Merge tag 'soc-fsl-fix-v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/leo...
[linux-2.6-microblaze.git] / net / wireless / scan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016       Intel Deutschland GmbH
8  * Copyright (C) 2018-2021 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE    (30 * HZ)
78
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *      that operate in the same channel as the reported AP and that might be
89  *      detected by a STA receiving this frame, are transmitting unsolicited
90  *      Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *      colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  */
100 struct cfg80211_colocated_ap {
101         struct list_head list;
102         u8 bssid[ETH_ALEN];
103         u8 ssid[IEEE80211_MAX_SSID_LEN];
104         size_t ssid_len;
105         u32 short_ssid;
106         u32 center_freq;
107         u8 unsolicited_probe:1,
108            oct_recommended:1,
109            same_ssid:1,
110            multi_bss:1,
111            transmitted_bssid:1,
112            colocated_ess:1,
113            short_ssid_valid:1;
114 };
115
116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118         struct cfg80211_bss_ies *ies;
119
120         if (WARN_ON(atomic_read(&bss->hold)))
121                 return;
122
123         ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124         if (ies && !bss->pub.hidden_beacon_bss)
125                 kfree_rcu(ies, rcu_head);
126         ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127         if (ies)
128                 kfree_rcu(ies, rcu_head);
129
130         /*
131          * This happens when the module is removed, it doesn't
132          * really matter any more save for completeness
133          */
134         if (!list_empty(&bss->hidden_list))
135                 list_del(&bss->hidden_list);
136
137         kfree(bss);
138 }
139
140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141                                struct cfg80211_internal_bss *bss)
142 {
143         lockdep_assert_held(&rdev->bss_lock);
144
145         bss->refcount++;
146         if (bss->pub.hidden_beacon_bss) {
147                 bss = container_of(bss->pub.hidden_beacon_bss,
148                                    struct cfg80211_internal_bss,
149                                    pub);
150                 bss->refcount++;
151         }
152         if (bss->pub.transmitted_bss) {
153                 bss = container_of(bss->pub.transmitted_bss,
154                                    struct cfg80211_internal_bss,
155                                    pub);
156                 bss->refcount++;
157         }
158 }
159
160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161                                struct cfg80211_internal_bss *bss)
162 {
163         lockdep_assert_held(&rdev->bss_lock);
164
165         if (bss->pub.hidden_beacon_bss) {
166                 struct cfg80211_internal_bss *hbss;
167                 hbss = container_of(bss->pub.hidden_beacon_bss,
168                                     struct cfg80211_internal_bss,
169                                     pub);
170                 hbss->refcount--;
171                 if (hbss->refcount == 0)
172                         bss_free(hbss);
173         }
174
175         if (bss->pub.transmitted_bss) {
176                 struct cfg80211_internal_bss *tbss;
177
178                 tbss = container_of(bss->pub.transmitted_bss,
179                                     struct cfg80211_internal_bss,
180                                     pub);
181                 tbss->refcount--;
182                 if (tbss->refcount == 0)
183                         bss_free(tbss);
184         }
185
186         bss->refcount--;
187         if (bss->refcount == 0)
188                 bss_free(bss);
189 }
190
191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192                                   struct cfg80211_internal_bss *bss)
193 {
194         lockdep_assert_held(&rdev->bss_lock);
195
196         if (!list_empty(&bss->hidden_list)) {
197                 /*
198                  * don't remove the beacon entry if it has
199                  * probe responses associated with it
200                  */
201                 if (!bss->pub.hidden_beacon_bss)
202                         return false;
203                 /*
204                  * if it's a probe response entry break its
205                  * link to the other entries in the group
206                  */
207                 list_del_init(&bss->hidden_list);
208         }
209
210         list_del_init(&bss->list);
211         list_del_init(&bss->pub.nontrans_list);
212         rb_erase(&bss->rbn, &rdev->bss_tree);
213         rdev->bss_entries--;
214         WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215                   "rdev bss entries[%d]/list[empty:%d] corruption\n",
216                   rdev->bss_entries, list_empty(&rdev->bss_list));
217         bss_ref_put(rdev, bss);
218         return true;
219 }
220
221 bool cfg80211_is_element_inherited(const struct element *elem,
222                                    const struct element *non_inherit_elem)
223 {
224         u8 id_len, ext_id_len, i, loop_len, id;
225         const u8 *list;
226
227         if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228                 return false;
229
230         if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231                 return true;
232
233         /*
234          * non inheritance element format is:
235          * ext ID (56) | IDs list len | list | extension IDs list len | list
236          * Both lists are optional. Both lengths are mandatory.
237          * This means valid length is:
238          * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239          */
240         id_len = non_inherit_elem->data[1];
241         if (non_inherit_elem->datalen < 3 + id_len)
242                 return true;
243
244         ext_id_len = non_inherit_elem->data[2 + id_len];
245         if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246                 return true;
247
248         if (elem->id == WLAN_EID_EXTENSION) {
249                 if (!ext_id_len)
250                         return true;
251                 loop_len = ext_id_len;
252                 list = &non_inherit_elem->data[3 + id_len];
253                 id = elem->data[0];
254         } else {
255                 if (!id_len)
256                         return true;
257                 loop_len = id_len;
258                 list = &non_inherit_elem->data[2];
259                 id = elem->id;
260         }
261
262         for (i = 0; i < loop_len; i++) {
263                 if (list[i] == id)
264                         return false;
265         }
266
267         return true;
268 }
269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
270
271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272                                   const u8 *subelement, size_t subie_len,
273                                   u8 *new_ie, gfp_t gfp)
274 {
275         u8 *pos, *tmp;
276         const u8 *tmp_old, *tmp_new;
277         const struct element *non_inherit_elem;
278         u8 *sub_copy;
279
280         /* copy subelement as we need to change its content to
281          * mark an ie after it is processed.
282          */
283         sub_copy = kmemdup(subelement, subie_len, gfp);
284         if (!sub_copy)
285                 return 0;
286
287         pos = &new_ie[0];
288
289         /* set new ssid */
290         tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291         if (tmp_new) {
292                 memcpy(pos, tmp_new, tmp_new[1] + 2);
293                 pos += (tmp_new[1] + 2);
294         }
295
296         /* get non inheritance list if exists */
297         non_inherit_elem =
298                 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299                                        sub_copy, subie_len);
300
301         /* go through IEs in ie (skip SSID) and subelement,
302          * merge them into new_ie
303          */
304         tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305         tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306
307         while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308                 if (tmp_old[0] == 0) {
309                         tmp_old++;
310                         continue;
311                 }
312
313                 if (tmp_old[0] == WLAN_EID_EXTENSION)
314                         tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315                                                          subie_len);
316                 else
317                         tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318                                                      subie_len);
319
320                 if (!tmp) {
321                         const struct element *old_elem = (void *)tmp_old;
322
323                         /* ie in old ie but not in subelement */
324                         if (cfg80211_is_element_inherited(old_elem,
325                                                           non_inherit_elem)) {
326                                 memcpy(pos, tmp_old, tmp_old[1] + 2);
327                                 pos += tmp_old[1] + 2;
328                         }
329                 } else {
330                         /* ie in transmitting ie also in subelement,
331                          * copy from subelement and flag the ie in subelement
332                          * as copied (by setting eid field to WLAN_EID_SSID,
333                          * which is skipped anyway).
334                          * For vendor ie, compare OUI + type + subType to
335                          * determine if they are the same ie.
336                          */
337                         if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338                                 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339                                         /* same vendor ie, copy from
340                                          * subelement
341                                          */
342                                         memcpy(pos, tmp, tmp[1] + 2);
343                                         pos += tmp[1] + 2;
344                                         tmp[0] = WLAN_EID_SSID;
345                                 } else {
346                                         memcpy(pos, tmp_old, tmp_old[1] + 2);
347                                         pos += tmp_old[1] + 2;
348                                 }
349                         } else {
350                                 /* copy ie from subelement into new ie */
351                                 memcpy(pos, tmp, tmp[1] + 2);
352                                 pos += tmp[1] + 2;
353                                 tmp[0] = WLAN_EID_SSID;
354                         }
355                 }
356
357                 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358                         break;
359
360                 tmp_old += tmp_old[1] + 2;
361         }
362
363         /* go through subelement again to check if there is any ie not
364          * copied to new ie, skip ssid, capability, bssid-index ie
365          */
366         tmp_new = sub_copy;
367         while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368                 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369                       tmp_new[0] == WLAN_EID_SSID)) {
370                         memcpy(pos, tmp_new, tmp_new[1] + 2);
371                         pos += tmp_new[1] + 2;
372                 }
373                 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374                         break;
375                 tmp_new += tmp_new[1] + 2;
376         }
377
378         kfree(sub_copy);
379         return pos - new_ie;
380 }
381
382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383                    const u8 *ssid, size_t ssid_len)
384 {
385         const struct cfg80211_bss_ies *ies;
386         const u8 *ssidie;
387
388         if (bssid && !ether_addr_equal(a->bssid, bssid))
389                 return false;
390
391         if (!ssid)
392                 return true;
393
394         ies = rcu_access_pointer(a->ies);
395         if (!ies)
396                 return false;
397         ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
398         if (!ssidie)
399                 return false;
400         if (ssidie[1] != ssid_len)
401                 return false;
402         return memcmp(ssidie + 2, ssid, ssid_len) == 0;
403 }
404
405 static int
406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407                            struct cfg80211_bss *nontrans_bss)
408 {
409         const u8 *ssid;
410         size_t ssid_len;
411         struct cfg80211_bss *bss = NULL;
412
413         rcu_read_lock();
414         ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415         if (!ssid) {
416                 rcu_read_unlock();
417                 return -EINVAL;
418         }
419         ssid_len = ssid[1];
420         ssid = ssid + 2;
421         rcu_read_unlock();
422
423         /* check if nontrans_bss is in the list */
424         list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
425                 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
426                         return 0;
427         }
428
429         /* add to the list */
430         list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
431         return 0;
432 }
433
434 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
435                                   unsigned long expire_time)
436 {
437         struct cfg80211_internal_bss *bss, *tmp;
438         bool expired = false;
439
440         lockdep_assert_held(&rdev->bss_lock);
441
442         list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
443                 if (atomic_read(&bss->hold))
444                         continue;
445                 if (!time_after(expire_time, bss->ts))
446                         continue;
447
448                 if (__cfg80211_unlink_bss(rdev, bss))
449                         expired = true;
450         }
451
452         if (expired)
453                 rdev->bss_generation++;
454 }
455
456 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
457 {
458         struct cfg80211_internal_bss *bss, *oldest = NULL;
459         bool ret;
460
461         lockdep_assert_held(&rdev->bss_lock);
462
463         list_for_each_entry(bss, &rdev->bss_list, list) {
464                 if (atomic_read(&bss->hold))
465                         continue;
466
467                 if (!list_empty(&bss->hidden_list) &&
468                     !bss->pub.hidden_beacon_bss)
469                         continue;
470
471                 if (oldest && time_before(oldest->ts, bss->ts))
472                         continue;
473                 oldest = bss;
474         }
475
476         if (WARN_ON(!oldest))
477                 return false;
478
479         /*
480          * The callers make sure to increase rdev->bss_generation if anything
481          * gets removed (and a new entry added), so there's no need to also do
482          * it here.
