bpf: Fix ORC unwinding in non-JIT BPF code
[linux-2.6-microblaze.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31
32 #define MAX_LSM_EVM_XATTR       2
33
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36
37 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
38 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
39
40 static struct kmem_cache *lsm_file_cache;
41 static struct kmem_cache *lsm_inode_cache;
42
43 char *lsm_names;
44 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
45
46 /* Boot-time LSM user choice */
47 static __initdata const char *chosen_lsm_order;
48 static __initdata const char *chosen_major_lsm;
49
50 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
51
52 /* Ordered list of LSMs to initialize. */
53 static __initdata struct lsm_info **ordered_lsms;
54 static __initdata struct lsm_info *exclusive;
55
56 static __initdata bool debug;
57 #define init_debug(...)                                         \
58         do {                                                    \
59                 if (debug)                                      \
60                         pr_info(__VA_ARGS__);                   \
61         } while (0)
62
63 static bool __init is_enabled(struct lsm_info *lsm)
64 {
65         if (!lsm->enabled)
66                 return false;
67
68         return *lsm->enabled;
69 }
70
71 /* Mark an LSM's enabled flag. */
72 static int lsm_enabled_true __initdata = 1;
73 static int lsm_enabled_false __initdata = 0;
74 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
75 {
76         /*
77          * When an LSM hasn't configured an enable variable, we can use
78          * a hard-coded location for storing the default enabled state.
79          */
80         if (!lsm->enabled) {
81                 if (enabled)
82                         lsm->enabled = &lsm_enabled_true;
83                 else
84                         lsm->enabled = &lsm_enabled_false;
85         } else if (lsm->enabled == &lsm_enabled_true) {
86                 if (!enabled)
87                         lsm->enabled = &lsm_enabled_false;
88         } else if (lsm->enabled == &lsm_enabled_false) {
89                 if (enabled)
90                         lsm->enabled = &lsm_enabled_true;
91         } else {
92                 *lsm->enabled = enabled;
93         }
94 }
95
96 /* Is an LSM already listed in the ordered LSMs list? */
97 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
98 {
99         struct lsm_info **check;
100
101         for (check = ordered_lsms; *check; check++)
102                 if (*check == lsm)
103                         return true;
104
105         return false;
106 }
107
108 /* Append an LSM to the list of ordered LSMs to initialize. */
109 static int last_lsm __initdata;
110 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
111 {
112         /* Ignore duplicate selections. */
113         if (exists_ordered_lsm(lsm))
114                 return;
115
116         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
117                 return;
118
119         /* Enable this LSM, if it is not already set. */
120         if (!lsm->enabled)
121                 lsm->enabled = &lsm_enabled_true;
122         ordered_lsms[last_lsm++] = lsm;
123
124         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
125                    is_enabled(lsm) ? "en" : "dis");
126 }
127
128 /* Is an LSM allowed to be initialized? */
129 static bool __init lsm_allowed(struct lsm_info *lsm)
130 {
131         /* Skip if the LSM is disabled. */
132         if (!is_enabled(lsm))
133                 return false;
134
135         /* Not allowed if another exclusive LSM already initialized. */
136         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
137                 init_debug("exclusive disabled: %s\n", lsm->name);
138                 return false;
139         }
140
141         return true;
142 }
143
144 static void __init lsm_set_blob_size(int *need, int *lbs)
145 {
146         int offset;
147
148         if (*need > 0) {
149                 offset = *lbs;
150                 *lbs += *need;
151                 *need = offset;
152         }
153 }
154
155 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
156 {
157         if (!needed)
158                 return;
159
160         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
161         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
162         /*
163          * The inode blob gets an rcu_head in addition to
164          * what the modules might need.
165          */
166         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
167                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
168         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
169         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
170         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
171         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
172 }
173
174 /* Prepare LSM for initialization. */
175 static void __init prepare_lsm(struct lsm_info *lsm)
176 {
177         int enabled = lsm_allowed(lsm);
178
179         /* Record enablement (to handle any following exclusive LSMs). */
180         set_enabled(lsm, enabled);
181
182         /* If enabled, do pre-initialization work. */
183         if (enabled) {
184                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
185                         exclusive = lsm;
186                         init_debug("exclusive chosen: %s\n", lsm->name);
187                 }
188
189                 lsm_set_blob_sizes(lsm->blobs);
190         }
191 }
192
193 /* Initialize a given LSM, if it is enabled. */
194 static void __init initialize_lsm(struct lsm_info *lsm)
195 {
196         if (is_enabled(lsm)) {
197                 int ret;
198
199                 init_debug("initializing %s\n", lsm->name);
200                 ret = lsm->init();
201                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
202         }
203 }
204
205 /* Populate ordered LSMs list from comma-separated LSM name list. */
206 static void __init ordered_lsm_parse(const char *order, const char *origin)
207 {
208         struct lsm_info *lsm;
209         char *sep, *name, *next;
210
211         /* LSM_ORDER_FIRST is always first. */
212         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
213                 if (lsm->order == LSM_ORDER_FIRST)
214                         append_ordered_lsm(lsm, "first");
215         }
216
217         /* Process "security=", if given. */
218         if (chosen_major_lsm) {
219                 struct lsm_info *major;
220
221                 /*
222                  * To match the original "security=" behavior, this
223                  * explicitly does NOT fallback to another Legacy Major
224                  * if the selected one was separately disabled: disable
225                  * all non-matching Legacy Major LSMs.
226                  */
227                 for (major = __start_lsm_info; major < __end_lsm_info;
228                      major++) {
229                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
230                             strcmp(major->name, chosen_major_lsm) != 0) {
231                                 set_enabled(major, false);
232                                 init_debug("security=%s disabled: %s\n",
233                                            chosen_major_lsm, major->name);
234                         }
235                 }
236         }
237
238         sep = kstrdup(order, GFP_KERNEL);
239         next = sep;
240         /* Walk the list, looking for matching LSMs. */
241         while ((name = strsep(&next, ",")) != NULL) {
242                 bool found = false;
243
244                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
245                         if (lsm->order == LSM_ORDER_MUTABLE &&
246                             strcmp(lsm->name, name) == 0) {
247                                 append_ordered_lsm(lsm, origin);
248                                 found = true;
249                         }
250                 }
251
252                 if (!found)
253                         init_debug("%s ignored: %s\n", origin, name);
254         }
255
256         /* Process "security=", if given. */
257         if (chosen_major_lsm) {
258                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
259                         if (exists_ordered_lsm(lsm))
260                                 continue;
261                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
262                                 append_ordered_lsm(lsm, "security=");
263                 }
264         }
265
266         /* Disable all LSMs not in the ordered list. */
267         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
268                 if (exists_ordered_lsm(lsm))
269                         continue;
270                 set_enabled(lsm, false);
271                 init_debug("%s disabled: %s\n", origin, lsm->name);
272         }
273
274         kfree(sep);
275 }
276
277 static void __init lsm_early_cred(struct cred *cred);
278 static void __init lsm_early_task(struct task_struct *task);
279
280 static void __init ordered_lsm_init(void)
281 {
282         struct lsm_info **lsm;
283
284         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
285                                 GFP_KERNEL);
286
287         if (chosen_lsm_order) {
288                 if (chosen_major_lsm) {
289                         pr_info("security= is ignored because it is superseded by lsm=\n");
290                         chosen_major_lsm = NULL;
291                 }
292                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
293         } else
294                 ordered_lsm_parse(builtin_lsm_order, "builtin");
295
296         for (lsm = ordered_lsms; *lsm; lsm++)
297                 prepare_lsm(*lsm);
298
299         init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
300         init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
301         init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
302         init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
303         init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
304         init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
305
306         /*
307          * Create any kmem_caches needed for blobs
308          */
309         if (blob_sizes.lbs_file)
310                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
311                                                    blob_sizes.lbs_file, 0,
312                                                    SLAB_PANIC, NULL);
313         if (blob_sizes.lbs_inode)
314                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
315                                                     blob_sizes.lbs_inode, 0,
316                                                     SLAB_PANIC, NULL);
317
318         lsm_early_cred((struct cred *) current->cred);
319         lsm_early_task(current);
320         for (lsm = ordered_lsms; *lsm; lsm++)
321                 initialize_lsm(*lsm);
322
323         kfree(ordered_lsms);
324 }
325
326 /**
327  * security_init - initializes the security framework
328  *
329  * This should be called early in the kernel initialization sequence.
