Merge tag 'block-5.9-2020-09-22' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31
32 #define MAX_LSM_EVM_XATTR       2
33
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36
37 /*
38  * These are descriptions of the reasons that can be passed to the
39  * security_locked_down() LSM hook. Placing this array here allows
40  * all security modules to use the same descriptions for auditing
41  * purposes.
42  */
43 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
44         [LOCKDOWN_NONE] = "none",
45         [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
46         [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
47         [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
48         [LOCKDOWN_KEXEC] = "kexec of unsigned images",
49         [LOCKDOWN_HIBERNATION] = "hibernation",
50         [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
51         [LOCKDOWN_IOPORT] = "raw io port access",
52         [LOCKDOWN_MSR] = "raw MSR access",
53         [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
54         [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
55         [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
56         [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
57         [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
58         [LOCKDOWN_DEBUGFS] = "debugfs access",
59         [LOCKDOWN_XMON_WR] = "xmon write access",
60         [LOCKDOWN_INTEGRITY_MAX] = "integrity",
61         [LOCKDOWN_KCORE] = "/proc/kcore access",
62         [LOCKDOWN_KPROBES] = "use of kprobes",
63         [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
64         [LOCKDOWN_PERF] = "unsafe use of perf",
65         [LOCKDOWN_TRACEFS] = "use of tracefs",
66         [LOCKDOWN_XMON_RW] = "xmon read and write access",
67         [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
68 };
69
70 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
71 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
72
73 static struct kmem_cache *lsm_file_cache;
74 static struct kmem_cache *lsm_inode_cache;
75
76 char *lsm_names;
77 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
78
79 /* Boot-time LSM user choice */
80 static __initdata const char *chosen_lsm_order;
81 static __initdata const char *chosen_major_lsm;
82
83 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
84
85 /* Ordered list of LSMs to initialize. */
86 static __initdata struct lsm_info **ordered_lsms;
87 static __initdata struct lsm_info *exclusive;
88
89 static __initdata bool debug;
90 #define init_debug(...)                                         \
91         do {                                                    \
92                 if (debug)                                      \
93                         pr_info(__VA_ARGS__);                   \
94         } while (0)
95
96 static bool __init is_enabled(struct lsm_info *lsm)
97 {
98         if (!lsm->enabled)
99                 return false;
100
101         return *lsm->enabled;
102 }
103
104 /* Mark an LSM's enabled flag. */
105 static int lsm_enabled_true __initdata = 1;
106 static int lsm_enabled_false __initdata = 0;
107 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
108 {
109         /*
110          * When an LSM hasn't configured an enable variable, we can use
111          * a hard-coded location for storing the default enabled state.
112          */
113         if (!lsm->enabled) {
114                 if (enabled)
115                         lsm->enabled = &lsm_enabled_true;
116                 else
117                         lsm->enabled = &lsm_enabled_false;
118         } else if (lsm->enabled == &lsm_enabled_true) {
119                 if (!enabled)
120                         lsm->enabled = &lsm_enabled_false;
121         } else if (lsm->enabled == &lsm_enabled_false) {
122                 if (enabled)
123                         lsm->enabled = &lsm_enabled_true;
124         } else {
125                 *lsm->enabled = enabled;
126         }
127 }
128
129 /* Is an LSM already listed in the ordered LSMs list? */
130 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
131 {
132         struct lsm_info **check;
133
134         for (check = ordered_lsms; *check; check++)
135                 if (*check == lsm)
136                         return true;
137
138         return false;
139 }
140
141 /* Append an LSM to the list of ordered LSMs to initialize. */
142 static int last_lsm __initdata;
143 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
144 {
145         /* Ignore duplicate selections. */
146         if (exists_ordered_lsm(lsm))
147                 return;
148
149         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
150                 return;
151
152         /* Enable this LSM, if it is not already set. */
153         if (!lsm->enabled)
154                 lsm->enabled = &lsm_enabled_true;
155         ordered_lsms[last_lsm++] = lsm;
156
157         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
158                    is_enabled(lsm) ? "en" : "dis");
159 }
160
161 /* Is an LSM allowed to be initialized? */
162 static bool __init lsm_allowed(struct lsm_info *lsm)
163 {
164         /* Skip if the LSM is disabled. */
165         if (!is_enabled(lsm))
166                 return false;
167
168         /* Not allowed if another exclusive LSM already initialized. */
169         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
170                 init_debug("exclusive disabled: %s\n", lsm->name);
171                 return false;
172         }
173
174         return true;
175 }
176
177 static void __init lsm_set_blob_size(int *need, int *lbs)
178 {
179         int offset;
180
181         if (*need > 0) {
182                 offset = *lbs;
183                 *lbs += *need;
184                 *need = offset;
185         }
186 }
187
188 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
189 {
190         if (!needed)
191                 return;
192
193         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
194         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
195         /*
196          * The inode blob gets an rcu_head in addition to
197          * what the modules might need.
198          */
199         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
200                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
201         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
202         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
203         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
204         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
205 }
206
207 /* Prepare LSM for initialization. */
208 static void __init prepare_lsm(struct lsm_info *lsm)
209 {
210         int enabled = lsm_allowed(lsm);
211
212         /* Record enablement (to handle any following exclusive LSMs). */
213         set_enabled(lsm, enabled);
214
215         /* If enabled, do pre-initialization work. */
216         if (enabled) {
217                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
218                         exclusive = lsm;
219                         init_debug("exclusive chosen: %s\n", lsm->name);
220                 }
221
222                 lsm_set_blob_sizes(lsm->blobs);
223         }
224 }
225
226 /* Initialize a given LSM, if it is enabled. */
227 static void __init initialize_lsm(struct lsm_info *lsm)
228 {
229         if (is_enabled(lsm)) {
230                 int ret;
231
232                 init_debug("initializing %s\n", lsm->name);
233                 ret = lsm->init();
234                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
235         }
236 }
237
238 /* Populate ordered LSMs list from comma-separated LSM name list. */
239 static void __init ordered_lsm_parse(const char *order, const char *origin)
240 {
241         struct lsm_info *lsm;
242         char *sep, *name, *next;
243
244         /* LSM_ORDER_FIRST is always first. */
245         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246                 if (lsm->order == LSM_ORDER_FIRST)
247                         append_ordered_lsm(lsm, "first");
248         }
249
250         /* Process "security=", if given. */
251         if (chosen_major_lsm) {
252                 struct lsm_info *major;
253
254                 /*
255                  * To match the original "security=" behavior, this
256                  * explicitly does NOT fallback to another Legacy Major
257                  * if the selected one was separately disabled: disable
258                  * all non-matching Legacy Major LSMs.
259                  */
260                 for (major = __start_lsm_info; major < __end_lsm_info;
261                      major++) {
262                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
263                             strcmp(major->name, chosen_major_lsm) != 0) {
264                                 set_enabled(major, false);
265                                 init_debug("security=%s disabled: %s\n",
266                                            chosen_major_lsm, major->name);
267                         }
268                 }
269         }
270
271         sep = kstrdup(order, GFP_KERNEL);
272         next = sep;
273         /* Walk the list, looking for matching LSMs. */
274         while ((name = strsep(&next, ",")) != NULL) {
275                 bool found = false;
276
277                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
278                         if (lsm->order == LSM_ORDER_MUTABLE &&
279                             strcmp(lsm->name, name) == 0) {
280                                 append_ordered_lsm(lsm, origin);
281                                 found = true;
282                         }
283                 }
284
285                 if (!found)
286                         init_debug("%s ignored: %s\n", origin, name);
287         }
288
289         /* Process "security=", if given. */
290         if (chosen_major_lsm) {
291                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
292                         if (exists_ordered_lsm(lsm))
293                                 continue;
294                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
295                                 append_ordered_lsm(lsm, "security=");
296                 }
297         }
298
299         /* Disable all LSMs not in the ordered list. */
300         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
301                 if (exists_ordered_lsm(lsm))
302                         continue;
303                 set_enabled(lsm, false);
304                 init_debug("%s disabled: %s\n", origin, lsm->name);
305         }
306
307         kfree(sep);
308 }
309
310 static void __init lsm_early_cred(struct cred *cred);
311 static void __init lsm_early_task(struct task_struct *task);
312
313 static int lsm_append(const char *new, char **result);
314
315 static void __init ordered_lsm_init(void)
316 {
317         struct lsm_info **lsm;
318
319         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
320                                 GFP_KERNEL);
321
322         if (chosen_lsm_order) {
323                 if (chosen_major_lsm) {
324                         pr_info("security= is ignored because it is superseded by lsm=\n");
325                         chosen_major_lsm = NULL;
326                 }
327                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
328         } else
329                 ordered_lsm_parse(builtin_lsm_order, "builtin");
330
331         for (lsm = ordered_lsms; *lsm; lsm++)
332                 prepare_lsm(*lsm);
333
334         init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
335         init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
336         init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
337         init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
338         init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
339         init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
340
341         /*
342          * Create any kmem_caches needed for blobs
343          */
344         if (blob_sizes.lbs_file)
345                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
346                                                    blob_sizes.lbs_file, 0,
347                                                    SLAB_PANIC, NULL);
348         if (blob_sizes.lbs_inode)
349                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
350                                                     blob_sizes.lbs_inode, 0,
351                                                     SLAB_PANIC, NULL);
352
353         lsm_early_cred((struct cred *) current->cred);
354         lsm_early_task(current);
355         for (lsm = ordered_lsms; *lsm; lsm++)
356                 initialize_lsm(*lsm);
357
358         kfree(ordered_lsms);
359 }
360
361 int __init early_security_init(void)
362 {
363         int i;
364         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
365         struct lsm_info *lsm;
366
367         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
368              i++)
369                 INIT_HLIST_HEAD(&list[i]);
370
371         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
372                 if (!lsm->enabled)
373                         lsm->enabled = &lsm_enabled_true;
374                 prepare_lsm(lsm);
375                 initialize_lsm(lsm);
376         }
377
378         return 0;
379 }
380
381 /**
382  * security_init - initializes the security framework
383  *
384  * This should be called early in the kernel initialization sequence.
