Merge branches 'pm-cpufreq', 'pm-sleep' and 'pm-em'
[linux-2.6-microblaze.git] / net / wireless / scan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016       Intel Deutschland GmbH
8  * Copyright (C) 2018-2021 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE    (30 * HZ)
78
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *      that operate in the same channel as the reported AP and that might be
89  *      detected by a STA receiving this frame, are transmitting unsolicited
90  *      Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *      colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  */
100 struct cfg80211_colocated_ap {
101         struct list_head list;
102         u8 bssid[ETH_ALEN];
103         u8 ssid[IEEE80211_MAX_SSID_LEN];
104         size_t ssid_len;
105         u32 short_ssid;
106         u32 center_freq;
107         u8 unsolicited_probe:1,
108            oct_recommended:1,
109            same_ssid:1,
110            multi_bss:1,
111            transmitted_bssid:1,
112            colocated_ess:1,
113            short_ssid_valid:1;
114 };
115
116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118         struct cfg80211_bss_ies *ies;
119
120         if (WARN_ON(atomic_read(&bss->hold)))
121                 return;
122
123         ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124         if (ies && !bss->pub.hidden_beacon_bss)
125                 kfree_rcu(ies, rcu_head);
126         ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127         if (ies)
128                 kfree_rcu(ies, rcu_head);
129
130         /*
131          * This happens when the module is removed, it doesn't
132          * really matter any more save for completeness
133          */
134         if (!list_empty(&bss->hidden_list))
135                 list_del(&bss->hidden_list);
136
137         kfree(bss);
138 }
139
140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141                                struct cfg80211_internal_bss *bss)
142 {
143         lockdep_assert_held(&rdev->bss_lock);
144
145         bss->refcount++;
146         if (bss->pub.hidden_beacon_bss) {
147                 bss = container_of(bss->pub.hidden_beacon_bss,
148                                    struct cfg80211_internal_bss,
149                                    pub);
150                 bss->refcount++;
151         }
152         if (bss->pub.transmitted_bss) {
153                 bss = container_of(bss->pub.transmitted_bss,
154                                    struct cfg80211_internal_bss,
155                                    pub);
156                 bss->refcount++;
157         }
158 }
159
160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161                                struct cfg80211_internal_bss *bss)
162 {
163         lockdep_assert_held(&rdev->bss_lock);
164
165         if (bss->pub.hidden_beacon_bss) {
166                 struct cfg80211_internal_bss *hbss;
167                 hbss = container_of(bss->pub.hidden_beacon_bss,
168                                     struct cfg80211_internal_bss,
169                                     pub);
170                 hbss->refcount--;
171                 if (hbss->refcount == 0)
172                         bss_free(hbss);
173         }
174
175         if (bss->pub.transmitted_bss) {
176                 struct cfg80211_internal_bss *tbss;
177
178                 tbss = container_of(bss->pub.transmitted_bss,
179                                     struct cfg80211_internal_bss,
180                                     pub);
181                 tbss->refcount--;
182                 if (tbss->refcount == 0)
183                         bss_free(tbss);
184         }
185
186         bss->refcount--;
187         if (bss->refcount == 0)
188                 bss_free(bss);
189 }
190
191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192                                   struct cfg80211_internal_bss *bss)
193 {
194         lockdep_assert_held(&rdev->bss_lock);
195
196         if (!list_empty(&bss->hidden_list)) {
197                 /*
198                  * don't remove the beacon entry if it has
199                  * probe responses associated with it
200                  */
201                 if (!bss->pub.hidden_beacon_bss)
202                         return false;
203                 /*
204                  * if it's a probe response entry break its
205                  * link to the other entries in the group
206                  */
207                 list_del_init(&bss->hidden_list);
208         }
209
210         list_del_init(&bss->list);
211         list_del_init(&bss->pub.nontrans_list);
212         rb_erase(&bss->rbn, &rdev->bss_tree);
213         rdev->bss_entries--;
214         WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215                   "rdev bss entries[%d]/list[empty:%d] corruption\n",
216                   rdev->bss_entries, list_empty(&rdev->bss_list));
217         bss_ref_put(rdev, bss);
218         return true;
219 }
220
221 bool cfg80211_is_element_inherited(const struct element *elem,
222                                    const struct element *non_inherit_elem)
223 {
224         u8 id_len, ext_id_len, i, loop_len, id;
225         const u8 *list;
226
227         if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228                 return false;
229
230         if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231                 return true;
232
233         /*
234          * non inheritance element format is:
235          * ext ID (56) | IDs list len | list | extension IDs list len | list
236          * Both lists are optional. Both lengths are mandatory.
237          * This means valid length is:
238          * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239          */
240         id_len = non_inherit_elem->data[1];
241         if (non_inherit_elem->datalen < 3 + id_len)
242                 return true;
243
244         ext_id_len = non_inherit_elem->data[2 + id_len];
245         if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246                 return true;
247
248         if (elem->id == WLAN_EID_EXTENSION) {
249                 if (!ext_id_len)
250                         return true;
251                 loop_len = ext_id_len;
252                 list = &non_inherit_elem->data[3 + id_len];
253                 id = elem->data[0];
254         } else {
255                 if (!id_len)
256                         return true;
257                 loop_len = id_len;
258                 list = &non_inherit_elem->data[2];
259                 id = elem->id;
260         }
261
262         for (i = 0; i < loop_len; i++) {
263                 if (list[i] == id)
264                         return false;
265         }
266
267         return true;
268 }
269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
270
271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272                                   const u8 *subelement, size_t subie_len,
273                                   u8 *new_ie, gfp_t gfp)
274 {
275         u8 *pos, *tmp;
276         const u8 *tmp_old, *tmp_new;
277         const struct element *non_inherit_elem;
278         u8 *sub_copy;
279
280         /* copy subelement as we need to change its content to
281          * mark an ie after it is processed.
282          */
283         sub_copy = kmemdup(subelement, subie_len, gfp);
284         if (!sub_copy)
285                 return 0;
286
287         pos = &new_ie[0];
288
289         /* set new ssid */
290         tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291         if (tmp_new) {
292                 memcpy(pos, tmp_new, tmp_new[1] + 2);
293                 pos += (tmp_new[1] + 2);
294         }
295
296         /* get non inheritance list if exists */
297         non_inherit_elem =
298                 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299                                        sub_copy, subie_len);
300
301         /* go through IEs in ie (skip SSID) and subelement,
302          * merge them into new_ie
303          */
304         tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305         tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306
307         while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308                 if (tmp_old[0] == 0) {
309                         tmp_old++;
310                         continue;
311                 }
312
313                 if (tmp_old[0] == WLAN_EID_EXTENSION)
314                         tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315                                                          subie_len);
316                 else
317                         tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318                                                      subie_len);
319
320                 if (!tmp) {
321                         const struct element *old_elem = (void *)tmp_old;
322
323                         /* ie in old ie but not in subelement */
324                         if (cfg80211_is_element_inherited(old_elem,
325                                                           non_inherit_elem)) {
326                                 memcpy(pos, tmp_old, tmp_old[1] + 2);
327                                 pos += tmp_old[1] + 2;
328                         }
329                 } else {
330                         /* ie in transmitting ie also in subelement,
331                          * copy from subelement and flag the ie in subelement
332                          * as copied (by setting eid field to WLAN_EID_SSID,
333                          * which is skipped anyway).
334                          * For vendor ie, compare OUI + type + subType to
335                          * determine if they are the same ie.
336                          */
337                         if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338                                 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339                                         /* same vendor ie, copy from
340                                          * subelement
341                                          */
342                                         memcpy(pos, tmp, tmp[1] + 2);
343                                         pos += tmp[1] + 2;
344                                         tmp[0] = WLAN_EID_SSID;
345                                 } else {
346                                         memcpy(pos, tmp_old, tmp_old[1] + 2);
347                                         pos += tmp_old[1] + 2;
348                                 }
349                         } else {
350                                 /* copy ie from subelement into new ie */
351                                 memcpy(pos, tmp, tmp[1] + 2);
352                                 pos += tmp[1] + 2;
353                                 tmp[0] = WLAN_EID_SSID;
354                         }
355                 }
356
357                 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358                         break;
359
360                 tmp_old += tmp_old[1] + 2;
361         }
362
363         /* go through subelement again to check if there is any ie not
364          * copied to new ie, skip ssid, capability, bssid-index ie
365          */
366         tmp_new = sub_copy;
367         while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368                 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369                       tmp_new[0] == WLAN_EID_SSID)) {
370                         memcpy(pos, tmp_new, tmp_new[1] + 2);
371                         pos += tmp_new[1] + 2;
372                 }
373                 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374                         break;
375                 tmp_new += tmp_new[1] + 2;
376         }
377
378         kfree(sub_copy);
379         return pos - new_ie;
380 }
381
382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383                    const u8 *ssid, size_t ssid_len)
384 {
385         const struct cfg80211_bss_ies *ies;
386         const u8 *ssidie;
387
388         if (bssid && !ether_addr_equal(a->bssid, bssid))
389                 return false;
390
391         if (!ssid)
392                 return true;
393
394         ies = rcu_access_pointer(a->ies);
395         if (!ies)
396                 return false;
397         ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
398         if (!ssidie)
399                 return false;
400         if (ssidie[1] != ssid_len)
401                 return false;
402         return memcmp(ssidie + 2, ssid, ssid_len) == 0;
403 }
404
405 static int
406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407                            struct cfg80211_bss *nontrans_bss)
408 {
409         const u8 *ssid;
410         size_t ssid_len;
411         struct cfg80211_bss *bss = NULL;
412
413         rcu_read_lock();
414         ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415         if (!ssid) {
416                 rcu_read_unlock();
417                 return -EINVAL;
418         }
419         ssid_len = ssid[1];
420         ssid = ssid + 2;
421         rcu_read_unlock();
422
423         /* check if nontrans_bss is in the list */
424         list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
425                 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
426                         return 0;
427         }
428
429         /* add to the list */
430         list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
431         return 0;
432 }
433
434 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
435                                   unsigned long expire_time)
436 {
437         struct cfg80211_internal_bss *bss, *tmp;
438         bool expired = false;
439
440         lockdep_assert_held(&rdev->bss_lock);
441
442         list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
443                 if (atomic_read(&bss->hold))
444                         continue;
445                 if (!time_after(expire_time, bss->ts))
446                         continue;
447
448                 if (__cfg80211_unlink_bss(rdev, bss))
449                         expired = true;
450         }
451
452         if (expired)
453                 rdev->bss_generation++;
454 }
455
456 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
457 {
458         struct cfg80211_internal_bss *bss, *oldest = NULL;
459         bool ret;
460
461         lockdep_assert_held(&rdev->bss_lock);
462
463         list_for_each_entry(bss, &rdev->bss_list, list) {
464                 if (atomic_read(&bss->hold))
465                         continue;
466
467                 if (!list_empty(&bss->hidden_list) &&
468                     !bss->pub.hidden_beacon_bss)
469                         continue;
470
471                 if (oldest && time_before(oldest->ts, bss->ts))
472                         continue;
473                 oldest = bss;
474         }
475
476         if (WARN_ON(!oldest))
477                 return false;
478
479         /*
480          * The callers make sure to increase rdev->bss_generation if anything
481          * gets removed (and a new entry added), so there's no need to also do
482          * it here.
