * @runtime: PCM runtime instance
1261  * @cond: condition bits
1262  * @var: hw_params variable to apply the list constraint
1263  * @l: list
1264  * 
1265  * Apply the list of constraints to an interval parameter.
1266  *
1267  * Return: Zero if successful, or a negative error code on failure.
1268  */
1269 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1270                                unsigned int cond,
1271                                snd_pcm_hw_param_t var,
1272                                const struct snd_pcm_hw_constraint_list *l)
1273 {
1274         return snd_pcm_hw_rule_add(runtime, cond, var,
1275                                    snd_pcm_hw_rule_list, (void *)l,
1276                                    var, -1);
1277 }
1278 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1279
1280 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1281                                   struct snd_pcm_hw_rule *rule)
1282 {
1283         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1284         return snd_interval_ranges(hw_param_interval(params, rule->var),
1285                                    r->count, r->ranges, r->mask);
1286 }
1287
1288
1289 /**
1290  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1291  * @runtime: PCM runtime instance
1292  * @cond: condition bits
1293  * @var: hw_params variable to apply the list of range constraints
1294  * @r: ranges
1295  *
1296  * Apply the list of range constraints to an interval parameter.
1297  *
1298  * Return: Zero if successful, or a negative error code on failure.
1299  */
1300 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1301                                  unsigned int cond,
1302                                  snd_pcm_hw_param_t var,
1303                                  const struct snd_pcm_hw_constraint_ranges *r)
1304 {
1305         return snd_pcm_hw_rule_add(runtime, cond, var,
1306                                    snd_pcm_hw_rule_ranges, (void *)r,
1307                                    var, -1);
1308 }
1309 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1310
1311 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1312                                    struct snd_pcm_hw_rule *rule)
1313 {
1314         const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1315         unsigned int num = 0, den = 0;
1316         int err;
1317         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1318                                   r->nrats, r->rats, &num, &den);
1319         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1320                 params->rate_num = num;
1321                 params->rate_den = den;
1322         }
1323         return err;
1324 }
1325
1326 /**
1327  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1328  * @runtime: PCM runtime instance
1329  * @cond: condition bits
1330  * @var: hw_params variable to apply the ratnums constraint
1331  * @r: struct snd_ratnums constriants
1332  *
1333  * Return: Zero if successful, or a negative error code on failure.
1334  */
1335 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1336                                   unsigned int cond,
1337                                   snd_pcm_hw_param_t var,
1338                                   const struct snd_pcm_hw_constraint_ratnums *r)
1339 {
1340         return snd_pcm_hw_rule_add(runtime, cond, var,
1341                                    snd_pcm_hw_rule_ratnums, (void *)r,
1342                                    var, -1);
1343 }
1344 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1345
1346 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1347                                    struct snd_pcm_hw_rule *rule)
1348 {
1349         const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1350         unsigned int num = 0, den = 0;
1351         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1352                                   r->nrats, r->rats, &num, &den);
1353         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1354                 params->rate_num = num;
1355                 params->rate_den = den;
1356         }
1357         return err;
1358 }
1359
1360 /**
1361  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1362  * @runtime: PCM runtime instance
1363  * @cond: condition bits
1364  * @var: hw_params variable to apply the ratdens constraint
1365  * @r: struct snd_ratdens constriants
1366  *
1367  * Return: Zero if successful, or a negative error code on failure.
1368  */
1369 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1370                                   unsigned int cond,
1371                                   snd_pcm_hw_param_t var,
1372                                   const struct snd_pcm_hw_constraint_ratdens *r)
1373 {
1374         return snd_pcm_hw_rule_add(runtime, cond, var,
1375                                    snd_pcm_hw_rule_ratdens, (void *)r,
1376                                    var, -1);
1377 }
1378 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1379
1380 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1381                                   struct snd_pcm_hw_rule *rule)
1382 {
1383         unsigned int l = (unsigned long) rule->private;
1384         int width = l & 0xffff;
1385         unsigned int msbits = l >> 16;
1386         const struct snd_interval *i =
1387                 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1388
1389         if (!snd_interval_single(i))
1390                 return 0;
1391
1392         if ((snd_interval_value(i) == width) ||
1393             (width == 0 && snd_interval_value(i) > msbits))
1394                 params->msbits = min_not_zero(params->msbits, msbits);
1395
1396         return 0;
1397 }
1398
1399 /**
1400  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1401  * @runtime: PCM runtime instance
1402  * @cond: condition bits
1403  * @width: sample bits width
1404  * @msbits: msbits width
1405  *
1406  * This constraint will set the number of most significant bits (msbits) if a
1407  * sample format with the specified width has been select. If width is set to 0
1408  * the msbits will be set for any sample format with a width larger than the
1409  * specified msbits.
1410  *
1411  * Return: Zero if successful, or a negative error code on failure.