385  */
386 int __init security_init(void)
387 {
388         struct lsm_info *lsm;
389
390         pr_info("Security Framework initializing\n");
391
392         /*
393          * Append the names of the early LSM modules now that kmalloc() is
394          * available
395          */
396         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
397                 if (lsm->enabled)
398                         lsm_append(lsm->name, &lsm_names);
399         }
400
401         /* Load LSMs in specified order. */
402         ordered_lsm_init();
403
404         return 0;
405 }
406
407 /* Save user chosen LSM */
408 static int __init choose_major_lsm(char *str)
409 {
410         chosen_major_lsm = str;
411         return 1;
412 }
413 __setup("security=", choose_major_lsm);
414
415 /* Explicitly choose LSM initialization order. */
416 static int __init choose_lsm_order(char *str)
417 {
418         chosen_lsm_order = str;
419         return 1;
420 }
421 __setup("lsm=", choose_lsm_order);
422
423 /* Enable LSM order debugging. */
424 static int __init enable_debug(char *str)
425 {
426         debug = true;
427         return 1;
428 }
429 __setup("lsm.debug", enable_debug);
430
431 static bool match_last_lsm(const char *list, const char *lsm)
432 {
433         const char *last;
434
435         if (WARN_ON(!list || !lsm))
436                 return false;
437         last = strrchr(list, ',');
438         if (last)
439                 /* Pass the comma, strcmp() will check for '\0' */
440                 last++;
441         else
442                 last = list;
443         return !strcmp(last, lsm);
444 }
445
446 static int lsm_append(const char *new, char **result)
447 {
448         char *cp;
449
450         if (*result == NULL) {
451                 *result = kstrdup(new, GFP_KERNEL);
452                 if (*result == NULL)
453                         return -ENOMEM;
454         } else {
455                 /* Check if it is the last registered name */
456                 if (match_last_lsm(*result, new))
457                         return 0;
458                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
459                 if (cp == NULL)
460                         return -ENOMEM;
461                 kfree(*result);
462                 *result = cp;
463         }
464         return 0;
465 }
466
467 /**
468  * security_add_hooks - Add a modules hooks to the hook lists.
469  * @hooks: the hooks to add
470  * @count: the number of hooks to add
471  * @lsm: the name of the security module
472  *
473  * Each LSM has to register its hooks with the infrastructure.
474  */
475 void __init security_add_hooks(struct security_hook_list *hooks, int count,
476                                 char *lsm)
477 {
478         int i;
479
480         for (i = 0; i < count; i++) {
481                 hooks[i].lsm = lsm;
482                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
483         }
484
485         /*
486          * Don't try to append during early_security_init(), we'll come back
487          * and fix this up afterwards.
488          */
489         if (slab_is_available()) {
490                 if (lsm_append(lsm, &lsm_names) < 0)
491                         panic("%s - Cannot get early memory.\n", __func__);
492         }
493 }
494
495 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
496 {
497         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
498                                             event, data);
499 }
500 EXPORT_SYMBOL(call_blocking_lsm_notifier);
501
502 int register_blocking_lsm_notifier(struct notifier_block *nb)
503 {
504         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
505                                                 nb);
506 }
507 EXPORT_SYMBOL(register_blocking_lsm_notifier);
508
509 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
510 {
511         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
512                                                   nb);
513 }
514 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
515
516 /**
517  * lsm_cred_alloc - allocate a composite cred blob
518  * @cred: the cred that needs a blob
519  * @gfp: allocation type
520  *
521  * Allocate the cred blob for all the modules
522  *
523  * Returns 0, or -ENOMEM if memory can't be allocated.
524  */
525 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
526 {
527         if (blob_sizes.lbs_cred == 0) {
528                 cred->security = NULL;
529                 return 0;
530         }
531
532         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
533         if (cred->security == NULL)
534                 return -ENOMEM;
535         return 0;
536 }
537
538 /**
539  * lsm_early_cred - during initialization allocate a composite cred blob
540  * @cred: the cred that needs a blob
541  *
542  * Allocate the cred blob for all the modules
543  */
544 static void __init lsm_early_cred(struct cred *cred)
545 {
546         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
547
548         if (rc)
549                 panic("%s: Early cred alloc failed.\n", __func__);
550 }
551
552 /**
553  * lsm_file_alloc - allocate a composite file blob
554  * @file: the file that needs a blob
555  *
556  * Allocate the file blob for all the modules
557  *
558  * Returns 0, or -ENOMEM if memory can't be allocated.
559  */
560 static int lsm_file_alloc(struct file *file)
561 {
562         if (!lsm_file_cache) {
563                 file->f_security = NULL;
564                 return 0;
565         }
566
567         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
568         if (file->f_security == NULL)
569                 return -ENOMEM;
570         return 0;
571 }
572
573 /**
574  * lsm_inode_alloc - allocate a composite inode blob
575  * @inode: the inode that needs a blob
576  *
577  * Allocate the inode blob for all the modules
578  *
579  * Returns 0, or -ENOMEM if memory can't be allocated.
580  */
581 int lsm_inode_alloc(struct inode *inode)
582 {
583         if (!lsm_inode_cache) {
584                 inode->i_security = NULL;
585                 return 0;
586         }
587
588         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
589         if (inode->i_security == NULL)
590                 return -ENOMEM;
591         return 0;
592 }
593
594 /**
595  * lsm_task_alloc - allocate a composite task blob
596  * @task: the task that needs a blob
597  *
598  * Allocate the task blob for all the modules
599  *
600  * Returns 0, or -ENOMEM if memory can't be allocated.
601  */
602 static int lsm_task_alloc(struct task_struct *task)
603 {
604         if (blob_sizes.lbs_task == 0) {
605                 task->security = NULL;
606                 return 0;
607         }
608
609         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
610         if (task->security == NULL)
611                 return -ENOMEM;
612         return 0;
613 }
614
615 /**
616  * lsm_ipc_alloc - allocate a composite ipc blob
617  * @kip: the ipc that needs a blob
618  *
619  * Allocate the ipc blob for all the modules
620  *
621  * Returns 0, or -ENOMEM if memory can't be allocated.
622  */
623 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
624 {
625         if (blob_sizes.lbs_ipc == 0) {
626                 kip->security = NULL;
627                 return 0;
628         }
629
630         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
631         if (kip->security == NULL)
632                 return -ENOMEM;
633         return 0;
634 }
635
636 /**
637  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
638  * @mp: the msg_msg that needs a blob
639  *
640  * Allocate the ipc blob for all the modules
641  *
642  * Returns 0, or -ENOMEM if memory can't be allocated.