330  */
331 int __init security_init(void)
332 {
333         int i;
334         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
335
336         pr_info("Security Framework initializing\n");
337
338         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
339              i++)
340                 INIT_HLIST_HEAD(&list[i]);
341
342         /* Load LSMs in specified order. */
343         ordered_lsm_init();
344
345         return 0;
346 }
347
348 /* Save user chosen LSM */
349 static int __init choose_major_lsm(char *str)
350 {
351         chosen_major_lsm = str;
352         return 1;
353 }
354 __setup("security=", choose_major_lsm);
355
356 /* Explicitly choose LSM initialization order. */
357 static int __init choose_lsm_order(char *str)
358 {
359         chosen_lsm_order = str;
360         return 1;
361 }
362 __setup("lsm=", choose_lsm_order);
363
364 /* Enable LSM order debugging. */
365 static int __init enable_debug(char *str)
366 {
367         debug = true;
368         return 1;
369 }
370 __setup("lsm.debug", enable_debug);
371
372 static bool match_last_lsm(const char *list, const char *lsm)
373 {
374         const char *last;
375
376         if (WARN_ON(!list || !lsm))
377                 return false;
378         last = strrchr(list, ',');
379         if (last)
380                 /* Pass the comma, strcmp() will check for '\0' */
381                 last++;
382         else
383                 last = list;
384         return !strcmp(last, lsm);
385 }
386
387 static int lsm_append(char *new, char **result)
388 {
389         char *cp;
390
391         if (*result == NULL) {
392                 *result = kstrdup(new, GFP_KERNEL);
393                 if (*result == NULL)
394                         return -ENOMEM;
395         } else {
396                 /* Check if it is the last registered name */
397                 if (match_last_lsm(*result, new))
398                         return 0;
399                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
400                 if (cp == NULL)
401                         return -ENOMEM;
402                 kfree(*result);
403                 *result = cp;
404         }
405         return 0;
406 }
407
408 /**
409  * security_add_hooks - Add a modules hooks to the hook lists.
410  * @hooks: the hooks to add
411  * @count: the number of hooks to add
412  * @lsm: the name of the security module
413  *
414  * Each LSM has to register its hooks with the infrastructure.
415  */
416 void __init security_add_hooks(struct security_hook_list *hooks, int count,
417                                 char *lsm)
418 {
419         int i;
420
421         for (i = 0; i < count; i++) {
422                 hooks[i].lsm = lsm;
423                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
424         }
425         if (lsm_append(lsm, &lsm_names) < 0)
426                 panic("%s - Cannot get early memory.\n", __func__);
427 }
428
429 int call_lsm_notifier(enum lsm_event event, void *data)
430 {
431         return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
432 }
433 EXPORT_SYMBOL(call_lsm_notifier);
434
435 int register_lsm_notifier(struct notifier_block *nb)
436 {
437         return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
438 }
439 EXPORT_SYMBOL(register_lsm_notifier);
440
441 int unregister_lsm_notifier(struct notifier_block *nb)
442 {
443         return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
444 }
445 EXPORT_SYMBOL(unregister_lsm_notifier);
446
447 /**
448  * lsm_cred_alloc - allocate a composite cred blob
449  * @cred: the cred that needs a blob
450  * @gfp: allocation type
451  *
452  * Allocate the cred blob for all the modules
453  *
454  * Returns 0, or -ENOMEM if memory can't be allocated.
455  */
456 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
457 {
458         if (blob_sizes.lbs_cred == 0) {
459                 cred->security = NULL;
460                 return 0;
461         }
462
463         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
464         if (cred->security == NULL)
465                 return -ENOMEM;
466         return 0;
467 }
468
469 /**
470  * lsm_early_cred - during initialization allocate a composite cred blob
471  * @cred: the cred that needs a blob
472  *
473  * Allocate the cred blob for all the modules
474  */
475 static void __init lsm_early_cred(struct cred *cred)
476 {
477         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
478
479         if (rc)
480                 panic("%s: Early cred alloc failed.\n", __func__);
481 }
482
483 /**
484  * lsm_file_alloc - allocate a composite file blob
485  * @file: the file that needs a blob
486  *
487  * Allocate the file blob for all the modules
488  *
489  * Returns 0, or -ENOMEM if memory can't be allocated.
490  */
491 static int lsm_file_alloc(struct file *file)
492 {
493         if (!lsm_file_cache) {
494                 file->f_security = NULL;
495                 return 0;
496         }
497
498         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
499         if (file->f_security == NULL)
500                 return -ENOMEM;
501         return 0;
502 }
503
504 /**
505  * lsm_inode_alloc - allocate a composite inode blob
506  * @inode: the inode that needs a blob
507  *
508  * Allocate the inode blob for all the modules
509  *
510  * Returns 0, or -ENOMEM if memory can't be allocated.
511  */
512 int lsm_inode_alloc(struct inode *inode)
513 {
514         if (!lsm_inode_cache) {
515                 inode->i_security = NULL;
516                 return 0;
517         }
518
519         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
520         if (inode->i_security == NULL)
521                 return -ENOMEM;
522         return 0;
523 }
524
525 /**
526  * lsm_task_alloc - allocate a composite task blob
527  * @task: the task that needs a blob
528  *
529  * Allocate the task blob for all the modules
530  *
531  * Returns 0, or -ENOMEM if memory can't be allocated.
532  */
533 static int lsm_task_alloc(struct task_struct *task)
534 {
535         if (blob_sizes.lbs_task == 0) {
536                 task->security = NULL;
537                 return 0;
538         }
539
540         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
541         if (task->security == NULL)
542                 return -ENOMEM;
543         return 0;
544 }
545
546 /**
547  * lsm_ipc_alloc - allocate a composite ipc blob
548  * @kip: the ipc that needs a blob
549  *
550  * Allocate the ipc blob for all the modules
551  *
552  * Returns 0, or -ENOMEM if memory can't be allocated.
553  */
554 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
555 {
556         if (blob_sizes.lbs_ipc == 0) {
557                 kip->security = NULL;
558                 return 0;
559         }
560
561         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
562         if (kip->security == NULL)
563                 return -ENOMEM;
564         return 0;
565 }
566
567 /**
568  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
569  * @mp: the msg_msg that needs a blob
570  *
571  * Allocate the ipc blob for all the modules
572  *
573  * Returns 0, or -ENOMEM if memory can't be allocated.
574  */
575 static int lsm_msg_msg_alloc(struct msg_msg *mp)
576 {
577         if (blob_sizes.lbs_msg_msg == 0) {
578                 mp->security = NULL;
579                 return 0;
580         }
581
582         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
583         if (mp->security == NULL)
584                 return -ENOMEM;
585         return 0;
586 }
587
588 /**
589  * lsm_early_task - during initialization allocate a composite task blob
590  * @task: the task that needs a blob
591  *
592  * Allocate the task blob for all the modules
593  */
594 static void __init lsm_early_task(struct task_struct *task)
595 {
596         int rc = lsm_task_alloc(task);
597
598         if (rc)
599                 panic("%s: Early task alloc failed.\n", __func__);
600 }
601
602 /*
603  * Hook list operation macros.