1412  */
1413 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1414                                  unsigned int cond,
1415                                  unsigned int width,
1416                                  unsigned int msbits)
1417 {
1418         unsigned long l = (msbits << 16) | width;
1419         return snd_pcm_hw_rule_add(runtime, cond, -1,
1420                                     snd_pcm_hw_rule_msbits,
1421                                     (void*) l,
1422                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1423 }
1424 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1425
1426 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1427                                 struct snd_pcm_hw_rule *rule)
1428 {
1429         unsigned long step = (unsigned long) rule->private;
1430         return snd_interval_step(hw_param_interval(params, rule->var), step);
1431 }
1432
1433 /**
1434  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1435  * @runtime: PCM runtime instance
1436  * @cond: condition bits
1437  * @var: hw_params variable to apply the step constraint
1438  * @step: step size
1439  *
1440  * Return: Zero if successful, or a negative error code on failure.
1441  */
1442 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1443                                unsigned int cond,
1444                                snd_pcm_hw_param_t var,
1445                                unsigned long step)
1446 {
1447         return snd_pcm_hw_rule_add(runtime, cond, var, 
1448                                    snd_pcm_hw_rule_step, (void *) step,
1449                                    var, -1);
1450 }
1451 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1452
1453 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1454 {
1455         static const unsigned int pow2_sizes[] = {
1456                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1457                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1458                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1459                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1460         };
1461         return snd_interval_list(hw_param_interval(params, rule->var),
1462                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1463 }               
1464
1465 /**
1466  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1467  * @runtime: PCM runtime instance
1468  * @cond: condition bits
1469  * @var: hw_params variable to apply the power-of-2 constraint
1470  *
1471  * Return: Zero if successful, or a negative error code on failure.
1472  */
1473 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1474                                unsigned int cond,
1475                                snd_pcm_hw_param_t var)
1476 {
1477         return snd_pcm_hw_rule_add(runtime, cond, var, 
1478                                    snd_pcm_hw_rule_pow2, NULL,
1479                                    var, -1);
1480 }
1481 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1482
1483 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1484                                            struct snd_pcm_hw_rule *rule)
1485 {
1486         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1487         struct snd_interval *rate;
1488
1489         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1490         return snd_interval_list(rate, 1, &base_rate, 0);
1491 }
1492
1493 /**
1494  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1495  * @runtime: PCM runtime instance
1496  * @base_rate: the rate at which the hardware does not resample
1497  *
1498  * Return: Zero if successful, or a negative error code on failure.
1499  */
1500 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1501                                unsigned int base_rate)
1502 {
1503         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1504                                    SNDRV_PCM_HW_PARAM_RATE,
1505                                    snd_pcm_hw_rule_noresample_func,
1506                                    (void *)(uintptr_t)base_rate,
1507                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1508 }
1509 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1510
1511 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1512                                   snd_pcm_hw_param_t var)
1513 {
1514         if (hw_is_mask(var)) {
1515                 snd_mask_any(hw_param_mask(params, var));
1516                 params->cmask |= 1 << var;
1517                 params->rmask |= 1 << var;
1518                 return;
1519         }
1520         if (hw_is_interval(var)) {
1521                 snd_interval_any(hw_param_interval(params, var));
1522                 params->cmask |= 1 << var;
1523                 params->rmask |= 1 << var;
1524                 return;
1525         }
1526         snd_BUG();
1527 }
1528
1529 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1530 {
1531         unsigned int k;
1532         memset(params, 0, sizeof(*params));
1533         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1534                 _snd_pcm_hw_param_any(params, k);
1535         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1536                 _snd_pcm_hw_param_any(params, k);
1537         params->info = ~0U;
1538 }
1539 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1540
1541 /**
1542  * snd_pcm_hw_param_value - return @params field @var value
1543  * @params: the hw_params instance
1544  * @var: parameter to retrieve
1545  * @dir: pointer to the direction (-1,0,1) or %NULL
1546  *
1547  * Return: The value for field @var if it's fixed in configuration space
1548  * defined by @params. -%EINVAL otherwise.