643  */
644 static int lsm_msg_msg_alloc(struct msg_msg *mp)
645 {
646         if (blob_sizes.lbs_msg_msg == 0) {
647                 mp->security = NULL;
648                 return 0;
649         }
650
651         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
652         if (mp->security == NULL)
653                 return -ENOMEM;
654         return 0;
655 }
656
657 /**
658  * lsm_early_task - during initialization allocate a composite task blob
659  * @task: the task that needs a blob
660  *
661  * Allocate the task blob for all the modules
662  */
663 static void __init lsm_early_task(struct task_struct *task)
664 {
665         int rc = lsm_task_alloc(task);
666
667         if (rc)
668                 panic("%s: Early task alloc failed.\n", __func__);
669 }
670
671 /*
672  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
673  * can be accessed with:
674  *
675  *      LSM_RET_DEFAULT(<hook_name>)
676  *
677  * The macros below define static constants for the default value of each
678  * LSM hook.
679  */
680 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
681 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
682 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
683         static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
684 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
685         DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
686
687 #include <linux/lsm_hook_defs.h>
688 #undef LSM_HOOK
689
690 /*
691  * Hook list operation macros.
692  *
693  * call_void_hook:
694  *      This is a hook that does not return a value.
695  *
696  * call_int_hook:
697  *      This is a hook that returns a value.
698  */
699
700 #define call_void_hook(FUNC, ...)                               \
701         do {                                                    \
702                 struct security_hook_list *P;                   \
703                                                                 \
704                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
705                         P->hook.FUNC(__VA_ARGS__);              \
706         } while (0)
707
708 #define call_int_hook(FUNC, IRC, ...) ({                        \
709         int RC = IRC;                                           \
710         do {                                                    \
711                 struct security_hook_list *P;                   \
712                                                                 \
713                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
714                         RC = P->hook.FUNC(__VA_ARGS__);         \
715                         if (RC != 0)                            \
716                                 break;                          \
717                 }                                               \
718         } while (0);                                            \
719         RC;                                                     \
720 })
721
722 /* Security operations */
723
724 int security_binder_set_context_mgr(struct task_struct *mgr)
725 {
726         return call_int_hook(binder_set_context_mgr, 0, mgr);
727 }
728
729 int security_binder_transaction(struct task_struct *from,
730                                 struct task_struct *to)
731 {
732         return call_int_hook(binder_transaction, 0, from, to);
733 }
734
735 int security_binder_transfer_binder(struct task_struct *from,
736                                     struct task_struct *to)
737 {
738         return call_int_hook(binder_transfer_binder, 0, from, to);
739 }
740
741 int security_binder_transfer_file(struct task_struct *from,
742                                   struct task_struct *to, struct file *file)
743 {
744         return call_int_hook(binder_transfer_file, 0, from, to, file);
745 }
746
747 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
748 {
749         return call_int_hook(ptrace_access_check, 0, child, mode);
750 }
751
752 int security_ptrace_traceme(struct task_struct *parent)
753 {
754         return call_int_hook(ptrace_traceme, 0, parent);
755 }
756
757 int security_capget(struct task_struct *target,
758                      kernel_cap_t *effective,
759                      kernel_cap_t *inheritable,
760                      kernel_cap_t *permitted)
761 {
762         return call_int_hook(capget, 0, target,
763                                 effective, inheritable, permitted);
764 }
765
766 int security_capset(struct cred *new, const struct cred *old,
767                     const kernel_cap_t *effective,
768                     const kernel_cap_t *inheritable,
769                     const kernel_cap_t *permitted)
770 {
771         return call_int_hook(capset, 0, new, old,
772                                 effective, inheritable, permitted);
773 }
774
775 int security_capable(const struct cred *cred,
776                      struct user_namespace *ns,
777                      int cap,
778                      unsigned int opts)
779 {
780         return call_int_hook(capable, 0, cred, ns, cap, opts);
781 }
782
783 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
784 {
785         return call_int_hook(quotactl, 0, cmds, type, id, sb);
786 }
787
788 int security_quota_on(struct dentry *dentry)
789 {
790         return call_int_hook(quota_on, 0, dentry);
791 }
792
793 int security_syslog(int type)
794 {
795         return call_int_hook(syslog, 0, type);
796 }
797
798 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
799 {
800         return call_int_hook(settime, 0, ts, tz);
801 }
802
803 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
804 {
805         struct security_hook_list *hp;
806         int cap_sys_admin = 1;
807         int rc;
808
809         /*
810          * The module will respond with a positive value if
811          * it thinks the __vm_enough_memory() call should be
812          * made with the cap_sys_admin set. If all of the modules
813          * agree that it should be set it will. If any module
814          * thinks it should not be set it won't.
815          */
816         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
817                 rc = hp->hook.vm_enough_memory(mm, pages);
818                 if (rc <= 0) {
819                         cap_sys_admin = 0;
820                         break;
821                 }
822         }
823         return __vm_enough_memory(mm, pages, cap_sys_admin);
824 }
825
826 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
827 {
828         return call_int_hook(bprm_creds_for_exec, 0, bprm);
829 }
830
831 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
832 {
833         return call_int_hook(bprm_creds_from_file, 0, bprm, file);
834 }
835
836 int security_bprm_check(struct linux_binprm *bprm)
837 {
838         int ret;
839
840         ret = call_int_hook(bprm_check_security, 0, bprm);
841         if (ret)
842                 return ret;
843         return ima_bprm_check(bprm);
844 }
845
846 void security_bprm_committing_creds(struct linux_binprm *bprm)
847 {
848         call_void_hook(bprm_committing_creds, bprm);
849 }
850
851 void security_bprm_committed_creds(struct linux_binprm *bprm)
852 {
853         call_void_hook(bprm_committed_creds, bprm);
854 }
855
856 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
857 {
858         return call_int_hook(fs_context_dup, 0, fc, src_fc);
859 }
860
861 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
862 {
863         return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
864 }
865
866 int security_sb_alloc(struct super_block *sb)
867 {
868         return call_int_hook(sb_alloc_security, 0, sb);
869 }
870
871 void security_sb_free(struct super_block *sb)
872 {
873         call_void_hook(sb_free_security, sb);
874 }
875
876 void security_free_mnt_opts(void **mnt_opts)
877 {
878         if (!*mnt_opts)
879                 return;
880         call_void_hook(sb_free_mnt_opts, *mnt_opts);
881         *mnt_opts = NULL;
882 }
883 EXPORT_SYMBOL(security_free_mnt_opts);
884
885 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
886 {
887         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
888 }
889 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
890
891 int security_sb_remount(struct super_block *sb,
892                         void *mnt_opts)
893 {
894         return call_int_hook(sb_remount, 0, sb, mnt_opts);
895 }
896 EXPORT_SYMBOL(security_sb_remount);
897
898 int security_sb_kern_mount(struct super_block *sb)
899 {
900         return call_int_hook(sb_kern_mount, 0, sb);
901 }
902
903 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
904 {
905         return call_int_hook(sb_show_options, 0, m, sb);
906 }
907
908 int security_sb_statfs(struct dentry *dentry)
909 {
910         return call_int_hook(sb_statfs, 0, dentry);
911 }
912
913 int security_sb_mount(const char *dev_name, const struct path *path,
914                        const char *type, unsigned long flags, void *data)
915 {
916         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
917 }
918
919 int security_sb_umount(struct vfsmount *mnt, int flags)
920 {
921         return call_int_hook(sb_umount, 0, mnt, flags);
922 }
923
924 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
925 {
926         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
927 }
928
929 int security_sb_set_mnt_opts(struct super_block *sb,
930                                 void *mnt_opts,
931                                 unsigned long kern_flags,
932                                 unsigned long *set_kern_flags)
933 {
934         return call_int_hook(sb_set_mnt_opts,
935                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
936                                 mnt_opts, kern_flags, set_kern_flags);
937 }
938 EXPORT_SYMBOL(security_sb_set_mnt_opts);
939
940 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
941                                 struct super_block *newsb,
942                                 unsigned long kern_flags,
943                                 unsigned long *set_kern_flags)
944 {
945         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
946                                 kern_flags, set_kern_flags);
947 }
948 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
949
950 int security_add_mnt_opt(const char *option, const char *val, int len,
951                          void **mnt_opts)
952 {
953         return call_int_hook(sb_add_mnt_opt, -EINVAL,
954                                         option, val, len, mnt_opts);
955 }
956 EXPORT_SYMBOL(security_add_mnt_opt);
957
958 int security_move_mount(const struct path *from_path, const struct path *to_path)
959 {
960         return call_int_hook(move_mount, 0, from_path, to_path);
961 }
962
963 int security_path_notify(const struct path *path, u64 mask,
964                                 unsigned int obj_type)
965 {
966         return call_int_hook(path_notify, 0, path, mask, obj_type);
967 }
968
969 int security_inode_alloc(struct inode *inode)
970 {
971         int rc = lsm_inode_alloc(inode);
972
973         if (unlikely(rc))
974                 return rc;
975         rc = call_int_hook(inode_alloc_security, 0, inode);
976         if (unlikely(rc))
977                 security_inode_free(inode);
978         return rc;
979 }
980
981 static void inode_free_by_rcu(struct rcu_head *head)
982 {
983         /*
984          * The rcu head is at the start of the inode blob
985          */
986         kmem_cache_free(lsm_inode_cache, head);
987 }
988
989 void security_inode_free(struct inode *inode)
990 {
991         integrity_inode_free(inode);
992         call_void_hook(inode_free_security, inode);
993         /*
994          * The inode may still be referenced in a path walk and
995          * a call to security_inode_permission() can be made
996          * after inode_free_security() is called. Ideally, the VFS
997          * wouldn't do this, but fixing that is a much harder
998          * job. For now, simply free the i_security via RCU, and
999          * leave the current inode->i_security pointer intact.