604  *
605  * call_void_hook:
606  *      This is a hook that does not return a value.
607  *
608  * call_int_hook:
609  *      This is a hook that returns a value.
610  */
611
612 #define call_void_hook(FUNC, ...)                               \
613         do {                                                    \
614                 struct security_hook_list *P;                   \
615                                                                 \
616                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
617                         P->hook.FUNC(__VA_ARGS__);              \
618         } while (0)
619
620 #define call_int_hook(FUNC, IRC, ...) ({                        \
621         int RC = IRC;                                           \
622         do {                                                    \
623                 struct security_hook_list *P;                   \
624                                                                 \
625                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
626                         RC = P->hook.FUNC(__VA_ARGS__);         \
627                         if (RC != 0)                            \
628                                 break;                          \
629                 }                                               \
630         } while (0);                                            \
631         RC;                                                     \
632 })
633
634 /* Security operations */
635
636 int security_binder_set_context_mgr(struct task_struct *mgr)
637 {
638         return call_int_hook(binder_set_context_mgr, 0, mgr);
639 }
640
641 int security_binder_transaction(struct task_struct *from,
642                                 struct task_struct *to)
643 {
644         return call_int_hook(binder_transaction, 0, from, to);
645 }
646
647 int security_binder_transfer_binder(struct task_struct *from,
648                                     struct task_struct *to)
649 {
650         return call_int_hook(binder_transfer_binder, 0, from, to);
651 }
652
653 int security_binder_transfer_file(struct task_struct *from,
654                                   struct task_struct *to, struct file *file)
655 {
656         return call_int_hook(binder_transfer_file, 0, from, to, file);
657 }
658
659 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
660 {
661         return call_int_hook(ptrace_access_check, 0, child, mode);
662 }
663
664 int security_ptrace_traceme(struct task_struct *parent)
665 {
666         return call_int_hook(ptrace_traceme, 0, parent);
667 }
668
669 int security_capget(struct task_struct *target,
670                      kernel_cap_t *effective,
671                      kernel_cap_t *inheritable,
672                      kernel_cap_t *permitted)
673 {
674         return call_int_hook(capget, 0, target,
675                                 effective, inheritable, permitted);
676 }
677
678 int security_capset(struct cred *new, const struct cred *old,
679                     const kernel_cap_t *effective,
680                     const kernel_cap_t *inheritable,
681                     const kernel_cap_t *permitted)
682 {
683         return call_int_hook(capset, 0, new, old,
684                                 effective, inheritable, permitted);
685 }
686
687 int security_capable(const struct cred *cred,
688                      struct user_namespace *ns,
689                      int cap,
690                      unsigned int opts)
691 {
692         return call_int_hook(capable, 0, cred, ns, cap, opts);
693 }
694
695 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
696 {
697         return call_int_hook(quotactl, 0, cmds, type, id, sb);
698 }
699
700 int security_quota_on(struct dentry *dentry)
701 {
702         return call_int_hook(quota_on, 0, dentry);
703 }
704
705 int security_syslog(int type)
706 {
707         return call_int_hook(syslog, 0, type);
708 }
709
710 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
711 {
712         return call_int_hook(settime, 0, ts, tz);
713 }
714
715 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
716 {
717         struct security_hook_list *hp;
718         int cap_sys_admin = 1;
719         int rc;
720
721         /*
722          * The module will respond with a positive value if
723          * it thinks the __vm_enough_memory() call should be
724          * made with the cap_sys_admin set. If all of the modules
725          * agree that it should be set it will. If any module
726          * thinks it should not be set it won't.
727          */
728         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
729                 rc = hp->hook.vm_enough_memory(mm, pages);
730                 if (rc <= 0) {
731                         cap_sys_admin = 0;
732                         break;
733                 }
734         }
735         return __vm_enough_memory(mm, pages, cap_sys_admin);
736 }
737
738 int security_bprm_set_creds(struct linux_binprm *bprm)
739 {
740         return call_int_hook(bprm_set_creds, 0, bprm);
741 }
742
743 int security_bprm_check(struct linux_binprm *bprm)
744 {
745         int ret;
746
747         ret = call_int_hook(bprm_check_security, 0, bprm);
748         if (ret)
749                 return ret;
750         return ima_bprm_check(bprm);
751 }
752
753 void security_bprm_committing_creds(struct linux_binprm *bprm)
754 {
755         call_void_hook(bprm_committing_creds, bprm);
756 }
757
758 void security_bprm_committed_creds(struct linux_binprm *bprm)
759 {
760         call_void_hook(bprm_committed_creds, bprm);
761 }
762
763 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
764 {
765         return call_int_hook(fs_context_dup, 0, fc, src_fc);
766 }
767
768 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
769 {
770         return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
771 }
772
773 int security_sb_alloc(struct super_block *sb)
774 {
775         return call_int_hook(sb_alloc_security, 0, sb);
776 }
777
778 void security_sb_free(struct super_block *sb)
779 {
780         call_void_hook(sb_free_security, sb);
781 }
782
783 void security_free_mnt_opts(void **mnt_opts)
784 {
785         if (!*mnt_opts)
786                 return;
787         call_void_hook(sb_free_mnt_opts, *mnt_opts);
788         *mnt_opts = NULL;
789 }
790 EXPORT_SYMBOL(security_free_mnt_opts);
791
792 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
793 {
794         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
795 }
796 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
797
798 int security_sb_remount(struct super_block *sb,
799                         void *mnt_opts)
800 {
801         return call_int_hook(sb_remount, 0, sb, mnt_opts);
802 }
803 EXPORT_SYMBOL(security_sb_remount);
804
805 int security_sb_kern_mount(struct super_block *sb)
806 {
807         return call_int_hook(sb_kern_mount, 0, sb);
808 }
809
810 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
811 {
812         return call_int_hook(sb_show_options, 0, m, sb);
813 }
814
815 int security_sb_statfs(struct dentry *dentry)
816 {
817         return call_int_hook(sb_statfs, 0, dentry);
818 }
819
820 int security_sb_mount(const char *dev_name, const struct path *path,
821                        const char *type, unsigned long flags, void *data)
822 {
823         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
824 }
825
826 int security_sb_umount(struct vfsmount *mnt, int flags)
827 {
828         return call_int_hook(sb_umount, 0, mnt, flags);
829 }
830
831 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
832 {
833         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
834 }
835
836 int security_sb_set_mnt_opts(struct super_block *sb,
837                                 void *mnt_opts,
838                                 unsigned long kern_flags,
839                                 unsigned long *set_kern_flags)
840 {
841         return call_int_hook(sb_set_mnt_opts,
842                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
843                                 mnt_opts, kern_flags, set_kern_flags);
844 }
845 EXPORT_SYMBOL(security_sb_set_mnt_opts);
846
847 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
848                                 struct super_block *newsb,
849                                 unsigned long kern_flags,
850                                 unsigned long *set_kern_flags)
851 {
852         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
853                                 kern_flags, set_kern_flags);
854 }
855 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
856
857 int security_add_mnt_opt(const char *option, const char *val, int len,
858                          void **mnt_opts)
859 {
860         return call_int_hook(sb_add_mnt_opt, -EINVAL,
861                                         option, val, len, mnt_opts);
862 }
863 EXPORT_SYMBOL(security_add_mnt_opt);
864
865 int security_move_mount(const struct path *from_path, const struct path *to_path)
866 {
867         return call_int_hook(move_mount, 0, from_path, to_path);
868 }
869
870 int security_inode_alloc(struct inode *inode)
871 {
872         int rc = lsm_inode_alloc(inode);
873
874         if (unlikely(rc))
875                 return rc;
876         rc = call_int_hook(inode_alloc_security, 0, inode);
877         if (unlikely(rc))
878                 security_inode_free(inode);
879         return rc;
880 }
881
882 static void inode_free_by_rcu(struct rcu_head *head)
883 {
884         /*
885          * The rcu head is at the start of the inode blob
886          */
887         kmem_cache_free(lsm_inode_cache, head);
888 }
889
890 void security_inode_free(struct inode *inode)
891 {
892         integrity_inode_free(inode);
893         call_void_hook(inode_free_security, inode);
894         /*
895          * The inode may still be referenced in a path walk and
896          * a call to security_inode_permission() can be made
897          * after inode_free_security() is called. Ideally, the VFS
898          * wouldn't do this, but fixing that is a much harder
899          * job. For now, simply free the i_security via RCU, and
900          * leave the current inode->i_security pointer intact.