483          */
484
485         ret = __cfg80211_unlink_bss(rdev, oldest);
486         WARN_ON(!ret);
487         return ret;
488 }
489
490 static u8 cfg80211_parse_bss_param(u8 data,
491                                    struct cfg80211_colocated_ap *coloc_ap)
492 {
493         coloc_ap->oct_recommended =
494                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
495         coloc_ap->same_ssid =
496                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
497         coloc_ap->multi_bss =
498                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
499         coloc_ap->transmitted_bssid =
500                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
501         coloc_ap->unsolicited_probe =
502                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
503         coloc_ap->colocated_ess =
504                 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
505
506         return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
507 }
508
509 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
510                                     const struct element **elem, u32 *s_ssid)
511 {
512
513         *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
514         if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
515                 return -EINVAL;
516
517         *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
518         return 0;
519 }
520
521 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
522 {
523         struct cfg80211_colocated_ap *ap, *tmp_ap;
524
525         list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
526                 list_del(&ap->list);
527                 kfree(ap);
528         }
529 }
530
531 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
532                                   const u8 *pos, u8 length,
533                                   const struct element *ssid_elem,
534                                   int s_ssid_tmp)
535 {
536         /* skip the TBTT offset */
537         pos++;
538
539         memcpy(entry->bssid, pos, ETH_ALEN);
540         pos += ETH_ALEN;
541
542         if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
543                 memcpy(&entry->short_ssid, pos,
544                        sizeof(entry->short_ssid));
545                 entry->short_ssid_valid = true;
546                 pos += 4;
547         }
548
549         /* skip non colocated APs */
550         if (!cfg80211_parse_bss_param(*pos, entry))
551                 return -EINVAL;
552         pos++;
553
554         if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
555                 /*
556                  * no information about the short ssid. Consider the entry valid
557                  * for now. It would later be dropped in case there are explicit
558                  * SSIDs that need to be matched
559                  */
560                 if (!entry->same_ssid)
561                         return 0;
562         }
563
564         if (entry->same_ssid) {
565                 entry->short_ssid = s_ssid_tmp;
566                 entry->short_ssid_valid = true;
567
568                 /*
569                  * This is safe because we validate datalen in
570                  * cfg80211_parse_colocated_ap(), before calling this
571                  * function.
572                  */
573                 memcpy(&entry->ssid, &ssid_elem->data,
574                        ssid_elem->datalen);
575                 entry->ssid_len = ssid_elem->datalen;
576         }
577         return 0;
578 }
579
580 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
581                                        struct list_head *list)
582 {
583         struct ieee80211_neighbor_ap_info *ap_info;
584         const struct element *elem, *ssid_elem;
585         const u8 *pos, *end;
586         u32 s_ssid_tmp;
587         int n_coloc = 0, ret;
588         LIST_HEAD(ap_list);
589
590         elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
591                                   ies->len);
592         if (!elem)
593                 return 0;
594
595         pos = elem->data;
596         end = pos + elem->datalen;
597
598         ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
599         if (ret)
600                 return ret;
601
602         /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
603         while (pos + sizeof(*ap_info) <= end) {
604                 enum nl80211_band band;
605                 int freq;
606                 u8 length, i, count;
607
608                 ap_info = (void *)pos;
609                 count = u8_get_bits(ap_info->tbtt_info_hdr,
610                                     IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
611                 length = ap_info->tbtt_info_len;
612
613                 pos += sizeof(*ap_info);
614
615                 if (!ieee80211_operating_class_to_band(ap_info->op_class,
616                                                        &band))
617                         break;
618
619                 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
620
621                 if (end - pos < count * length)
622                         break;
623
624                 /*
625                  * TBTT info must include bss param + BSSID +
626                  * (short SSID or same_ssid bit to be set).
627                  * ignore other options, and move to the
628                  * next AP info
629                  */
630                 if (band != NL80211_BAND_6GHZ ||
631                     (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
632                      length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
633                         pos += count * length;
634                         continue;
635                 }
636
637                 for (i = 0; i < count; i++) {
638                         struct cfg80211_colocated_ap *entry;
639
640                         entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
641                                         GFP_ATOMIC);
642
643                         if (!entry)
644                                 break;
645
646                         entry->center_freq = freq;
647
648                         if (!cfg80211_parse_ap_info(entry, pos, length,
649                                                     ssid_elem, s_ssid_tmp)) {
650                                 n_coloc++;
651                                 list_add_tail(&entry->list, &ap_list);
652                         } else {
653                                 kfree(entry);
654                         }
655
656                         pos += length;
657                 }
658         }
659
660         if (pos != end) {
661                 cfg80211_free_coloc_ap_list(&ap_list);
662                 return 0;
663         }
664
665         list_splice_tail(&ap_list, list);
666         return n_coloc;
667 }
668
669 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
670                                         struct ieee80211_channel *chan,
671                                         bool add_to_6ghz)
672 {
673         int i;
674         u32 n_channels = request->n_channels;
675         struct cfg80211_scan_6ghz_params *params =
676                 &request->scan_6ghz_params[request->n_6ghz_params];
677
678         for (i = 0; i < n_channels; i++) {
679                 if (request->channels[i] == chan) {
680                         if (add_to_6ghz)
681                                 params->channel_idx = i;
682                         return;
683                 }
684         }
685
686         request->channels[n_channels] = chan;
687         if (add_to_6ghz)
688                 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
689                         n_channels;
690
691         request->n_channels++;
692 }
693
694 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
695                                      struct cfg80211_scan_request *request)
696 {
697         int i;
698         u32 s_ssid;
699
700         for (i = 0; i < request->n_ssids; i++) {
701                 /* wildcard ssid in the scan request */
702                 if (!request->ssids[i].ssid_len)
703                         return true;
704
705                 if (ap->ssid_len &&
706                     ap->ssid_len == request->ssids[i].ssid_len) {
707                         if (!memcmp(request->ssids[i].ssid, ap->ssid,
708                                     ap->ssid_len))
709                                 return true;
710                 } else if (ap->short_ssid_valid) {
711                         s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
712                                            request->ssids[i].ssid_len);
713
714                         if (ap->short_ssid == s_ssid)
715                                 return true;
716                 }
717         }
718
719         return false;
720 }
721
722 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
723 {
724         u8 i;
725         struct cfg80211_colocated_ap *ap;
726         int n_channels, count = 0, err;
727         struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
728         LIST_HEAD(coloc_ap_list);
729         bool need_scan_psc = true;
730         const struct ieee80211_sband_iftype_data *iftd;
731
732         rdev_req->scan_6ghz = true;
733
734         if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
735                 return -EOPNOTSUPP;
736
737         iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
738                                                rdev_req->wdev->iftype);
739         if (!iftd || !iftd->he_cap.has_he)
740                 return -EOPNOTSUPP;
741
742         n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
743
744         if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
745                 struct cfg80211_internal_bss *intbss;
746
747                 spin_lock_bh(&rdev->bss_lock);
748                 list_for_each_entry(intbss, &rdev->bss_list, list) {
749                         struct cfg80211_bss *res = &intbss->pub;
750                         const struct cfg80211_bss_ies *ies;
751
752                         ies = rcu_access_pointer(res->ies);
753                         count += cfg80211_parse_colocated_ap(ies,
754                                                              &coloc_ap_list);
755                 }
756                 spin_unlock_bh(&rdev->bss_lock);
757         }
758
759         request = kzalloc(struct_size(request, channels, n_channels) +
760                           sizeof(*request->scan_6ghz_params) * count +
761                           sizeof(*request->ssids) * rdev_req->n_ssids,
762                           GFP_KERNEL);
763         if (!request) {
764                 cfg80211_free_coloc_ap_list(&coloc_ap_list);
765                 return -ENOMEM;
766         }
767
768         *request = *rdev_req;
769         request->n_channels = 0;
770         request->scan_6ghz_params =
771                 (void *)&request->channels[n_channels];
772
773         /*
774          * PSC channels should not be scanned in case of direct scan with 1 SSID
775          * and at least one of the reported co-located APs with same SSID
776          * indicating that all APs in the same ESS are co-located
777          */
778         if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
779                 list_for_each_entry(ap, &coloc_ap_list, list) {
780                         if (ap->colocated_ess &&
781                             cfg80211_find_ssid_match(ap, request)) {
782                                 need_scan_psc = false;
783                                 break;
784                         }
785                 }
786         }
787
788         /*
789          * add to the scan request the channels that need to be scanned
790          * regardless of the collocated APs (PSC channels or all channels
791          * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
792          */
793         for (i = 0; i < rdev_req->n_channels; i++) {
794                 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
795                     ((need_scan_psc &&
796                       cfg80211_channel_is_psc(rdev_req->channels[i])) ||
797                      !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
798                         cfg80211_scan_req_add_chan(request,
799                                                    rdev_req->channels[i],
800                                                    false);
801                 }
802         }
803
804         if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
805                 goto skip;
806
807         list_for_each_entry(ap, &coloc_ap_list, list) {
808                 bool found = false;
809                 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
810                         &request->scan_6ghz_params[request->n_6ghz_params];
811                 struct ieee80211_channel *chan =
812                         ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
813
814                 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
815                         continue;
816
817                 for (i = 0; i < rdev_req->n_channels; i++) {
818                         if (rdev_req->channels[i] == chan)
819                                 found = true;
820                 }
821
822                 if (!found)
823                         continue;
824
825                 if (request->n_ssids > 0 &&
826                     !cfg80211_find_ssid_match(ap, request))
827                         continue;
828
829                 cfg80211_scan_req_add_chan(request, chan, true);
830                 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
831                 scan_6ghz_params->short_ssid = ap->short_ssid;
832                 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
833                 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
834
835                 /*
836                  * If a PSC channel is added to the scan and 'need_scan_psc' is
837                  * set to false, then all the APs that the scan logic is
838                  * interested with on the channel are collocated and thus there
839                  * is no need to perform the initial PSC channel listen.
840                  */
841                 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
842                         scan_6ghz_params->psc_no_listen = true;
843
844                 request->n_6ghz_params++;
845         }
846
847 skip:
848         cfg80211_free_coloc_ap_list(&coloc_ap_list);
849
850         if (request->n_channels) {
851                 struct cfg80211_scan_request *old = rdev->int_scan_req;
852                 rdev->int_scan_req = request;
853
854                 /*
855                  * Add the ssids from the parent scan request to the new scan
856                  * request, so the driver would be able to use them in its
857                  * probe requests to discover hidden APs on PSC channels.
858                  */
859                 request->ssids = (void *)&request->channels[request->n_channels];
860                 request->n_ssids = rdev_req->n_ssids;
861                 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
862                        request->n_ssids);
863
864                 /*
865                  * If this scan follows a previous scan, save the scan start
866                  * info from the first part of the scan
867                  */
868                 if (old)
869                         rdev->int_scan_req->info = old->info;
870
871                 err = rdev_scan(rdev, request);
872                 if (err) {
873                         rdev->int_scan_req = old;
874                         kfree(request);
875                 } else {
876                         kfree(old);
877                 }
878
879                 return err;
880         }
881
882         kfree(request);
883         return -EINVAL;
884 }
885
886 int cfg80211_scan(struct cfg80211_registered_device *rdev)
887 {
888         struct cfg80211_scan_request *request;
889         struct cfg80211_scan_request *rdev_req = rdev->scan_req;
890         u32 n_channels = 0, idx, i;
891
892         if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
893                 return rdev_scan(rdev, rdev_req);
894
895         for (i = 0; i < rdev_req->n_channels; i++) {
896                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
897                         n_channels++;
898         }
899
900         if (!n_channels)
901                 return cfg80211_scan_6ghz(rdev);
902
903         request = kzalloc(struct_size(request, channels, n_channels),
904                           GFP_KERNEL);
905         if (!request)
906                 return -ENOMEM;
907
908         *request = *rdev_req;
909         request->n_channels = n_channels;
910
911         for (i = idx = 0; i < rdev_req->n_channels; i++) {
912                 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
913                         request->channels[idx++] = rdev_req->channels[i];
914         }
915
916         rdev_req->scan_6ghz = false;
917         rdev->int_scan_req = request;
918         return rdev_scan(rdev, request);
919 }
920
921 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
922                            bool send_message)
923 {
924         struct cfg80211_scan_request *request, *rdev_req;
925         struct wireless_dev *wdev;
926         struct sk_buff *msg;
927 #ifdef CONFIG_CFG80211_WEXT
928         union iwreq_data wrqu;
929 #endif
930
931         lockdep_assert_held(&rdev->wiphy.mtx);
932
933         if (rdev->scan_msg) {
934                 nl80211_send_scan_msg(rdev, rdev->scan_msg);
935                 rdev->scan_msg = NULL;
936                 return;
937         }
938
939         rdev_req = rdev->scan_req;
940         if (!rdev_req)
941                 return;
942
943         wdev = rdev_req->wdev;
944         request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
945
946         if (wdev_running(wdev) &&
947             (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
948             !rdev_req->scan_6ghz && !request->info.aborted &&
949             !cfg80211_scan_6ghz(rdev))
950                 return;
951
952         /*
953          * This must be before sending the other events!