1000          * The inode will be freed after the RCU grace period too.
1001          */
1002         if (inode->i_security)
1003                 call_rcu((struct rcu_head *)inode->i_security,
1004                                 inode_free_by_rcu);
1005 }
1006
1007 int security_dentry_init_security(struct dentry *dentry, int mode,
1008                                         const struct qstr *name, void **ctx,
1009                                         u32 *ctxlen)
1010 {
1011         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1012                                 name, ctx, ctxlen);
1013 }
1014 EXPORT_SYMBOL(security_dentry_init_security);
1015
1016 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1017                                     struct qstr *name,
1018                                     const struct cred *old, struct cred *new)
1019 {
1020         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1021                                 name, old, new);
1022 }
1023 EXPORT_SYMBOL(security_dentry_create_files_as);
1024
1025 int security_inode_init_security(struct inode *inode, struct inode *dir,
1026                                  const struct qstr *qstr,
1027                                  const initxattrs initxattrs, void *fs_data)
1028 {
1029         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1030         struct xattr *lsm_xattr, *evm_xattr, *xattr;
1031         int ret;
1032
1033         if (unlikely(IS_PRIVATE(inode)))
1034                 return 0;
1035
1036         if (!initxattrs)
1037                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1038                                      dir, qstr, NULL, NULL, NULL);
1039         memset(new_xattrs, 0, sizeof(new_xattrs));
1040         lsm_xattr = new_xattrs;
1041         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1042                                                 &lsm_xattr->name,
1043                                                 &lsm_xattr->value,
1044                                                 &lsm_xattr->value_len);
1045         if (ret)
1046                 goto out;
1047
1048         evm_xattr = lsm_xattr + 1;
1049         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1050         if (ret)
1051                 goto out;
1052         ret = initxattrs(inode, new_xattrs, fs_data);
1053 out:
1054         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1055                 kfree(xattr->value);
1056         return (ret == -EOPNOTSUPP) ? 0 : ret;
1057 }
1058 EXPORT_SYMBOL(security_inode_init_security);
1059
1060 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1061                                      const struct qstr *qstr, const char **name,
1062                                      void **value, size_t *len)
1063 {
1064         if (unlikely(IS_PRIVATE(inode)))
1065                 return -EOPNOTSUPP;
1066         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1067                              qstr, name, value, len);
1068 }
1069 EXPORT_SYMBOL(security_old_inode_init_security);
1070
1071 #ifdef CONFIG_SECURITY_PATH
1072 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1073                         unsigned int dev)
1074 {
1075         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1076                 return 0;
1077         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1078 }
1079 EXPORT_SYMBOL(security_path_mknod);
1080
1081 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1082 {
1083         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1084                 return 0;
1085         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1086 }
1087 EXPORT_SYMBOL(security_path_mkdir);
1088
1089 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1090 {
1091         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1092                 return 0;
1093         return call_int_hook(path_rmdir, 0, dir, dentry);
1094 }
1095
1096 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1097 {
1098         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1099                 return 0;
1100         return call_int_hook(path_unlink, 0, dir, dentry);
1101 }
1102 EXPORT_SYMBOL(security_path_unlink);
1103
1104 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1105                           const char *old_name)
1106 {
1107         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1108                 return 0;
1109         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1110 }
1111
1112 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1113                        struct dentry *new_dentry)
1114 {
1115         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1116                 return 0;
1117         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1118 }
1119
1120 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1121                          const struct path *new_dir, struct dentry *new_dentry,
1122                          unsigned int flags)
1123 {
1124         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1125                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1126                 return 0;
1127
1128         if (flags & RENAME_EXCHANGE) {
1129                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1130                                         old_dir, old_dentry);
1131                 if (err)
1132                         return err;
1133         }
1134
1135         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1136                                 new_dentry);
1137 }
1138 EXPORT_SYMBOL(security_path_rename);
1139
1140 int security_path_truncate(const struct path *path)
1141 {
1142         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1143                 return 0;
1144         return call_int_hook(path_truncate, 0, path);
1145 }
1146
1147 int security_path_chmod(const struct path *path, umode_t mode)
1148 {
1149         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1150                 return 0;
1151         return call_int_hook(path_chmod, 0, path, mode);
1152 }
1153
1154 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1155 {
1156         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1157                 return 0;
1158         return call_int_hook(path_chown, 0, path, uid, gid);
1159 }
1160
1161 int security_path_chroot(const struct path *path)
1162 {
1163         return call_int_hook(path_chroot, 0, path);
1164 }
1165 #endif
1166
1167 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1168 {
1169         if (unlikely(IS_PRIVATE(dir)))
1170                 return 0;
1171         return call_int_hook(inode_create, 0, dir, dentry, mode);
1172 }
1173 EXPORT_SYMBOL_GPL(security_inode_create);
1174
1175 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1176                          struct dentry *new_dentry)
1177 {
1178         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1179                 return 0;
1180         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1181 }
1182
1183 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1184 {
1185         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186                 return 0;
1187         return call_int_hook(inode_unlink, 0, dir, dentry);
1188 }
1189
1190 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1191                             const char *old_name)
1192 {
1193         if (unlikely(IS_PRIVATE(dir)))
1194                 return 0;
1195         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1196 }
1197
1198 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1199 {
1200         if (unlikely(IS_PRIVATE(dir)))
1201                 return 0;
1202         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1203 }
1204 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1205
1206 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1207 {
1208         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1209                 return 0;
1210         return call_int_hook(inode_rmdir, 0, dir, dentry);
1211 }
1212
1213 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1214 {
1215         if (unlikely(IS_PRIVATE(dir)))
1216                 return 0;
1217         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1218 }
1219
1220 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1221                            struct inode *new_dir, struct dentry *new_dentry,
1222                            unsigned int flags)
1223 {
1224         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1225             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1226                 return 0;
1227
1228         if (flags & RENAME_EXCHANGE) {
1229                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1230                                                      old_dir, old_dentry);
1231                 if (err)
1232                         return err;
1233         }
1234
1235         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1236                                            new_dir, new_dentry);
1237 }
1238
1239 int security_inode_readlink(struct dentry *dentry)
1240 {
1241         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1242                 return 0;
1243         return call_int_hook(inode_readlink, 0, dentry);
1244 }
1245
1246 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1247                                bool rcu)
1248 {
1249         if (unlikely(IS_PRIVATE(inode)))
1250                 return 0;
1251         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1252 }
1253
1254 int security_inode_permission(struct inode *inode, int mask)
1255 {
1256         if (unlikely(IS_PRIVATE(inode)))
1257                 return 0;
1258         return call_int_hook(inode_permission, 0, inode, mask);
1259 }
1260
1261 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1262 {
1263         int ret;
1264
1265         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1266                 return 0;
1267         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1268         if (ret)
1269                 return ret;
1270         return evm_inode_setattr(dentry, attr);
1271 }
1272 EXPORT_SYMBOL_GPL(security_inode_setattr);
1273
1274 int security_inode_getattr(const struct path *path)
1275 {
1276         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1277                 return 0;
1278         return call_int_hook(inode_getattr, 0, path);
1279 }
1280
1281 int security_inode_setxattr(struct dentry *dentry, const char *name,
1282                             const void *value, size_t size, int flags)
1283 {
1284         int ret;
1285
1286         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1287                 return 0;
1288         /*
1289          * SELinux and Smack integrate the cap call,
1290          * so assume that all LSMs supplying this call do so.