901          * The inode will be freed after the RCU grace period too.
902          */
903         if (inode->i_security)
904                 call_rcu((struct rcu_head *)inode->i_security,
905                                 inode_free_by_rcu);
906 }
907
908 int security_dentry_init_security(struct dentry *dentry, int mode,
909                                         const struct qstr *name, void **ctx,
910                                         u32 *ctxlen)
911 {
912         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
913                                 name, ctx, ctxlen);
914 }
915 EXPORT_SYMBOL(security_dentry_init_security);
916
917 int security_dentry_create_files_as(struct dentry *dentry, int mode,
918                                     struct qstr *name,
919                                     const struct cred *old, struct cred *new)
920 {
921         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
922                                 name, old, new);
923 }
924 EXPORT_SYMBOL(security_dentry_create_files_as);
925
926 int security_inode_init_security(struct inode *inode, struct inode *dir,
927                                  const struct qstr *qstr,
928                                  const initxattrs initxattrs, void *fs_data)
929 {
930         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
931         struct xattr *lsm_xattr, *evm_xattr, *xattr;
932         int ret;
933
934         if (unlikely(IS_PRIVATE(inode)))
935                 return 0;
936
937         if (!initxattrs)
938                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
939                                      dir, qstr, NULL, NULL, NULL);
940         memset(new_xattrs, 0, sizeof(new_xattrs));
941         lsm_xattr = new_xattrs;
942         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
943                                                 &lsm_xattr->name,
944                                                 &lsm_xattr->value,
945                                                 &lsm_xattr->value_len);
946         if (ret)
947                 goto out;
948
949         evm_xattr = lsm_xattr + 1;
950         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
951         if (ret)
952                 goto out;
953         ret = initxattrs(inode, new_xattrs, fs_data);
954 out:
955         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
956                 kfree(xattr->value);
957         return (ret == -EOPNOTSUPP) ? 0 : ret;
958 }
959 EXPORT_SYMBOL(security_inode_init_security);
960
961 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
962                                      const struct qstr *qstr, const char **name,
963                                      void **value, size_t *len)
964 {
965         if (unlikely(IS_PRIVATE(inode)))
966                 return -EOPNOTSUPP;
967         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
968                              qstr, name, value, len);
969 }
970 EXPORT_SYMBOL(security_old_inode_init_security);
971
972 #ifdef CONFIG_SECURITY_PATH
973 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
974                         unsigned int dev)
975 {
976         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
977                 return 0;
978         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
979 }
980 EXPORT_SYMBOL(security_path_mknod);
981
982 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
983 {
984         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
985                 return 0;
986         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
987 }
988 EXPORT_SYMBOL(security_path_mkdir);
989
990 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
991 {
992         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
993                 return 0;
994         return call_int_hook(path_rmdir, 0, dir, dentry);
995 }
996
997 int security_path_unlink(const struct path *dir, struct dentry *dentry)
998 {
999         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1000                 return 0;
1001         return call_int_hook(path_unlink, 0, dir, dentry);
1002 }
1003 EXPORT_SYMBOL(security_path_unlink);
1004
1005 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1006                           const char *old_name)
1007 {
1008         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1009                 return 0;
1010         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1011 }
1012
1013 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1014                        struct dentry *new_dentry)
1015 {
1016         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1017                 return 0;
1018         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1019 }
1020
1021 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1022                          const struct path *new_dir, struct dentry *new_dentry,
1023                          unsigned int flags)
1024 {
1025         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1026                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1027                 return 0;
1028
1029         if (flags & RENAME_EXCHANGE) {
1030                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1031                                         old_dir, old_dentry);
1032                 if (err)
1033                         return err;
1034         }
1035
1036         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1037                                 new_dentry);
1038 }
1039 EXPORT_SYMBOL(security_path_rename);
1040
1041 int security_path_truncate(const struct path *path)
1042 {
1043         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1044                 return 0;
1045         return call_int_hook(path_truncate, 0, path);
1046 }
1047
1048 int security_path_chmod(const struct path *path, umode_t mode)
1049 {
1050         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1051                 return 0;
1052         return call_int_hook(path_chmod, 0, path, mode);
1053 }
1054
1055 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1056 {
1057         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1058                 return 0;
1059         return call_int_hook(path_chown, 0, path, uid, gid);
1060 }
1061
1062 int security_path_chroot(const struct path *path)
1063 {
1064         return call_int_hook(path_chroot, 0, path);
1065 }
1066 #endif
1067
1068 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1069 {
1070         if (unlikely(IS_PRIVATE(dir)))
1071                 return 0;
1072         return call_int_hook(inode_create, 0, dir, dentry, mode);
1073 }
1074 EXPORT_SYMBOL_GPL(security_inode_create);
1075
1076 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1077                          struct dentry *new_dentry)
1078 {
1079         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1080                 return 0;
1081         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1082 }
1083
1084 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1085 {
1086         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1087                 return 0;
1088         return call_int_hook(inode_unlink, 0, dir, dentry);
1089 }
1090
1091 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1092                             const char *old_name)
1093 {
1094         if (unlikely(IS_PRIVATE(dir)))
1095                 return 0;
1096         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1097 }
1098
1099 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1100 {
1101         if (unlikely(IS_PRIVATE(dir)))
1102                 return 0;
1103         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1104 }
1105 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1106
1107 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1108 {
1109         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1110                 return 0;
1111         return call_int_hook(inode_rmdir, 0, dir, dentry);
1112 }
1113
1114 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1115 {
1116         if (unlikely(IS_PRIVATE(dir)))
1117                 return 0;
1118         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1119 }
1120
1121 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1122                            struct inode *new_dir, struct dentry *new_dentry,
1123                            unsigned int flags)
1124 {
1125         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1126             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1127                 return 0;
1128
1129         if (flags & RENAME_EXCHANGE) {
1130                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1131                                                      old_dir, old_dentry);
1132                 if (err)
1133                         return err;
1134         }
1135
1136         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1137                                            new_dir, new_dentry);
1138 }
1139
1140 int security_inode_readlink(struct dentry *dentry)
1141 {
1142         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1143                 return 0;
1144         return call_int_hook(inode_readlink, 0, dentry);
1145 }
1146
1147 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1148                                bool rcu)
1149 {
1150         if (unlikely(IS_PRIVATE(inode)))
1151                 return 0;
1152         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1153 }
1154
1155 int security_inode_permission(struct inode *inode, int mask)
1156 {
1157         if (unlikely(IS_PRIVATE(inode)))
1158                 return 0;
1159         return call_int_hook(inode_permission, 0, inode, mask);
1160 }
1161
1162 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1163 {
1164         int ret;
1165
1166         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1167                 return 0;
1168         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1169         if (ret)
1170                 return ret;
1171         return evm_inode_setattr(dentry, attr);
1172 }
1173 EXPORT_SYMBOL_GPL(security_inode_setattr);
1174
1175 int security_inode_getattr(const struct path *path)
1176 {
1177         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1178                 return 0;
1179         return call_int_hook(inode_getattr, 0, path);
1180 }
1181
1182 int security_inode_setxattr(struct dentry *dentry, const char *name,
1183                             const void *value, size_t size, int flags)
1184 {
1185         int ret;
1186
1187         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1188                 return 0;
1189         /*
1190          * SELinux and Smack integrate the cap call,
1191          * so assume that all LSMs supplying this call do so.