1549  */
1550 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1551                            snd_pcm_hw_param_t var, int *dir)
1552 {
1553         if (hw_is_mask(var)) {
1554                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1555                 if (!snd_mask_single(mask))
1556                         return -EINVAL;
1557                 if (dir)
1558                         *dir = 0;
1559                 return snd_mask_value(mask);
1560         }
1561         if (hw_is_interval(var)) {
1562                 const struct snd_interval *i = hw_param_interval_c(params, var);
1563                 if (!snd_interval_single(i))
1564                         return -EINVAL;
1565                 if (dir)
1566                         *dir = i->openmin;
1567                 return snd_interval_value(i);
1568         }
1569         return -EINVAL;
1570 }
1571 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1572
1573 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1574                                 snd_pcm_hw_param_t var)
1575 {
1576         if (hw_is_mask(var)) {
1577                 snd_mask_none(hw_param_mask(params, var));
1578                 params->cmask |= 1 << var;
1579                 params->rmask |= 1 << var;
1580         } else if (hw_is_interval(var)) {
1581                 snd_interval_none(hw_param_interval(params, var));
1582                 params->cmask |= 1 << var;
1583                 params->rmask |= 1 << var;
1584         } else {
1585                 snd_BUG();
1586         }
1587 }
1588 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1589
1590 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1591                                    snd_pcm_hw_param_t var)
1592 {
1593         int changed;
1594         if (hw_is_mask(var))
1595                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1596         else if (hw_is_interval(var))
1597                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1598         else
1599                 return -EINVAL;
1600         if (changed > 0) {
1601                 params->cmask |= 1 << var;
1602                 params->rmask |= 1 << var;
1603         }
1604         return changed;
1605 }
1606
1607
1608 /**
1609  * snd_pcm_hw_param_first - refine config space and return minimum value
1610  * @pcm: PCM instance
1611  * @params: the hw_params instance
1612  * @var: parameter to retrieve
1613  * @dir: pointer to the direction (-1,0,1) or %NULL
1614  *
1615  * Inside configuration space defined by @params remove from @var all
1616  * values > minimum. Reduce configuration space accordingly.
1617  *
1618  * Return: The minimum, or a negative error code on failure.
1619  */
1620 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1621                            struct snd_pcm_hw_params *params, 
1622                            snd_pcm_hw_param_t var, int *dir)
1623 {
1624         int changed = _snd_pcm_hw_param_first(params, var);
1625         if (changed < 0)
1626                 return changed;
1627         if (params->rmask) {
1628                 int err = snd_pcm_hw_refine(pcm, params);
1629                 if (err < 0)
1630                         return err;
1631         }
1632         return snd_pcm_hw_param_value(params, var, dir);
1633 }
1634 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1635
1636 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1637                                   snd_pcm_hw_param_t var)
1638 {
1639         int changed;
1640         if (hw_is_mask(var))
1641                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1642         else if (hw_is_interval(var))
1643                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1644         else
1645                 return -EINVAL;
1646         if (changed > 0) {
1647                 params->cmask |= 1 << var;
1648                 params->rmask |= 1 << var;
1649         }
1650         return changed;
1651 }
1652
1653
1654 /**
1655  * snd_pcm_hw_param_last - refine config space and return maximum value
1656  * @pcm: PCM instance
1657  * @params: the hw_params instance
1658  * @var: parameter to retrieve
1659  * @dir: pointer to the direction (-1,0,1) or %NULL
1660  *
1661  * Inside configuration space defined by @params remove from @var all
1662  * values < maximum. Reduce configuration space accordingly.
1663  *
1664  * Return: The maximum, or a negative error code on failure.
1665  */
1666 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1667                           struct snd_pcm_hw_params *params,
1668                           snd_pcm_hw_param_t var, int *dir)
1669 {
1670         int changed = _snd_pcm_hw_param_last(params, var);
1671         if (changed < 0)
1672                 return changed;
1673         if (params->rmask) {
1674                 int err = snd_pcm_hw_refine(pcm, params);
1675                 if (err < 0)
1676                         return err;
1677         }
1678         return snd_pcm_hw_param_value(params, var, dir);
1679 }
1680 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1681
1682 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1683                                    void *arg)
1684 {
1685         struct snd_pcm_runtime *runtime = substream->runtime;
1686         unsigned long flags;
1687         snd_pcm_stream_lock_irqsave(substream, flags);
1688         if (snd_pcm_running(substream) &&
1689             snd_pcm_update_hw_ptr(substream) >= 0)
1690                 runtime->status->hw_ptr %= runtime->buffer_size;
1691         else {
1692                 runtime->status->hw_ptr = 0;
1693                 runtime->hw_ptr_wrap = 0;
1694         }
1695         snd_pcm_stream_unlock_irqrestore(substream, flags);
1696         return 0;
1697 }
1698
1699 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1700                                           void *arg)
1701 {
1702         struct snd_pcm_channel_info *info = arg;
1703         struct snd_pcm_runtime *runtime = substream->runtime;
1704         int width;
1705         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1706                 info->offset = -1;
1707                 return 0;
1708         }
1709         width = snd_pcm_format_physical_width(runtime->format);
1710         if (width < 0)
1711                 return width;
1712         info->offset = 0;
1713         switch (runtime->access) {
1714         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1715         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1716                 info->first = info->channel * width;
1717                 info->step = runtime->channels * width;
1718                 break;
1719         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1720         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1721         {
1722                 size_t size = runtime->dma_bytes / runtime->channels;
1723                 info->first = info->channel * size * 8;
1724                 info->step = width;
1725                 break;
1726         }
1727         default:
1728                 snd_BUG();
1729                 break;
1730         }
1731         return 0;
1732 }
1733
1734 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1735                                        void *arg)
1736 {
1737         struct snd_pcm_hw_params *params = arg;
1738         snd_pcm_format_t format;
1739         int channels;
1740         ssize_t frame_size;
1741
1742         params->fifo_size = substream->runtime->hw.fifo_size;
1743         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1744                 format = params_format(params);
1745                 channels = params_channels(params);
1746                 frame_size = snd_pcm_format_size(format, channels);
1747                 if (frame_size > 0)
1748                         params->fifo_size /= (unsigned)frame_size;
1749         }
1750         return 0;
1751 }
1752
1753 /**
1754  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1755  * @substream: the pcm substream instance
1756  * @cmd: ioctl command
1757  * @arg: ioctl argument
1758  *
1759  * Processes the generic ioctl commands for PCM.