483          */
484
485         ret = __cfg80211_unlink_bss(rdev, oldest);
486         WARN_ON(!ret);
487         return ret;
488 }
489
490 static u8 cfg80211_parse_bss_param(u8 data,
491                                    struct cfg80211_colocated_ap *coloc_ap)
492 {
493         coloc_ap->oct_recommended =
494                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
495         coloc_ap->same_ssid =
496                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
497         coloc_ap->multi_bss =
498                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
499         coloc_ap->transmitted_bssid =
500                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
501         coloc_ap->unsolicited_probe =
502                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
503         coloc_ap->colocated_ess =
504                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
505
506         return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
507 }
508
509 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
510                                     const struct element **elem, u32 *s_ssid)
511 {
512
513         *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
514         if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
515                 return -EINVAL;
516
517         *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
518         return 0;
519 }
520
521 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
522 {
523         struct cfg80211_colocated_ap *ap, *tmp_ap;
524
525         list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
526                 list_del(&ap->list);
527                 kfree(ap);
528         }
529 }
530
531 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
532                                   const u8 *pos, u8 length,
533                                   const struct element *ssid_elem,
534                                   int s_ssid_tmp)
535 {
536         /* skip the TBTT offset */
537         pos++;
538
539         memcpy(entry->bssid, pos, ETH_ALEN);
540         pos += ETH_ALEN;
541
542         if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
543                 memcpy(&entry->short_ssid, pos,
544                        sizeof(entry->short_ssid));
545                 entry->short_ssid_valid = true;
546                 pos += 4;
547         }
548
549         /* skip non colocated APs */
550         if (!cfg80211_parse_bss_param(*pos, entry))
551                 return -EINVAL;
552         pos++;
553
554         if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
555                 /*
556                  * no information about the short ssid. Consider the entry valid
557                  * for now. It would later be dropped in case there are explicit
558                  * SSIDs that need to be matched
559                  */
560                 if (!entry->same_ssid)
561                         return 0;
562         }
563
564         if (entry->same_ssid) {
565                 entry->short_ssid = s_ssid_tmp;
566                 entry->short_ssid_valid = true;
567
568                 /*
569                  * This is safe because we validate datalen in
570                  * cfg80211_parse_colocated_ap(), before calling this
571                  * function.
572                  */
573                 memcpy(&entry->ssid, &ssid_elem->data,
574                        ssid_elem->datalen);
575                 entry->ssid_len = ssid_elem->datalen;
576         }
577         return 0;
578 }
579
580 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
581                                        struct list_head *list)
582 {
583         struct ieee80211_neighbor_ap_info *ap_info;
584         const struct element *elem, *ssid_elem;
585         const u8 *pos, *end;
586         u32 s_ssid_tmp;
587         int n_coloc = 0, ret;
588         LIST_HEAD(ap_list);
589
590         elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
591                                   ies->len);
592         if (!elem)
593                 return 0;
594
595         pos = elem->data;
596         end = pos + elem->datalen;
597
598         ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
599         if (ret)
600                 return ret;
601
602         /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
603         while (pos + sizeof(*ap_info) <= end) {
604                 enum nl80211_band band;
605                 int freq;
606                 u8 length, i, count;
607
608                 ap_info = (void *)pos;
609                 count = u8_get_bits(ap_info->tbtt_info_hdr,
610                                     IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
611                 length = ap_info->tbtt_info_len;
612
613                 pos += sizeof(*ap_info);
614
615                 if (!ieee80211_operating_class_to_band(ap_info->op_class,
616                                                        &band))
617                         break;
618
619                 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
620
621                 if (end - pos < count * length)
622                         break;
623
624                 /*
625                  * TBTT info must include bss param + BSSID +
626                  * (short SSID or same_ssid bit to be set).
627                  * ignore other options, and move to the
628                  * next AP info
629                  */
630                 if (band != NL80211_BAND_6GHZ ||
631                     (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
632                      length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
633                         pos += count * length;
634                         continue;
635                 }
636
637                 for (i = 0; i < count; i++) {
638                         struct cfg80211_colocated_ap *entry;
639
640                         entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
641                                         GFP_ATOMIC);
642
643                         if (!entry)
644                                 break;
645
646                         entry->center_freq = freq;
647
648                         if (!cfg80211_parse_ap_info(entry, pos, length,
649                                                     ssid_elem, s_ssid_tmp)) {
650                                 n_coloc++;
651                                 list_add_tail(&entry->list, &ap_list);
652                         } else {
653                                 kfree(entry);
654                         }
655
656                         pos += length;
657                 }
658         }
659
660         if (pos != end) {
661                 cfg80211_free_coloc_ap_list(&ap_list);
662                 return 0;
663         }
664
665         list_splice_tail(&ap_list, list);
666         return n_coloc;
667 }
668
669 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
670                                         struct ieee80211_channel *chan,
671                                         bool add_to_6ghz)
672 {
673         int i;
674         u32 n_channels = request->n_channels;
675         struct cfg80211_scan_6ghz_params *params =
676                 &request->scan_6ghz_params[request->n_6ghz_params];
677
678         for (i = 0; i < n_channels; i++) {
679                 if (request->channels[i] == chan) {
680                         if (add_to_6ghz)
681                                 params->channel_idx = i;
682                         return;
683                 }
684         }
685
686         request->channels[n_channels] = chan;
687         if (add_to_6ghz)
688                 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
689                         n_channels;
690
691         request->n_channels++;
692 }
693
694 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
695                                      struct cfg80211_scan_request *request)
696 {
697         int i;
698         u32 s_ssid;
699
700         for (i = 0; i < request->n_ssids; i++) {
701                 /* wildcard ssid in the scan request */
702                 if (!request->ssids[i].ssid_len)
703                         return true;
704
705                 if (ap->ssid_len &&
706                     ap->ssid_len == request->ssids[i].ssid_len) {
707                         if (!memcmp(request->ssids[i].ssid, ap->ssid,
708                                     ap->ssid_len))
709                                 return true;
710                 } else if (ap->short_ssid_valid) {
711                         s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
712                                            request->ssids[i].ssid_len);
713
714                         if (ap->short_ssid == s_ssid)
715                                 return true;
716                 }
717         }
718
719         return false;
720 }
721
722 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
723 {
724         u8 i;
725         struct cfg80211_colocated_ap *ap;
726         int n_channels, count = 0, err;
727         struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
728         LIST_HEAD(coloc_ap_list);
729         bool need_scan_psc = true;
730         const struct ieee80211_sband_iftype_data *iftd;
731
732         rdev_req->scan_6ghz = true;
733
734         if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
735                 return -EOPNOTSUPP;
736
737         iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
738                                                rdev_req->wdev->iftype);
739         if (!iftd || !iftd->he_cap.has_he)
740                 return -EOPNOTSUPP;
741
742         n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
743
744         if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
745                 struct cfg80211_internal_bss *intbss;
746
747                 spin_lock_bh(&rdev->bss_lock);
748                 list_for_each_entry(intbss, &rdev->bss_list, list) {
749                         struct cfg80211_bss *res = &intbss->pub;
750                         const struct cfg80211_bss_ies *ies;
751
752                         ies = rcu_access_pointer(res->ies);
753                         count += cfg80211_parse_colocated_ap(ies,
754                                                              &coloc_ap_list);
755                 }
756                 spin_unlock_bh(&rdev->bss_lock);
757         }
758
759         request = kzalloc(struct_size(request, channels, n_channels) +
760                           sizeof(*request->scan_6ghz_params) * count +
761                           sizeof(*request->ssids) * rdev_req->n_ssids,
762                           GFP_KERNEL);
763         if (!request) {
764                 cfg80211_free_coloc_ap_list(&coloc_ap_list);
765                 return -ENOMEM;
766         }
767
768         *request = *rdev_req;
769         request->n_channels = 0;
770         request->scan_6ghz_params =
771                 (void *)&request->channels[n_channels];
772
773         /*
774          * PSC channels should not be scanned in case of direct scan with 1 SSID
775          * and at least one of the reported co-located APs with same SSID
776          * indicating that all APs in the same ESS are co-located
777          */
778         if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
779                 list_for_each_entry(ap, &coloc_ap_list, list) {
780                         if (ap->colocated_ess &&
781                             cfg80211_find_ssid_match(ap, request)) {
782                                 need_scan_psc = false;
783                                 break;
784                         }
785                 }
786         }
787
788         /*
789          * add to the scan request the channels that need to be scanned
790          * regardless of the collocated APs (PSC channels or all channels
791          * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
792          */
793         for (i = 0; i < rdev_req->n_channels; i++) {
794                 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
795                     ((need_scan_psc &&
796                       cfg80211_channel_is_psc(rdev_req->channels[i])) ||
797                      !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
798                         cfg80211_scan_req_add_chan(request,
799                                                    rdev_req->channels[i],
800                                                    false);
801                 }
802         }
803
804         if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
805                 goto skip;
806
807         list_for_each_entry(ap, &coloc_ap_list, list) {
808                 bool found = false;
809                 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
810                         &request->scan_6ghz_params[request->n_6ghz_params];
811                 struct ieee80211_channel *chan =
812                         ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
813
814                 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
815                         continue;
816
817                 for (i = 0; i < rdev_req->n_channels; i++) {
818                         if (rdev_req->channels[i] == chan)
819                                 found = true;
820                 }
821
822                 if (!found)
823                         continue;
824
825                 if (request->n_ssids > 0 &&
826                     !cfg80211_find_ssid_match(ap, request))
827                         continue;
828
829                 cfg80211_scan_req_add_chan(request, chan, true);
830                 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
831                 scan_6ghz_params->short_ssid = ap->short_ssid;
832                 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
833                 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
834
835                 /*
836                  * If a PSC channel is added to the scan and 'need_scan_psc' is
837                  * set to false, then all the APs that the scan logic is
838                  * interested with on the channel are collocated and thus there
839                  * is no need to perform the initial PSC channel listen.
840                  */
841                 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
842                         scan_6ghz_params->psc_no_listen = true;
843
844                 request->n_6ghz_params++;
845         }
846
847 skip:
848         cfg80211_free_coloc_ap_list(&coloc_ap_list);
849
850         if (request->n_channels) {
851                 struct cfg80211_scan_request *old = rdev->int_scan_req;
852                 rdev->int_scan_req = request;
853
854                 /*
855                  * Add the ssids from the parent scan request to the new scan
856                  * request, so the driver would be able to use them in its
857                  * probe requests to discover hidden APs on PSC channels.
858                  */
859                 request->ssids = (void *)&request->channels[request->n_channels];
860                 request->n_ssids = rdev_req->n_ssids;
861                 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
862                        request->n_ssids);
863
864                 /*
865                  * If this scan follows a previous scan, save the scan start
866                  * info from the first part of the scan
867                  */
868                 if (old)
869                         rdev->int_scan_req->info = old->info;
870
871                 err = rdev_scan(rdev, request);
872                 if (err) {
873                         rdev->int_scan_req = old;
874                         kfree(request);
875                 } else {
876                         kfree(old);
877                 }
878
879                 return err;
880         }
881
882         kfree(request);
883         return -EINVAL;
884 }
885
886 int cfg80211_scan(struct cfg80211_registered_device *rdev)
887 {
888         struct cfg80211_scan_request *request;
889         struct cfg80211_scan_request *rdev_req = rdev->scan_req;
890         u32 n_channels = 0, idx, i;
891
892         if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
893                 return rdev_scan(rdev, rdev_req);
894
895         for (i = 0; i < rdev_req->n_channels; i++) {
896                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
897                         n_channels++;
898         }
899
900         if (!n_channels)
901                 return cfg80211_scan_6ghz(rdev);
902
903         request = kzalloc(struct_size(request, channels, n_channels),
904                           GFP_KERNEL);
905         if (!request)
906                 return -ENOMEM;
907
908         *request = *rdev_req;
909         request->n_channels = n_channels;
910
911         for (i = idx = 0; i < rdev_req->n_channels; i++) {
912                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
913                         request->channels[idx++] = rdev_req->channels[i];
914         }
915
916         rdev_req->scan_6ghz = false;
917         rdev->int_scan_req = request;
918         return rdev_scan(rdev, request);
919 }
920
921 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
922                            bool send_message)
923 {
924         struct cfg80211_scan_request *request, *rdev_req;
925         struct wireless_dev *wdev;
926         struct sk_buff *msg;
927 #ifdef CONFIG_CFG80211_WEXT
928         union iwreq_data wrqu;
929 #endif
930
931         lockdep_assert_held(&rdev->wiphy.mtx);
932
933         if (rdev->scan_msg) {
934                 nl80211_send_scan_msg(rdev, rdev->scan_msg);
935                 rdev->scan_msg = NULL;
936                 return;
937         }
938
939         rdev_req = rdev->scan_req;
940         if (!rdev_req)
941                 return;
942
943         wdev = rdev_req->wdev;
944         request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
945
946         if (wdev_running(wdev) &&
947             (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
948             !rdev_req->scan_6ghz && !request->info.aborted &&
949             !cfg80211_scan_6ghz(rdev))
950                 return;
951
952         /*
953          * This must be before sending the other events!