1192          */
1193         ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1194                                 flags);
1195
1196         if (ret == 1)
1197                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1198         if (ret)
1199                 return ret;
1200         ret = ima_inode_setxattr(dentry, name, value, size);
1201         if (ret)
1202                 return ret;
1203         return evm_inode_setxattr(dentry, name, value, size);
1204 }
1205
1206 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1207                                   const void *value, size_t size, int flags)
1208 {
1209         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210                 return;
1211         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1212         evm_inode_post_setxattr(dentry, name, value, size);
1213 }
1214
1215 int security_inode_getxattr(struct dentry *dentry, const char *name)
1216 {
1217         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1218                 return 0;
1219         return call_int_hook(inode_getxattr, 0, dentry, name);
1220 }
1221
1222 int security_inode_listxattr(struct dentry *dentry)
1223 {
1224         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1225                 return 0;
1226         return call_int_hook(inode_listxattr, 0, dentry);
1227 }
1228
1229 int security_inode_removexattr(struct dentry *dentry, const char *name)
1230 {
1231         int ret;
1232
1233         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1234                 return 0;
1235         /*
1236          * SELinux and Smack integrate the cap call,
1237          * so assume that all LSMs supplying this call do so.
1238          */
1239         ret = call_int_hook(inode_removexattr, 1, dentry, name);
1240         if (ret == 1)
1241                 ret = cap_inode_removexattr(dentry, name);
1242         if (ret)
1243                 return ret;
1244         ret = ima_inode_removexattr(dentry, name);
1245         if (ret)
1246                 return ret;
1247         return evm_inode_removexattr(dentry, name);
1248 }
1249
1250 int security_inode_need_killpriv(struct dentry *dentry)
1251 {
1252         return call_int_hook(inode_need_killpriv, 0, dentry);
1253 }
1254
1255 int security_inode_killpriv(struct dentry *dentry)
1256 {
1257         return call_int_hook(inode_killpriv, 0, dentry);
1258 }
1259
1260 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1261 {
1262         struct security_hook_list *hp;
1263         int rc;
1264
1265         if (unlikely(IS_PRIVATE(inode)))
1266                 return -EOPNOTSUPP;
1267         /*
1268          * Only one module will provide an attribute with a given name.
1269          */
1270         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1271                 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1272                 if (rc != -EOPNOTSUPP)
1273                         return rc;
1274         }
1275         return -EOPNOTSUPP;
1276 }
1277
1278 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1279 {
1280         struct security_hook_list *hp;
1281         int rc;
1282
1283         if (unlikely(IS_PRIVATE(inode)))
1284                 return -EOPNOTSUPP;
1285         /*
1286          * Only one module will provide an attribute with a given name.
1287          */
1288         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1289                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1290                                                                 flags);
1291                 if (rc != -EOPNOTSUPP)
1292                         return rc;
1293         }
1294         return -EOPNOTSUPP;
1295 }
1296
1297 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1298 {
1299         if (unlikely(IS_PRIVATE(inode)))
1300                 return 0;
1301         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1302 }
1303 EXPORT_SYMBOL(security_inode_listsecurity);
1304
1305 void security_inode_getsecid(struct inode *inode, u32 *secid)
1306 {
1307         call_void_hook(inode_getsecid, inode, secid);
1308 }
1309
1310 int security_inode_copy_up(struct dentry *src, struct cred **new)
1311 {
1312         return call_int_hook(inode_copy_up, 0, src, new);
1313 }
1314 EXPORT_SYMBOL(security_inode_copy_up);
1315
1316 int security_inode_copy_up_xattr(const char *name)
1317 {
1318         return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1319 }
1320 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1321
1322 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1323                                   struct kernfs_node *kn)
1324 {
1325         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1326 }
1327
1328 int security_file_permission(struct file *file, int mask)
1329 {
1330         int ret;
1331
1332         ret = call_int_hook(file_permission, 0, file, mask);
1333         if (ret)
1334                 return ret;
1335
1336         return fsnotify_perm(file, mask);
1337 }
1338
1339 int security_file_alloc(struct file *file)
1340 {
1341         int rc = lsm_file_alloc(file);
1342
1343         if (rc)
1344                 return rc;
1345         rc = call_int_hook(file_alloc_security, 0, file);
1346         if (unlikely(rc))
1347                 security_file_free(file);
1348         return rc;
1349 }
1350
1351 void security_file_free(struct file *file)
1352 {
1353         void *blob;
1354
1355         call_void_hook(file_free_security, file);
1356
1357         blob = file->f_security;
1358         if (blob) {
1359                 file->f_security = NULL;
1360                 kmem_cache_free(lsm_file_cache, blob);
1361         }
1362 }
1363
1364 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1365 {
1366         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1367 }
1368
1369 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1370 {
1371         /*
1372          * Does we have PROT_READ and does the application expect
1373          * it to imply PROT_EXEC?  If not, nothing to talk about...
1374          */
1375         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1376                 return prot;
1377         if (!(current->personality & READ_IMPLIES_EXEC))
1378                 return prot;
1379         /*
1380          * if that's an anonymous mapping, let it.
1381          */
1382         if (!file)
1383                 return prot | PROT_EXEC;
1384         /*
1385          * ditto if it's not on noexec mount, except that on !MMU we need
1386          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1387          */
1388         if (!path_noexec(&file->f_path)) {
1389 #ifndef CONFIG_MMU
1390                 if (file->f_op->mmap_capabilities) {
1391                         unsigned caps = file->f_op->mmap_capabilities(file);
1392                         if (!(caps & NOMMU_MAP_EXEC))
1393                                 return prot;
1394                 }
1395 #endif
1396                 return prot | PROT_EXEC;
1397         }
1398         /* anything on noexec mount won't get PROT_EXEC */
1399         return prot;
1400 }
1401
1402 int security_mmap_file(struct file *file, unsigned long prot,
1403                         unsigned long flags)
1404 {
1405         int ret;
1406         ret = call_int_hook(mmap_file, 0, file, prot,
1407                                         mmap_prot(file, prot), flags);
1408         if (ret)
1409                 return ret;
1410         return ima_file_mmap(file, prot);
1411 }
1412
1413 int security_mmap_addr(unsigned long addr)
1414 {
1415         return call_int_hook(mmap_addr, 0, addr);
1416 }
1417
1418 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1419                             unsigned long prot)
1420 {
1421         return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1422 }
1423
1424 int security_file_lock(struct file *file, unsigned int cmd)
1425 {
1426         return call_int_hook(file_lock, 0, file, cmd);
1427 }
1428
1429 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1430 {
1431         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1432 }
1433
1434 void security_file_set_fowner(struct file *file)
1435 {
1436         call_void_hook(file_set_fowner, file);
1437 }
1438
1439 int security_file_send_sigiotask(struct task_struct *tsk,
1440                                   struct fown_struct *fown, int sig)
1441 {
1442         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1443 }
1444
1445 int security_file_receive(struct file *file)
1446 {
1447         return call_int_hook(file_receive, 0, file);
1448 }
1449
1450 int security_file_open(struct file *file)
1451 {
1452         int ret;
1453
1454         ret = call_int_hook(file_open, 0, file);
1455         if (ret)
1456                 return ret;
1457
1458         return fsnotify_perm(file, MAY_OPEN);
1459 }
1460
1461 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1462 {
1463         int rc = lsm_task_alloc(task);
1464
1465         if (rc)
1466                 return rc;
1467         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1468         if (unlikely(rc))
1469                 security_task_free(task);
1470         return rc;
1471 }
1472
1473 void security_task_free(struct task_struct *task)
1474 {
1475         call_void_hook(task_free, task);
1476
1477         kfree(task->security);
1478         task->security = NULL;
1479 }
1480
1481 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1482 {
1483         int rc = lsm_cred_alloc(cred, gfp);
1484
1485         if (rc)
1486                 return rc;
1487
1488         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1489         if (unlikely(rc))
1490                 security_cred_free(cred);
1491         return rc;
1492 }
1493
1494 void security_cred_free(struct cred *cred)
1495 {
1496         /*
1497          * There is a failure case in prepare_creds() that
1498          * may result in a call here with ->security being NULL.