954          * Otherwise, wpa_supplicant gets completely confused with
955          * wext events.
956          */
957         if (wdev->netdev)
958                 cfg80211_sme_scan_done(wdev->netdev);
959
960         if (!request->info.aborted &&
961             request->flags & NL80211_SCAN_FLAG_FLUSH) {
962                 /* flush entries from previous scans */
963                 spin_lock_bh(&rdev->bss_lock);
964                 __cfg80211_bss_expire(rdev, request->scan_start);
965                 spin_unlock_bh(&rdev->bss_lock);
966         }
967
968         msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
969
970 #ifdef CONFIG_CFG80211_WEXT
971         if (wdev->netdev && !request->info.aborted) {
972                 memset(&wrqu, 0, sizeof(wrqu));
973
974                 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
975         }
976 #endif
977
978         dev_put(wdev->netdev);
979
980         kfree(rdev->int_scan_req);
981         rdev->int_scan_req = NULL;
982
983         kfree(rdev->scan_req);
984         rdev->scan_req = NULL;
985
986         if (!send_message)
987                 rdev->scan_msg = msg;
988         else
989                 nl80211_send_scan_msg(rdev, msg);
990 }
991
992 void __cfg80211_scan_done(struct work_struct *wk)
993 {
994         struct cfg80211_registered_device *rdev;
995
996         rdev = container_of(wk, struct cfg80211_registered_device,
997                             scan_done_wk);
998
999         wiphy_lock(&rdev->wiphy);
1000         ___cfg80211_scan_done(rdev, true);
1001         wiphy_unlock(&rdev->wiphy);
1002 }
1003
1004 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1005                         struct cfg80211_scan_info *info)
1006 {
1007         struct cfg80211_scan_info old_info = request->info;
1008
1009         trace_cfg80211_scan_done(request, info);
1010         WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1011                 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1012
1013         request->info = *info;
1014
1015         /*
1016          * In case the scan is split, the scan_start_tsf and tsf_bssid should
1017          * be of the first part. In such a case old_info.scan_start_tsf should
1018          * be non zero.
1019          */
1020         if (request->scan_6ghz && old_info.scan_start_tsf) {
1021                 request->info.scan_start_tsf = old_info.scan_start_tsf;
1022                 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1023                        sizeof(request->info.tsf_bssid));
1024         }
1025
1026         request->notified = true;
1027         queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1028 }
1029 EXPORT_SYMBOL(cfg80211_scan_done);
1030
1031 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1032                                  struct cfg80211_sched_scan_request *req)
1033 {
1034         lockdep_assert_held(&rdev->wiphy.mtx);
1035
1036         list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1037 }
1038
1039 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1040                                         struct cfg80211_sched_scan_request *req)
1041 {
1042         lockdep_assert_held(&rdev->wiphy.mtx);
1043
1044         list_del_rcu(&req->list);
1045         kfree_rcu(req, rcu_head);
1046 }
1047
1048 static struct cfg80211_sched_scan_request *
1049 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1050 {
1051         struct cfg80211_sched_scan_request *pos;
1052
1053         list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1054                                 lockdep_is_held(&rdev->wiphy.mtx)) {
1055                 if (pos->reqid == reqid)
1056                         return pos;
1057         }
1058         return NULL;
1059 }
1060
1061 /*
1062  * Determines if a scheduled scan request can be handled. When a legacy
1063  * scheduled scan is running no other scheduled scan is allowed regardless
1064  * whether the request is for legacy or multi-support scan. When a multi-support
1065  * scheduled scan is running a request for legacy scan is not allowed. In this
1066  * case a request for multi-support scan can be handled if resources are
1067  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1068  */
1069 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1070                                      bool want_multi)
1071 {
1072         struct cfg80211_sched_scan_request *pos;
1073         int i = 0;
1074
1075         list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1076                 /* request id zero means legacy in progress */
1077                 if (!i && !pos->reqid)
1078                         return -EINPROGRESS;
1079                 i++;
1080         }
1081
1082         if (i) {
1083                 /* no legacy allowed when multi request(s) are active */
1084                 if (!want_multi)
1085                         return -EINPROGRESS;
1086
1087                 /* resource limit reached */
1088                 if (i == rdev->wiphy.max_sched_scan_reqs)
1089                         return -ENOSPC;
1090         }
1091         return 0;
1092 }
1093
1094 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1095 {
1096         struct cfg80211_registered_device *rdev;
1097         struct cfg80211_sched_scan_request *req, *tmp;
1098
1099         rdev = container_of(work, struct cfg80211_registered_device,
1100                            sched_scan_res_wk);
1101
1102         wiphy_lock(&rdev->wiphy);
1103         list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1104                 if (req->report_results) {
1105                         req->report_results = false;
1106                         if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1107                                 /* flush entries from previous scans */
1108                                 spin_lock_bh(&rdev->bss_lock);
1109                                 __cfg80211_bss_expire(rdev, req->scan_start);
1110                                 spin_unlock_bh(&rdev->bss_lock);
1111                                 req->scan_start = jiffies;
1112                         }
1113                         nl80211_send_sched_scan(req,
1114                                                 NL80211_CMD_SCHED_SCAN_RESULTS);
1115                 }
1116         }
1117         wiphy_unlock(&rdev->wiphy);
1118 }
1119
1120 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1121 {
1122         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1123         struct cfg80211_sched_scan_request *request;
1124
1125         trace_cfg80211_sched_scan_results(wiphy, reqid);
1126         /* ignore if we're not scanning */
1127
1128         rcu_read_lock();
1129         request = cfg80211_find_sched_scan_req(rdev, reqid);
1130         if (request) {
1131                 request->report_results = true;
1132                 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1133         }
1134         rcu_read_unlock();
1135 }
1136 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1137
1138 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1139 {
1140         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1141
1142         lockdep_assert_held(&wiphy->mtx);
1143
1144         trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1145
1146         __cfg80211_stop_sched_scan(rdev, reqid, true);
1147 }
1148 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1149
1150 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1151 {
1152         wiphy_lock(wiphy);
1153         cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1154         wiphy_unlock(wiphy);
1155 }
1156 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1157
1158 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1159                                  struct cfg80211_sched_scan_request *req,
1160                                  bool driver_initiated)
1161 {
1162         lockdep_assert_held(&rdev->wiphy.mtx);
1163
1164         if (!driver_initiated) {
1165                 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1166                 if (err)
1167                         return err;
1168         }
1169
1170         nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1171
1172         cfg80211_del_sched_scan_req(rdev, req);
1173
1174         return 0;
1175 }
1176
1177 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1178                                u64 reqid, bool driver_initiated)
1179 {
1180         struct cfg80211_sched_scan_request *sched_scan_req;
1181
1182         lockdep_assert_held(&rdev->wiphy.mtx);
1183
1184         sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1185         if (!sched_scan_req)
1186                 return -ENOENT;
1187
1188         return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1189                                             driver_initiated);
1190 }
1191
1192 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1193                       unsigned long age_secs)
1194 {
1195         struct cfg80211_internal_bss *bss;
1196         unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1197
1198         spin_lock_bh(&rdev->bss_lock);
1199         list_for_each_entry(bss, &rdev->bss_list, list)
1200                 bss->ts -= age_jiffies;
1201         spin_unlock_bh(&rdev->bss_lock);
1202 }
1203
1204 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1205 {
1206         __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1207 }
1208
1209 void cfg80211_bss_flush(struct wiphy *wiphy)
1210 {
1211         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1212
1213         spin_lock_bh(&rdev->bss_lock);
1214         __cfg80211_bss_expire(rdev, jiffies);
1215         spin_unlock_bh(&rdev->bss_lock);
1216 }
1217 EXPORT_SYMBOL(cfg80211_bss_flush);
1218
1219 const struct element *
1220 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1221                          const u8 *match, unsigned int match_len,
1222                          unsigned int match_offset)
1223 {
1224         const struct element *elem;
1225
1226         for_each_element_id(elem, eid, ies, len) {
1227                 if (elem->datalen >= match_offset + match_len &&
1228                     !memcmp(elem->data + match_offset, match, match_len))
1229                         return elem;
1230         }
1231
1232         return NULL;
1233 }
1234 EXPORT_SYMBOL(cfg80211_find_elem_match);
1235
1236 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1237                                                 const u8 *ies,
1238                                                 unsigned int len)
1239 {
1240         const struct element *elem;
1241         u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1242         int match_len = (oui_type < 0) ? 3 : sizeof(match);
1243
1244         if (WARN_ON(oui_type > 0xff))
1245                 return NULL;
1246
1247         elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1248                                         match, match_len, 0);
1249
1250         if (!elem || elem->datalen < 4)
1251                 return NULL;
1252
1253         return elem;
1254 }
1255 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1256
1257 /**
1258  * enum bss_compare_mode - BSS compare mode
1259  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1260  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1261  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1262  */
1263 enum bss_compare_mode {
1264         BSS_CMP_REGULAR,
1265         BSS_CMP_HIDE_ZLEN,
1266         BSS_CMP_HIDE_NUL,
1267 };
1268
1269 static int cmp_bss(struct cfg80211_bss *a,
1270                    struct cfg80211_bss *b,
1271                    enum bss_compare_mode mode)
1272 {
1273         const struct cfg80211_bss_ies *a_ies, *b_ies;
1274         const u8 *ie1 = NULL;
1275         const u8 *ie2 = NULL;
1276         int i, r;
1277
1278         if (a->channel != b->channel)
1279                 return b->channel->center_freq - a->channel->center_freq;
1280
1281         a_ies = rcu_access_pointer(a->ies);
1282         if (!a_ies)
1283                 return -1;
1284         b_ies = rcu_access_pointer(b->ies);
1285         if (!b_ies)
1286                 return 1;
1287
1288         if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1289                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1290                                        a_ies->data, a_ies->len);
1291         if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1292                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1293                                        b_ies->data, b_ies->len);
1294         if (ie1 && ie2) {
1295                 int mesh_id_cmp;
1296
1297                 if (ie1[1] == ie2[1])
1298                         mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1299                 else
1300                         mesh_id_cmp = ie2[1] - ie1[1];
1301
1302                 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1303                                        a_ies->data, a_ies->len);
1304                 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1305                                        b_ies->data, b_ies->len);
1306                 if (ie1 && ie2) {
1307                         if (mesh_id_cmp)
1308                                 return mesh_id_cmp;
1309                         if (ie1[1] != ie2[1])
1310                                 return ie2[1] - ie1[1];
1311                         return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1312                 }
1313         }
1314
1315         r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1316         if (r)
1317                 return r;
1318
1319         ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1320         ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1321
1322         if (!ie1 && !ie2)
1323                 return 0;
1324
1325         /*
1326          * Note that with "hide_ssid", the function returns a match if
1327          * the already-present BSS ("b") is a hidden SSID beacon for
1328          * the new BSS ("a").
1329          */
1330
1331         /* sort missing IE before (left of) present IE */
1332         if (!ie1)
1333                 return -1;
1334         if (!ie2)
1335                 return 1;
1336
1337         switch (mode) {
1338         case BSS_CMP_HIDE_ZLEN:
1339                 /*
1340                  * In ZLEN mode we assume the BSS entry we're
1341                  * looking for has a zero-length SSID. So if
1342                  * the one we're looking at right now has that,
1343                  * return 0. Otherwise, return the difference
1344                  * in length, but since we're looking for the
1345                  * 0-length it's really equivalent to returning
1346                  * the length of the one we're looking at.
1347                  *
1348                  * No content comparison is needed as we assume
1349                  * the content length is zero.