954          * Otherwise, wpa_supplicant gets completely confused with
955          * wext events.
956          */
957         if (wdev->netdev)
958                 cfg80211_sme_scan_done(wdev->netdev);
959
960         if (!request->info.aborted &&
961             request->flags & NL80211_SCAN_FLAG_FLUSH) {
962                 /* flush entries from previous scans */
963                 spin_lock_bh(&rdev->bss_lock);
964                 __cfg80211_bss_expire(rdev, request->scan_start);
965                 spin_unlock_bh(&rdev->bss_lock);
966         }
967
968         msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
969
970 #ifdef CONFIG_CFG80211_WEXT
971         if (wdev->netdev && !request->info.aborted) {
972                 memset(&wrqu, 0, sizeof(wrqu));
973
974                 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
975         }
976 #endif
977
978         if (wdev->netdev)
979                 dev_put(wdev->netdev);
980
981         kfree(rdev->int_scan_req);
982         rdev->int_scan_req = NULL;
983
984         kfree(rdev->scan_req);
985         rdev->scan_req = NULL;
986
987         if (!send_message)
988                 rdev->scan_msg = msg;
989         else
990                 nl80211_send_scan_msg(rdev, msg);
991 }
992
993 void __cfg80211_scan_done(struct work_struct *wk)
994 {
995         struct cfg80211_registered_device *rdev;
996
997         rdev = container_of(wk, struct cfg80211_registered_device,
998                             scan_done_wk);
999
1000         wiphy_lock(&rdev->wiphy);
1001         ___cfg80211_scan_done(rdev, true);
1002         wiphy_unlock(&rdev->wiphy);
1003 }
1004
1005 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1006                         struct cfg80211_scan_info *info)
1007 {
1008         struct cfg80211_scan_info old_info = request->info;
1009
1010         trace_cfg80211_scan_done(request, info);
1011         WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1012                 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1013
1014         request->info = *info;
1015
1016         /*
1017          * In case the scan is split, the scan_start_tsf and tsf_bssid should
1018          * be of the first part. In such a case old_info.scan_start_tsf should
1019          * be non zero.
1020          */
1021         if (request->scan_6ghz && old_info.scan_start_tsf) {
1022                 request->info.scan_start_tsf = old_info.scan_start_tsf;
1023                 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1024                        sizeof(request->info.tsf_bssid));
1025         }
1026
1027         request->notified = true;
1028         queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1029 }
1030 EXPORT_SYMBOL(cfg80211_scan_done);
1031
1032 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1033                                  struct cfg80211_sched_scan_request *req)
1034 {
1035         lockdep_assert_held(&rdev->wiphy.mtx);
1036
1037         list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1038 }
1039
1040 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1041                                         struct cfg80211_sched_scan_request *req)
1042 {
1043         lockdep_assert_held(&rdev->wiphy.mtx);
1044
1045         list_del_rcu(&req->list);
1046         kfree_rcu(req, rcu_head);
1047 }
1048
1049 static struct cfg80211_sched_scan_request *
1050 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1051 {
1052         struct cfg80211_sched_scan_request *pos;
1053
1054         list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1055                                 lockdep_is_held(&rdev->wiphy.mtx)) {
1056                 if (pos->reqid == reqid)
1057                         return pos;
1058         }
1059         return NULL;
1060 }
1061
1062 /*
1063  * Determines if a scheduled scan request can be handled. When a legacy
1064  * scheduled scan is running no other scheduled scan is allowed regardless
1065  * whether the request is for legacy or multi-support scan. When a multi-support
1066  * scheduled scan is running a request for legacy scan is not allowed. In this
1067  * case a request for multi-support scan can be handled if resources are
1068  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1069  */
1070 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1071                                      bool want_multi)
1072 {
1073         struct cfg80211_sched_scan_request *pos;
1074         int i = 0;
1075
1076         list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1077                 /* request id zero means legacy in progress */
1078                 if (!i && !pos->reqid)
1079                         return -EINPROGRESS;
1080                 i++;
1081         }
1082
1083         if (i) {
1084                 /* no legacy allowed when multi request(s) are active */
1085                 if (!want_multi)
1086                         return -EINPROGRESS;
1087
1088                 /* resource limit reached */
1089                 if (i == rdev->wiphy.max_sched_scan_reqs)
1090                         return -ENOSPC;
1091         }
1092         return 0;
1093 }
1094
1095 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1096 {
1097         struct cfg80211_registered_device *rdev;
1098         struct cfg80211_sched_scan_request *req, *tmp;
1099
1100         rdev = container_of(work, struct cfg80211_registered_device,
1101                            sched_scan_res_wk);
1102
1103         wiphy_lock(&rdev->wiphy);
1104         list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1105                 if (req->report_results) {
1106                         req->report_results = false;
1107                         if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1108                                 /* flush entries from previous scans */
1109                                 spin_lock_bh(&rdev->bss_lock);
1110                                 __cfg80211_bss_expire(rdev, req->scan_start);
1111                                 spin_unlock_bh(&rdev->bss_lock);
1112                                 req->scan_start = jiffies;
1113                         }
1114                         nl80211_send_sched_scan(req,
1115                                                 NL80211_CMD_SCHED_SCAN_RESULTS);
1116                 }
1117         }
1118         wiphy_unlock(&rdev->wiphy);
1119 }
1120
1121 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1122 {
1123         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1124         struct cfg80211_sched_scan_request *request;
1125
1126         trace_cfg80211_sched_scan_results(wiphy, reqid);
1127         /* ignore if we're not scanning */
1128
1129         rcu_read_lock();
1130         request = cfg80211_find_sched_scan_req(rdev, reqid);
1131         if (request) {
1132                 request->report_results = true;
1133                 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1134         }
1135         rcu_read_unlock();
1136 }
1137 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1138
1139 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1140 {
1141         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1142
1143         lockdep_assert_held(&wiphy->mtx);
1144
1145         trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1146
1147         __cfg80211_stop_sched_scan(rdev, reqid, true);
1148 }
1149 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1150
1151 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1152 {
1153         wiphy_lock(wiphy);
1154         cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1155         wiphy_unlock(wiphy);
1156 }
1157 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1158
1159 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1160                                  struct cfg80211_sched_scan_request *req,
1161                                  bool driver_initiated)
1162 {
1163         lockdep_assert_held(&rdev->wiphy.mtx);
1164
1165         if (!driver_initiated) {
1166                 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1167                 if (err)
1168                         return err;
1169         }
1170
1171         nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1172
1173         cfg80211_del_sched_scan_req(rdev, req);
1174
1175         return 0;
1176 }
1177
1178 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1179                                u64 reqid, bool driver_initiated)
1180 {
1181         struct cfg80211_sched_scan_request *sched_scan_req;
1182
1183         lockdep_assert_held(&rdev->wiphy.mtx);
1184
1185         sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1186         if (!sched_scan_req)
1187                 return -ENOENT;
1188
1189         return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1190                                             driver_initiated);
1191 }
1192
1193 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1194                       unsigned long age_secs)
1195 {
1196         struct cfg80211_internal_bss *bss;
1197         unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1198
1199         spin_lock_bh(&rdev->bss_lock);
1200         list_for_each_entry(bss, &rdev->bss_list, list)
1201                 bss->ts -= age_jiffies;
1202         spin_unlock_bh(&rdev->bss_lock);
1203 }
1204
1205 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1206 {
1207         __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1208 }
1209
1210 void cfg80211_bss_flush(struct wiphy *wiphy)
1211 {
1212         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1213
1214         spin_lock_bh(&rdev->bss_lock);
1215         __cfg80211_bss_expire(rdev, jiffies);
1216         spin_unlock_bh(&rdev->bss_lock);
1217 }
1218 EXPORT_SYMBOL(cfg80211_bss_flush);
1219
1220 const struct element *
1221 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1222                          const u8 *match, unsigned int match_len,
1223                          unsigned int match_offset)
1224 {
1225         const struct element *elem;
1226
1227         for_each_element_id(elem, eid, ies, len) {
1228                 if (elem->datalen >= match_offset + match_len &&
1229                     !memcmp(elem->data + match_offset, match, match_len))
1230                         return elem;
1231         }
1232
1233         return NULL;
1234 }
1235 EXPORT_SYMBOL(cfg80211_find_elem_match);
1236
1237 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1238                                                 const u8 *ies,
1239                                                 unsigned int len)
1240 {
1241         const struct element *elem;
1242         u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1243         int match_len = (oui_type < 0) ? 3 : sizeof(match);
1244
1245         if (WARN_ON(oui_type > 0xff))
1246                 return NULL;
1247
1248         elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1249                                         match, match_len, 0);
1250
1251         if (!elem || elem->datalen < 4)
1252                 return NULL;
1253
1254         return elem;
1255 }
1256 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1257
1258 /**
1259  * enum bss_compare_mode - BSS compare mode
1260  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1261  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1262  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1263  */
1264 enum bss_compare_mode {
1265         BSS_CMP_REGULAR,
1266         BSS_CMP_HIDE_ZLEN,
1267         BSS_CMP_HIDE_NUL,
1268 };
1269
1270 static int cmp_bss(struct cfg80211_bss *a,
1271                    struct cfg80211_bss *b,
1272                    enum bss_compare_mode mode)
1273 {
1274         const struct cfg80211_bss_ies *a_ies, *b_ies;
1275         const u8 *ie1 = NULL;
1276         const u8 *ie2 = NULL;
1277         int i, r;
1278
1279         if (a->channel != b->channel)
1280                 return b->channel->center_freq - a->channel->center_freq;
1281
1282         a_ies = rcu_access_pointer(a->ies);
1283         if (!a_ies)
1284                 return -1;
1285         b_ies = rcu_access_pointer(b->ies);
1286         if (!b_ies)
1287                 return 1;
1288
1289         if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1290                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1291                                        a_ies->data, a_ies->len);
1292         if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1293                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1294                                        b_ies->data, b_ies->len);
1295         if (ie1 && ie2) {
1296                 int mesh_id_cmp;
1297
1298                 if (ie1[1] == ie2[1])
1299                         mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1300                 else
1301                         mesh_id_cmp = ie2[1] - ie1[1];
1302
1303                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1304                                        a_ies->data, a_ies->len);
1305                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1306                                        b_ies->data, b_ies->len);
1307                 if (ie1 && ie2) {
1308                         if (mesh_id_cmp)
1309                                 return mesh_id_cmp;
1310                         if (ie1[1] != ie2[1])
1311                                 return ie2[1] - ie1[1];
1312                         return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1313                 }
1314         }
1315
1316         r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1317         if (r)
1318                 return r;
1319
1320         ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1321         ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1322
1323         if (!ie1 && !ie2)
1324                 return 0;
1325
1326         /*
1327          * Note that with "hide_ssid", the function returns a match if
1328          * the already-present BSS ("b") is a hidden SSID beacon for
1329          * the new BSS ("a").
1330          */
1331
1332         /* sort missing IE before (left of) present IE */
1333         if (!ie1)
1334                 return -1;
1335         if (!ie2)
1336                 return 1;
1337
1338         switch (mode) {
1339         case BSS_CMP_HIDE_ZLEN:
1340                 /*
1341                  * In ZLEN mode we assume the BSS entry we're
1342                  * looking for has a zero-length SSID. So if
1343                  * the one we're looking at right now has that,
1344                  * return 0. Otherwise, return the difference
1345                  * in length, but since we're looking for the
1346                  * 0-length it's really equivalent to returning
1347                  * the length of the one we're looking at.
1348                  *
1349                  * No content comparison is needed as we assume
1350                  * the content length is zero.