1499          */
1500         if (unlikely(cred->security == NULL))
1501                 return;
1502
1503         call_void_hook(cred_free, cred);
1504
1505         kfree(cred->security);
1506         cred->security = NULL;
1507 }
1508
1509 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1510 {
1511         int rc = lsm_cred_alloc(new, gfp);
1512
1513         if (rc)
1514                 return rc;
1515
1516         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1517         if (unlikely(rc))
1518                 security_cred_free(new);
1519         return rc;
1520 }
1521
1522 void security_transfer_creds(struct cred *new, const struct cred *old)
1523 {
1524         call_void_hook(cred_transfer, new, old);
1525 }
1526
1527 void security_cred_getsecid(const struct cred *c, u32 *secid)
1528 {
1529         *secid = 0;
1530         call_void_hook(cred_getsecid, c, secid);
1531 }
1532 EXPORT_SYMBOL(security_cred_getsecid);
1533
1534 int security_kernel_act_as(struct cred *new, u32 secid)
1535 {
1536         return call_int_hook(kernel_act_as, 0, new, secid);
1537 }
1538
1539 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1540 {
1541         return call_int_hook(kernel_create_files_as, 0, new, inode);
1542 }
1543
1544 int security_kernel_module_request(char *kmod_name)
1545 {
1546         int ret;
1547
1548         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1549         if (ret)
1550                 return ret;
1551         return integrity_kernel_module_request(kmod_name);
1552 }
1553
1554 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1555 {
1556         int ret;
1557
1558         ret = call_int_hook(kernel_read_file, 0, file, id);
1559         if (ret)
1560                 return ret;
1561         return ima_read_file(file, id);
1562 }
1563 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1564
1565 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1566                                    enum kernel_read_file_id id)
1567 {
1568         int ret;
1569
1570         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1571         if (ret)
1572                 return ret;
1573         return ima_post_read_file(file, buf, size, id);
1574 }
1575 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1576
1577 int security_kernel_load_data(enum kernel_load_data_id id)
1578 {
1579         int ret;
1580
1581         ret = call_int_hook(kernel_load_data, 0, id);
1582         if (ret)
1583                 return ret;
1584         return ima_load_data(id);
1585 }
1586 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1587
1588 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1589                              int flags)
1590 {
1591         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1592 }
1593
1594 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1595 {
1596         return call_int_hook(task_setpgid, 0, p, pgid);
1597 }
1598
1599 int security_task_getpgid(struct task_struct *p)
1600 {
1601         return call_int_hook(task_getpgid, 0, p);
1602 }
1603
1604 int security_task_getsid(struct task_struct *p)
1605 {
1606         return call_int_hook(task_getsid, 0, p);
1607 }
1608
1609 void security_task_getsecid(struct task_struct *p, u32 *secid)
1610 {
1611         *secid = 0;
1612         call_void_hook(task_getsecid, p, secid);
1613 }
1614 EXPORT_SYMBOL(security_task_getsecid);
1615
1616 int security_task_setnice(struct task_struct *p, int nice)
1617 {
1618         return call_int_hook(task_setnice, 0, p, nice);
1619 }
1620
1621 int security_task_setioprio(struct task_struct *p, int ioprio)
1622 {
1623         return call_int_hook(task_setioprio, 0, p, ioprio);
1624 }
1625
1626 int security_task_getioprio(struct task_struct *p)
1627 {
1628         return call_int_hook(task_getioprio, 0, p);
1629 }
1630
1631 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1632                           unsigned int flags)
1633 {
1634         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1635 }
1636
1637 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1638                 struct rlimit *new_rlim)
1639 {
1640         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1641 }
1642
1643 int security_task_setscheduler(struct task_struct *p)
1644 {
1645         return call_int_hook(task_setscheduler, 0, p);
1646 }
1647
1648 int security_task_getscheduler(struct task_struct *p)
1649 {
1650         return call_int_hook(task_getscheduler, 0, p);
1651 }
1652
1653 int security_task_movememory(struct task_struct *p)
1654 {
1655         return call_int_hook(task_movememory, 0, p);
1656 }
1657
1658 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1659                         int sig, const struct cred *cred)
1660 {
1661         return call_int_hook(task_kill, 0, p, info, sig, cred);
1662 }
1663
1664 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1665                          unsigned long arg4, unsigned long arg5)
1666 {
1667         int thisrc;
1668         int rc = -ENOSYS;
1669         struct security_hook_list *hp;
1670
1671         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1672                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1673                 if (thisrc != -ENOSYS) {
1674                         rc = thisrc;
1675                         if (thisrc != 0)
1676                                 break;
1677                 }
1678         }
1679         return rc;
1680 }
1681
1682 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1683 {
1684         call_void_hook(task_to_inode, p, inode);
1685 }
1686
1687 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1688 {
1689         return call_int_hook(ipc_permission, 0, ipcp, flag);
1690 }
1691
1692 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1693 {
1694         *secid = 0;
1695         call_void_hook(ipc_getsecid, ipcp, secid);
1696 }
1697
1698 int security_msg_msg_alloc(struct msg_msg *msg)
1699 {
1700         int rc = lsm_msg_msg_alloc(msg);
1701
1702         if (unlikely(rc))
1703                 return rc;
1704         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1705         if (unlikely(rc))
1706                 security_msg_msg_free(msg);
1707         return rc;
1708 }
1709
1710 void security_msg_msg_free(struct msg_msg *msg)
1711 {
1712         call_void_hook(msg_msg_free_security, msg);
1713         kfree(msg->security);
1714         msg->security = NULL;
1715 }
1716
1717 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1718 {
1719         int rc = lsm_ipc_alloc(msq);
1720
1721         if (unlikely(rc))
1722                 return rc;
1723         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1724         if (unlikely(rc))
1725                 security_msg_queue_free(msq);
1726         return rc;
1727 }
1728
1729 void security_msg_queue_free(struct kern_ipc_perm *msq)
1730 {
1731         call_void_hook(msg_queue_free_security, msq);
1732         kfree(msq->security);
1733         msq->security = NULL;
1734 }
1735
1736 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1737 {
1738         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1739 }
1740
1741 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1742 {
1743         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1744 }
1745
1746 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1747                                struct msg_msg *msg, int msqflg)
1748 {
1749         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1750 }
1751
1752 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1753                                struct task_struct *target, long type, int mode)
1754 {
1755         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1756 }
1757
1758 int security_shm_alloc(struct kern_ipc_perm *shp)
1759 {
1760         int rc = lsm_ipc_alloc(shp);
1761
1762         if (unlikely(rc))
1763                 return rc;
1764         rc = call_int_hook(shm_alloc_security, 0, shp);
1765         if (unlikely(rc))
1766                 security_shm_free(shp);
1767         return rc;
1768 }
1769
1770 void security_shm_free(struct kern_ipc_perm *shp)
1771 {
1772         call_void_hook(shm_free_security, shp);
1773         kfree(shp->security);
1774         shp->security = NULL;
1775 }
1776
1777 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1778 {
1779         return call_int_hook(shm_associate, 0, shp, shmflg);
1780 }
1781
1782 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1783 {
1784         return call_int_hook(shm_shmctl, 0, shp, cmd);
1785 }
1786
1787 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1788 {
1789         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1790 }
1791
1792 int security_sem_alloc(struct kern_ipc_perm *sma)
1793 {
1794         int rc = lsm_ipc_alloc(sma);
1795
1796         if (unlikely(rc))
1797                 return rc;
1798         rc = call_int_hook(sem_alloc_security, 0, sma);