1350                  */
1351                 return ie2[1];
1352         case BSS_CMP_REGULAR:
1353         default:
1354                 /* sort by length first, then by contents */
1355                 if (ie1[1] != ie2[1])
1356                         return ie2[1] - ie1[1];
1357                 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1358         case BSS_CMP_HIDE_NUL:
1359                 if (ie1[1] != ie2[1])
1360                         return ie2[1] - ie1[1];
1361                 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1362                 for (i = 0; i < ie2[1]; i++)
1363                         if (ie2[i + 2])
1364                                 return -1;
1365                 return 0;
1366         }
1367 }
1368
1369 static bool cfg80211_bss_type_match(u16 capability,
1370                                     enum nl80211_band band,
1371                                     enum ieee80211_bss_type bss_type)
1372 {
1373         bool ret = true;
1374         u16 mask, val;
1375
1376         if (bss_type == IEEE80211_BSS_TYPE_ANY)
1377                 return ret;
1378
1379         if (band == NL80211_BAND_60GHZ) {
1380                 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1381                 switch (bss_type) {
1382                 case IEEE80211_BSS_TYPE_ESS:
1383                         val = WLAN_CAPABILITY_DMG_TYPE_AP;
1384                         break;
1385                 case IEEE80211_BSS_TYPE_PBSS:
1386                         val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1387                         break;
1388                 case IEEE80211_BSS_TYPE_IBSS:
1389                         val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1390                         break;
1391                 default:
1392                         return false;
1393                 }
1394         } else {
1395                 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1396                 switch (bss_type) {
1397                 case IEEE80211_BSS_TYPE_ESS:
1398                         val = WLAN_CAPABILITY_ESS;
1399                         break;
1400                 case IEEE80211_BSS_TYPE_IBSS:
1401                         val = WLAN_CAPABILITY_IBSS;
1402                         break;
1403                 case IEEE80211_BSS_TYPE_MBSS:
1404                         val = 0;
1405                         break;
1406                 default:
1407                         return false;
1408                 }
1409         }
1410
1411         ret = ((capability & mask) == val);
1412         return ret;
1413 }
1414
1415 /* Returned bss is reference counted and must be cleaned up appropriately. */
1416 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1417                                       struct ieee80211_channel *channel,
1418                                       const u8 *bssid,
1419                                       const u8 *ssid, size_t ssid_len,
1420                                       enum ieee80211_bss_type bss_type,
1421                                       enum ieee80211_privacy privacy)
1422 {
1423         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1424         struct cfg80211_internal_bss *bss, *res = NULL;
1425         unsigned long now = jiffies;
1426         int bss_privacy;
1427
1428         trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1429                                privacy);
1430
1431         spin_lock_bh(&rdev->bss_lock);
1432
1433         list_for_each_entry(bss, &rdev->bss_list, list) {
1434                 if (!cfg80211_bss_type_match(bss->pub.capability,
1435                                              bss->pub.channel->band, bss_type))
1436                         continue;
1437
1438                 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1439                 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1440                     (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1441                         continue;
1442                 if (channel && bss->pub.channel != channel)
1443                         continue;
1444                 if (!is_valid_ether_addr(bss->pub.bssid))
1445                         continue;
1446                 /* Don't get expired BSS structs */
1447                 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1448                     !atomic_read(&bss->hold))
1449                         continue;
1450                 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1451                         res = bss;
1452                         bss_ref_get(rdev, res);
1453                         break;
1454                 }
1455         }
1456
1457         spin_unlock_bh(&rdev->bss_lock);
1458         if (!res)
1459                 return NULL;
1460         trace_cfg80211_return_bss(&res->pub);
1461         return &res->pub;
1462 }
1463 EXPORT_SYMBOL(cfg80211_get_bss);
1464
1465 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1466                           struct cfg80211_internal_bss *bss)
1467 {
1468         struct rb_node **p = &rdev->bss_tree.rb_node;
1469         struct rb_node *parent = NULL;
1470         struct cfg80211_internal_bss *tbss;
1471         int cmp;
1472
1473         while (*p) {
1474                 parent = *p;
1475                 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1476
1477                 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1478
1479                 if (WARN_ON(!cmp)) {
1480                         /* will sort of leak this BSS */
1481                         return;
1482                 }
1483
1484                 if (cmp < 0)
1485                         p = &(*p)->rb_left;
1486                 else
1487                         p = &(*p)->rb_right;
1488         }
1489
1490         rb_link_node(&bss->rbn, parent, p);
1491         rb_insert_color(&bss->rbn, &rdev->bss_tree);
1492 }
1493
1494 static struct cfg80211_internal_bss *
1495 rb_find_bss(struct cfg80211_registered_device *rdev,
1496             struct cfg80211_internal_bss *res,
1497             enum bss_compare_mode mode)
1498 {
1499         struct rb_node *n = rdev->bss_tree.rb_node;
1500         struct cfg80211_internal_bss *bss;
1501         int r;
1502
1503         while (n) {
1504                 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1505                 r = cmp_bss(&res->pub, &bss->pub, mode);
1506
1507                 if (r == 0)
1508                         return bss;
1509                 else if (r < 0)
1510                         n = n->rb_left;
1511                 else
1512                         n = n->rb_right;
1513         }
1514
1515         return NULL;
1516 }
1517
1518 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1519                                    struct cfg80211_internal_bss *new)
1520 {
1521         const struct cfg80211_bss_ies *ies;
1522         struct cfg80211_internal_bss *bss;
1523         const u8 *ie;
1524         int i, ssidlen;
1525         u8 fold = 0;
1526         u32 n_entries = 0;
1527
1528         ies = rcu_access_pointer(new->pub.beacon_ies);
1529         if (WARN_ON(!ies))
1530                 return false;
1531
1532         ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1533         if (!ie) {
1534                 /* nothing to do */
1535                 return true;
1536         }
1537
1538         ssidlen = ie[1];
1539         for (i = 0; i < ssidlen; i++)
1540                 fold |= ie[2 + i];
1541
1542         if (fold) {
1543                 /* not a hidden SSID */
1544                 return true;
1545         }
1546
1547         /* This is the bad part ... */
1548
1549         list_for_each_entry(bss, &rdev->bss_list, list) {
1550                 /*
1551                  * we're iterating all the entries anyway, so take the
1552                  * opportunity to validate the list length accounting
1553                  */
1554                 n_entries++;
1555
1556                 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1557                         continue;
1558                 if (bss->pub.channel != new->pub.channel)
1559                         continue;
1560                 if (bss->pub.scan_width != new->pub.scan_width)
1561                         continue;
1562                 if (rcu_access_pointer(bss->pub.beacon_ies))
1563                         continue;
1564                 ies = rcu_access_pointer(bss->pub.ies);
1565                 if (!ies)
1566                         continue;
1567                 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1568                 if (!ie)
1569                         continue;
1570                 if (ssidlen && ie[1] != ssidlen)
1571                         continue;
1572                 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1573                         continue;
1574                 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1575                         list_del(&bss->hidden_list);
1576                 /* combine them */
1577                 list_add(&bss->hidden_list, &new->hidden_list);
1578                 bss->pub.hidden_beacon_bss = &new->pub;
1579                 new->refcount += bss->refcount;
1580                 rcu_assign_pointer(bss->pub.beacon_ies,
1581                                    new->pub.beacon_ies);
1582         }
1583
1584         WARN_ONCE(n_entries != rdev->bss_entries,
1585                   "rdev bss entries[%d]/list[len:%d] corruption\n",
1586                   rdev->bss_entries, n_entries);
1587
1588         return true;
1589 }
1590
1591 struct cfg80211_non_tx_bss {
1592         struct cfg80211_bss *tx_bss;
1593         u8 max_bssid_indicator;
1594         u8 bssid_index;
1595 };
1596
1597 static bool
1598 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1599                           struct cfg80211_internal_bss *known,
1600                           struct cfg80211_internal_bss *new,
1601                           bool signal_valid)
1602 {
1603         lockdep_assert_held(&rdev->bss_lock);
1604
1605         /* Update IEs */
1606         if (rcu_access_pointer(new->pub.proberesp_ies)) {
1607                 const struct cfg80211_bss_ies *old;
1608
1609                 old = rcu_access_pointer(known->pub.proberesp_ies);
1610
1611                 rcu_assign_pointer(known->pub.proberesp_ies,
1612                                    new->pub.proberesp_ies);
1613                 /* Override possible earlier Beacon frame IEs */
1614                 rcu_assign_pointer(known->pub.ies,
1615                                    new->pub.proberesp_ies);
1616                 if (old)
1617                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1618         } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1619                 const struct cfg80211_bss_ies *old;
1620                 struct cfg80211_internal_bss *bss;
1621
1622                 if (known->pub.hidden_beacon_bss &&
1623                     !list_empty(&known->hidden_list)) {
1624                         const struct cfg80211_bss_ies *f;
1625
1626                         /* The known BSS struct is one of the probe
1627                          * response members of a group, but we're
1628                          * receiving a beacon (beacon_ies in the new
1629                          * bss is used). This can only mean that the
1630                          * AP changed its beacon from not having an
1631                          * SSID to showing it, which is confusing so
1632                          * drop this information.
1633                          */
1634
1635                         f = rcu_access_pointer(new->pub.beacon_ies);
1636                         kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1637                         return false;
1638                 }
1639
1640                 old = rcu_access_pointer(known->pub.beacon_ies);
1641
1642                 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1643
1644                 /* Override IEs if they were from a beacon before */
1645                 if (old == rcu_access_pointer(known->pub.ies))
1646                         rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1647
1648                 /* Assign beacon IEs to all sub entries */
1649                 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1650                         const struct cfg80211_bss_ies *ies;
1651
1652                         ies = rcu_access_pointer(bss->pub.beacon_ies);
1653                         WARN_ON(ies != old);
1654
1655                         rcu_assign_pointer(bss->pub.beacon_ies,
1656                                            new->pub.beacon_ies);
1657                 }
1658
1659                 if (old)
1660                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1661         }
1662
1663         known->pub.beacon_interval = new->pub.beacon_interval;
1664
1665         /* don't update the signal if beacon was heard on
1666          * adjacent channel.
1667          */
1668         if (signal_valid)
1669                 known->pub.signal = new->pub.signal;
1670         known->pub.capability = new->pub.capability;
1671         known->ts = new->ts;
1672         known->ts_boottime = new->ts_boottime;
1673         known->parent_tsf = new->parent_tsf;
1674         known->pub.chains = new->pub.chains;
1675         memcpy(known->pub.chain_signal, new->pub.chain_signal,
1676                IEEE80211_MAX_CHAINS);
1677         ether_addr_copy(known->parent_bssid, new->parent_bssid);
1678         known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1679         known->pub.bssid_index = new->pub.bssid_index;
1680
1681         return true;
1682 }
1683
1684 /* Returned bss is reference counted and must be cleaned up appropriately. */
1685 struct cfg80211_internal_bss *
1686 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1687                     struct cfg80211_internal_bss *tmp,
1688                     bool signal_valid, unsigned long ts)
1689 {
1690         struct cfg80211_internal_bss *found = NULL;
1691
1692         if (WARN_ON(!tmp->pub.channel))
1693                 return NULL;
1694
1695         tmp->ts = ts;
1696
1697         spin_lock_bh(&rdev->bss_lock);
1698
1699         if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1700                 spin_unlock_bh(&rdev->bss_lock);
1701                 return NULL;
1702         }
1703
1704         found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1705
1706         if (found) {
1707                 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1708                         goto drop;
1709         } else {
1710                 struct cfg80211_internal_bss *new;
1711                 struct cfg80211_internal_bss *hidden;
1712                 struct cfg80211_bss_ies *ies;
1713
1714                 /*
1715                  * create a copy -- the "res" variable that is passed in
1716                  * is allocated on the stack since it's not needed in the
1717                  * more common case of an update
1718                  */
1719                 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1720                               GFP_ATOMIC);
1721                 if (!new) {
1722                         ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1723                         if (ies)
1724                                 kfree_rcu(ies, rcu_head);
1725                         ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1726                         if (ies)
1727                                 kfree_rcu(ies, rcu_head);
1728                         goto drop;
1729                 }
1730                 memcpy(new, tmp, sizeof(*new));
1731                 new->refcount = 1;
1732                 INIT_LIST_HEAD(&new->hidden_list);
1733                 INIT_LIST_HEAD(&new->pub.nontrans_list);
1734
1735                 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1736                         hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1737                         if (!hidden)
1738                                 hidden = rb_find_bss(rdev, tmp,
1739                                                      BSS_CMP_HIDE_NUL);
1740                         if (hidden) {
1741                                 new->pub.hidden_beacon_bss = &hidden->pub;
1742                                 list_add(&new->hidden_list,
1743                                          &hidden->hidden_list);
1744                                 hidden->refcount++;
1745                                 rcu_assign_pointer(new->pub.beacon_ies,
1746                                                    hidden->pub.beacon_ies);
1747                         }
1748                 } else {
1749                         /*
1750                          * Ok so we found a beacon, and don't have an entry. If
1751                          * it's a beacon with hidden SSID, we might be in for an
1752                          * expensive search for any probe responses that should
1753                          * be grouped with this beacon for updates ...