1351                  */
1352                 return ie2[1];
1353         case BSS_CMP_REGULAR:
1354         default:
1355                 /* sort by length first, then by contents */
1356                 if (ie1[1] != ie2[1])
1357                         return ie2[1] - ie1[1];
1358                 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1359         case BSS_CMP_HIDE_NUL:
1360                 if (ie1[1] != ie2[1])
1361                         return ie2[1] - ie1[1];
1362                 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1363                 for (i = 0; i < ie2[1]; i++)
1364                         if (ie2[i + 2])
1365                                 return -1;
1366                 return 0;
1367         }
1368 }
1369
1370 static bool cfg80211_bss_type_match(u16 capability,
1371                                     enum nl80211_band band,
1372                                     enum ieee80211_bss_type bss_type)
1373 {
1374         bool ret = true;
1375         u16 mask, val;
1376
1377         if (bss_type == IEEE80211_BSS_TYPE_ANY)
1378                 return ret;
1379
1380         if (band == NL80211_BAND_60GHZ) {
1381                 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1382                 switch (bss_type) {
1383                 case IEEE80211_BSS_TYPE_ESS:
1384                         val = WLAN_CAPABILITY_DMG_TYPE_AP;
1385                         break;
1386                 case IEEE80211_BSS_TYPE_PBSS:
1387                         val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1388                         break;
1389                 case IEEE80211_BSS_TYPE_IBSS:
1390                         val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1391                         break;
1392                 default:
1393                         return false;
1394                 }
1395         } else {
1396                 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1397                 switch (bss_type) {
1398                 case IEEE80211_BSS_TYPE_ESS:
1399                         val = WLAN_CAPABILITY_ESS;
1400                         break;
1401                 case IEEE80211_BSS_TYPE_IBSS:
1402                         val = WLAN_CAPABILITY_IBSS;
1403                         break;
1404                 case IEEE80211_BSS_TYPE_MBSS:
1405                         val = 0;
1406                         break;
1407                 default:
1408                         return false;
1409                 }
1410         }
1411
1412         ret = ((capability & mask) == val);
1413         return ret;
1414 }
1415
1416 /* Returned bss is reference counted and must be cleaned up appropriately. */
1417 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1418                                       struct ieee80211_channel *channel,
1419                                       const u8 *bssid,
1420                                       const u8 *ssid, size_t ssid_len,
1421                                       enum ieee80211_bss_type bss_type,
1422                                       enum ieee80211_privacy privacy)
1423 {
1424         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1425         struct cfg80211_internal_bss *bss, *res = NULL;
1426         unsigned long now = jiffies;
1427         int bss_privacy;
1428
1429         trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1430                                privacy);
1431
1432         spin_lock_bh(&rdev->bss_lock);
1433
1434         list_for_each_entry(bss, &rdev->bss_list, list) {
1435                 if (!cfg80211_bss_type_match(bss->pub.capability,
1436                                              bss->pub.channel->band, bss_type))
1437                         continue;
1438
1439                 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1440                 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1441                     (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1442                         continue;
1443                 if (channel && bss->pub.channel != channel)
1444                         continue;
1445                 if (!is_valid_ether_addr(bss->pub.bssid))
1446                         continue;
1447                 /* Don't get expired BSS structs */
1448                 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1449                     !atomic_read(&bss->hold))
1450                         continue;
1451                 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1452                         res = bss;
1453                         bss_ref_get(rdev, res);
1454                         break;
1455                 }
1456         }
1457
1458         spin_unlock_bh(&rdev->bss_lock);
1459         if (!res)
1460                 return NULL;
1461         trace_cfg80211_return_bss(&res->pub);
1462         return &res->pub;
1463 }
1464 EXPORT_SYMBOL(cfg80211_get_bss);
1465
1466 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1467                           struct cfg80211_internal_bss *bss)
1468 {
1469         struct rb_node **p = &rdev->bss_tree.rb_node;
1470         struct rb_node *parent = NULL;
1471         struct cfg80211_internal_bss *tbss;
1472         int cmp;
1473
1474         while (*p) {
1475                 parent = *p;
1476                 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1477
1478                 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1479
1480                 if (WARN_ON(!cmp)) {
1481                         /* will sort of leak this BSS */
1482                         return;
1483                 }
1484
1485                 if (cmp < 0)
1486                         p = &(*p)->rb_left;
1487                 else
1488                         p = &(*p)->rb_right;
1489         }
1490
1491         rb_link_node(&bss->rbn, parent, p);
1492         rb_insert_color(&bss->rbn, &rdev->bss_tree);
1493 }
1494
1495 static struct cfg80211_internal_bss *
1496 rb_find_bss(struct cfg80211_registered_device *rdev,
1497             struct cfg80211_internal_bss *res,
1498             enum bss_compare_mode mode)
1499 {
1500         struct rb_node *n = rdev->bss_tree.rb_node;
1501         struct cfg80211_internal_bss *bss;
1502         int r;
1503
1504         while (n) {
1505                 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1506                 r = cmp_bss(&res->pub, &bss->pub, mode);
1507
1508                 if (r == 0)
1509                         return bss;
1510                 else if (r < 0)
1511                         n = n->rb_left;
1512                 else
1513                         n = n->rb_right;
1514         }
1515
1516         return NULL;
1517 }
1518
1519 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1520                                    struct cfg80211_internal_bss *new)
1521 {
1522         const struct cfg80211_bss_ies *ies;
1523         struct cfg80211_internal_bss *bss;
1524         const u8 *ie;
1525         int i, ssidlen;
1526         u8 fold = 0;
1527         u32 n_entries = 0;
1528
1529         ies = rcu_access_pointer(new->pub.beacon_ies);
1530         if (WARN_ON(!ies))
1531                 return false;
1532
1533         ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1534         if (!ie) {
1535                 /* nothing to do */
1536                 return true;
1537         }
1538
1539         ssidlen = ie[1];
1540         for (i = 0; i < ssidlen; i++)
1541                 fold |= ie[2 + i];
1542
1543         if (fold) {
1544                 /* not a hidden SSID */
1545                 return true;
1546         }
1547
1548         /* This is the bad part ... */
1549
1550         list_for_each_entry(bss, &rdev->bss_list, list) {
1551                 /*
1552                  * we're iterating all the entries anyway, so take the
1553                  * opportunity to validate the list length accounting
1554                  */
1555                 n_entries++;
1556
1557                 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1558                         continue;
1559                 if (bss->pub.channel != new->pub.channel)
1560                         continue;
1561                 if (bss->pub.scan_width != new->pub.scan_width)
1562                         continue;
1563                 if (rcu_access_pointer(bss->pub.beacon_ies))
1564                         continue;
1565                 ies = rcu_access_pointer(bss->pub.ies);
1566                 if (!ies)
1567                         continue;
1568                 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1569                 if (!ie)
1570                         continue;
1571                 if (ssidlen && ie[1] != ssidlen)
1572                         continue;
1573                 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1574                         continue;
1575                 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1576                         list_del(&bss->hidden_list);
1577                 /* combine them */
1578                 list_add(&bss->hidden_list, &new->hidden_list);
1579                 bss->pub.hidden_beacon_bss = &new->pub;
1580                 new->refcount += bss->refcount;
1581                 rcu_assign_pointer(bss->pub.beacon_ies,
1582                                    new->pub.beacon_ies);
1583         }
1584
1585         WARN_ONCE(n_entries != rdev->bss_entries,
1586                   "rdev bss entries[%d]/list[len:%d] corruption\n",
1587                   rdev->bss_entries, n_entries);
1588
1589         return true;
1590 }
1591
1592 struct cfg80211_non_tx_bss {
1593         struct cfg80211_bss *tx_bss;
1594         u8 max_bssid_indicator;
1595         u8 bssid_index;
1596 };
1597
1598 static bool
1599 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1600                           struct cfg80211_internal_bss *known,
1601                           struct cfg80211_internal_bss *new,
1602                           bool signal_valid)
1603 {
1604         lockdep_assert_held(&rdev->bss_lock);
1605
1606         /* Update IEs */
1607         if (rcu_access_pointer(new->pub.proberesp_ies)) {
1608                 const struct cfg80211_bss_ies *old;
1609
1610                 old = rcu_access_pointer(known->pub.proberesp_ies);
1611
1612                 rcu_assign_pointer(known->pub.proberesp_ies,
1613                                    new->pub.proberesp_ies);
1614                 /* Override possible earlier Beacon frame IEs */
1615                 rcu_assign_pointer(known->pub.ies,
1616                                    new->pub.proberesp_ies);
1617                 if (old)
1618                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1619         } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1620                 const struct cfg80211_bss_ies *old;
1621                 struct cfg80211_internal_bss *bss;
1622
1623                 if (known->pub.hidden_beacon_bss &&
1624                     !list_empty(&known->hidden_list)) {
1625                         const struct cfg80211_bss_ies *f;
1626
1627                         /* The known BSS struct is one of the probe
1628                          * response members of a group, but we're
1629                          * receiving a beacon (beacon_ies in the new
1630                          * bss is used). This can only mean that the
1631                          * AP changed its beacon from not having an
1632                          * SSID to showing it, which is confusing so
1633                          * drop this information.
1634                          */
1635
1636                         f = rcu_access_pointer(new->pub.beacon_ies);
1637                         kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1638                         return false;
1639                 }
1640
1641                 old = rcu_access_pointer(known->pub.beacon_ies);
1642
1643                 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1644
1645                 /* Override IEs if they were from a beacon before */
1646                 if (old == rcu_access_pointer(known->pub.ies))
1647                         rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1648
1649                 /* Assign beacon IEs to all sub entries */
1650                 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1651                         const struct cfg80211_bss_ies *ies;
1652
1653                         ies = rcu_access_pointer(bss->pub.beacon_ies);
1654                         WARN_ON(ies != old);
1655
1656                         rcu_assign_pointer(bss->pub.beacon_ies,
1657                                            new->pub.beacon_ies);
1658                 }
1659
1660                 if (old)
1661                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1662         }
1663
1664         known->pub.beacon_interval = new->pub.beacon_interval;
1665
1666         /* don't update the signal if beacon was heard on
1667          * adjacent channel.
1668          */
1669         if (signal_valid)
1670                 known->pub.signal = new->pub.signal;
1671         known->pub.capability = new->pub.capability;
1672         known->ts = new->ts;
1673         known->ts_boottime = new->ts_boottime;
1674         known->parent_tsf = new->parent_tsf;
1675         known->pub.chains = new->pub.chains;
1676         memcpy(known->pub.chain_signal, new->pub.chain_signal,
1677                IEEE80211_MAX_CHAINS);
1678         ether_addr_copy(known->parent_bssid, new->parent_bssid);
1679         known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1680         known->pub.bssid_index = new->pub.bssid_index;
1681
1682         return true;
1683 }
1684
1685 /* Returned bss is reference counted and must be cleaned up appropriately. */
1686 struct cfg80211_internal_bss *
1687 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1688                     struct cfg80211_internal_bss *tmp,
1689                     bool signal_valid, unsigned long ts)
1690 {
1691         struct cfg80211_internal_bss *found = NULL;
1692
1693         if (WARN_ON(!tmp->pub.channel))
1694                 return NULL;
1695
1696         tmp->ts = ts;
1697
1698         spin_lock_bh(&rdev->bss_lock);
1699
1700         if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1701                 spin_unlock_bh(&rdev->bss_lock);
1702                 return NULL;
1703         }
1704
1705         found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1706
1707         if (found) {
1708                 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1709                         goto drop;
1710         } else {
1711                 struct cfg80211_internal_bss *new;
1712                 struct cfg80211_internal_bss *hidden;
1713                 struct cfg80211_bss_ies *ies;
1714
1715                 /*
1716                  * create a copy -- the "res" variable that is passed in
1717                  * is allocated on the stack since it's not needed in the
1718                  * more common case of an update
1719                  */
1720                 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1721                               GFP_ATOMIC);
1722                 if (!new) {
1723                         ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1724                         if (ies)
1725                                 kfree_rcu(ies, rcu_head);
1726                         ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1727                         if (ies)
1728                                 kfree_rcu(ies, rcu_head);
1729                         goto drop;
1730                 }
1731                 memcpy(new, tmp, sizeof(*new));
1732                 new->refcount = 1;
1733                 INIT_LIST_HEAD(&new->hidden_list);
1734                 INIT_LIST_HEAD(&new->pub.nontrans_list);
1735
1736                 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1737                         hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1738                         if (!hidden)
1739                                 hidden = rb_find_bss(rdev, tmp,
1740                                                      BSS_CMP_HIDE_NUL);
1741                         if (hidden) {
1742                                 new->pub.hidden_beacon_bss = &hidden->pub;
1743                                 list_add(&new->hidden_list,
1744                                          &hidden->hidden_list);
1745                                 hidden->refcount++;
1746                                 rcu_assign_pointer(new->pub.beacon_ies,
1747                                                    hidden->pub.beacon_ies);
1748                         }
1749                 } else {
1750                         /*
1751                          * Ok so we found a beacon, and don't have an entry. If
1752                          * it's a beacon with hidden SSID, we might be in for an
1753                          * expensive search for any probe responses that should
1754                          * be grouped with this beacon for updates ...