1799         if (unlikely(rc))
1800                 security_sem_free(sma);
1801         return rc;
1802 }
1803
1804 void security_sem_free(struct kern_ipc_perm *sma)
1805 {
1806         call_void_hook(sem_free_security, sma);
1807         kfree(sma->security);
1808         sma->security = NULL;
1809 }
1810
1811 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1812 {
1813         return call_int_hook(sem_associate, 0, sma, semflg);
1814 }
1815
1816 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1817 {
1818         return call_int_hook(sem_semctl, 0, sma, cmd);
1819 }
1820
1821 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1822                         unsigned nsops, int alter)
1823 {
1824         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1825 }
1826
1827 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1828 {
1829         if (unlikely(inode && IS_PRIVATE(inode)))
1830                 return;
1831         call_void_hook(d_instantiate, dentry, inode);
1832 }
1833 EXPORT_SYMBOL(security_d_instantiate);
1834
1835 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1836                                 char **value)
1837 {
1838         struct security_hook_list *hp;
1839
1840         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1841                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1842                         continue;
1843                 return hp->hook.getprocattr(p, name, value);
1844         }
1845         return -EINVAL;
1846 }
1847
1848 int security_setprocattr(const char *lsm, const char *name, void *value,
1849                          size_t size)
1850 {
1851         struct security_hook_list *hp;
1852
1853         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1854                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1855                         continue;
1856                 return hp->hook.setprocattr(name, value, size);
1857         }
1858         return -EINVAL;
1859 }
1860
1861 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1862 {
1863         return call_int_hook(netlink_send, 0, sk, skb);
1864 }
1865
1866 int security_ismaclabel(const char *name)
1867 {
1868         return call_int_hook(ismaclabel, 0, name);
1869 }
1870 EXPORT_SYMBOL(security_ismaclabel);
1871
1872 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1873 {
1874         return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1875                                 seclen);
1876 }
1877 EXPORT_SYMBOL(security_secid_to_secctx);
1878
1879 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1880 {
1881         *secid = 0;
1882         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1883 }
1884 EXPORT_SYMBOL(security_secctx_to_secid);
1885
1886 void security_release_secctx(char *secdata, u32 seclen)
1887 {
1888         call_void_hook(release_secctx, secdata, seclen);
1889 }
1890 EXPORT_SYMBOL(security_release_secctx);
1891
1892 void security_inode_invalidate_secctx(struct inode *inode)
1893 {
1894         call_void_hook(inode_invalidate_secctx, inode);
1895 }
1896 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1897
1898 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1899 {
1900         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1901 }
1902 EXPORT_SYMBOL(security_inode_notifysecctx);
1903
1904 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1905 {
1906         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1907 }
1908 EXPORT_SYMBOL(security_inode_setsecctx);
1909
1910 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1911 {
1912         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1913 }
1914 EXPORT_SYMBOL(security_inode_getsecctx);
1915
1916 #ifdef CONFIG_SECURITY_NETWORK
1917
1918 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1919 {
1920         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1921 }
1922 EXPORT_SYMBOL(security_unix_stream_connect);
1923
1924 int security_unix_may_send(struct socket *sock,  struct socket *other)
1925 {
1926         return call_int_hook(unix_may_send, 0, sock, other);
1927 }
1928 EXPORT_SYMBOL(security_unix_may_send);
1929
1930 int security_socket_create(int family, int type, int protocol, int kern)
1931 {
1932         return call_int_hook(socket_create, 0, family, type, protocol, kern);
1933 }
1934
1935 int security_socket_post_create(struct socket *sock, int family,
1936                                 int type, int protocol, int kern)
1937 {
1938         return call_int_hook(socket_post_create, 0, sock, family, type,
1939                                                 protocol, kern);
1940 }
1941
1942 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1943 {
1944         return call_int_hook(socket_socketpair, 0, socka, sockb);
1945 }
1946 EXPORT_SYMBOL(security_socket_socketpair);
1947
1948 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1949 {
1950         return call_int_hook(socket_bind, 0, sock, address, addrlen);
1951 }
1952
1953 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1954 {
1955         return call_int_hook(socket_connect, 0, sock, address, addrlen);
1956 }
1957
1958 int security_socket_listen(struct socket *sock, int backlog)
1959 {
1960         return call_int_hook(socket_listen, 0, sock, backlog);
1961 }
1962
1963 int security_socket_accept(struct socket *sock, struct socket *newsock)
1964 {
1965         return call_int_hook(socket_accept, 0, sock, newsock);
1966 }
1967
1968 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1969 {
1970         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1971 }
1972
1973 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1974                             int size, int flags)
1975 {
1976         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1977 }
1978
1979 int security_socket_getsockname(struct socket *sock)
1980 {
1981         return call_int_hook(socket_getsockname, 0, sock);
1982 }
1983
1984 int security_socket_getpeername(struct socket *sock)
1985 {
1986         return call_int_hook(socket_getpeername, 0, sock);
1987 }
1988
1989 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1990 {
1991         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1992 }
1993
1994 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1995 {
1996         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1997 }
1998
1999 int security_socket_shutdown(struct socket *sock, int how)
2000 {
2001         return call_int_hook(socket_shutdown, 0, sock, how);
2002 }
2003
2004 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2005 {
2006         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2007 }
2008 EXPORT_SYMBOL(security_sock_rcv_skb);
2009
2010 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2011                                       int __user *optlen, unsigned len)
2012 {
2013         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2014                                 optval, optlen, len);
2015 }
2016
2017 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2018 {
2019         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2020                              skb, secid);
2021 }
2022 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2023
2024 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2025 {
2026         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2027 }
2028
2029 void security_sk_free(struct sock *sk)
2030 {
2031         call_void_hook(sk_free_security, sk);
2032 }
2033
2034 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2035 {
2036         call_void_hook(sk_clone_security, sk, newsk);
2037 }
2038 EXPORT_SYMBOL(security_sk_clone);
2039
2040 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2041 {
2042         call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2043 }
2044 EXPORT_SYMBOL(security_sk_classify_flow);
2045
2046 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2047 {
2048         call_void_hook(req_classify_flow, req, fl);
2049 }
2050 EXPORT_SYMBOL(security_req_classify_flow);
2051
2052 void security_sock_graft(struct sock *sk, struct socket *parent)
2053 {
2054         call_void_hook(sock_graft, sk, parent);
2055 }
2056 EXPORT_SYMBOL(security_sock_graft);
2057
2058 int security_inet_conn_request(struct sock *sk,
2059                         struct sk_buff *skb, struct request_sock *req)
2060 {
2061         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2062 }
2063 EXPORT_SYMBOL(security_inet_conn_request);
2064
2065 void security_inet_csk_clone(struct sock *newsk,
2066                         const struct request_sock *req)
2067 {
2068         call_void_hook(inet_csk_clone, newsk, req);
2069 }
2070
2071 void security_inet_conn_established(struct sock *sk,
2072                         struct sk_buff *skb)
2073 {
2074         call_void_hook(inet_conn_established, sk, skb);
2075 }
2076 EXPORT_SYMBOL(security_inet_conn_established);
2077
2078 int security_secmark_relabel_packet(u32 secid)