1754                          */
1755                         if (!cfg80211_combine_bsses(rdev, new)) {
1756                                 bss_ref_put(rdev, new);
1757                                 goto drop;
1758                         }
1759                 }
1760
1761                 if (rdev->bss_entries >= bss_entries_limit &&
1762                     !cfg80211_bss_expire_oldest(rdev)) {
1763                         bss_ref_put(rdev, new);
1764                         goto drop;
1765                 }
1766
1767                 /* This must be before the call to bss_ref_get */
1768                 if (tmp->pub.transmitted_bss) {
1769                         struct cfg80211_internal_bss *pbss =
1770                                 container_of(tmp->pub.transmitted_bss,
1771                                              struct cfg80211_internal_bss,
1772                                              pub);
1773
1774                         new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1775                         bss_ref_get(rdev, pbss);
1776                 }
1777
1778                 list_add_tail(&new->list, &rdev->bss_list);
1779                 rdev->bss_entries++;
1780                 rb_insert_bss(rdev, new);
1781                 found = new;
1782         }
1783
1784         rdev->bss_generation++;
1785         bss_ref_get(rdev, found);
1786         spin_unlock_bh(&rdev->bss_lock);
1787
1788         return found;
1789  drop:
1790         spin_unlock_bh(&rdev->bss_lock);
1791         return NULL;
1792 }
1793
1794 /*
1795  * Update RX channel information based on the available frame payload
1796  * information. This is mainly for the 2.4 GHz band where frames can be received
1797  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1798  * element to indicate the current (transmitting) channel, but this might also
1799  * be needed on other bands if RX frequency does not match with the actual
1800  * operating channel of a BSS.
1801  */
1802 static struct ieee80211_channel *
1803 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1804                          struct ieee80211_channel *channel,
1805                          enum nl80211_bss_scan_width scan_width)
1806 {
1807         const u8 *tmp;
1808         u32 freq;
1809         int channel_number = -1;
1810         struct ieee80211_channel *alt_channel;
1811
1812         if (channel->band == NL80211_BAND_S1GHZ) {
1813                 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1814                 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1815                         struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1816
1817                         channel_number = s1gop->primary_ch;
1818                 }
1819         } else {
1820                 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1821                 if (tmp && tmp[1] == 1) {
1822                         channel_number = tmp[2];
1823                 } else {
1824                         tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1825                         if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1826                                 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1827
1828                                 channel_number = htop->primary_chan;
1829                         }
1830                 }
1831         }
1832
1833         if (channel_number < 0) {
1834                 /* No channel information in frame payload */
1835                 return channel;
1836         }
1837
1838         freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1839         alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1840         if (!alt_channel) {
1841                 if (channel->band == NL80211_BAND_2GHZ) {
1842                         /*
1843                          * Better not allow unexpected channels when that could
1844                          * be going beyond the 1-11 range (e.g., discovering
1845                          * BSS on channel 12 when radio is configured for
1846                          * channel 11.
1847                          */
1848                         return NULL;
1849                 }
1850
1851                 /* No match for the payload channel number - ignore it */
1852                 return channel;
1853         }
1854
1855         if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1856             scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1857                 /*
1858                  * Ignore channel number in 5 and 10 MHz channels where there
1859                  * may not be an n:1 or 1:n mapping between frequencies and
1860                  * channel numbers.
1861                  */
1862                 return channel;
1863         }
1864
1865         /*
1866          * Use the channel determined through the payload channel number
1867          * instead of the RX channel reported by the driver.
1868          */
1869         if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1870                 return NULL;
1871         return alt_channel;
1872 }
1873
1874 /* Returned bss is reference counted and must be cleaned up appropriately. */
1875 static struct cfg80211_bss *
1876 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1877                                 struct cfg80211_inform_bss *data,
1878                                 enum cfg80211_bss_frame_type ftype,
1879                                 const u8 *bssid, u64 tsf, u16 capability,
1880                                 u16 beacon_interval, const u8 *ie, size_t ielen,
1881                                 struct cfg80211_non_tx_bss *non_tx_data,
1882                                 gfp_t gfp)
1883 {
1884         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1885         struct cfg80211_bss_ies *ies;
1886         struct ieee80211_channel *channel;
1887         struct cfg80211_internal_bss tmp = {}, *res;
1888         int bss_type;
1889         bool signal_valid;
1890         unsigned long ts;
1891
1892         if (WARN_ON(!wiphy))
1893                 return NULL;
1894
1895         if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1896                     (data->signal < 0 || data->signal > 100)))
1897                 return NULL;
1898
1899         channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1900                                            data->scan_width);
1901         if (!channel)
1902                 return NULL;
1903
1904         memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1905         tmp.pub.channel = channel;
1906         tmp.pub.scan_width = data->scan_width;
1907         tmp.pub.signal = data->signal;
1908         tmp.pub.beacon_interval = beacon_interval;
1909         tmp.pub.capability = capability;
1910         tmp.ts_boottime = data->boottime_ns;
1911         tmp.parent_tsf = data->parent_tsf;
1912         ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1913
1914         if (non_tx_data) {
1915                 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1916                 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1917                 tmp.pub.bssid_index = non_tx_data->bssid_index;
1918                 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1919         } else {
1920                 ts = jiffies;
1921         }
1922
1923         /*
1924          * If we do not know here whether the IEs are from a Beacon or Probe
1925          * Response frame, we need to pick one of the options and only use it
1926          * with the driver that does not provide the full Beacon/Probe Response
1927          * frame. Use Beacon frame pointer to avoid indicating that this should
1928          * override the IEs pointer should we have received an earlier
1929          * indication of Probe Response data.
1930          */
1931         ies = kzalloc(sizeof(*ies) + ielen, gfp);
1932         if (!ies)
1933                 return NULL;
1934         ies->len = ielen;
1935         ies->tsf = tsf;
1936         ies->from_beacon = false;
1937         memcpy(ies->data, ie, ielen);
1938
1939         switch (ftype) {
1940         case CFG80211_BSS_FTYPE_BEACON:
1941                 ies->from_beacon = true;
1942                 fallthrough;
1943         case CFG80211_BSS_FTYPE_UNKNOWN:
1944                 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1945                 break;
1946         case CFG80211_BSS_FTYPE_PRESP:
1947                 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1948                 break;
1949         }
1950         rcu_assign_pointer(tmp.pub.ies, ies);
1951
1952         signal_valid = data->chan == channel;
1953         res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1954         if (!res)
1955                 return NULL;
1956
1957         if (channel->band == NL80211_BAND_60GHZ) {
1958                 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1959                 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1960                     bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1961                         regulatory_hint_found_beacon(wiphy, channel, gfp);
1962         } else {
1963                 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1964                         regulatory_hint_found_beacon(wiphy, channel, gfp);
1965         }
1966
1967         if (non_tx_data) {
1968                 /* this is a nontransmitting bss, we need to add it to
1969                  * transmitting bss' list if it is not there
1970                  */
1971                 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1972                                                &res->pub)) {
1973                         if (__cfg80211_unlink_bss(rdev, res))
1974                                 rdev->bss_generation++;
1975                 }
1976         }
1977
1978         trace_cfg80211_return_bss(&res->pub);
1979         /* cfg80211_bss_update gives us a referenced result */
1980         return &res->pub;
1981 }
1982
1983 static const struct element
1984 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1985                                    const struct element *mbssid_elem,
1986                                    const struct element *sub_elem)
1987 {
1988         const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1989         const struct element *next_mbssid;
1990         const struct element *next_sub;
1991
1992         next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1993                                          mbssid_end,
1994                                          ielen - (mbssid_end - ie));
1995
1996         /*
1997          * If it is not the last subelement in current MBSSID IE or there isn't
1998          * a next MBSSID IE - profile is complete.
1999         */
2000         if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2001             !next_mbssid)
2002                 return NULL;
2003
2004         /* For any length error, just return NULL */
2005
2006         if (next_mbssid->datalen < 4)
2007                 return NULL;
2008
2009         next_sub = (void *)&next_mbssid->data[1];
2010
2011         if (next_mbssid->data + next_mbssid->datalen <
2012             next_sub->data + next_sub->datalen)
2013                 return NULL;
2014
2015         if (next_sub->id != 0 || next_sub->datalen < 2)
2016                 return NULL;
2017
2018         /*
2019          * Check if the first element in the next sub element is a start
2020          * of a new profile
2021          */
2022         return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2023                NULL : next_mbssid;
2024 }
2025
2026 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2027                               const struct element *mbssid_elem,
2028                               const struct element *sub_elem,
2029                               u8 *merged_ie, size_t max_copy_len)
2030 {
2031         size_t copied_len = sub_elem->datalen;
2032         const struct element *next_mbssid;
2033
2034         if (sub_elem->datalen > max_copy_len)
2035                 return 0;
2036
2037         memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2038
2039         while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2040                                                                 mbssid_elem,
2041                                                                 sub_elem))) {
2042                 const struct element *next_sub = (void *)&next_mbssid->data[1];
2043
2044                 if (copied_len + next_sub->datalen > max_copy_len)
2045                         break;
2046                 memcpy(merged_ie + copied_len, next_sub->data,
2047                        next_sub->datalen);
2048                 copied_len += next_sub->datalen;
2049         }
2050
2051         return copied_len;
2052 }
2053 EXPORT_SYMBOL(cfg80211_merge_profile);
2054
2055 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2056                                        struct cfg80211_inform_bss *data,
2057                                        enum cfg80211_bss_frame_type ftype,
2058                                        const u8 *bssid, u64 tsf,
2059                                        u16 beacon_interval, const u8 *ie,
2060                                        size_t ielen,
2061                                        struct cfg80211_non_tx_bss *non_tx_data,
2062                                        gfp_t gfp)
2063 {
2064         const u8 *mbssid_index_ie;
2065         const struct element *elem, *sub;
2066         size_t new_ie_len;
2067         u8 new_bssid[ETH_ALEN];
2068         u8 *new_ie, *profile;
2069         u64 seen_indices = 0;
2070         u16 capability;
2071         struct cfg80211_bss *bss;
2072
2073         if (!non_tx_data)
2074                 return;
2075         if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2076                 return;
2077         if (!wiphy->support_mbssid)
2078                 return;
2079         if (wiphy->support_only_he_mbssid &&
2080             !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2081                 return;
2082
2083         new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2084         if (!new_ie)
2085                 return;
2086
2087         profile = kmalloc(ielen, gfp);
2088         if (!profile)
2089                 goto out;
2090
2091         for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2092                 if (elem->datalen < 4)
2093                         continue;
2094                 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2095                         u8 profile_len;
2096
2097                         if (sub->id != 0 || sub->datalen < 4) {
2098                                 /* not a valid BSS profile */
2099                                 continue;
2100                         }
2101
2102                         if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2103                             sub->data[1] != 2) {
2104                                 /* The first element within the Nontransmitted
2105                                  * BSSID Profile is not the Nontransmitted
2106                                  * BSSID Capability element.