1755                          */
1756                         if (!cfg80211_combine_bsses(rdev, new)) {
1757                                 bss_ref_put(rdev, new);
1758                                 goto drop;
1759                         }
1760                 }
1761
1762                 if (rdev->bss_entries >= bss_entries_limit &&
1763                     !cfg80211_bss_expire_oldest(rdev)) {
1764                         bss_ref_put(rdev, new);
1765                         goto drop;
1766                 }
1767
1768                 /* This must be before the call to bss_ref_get */
1769                 if (tmp->pub.transmitted_bss) {
1770                         struct cfg80211_internal_bss *pbss =
1771                                 container_of(tmp->pub.transmitted_bss,
1772                                              struct cfg80211_internal_bss,
1773                                              pub);
1774
1775                         new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1776                         bss_ref_get(rdev, pbss);
1777                 }
1778
1779                 list_add_tail(&new->list, &rdev->bss_list);
1780                 rdev->bss_entries++;
1781                 rb_insert_bss(rdev, new);
1782                 found = new;
1783         }
1784
1785         rdev->bss_generation++;
1786         bss_ref_get(rdev, found);
1787         spin_unlock_bh(&rdev->bss_lock);
1788
1789         return found;
1790  drop:
1791         spin_unlock_bh(&rdev->bss_lock);
1792         return NULL;
1793 }
1794
1795 /*
1796  * Update RX channel information based on the available frame payload
1797  * information. This is mainly for the 2.4 GHz band where frames can be received
1798  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1799  * element to indicate the current (transmitting) channel, but this might also
1800  * be needed on other bands if RX frequency does not match with the actual
1801  * operating channel of a BSS.
1802  */
1803 static struct ieee80211_channel *
1804 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1805                          struct ieee80211_channel *channel,
1806                          enum nl80211_bss_scan_width scan_width)
1807 {
1808         const u8 *tmp;
1809         u32 freq;
1810         int channel_number = -1;
1811         struct ieee80211_channel *alt_channel;
1812
1813         if (channel->band == NL80211_BAND_S1GHZ) {
1814                 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1815                 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1816                         struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1817
1818                         channel_number = s1gop->primary_ch;
1819                 }
1820         } else {
1821                 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1822                 if (tmp && tmp[1] == 1) {
1823                         channel_number = tmp[2];
1824                 } else {
1825                         tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1826                         if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1827                                 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1828
1829                                 channel_number = htop->primary_chan;
1830                         }
1831                 }
1832         }
1833
1834         if (channel_number < 0) {
1835                 /* No channel information in frame payload */
1836                 return channel;
1837         }
1838
1839         freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1840         alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1841         if (!alt_channel) {
1842                 if (channel->band == NL80211_BAND_2GHZ) {
1843                         /*
1844                          * Better not allow unexpected channels when that could
1845                          * be going beyond the 1-11 range (e.g., discovering
1846                          * BSS on channel 12 when radio is configured for
1847                          * channel 11.
1848                          */
1849                         return NULL;
1850                 }
1851
1852                 /* No match for the payload channel number - ignore it */
1853                 return channel;
1854         }
1855
1856         if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1857             scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1858                 /*
1859                  * Ignore channel number in 5 and 10 MHz channels where there
1860                  * may not be an n:1 or 1:n mapping between frequencies and
1861                  * channel numbers.
1862                  */
1863                 return channel;
1864         }
1865
1866         /*
1867          * Use the channel determined through the payload channel number
1868          * instead of the RX channel reported by the driver.
1869          */
1870         if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1871                 return NULL;
1872         return alt_channel;
1873 }
1874
1875 /* Returned bss is reference counted and must be cleaned up appropriately. */
1876 static struct cfg80211_bss *
1877 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1878                                 struct cfg80211_inform_bss *data,
1879                                 enum cfg80211_bss_frame_type ftype,
1880                                 const u8 *bssid, u64 tsf, u16 capability,
1881                                 u16 beacon_interval, const u8 *ie, size_t ielen,
1882                                 struct cfg80211_non_tx_bss *non_tx_data,
1883                                 gfp_t gfp)
1884 {
1885         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1886         struct cfg80211_bss_ies *ies;
1887         struct ieee80211_channel *channel;
1888         struct cfg80211_internal_bss tmp = {}, *res;
1889         int bss_type;
1890         bool signal_valid;
1891         unsigned long ts;
1892
1893         if (WARN_ON(!wiphy))
1894                 return NULL;
1895
1896         if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1897                     (data->signal < 0 || data->signal > 100)))
1898                 return NULL;
1899
1900         channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1901                                            data->scan_width);
1902         if (!channel)
1903                 return NULL;
1904
1905         memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1906         tmp.pub.channel = channel;
1907         tmp.pub.scan_width = data->scan_width;
1908         tmp.pub.signal = data->signal;
1909         tmp.pub.beacon_interval = beacon_interval;
1910         tmp.pub.capability = capability;
1911         tmp.ts_boottime = data->boottime_ns;
1912         tmp.parent_tsf = data->parent_tsf;
1913         ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1914
1915         if (non_tx_data) {
1916                 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1917                 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1918                 tmp.pub.bssid_index = non_tx_data->bssid_index;
1919                 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1920         } else {
1921                 ts = jiffies;
1922         }
1923
1924         /*
1925          * If we do not know here whether the IEs are from a Beacon or Probe
1926          * Response frame, we need to pick one of the options and only use it
1927          * with the driver that does not provide the full Beacon/Probe Response
1928          * frame. Use Beacon frame pointer to avoid indicating that this should
1929          * override the IEs pointer should we have received an earlier
1930          * indication of Probe Response data.
1931          */
1932         ies = kzalloc(sizeof(*ies) + ielen, gfp);
1933         if (!ies)
1934                 return NULL;
1935         ies->len = ielen;
1936         ies->tsf = tsf;
1937         ies->from_beacon = false;
1938         memcpy(ies->data, ie, ielen);
1939
1940         switch (ftype) {
1941         case CFG80211_BSS_FTYPE_BEACON:
1942                 ies->from_beacon = true;
1943                 fallthrough;
1944         case CFG80211_BSS_FTYPE_UNKNOWN:
1945                 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1946                 break;
1947         case CFG80211_BSS_FTYPE_PRESP:
1948                 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1949                 break;
1950         }
1951         rcu_assign_pointer(tmp.pub.ies, ies);
1952
1953         signal_valid = data->chan == channel;
1954         res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1955         if (!res)
1956                 return NULL;
1957
1958         if (channel->band == NL80211_BAND_60GHZ) {
1959                 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1960                 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1961                     bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1962                         regulatory_hint_found_beacon(wiphy, channel, gfp);
1963         } else {
1964                 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1965                         regulatory_hint_found_beacon(wiphy, channel, gfp);
1966         }
1967
1968         if (non_tx_data) {
1969                 /* this is a nontransmitting bss, we need to add it to
1970                  * transmitting bss' list if it is not there
1971                  */
1972                 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1973                                                &res->pub)) {
1974                         if (__cfg80211_unlink_bss(rdev, res))
1975                                 rdev->bss_generation++;
1976                 }
1977         }
1978
1979         trace_cfg80211_return_bss(&res->pub);
1980         /* cfg80211_bss_update gives us a referenced result */
1981         return &res->pub;
1982 }
1983
1984 static const struct element
1985 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1986                                    const struct element *mbssid_elem,
1987                                    const struct element *sub_elem)
1988 {
1989         const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1990         const struct element *next_mbssid;
1991         const struct element *next_sub;
1992
1993         next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1994                                          mbssid_end,
1995                                          ielen - (mbssid_end - ie));
1996
1997         /*
1998          * If it is not the last subelement in current MBSSID IE or there isn't
1999          * a next MBSSID IE - profile is complete.
2000         */
2001         if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2002             !next_mbssid)
2003                 return NULL;
2004
2005         /* For any length error, just return NULL */
2006
2007         if (next_mbssid->datalen < 4)
2008                 return NULL;
2009
2010         next_sub = (void *)&next_mbssid->data[1];
2011
2012         if (next_mbssid->data + next_mbssid->datalen <
2013             next_sub->data + next_sub->datalen)
2014                 return NULL;
2015
2016         if (next_sub->id != 0 || next_sub->datalen < 2)
2017                 return NULL;
2018
2019         /*
2020          * Check if the first element in the next sub element is a start
2021          * of a new profile
2022          */
2023         return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2024                NULL : next_mbssid;
2025 }
2026
2027 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2028                               const struct element *mbssid_elem,
2029                               const struct element *sub_elem,
2030                               u8 *merged_ie, size_t max_copy_len)
2031 {
2032         size_t copied_len = sub_elem->datalen;
2033         const struct element *next_mbssid;
2034
2035         if (sub_elem->datalen > max_copy_len)
2036                 return 0;
2037
2038         memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2039
2040         while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2041                                                                 mbssid_elem,
2042                                                                 sub_elem))) {
2043                 const struct element *next_sub = (void *)&next_mbssid->data[1];
2044
2045                 if (copied_len + next_sub->datalen > max_copy_len)
2046                         break;
2047                 memcpy(merged_ie + copied_len, next_sub->data,
2048                        next_sub->datalen);
2049                 copied_len += next_sub->datalen;
2050         }
2051
2052         return copied_len;
2053 }
2054 EXPORT_SYMBOL(cfg80211_merge_profile);
2055
2056 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2057                                        struct cfg80211_inform_bss *data,
2058                                        enum cfg80211_bss_frame_type ftype,
2059                                        const u8 *bssid, u64 tsf,
2060                                        u16 beacon_interval, const u8 *ie,
2061                                        size_t ielen,
2062                                        struct cfg80211_non_tx_bss *non_tx_data,
2063                                        gfp_t gfp)
2064 {
2065         const u8 *mbssid_index_ie;
2066         const struct element *elem, *sub;
2067         size_t new_ie_len;
2068         u8 new_bssid[ETH_ALEN];
2069         u8 *new_ie, *profile;
2070         u64 seen_indices = 0;
2071         u16 capability;
2072         struct cfg80211_bss *bss;
2073
2074         if (!non_tx_data)
2075                 return;
2076         if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2077                 return;
2078         if (!wiphy->support_mbssid)
2079                 return;
2080         if (wiphy->support_only_he_mbssid &&
2081             !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2082                 return;
2083
2084         new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2085         if (!new_ie)
2086                 return;
2087
2088         profile = kmalloc(ielen, gfp);
2089         if (!profile)
2090                 goto out;
2091
2092         for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2093                 if (elem->datalen < 4)
2094                         continue;
2095                 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2096                         u8 profile_len;
2097
2098                         if (sub->id != 0 || sub->datalen < 4) {
2099                                 /* not a valid BSS profile */
2100                                 continue;
2101                         }
2102
2103                         if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2104                             sub->data[1] != 2) {
2105                                 /* The first element within the Nontransmitted
2106                                  * BSSID Profile is not the Nontransmitted
2107                                  * BSSID Capability element.