1291          */
1292         ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1293                                 flags);
1294
1295         if (ret == 1)
1296                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1297         if (ret)
1298                 return ret;
1299         ret = ima_inode_setxattr(dentry, name, value, size);
1300         if (ret)
1301                 return ret;
1302         return evm_inode_setxattr(dentry, name, value, size);
1303 }
1304
1305 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1306                                   const void *value, size_t size, int flags)
1307 {
1308         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1309                 return;
1310         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1311         evm_inode_post_setxattr(dentry, name, value, size);
1312 }
1313
1314 int security_inode_getxattr(struct dentry *dentry, const char *name)
1315 {
1316         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1317                 return 0;
1318         return call_int_hook(inode_getxattr, 0, dentry, name);
1319 }
1320
1321 int security_inode_listxattr(struct dentry *dentry)
1322 {
1323         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1324                 return 0;
1325         return call_int_hook(inode_listxattr, 0, dentry);
1326 }
1327
1328 int security_inode_removexattr(struct dentry *dentry, const char *name)
1329 {
1330         int ret;
1331
1332         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1333                 return 0;
1334         /*
1335          * SELinux and Smack integrate the cap call,
1336          * so assume that all LSMs supplying this call do so.
1337          */
1338         ret = call_int_hook(inode_removexattr, 1, dentry, name);
1339         if (ret == 1)
1340                 ret = cap_inode_removexattr(dentry, name);
1341         if (ret)
1342                 return ret;
1343         ret = ima_inode_removexattr(dentry, name);
1344         if (ret)
1345                 return ret;
1346         return evm_inode_removexattr(dentry, name);
1347 }
1348
1349 int security_inode_need_killpriv(struct dentry *dentry)
1350 {
1351         return call_int_hook(inode_need_killpriv, 0, dentry);
1352 }
1353
1354 int security_inode_killpriv(struct dentry *dentry)
1355 {
1356         return call_int_hook(inode_killpriv, 0, dentry);
1357 }
1358
1359 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1360 {
1361         struct security_hook_list *hp;
1362         int rc;
1363
1364         if (unlikely(IS_PRIVATE(inode)))
1365                 return LSM_RET_DEFAULT(inode_getsecurity);
1366         /*
1367          * Only one module will provide an attribute with a given name.
1368          */
1369         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1370                 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1371                 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1372                         return rc;
1373         }
1374         return LSM_RET_DEFAULT(inode_getsecurity);
1375 }
1376
1377 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1378 {
1379         struct security_hook_list *hp;
1380         int rc;
1381
1382         if (unlikely(IS_PRIVATE(inode)))
1383                 return LSM_RET_DEFAULT(inode_setsecurity);
1384         /*
1385          * Only one module will provide an attribute with a given name.
1386          */
1387         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1388                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1389                                                                 flags);
1390                 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1391                         return rc;
1392         }
1393         return LSM_RET_DEFAULT(inode_setsecurity);
1394 }
1395
1396 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1397 {
1398         if (unlikely(IS_PRIVATE(inode)))
1399                 return 0;
1400         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1401 }
1402 EXPORT_SYMBOL(security_inode_listsecurity);
1403
1404 void security_inode_getsecid(struct inode *inode, u32 *secid)
1405 {
1406         call_void_hook(inode_getsecid, inode, secid);
1407 }
1408
1409 int security_inode_copy_up(struct dentry *src, struct cred **new)
1410 {
1411         return call_int_hook(inode_copy_up, 0, src, new);
1412 }
1413 EXPORT_SYMBOL(security_inode_copy_up);
1414
1415 int security_inode_copy_up_xattr(const char *name)
1416 {
1417         struct security_hook_list *hp;
1418         int rc;
1419
1420         /*
1421          * The implementation can return 0 (accept the xattr), 1 (discard the
1422          * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1423          * any other error code incase of an error.
1424          */
1425         hlist_for_each_entry(hp,
1426                 &security_hook_heads.inode_copy_up_xattr, list) {
1427                 rc = hp->hook.inode_copy_up_xattr(name);
1428                 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1429                         return rc;
1430         }
1431
1432         return LSM_RET_DEFAULT(inode_copy_up_xattr);
1433 }
1434 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1435
1436 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1437                                   struct kernfs_node *kn)
1438 {
1439         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1440 }
1441
1442 int security_file_permission(struct file *file, int mask)
1443 {
1444         int ret;
1445
1446         ret = call_int_hook(file_permission, 0, file, mask);
1447         if (ret)
1448                 return ret;
1449
1450         return fsnotify_perm(file, mask);
1451 }
1452
1453 int security_file_alloc(struct file *file)
1454 {
1455         int rc = lsm_file_alloc(file);
1456
1457         if (rc)
1458                 return rc;
1459         rc = call_int_hook(file_alloc_security, 0, file);
1460         if (unlikely(rc))
1461                 security_file_free(file);
1462         return rc;
1463 }
1464
1465 void security_file_free(struct file *file)
1466 {
1467         void *blob;
1468
1469         call_void_hook(file_free_security, file);
1470
1471         blob = file->f_security;
1472         if (blob) {
1473                 file->f_security = NULL;
1474                 kmem_cache_free(lsm_file_cache, blob);
1475         }
1476 }
1477
1478 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1479 {
1480         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1481 }
1482 EXPORT_SYMBOL_GPL(security_file_ioctl);
1483
1484 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1485 {
1486         /*
1487          * Does we have PROT_READ and does the application expect
1488          * it to imply PROT_EXEC?  If not, nothing to talk about...
1489          */
1490         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1491                 return prot;
1492         if (!(current->personality & READ_IMPLIES_EXEC))
1493                 return prot;
1494         /*
1495          * if that's an anonymous mapping, let it.
1496          */
1497         if (!file)
1498                 return prot | PROT_EXEC;
1499         /*
1500          * ditto if it's not on noexec mount, except that on !MMU we need
1501          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1502          */
1503         if (!path_noexec(&file->f_path)) {
1504 #ifndef CONFIG_MMU
1505                 if (file->f_op->mmap_capabilities) {
1506                         unsigned caps = file->f_op->mmap_capabilities(file);
1507                         if (!(caps & NOMMU_MAP_EXEC))
1508                                 return prot;
1509                 }
1510 #endif
1511                 return prot | PROT_EXEC;
1512         }
1513         /* anything on noexec mount won't get PROT_EXEC */
1514         return prot;
1515 }
1516
1517 int security_mmap_file(struct file *file, unsigned long prot,
1518                         unsigned long flags)
1519 {
1520         int ret;
1521         ret = call_int_hook(mmap_file, 0, file, prot,
1522                                         mmap_prot(file, prot), flags);
1523         if (ret)
1524                 return ret;
1525         return ima_file_mmap(file, prot);
1526 }
1527
1528 int security_mmap_addr(unsigned long addr)
1529 {
1530         return call_int_hook(mmap_addr, 0, addr);
1531 }
1532
1533 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1534                             unsigned long prot)
1535 {
1536         int ret;
1537
1538         ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1539         if (ret)
1540                 return ret;
1541         return ima_file_mprotect(vma, prot);
1542 }
1543
1544 int security_file_lock(struct file *file, unsigned int cmd)
1545 {
1546         return call_int_hook(file_lock, 0, file, cmd);
1547 }
1548
1549 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1550 {
1551         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1552 }
1553
1554 void security_file_set_fowner(struct file *file)
1555 {
1556         call_void_hook(file_set_fowner, file);
1557 }
1558
1559 int security_file_send_sigiotask(struct task_struct *tsk,
1560                                   struct fown_struct *fown, int sig)
1561 {
1562         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1563 }
1564
1565 int security_file_receive(struct file *file)
1566 {
1567         return call_int_hook(file_receive, 0, file);
1568 }
1569
1570 int security_file_open(struct file *file)
1571 {
1572         int ret;
1573
1574         ret = call_int_hook(file_open, 0, file);
1575         if (ret)
1576                 return ret;
1577
1578         return fsnotify_perm(file, MAY_OPEN);
1579 }
1580
1581 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1582 {
1583         int rc = lsm_task_alloc(task);
1584
1585         if (rc)
1586                 return rc;
1587         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1588         if (unlikely(rc))
1589                 security_task_free(task);
1590         return rc;
1591 }
1592
1593 void security_task_free(struct task_struct *task)
1594 {
1595         call_void_hook(task_free, task);
1596
1597         kfree(task->security);
1598         task->security = NULL;
1599 }
1600
1601 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1602 {
1603         int rc = lsm_cred_alloc(cred, gfp);
1604
1605         if (rc)
1606                 return rc;
1607
1608         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1609         if (unlikely(rc))
1610                 security_cred_free(cred);
1611         return rc;
1612 }
1613
1614 void security_cred_free(struct cred *cred)
1615 {
1616         /*
1617          * There is a failure case in prepare_creds() that
1618          * may result in a call here with ->security being NULL.