1760  * Can be passed as the ioctl callback for PCM ops.
1761  *
1762  * Return: Zero if successful, or a negative error code on failure.
1763  */
1764 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1765                       unsigned int cmd, void *arg)
1766 {
1767         switch (cmd) {
1768         case SNDRV_PCM_IOCTL1_RESET:
1769                 return snd_pcm_lib_ioctl_reset(substream, arg);
1770         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1771                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1772         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1773                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1774         }
1775         return -ENXIO;
1776 }
1777 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1778
1779 /**
1780  * snd_pcm_period_elapsed - update the pcm status for the next period
1781  * @substream: the pcm substream instance
1782  *
1783  * This function is called from the interrupt handler when the
1784  * PCM has processed the period size.  It will update the current
1785  * pointer, wake up sleepers, etc.
1786  *
1787  * Even if more than one periods have elapsed since the last call, you
1788  * have to call this only once.
1789  */
1790 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1791 {
1792         struct snd_pcm_runtime *runtime;
1793         unsigned long flags;
1794
1795         if (snd_BUG_ON(!substream))
1796                 return;
1797
1798         snd_pcm_stream_lock_irqsave(substream, flags);
1799         if (PCM_RUNTIME_CHECK(substream))
1800                 goto _unlock;
1801         runtime = substream->runtime;
1802
1803         if (!snd_pcm_running(substream) ||
1804             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1805                 goto _end;
1806
1807 #ifdef CONFIG_SND_PCM_TIMER
1808         if (substream->timer_running)
1809                 snd_timer_interrupt(substream->timer, 1);
1810 #endif
1811  _end:
1812         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1813  _unlock:
1814         snd_pcm_stream_unlock_irqrestore(substream, flags);
1815 }
1816 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1817
1818 /*
1819  * Wait until avail_min data becomes available
1820  * Returns a negative error code if any error occurs during operation.
1821  * The available space is stored on availp.  When err = 0 and avail = 0
1822  * on the capture stream, it indicates the stream is in DRAINING state.
1823  */
1824 static int wait_for_avail(struct snd_pcm_substream *substream,
1825                               snd_pcm_uframes_t *availp)
1826 {
1827         struct snd_pcm_runtime *runtime = substream->runtime;
1828         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1829         wait_queue_entry_t wait;
1830         int err = 0;
1831         snd_pcm_uframes_t avail = 0;
1832         long wait_time, tout;
1833
1834         init_waitqueue_entry(&wait, current);
1835         set_current_state(TASK_INTERRUPTIBLE);
1836         add_wait_queue(&runtime->tsleep, &wait);
1837
1838         if (runtime->no_period_wakeup)
1839                 wait_time = MAX_SCHEDULE_TIMEOUT;
1840         else {
1841                 /* use wait time from substream if available */
1842                 if (substream->wait_time) {
1843                         wait_time = substream->wait_time;
1844                 } else {
1845                         wait_time = 10;
1846
1847                         if (runtime->rate) {
1848                                 long t = runtime->period_size * 2 /
1849                                          runtime->rate;
1850                                 wait_time = max(t, wait_time);
1851                         }
1852                         wait_time = msecs_to_jiffies(wait_time * 1000);
1853                 }
1854         }
1855
1856         for (;;) {
1857                 if (signal_pending(current)) {
1858                         err = -ERESTARTSYS;
1859                         break;
1860                 }
1861
1862                 /*
1863                  * We need to check if space became available already
1864                  * (and thus the wakeup happened already) first to close
1865                  * the race of space already having become available.
1866                  * This check must happen after been added to the waitqueue
1867                  * and having current state be INTERRUPTIBLE.