2108                                  */
2109                                 continue;
2110                         }
2111
2112                         memset(profile, 0, ielen);
2113                         profile_len = cfg80211_merge_profile(ie, ielen,
2114                                                              elem,
2115                                                              sub,
2116                                                              profile,
2117                                                              ielen);
2118
2119                         /* found a Nontransmitted BSSID Profile */
2120                         mbssid_index_ie = cfg80211_find_ie
2121                                 (WLAN_EID_MULTI_BSSID_IDX,
2122                                  profile, profile_len);
2123                         if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2124                             mbssid_index_ie[2] == 0 ||
2125                             mbssid_index_ie[2] > 46) {
2126                                 /* No valid Multiple BSSID-Index element */
2127                                 continue;
2128                         }
2129
2130                         if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2131                                 /* We don't support legacy split of a profile */
2132                                 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2133                                                     mbssid_index_ie[2]);
2134
2135                         seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2136
2137                         non_tx_data->bssid_index = mbssid_index_ie[2];
2138                         non_tx_data->max_bssid_indicator = elem->data[0];
2139
2140                         cfg80211_gen_new_bssid(bssid,
2141                                                non_tx_data->max_bssid_indicator,
2142                                                non_tx_data->bssid_index,
2143                                                new_bssid);
2144                         memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2145                         new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2146                                                          profile,
2147                                                          profile_len, new_ie,
2148                                                          gfp);
2149                         if (!new_ie_len)
2150                                 continue;
2151
2152                         capability = get_unaligned_le16(profile + 2);
2153                         bss = cfg80211_inform_single_bss_data(wiphy, data,
2154                                                               ftype,
2155                                                               new_bssid, tsf,
2156                                                               capability,
2157                                                               beacon_interval,
2158                                                               new_ie,
2159                                                               new_ie_len,
2160                                                               non_tx_data,
2161                                                               gfp);
2162                         if (!bss)
2163                                 break;
2164                         cfg80211_put_bss(wiphy, bss);
2165                 }
2166         }
2167
2168 out:
2169         kfree(new_ie);
2170         kfree(profile);
2171 }
2172
2173 struct cfg80211_bss *
2174 cfg80211_inform_bss_data(struct wiphy *wiphy,
2175                          struct cfg80211_inform_bss *data,
2176                          enum cfg80211_bss_frame_type ftype,
2177                          const u8 *bssid, u64 tsf, u16 capability,
2178                          u16 beacon_interval, const u8 *ie, size_t ielen,
2179                          gfp_t gfp)
2180 {
2181         struct cfg80211_bss *res;
2182         struct cfg80211_non_tx_bss non_tx_data;
2183
2184         res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2185                                               capability, beacon_interval, ie,
2186                                               ielen, NULL, gfp);
2187         if (!res)
2188                 return NULL;
2189         non_tx_data.tx_bss = res;
2190         cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2191                                    beacon_interval, ie, ielen, &non_tx_data,
2192                                    gfp);
2193         return res;
2194 }
2195 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2196
2197 static void
2198 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2199                                  struct cfg80211_inform_bss *data,
2200                                  struct ieee80211_mgmt *mgmt, size_t len,
2201                                  struct cfg80211_non_tx_bss *non_tx_data,
2202                                  gfp_t gfp)
2203 {
2204         enum cfg80211_bss_frame_type ftype;
2205         const u8 *ie = mgmt->u.probe_resp.variable;
2206         size_t ielen = len - offsetof(struct ieee80211_mgmt,
2207                                       u.probe_resp.variable);
2208
2209         ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2210                 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2211
2212         cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2213                                    le64_to_cpu(mgmt->u.probe_resp.timestamp),
2214                                    le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2215                                    ie, ielen, non_tx_data, gfp);
2216 }
2217
2218 static void
2219 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2220                                    struct cfg80211_bss *nontrans_bss,
2221                                    struct ieee80211_mgmt *mgmt, size_t len)
2222 {
2223         u8 *ie, *new_ie, *pos;
2224         const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2225         size_t ielen = len - offsetof(struct ieee80211_mgmt,
2226                                       u.probe_resp.variable);
2227         size_t new_ie_len;
2228         struct cfg80211_bss_ies *new_ies;
2229         const struct cfg80211_bss_ies *old;
2230         u8 cpy_len;
2231
2232         lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2233
2234         ie = mgmt->u.probe_resp.variable;
2235
2236         new_ie_len = ielen;
2237         trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2238         if (!trans_ssid)
2239                 return;
2240         new_ie_len -= trans_ssid[1];
2241         mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2242         /*
2243          * It's not valid to have the MBSSID element before SSID
2244          * ignore if that happens - the code below assumes it is
2245          * after (while copying things inbetween).
2246          */
2247         if (!mbssid || mbssid < trans_ssid)
2248                 return;
2249         new_ie_len -= mbssid[1];
2250
2251         nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2252         if (!nontrans_ssid)
2253                 return;
2254
2255         new_ie_len += nontrans_ssid[1];
2256
2257         /* generate new ie for nontrans BSS
2258          * 1. replace SSID with nontrans BSS' SSID
2259          * 2. skip MBSSID IE
2260          */
2261         new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2262         if (!new_ie)
2263                 return;
2264
2265         new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2266         if (!new_ies)
2267                 goto out_free;
2268
2269         pos = new_ie;
2270
2271         /* copy the nontransmitted SSID */
2272         cpy_len = nontrans_ssid[1] + 2;
2273         memcpy(pos, nontrans_ssid, cpy_len);
2274         pos += cpy_len;
2275         /* copy the IEs between SSID and MBSSID */
2276         cpy_len = trans_ssid[1] + 2;
2277         memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2278         pos += (mbssid - (trans_ssid + cpy_len));
2279         /* copy the IEs after MBSSID */
2280         cpy_len = mbssid[1] + 2;
2281         memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2282
2283         /* update ie */
2284         new_ies->len = new_ie_len;
2285         new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2286         new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2287         memcpy(new_ies->data, new_ie, new_ie_len);
2288         if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2289                 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2290                 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2291                 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2292                 if (old)
2293                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2294         } else {
2295                 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2296                 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2297                 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2298                 if (old)
2299                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2300         }
2301
2302 out_free:
2303         kfree(new_ie);
2304 }
2305
2306 /* cfg80211_inform_bss_width_frame helper */
2307 static struct cfg80211_bss *
2308 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2309                                       struct cfg80211_inform_bss *data,
2310                                       struct ieee80211_mgmt *mgmt, size_t len,
2311                                       gfp_t gfp)
2312 {
2313         struct cfg80211_internal_bss tmp = {}, *res;
2314         struct cfg80211_bss_ies *ies;
2315         struct ieee80211_channel *channel;
2316         bool signal_valid;
2317         struct ieee80211_ext *ext = NULL;
2318         u8 *bssid, *variable;
2319         u16 capability, beacon_int;
2320         size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2321                                              u.probe_resp.variable);
2322         int bss_type;
2323
2324         BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2325                         offsetof(struct ieee80211_mgmt, u.beacon.variable));
2326
2327         trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2328
2329         if (WARN_ON(!mgmt))
2330                 return NULL;
2331
2332         if (WARN_ON(!wiphy))
2333                 return NULL;
2334
2335         if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2336                     (data->signal < 0 || data->signal > 100)))
2337                 return NULL;
2338
2339         if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2340                 ext = (void *) mgmt;
2341                 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2342                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2343                         min_hdr_len = offsetof(struct ieee80211_ext,
2344                                                u.s1g_short_beacon.variable);
2345         }
2346
2347         if (WARN_ON(len < min_hdr_len))
2348                 return NULL;
2349
2350         ielen = len - min_hdr_len;
2351         variable = mgmt->u.probe_resp.variable;
2352         if (ext) {
2353                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2354                         variable = ext->u.s1g_short_beacon.variable;
2355                 else
2356                         variable = ext->u.s1g_beacon.variable;
2357         }
2358
2359         channel = cfg80211_get_bss_channel(wiphy, variable,
2360                                            ielen, data->chan, data->scan_width);
2361         if (!channel)
2362                 return NULL;
2363
2364         if (ext) {
2365                 const struct ieee80211_s1g_bcn_compat_ie *compat;
2366                 const struct element *elem;
2367
2368                 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2369                                           variable, ielen);
2370                 if (!elem)
2371                         return NULL;
2372                 if (elem->datalen < sizeof(*compat))
2373                         return NULL;
2374                 compat = (void *)elem->data;
2375                 bssid = ext->u.s1g_beacon.sa;
2376                 capability = le16_to_cpu(compat->compat_info);
2377                 beacon_int = le16_to_cpu(compat->beacon_int);
2378         } else {
2379                 bssid = mgmt->bssid;
2380                 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2381                 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2382         }
2383
2384         ies = kzalloc(sizeof(*ies) + ielen, gfp);
2385         if (!ies)
2386                 return NULL;
2387         ies->len = ielen;
2388         ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2389         ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2390                            ieee80211_is_s1g_beacon(mgmt->frame_control);
2391         memcpy(ies->data, variable, ielen);
2392
2393         if (ieee80211_is_probe_resp(mgmt->frame_control))
2394                 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2395         else
2396                 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2397         rcu_assign_pointer(tmp.pub.ies, ies);
2398
2399         memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2400         tmp.pub.beacon_interval = beacon_int;
2401         tmp.pub.capability = capability;
2402         tmp.pub.channel = channel;
2403         tmp.pub.scan_width = data->scan_width;
2404         tmp.pub.signal = data->signal;
2405         tmp.ts_boottime = data->boottime_ns;
2406         tmp.parent_tsf = data->parent_tsf;
2407         tmp.pub.chains = data->chains;
2408         memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2409         ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2410
2411         signal_valid = data->chan == channel;
2412         res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2413                                   jiffies);
2414         if (!res)
2415                 return NULL;
2416
2417         if (channel->band == NL80211_BAND_60GHZ) {
2418                 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2419                 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2420                     bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2421                         regulatory_hint_found_beacon(wiphy, channel, gfp);
2422         } else {
2423                 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2424                         regulatory_hint_found_beacon(wiphy, channel, gfp);
2425         }
2426
2427         trace_cfg80211_return_bss(&res->pub);
2428         /* cfg80211_bss_update gives us a referenced result */
2429         return &res->pub;
2430 }
2431
2432 struct cfg80211_bss *
2433 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2434                                struct cfg80211_inform_bss *data,
2435                                struct ieee80211_mgmt *mgmt, size_t len,
2436                                gfp_t gfp)
2437 {
2438         struct cfg80211_bss *res, *tmp_bss;
2439         const u8 *ie = mgmt->u.probe_resp.variable;
2440         const struct cfg80211_bss_ies *ies1, *ies2;
2441         size_t ielen = len - offsetof(struct ieee80211_mgmt,
2442                                       u.probe_resp.variable);
2443         struct cfg80211_non_tx_bss non_tx_data;
2444
2445         res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2446                                                     len, gfp);
2447         if (!res || !wiphy->support_mbssid ||
2448             !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2449                 return res;
2450         if (wiphy->support_only_he_mbssid &&
2451             !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2452                 return res;
2453
2454         non_tx_data.tx_bss = res;
2455         /* process each non-transmitting bss */
2456         cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2457                                          &non_tx_data, gfp);
2458
2459         spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2460
2461         /* check if the res has other nontransmitting bss which is not
2462          * in MBSSID IE
2463          */
2464         ies1 = rcu_access_pointer(res->ies);
2465
2466         /* go through nontrans_list, if the timestamp of the BSS is
2467          * earlier than the timestamp of the transmitting BSS then
2468          * update it
2469          */
2470         list_for_each_entry(tmp_bss, &res->nontrans_list,
2471                             nontrans_list) {
2472                 ies2 = rcu_access_pointer(tmp_bss->ies);
2473                 if (ies2->tsf < ies1->tsf)
2474                         cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2475                                                            mgmt, len);
2476         }
2477         spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2478
2479         return res;
2480 }
2481 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2482
2483 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2484 {
2485         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2486         struct cfg80211_internal_bss *bss;
2487
2488         if (!pub)
2489                 return;
2490
2491         bss = container_of(pub, struct cfg80211_internal_bss, pub);
2492
2493         spin_lock_bh(&rdev->bss_lock);
2494         bss_ref_get(rdev, bss);
2495         spin_unlock_bh(&rdev->bss_lock);
2496 }
2497 EXPORT_SYMBOL(cfg80211_ref_bss);
2498
2499 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2500 {
2501         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2502         struct cfg80211_internal_bss *bss;
2503
2504         if (!pub)
2505                 return;
2506
2507         bss = container_of(pub, struct cfg80211_internal_bss, pub);
2508
2509         spin_lock_bh(&rdev->bss_lock);
2510         bss_ref_put(rdev, bss);
2511         spin_unlock_bh(&rdev->bss_lock);
2512 }
2513 EXPORT_SYMBOL(cfg80211_put_bss);
2514
2515 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2516 {
2517         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2518         struct cfg80211_internal_bss *bss, *tmp1;
2519         struct cfg80211_bss *nontrans_bss, *tmp;
2520
2521         if (WARN_ON(!pub))
2522                 return;
2523
2524         bss = container_of(pub, struct cfg80211_internal_bss, pub);
2525
2526         spin_lock_bh(&rdev->bss_lock);
2527         if (list_empty(&bss->list))
2528                 goto out;
2529
2530         list_for_each_entry_safe(nontrans_bss, tmp,
2531                                  &pub->nontrans_list,
2532                                  nontrans_list) {
2533                 tmp1 = container_of(nontrans_bss,
2534                                     struct cfg80211_internal_bss, pub);
2535                 if (__cfg80211_unlink_bss(rdev, tmp1))
2536                         rdev->bss_generation++;
2537         }
2538
2539         if (__cfg80211_unlink_bss(rdev, bss))
2540                 rdev->bss_generation++;
2541 out:
2542         spin_unlock_bh(&rdev->bss_lock);
2543 }
2544 EXPORT_SYMBOL(cfg80211_unlink_bss);
2545
2546 void cfg80211_bss_iter(struct wiphy *wiphy,
2547                        struct cfg80211_chan_def *chandef,
2548                        void (*iter)(struct wiphy *wiphy,
2549                                     struct cfg80211_bss *bss,
2550                                     void *data),
2551                        void *iter_data)
2552 {
2553         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2554         struct cfg80211_internal_bss *bss;
2555
2556         spin_lock_bh(&rdev->bss_lock);
2557
2558         list_for_each_entry(bss, &rdev->bss_list, list) {
2559                 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2560                         iter(wiphy, &bss->pub, iter_data);
2561         }
2562
2563         spin_unlock_bh(&rdev->bss_lock);
2564 }
2565 EXPORT_SYMBOL(cfg80211_bss_iter);
2566
2567 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2568                                      struct ieee80211_channel *chan)
2569 {
2570         struct wiphy *wiphy = wdev->wiphy;
2571         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2572         struct cfg80211_internal_bss *cbss = wdev->current_bss;
2573         struct cfg80211_internal_bss *new = NULL;
2574         struct cfg80211_internal_bss *bss;
2575         struct cfg80211_bss *nontrans_bss;
2576         struct cfg80211_bss *tmp;
2577
2578         spin_lock_bh(&rdev->bss_lock);
2579
2580         /*
2581          * Some APs use CSA also for bandwidth changes, i.e., without actually
2582          * changing the control channel, so no need to update in such a case.