2107                                  */
2108                                 continue;
2109                         }
2110
2111                         memset(profile, 0, ielen);
2112                         profile_len = cfg80211_merge_profile(ie, ielen,
2113                                                              elem,
2114                                                              sub,
2115                                                              profile,
2116                                                              ielen);
2117
2118                         /* found a Nontransmitted BSSID Profile */
2119                         mbssid_index_ie = cfg80211_find_ie
2120                                 (WLAN_EID_MULTI_BSSID_IDX,
2121                                  profile, profile_len);
2122                         if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2123                             mbssid_index_ie[2] == 0 ||
2124                             mbssid_index_ie[2] > 46) {
2125                                 /* No valid Multiple BSSID-Index element */
2126                                 continue;
2127                         }
2128
2129                         if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2130                                 /* We don't support legacy split of a profile */
2131                                 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2132                                                     mbssid_index_ie[2]);
2133
2134                         seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2135
2136                         non_tx_data->bssid_index = mbssid_index_ie[2];
2137                         non_tx_data->max_bssid_indicator = elem->data[0];
2138
2139                         cfg80211_gen_new_bssid(bssid,
2140                                                non_tx_data->max_bssid_indicator,
2141                                                non_tx_data->bssid_index,
2142                                                new_bssid);
2143                         memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2144                         new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2145                                                          profile,
2146                                                          profile_len, new_ie,
2147                                                          gfp);
2148                         if (!new_ie_len)
2149                                 continue;
2150
2151                         capability = get_unaligned_le16(profile + 2);
2152                         bss = cfg80211_inform_single_bss_data(wiphy, data,
2153                                                               ftype,
2154                                                               new_bssid, tsf,
2155                                                               capability,
2156                                                               beacon_interval,
2157                                                               new_ie,
2158                                                               new_ie_len,
2159                                                               non_tx_data,
2160                                                               gfp);
2161                         if (!bss)
2162                                 break;
2163                         cfg80211_put_bss(wiphy, bss);
2164                 }
2165         }
2166
2167 out:
2168         kfree(new_ie);
2169         kfree(profile);
2170 }
2171
2172 struct cfg80211_bss *
2173 cfg80211_inform_bss_data(struct wiphy *wiphy,
2174                          struct cfg80211_inform_bss *data,
2175                          enum cfg80211_bss_frame_type ftype,
2176                          const u8 *bssid, u64 tsf, u16 capability,
2177                          u16 beacon_interval, const u8 *ie, size_t ielen,
2178                          gfp_t gfp)
2179 {
2180         struct cfg80211_bss *res;
2181         struct cfg80211_non_tx_bss non_tx_data;
2182
2183         res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2184                                               capability, beacon_interval, ie,
2185                                               ielen, NULL, gfp);
2186         if (!res)
2187                 return NULL;
2188         non_tx_data.tx_bss = res;
2189         cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2190                                    beacon_interval, ie, ielen, &non_tx_data,
2191                                    gfp);
2192         return res;
2193 }
2194 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2195
2196 static void
2197 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2198                                  struct cfg80211_inform_bss *data,
2199                                  struct ieee80211_mgmt *mgmt, size_t len,
2200                                  struct cfg80211_non_tx_bss *non_tx_data,
2201                                  gfp_t gfp)
2202 {
2203         enum cfg80211_bss_frame_type ftype;
2204         const u8 *ie = mgmt->u.probe_resp.variable;
2205         size_t ielen = len - offsetof(struct ieee80211_mgmt,
2206                                       u.probe_resp.variable);
2207
2208         ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2209                 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2210
2211         cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2212                                    le64_to_cpu(mgmt->u.probe_resp.timestamp),
2213                                    le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2214                                    ie, ielen, non_tx_data, gfp);
2215 }
2216
2217 static void
2218 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2219                                    struct cfg80211_bss *nontrans_bss,
2220                                    struct ieee80211_mgmt *mgmt, size_t len)
2221 {
2222         u8 *ie, *new_ie, *pos;
2223         const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2224         size_t ielen = len - offsetof(struct ieee80211_mgmt,
2225                                       u.probe_resp.variable);
2226         size_t new_ie_len;
2227         struct cfg80211_bss_ies *new_ies;
2228         const struct cfg80211_bss_ies *old;
2229         u8 cpy_len;
2230
2231         lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2232
2233         ie = mgmt->u.probe_resp.variable;
2234
2235         new_ie_len = ielen;
2236         trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2237         if (!trans_ssid)
2238                 return;
2239         new_ie_len -= trans_ssid[1];
2240         mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2241         /*
2242          * It's not valid to have the MBSSID element before SSID
2243          * ignore if that happens - the code below assumes it is
2244          * after (while copying things inbetween).
2245          */
2246         if (!mbssid || mbssid < trans_ssid)
2247                 return;
2248         new_ie_len -= mbssid[1];
2249
2250         nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2251         if (!nontrans_ssid)
2252                 return;
2253
2254         new_ie_len += nontrans_ssid[1];
2255
2256         /* generate new ie for nontrans BSS
2257          * 1. replace SSID with nontrans BSS' SSID
2258          * 2. skip MBSSID IE
2259          */
2260         new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2261         if (!new_ie)
2262                 return;
2263
2264         new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2265         if (!new_ies)
2266                 goto out_free;
2267
2268         pos = new_ie;
2269
2270         /* copy the nontransmitted SSID */
2271         cpy_len = nontrans_ssid[1] + 2;
2272         memcpy(pos, nontrans_ssid, cpy_len);
2273         pos += cpy_len;
2274         /* copy the IEs between SSID and MBSSID */
2275         cpy_len = trans_ssid[1] + 2;
2276         memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2277         pos += (mbssid - (trans_ssid + cpy_len));
2278         /* copy the IEs after MBSSID */
2279         cpy_len = mbssid[1] + 2;
2280         memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2281
2282         /* update ie */
2283         new_ies->len = new_ie_len;
2284         new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2285         new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2286         memcpy(new_ies->data, new_ie, new_ie_len);
2287         if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2288                 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2289                 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2290                 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2291                 if (old)
2292                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2293         } else {
2294                 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2295                 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2296                 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2297                 if (old)
2298                         kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2299         }
2300
2301 out_free:
2302         kfree(new_ie);
2303 }
2304
2305 /* cfg80211_inform_bss_width_frame helper */
2306 static struct cfg80211_bss *
2307 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2308                                       struct cfg80211_inform_bss *data,
2309                                       struct ieee80211_mgmt *mgmt, size_t len,
2310                                       gfp_t gfp)
2311 {
2312         struct cfg80211_internal_bss tmp = {}, *res;
2313         struct cfg80211_bss_ies *ies;
2314         struct ieee80211_channel *channel;
2315         bool signal_valid;
2316         struct ieee80211_ext *ext = NULL;
2317         u8 *bssid, *variable;
2318         u16 capability, beacon_int;
2319         size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2320                                              u.probe_resp.variable);
2321         int bss_type;
2322
2323         BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2324                         offsetof(struct ieee80211_mgmt, u.beacon.variable));
2325
2326         trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2327
2328         if (WARN_ON(!mgmt))
2329                 return NULL;
2330
2331         if (WARN_ON(!wiphy))
2332                 return NULL;
2333
2334         if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2335                     (data->signal < 0 || data->signal > 100)))
2336                 return NULL;
2337
2338         if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2339                 ext = (void *) mgmt;
2340                 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2341                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2342                         min_hdr_len = offsetof(struct ieee80211_ext,
2343                                                u.s1g_short_beacon.variable);
2344         }
2345
2346         if (WARN_ON(len < min_hdr_len))
2347                 return NULL;
2348
2349         ielen = len - min_hdr_len;
2350         variable = mgmt->u.probe_resp.variable;
2351         if (ext) {
2352                 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2353                         variable = ext->u.s1g_short_beacon.variable;
2354                 else
2355                         variable = ext->u.s1g_beacon.variable;
2356         }
2357
2358         channel = cfg80211_get_bss_channel(wiphy, variable,
2359                                            ielen, data->chan, data->scan_width);
2360         if (!channel)
2361                 return NULL;
2362
2363         if (ext) {
2364                 const struct ieee80211_s1g_bcn_compat_ie *compat;
2365                 const struct element *elem;
2366
2367                 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2368                                           variable, ielen);
2369                 if (!elem)
2370                         return NULL;
2371                 if (elem->datalen < sizeof(*compat))
2372                         return NULL;
2373                 compat = (void *)elem->data;
2374                 bssid = ext->u.s1g_beacon.sa;
2375                 capability = le16_to_cpu(compat->compat_info);
2376                 beacon_int = le16_to_cpu(compat->beacon_int);
2377         } else {
2378                 bssid = mgmt->bssid;
2379                 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2380                 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2381         }
2382
2383         ies = kzalloc(sizeof(*ies) + ielen, gfp);
2384         if (!ies)
2385                 return NULL;
2386         ies->len = ielen;
2387         ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2388         ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2389                            ieee80211_is_s1g_beacon(mgmt->frame_control);
2390         memcpy(ies->data, variable, ielen);
2391
2392         if (ieee80211_is_probe_resp(mgmt->frame_control))
2393                 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2394         else
2395                 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2396         rcu_assign_pointer(tmp.pub.ies, ies);
2397
2398         memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2399         tmp.pub.beacon_interval = beacon_int;
2400         tmp.pub.capability = capability;
2401         tmp.pub.channel = channel;
2402         tmp.pub.scan_width = data->scan_width;
2403         tmp.pub.signal = data->signal;
2404         tmp.ts_boottime = data->boottime_ns;
2405         tmp.parent_tsf = data->parent_tsf;
2406         tmp.pub.chains = data->chains;
2407         memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2408         ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2409
2410         signal_valid = data->chan == channel;
2411         res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2412                                   jiffies);
2413         if (!res)
2414                 return NULL;
2415
2416         if (channel->band == NL80211_BAND_60GHZ) {
2417                 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2418                 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2419                     bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2420                         regulatory_hint_found_beacon(wiphy, channel, gfp);
2421         } else {
2422                 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2423                         regulatory_hint_found_beacon(wiphy, channel, gfp);
2424         }
2425
2426         trace_cfg80211_return_bss(&res->pub);
2427         /* cfg80211_bss_update gives us a referenced result */
2428         return &res->pub;
2429 }
2430
2431 struct cfg80211_bss *
2432 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2433                                struct cfg80211_inform_bss *data,
2434                                struct ieee80211_mgmt *mgmt, size_t len,
2435                                gfp_t gfp)
2436 {
2437         struct cfg80211_bss *res, *tmp_bss;
2438         const u8 *ie = mgmt->u.probe_resp.variable;
2439         const struct cfg80211_bss_ies *ies1, *ies2;
2440         size_t ielen = len - offsetof(struct ieee80211_mgmt,
2441                                       u.probe_resp.variable);
2442         struct cfg80211_non_tx_bss non_tx_data;
2443
2444         res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2445                                                     len, gfp);
2446         if (!res || !wiphy->support_mbssid ||
2447             !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2448                 return res;
2449         if (wiphy->support_only_he_mbssid &&
2450             !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2451                 return res;
2452
2453         non_tx_data.tx_bss = res;
2454         /* process each non-transmitting bss */
2455         cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2456                                          &non_tx_data, gfp);
2457
2458         spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2459
2460         /* check if the res has other nontransmitting bss which is not
2461          * in MBSSID IE
2462          */
2463         ies1 = rcu_access_pointer(res->ies);
2464
2465         /* go through nontrans_list, if the timestamp of the BSS is
2466          * earlier than the timestamp of the transmitting BSS then
2467          * update it
2468          */
2469         list_for_each_entry(tmp_bss, &res->nontrans_list,
2470                             nontrans_list) {
2471                 ies2 = rcu_access_pointer(tmp_bss->ies);
2472                 if (ies2->tsf < ies1->tsf)
2473                         cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2474                                                            mgmt, len);
2475         }
2476         spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2477
2478         return res;
2479 }
2480 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2481
2482 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2483 {
2484         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2485         struct cfg80211_internal_bss *bss;
2486
2487         if (!pub)
2488                 return;
2489
2490         bss = container_of(pub, struct cfg80211_internal_bss, pub);
2491
2492         spin_lock_bh(&rdev->bss_lock);
2493         bss_ref_get(rdev, bss);
2494         spin_unlock_bh(&rdev->bss_lock);
2495 }
2496 EXPORT_SYMBOL(cfg80211_ref_bss);
2497
2498 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2499 {
2500         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2501         struct cfg80211_internal_bss *bss;
2502
2503         if (!pub)
2504                 return;
2505
2506         bss = container_of(pub, struct cfg80211_internal_bss, pub);
2507
2508         spin_lock_bh(&rdev->bss_lock);
2509         bss_ref_put(rdev, bss);
2510         spin_unlock_bh(&rdev->bss_lock);
2511 }
2512 EXPORT_SYMBOL(cfg80211_put_bss);
2513
2514 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2515 {
2516         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2517         struct cfg80211_internal_bss *bss, *tmp1;
2518         struct cfg80211_bss *nontrans_bss, *tmp;
2519
2520         if (WARN_ON(!pub))
2521                 return;
2522
2523         bss = container_of(pub, struct cfg80211_internal_bss, pub);
2524
2525         spin_lock_bh(&rdev->bss_lock);
2526         if (list_empty(&bss->list))
2527                 goto out;
2528
2529         list_for_each_entry_safe(nontrans_bss, tmp,
2530                                  &pub->nontrans_list,
2531                                  nontrans_list) {
2532                 tmp1 = container_of(nontrans_bss,
2533                                     struct cfg80211_internal_bss, pub);
2534                 if (__cfg80211_unlink_bss(rdev, tmp1))
2535                         rdev->bss_generation++;
2536         }
2537
2538         if (__cfg80211_unlink_bss(rdev, bss))
2539                 rdev->bss_generation++;
2540 out:
2541         spin_unlock_bh(&rdev->bss_lock);
2542 }
2543 EXPORT_SYMBOL(cfg80211_unlink_bss);
2544
2545 void cfg80211_bss_iter(struct wiphy *wiphy,
2546                        struct cfg80211_chan_def *chandef,
2547                        void (*iter)(struct wiphy *wiphy,
2548                                     struct cfg80211_bss *bss,
2549                                     void *data),
2550                        void *iter_data)
2551 {
2552         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2553         struct cfg80211_internal_bss *bss;
2554
2555         spin_lock_bh(&rdev->bss_lock);
2556
2557         list_for_each_entry(bss, &rdev->bss_list, list) {
2558                 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2559                         iter(wiphy, &bss->pub, iter_data);
2560         }
2561
2562         spin_unlock_bh(&rdev->bss_lock);
2563 }
2564 EXPORT_SYMBOL(cfg80211_bss_iter);
2565
2566 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2567                                      struct ieee80211_channel *chan)
2568 {
2569         struct wiphy *wiphy = wdev->wiphy;
2570         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2571         struct cfg80211_internal_bss *cbss = wdev->current_bss;
2572         struct cfg80211_internal_bss *new = NULL;
2573         struct cfg80211_internal_bss *bss;
2574         struct cfg80211_bss *nontrans_bss;
2575         struct cfg80211_bss *tmp;
2576
2577         spin_lock_bh(&rdev->bss_lock);
2578
2579         /*
2580          * Some APs use CSA also for bandwidth changes, i.e., without actually
2581          * changing the control channel, so no need to update in such a case.