1868                  */
1869                 avail = snd_pcm_avail(substream);
1870                 if (avail >= runtime->twake)
1871                         break;
1872                 snd_pcm_stream_unlock_irq(substream);
1873
1874                 tout = schedule_timeout(wait_time);
1875
1876                 snd_pcm_stream_lock_irq(substream);
1877                 set_current_state(TASK_INTERRUPTIBLE);
1878                 switch (runtime->status->state) {
1879                 case SNDRV_PCM_STATE_SUSPENDED:
1880                         err = -ESTRPIPE;
1881                         goto _endloop;
1882                 case SNDRV_PCM_STATE_XRUN:
1883                         err = -EPIPE;
1884                         goto _endloop;
1885                 case SNDRV_PCM_STATE_DRAINING:
1886                         if (is_playback)
1887                                 err = -EPIPE;
1888                         else 
1889                                 avail = 0; /* indicate draining */
1890                         goto _endloop;
1891                 case SNDRV_PCM_STATE_OPEN:
1892                 case SNDRV_PCM_STATE_SETUP:
1893                 case SNDRV_PCM_STATE_DISCONNECTED:
1894                         err = -EBADFD;
1895                         goto _endloop;
1896                 case SNDRV_PCM_STATE_PAUSED:
1897                         continue;
1898                 }
1899                 if (!tout) {
1900                         pcm_dbg(substream->pcm,
1901                                 "%s write error (DMA or IRQ trouble?)\n",
1902                                 is_playback ? "playback" : "capture");
1903                         err = -EIO;
1904                         break;
1905                 }
1906         }
1907  _endloop:
1908         set_current_state(TASK_RUNNING);
1909         remove_wait_queue(&runtime->tsleep, &wait);
1910         *availp = avail;
1911         return err;
1912 }
1913         
1914 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1915                               int channel, unsigned long hwoff,
1916                               void *buf, unsigned long bytes);
1917
1918 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1919                           snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1920
1921 /* calculate the target DMA-buffer position to be written/read */
1922 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1923                            int channel, unsigned long hwoff)
1924 {
1925         return runtime->dma_area + hwoff +
1926                 channel * (runtime->dma_bytes / runtime->channels);
1927 }
1928
1929 /* default copy_user ops for write; used for both interleaved and non- modes */
1930 static int default_write_copy(struct snd_pcm_substream *substream,
1931                               int channel, unsigned long hwoff,
1932                               void *buf, unsigned long bytes)
1933 {
1934         if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1935                            (void __user *)buf, bytes))
1936                 return -EFAULT;
1937         return 0;
1938 }
1939
1940 /* default copy_kernel ops for write */
1941 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1942                                      int channel, unsigned long hwoff,
1943                                      void *buf, unsigned long bytes)
1944 {
1945         memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1946         return 0;
1947 }
1948
1949 /* fill silence instead of copy data; called as a transfer helper
1950  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1951  * a NULL buffer is passed
1952  */
1953 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1954                         unsigned long hwoff, void *buf, unsigned long bytes)
1955 {
1956         struct snd_pcm_runtime *runtime = substream->runtime;
1957
1958         if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1959                 return 0;
1960         if (substream->ops->fill_silence)
1961                 return substream->ops->fill_silence(substream, channel,
1962                                                     hwoff, bytes);
1963
1964         snd_pcm_format_set_silence(runtime->format,
1965                                    get_dma_ptr(runtime, channel, hwoff),
1966                                    bytes_to_samples(runtime, bytes));
1967         return 0;
1968 }
1969
1970 /* default copy_user ops for read; used for both interleaved and non- modes */
1971 static int default_read_copy(struct snd_pcm_substream *substream,
1972                              int channel, unsigned long hwoff,
1973                              void *buf, unsigned long bytes)
1974 {
1975         if (copy_to_user((void __user *)buf,
1976                          get_dma_ptr(substream->runtime, channel, hwoff),
1977                          bytes))
1978                 return -EFAULT;
1979         return 0;
1980 }
1981
1982 /* default copy_kernel ops for read */
1983 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1984                                     int channel, unsigned long hwoff,
1985                                     void *buf, unsigned long bytes)
1986 {
1987         memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1988         return 0;
1989 }
1990
1991 /* call transfer function with the converted pointers and sizes;
1992  * for interleaved mode, it's one shot for all samples
1993  */
1994 static int interleaved_copy(struct snd_pcm_substream *substream,
1995                             snd_pcm_uframes_t hwoff, void *data,
1996                             snd_pcm_uframes_t off,
1997                             snd_pcm_uframes_t frames,
1998                             pcm_transfer_f transfer)
1999 {
2000         struct snd_pcm_runtime *runtime = substream->runtime;
2001
2002         /* convert to bytes */
2003         hwoff = frames_to_bytes(runtime, hwoff);
2004         off = frames_to_bytes(runtime, off);
2005         frames = frames_to_bytes(runtime, frames);
2006         return transfer(substream, 0, hwoff, data + off, frames);
2007 }
2008
2009 /* call transfer function with the converted pointers and sizes for each
2010  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2011  */
2012 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2013                                snd_pcm_uframes_t hwoff, void *data,
2014                                snd_pcm_uframes_t off,
2015                                snd_pcm_uframes_t frames,
2016                                pcm_transfer_f transfer)
2017 {
2018         struct snd_pcm_runtime *runtime = substream->runtime;
2019         int channels = runtime->channels;
2020         void **bufs = data;
2021         int c, err;
2022
2023         /* convert to bytes; note that it's not frames_to_bytes() here.