2583          */
2584         if (cbss->pub.channel == chan)
2585                 goto done;
2586
2587         /* use transmitting bss */
2588         if (cbss->pub.transmitted_bss)
2589                 cbss = container_of(cbss->pub.transmitted_bss,
2590                                     struct cfg80211_internal_bss,
2591                                     pub);
2592
2593         cbss->pub.channel = chan;
2594
2595         list_for_each_entry(bss, &rdev->bss_list, list) {
2596                 if (!cfg80211_bss_type_match(bss->pub.capability,
2597                                              bss->pub.channel->band,
2598                                              wdev->conn_bss_type))
2599                         continue;
2600
2601                 if (bss == cbss)
2602                         continue;
2603
2604                 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2605                         new = bss;
2606                         break;
2607                 }
2608         }
2609
2610         if (new) {
2611                 /* to save time, update IEs for transmitting bss only */
2612                 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2613                         new->pub.proberesp_ies = NULL;
2614                         new->pub.beacon_ies = NULL;
2615                 }
2616
2617                 list_for_each_entry_safe(nontrans_bss, tmp,
2618                                          &new->pub.nontrans_list,
2619                                          nontrans_list) {
2620                         bss = container_of(nontrans_bss,
2621                                            struct cfg80211_internal_bss, pub);
2622                         if (__cfg80211_unlink_bss(rdev, bss))
2623                                 rdev->bss_generation++;
2624                 }
2625
2626                 WARN_ON(atomic_read(&new->hold));
2627                 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2628                         rdev->bss_generation++;
2629         }
2630
2631         rb_erase(&cbss->rbn, &rdev->bss_tree);
2632         rb_insert_bss(rdev, cbss);
2633         rdev->bss_generation++;
2634
2635         list_for_each_entry_safe(nontrans_bss, tmp,
2636                                  &cbss->pub.nontrans_list,
2637                                  nontrans_list) {
2638                 bss = container_of(nontrans_bss,
2639                                    struct cfg80211_internal_bss, pub);
2640                 bss->pub.channel = chan;
2641                 rb_erase(&bss->rbn, &rdev->bss_tree);
2642                 rb_insert_bss(rdev, bss);
2643                 rdev->bss_generation++;
2644         }
2645
2646 done:
2647         spin_unlock_bh(&rdev->bss_lock);
2648 }
2649
2650 #ifdef CONFIG_CFG80211_WEXT
2651 static struct cfg80211_registered_device *
2652 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2653 {
2654         struct cfg80211_registered_device *rdev;
2655         struct net_device *dev;
2656
2657         ASSERT_RTNL();
2658
2659         dev = dev_get_by_index(net, ifindex);
2660         if (!dev)
2661                 return ERR_PTR(-ENODEV);
2662         if (dev->ieee80211_ptr)
2663                 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2664         else
2665                 rdev = ERR_PTR(-ENODEV);
2666         dev_put(dev);
2667         return rdev;
2668 }
2669
2670 int cfg80211_wext_siwscan(struct net_device *dev,
2671                           struct iw_request_info *info,
2672                           union iwreq_data *wrqu, char *extra)
2673 {
2674         struct cfg80211_registered_device *rdev;
2675         struct wiphy *wiphy;
2676         struct iw_scan_req *wreq = NULL;
2677         struct cfg80211_scan_request *creq = NULL;
2678         int i, err, n_channels = 0;
2679         enum nl80211_band band;
2680
2681         if (!netif_running(dev))
2682                 return -ENETDOWN;
2683
2684         if (wrqu->data.length == sizeof(struct iw_scan_req))
2685                 wreq = (struct iw_scan_req *)extra;
2686
2687         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2688
2689         if (IS_ERR(rdev))
2690                 return PTR_ERR(rdev);
2691
2692         if (rdev->scan_req || rdev->scan_msg) {
2693                 err = -EBUSY;
2694                 goto out;
2695         }
2696
2697         wiphy = &rdev->wiphy;
2698
2699         /* Determine number of channels, needed to allocate creq */
2700         if (wreq && wreq->num_channels)
2701                 n_channels = wreq->num_channels;
2702         else
2703                 n_channels = ieee80211_get_num_supported_channels(wiphy);
2704
2705         creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2706                        n_channels * sizeof(void *),
2707                        GFP_ATOMIC);
2708         if (!creq) {
2709                 err = -ENOMEM;
2710                 goto out;
2711         }
2712
2713         creq->wiphy = wiphy;
2714         creq->wdev = dev->ieee80211_ptr;
2715         /* SSIDs come after channels */
2716         creq->ssids = (void *)&creq->channels[n_channels];
2717         creq->n_channels = n_channels;
2718         creq->n_ssids = 1;
2719         creq->scan_start = jiffies;
2720
2721         /* translate "Scan on frequencies" request */
2722         i = 0;
2723         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2724                 int j;
2725
2726                 if (!wiphy->bands[band])
2727                         continue;
2728
2729                 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2730                         /* ignore disabled channels */
2731                         if (wiphy->bands[band]->channels[j].flags &
2732                                                 IEEE80211_CHAN_DISABLED)
2733                                 continue;
2734
2735                         /* If we have a wireless request structure and the
2736                          * wireless request specifies frequencies, then search
2737                          * for the matching hardware channel.