1619          */
1620         if (unlikely(cred->security == NULL))
1621                 return;
1622
1623         call_void_hook(cred_free, cred);
1624
1625         kfree(cred->security);
1626         cred->security = NULL;
1627 }
1628
1629 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1630 {
1631         int rc = lsm_cred_alloc(new, gfp);
1632
1633         if (rc)
1634                 return rc;
1635
1636         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1637         if (unlikely(rc))
1638                 security_cred_free(new);
1639         return rc;
1640 }
1641
1642 void security_transfer_creds(struct cred *new, const struct cred *old)
1643 {
1644         call_void_hook(cred_transfer, new, old);
1645 }
1646
1647 void security_cred_getsecid(const struct cred *c, u32 *secid)
1648 {
1649         *secid = 0;
1650         call_void_hook(cred_getsecid, c, secid);
1651 }
1652 EXPORT_SYMBOL(security_cred_getsecid);
1653
1654 int security_kernel_act_as(struct cred *new, u32 secid)
1655 {
1656         return call_int_hook(kernel_act_as, 0, new, secid);
1657 }
1658
1659 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1660 {
1661         return call_int_hook(kernel_create_files_as, 0, new, inode);
1662 }
1663
1664 int security_kernel_module_request(char *kmod_name)
1665 {
1666         int ret;
1667
1668         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1669         if (ret)
1670                 return ret;
1671         return integrity_kernel_module_request(kmod_name);
1672 }
1673
1674 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1675 {
1676         int ret;
1677
1678         ret = call_int_hook(kernel_read_file, 0, file, id);
1679         if (ret)
1680                 return ret;
1681         return ima_read_file(file, id);
1682 }
1683 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1684
1685 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1686                                    enum kernel_read_file_id id)
1687 {
1688         int ret;
1689
1690         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1691         if (ret)
1692                 return ret;
1693         return ima_post_read_file(file, buf, size, id);
1694 }
1695 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1696
1697 int security_kernel_load_data(enum kernel_load_data_id id)
1698 {
1699         int ret;
1700
1701         ret = call_int_hook(kernel_load_data, 0, id);
1702         if (ret)
1703                 return ret;
1704         return ima_load_data(id);
1705 }
1706 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1707
1708 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1709                              int flags)
1710 {
1711         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1712 }
1713
1714 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1715                                  int flags)
1716 {
1717         return call_int_hook(task_fix_setgid, 0, new, old, flags);
1718 }
1719
1720 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1721 {
1722         return call_int_hook(task_setpgid, 0, p, pgid);
1723 }
1724
1725 int security_task_getpgid(struct task_struct *p)
1726 {
1727         return call_int_hook(task_getpgid, 0, p);
1728 }
1729
1730 int security_task_getsid(struct task_struct *p)
1731 {
1732         return call_int_hook(task_getsid, 0, p);
1733 }
1734
1735 void security_task_getsecid(struct task_struct *p, u32 *secid)
1736 {
1737         *secid = 0;
1738         call_void_hook(task_getsecid, p, secid);
1739 }
1740 EXPORT_SYMBOL(security_task_getsecid);
1741
1742 int security_task_setnice(struct task_struct *p, int nice)
1743 {
1744         return call_int_hook(task_setnice, 0, p, nice);
1745 }
1746
1747 int security_task_setioprio(struct task_struct *p, int ioprio)
1748 {
1749         return call_int_hook(task_setioprio, 0, p, ioprio);
1750 }
1751
1752 int security_task_getioprio(struct task_struct *p)
1753 {
1754         return call_int_hook(task_getioprio, 0, p);
1755 }
1756
1757 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1758                           unsigned int flags)
1759 {
1760         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1761 }
1762
1763 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1764                 struct rlimit *new_rlim)
1765 {
1766         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1767 }
1768
1769 int security_task_setscheduler(struct task_struct *p)
1770 {
1771         return call_int_hook(task_setscheduler, 0, p);
1772 }
1773
1774 int security_task_getscheduler(struct task_struct *p)
1775 {
1776         return call_int_hook(task_getscheduler, 0, p);
1777 }
1778
1779 int security_task_movememory(struct task_struct *p)
1780 {
1781         return call_int_hook(task_movememory, 0, p);
1782 }
1783
1784 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1785                         int sig, const struct cred *cred)
1786 {
1787         return call_int_hook(task_kill, 0, p, info, sig, cred);
1788 }
1789
1790 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1791                          unsigned long arg4, unsigned long arg5)
1792 {
1793         int thisrc;
1794         int rc = LSM_RET_DEFAULT(task_prctl);
1795         struct security_hook_list *hp;
1796
1797         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1798                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1799                 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1800                         rc = thisrc;
1801                         if (thisrc != 0)
1802                                 break;
1803                 }
1804         }
1805         return rc;
1806 }
1807
1808 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1809 {
1810         call_void_hook(task_to_inode, p, inode);
1811 }
1812
1813 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1814 {
1815         return call_int_hook(ipc_permission, 0, ipcp, flag);
1816 }
1817
1818 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1819 {
1820         *secid = 0;
1821         call_void_hook(ipc_getsecid, ipcp, secid);
1822 }
1823
1824 int security_msg_msg_alloc(struct msg_msg *msg)
1825 {
1826         int rc = lsm_msg_msg_alloc(msg);
1827
1828         if (unlikely(rc))
1829                 return rc;
1830         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1831         if (unlikely(rc))
1832                 security_msg_msg_free(msg);
1833         return rc;
1834 }
1835
1836 void security_msg_msg_free(struct msg_msg *msg)
1837 {
1838         call_void_hook(msg_msg_free_security, msg);
1839         kfree(msg->security);
1840         msg->security = NULL;
1841 }
1842
1843 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1844 {
1845         int rc = lsm_ipc_alloc(msq);
1846
1847         if (unlikely(rc))
1848                 return rc;
1849         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1850         if (unlikely(rc))
1851                 security_msg_queue_free(msq);
1852         return rc;
1853 }
1854
1855 void security_msg_queue_free(struct kern_ipc_perm *msq)
1856 {
1857         call_void_hook(msg_queue_free_security, msq);
1858         kfree(msq->security);
1859         msq->security = NULL;
1860 }
1861
1862 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1863 {
1864         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1865 }
1866
1867 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1868 {
1869         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1870 }
1871
1872 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1873                                struct msg_msg *msg, int msqflg)
1874 {
1875         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1876 }
1877
1878 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1879                                struct task_struct *target, long type, int mode)
1880 {
1881         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1882 }
1883
1884 int security_shm_alloc(struct kern_ipc_perm *shp)
1885 {
1886         int rc = lsm_ipc_alloc(shp);
1887
1888         if (unlikely(rc))
1889                 return rc;
1890         rc = call_int_hook(shm_alloc_security, 0, shp);
1891         if (unlikely(rc))
1892                 security_shm_free(shp);
1893         return rc;
1894 }
1895
1896 void security_shm_free(struct kern_ipc_perm *shp)
1897 {
1898         call_void_hook(shm_free_security, shp);
1899         kfree(shp->security);
1900         shp->security = NULL;
1901 }
1902
1903 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1904 {
1905         return call_int_hook(shm_associate, 0, shp, shmflg);
1906 }
1907
1908 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1909 {
1910         return call_int_hook(shm_shmctl, 0, shp, cmd);
1911 }
1912
1913 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1914 {
1915         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1916 }
1917
1918 int security_sem_alloc(struct kern_ipc_perm *sma)
1919 {
1920         int rc = lsm_ipc_alloc(sma);
1921
1922         if (unlikely(rc))
1923                 return rc;
1924         rc = call_int_hook(sem_alloc_security, 0, sma);
1925         if (unlikely(rc))
1926                 security_sem_free(sma);
1927         return rc;
1928 }
1929
1930 void security_sem_free(struct kern_ipc_perm *sma)
1931 {
1932         call_void_hook(sem_free_security, sma);
1933         kfree(sma->security);
1934         sma->security = NULL;
1935 }
1936
1937 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1938 {
1939         return call_int_hook(sem_associate, 0, sma, semflg);
1940 }
1941
1942 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1943 {
1944         return call_int_hook(sem_semctl, 0, sma, cmd);
1945 }
1946
1947 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1948                         unsigned nsops, int alter)
1949 {
1950         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1951 }
1952
1953 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1954 {
1955         if (unlikely(inode && IS_PRIVATE(inode)))
1956                 return;
1957         call_void_hook(d_instantiate, dentry, inode);
1958 }
1959 EXPORT_SYMBOL(security_d_instantiate);
1960
1961 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1962                                 char **value)
1963 {
1964         struct security_hook_list *hp;
1965
1966         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1967                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1968                         continue;
1969                 return hp->hook.getprocattr(p, name, value);
1970         }
1971         return LSM_RET_DEFAULT(getprocattr);
1972 }
1973
1974 int security_setprocattr(const char *lsm, const char *name, void *value,
1975                          size_t size)
1976 {
1977         struct security_hook_list *hp;
1978
1979         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1980                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1981                         continue;
1982                 return hp->hook.setprocattr(name, value, size);
1983         }
1984         return LSM_RET_DEFAULT(setprocattr);
1985 }
1986
1987 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1988 {
1989         return call_int_hook(netlink_send, 0, sk, skb);
1990 }
1991
1992 int security_ismaclabel(const char *name)
1993 {
1994         return call_int_hook(ismaclabel, 0, name);
1995 }
1996 EXPORT_SYMBOL(security_ismaclabel);
1997
1998 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1999 {
2000         struct security_hook_list *hp;
2001         int rc;
2002
2003         /*
2004          * Currently, only one LSM can implement secid_to_secctx (i.e this
2005          * LSM hook is not "stackable").