2582          */
2583         if (cbss->pub.channel == chan)
2584                 goto done;
2585
2586         /* use transmitting bss */
2587         if (cbss->pub.transmitted_bss)
2588                 cbss = container_of(cbss->pub.transmitted_bss,
2589                                     struct cfg80211_internal_bss,
2590                                     pub);
2591
2592         cbss->pub.channel = chan;
2593
2594         list_for_each_entry(bss, &rdev->bss_list, list) {
2595                 if (!cfg80211_bss_type_match(bss->pub.capability,
2596                                              bss->pub.channel->band,
2597                                              wdev->conn_bss_type))
2598                         continue;
2599
2600                 if (bss == cbss)
2601                         continue;
2602
2603                 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2604                         new = bss;
2605                         break;
2606                 }
2607         }
2608
2609         if (new) {
2610                 /* to save time, update IEs for transmitting bss only */
2611                 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2612                         new->pub.proberesp_ies = NULL;
2613                         new->pub.beacon_ies = NULL;
2614                 }
2615
2616                 list_for_each_entry_safe(nontrans_bss, tmp,
2617                                          &new->pub.nontrans_list,
2618                                          nontrans_list) {
2619                         bss = container_of(nontrans_bss,
2620                                            struct cfg80211_internal_bss, pub);
2621                         if (__cfg80211_unlink_bss(rdev, bss))
2622                                 rdev->bss_generation++;
2623                 }
2624
2625                 WARN_ON(atomic_read(&new->hold));
2626                 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2627                         rdev->bss_generation++;
2628         }
2629
2630         rb_erase(&cbss->rbn, &rdev->bss_tree);
2631         rb_insert_bss(rdev, cbss);
2632         rdev->bss_generation++;
2633
2634         list_for_each_entry_safe(nontrans_bss, tmp,
2635                                  &cbss->pub.nontrans_list,
2636                                  nontrans_list) {
2637                 bss = container_of(nontrans_bss,
2638                                    struct cfg80211_internal_bss, pub);
2639                 bss->pub.channel = chan;
2640                 rb_erase(&bss->rbn, &rdev->bss_tree);
2641                 rb_insert_bss(rdev, bss);
2642                 rdev->bss_generation++;
2643         }
2644
2645 done:
2646         spin_unlock_bh(&rdev->bss_lock);
2647 }
2648
2649 #ifdef CONFIG_CFG80211_WEXT
2650 static struct cfg80211_registered_device *
2651 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2652 {
2653         struct cfg80211_registered_device *rdev;
2654         struct net_device *dev;
2655
2656         ASSERT_RTNL();
2657
2658         dev = dev_get_by_index(net, ifindex);
2659         if (!dev)
2660                 return ERR_PTR(-ENODEV);
2661         if (dev->ieee80211_ptr)
2662                 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2663         else
2664                 rdev = ERR_PTR(-ENODEV);
2665         dev_put(dev);
2666         return rdev;
2667 }
2668
2669 int cfg80211_wext_siwscan(struct net_device *dev,
2670                           struct iw_request_info *info,
2671                           union iwreq_data *wrqu, char *extra)
2672 {
2673         struct cfg80211_registered_device *rdev;
2674         struct wiphy *wiphy;
2675         struct iw_scan_req *wreq = NULL;
2676         struct cfg80211_scan_request *creq = NULL;
2677         int i, err, n_channels = 0;
2678         enum nl80211_band band;
2679
2680         if (!netif_running(dev))
2681                 return -ENETDOWN;
2682
2683         if (wrqu->data.length == sizeof(struct iw_scan_req))
2684                 wreq = (struct iw_scan_req *)extra;
2685
2686         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2687
2688         if (IS_ERR(rdev))
2689                 return PTR_ERR(rdev);
2690
2691         if (rdev->scan_req || rdev->scan_msg) {
2692                 err = -EBUSY;
2693                 goto out;
2694         }
2695
2696         wiphy = &rdev->wiphy;
2697
2698         /* Determine number of channels, needed to allocate creq */
2699         if (wreq && wreq->num_channels)
2700                 n_channels = wreq->num_channels;
2701         else
2702                 n_channels = ieee80211_get_num_supported_channels(wiphy);
2703
2704         creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2705                        n_channels * sizeof(void *),
2706                        GFP_ATOMIC);
2707         if (!creq) {
2708                 err = -ENOMEM;
2709                 goto out;
2710         }
2711
2712         creq->wiphy = wiphy;
2713         creq->wdev = dev->ieee80211_ptr;
2714         /* SSIDs come after channels */
2715         creq->ssids = (void *)&creq->channels[n_channels];
2716         creq->n_channels = n_channels;
2717         creq->n_ssids = 1;
2718         creq->scan_start = jiffies;
2719
2720         /* translate "Scan on frequencies" request */
2721         i = 0;
2722         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2723                 int j;
2724
2725                 if (!wiphy->bands[band])
2726                         continue;
2727
2728                 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2729                         /* ignore disabled channels */
2730                         if (wiphy->bands[band]->channels[j].flags &
2731                                                 IEEE80211_CHAN_DISABLED)
2732                                 continue;
2733
2734                         /* If we have a wireless request structure and the
2735                          * wireless request specifies frequencies, then search
2736                          * for the matching hardware channel.