2738                          */
2739                         if (wreq && wreq->num_channels) {
2740                                 int k;
2741                                 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2742                                 for (k = 0; k < wreq->num_channels; k++) {
2743                                         struct iw_freq *freq =
2744                                                 &wreq->channel_list[k];
2745                                         int wext_freq =
2746                                                 cfg80211_wext_freq(freq);
2747
2748                                         if (wext_freq == wiphy_freq)
2749                                                 goto wext_freq_found;
2750                                 }
2751                                 goto wext_freq_not_found;
2752                         }
2753
2754                 wext_freq_found:
2755                         creq->channels[i] = &wiphy->bands[band]->channels[j];
2756                         i++;
2757                 wext_freq_not_found: ;
2758                 }
2759         }
2760         /* No channels found? */
2761         if (!i) {
2762                 err = -EINVAL;
2763                 goto out;
2764         }
2765
2766         /* Set real number of channels specified in creq->channels[] */
2767         creq->n_channels = i;
2768
2769         /* translate "Scan for SSID" request */
2770         if (wreq) {
2771                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2772                         if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2773                                 err = -EINVAL;
2774                                 goto out;
2775                         }
2776                         memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2777                         creq->ssids[0].ssid_len = wreq->essid_len;
2778                 }
2779                 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2780                         creq->n_ssids = 0;
2781         }
2782
2783         for (i = 0; i < NUM_NL80211_BANDS; i++)
2784                 if (wiphy->bands[i])
2785                         creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2786
2787         eth_broadcast_addr(creq->bssid);
2788
2789         wiphy_lock(&rdev->wiphy);
2790
2791         rdev->scan_req = creq;
2792         err = rdev_scan(rdev, creq);
2793         if (err) {
2794                 rdev->scan_req = NULL;
2795                 /* creq will be freed below */
2796         } else {
2797                 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2798                 /* creq now owned by driver */
2799                 creq = NULL;
2800                 dev_hold(dev);
2801         }
2802         wiphy_unlock(&rdev->wiphy);
2803  out:
2804         kfree(creq);
2805         return err;
2806 }
2807 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2808
2809 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2810                                     const struct cfg80211_bss_ies *ies,
2811                                     char *current_ev, char *end_buf)
2812 {
2813         const u8 *pos, *end, *next;
2814         struct iw_event iwe;
2815
2816         if (!ies)
2817                 return current_ev;
2818
2819         /*
2820          * If needed, fragment the IEs buffer (at IE boundaries) into short
2821          * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2822          */
2823         pos = ies->data;
2824         end = pos + ies->len;
2825
2826         while (end - pos > IW_GENERIC_IE_MAX) {
2827                 next = pos + 2 + pos[1];
2828                 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2829                         next = next + 2 + next[1];
2830
2831                 memset(&iwe, 0, sizeof(iwe));
2832                 iwe.cmd = IWEVGENIE;
2833                 iwe.u.data.length = next - pos;
2834                 current_ev = iwe_stream_add_point_check(info, current_ev,
2835                                                         end_buf, &iwe,
2836                                                         (void *)pos);
2837                 if (IS_ERR(current_ev))
2838                         return current_ev;
2839                 pos = next;
2840         }
2841
2842         if (end > pos) {
2843                 memset(&iwe, 0, sizeof(iwe));
2844                 iwe.cmd = IWEVGENIE;
2845                 iwe.u.data.length = end - pos;
2846                 current_ev = iwe_stream_add_point_check(info, current_ev,
2847                                                         end_buf, &iwe,
2848                                                         (void *)pos);
2849                 if (IS_ERR(current_ev))
2850                         return current_ev;
2851         }
2852
2853         return current_ev;
2854 }
2855
2856 static char *
2857 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2858               struct cfg80211_internal_bss *bss, char *current_ev,
2859               char *end_buf)
2860 {
2861         const struct cfg80211_bss_ies *ies;
2862         struct iw_event iwe;
2863         const u8 *ie;
2864         u8 buf[50];
2865         u8 *cfg, *p, *tmp;
2866         int rem, i, sig;
2867         bool ismesh = false;
2868
2869         memset(&iwe, 0, sizeof(iwe));
2870         iwe.cmd = SIOCGIWAP;
2871         iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2872         memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2873         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2874                                                 IW_EV_ADDR_LEN);
2875         if (IS_ERR(current_ev))
2876                 return current_ev;
2877
2878         memset(&iwe, 0, sizeof(iwe));
2879         iwe.cmd = SIOCGIWFREQ;
2880         iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2881         iwe.u.freq.e = 0;
2882         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2883                                                 IW_EV_FREQ_LEN);
2884         if (IS_ERR(current_ev))
2885                 return current_ev;
2886
2887         memset(&iwe, 0, sizeof(iwe));
2888         iwe.cmd = SIOCGIWFREQ;
2889         iwe.u.freq.m = bss->pub.channel->center_freq;
2890         iwe.u.freq.e = 6;
2891         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2892                                                 IW_EV_FREQ_LEN);
2893         if (IS_ERR(current_ev))
2894                 return current_ev;
2895
2896         if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2897                 memset(&iwe, 0, sizeof(iwe));
2898                 iwe.cmd = IWEVQUAL;
2899                 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2900                                      IW_QUAL_NOISE_INVALID |
2901                                      IW_QUAL_QUAL_UPDATED;
2902                 switch (wiphy->signal_type) {
2903                 case CFG80211_SIGNAL_TYPE_MBM:
2904                         sig = bss->pub.signal / 100;
2905                         iwe.u.qual.level = sig;
2906                         iwe.u.qual.updated |= IW_QUAL_DBM;
2907                         if (sig < -110)         /* rather bad */
2908                                 sig = -110;
2909                         else if (sig > -40)     /* perfect */
2910                                 sig = -40;
2911                         /* will give a range of 0 .. 70 */
2912                         iwe.u.qual.qual = sig + 110;
2913                         break;
2914                 case CFG80211_SIGNAL_TYPE_UNSPEC:
2915                         iwe.u.qual.level = bss->pub.signal;
2916                         /* will give range 0 .. 100 */
2917                         iwe.u.qual.qual = bss->pub.signal;
2918                         break;
2919                 default:
2920                         /* not reached */
2921                         break;
2922                 }
2923                 current_ev = iwe_stream_add_event_check(info, current_ev,
2924                                                         end_buf, &iwe,
2925                                                         IW_EV_QUAL_LEN);
2926                 if (IS_ERR(current_ev))
2927                         return current_ev;
2928         }
2929
2930         memset(&iwe, 0, sizeof(iwe));
2931         iwe.cmd = SIOCGIWENCODE;
2932         if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2933                 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2934         else
2935                 iwe.u.data.flags = IW_ENCODE_DISABLED;
2936         iwe.u.data.length = 0;
2937         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2938                                                 &iwe, "");
2939         if (IS_ERR(current_ev))
2940                 return current_ev;
2941
2942         rcu_read_lock();
2943         ies = rcu_dereference(bss->pub.ies);
2944         rem = ies->len;
2945         ie = ies->data;
2946
2947         while (rem >= 2) {
2948                 /* invalid data */
2949                 if (ie[1] > rem - 2)
2950                         break;
2951
2952                 switch (ie[0]) {
2953                 case WLAN_EID_SSID:
2954                         memset(&iwe, 0, sizeof(iwe));
2955                         iwe.cmd = SIOCGIWESSID;
2956                         iwe.u.data.length = ie[1];
2957                         iwe.u.data.flags = 1;
2958                         current_ev = iwe_stream_add_point_check(info,
2959                                                                 current_ev,
2960                                                                 end_buf, &iwe,
2961                                                                 (u8 *)ie + 2);
2962                         if (IS_ERR(current_ev))
2963                                 goto unlock;
2964                         break;
2965                 case WLAN_EID_MESH_ID:
2966                         memset(&iwe, 0, sizeof(iwe));
2967                         iwe.cmd = SIOCGIWESSID;
2968                         iwe.u.data.length = ie[1];
2969                         iwe.u.data.flags = 1;
2970                         current_ev = iwe_stream_add_point_check(info,
2971                                                                 current_ev,
2972                                                                 end_buf, &iwe,
2973                                                                 (u8 *)ie + 2);
2974                         if (IS_ERR(current_ev))
2975                                 goto unlock;
2976                         break;
2977                 case WLAN_EID_MESH_CONFIG:
2978                         ismesh = true;
2979                         if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2980                                 break;
2981                         cfg = (u8 *)ie + 2;
2982                         memset(&iwe, 0, sizeof(iwe));
2983                         iwe.cmd = IWEVCUSTOM;
2984                         sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2985                                 "0x%02X", cfg[0]);
2986                         iwe.u.data.length = strlen(buf);
2987                         current_ev = iwe_stream_add_point_check(info,
2988                                                                 current_ev,
2989                                                                 end_buf,
2990                                                                 &iwe, buf);
2991                         if (IS_ERR(current_ev))
2992                                 goto unlock;
2993                         sprintf(buf, "Path Selection Metric ID: 0x%02X",
2994                                 cfg[1]);
2995                         iwe.u.data.length = strlen(buf);
2996                         current_ev = iwe_stream_add_point_check(info,
2997                                                                 current_ev,
2998                                                                 end_buf,
2999                                                                 &iwe, buf);
3000                         if (IS_ERR(current_ev))
3001                                 goto unlock;
3002                         sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3003                                 cfg[2]);
3004                         iwe.u.data.length = strlen(buf);
3005                         current_ev = iwe_stream_add_point_check(info,
3006                                                                 current_ev,
3007                                                                 end_buf,
3008                                                                 &iwe, buf);
3009                         if (IS_ERR(current_ev))
3010                                 goto unlock;
3011                         sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3012                         iwe.u.data.length = strlen(buf);
3013                         current_ev = iwe_stream_add_point_check(info,
3014                                                                 current_ev,
3015                                                                 end_buf,
3016                                                                 &iwe, buf);
3017                         if (IS_ERR(current_ev))
3018                                 goto unlock;
3019                         sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3020                         iwe.u.data.length = strlen(buf);
3021                         current_ev = iwe_stream_add_point_check(info,
3022                                                                 current_ev,
3023                                                                 end_buf,
3024                                                                 &iwe, buf);
3025                         if (IS_ERR(current_ev))
3026                                 goto unlock;
3027                         sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3028                         iwe.u.data.length = strlen(buf);
3029                         current_ev = iwe_stream_add_point_check(info,
3030                                                                 current_ev,
3031                                                                 end_buf,
3032                                                                 &iwe, buf);
3033                         if (IS_ERR(current_ev))
3034                                 goto unlock;
3035                         sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3036                         iwe.u.data.length = strlen(buf);
3037                         current_ev = iwe_stream_add_point_check(info,
3038                                                                 current_ev,
3039                                                                 end_buf,
3040                                                                 &iwe, buf);
3041                         if (IS_ERR(current_ev))
3042                                 goto unlock;
3043                         break;
3044                 case WLAN_EID_SUPP_RATES:
3045                 case WLAN_EID_EXT_SUPP_RATES:
3046                         /* display all supported rates in readable format */
3047                         p = current_ev + iwe_stream_lcp_len(info);
3048
3049                         memset(&iwe, 0, sizeof(iwe));
3050                         iwe.cmd = SIOCGIWRATE;
3051                         /* Those two flags are ignored... */
3052                         iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3053
3054                         for (i = 0; i < ie[1]; i++) {
3055                                 iwe.u.bitrate.value =
3056                                         ((ie[i + 2] & 0x7f) * 500000);
3057                                 tmp = p;
3058                                 p = iwe_stream_add_value(info, current_ev, p,
3059                                                          end_buf, &iwe,
3060                                                          IW_EV_PARAM_LEN);
3061                                 if (p == tmp) {
3062                                         current_ev = ERR_PTR(-E2BIG);
3063                                         goto unlock;
3064                                 }
3065                         }
3066                         current_ev = p;
3067                         break;
3068                 }
3069                 rem -= ie[1] + 2;
3070                 ie += ie[1] + 2;
3071         }
3072
3073         if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3074             ismesh) {
3075                 memset(&iwe, 0, sizeof(iwe));
3076                 iwe.cmd = SIOCGIWMODE;
3077                 if (ismesh)
3078                         iwe.u.mode = IW_MODE_MESH;
3079                 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3080                         iwe.u.mode = IW_MODE_MASTER;
3081                 else
3082                         iwe.u.mode = IW_MODE_ADHOC;
3083                 current_ev = iwe_stream_add_event_check(info, current_ev,
3084                                                         end_buf, &iwe,
3085                                                         IW_EV_UINT_LEN);
3086                 if (IS_ERR(current_ev))
3087                         goto unlock;
3088         }
3089
3090         memset(&iwe, 0, sizeof(iwe));
3091         iwe.cmd = IWEVCUSTOM;
3092         sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3093         iwe.u.data.length = strlen(buf);
3094         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3095                                                 &iwe, buf);
3096         if (IS_ERR(current_ev))
3097                 goto unlock;
3098         memset(&iwe, 0, sizeof(iwe));
3099         iwe.cmd = IWEVCUSTOM;
3100         sprintf(buf, " Last beacon: %ums ago",
3101                 elapsed_jiffies_msecs(bss->ts));
3102         iwe.u.data.length = strlen(buf);
3103         current_ev = iwe_stream_add_point_check(info, current_ev,
3104                                                 end_buf, &iwe, buf);
3105         if (IS_ERR(current_ev))
3106                 goto unlock;
3107
3108         current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3109
3110  unlock:
3111         rcu_read_unlock();
3112         return current_ev;
3113 }
3114
3115
3116 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3117                                   struct iw_request_info *info,
3118                                   char *buf, size_t len)
3119 {
3120         char *current_ev = buf;
3121         char *end_buf = buf + len;
3122         struct cfg80211_internal_bss *bss;
3123         int err = 0;
3124
3125         spin_lock_bh(&rdev->bss_lock);
3126         cfg80211_bss_expire(rdev);
3127
3128         list_for_each_entry(bss, &rdev->bss_list, list) {
3129                 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3130                         err = -E2BIG;
3131                         break;
3132                 }
3133                 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3134                                            current_ev, end_buf);
3135                 if (IS_ERR(current_ev)) {
3136                         err = PTR_ERR(current_ev);
3137                         break;
3138                 }
3139         }
3140         spin_unlock_bh(&rdev->bss_lock);
3141
3142         if (err)
3143                 return err;
3144         return current_ev - buf;
3145 }
3146
3147
3148 int cfg80211_wext_giwscan(struct net_device *dev,
3149                           struct iw_request_info *info,
3150                           struct iw_point *data, char *extra)
3151 {
3152         struct cfg80211_registered_device *rdev;
3153         int res;
3154
3155         if (!netif_running(dev))
3156                 return -ENETDOWN;
3157
3158         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3159
3160         if (IS_ERR(rdev))
3161                 return PTR_ERR(rdev);
3162
3163         if (rdev->scan_req || rdev->scan_msg)
3164                 return -EAGAIN;
3165
3166         res = ieee80211_scan_results(rdev, info, extra, data->length);
3167         data->length = 0;
3168         if (res >= 0) {
3169                 data->length = res;
3170                 res = 0;
3171         }
3172
3173         return res;
3174 }
3175 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3176 #endif