2006          */
2007         hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2008                 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2009                 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2010                         return rc;
2011         }
2012
2013         return LSM_RET_DEFAULT(secid_to_secctx);
2014 }
2015 EXPORT_SYMBOL(security_secid_to_secctx);
2016
2017 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2018 {
2019         *secid = 0;
2020         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2021 }
2022 EXPORT_SYMBOL(security_secctx_to_secid);
2023
2024 void security_release_secctx(char *secdata, u32 seclen)
2025 {
2026         call_void_hook(release_secctx, secdata, seclen);
2027 }
2028 EXPORT_SYMBOL(security_release_secctx);
2029
2030 void security_inode_invalidate_secctx(struct inode *inode)
2031 {
2032         call_void_hook(inode_invalidate_secctx, inode);
2033 }
2034 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2035
2036 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2037 {
2038         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2039 }
2040 EXPORT_SYMBOL(security_inode_notifysecctx);
2041
2042 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2043 {
2044         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2045 }
2046 EXPORT_SYMBOL(security_inode_setsecctx);
2047
2048 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2049 {
2050         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2051 }
2052 EXPORT_SYMBOL(security_inode_getsecctx);
2053
2054 #ifdef CONFIG_WATCH_QUEUE
2055 int security_post_notification(const struct cred *w_cred,
2056                                const struct cred *cred,
2057                                struct watch_notification *n)
2058 {
2059         return call_int_hook(post_notification, 0, w_cred, cred, n);
2060 }
2061 #endif /* CONFIG_WATCH_QUEUE */
2062
2063 #ifdef CONFIG_KEY_NOTIFICATIONS
2064 int security_watch_key(struct key *key)
2065 {
2066         return call_int_hook(watch_key, 0, key);
2067 }
2068 #endif
2069
2070 #ifdef CONFIG_SECURITY_NETWORK
2071
2072 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2073 {
2074         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2075 }
2076 EXPORT_SYMBOL(security_unix_stream_connect);
2077
2078 int security_unix_may_send(struct socket *sock,  struct socket *other)
2079 {
2080         return call_int_hook(unix_may_send, 0, sock, other);
2081 }
2082 EXPORT_SYMBOL(security_unix_may_send);
2083
2084 int security_socket_create(int family, int type, int protocol, int kern)
2085 {
2086         return call_int_hook(socket_create, 0, family, type, protocol, kern);
2087 }
2088
2089 int security_socket_post_create(struct socket *sock, int family,
2090                                 int type, int protocol, int kern)
2091 {
2092         return call_int_hook(socket_post_create, 0, sock, family, type,
2093                                                 protocol, kern);
2094 }
2095
2096 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2097 {
2098         return call_int_hook(socket_socketpair, 0, socka, sockb);
2099 }
2100 EXPORT_SYMBOL(security_socket_socketpair);
2101
2102 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2103 {
2104         return call_int_hook(socket_bind, 0, sock, address, addrlen);
2105 }
2106
2107 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2108 {
2109         return call_int_hook(socket_connect, 0, sock, address, addrlen);
2110 }
2111
2112 int security_socket_listen(struct socket *sock, int backlog)
2113 {
2114         return call_int_hook(socket_listen, 0, sock, backlog);
2115 }
2116
2117 int security_socket_accept(struct socket *sock, struct socket *newsock)
2118 {
2119         return call_int_hook(socket_accept, 0, sock, newsock);
2120 }
2121
2122 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2123 {
2124         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2125 }
2126
2127 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2128                             int size, int flags)
2129 {
2130         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2131 }
2132
2133 int security_socket_getsockname(struct socket *sock)
2134 {
2135         return call_int_hook(socket_getsockname, 0, sock);
2136 }
2137
2138 int security_socket_getpeername(struct socket *sock)
2139 {
2140         return call_int_hook(socket_getpeername, 0, sock);
2141 }
2142
2143 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2144 {
2145         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2146 }
2147
2148 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2149 {
2150         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2151 }
2152
2153 int security_socket_shutdown(struct socket *sock, int how)
2154 {
2155         return call_int_hook(socket_shutdown, 0, sock, how);
2156 }
2157
2158 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2159 {
2160         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2161 }
2162 EXPORT_SYMBOL(security_sock_rcv_skb);
2163
2164 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2165                                       int __user *optlen, unsigned len)
2166 {
2167         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2168                                 optval, optlen, len);
2169 }
2170
2171 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2172 {
2173         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2174                              skb, secid);
2175 }
2176 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2177
2178 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2179 {
2180         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2181 }
2182
2183 void security_sk_free(struct sock *sk)
2184 {
2185         call_void_hook(sk_free_security, sk);
2186 }
2187
2188 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2189 {
2190         call_void_hook(sk_clone_security, sk, newsk);
2191 }
2192 EXPORT_SYMBOL(security_sk_clone);
2193
2194 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2195 {
2196         call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2197 }
2198 EXPORT_SYMBOL(security_sk_classify_flow);
2199
2200 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2201 {
2202         call_void_hook(req_classify_flow, req, fl);
2203 }
2204 EXPORT_SYMBOL(security_req_classify_flow);
2205
2206 void security_sock_graft(struct sock *sk, struct socket *parent)
2207 {
2208         call_void_hook(sock_graft, sk, parent);
2209 }
2210 EXPORT_SYMBOL(security_sock_graft);
2211
2212 int security_inet_conn_request(struct sock *sk,
2213                         struct sk_buff *skb, struct request_sock *req)
2214 {
2215         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2216 }
2217 EXPORT_SYMBOL(security_inet_conn_request);
2218
2219 void security_inet_csk_clone(struct sock *newsk,
2220                         const struct request_sock *req)
2221 {
2222         call_void_hook(inet_csk_clone, newsk, req);
2223 }
2224
2225 void security_inet_conn_established(struct sock *sk,
2226                         struct sk_buff *skb)
2227 {
2228         call_void_hook(inet_conn_established, sk, skb);
2229 }
2230 EXPORT_SYMBOL(security_inet_conn_established);
2231
2232 int security_secmark_relabel_packet(u32 secid)
2233 {
2234         return call_int_hook(secmark_relabel_packet, 0, secid);
2235 }
2236 EXPORT_SYMBOL(security_secmark_relabel_packet);
2237
2238 void security_secmark_refcount_inc(void)
2239 {
2240         call_void_hook(secmark_refcount_inc);
2241 }
2242 EXPORT_SYMBOL(security_secmark_refcount_inc);
2243
2244 void security_secmark_refcount_dec(void)
2245 {
2246         call_void_hook(secmark_refcount_dec);
2247 }
2248 EXPORT_SYMBOL(security_secmark_refcount_dec);
2249
2250 int security_tun_dev_alloc_security(void **security)
2251 {
2252         return call_int_hook(tun_dev_alloc_security, 0, security);
2253 }
2254 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2255
2256 void security_tun_dev_free_security(void *security)
2257 {
2258         call_void_hook(tun_dev_free_security, security);
2259 }
2260 EXPORT_SYMBOL(security_tun_dev_free_security);
2261
2262 int security_tun_dev_create(void)
2263 {
2264         return call_int_hook(tun_dev_create, 0);
2265 }
2266 EXPORT_SYMBOL(security_tun_dev_create);
2267
2268 int security_tun_dev_attach_queue(void *security)
2269 {
2270         return call_int_hook(tun_dev_attach_queue, 0, security);
2271 }
2272 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2273
2274 int security_tun_dev_attach(struct sock *sk, void *security)