2737                          */
2738                         if (wreq && wreq->num_channels) {
2739                                 int k;
2740                                 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2741                                 for (k = 0; k < wreq->num_channels; k++) {
2742                                         struct iw_freq *freq =
2743                                                 &wreq->channel_list[k];
2744                                         int wext_freq =
2745                                                 cfg80211_wext_freq(freq);
2746
2747                                         if (wext_freq == wiphy_freq)
2748                                                 goto wext_freq_found;
2749                                 }
2750                                 goto wext_freq_not_found;
2751                         }
2752
2753                 wext_freq_found:
2754                         creq->channels[i] = &wiphy->bands[band]->channels[j];
2755                         i++;
2756                 wext_freq_not_found: ;
2757                 }
2758         }
2759         /* No channels found? */
2760         if (!i) {
2761                 err = -EINVAL;
2762                 goto out;
2763         }
2764
2765         /* Set real number of channels specified in creq->channels[] */
2766         creq->n_channels = i;
2767
2768         /* translate "Scan for SSID" request */
2769         if (wreq) {
2770                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2771                         if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2772                                 err = -EINVAL;
2773                                 goto out;
2774                         }
2775                         memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2776                         creq->ssids[0].ssid_len = wreq->essid_len;
2777                 }
2778                 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2779                         creq->n_ssids = 0;
2780         }
2781
2782         for (i = 0; i < NUM_NL80211_BANDS; i++)
2783                 if (wiphy->bands[i])
2784                         creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2785
2786         eth_broadcast_addr(creq->bssid);
2787
2788         wiphy_lock(&rdev->wiphy);
2789
2790         rdev->scan_req = creq;
2791         err = rdev_scan(rdev, creq);
2792         if (err) {
2793                 rdev->scan_req = NULL;
2794                 /* creq will be freed below */
2795         } else {
2796                 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2797                 /* creq now owned by driver */
2798                 creq = NULL;
2799                 dev_hold(dev);
2800         }
2801         wiphy_unlock(&rdev->wiphy);
2802  out:
2803         kfree(creq);
2804         return err;
2805 }
2806 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2807
2808 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2809                                     const struct cfg80211_bss_ies *ies,
2810                                     char *current_ev, char *end_buf)
2811 {
2812         const u8 *pos, *end, *next;
2813         struct iw_event iwe;
2814
2815         if (!ies)
2816                 return current_ev;
2817
2818         /*
2819          * If needed, fragment the IEs buffer (at IE boundaries) into short
2820          * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2821          */
2822         pos = ies->data;
2823         end = pos + ies->len;
2824
2825         while (end - pos > IW_GENERIC_IE_MAX) {
2826                 next = pos + 2 + pos[1];
2827                 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2828                         next = next + 2 + next[1];
2829
2830                 memset(&iwe, 0, sizeof(iwe));
2831                 iwe.cmd = IWEVGENIE;
2832                 iwe.u.data.length = next - pos;
2833                 current_ev = iwe_stream_add_point_check(info, current_ev,
2834                                                         end_buf, &iwe,
2835                                                         (void *)pos);
2836                 if (IS_ERR(current_ev))
2837                         return current_ev;
2838                 pos = next;
2839         }
2840
2841         if (end > pos) {
2842                 memset(&iwe, 0, sizeof(iwe));
2843                 iwe.cmd = IWEVGENIE;
2844                 iwe.u.data.length = end - pos;
2845                 current_ev = iwe_stream_add_point_check(info, current_ev,
2846                                                         end_buf, &iwe,
2847                                                         (void *)pos);
2848                 if (IS_ERR(current_ev))
2849                         return current_ev;
2850         }
2851
2852         return current_ev;
2853 }
2854
2855 static char *
2856 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2857               struct cfg80211_internal_bss *bss, char *current_ev,
2858               char *end_buf)
2859 {
2860         const struct cfg80211_bss_ies *ies;
2861         struct iw_event iwe;
2862         const u8 *ie;
2863         u8 buf[50];
2864         u8 *cfg, *p, *tmp;
2865         int rem, i, sig;
2866         bool ismesh = false;
2867
2868         memset(&iwe, 0, sizeof(iwe));
2869         iwe.cmd = SIOCGIWAP;
2870         iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2871         memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2872         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2873                                                 IW_EV_ADDR_LEN);
2874         if (IS_ERR(current_ev))
2875                 return current_ev;
2876
2877         memset(&iwe, 0, sizeof(iwe));
2878         iwe.cmd = SIOCGIWFREQ;
2879         iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2880         iwe.u.freq.e = 0;
2881         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2882                                                 IW_EV_FREQ_LEN);
2883         if (IS_ERR(current_ev))
2884                 return current_ev;
2885
2886         memset(&iwe, 0, sizeof(iwe));
2887         iwe.cmd = SIOCGIWFREQ;
2888         iwe.u.freq.m = bss->pub.channel->center_freq;
2889         iwe.u.freq.e = 6;
2890         current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2891                                                 IW_EV_FREQ_LEN);
2892         if (IS_ERR(current_ev))
2893                 return current_ev;
2894
2895         if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2896                 memset(&iwe, 0, sizeof(iwe));
2897                 iwe.cmd = IWEVQUAL;
2898                 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2899                                      IW_QUAL_NOISE_INVALID |
2900                                      IW_QUAL_QUAL_UPDATED;
2901                 switch (wiphy->signal_type) {
2902                 case CFG80211_SIGNAL_TYPE_MBM:
2903                         sig = bss->pub.signal / 100;
2904                         iwe.u.qual.level = sig;
2905                         iwe.u.qual.updated |= IW_QUAL_DBM;
2906                         if (sig < -110)         /* rather bad */
2907                                 sig = -110;
2908                         else if (sig > -40)     /* perfect */
2909                                 sig = -40;
2910                         /* will give a range of 0 .. 70 */
2911                         iwe.u.qual.qual = sig + 110;
2912                         break;
2913                 case CFG80211_SIGNAL_TYPE_UNSPEC:
2914                         iwe.u.qual.level = bss->pub.signal;
2915                         /* will give range 0 .. 100 */
2916                         iwe.u.qual.qual = bss->pub.signal;
2917                         break;
2918                 default:
2919                         /* not reached */
2920                         break;
2921                 }
2922                 current_ev = iwe_stream_add_event_check(info, current_ev,
2923                                                         end_buf, &iwe,
2924                                                         IW_EV_QUAL_LEN);
2925                 if (IS_ERR(current_ev))
2926                         return current_ev;
2927         }
2928
2929         memset(&iwe, 0, sizeof(iwe));
2930         iwe.cmd = SIOCGIWENCODE;
2931         if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2932                 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2933         else
2934                 iwe.u.data.flags = IW_ENCODE_DISABLED;
2935         iwe.u.data.length = 0;
2936         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2937                                                 &iwe, "");
2938         if (IS_ERR(current_ev))
2939                 return current_ev;
2940
2941         rcu_read_lock();
2942         ies = rcu_dereference(bss->pub.ies);
2943         rem = ies->len;
2944         ie = ies->data;
2945
2946         while (rem >= 2) {
2947                 /* invalid data */
2948                 if (ie[1] > rem - 2)
2949                         break;
2950
2951                 switch (ie[0]) {
2952                 case WLAN_EID_SSID:
2953                         memset(&iwe, 0, sizeof(iwe));
2954                         iwe.cmd = SIOCGIWESSID;
2955                         iwe.u.data.length = ie[1];
2956                         iwe.u.data.flags = 1;
2957                         current_ev = iwe_stream_add_point_check(info,
2958                                                                 current_ev,
2959                                                                 end_buf, &iwe,
2960                                                                 (u8 *)ie + 2);
2961                         if (IS_ERR(current_ev))
2962                                 goto unlock;
2963                         break;
2964                 case WLAN_EID_MESH_ID:
2965                         memset(&iwe, 0, sizeof(iwe));
2966                         iwe.cmd = SIOCGIWESSID;
2967                         iwe.u.data.length = ie[1];
2968                         iwe.u.data.flags = 1;
2969                         current_ev = iwe_stream_add_point_check(info,
2970                                                                 current_ev,
2971                                                                 end_buf, &iwe,
2972                                                                 (u8 *)ie + 2);
2973                         if (IS_ERR(current_ev))
2974                                 goto unlock;
2975                         break;
2976                 case WLAN_EID_MESH_CONFIG:
2977                         ismesh = true;
2978                         if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2979                                 break;
2980                         cfg = (u8 *)ie + 2;
2981                         memset(&iwe, 0, sizeof(iwe));
2982                         iwe.cmd = IWEVCUSTOM;
2983                         sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2984                                 "0x%02X", cfg[0]);
2985                         iwe.u.data.length = strlen(buf);
2986                         current_ev = iwe_stream_add_point_check(info,
2987                                                                 current_ev,
2988                                                                 end_buf,
2989                                                                 &iwe, buf);
2990                         if (IS_ERR(current_ev))
2991                                 goto unlock;
2992                         sprintf(buf, "Path Selection Metric ID: 0x%02X",
2993                                 cfg[1]);
2994                         iwe.u.data.length = strlen(buf);
2995                         current_ev = iwe_stream_add_point_check(info,
2996                                                                 current_ev,
2997                                                                 end_buf,
2998                                                                 &iwe, buf);
2999                         if (IS_ERR(current_ev))
3000                                 goto unlock;
3001                         sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3002                                 cfg[2]);
3003                         iwe.u.data.length = strlen(buf);
3004                         current_ev = iwe_stream_add_point_check(info,
3005                                                                 current_ev,
3006                                                                 end_buf,
3007                                                                 &iwe, buf);
3008                         if (IS_ERR(current_ev))
3009                                 goto unlock;
3010                         sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3011                         iwe.u.data.length = strlen(buf);
3012                         current_ev = iwe_stream_add_point_check(info,
3013                                                                 current_ev,
3014                                                                 end_buf,
3015                                                                 &iwe, buf);
3016                         if (IS_ERR(current_ev))
3017                                 goto unlock;
3018                         sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3019                         iwe.u.data.length = strlen(buf);
3020                         current_ev = iwe_stream_add_point_check(info,
3021                                                                 current_ev,
3022                                                                 end_buf,
3023                                                                 &iwe, buf);
3024                         if (IS_ERR(current_ev))
3025                                 goto unlock;
3026                         sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3027                         iwe.u.data.length = strlen(buf);
3028                         current_ev = iwe_stream_add_point_check(info,
3029                                                                 current_ev,
3030                                                                 end_buf,
3031                                                                 &iwe, buf);
3032                         if (IS_ERR(current_ev))
3033                                 goto unlock;
3034                         sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3035                         iwe.u.data.length = strlen(buf);
3036                         current_ev = iwe_stream_add_point_check(info,
3037                                                                 current_ev,
3038                                                                 end_buf,
3039                                                                 &iwe, buf);
3040                         if (IS_ERR(current_ev))
3041                                 goto unlock;
3042                         break;
3043                 case WLAN_EID_SUPP_RATES:
3044                 case WLAN_EID_EXT_SUPP_RATES:
3045                         /* display all supported rates in readable format */
3046                         p = current_ev + iwe_stream_lcp_len(info);
3047
3048                         memset(&iwe, 0, sizeof(iwe));
3049                         iwe.cmd = SIOCGIWRATE;
3050                         /* Those two flags are ignored... */
3051                         iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3052
3053                         for (i = 0; i < ie[1]; i++) {
3054                                 iwe.u.bitrate.value =
3055                                         ((ie[i + 2] & 0x7f) * 500000);
3056                                 tmp = p;
3057                                 p = iwe_stream_add_value(info, current_ev, p,
3058                                                          end_buf, &iwe,
3059                                                          IW_EV_PARAM_LEN);
3060                                 if (p == tmp) {
3061                                         current_ev = ERR_PTR(-E2BIG);
3062                                         goto unlock;
3063                                 }
3064                         }
3065                         current_ev = p;
3066                         break;
3067                 }
3068                 rem -= ie[1] + 2;
3069                 ie += ie[1] + 2;
3070         }
3071
3072         if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3073             ismesh) {
3074                 memset(&iwe, 0, sizeof(iwe));
3075                 iwe.cmd = SIOCGIWMODE;
3076                 if (ismesh)
3077                         iwe.u.mode = IW_MODE_MESH;
3078                 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3079                         iwe.u.mode = IW_MODE_MASTER;
3080                 else
3081                         iwe.u.mode = IW_MODE_ADHOC;
3082                 current_ev = iwe_stream_add_event_check(info, current_ev,
3083                                                         end_buf, &iwe,
3084                                                         IW_EV_UINT_LEN);
3085                 if (IS_ERR(current_ev))
3086                         goto unlock;
3087         }
3088
3089         memset(&iwe, 0, sizeof(iwe));
3090         iwe.cmd = IWEVCUSTOM;
3091         sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3092         iwe.u.data.length = strlen(buf);
3093         current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3094                                                 &iwe, buf);
3095         if (IS_ERR(current_ev))
3096                 goto unlock;
3097         memset(&iwe, 0, sizeof(iwe));
3098         iwe.cmd = IWEVCUSTOM;
3099         sprintf(buf, " Last beacon: %ums ago",
3100                 elapsed_jiffies_msecs(bss->ts));
3101         iwe.u.data.length = strlen(buf);
3102         current_ev = iwe_stream_add_point_check(info, current_ev,
3103                                                 end_buf, &iwe, buf);
3104         if (IS_ERR(current_ev))
3105                 goto unlock;
3106
3107         current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3108
3109  unlock:
3110         rcu_read_unlock();
3111         return current_ev;
3112 }
3113
3114
3115 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3116                                   struct iw_request_info *info,
3117                                   char *buf, size_t len)
3118 {
3119         char *current_ev = buf;
3120         char *end_buf = buf + len;
3121         struct cfg80211_internal_bss *bss;
3122         int err = 0;
3123
3124         spin_lock_bh(&rdev->bss_lock);
3125         cfg80211_bss_expire(rdev);
3126
3127         list_for_each_entry(bss, &rdev->bss_list, list) {
3128                 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3129                         err = -E2BIG;
3130                         break;
3131                 }
3132                 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3133                                            current_ev, end_buf);
3134                 if (IS_ERR(current_ev)) {
3135                         err = PTR_ERR(current_ev);
3136                         break;
3137                 }
3138         }
3139         spin_unlock_bh(&rdev->bss_lock);
3140
3141         if (err)
3142                 return err;
3143         return current_ev - buf;
3144 }
3145
3146
3147 int cfg80211_wext_giwscan(struct net_device *dev,
3148                           struct iw_request_info *info,
3149                           struct iw_point *data, char *extra)
3150 {
3151         struct cfg80211_registered_device *rdev;
3152         int res;
3153
3154         if (!netif_running(dev))
3155                 return -ENETDOWN;
3156
3157         rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3158
3159         if (IS_ERR(rdev))
3160                 return PTR_ERR(rdev);
3161
3162         if (rdev->scan_req || rdev->scan_msg)
3163                 return -EAGAIN;
3164
3165         res = ieee80211_scan_results(rdev, info, extra, data->length);
3166         data->length = 0;
3167         if (res >= 0) {
3168                 data->length = res;
3169                 res = 0;
3170         }
3171
3172         return res;
3173 }
3174 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3175 #endif