2024          * in non-interleaved mode, we copy for each channel, thus
2025          * each copy is n_samples bytes x channels = whole frames.
2026          */
2027         off = samples_to_bytes(runtime, off);
2028         frames = samples_to_bytes(runtime, frames);
2029         hwoff = samples_to_bytes(runtime, hwoff);
2030         for (c = 0; c < channels; ++c, ++bufs) {
2031                 if (!data || !*bufs)
2032                         err = fill_silence(substream, c, hwoff, NULL, frames);
2033                 else
2034                         err = transfer(substream, c, hwoff, *bufs + off,
2035                                        frames);
2036                 if (err < 0)
2037                         return err;
2038         }
2039         return 0;
2040 }
2041
2042 /* fill silence on the given buffer position;
2043  * called from snd_pcm_playback_silence()
2044  */
2045 static int fill_silence_frames(struct snd_pcm_substream *substream,
2046                                snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2047 {
2048         if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2049             substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2050                 return interleaved_copy(substream, off, NULL, 0, frames,
2051                                         fill_silence);
2052         else
2053                 return noninterleaved_copy(substream, off, NULL, 0, frames,
2054                                            fill_silence);
2055 }
2056
2057 /* sanity-check for read/write methods */
2058 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2059 {
2060         struct snd_pcm_runtime *runtime;
2061         if (PCM_RUNTIME_CHECK(substream))
2062                 return -ENXIO;
2063         runtime = substream->runtime;
2064         if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2065                 return -EINVAL;
2066         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2067                 return -EBADFD;
2068         return 0;
2069 }
2070
2071 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2072 {
2073         switch (runtime->status->state) {
2074         case SNDRV_PCM_STATE_PREPARED:
2075         case SNDRV_PCM_STATE_RUNNING:
2076         case SNDRV_PCM_STATE_PAUSED:
2077                 return 0;
2078         case SNDRV_PCM_STATE_XRUN:
2079                 return -EPIPE;
2080         case SNDRV_PCM_STATE_SUSPENDED:
2081                 return -ESTRPIPE;
2082         default:
2083                 return -EBADFD;
2084         }
2085 }
2086
2087 /* update to the given appl_ptr and call ack callback if needed;
2088  * when an error is returned, take back to the original value
2089  */
2090 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2091                            snd_pcm_uframes_t appl_ptr)
2092 {
2093         struct snd_pcm_runtime *runtime = substream->runtime;
2094         snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2095         int ret;
2096
2097         if (old_appl_ptr == appl_ptr)
2098                 return 0;
2099
2100         runtime->control->appl_ptr = appl_ptr;
2101         if (substream->ops->ack) {
2102                 ret = substream->ops->ack(substream);
2103                 if (ret < 0) {
2104                         runtime->control->appl_ptr = old_appl_ptr;
2105                         return ret;
2106                 }
2107         }
2108
2109         trace_applptr(substream, old_appl_ptr, appl_ptr);
2110
2111         return 0;
2112 }
2113
2114 /* the common loop for read/write data */
2115 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2116                                      void *data, bool interleaved,
2117                                      snd_pcm_uframes_t size, bool in_kernel)
2118 {
2119         struct snd_pcm_runtime *runtime = substream->runtime;
2120         snd_pcm_uframes_t xfer = 0;
2121         snd_pcm_uframes_t offset = 0;
2122         snd_pcm_uframes_t avail;
2123         pcm_copy_f writer;
2124         pcm_transfer_f transfer;
2125         bool nonblock;
2126         bool is_playback;
2127         int err;
2128
2129         err = pcm_sanity_check(substream);
2130         if (err < 0)
2131                 return err;
2132
2133         is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2134         if (interleaved) {
2135                 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2136                     runtime->channels > 1)
2137                         return -EINVAL;
2138                 writer = interleaved_copy;
2139         } else {
2140                 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2141                         return -EINVAL;
2142                 writer = noninterleaved_copy;
2143         }
2144
2145         if (!data) {
2146                 if (is_playback)
2147                         transfer = fill_silence;
2148                 else
2149                         return -EINVAL;
2150         } else if (in_kernel) {
2151                 if (substream->ops->copy_kernel)
2152                         transfer = substream->ops->copy_kernel;
2153                 else
2154                         transfer = is_playback ?