2079 {
2080         return call_int_hook(secmark_relabel_packet, 0, secid);
2081 }
2082 EXPORT_SYMBOL(security_secmark_relabel_packet);
2083
2084 void security_secmark_refcount_inc(void)
2085 {
2086         call_void_hook(secmark_refcount_inc);
2087 }
2088 EXPORT_SYMBOL(security_secmark_refcount_inc);
2089
2090 void security_secmark_refcount_dec(void)
2091 {
2092         call_void_hook(secmark_refcount_dec);
2093 }
2094 EXPORT_SYMBOL(security_secmark_refcount_dec);
2095
2096 int security_tun_dev_alloc_security(void **security)
2097 {
2098         return call_int_hook(tun_dev_alloc_security, 0, security);
2099 }
2100 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2101
2102 void security_tun_dev_free_security(void *security)
2103 {
2104         call_void_hook(tun_dev_free_security, security);
2105 }
2106 EXPORT_SYMBOL(security_tun_dev_free_security);
2107
2108 int security_tun_dev_create(void)
2109 {
2110         return call_int_hook(tun_dev_create, 0);
2111 }
2112 EXPORT_SYMBOL(security_tun_dev_create);
2113
2114 int security_tun_dev_attach_queue(void *security)
2115 {
2116         return call_int_hook(tun_dev_attach_queue, 0, security);
2117 }
2118 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2119
2120 int security_tun_dev_attach(struct sock *sk, void *security)
2121 {
2122         return call_int_hook(tun_dev_attach, 0, sk, security);
2123 }
2124 EXPORT_SYMBOL(security_tun_dev_attach);
2125
2126 int security_tun_dev_open(void *security)
2127 {
2128         return call_int_hook(tun_dev_open, 0, security);
2129 }
2130 EXPORT_SYMBOL(security_tun_dev_open);
2131
2132 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2133 {
2134         return call_int_hook(sctp_assoc_request, 0, ep, skb);
2135 }
2136 EXPORT_SYMBOL(security_sctp_assoc_request);
2137
2138 int security_sctp_bind_connect(struct sock *sk, int optname,
2139                                struct sockaddr *address, int addrlen)
2140 {
2141         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2142                              address, addrlen);
2143 }
2144 EXPORT_SYMBOL(security_sctp_bind_connect);
2145
2146 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2147                             struct sock *newsk)
2148 {
2149         call_void_hook(sctp_sk_clone, ep, sk, newsk);
2150 }
2151 EXPORT_SYMBOL(security_sctp_sk_clone);
2152
2153 #endif  /* CONFIG_SECURITY_NETWORK */
2154
2155 #ifdef CONFIG_SECURITY_INFINIBAND
2156
2157 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2158 {
2159         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2160 }
2161 EXPORT_SYMBOL(security_ib_pkey_access);
2162
2163 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2164 {
2165         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2166 }
2167 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2168
2169 int security_ib_alloc_security(void **sec)
2170 {
2171         return call_int_hook(ib_alloc_security, 0, sec);
2172 }
2173 EXPORT_SYMBOL(security_ib_alloc_security);
2174
2175 void security_ib_free_security(void *sec)
2176 {
2177         call_void_hook(ib_free_security, sec);
2178 }
2179 EXPORT_SYMBOL(security_ib_free_security);
2180 #endif  /* CONFIG_SECURITY_INFINIBAND */
2181
2182 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2183
2184 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2185                                struct xfrm_user_sec_ctx *sec_ctx,
2186                                gfp_t gfp)
2187 {
2188         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2189 }
2190 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2191
2192 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2193                               struct xfrm_sec_ctx **new_ctxp)
2194 {
2195         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2196 }
2197
2198 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2199 {
2200         call_void_hook(xfrm_policy_free_security, ctx);
2201 }
2202 EXPORT_SYMBOL(security_xfrm_policy_free);
2203
2204 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2205 {
2206         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2207 }
2208
2209 int security_xfrm_state_alloc(struct xfrm_state *x,
2210                               struct xfrm_user_sec_ctx *sec_ctx)
2211 {
2212         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2213 }
2214 EXPORT_SYMBOL(security_xfrm_state_alloc);
2215
2216 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2217                                       struct xfrm_sec_ctx *polsec, u32 secid)
2218 {
2219         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2220 }
2221
2222 int security_xfrm_state_delete(struct xfrm_state *x)
2223 {
2224         return call_int_hook(xfrm_state_delete_security, 0, x);
2225 }
2226 EXPORT_SYMBOL(security_xfrm_state_delete);
2227
2228 void security_xfrm_state_free(struct xfrm_state *x)
2229 {
2230         call_void_hook(xfrm_state_free_security, x);
2231 }
2232
2233 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2234 {
2235         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2236 }
2237
2238 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2239                                        struct xfrm_policy *xp,
2240                                        const struct flowi *fl)
2241 {
2242         struct security_hook_list *hp;
2243         int rc = 1;
2244
2245         /*
2246          * Since this function is expected to return 0 or 1, the judgment
2247          * becomes difficult if multiple LSMs supply this call. Fortunately,
2248          * we can use the first LSM's judgment because currently only SELinux
2249          * supplies this call.
2250          *
2251          * For speed optimization, we explicitly break the loop rather than
2252          * using the macro
2253          */
2254         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2255                                 list) {
2256                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2257                 break;
2258         }
2259         return rc;
2260 }
2261
2262 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2263 {
2264         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2265 }
2266
2267 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2268 {
2269         int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2270                                 0);
2271
2272         BUG_ON(rc);
2273 }
2274 EXPORT_SYMBOL(security_skb_classify_flow);
2275
2276 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2277
2278 #ifdef CONFIG_KEYS
2279
2280 int security_key_alloc(struct key *key, const struct cred *cred,
2281                        unsigned long flags)
2282 {
2283         return call_int_hook(key_alloc, 0, key, cred, flags);
2284 }
2285
2286 void security_key_free(struct key *key)
2287 {
2288         call_void_hook(key_free, key);
2289 }
2290
2291 int security_key_permission(key_ref_t key_ref,
2292                             const struct cred *cred, unsigned perm)
2293 {
2294         return call_int_hook(key_permission, 0, key_ref, cred, perm);
2295 }
2296
2297 int security_key_getsecurity(struct key *key, char **_buffer)
2298 {
2299         *_buffer = NULL;
2300         return call_int_hook(key_getsecurity, 0, key, _buffer);
2301 }
2302
2303 #endif  /* CONFIG_KEYS */
2304
2305 #ifdef CONFIG_AUDIT
2306
2307 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2308 {
2309         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2310 }
2311
2312 int security_audit_rule_known(struct audit_krule *krule)
2313 {
2314         return call_int_hook(audit_rule_known, 0, krule);
2315 }
2316
2317 void security_audit_rule_free(void *lsmrule)
2318 {
2319         call_void_hook(audit_rule_free, lsmrule);
2320 }
2321
2322 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2323 {
2324         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2325 }
2326 #endif /* CONFIG_AUDIT */
2327
2328 #ifdef CONFIG_BPF_SYSCALL
2329 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2330 {
2331         return call_int_hook(bpf, 0, cmd, attr, size);
2332 }
2333 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2334 {
2335         return call_int_hook(bpf_map, 0, map, fmode);
2336 }
2337 int security_bpf_prog(struct bpf_prog *prog)
2338 {
2339         return call_int_hook(bpf_prog, 0, prog);
2340 }
2341 int security_bpf_map_alloc(struct bpf_map *map)
2342 {
2343         return call_int_hook(bpf_map_alloc_security, 0, map);
2344 }
2345 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2346 {
2347         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2348 }
2349 void security_bpf_map_free(struct bpf_map *map)
2350 {
2351         call_void_hook(bpf_map_free_security, map);
2352 }
2353 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2354 {
2355         call_void_hook(bpf_prog_free_security, aux);
2356 }
2357 #endif /* CONFIG_BPF_SYSCALL */