2275 {
2276         return call_int_hook(tun_dev_attach, 0, sk, security);
2277 }
2278 EXPORT_SYMBOL(security_tun_dev_attach);
2279
2280 int security_tun_dev_open(void *security)
2281 {
2282         return call_int_hook(tun_dev_open, 0, security);
2283 }
2284 EXPORT_SYMBOL(security_tun_dev_open);
2285
2286 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2287 {
2288         return call_int_hook(sctp_assoc_request, 0, ep, skb);
2289 }
2290 EXPORT_SYMBOL(security_sctp_assoc_request);
2291
2292 int security_sctp_bind_connect(struct sock *sk, int optname,
2293                                struct sockaddr *address, int addrlen)
2294 {
2295         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2296                              address, addrlen);
2297 }
2298 EXPORT_SYMBOL(security_sctp_bind_connect);
2299
2300 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2301                             struct sock *newsk)
2302 {
2303         call_void_hook(sctp_sk_clone, ep, sk, newsk);
2304 }
2305 EXPORT_SYMBOL(security_sctp_sk_clone);
2306
2307 #endif  /* CONFIG_SECURITY_NETWORK */
2308
2309 #ifdef CONFIG_SECURITY_INFINIBAND
2310
2311 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2312 {
2313         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2314 }
2315 EXPORT_SYMBOL(security_ib_pkey_access);
2316
2317 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2318 {
2319         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2320 }
2321 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2322
2323 int security_ib_alloc_security(void **sec)
2324 {
2325         return call_int_hook(ib_alloc_security, 0, sec);
2326 }
2327 EXPORT_SYMBOL(security_ib_alloc_security);
2328
2329 void security_ib_free_security(void *sec)
2330 {
2331         call_void_hook(ib_free_security, sec);
2332 }
2333 EXPORT_SYMBOL(security_ib_free_security);
2334 #endif  /* CONFIG_SECURITY_INFINIBAND */
2335
2336 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2337
2338 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2339                                struct xfrm_user_sec_ctx *sec_ctx,
2340                                gfp_t gfp)
2341 {
2342         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2343 }
2344 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2345
2346 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2347                               struct xfrm_sec_ctx **new_ctxp)
2348 {
2349         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2350 }
2351
2352 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2353 {
2354         call_void_hook(xfrm_policy_free_security, ctx);
2355 }
2356 EXPORT_SYMBOL(security_xfrm_policy_free);
2357
2358 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2359 {
2360         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2361 }
2362
2363 int security_xfrm_state_alloc(struct xfrm_state *x,
2364                               struct xfrm_user_sec_ctx *sec_ctx)
2365 {
2366         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2367 }
2368 EXPORT_SYMBOL(security_xfrm_state_alloc);
2369
2370 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2371                                       struct xfrm_sec_ctx *polsec, u32 secid)
2372 {
2373         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2374 }
2375
2376 int security_xfrm_state_delete(struct xfrm_state *x)
2377 {
2378         return call_int_hook(xfrm_state_delete_security, 0, x);
2379 }
2380 EXPORT_SYMBOL(security_xfrm_state_delete);
2381
2382 void security_xfrm_state_free(struct xfrm_state *x)
2383 {
2384         call_void_hook(xfrm_state_free_security, x);
2385 }
2386
2387 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2388 {
2389         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2390 }
2391
2392 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2393                                        struct xfrm_policy *xp,
2394                                        const struct flowi *fl)
2395 {
2396         struct security_hook_list *hp;
2397         int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2398
2399         /*
2400          * Since this function is expected to return 0 or 1, the judgment
2401          * becomes difficult if multiple LSMs supply this call. Fortunately,
2402          * we can use the first LSM's judgment because currently only SELinux
2403          * supplies this call.
2404          *
2405          * For speed optimization, we explicitly break the loop rather than
2406          * using the macro
2407          */
2408         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2409                                 list) {
2410                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2411                 break;
2412         }
2413         return rc;
2414 }
2415
2416 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2417 {
2418         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2419 }
2420
2421 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2422 {
2423         int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2424                                 0);
2425
2426         BUG_ON(rc);
2427 }
2428 EXPORT_SYMBOL(security_skb_classify_flow);
2429
2430 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2431
2432 #ifdef CONFIG_KEYS
2433
2434 int security_key_alloc(struct key *key, const struct cred *cred,
2435                        unsigned long flags)
2436 {
2437         return call_int_hook(key_alloc, 0, key, cred, flags);
2438 }
2439
2440 void security_key_free(struct key *key)
2441 {
2442         call_void_hook(key_free, key);
2443 }
2444
2445 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2446                             enum key_need_perm need_perm)
2447 {
2448         return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2449 }
2450
2451 int security_key_getsecurity(struct key *key, char **_buffer)
2452 {
2453         *_buffer = NULL;
2454         return call_int_hook(key_getsecurity, 0, key, _buffer);
2455 }
2456
2457 #endif  /* CONFIG_KEYS */
2458
2459 #ifdef CONFIG_AUDIT
2460
2461 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2462 {
2463         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2464 }
2465
2466 int security_audit_rule_known(struct audit_krule *krule)
2467 {
2468         return call_int_hook(audit_rule_known, 0, krule);
2469 }
2470
2471 void security_audit_rule_free(void *lsmrule)
2472 {
2473         call_void_hook(audit_rule_free, lsmrule);
2474 }
2475
2476 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2477 {
2478         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2479 }
2480 #endif /* CONFIG_AUDIT */
2481
2482 #ifdef CONFIG_BPF_SYSCALL
2483 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2484 {
2485         return call_int_hook(bpf, 0, cmd, attr, size);
2486 }
2487 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2488 {
2489         return call_int_hook(bpf_map, 0, map, fmode);
2490 }
2491 int security_bpf_prog(struct bpf_prog *prog)
2492 {
2493         return call_int_hook(bpf_prog, 0, prog);
2494 }
2495 int security_bpf_map_alloc(struct bpf_map *map)
2496 {
2497         return call_int_hook(bpf_map_alloc_security, 0, map);
2498 }
2499 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2500 {
2501         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2502 }
2503 void security_bpf_map_free(struct bpf_map *map)
2504 {
2505         call_void_hook(bpf_map_free_security, map);
2506 }
2507 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2508 {
2509         call_void_hook(bpf_prog_free_security, aux);
2510 }
2511 #endif /* CONFIG_BPF_SYSCALL */
2512
2513 int security_locked_down(enum lockdown_reason what)
2514 {
2515         return call_int_hook(locked_down, 0, what);
2516 }
2517 EXPORT_SYMBOL(security_locked_down);
2518
2519 #ifdef CONFIG_PERF_EVENTS
2520 int security_perf_event_open(struct perf_event_attr *attr, int type)
2521 {
2522         return call_int_hook(perf_event_open, 0, attr, type);
2523 }
2524
2525 int security_perf_event_alloc(struct perf_event *event)
2526 {
2527         return call_int_hook(perf_event_alloc, 0, event);
2528 }
2529
2530 void security_perf_event_free(struct perf_event *event)
2531 {
2532         call_void_hook(perf_event_free, event);
2533 }
2534
2535 int security_perf_event_read(struct perf_event *event)
2536 {
2537         return call_int_hook(perf_event_read, 0, event);
2538 }
2539
2540 int security_perf_event_write(struct perf_event *event)
2541 {
2542         return call_int_hook(perf_event_write, 0, event);
2543 }
2544 #endif /* CONFIG_PERF_EVENTS */