2155                                 default_write_copy_kernel : default_read_copy_kernel;
2156         } else {
2157                 if (substream->ops->copy_user)
2158                         transfer = (pcm_transfer_f)substream->ops->copy_user;
2159                 else
2160                         transfer = is_playback ?
2161                                 default_write_copy : default_read_copy;
2162         }
2163
2164         if (size == 0)
2165                 return 0;
2166
2167         nonblock = !!(substream->f_flags & O_NONBLOCK);
2168
2169         snd_pcm_stream_lock_irq(substream);
2170         err = pcm_accessible_state(runtime);
2171         if (err < 0)
2172                 goto _end_unlock;
2173
2174         runtime->twake = runtime->control->avail_min ? : 1;
2175         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2176                 snd_pcm_update_hw_ptr(substream);
2177
2178         /*
2179          * If size < start_threshold, wait indefinitely. Another
2180          * thread may start capture
2181          */
2182         if (!is_playback &&
2183             runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2184             size >= runtime->start_threshold) {
2185                 err = snd_pcm_start(substream);
2186                 if (err < 0)
2187                         goto _end_unlock;
2188         }
2189
2190         avail = snd_pcm_avail(substream);
2191
2192         while (size > 0) {
2193                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2194                 snd_pcm_uframes_t cont;
2195                 if (!avail) {
2196                         if (!is_playback &&
2197                             runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2198                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2199                                 goto _end_unlock;
2200                         }
2201                         if (nonblock) {
2202                                 err = -EAGAIN;
2203                                 goto _end_unlock;
2204                         }
2205                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2206                                         runtime->control->avail_min ? : 1);
2207                         err = wait_for_avail(substream, &avail);
2208                         if (err < 0)
2209                                 goto _end_unlock;
2210                         if (!avail)
2211                                 continue; /* draining */
2212                 }
2213                 frames = size > avail ? avail : size;
2214                 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2215                 appl_ofs = appl_ptr % runtime->buffer_size;
2216                 cont = runtime->buffer_size - appl_ofs;
2217                 if (frames > cont)
2218                         frames = cont;
2219                 if (snd_BUG_ON(!frames)) {
2220                         err = -EINVAL;
2221                         goto _end_unlock;
2222                 }
2223                 snd_pcm_stream_unlock_irq(substream);
2224                 err = writer(substream, appl_ofs, data, offset, frames,
2225                              transfer);
2226                 snd_pcm_stream_lock_irq(substream);
2227                 if (err < 0)
2228                         goto _end_unlock;
2229                 err = pcm_accessible_state(runtime);
2230                 if (err < 0)
2231                         goto _end_unlock;
2232                 appl_ptr += frames;
2233                 if (appl_ptr >= runtime->boundary)
2234                         appl_ptr -= runtime->boundary;
2235                 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2236                 if (err < 0)
2237                         goto _end_unlock;
2238
2239                 offset += frames;
2240                 size -= frames;
2241                 xfer += frames;
2242                 avail -= frames;
2243                 if (is_playback &&
2244                     runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2245                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2246                         err = snd_pcm_start(substream);
2247                         if (err < 0)
2248                                 goto _end_unlock;
2249                 }
2250         }
2251  _end_unlock:
2252         runtime->twake = 0;
2253         if (xfer > 0 && err >= 0)
2254                 snd_pcm_update_state(substream, runtime);
2255         snd_pcm_stream_unlock_irq(substream);
2256         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2257 }
2258 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2259
2260 /*
2261  * standard channel mapping helpers
2262  */
2263
2264 /* default channel maps for multi-channel playbacks, up to 8 channels */
2265 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2266         { .channels = 1,
2267           .map = { SNDRV_CHMAP_MONO } },
2268         { .channels = 2,
2269           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2270         { .channels = 4,
2271           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2272                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2273         { .channels = 6,
2274           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2275                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2276                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2277         { .channels = 8,
2278           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2279                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2280                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2281                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2282         { }
2283 };
2284 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2285
2286 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2287 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2288         { .channels = 1,
2289           .map = { SNDRV_CHMAP_MONO } },
2290         { .channels = 2,
2291           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2292         { .channels = 4,
2293           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2294                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2295         { .channels = 6,
2296           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2297                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2298                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2299         { .channels = 8,
2300           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2301                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2302                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2303                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2304         { }
2305 };
2306 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2307
2308 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2309 {
2310         if (ch > info->max_channels)
2311                 return false;
2312         return !info->channel_mask || (info->channel_mask & (1U << ch));
2313 }
2314
2315 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2316                               struct snd_ctl_elem_info *uinfo)
2317 {
2318         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2319
2320         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2321         uinfo->count = info->max_channels;
2322         uinfo->value.integer.min = 0;
2323         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2324         return 0;
2325 }
2326
2327 /* get callback for channel map ctl element
2328  * stores the channel position firstly matching with the current channels
2329  */
2330 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2331                              struct snd_ctl_elem_value *ucontrol)
2332 {
2333         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2334         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2335         struct snd_pcm_substream *substream;
2336         const struct snd_pcm_chmap_elem *map;
2337
2338         if (!info->chmap)
2339                 return -EINVAL;
2340         substream = snd_pcm_chmap_substream(info, idx);
2341         if (!substream)
2342                 return -ENODEV;
2343         memset(ucontrol->value.integer.value, 0,
2344                sizeof(long) * info->max_channels);
2345         if (!substream->runtime)
2346                 return 0; /* no channels set */
2347         for (map = info->chmap; map->channels; map++) {
2348                 int i;
2349                 if (map->channels == substream->runtime->channels &&
2350                     valid_chmap_channels(info, map->channels)) {
2351                         for (i = 0; i < map->channels; i++)
2352                                 ucontrol->value.integer.value[i] = map->map[i];
2353                         return 0;
2354                 }
2355         }
2356         return -EINVAL;
2357 }
2358
2359 /* tlv callback for channel map ctl element
2360  * expands the pre-defined channel maps in a form of TLV
2361  */
2362 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2363                              unsigned int size, unsigned int __user *tlv)
2364 {
2365         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2366         const struct snd_pcm_chmap_elem *map;
2367         unsigned int __user *dst;
2368         int c, count = 0;
2369
2370         if (!info->chmap)
2371                 return -EINVAL;
2372         if (size < 8)
2373                 return -ENOMEM;
2374         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2375                 return -EFAULT;
2376         size -= 8;
2377         dst = tlv + 2;
2378         for (map = info->chmap; map->channels; map++) {
2379                 int chs_bytes = map->channels * 4;
2380                 if (!valid_chmap_channels(info, map->channels))
2381                         continue;
2382                 if (size < 8)
2383                         return -ENOMEM;
2384                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2385                     put_user(chs_bytes, dst + 1))
2386                         return -EFAULT;
2387                 dst += 2;
2388                 size -= 8;
2389                 count += 8;
2390                 if (size < chs_bytes)
2391                         return -ENOMEM;
2392                 size -= chs_bytes;
2393                 count += chs_bytes;
2394                 for (c = 0; c < map->channels; c++) {
2395                         if (put_user(map->map[c], dst))
2396                                 return -EFAULT;
2397                         dst++;
2398                 }
2399         }
2400         if (put_user(count, tlv + 1))
2401                 return -EFAULT;
2402         return 0;
2403 }
2404
2405 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2406 {
2407         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2408         info->pcm->streams[info->stream].chmap_kctl = NULL;
2409         kfree(info);
2410 }
2411
2412 /**
2413  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2414  * @pcm: the assigned PCM instance
2415  * @stream: stream direction
2416  * @chmap: channel map elements (for query)
2417  * @max_channels: the max number of channels for the stream
2418  * @private_value: the value passed to each kcontrol's private_value field
2419  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2420  *
2421  * Create channel-mapping control elements assigned to the given PCM stream(s).
2422  * Return: Zero if successful, or a negative error value.
2423  */
2424 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2425                            const struct snd_pcm_chmap_elem *chmap,
2426                            int max_channels,
2427                            unsigned long private_value,
2428                            struct snd_pcm_chmap **info_ret)
2429 {
2430         struct snd_pcm_chmap *info;
2431         struct snd_kcontrol_new knew = {
2432                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2433                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2434                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2435                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2436                 .info = pcm_chmap_ctl_info,
2437                 .get = pcm_chmap_ctl_get,
2438                 .tlv.c = pcm_chmap_ctl_tlv,
2439         };
2440         int err;
2441
2442         if (WARN_ON(pcm->streams[stream].chmap_kctl))
2443                 return -EBUSY;
2444         info = kzalloc(sizeof(*info), GFP_KERNEL);
2445         if (!info)
2446                 return -ENOMEM;
2447         info->pcm = pcm;
2448         info->stream = stream;
2449         info->chmap = chmap;
2450         info->max_channels = max_channels;
2451         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2452                 knew.name = "Playback Channel Map";
2453         else
2454                 knew.name = "Capture Channel Map";
2455         knew.device = pcm->device;
2456         knew.count = pcm->streams[stream].substream_count;
2457         knew.private_value = private_value;
2458         info->kctl = snd_ctl_new1(&knew, info);
2459         if (!info->kctl) {
2460                 kfree(info);
2461                 return -ENOMEM;
2462         }
2463         info->kctl->private_free = pcm_chmap_ctl_private_free;
2464         err = snd_ctl_add(pcm->card, info->kctl);
2465         if (err < 0)
2466                 return err;
2467         pcm->streams[stream].chmap_kctl = info->kctl;
2468         if (info_ret)
2469                 *info_ret = info;
2470         return 0;
2471 }
2472 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);